WorldWideScience

Sample records for neutron-doped p-type silicon

  1. Application of neutron transmutation doping method to initially p-type silicon material.

    Science.gov (United States)

    Kim, Myong-Seop; Kang, Ki-Doo; Park, Sang-Jun

    2009-01-01

    The neutron transmutation doping (NTD) method was applied to the initially p-type silicon in order to extend the NTD applications at HANARO. The relationship between the irradiation neutron fluence and the final resistivity of the initially p-type silicon material was investigated. The proportional constant between the neutron fluence and the resistivity was determined to be 2.3473x10(19)nOmegacm(-1). The deviation of the final resistivity from the target for almost all the irradiation results of the initially p-type silicon ingots was at a range from -5% to 2%. In addition, the burn-up effect of the boron impurities, the residual (32)P activity and the effect of the compensation characteristics for the initially p-type silicon were studied. Conclusively, the practical methodology to perform the neutron transmutation doping of the initially p-type silicon ingot was established.

  2. Electrical property studies of neutron-transmutation-doped silicon

    International Nuclear Information System (INIS)

    Cleland, J.W.; Fleming, P.H.; Westbrook, R.D.; Wood, R.F.; Young, R.T.

    1978-01-01

    Results of studies of electrical properties of neutron-transmutation-doped (NTD) silicon are presented. Annealing requirements to remove lattice damage were obtained. The electrical role of clustered oxygen and defect-oxygen complex was investigated. An NTD epitaxial layer on a heavily doped n- or p- type substrate can be produced. There is no evident interaction between lithium introduced by diffusion and phosphorous 31 introduced by irradiation. There may be some type of pairing reaction between lithium 7 introduced by boron 10 fission and any remaining boron

  3. Effect of neutron irradiation on p-type silicon

    International Nuclear Information System (INIS)

    Sopko, B.

    1973-01-01

    The possibilities are discussed of silicon isotope reactions with neutrons of all energies. In the reactions, 30 Si is converted to a stable phosphorus isotope forming n-type impurities in silicon. The above reactions proceed as a result of thermal neutron irradiation. An experiment is reported involving irradiation of two p-type silicon single crystals having a specific resistance of 2000 ohm.cm and 5000 to 20 000 ohm.cm, respectively, which changed as a result of irradiation into n-type silicon with a given specific resistance. The specific resistance may be pre-calculated from the concentration of impurities and the time of irradiation. The effects of irradiation on other silicon parameters and thus on the suitability of silicon for the manufacture of semiconductor elements are discussed. (J.K.)

  4. p-type doping by platinum diffusion in low phosphorus doped silicon

    Science.gov (United States)

    Ventura, L.; Pichaud, B.; Vervisch, W.; Lanois, F.

    2003-07-01

    In this work we show that the cooling rate following a platinum diffusion strongly influences the electrical conductivity in weakly phosphorus doped silicon. Diffusions were performed at the temperature of 910 °C in the range of 8 32 hours in 0.6, 30, and 60 Ωrm cm phosphorus doped silicon samples. Spreading resistance profile analyses clearly show an n-type to p-type conversion under the surface when samples are cooled slowly. On the other hand, a compensation of the phosphorus donors can only be observed when samples are quenched. One Pt related acceptor deep level at 0.43 eV from the valence band is assumed to be at the origin of the type conversion mechanism. Its concentration increases by lowering the applied cooling rate. A complex formation with fast species such as interstitial Pt atoms or intrinsic point defects is expected. In 0.6 Ωrm cm phosphorus doped silicon, no acceptor deep level in the lower band gap is detected by DLTS measurement. This removes the opportunity of a pairing between phosphorus and platinum and suggests the possibility of a Fermi level controlled complex formation.

  5. Microdefects in neutron-transmutationaly doped silicon

    International Nuclear Information System (INIS)

    Vysotskaya, V.V.; Gorin, S.N.; Gres'kov, I.M.; Sobolev, N.A.; Shek, E.I.

    1988-01-01

    Using the method of X-ray topography and high-voltage electron microscopy, the nature of microdefects and character of their changes in neutron-transmutationaly doped silicon depending on the sample prehistory and heat treatment (HT) conditions are refined. It is shown that the microstructure of neutron-transmutationaly doped dislocation-free silicon crystals depends on conditions of ingot growth and post-radiation annealing environment. Annealing in chlorine-containing atmosphere removes microdefects (MD), although in vacuum, argon or air growing MD are preserved and new MD are formed

  6. Microdefects in neutron-transmutationaly doped silicon

    Energy Technology Data Exchange (ETDEWEB)

    Vysotskaya, V V; Gorin, S N; Gres' kov, I M; Sobolev, N A; Shek, E I

    1988-03-01

    Using the method of X-ray topography and high-voltage electron microscopy, the nature of microdefects and character of their changes in neutron-transmutationaly doped silicon depending on the sample prehistory and heat treatment (HT) conditions are refined. It is shown that the microstructure of neutron-transmutationaly doped dislocation-free silicon crystals depends on conditions of ingot growth and post-radiation annealing environment. Annealing in chlorine-containing atmosphere removes microdefects (MD), although in vacuum, argon or air growing MD are preserved and new MD are formed.

  7. Proposal of a neutron transmutation doping facility for n-type spherical silicon solar cell at high-temperature engineering test reactor.

    Science.gov (United States)

    Ho, Hai Quan; Honda, Yuki; Motoyama, Mizuki; Hamamoto, Shimpei; Ishii, Toshiaki; Ishitsuka, Etsuo

    2018-05-01

    The p-type spherical silicon solar cell is a candidate for future solar energy with low fabrication cost, however, its conversion efficiency is only about 10%. The conversion efficiency of a silicon solar cell can be increased by using n-type silicon semiconductor as a substrate. This study proposed a new method of neutron transmutation doping silicon (NTD-Si) for producing the n-type spherical solar cell, in which the Si-particles are irradiated directly instead of the cylinder Si-ingot as in the conventional NTD-Si. By using a 'screw', an identical resistivity could be achieved for the Si-particles without a complicated procedure as in the NTD with Si-ingot. Also, the reactivity and neutron flux swing could be kept to a minimum because of the continuous irradiation of the Si-particles. A high temperature engineering test reactor (HTTR), which is located in Japan, was used as a reference reactor in this study. Neutronic calculations showed that the HTTR has a capability to produce about 40t/EFPY of 10Ωcm resistivity Si-particles for fabrication of the n-type spherical solar cell. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Neutron transmutation doping of polycrystalline silicon

    International Nuclear Information System (INIS)

    Cleland, J.W.; Westbrook, R.D.; Wood, R.F.; Young, R.T.

    1976-04-01

    Chemical vapor deposition (CVD) of doped silane has been used by others to deposit a polycrytalline silicon film (polysil) on metal or graphite substrates, but dopant migration to grain boundaries during deposition apparently prohibits attaining a uniform or desired dopant concentration. In contrast, we have used neutron transmutation doping to introduce a uniform phosphorus dopant concentration in commercially available undoped CVD polysil at doping concentrations greater than or equal to 2 x 10 15 cm -3 . Radiation damage annealing to 800 0 C did not indicate dopant migration. Carrier mobility increased with doping concentration and the minority carrier lifetime (MCL) appears to be comparable to that of neutron transmutation doped (NTD) single crystal Si. Application of this technique to photovoltaic solar cell fabrication is discussed

  9. Electron trap annealing in neutron transmutation doped silicon

    DEFF Research Database (Denmark)

    Guldberg, J.

    1977-01-01

    Silicon doped by neutron transmutation to 1.2×1014 phosphorus atoms/cm3 was investigated with deep level transient spectroscopy using evaporated Au/n-Si diodes. Seven bulk electron traps were identified which appear after 30 min N2 anneal at temperatures between 425 and 725 °C. Five of these anne......Silicon doped by neutron transmutation to 1.2×1014 phosphorus atoms/cm3 was investigated with deep level transient spectroscopy using evaporated Au/n-Si diodes. Seven bulk electron traps were identified which appear after 30 min N2 anneal at temperatures between 425 and 725 °C. Five...

  10. Multivariate data analysis of process control data from neutron transmutation doping of silicon

    DEFF Research Database (Denmark)

    Heydorn, K.; Hegaard, N.

    1994-01-01

    Final resistivities obtained by neutron transmutation doping (NTD) of silicon can be measured only after an annealing process has been carried out at the manufacturer's plant. The reactor centre carrying out the neutron doping process by irradiation under selected conditions must control the proc......Final resistivities obtained by neutron transmutation doping (NTD) of silicon can be measured only after an annealing process has been carried out at the manufacturer's plant. The reactor centre carrying out the neutron doping process by irradiation under selected conditions must control...

  11. The development of the market for neutron transmutation doped silicon

    International Nuclear Information System (INIS)

    Herzer, H.; Vieweg-Gutberlet, G.

    1984-01-01

    Neutron transmutation doped silicon was introduced to the electronic device market in the 1975-1976 time period. Today, neutron transmutation doping is definitely a mature technology applied mainly to semiconductor power devices. There is no doubt that the power device sector will remain the major consumer of NTD silicon in the near future. This paper examines the possible application of NTD silicon to other areas of the semiconductor market, and concludes that the need for NTD silicon will continue to grow and will expand into other applications. Consequently, unless new reactor capacities become available by the end of the decade, NTD silicon applications will probably be limited mainly to power and sensor devices

  12. Transmutation doping of silicon solar cells

    Science.gov (United States)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  13. Design and burn-up analyses of new type holder for silicon neutron transmutation doping.

    Science.gov (United States)

    Komeda, Masao; Arai, Masaji; Tamai, Kazuo; Kawasaki, Kozo

    2016-07-01

    We have developed a new silicon irradiation holder with a neutron filter to increase the irradiation efficiency. The neutron filter is made of an alloy of aluminum and B4C particles. We fabricated a new holder based on the results of design analyses. This filter has limited use in applications requiring prolonged use due to a decrease in the amount of (10)B in B4C particles. We investigated the influence of (10)B reduction on doping distribution in a silicon ingot by using the Monte Carlo Code MVP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Neutron transmutation doping of silicon

    International Nuclear Information System (INIS)

    Mireshghi, A.

    1989-01-01

    After a brief review of the theoretical bases for Neutron Transmutation Doping (NTD) process, the equations necessary for calculation of doped crystal resistivity (p) in terms of parameters of irradiation, such as time and neutron flux, are derived. The procedure for production of NTD-Si is described, important considerations are outlined and the advantages and applications are introduced. Also, an assessment is made of the practicality of using AEOI Research Reactor thermal neutron irradiation facilities for production of NTD-Si, which is concluded to be possible at reactor nominal operation conditions

  15. Nuclear radiation detectors using high resistivity neutron transmutation doped silicon

    International Nuclear Information System (INIS)

    Gessner, T.; Irmer, K.

    1983-01-01

    A method for the production of semiconductor detectors based on high resistivity n-type silicon is described. The n-type silicon is produced by neutron irradiation of p-type silicon. The detectors are produced by planar technique. They are suitable for the spectrometry of alpha particles and for the pulse count measurement of beta particles at room temperature. (author)

  16. Reassessment of the recombination parameters of chromium in n- and p-type crystalline silicon and chromium-boron pairs in p-type crystalline silicon

    International Nuclear Information System (INIS)

    Sun, Chang; Rougieux, Fiacre E.; Macdonald, Daniel

    2014-01-01

    Injection-dependent lifetime spectroscopy of both n- and p-type, Cr-doped silicon wafers with different doping levels is used to determine the defect parameters of Cr i and CrB pairs, by simultaneously fitting the measured lifetimes with the Shockley-Read-Hall model. A combined analysis of the two defects with the lifetime data measured on both n- and p-type samples enables a significant tightening of the uncertainty ranges of the parameters. The capture cross section ratios k = σ n /σ p of Cr i and CrB are determined as 3.2 (−0.6, +0) and 5.8 (−3.4, +0.6), respectively. Courtesy of a direct experimental comparison of the recombination activity of chromium in n- and p-type silicon, and as also suggested by modelling results, we conclude that chromium has a greater negative impact on carrier lifetimes in p-type silicon than n-type silicon with similar doping levels.

  17. Development of real time personal neutron dosimeter with two silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Tsujimura, N. [Tohoku Univ., Cyclotron and Radioisotope Center, Aoba, Aramaki, Aoba-ku (Japan); Yamano, T. [Tokyo Factory, Fuji Electric Co. Ltd., Tokyo (Japan)

    1992-07-01

    We developed a real time personal neutron dosimeter by using two types of silicon p-n junction detectors, thermal neutron sensor and fast neutron sensor. The thermal neutron sensor which is {sup 10}B doped n-type silicon with a polyethylene radiator mainly counts neutrons of energy front thermal to I MeV, and the fast neutron sensor which is p-type silicon with a polyethylene radiator is sensitive to neutrons above I MeV. The neutron sensitivity measurements revealed that the dosimeter has a rather flat response for dose equivalent from thermal to 15 MeV, excluding a drop from 50 keV to I MeV. In order to get conversion factor from counts to dose equivalent as accurately as possible, we performed the field test of the dosimeter calibration in several neutron-generating fields. By introducing the two-group dose estimation method, this dosimeter can give the neutron dose equivalent within about 50% errors. (author)

  18. Suppression of irradiation effects in gold-doped silicon detectors

    International Nuclear Information System (INIS)

    McPherson, M.; Sloan, T.; Jones, B.K.

    1997-01-01

    Two sets of silicon detectors were irradiated with 1 MeV neutrons to different fluences and then characterized. The first batch were ordinary p-i-n photodiodes fabricated from high-resistivity (400 Ω cm) silicon, while the second batch were gold-doped powder diodes fabricated from silicon material initially of low resistivity (20 Ω cm). The increase in reverse leakage current after irradiation was found to be more in the former case than in the latter. The fluence dependence of the capacitance was much more pronounced in the p-i-n diodes than in the gold-doped diodes. Furthermore, photo current generation by optical means was less in the gold doped devices. All these results suggest that gold doping in silicon somewhat suppresses the effects of neutron irradiation. (author)

  19. Quality Management for Neutron Transmutation Doping of Silicon Ingot in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ki-Doo; Kim, Ji-Uk; Yun, Hwa-Kyung; Lim, Chul-Hong; Kim, Young-Chil; Kim, Myong-Seop; Park, Sang-Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    By using this doping method, silicon semiconductors with extremely uniform dopant distributions can be produced, and this is the dominant advantage of NTD compared with a conventional chemical doping. Good uniformity of a dopant concentration is usually required for high power applications such as thyristor (SCR), IGBT, IGCT and GTO and for special sensors. Achieving an accurate neutron fluence corresponding to a target resistivity as well as a uniform irradiation is the prime target of a neutron irradiation for NTD. Generally, in order to reach an accurate neutron fluence, a real time neutron flux is monitored by a neutron detector such as a Self-powered Neutron Detector(SPND). And, after an irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of a neutron activation sample that has been irradiated with a silicon ingot, and thus the SPND can be properly calibrated. Excellent irradiation uniformity and a high accuracy for a target neutron dose have been achieved from the early works of NTD. However, to maintain this excellent quality, the neutron irradiation fluence should be continuously modified and controlled. So, in this work, an activity to maintain the irradiation quality is introduced.

  20. Doping of monocrystalline silicon with phosphorus by means of neutron irradiation at the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Carbonari, A.W.; Puget, M.A.C.

    1990-11-01

    The first neutron irradiation experiments with monocrystal silicon in the IEA-R1 research reactor of IPEN are related. The silicon is irradiated with phosphorus producing a N type semiconductor with a very small resistivity variation throughout the crystal volume. The neutrons induce nuclear reactions in Si-30 isotope and these atoms are then transformed in to phosphorous atoms. This process is known as Neutron Transmutation Doping. In order to irradiate the silicon crystals in the reactor, a specific device has been constructed, and it permits the irradiation of up to 2.5'' diameter monocrystals. (author)

  1. N-Type delta Doping of High-Purity Silicon Imaging Arrays

    Science.gov (United States)

    Blacksberg, Jordana; Hoenk, Michael; Nikzad, Shouleh

    2005-01-01

    A process for n-type (electron-donor) delta doping has shown promise as a means of modifying back-illuminated image detectors made from n-doped high-purity silicon to enable them to detect high-energy photons (ultraviolet and x-rays) and low-energy charged particles (electrons and ions). This process is applicable to imaging detectors of several types, including charge-coupled devices, hybrid devices, and complementary metal oxide/semiconductor detector arrays. Delta doping is so named because its density-vs.-depth characteristic is reminiscent of the Dirac delta function (impulse function): the dopant is highly concentrated in a very thin layer. Preferably, the dopant is concentrated in one or at most two atomic layers in a crystal plane and, therefore, delta doping is also known as atomic-plane doping. The use of doping to enable detection of high-energy photons and low-energy particles was reported in several prior NASA Tech Briefs articles. As described in more detail in those articles, the main benefit afforded by delta doping of a back-illuminated silicon detector is to eliminate a "dead" layer at the back surface of the silicon wherein high-energy photons and low-energy particles are absorbed without detection. An additional benefit is that the delta-doped layer can serve as a back-side electrical contact. Delta doping of p-type silicon detectors is well established. The development of the present process addresses concerns specific to the delta doping of high-purity silicon detectors, which are typically n-type. The present process involves relatively low temperatures, is fully compatible with other processes used to fabricate the detectors, and does not entail interruption of those processes. Indeed, this process can be the last stage in the fabrication of an imaging detector that has, in all other respects, already been fully processed, including metallized. This process includes molecular-beam epitaxy (MBE) for deposition of three layers, including

  2. 4th Neutron Transmutation Doping Conference

    CERN Document Server

    1984-01-01

    viii The growing use of NTD silicon outside the U. S. A. motivated an interest in having the next NTD conference in Europe. Therefore, the Third International Conference on Neutron Transmutation-Doped Silicon was organized by Jens Guldberg and held in Copenhagen, Denmark on August 27-29, 1980. The papers presented at this conference reviewed the developments which occurred during the t'A'O years since the previous conference and included papers on irradiation technology, radiation-induced defects, characteriza­ tion of NTD silicon, and the use of NTD silicon for device appli­ cations. The proceedings of this conference were edited by Jens Guldberg and published by Plenum Press in 1981. Interest in, and commercial use of, NTD silicon continued to grow after the Third NTD Conference, and research into neutron trans­ mutation doping of nonsilicon semiconductors had begun to accel­ erate. The Fourth International Transmutation Doping Conference reported in this volume includes invited papers summarizing the p...

  3. Monitoring of the Irradiated Neutron Fluence in the Neutron Transmutation Doping Process of Hanaro

    Science.gov (United States)

    Kim, Myong-Seop; Park, Sang-Jun

    2009-08-01

    Neutron transmutation doping (NTD) for silicon is a process of the creation of phosphorus impurities in intrinsic or extrinsic silicon by neutron irradiation to obtain silicon semiconductors with extremely uniform dopant distribution. HANARO has two vertical holes for the NTD, and the irradiation for 5 and 6 inch silicon ingots has been going on at one hole. In order to achieve the accurate neutron fluence corresponding to the target resistivity, the real time neutron flux is monitored by self-powered neutron detectors. After irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of activation detectors. In this work, a neutron fluence monitoring method using zirconium foils with the mass of 10 ~ 50 mg was applied to the NTD process of HANARO. We determined the proportional constant of the relationship between the resistivity of the irradiated silicon and the neutron fluence determined by using zirconium foils. The determined constant for the initially n-type silicon was 3.126 × 1019 n·Ω/cm. It was confirmed that the difference between this empirical value and the theoretical one was only 0.5%. Conclusively, the practical methodology to perform the neutron transmutation doping of silicon was established.

  4. Electrophysical properties of silicon doped by palladium-103 isotope

    International Nuclear Information System (INIS)

    Makhkamov, Sh.; Tursunov, N.A.; Sattiev, A.R.; Normurodov, A.B.

    2007-01-01

    The work is devoted to study of radiation physical processes taking place in Si under nuclear transmutation, Identification and determination of defects microstructure and homogeneities and their distribution, study of interactions of nuclear-transformed phosphorus isotopes with palladium atoms, and its effect on crystal properties. For examination monocrystalline silicon of n- and p-type conductivity with specific resistance from 1 to 40 Ω·cm, dislocation density ∼10 4 cm -2 and oxygen content ∼10 17 cm -3 has been applied. Doping of silicon plates by examined admixture has been carried out by thermal diffusion method within temperature range 1000-1250 deg. C for 0.5- 5 h. Irradiation of doped silicon was conducted by reactor neutron fluences 5·10 18 - 5·10 19 cm -2 with subsequent annealing at 1000 deg. C for 30 min. Efficiency of mixture centers formation in silicon, effect of concentration of formed mixture-defect centers on electro-physical, photoelectric and recombination parameters of doped silicon and revealing of type and state of generated defects have been controlled by electric, volume and X-ray fluorescent methods. On the base of spectroscopic researches it is shown, that in silicon forbidden zone after Pd diffusion in DLTS spectra peaks related with acceptor (E c -0.18 and E v +0.34 eV) levels, and peak responsible for level E v +0.32 eV of donor character caused by palladium impurity. It is shown, that irradiation of doped silicon samples by neutrons lead to nuclear transmutation of 102 Pd, 104 Pd in 103 Pd isotopes in the crystal volume with following electron capture in stable isotope 103m Rh

  5. Neutron Transmutation Doping of Silicon at Research Reactors

    International Nuclear Information System (INIS)

    2012-05-01

    This publication details the processes and history of neutron transmutation doping of silicon, particularly its commercial pathway, followed by the requirements for a technologically modern and economically viable production scheme and the current trends in the global market for semiconductor products. It should serve as guidelines on the technical requirements, involved processes and required quality standards for the transmission of sound practices and advice for research reactor managers and operators planning commercial scale production of silicon. Furthermore, a detailed and specific database of most of the world's research reactor facilities in this domain is included, featuring their characteristics for irradiation capabilities, associated production capacities and processing.

  6. Photo-induced current transient spectroscopy for high-resistivity neutron-transmutation-doped silicon

    International Nuclear Information System (INIS)

    Tokuda, Yutaka; Inoue, Yajiro; Usami, Akira

    1987-01-01

    Defects in high-resistivity neutron-transmutation-doped (NTD) silicon prior to annealing were studied by photo-induced current transient spectroscopy (PICTS). The thermal-neutron fluence was 9.5 x 10 17 cm -2 to give a resistivity of about 30 Ω after annealing, and the fast-neutron fluence was 9.5 x 10 16 cm -2 . Four traps with thermal emission activation energies of 0.15, 0.41. 0.47 and 0.50 eV were observed in NTD silicon. A trap with the thermal emission activation energy of 0.15 eV was considered to correspond to the divacancy. Although the clustered nature of the defects was observed, PICTS measurements suggest that the material state of high-resistivity NTD silicon is still crystalline and not amorphous. (author)

  7. Influence of γ- radiation on the recombination properties of P-type nickel doped silicon

    International Nuclear Information System (INIS)

    Kurbanov, A.O.; Karimov, M.

    2006-01-01

    Full text: It is well known that the life-time of the charge carriers is most sensitive parameter of the semiconductors. The results of numerous investigations show that by irradiation of the multi-crystal silicon with high-energy particles (electrons, protons, γ-quanta) the life-time of the minor charge carriers appreciably decreases. Ones think that the reason of such effect is the generation of the recombination radiation defects by irradiation. In this connection in this work the investigation of the nickel doped silicon with various post-diffusion cooling is performed. As an initial material the p - Si with ∼ 10 Ohm·cm specific resistance was used. The dislocation density is taken to be ∼10 4 cm -2 . Doping of silicon by nickel carried out in the temperature range of 1050-1150 degree C with succeeding I and II type cooling. The life-time of the charge carriers was determined using the stationary photoconductivity method. It is discovered that the life-time of the charge carriers in p-Si is longer than that in the control silicon as well as τ slightly increases by increasing of the nickel's atoms concentration (in these samples the acceptor centers concentration changes in the range of 1.5·10 14 - 3.5·10 14 cm -3 ). This effect is explained on a basis of investigations of the photoconductivity relaxation kinetics (at 70 K) by the capture of the charge carriers to the sticking level. It is revealed that the relative life-time changing is appreciably various one from other in I and II type samples. In the rapid cooled samples τ more stable than slow cooled samples. In the rapid cooled samples more stable than slow cooled samples up to doze ∼2.5·10 8 R. (author)

  8. Extrinsic doping in silicon revisited

    KAUST Repository

    Schwingenschlö gl, Udo; Chroneos, Alexander; Grimes, R. W.; Schuster, Cosima

    2010-01-01

    Both n-type and p-type doping of silicon is at odds with the charge transfer predicted by Pauling electronegativities and can only be reconciled if we no longer regarding dopant species as isolated atoms but rather consider them as clusters consisting of the dopant and its four nearest neighbor silicon atoms. The process that gives rise to n-type and p-type effects is the charge redistribution that occurs between the dopant and its neighbors, as we illustrate here using electronic structure calculations. This view point is able to explain why conventional substitutional n-type doping of carbon has been so difficult.

  9. Extrinsic doping in silicon revisited

    KAUST Repository

    Schwingenschlögl, Udo

    2010-06-17

    Both n-type and p-type doping of silicon is at odds with the charge transfer predicted by Pauling electronegativities and can only be reconciled if we no longer regarding dopant species as isolated atoms but rather consider them as clusters consisting of the dopant and its four nearest neighbor silicon atoms. The process that gives rise to n-type and p-type effects is the charge redistribution that occurs between the dopant and its neighbors, as we illustrate here using electronic structure calculations. This view point is able to explain why conventional substitutional n-type doping of carbon has been so difficult.

  10. Dual ohmic contact to N- and P-type silicon carbide

    Science.gov (United States)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  11. The development and application of silicon neutron transmutation doping (NTD) technology in china

    International Nuclear Information System (INIS)

    Qiao Chenyang; Sun Zhiyong; Ke Guotu, Lu Cungang; Shen Feng; Chen Huiqiang

    2009-01-01

    The research and development history of silicon Neutron Transmutation Doping (NTD) technology and its applications at home and abroad are introduced in this paper. The advantages of NTD, compared with conventional technology of doping, are narrated. The principle of NTD as well as the implementation of the main procedures related to Si NTD is explained. The market demand tendency is prospected, and the advanced measures on NTD quality control are described. (authors)

  12. Silicon heterojunction solar cells with novel fluorinated n-type nanocrystalline silicon oxide emitters on p-type crystalline silicon

    Science.gov (United States)

    Dhar, Sukanta; Mandal, Sourav; Das, Gourab; Mukhopadhyay, Sumita; Pratim Ray, Partha; Banerjee, Chandan; Barua, Asok Kumar

    2015-08-01

    A novel fluorinated phosphorus doped silicon oxide based nanocrystalline material have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) Czochralski (CZ) wafers. The n-type nc-SiO:F:H material were deposited by radio frequency plasma enhanced chemical vapor deposition. Deposited films were characterized in detail by using atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM), Raman, fourier transform infrared spectroscopy (FTIR) and optoelectronics properties have been studied using temperature dependent conductivity measurement, Ellipsometry, UV-vis spectrum analysis etc. It is observed that the cell fabricated with fluorinated silicon oxide emitter showing higher initial efficiency (η = 15.64%, Jsc = 32.10 mA/cm2, Voc = 0.630 V, FF = 0.77) for 1 cm2 cell area compare to conventional n-a-Si:H emitter (14.73%) on flat c-Si wafer. These results indicate that n type nc-SiO:F:H material is a promising candidate for heterojunction solar cell on p-type crystalline wafers. The high Jsc value is associated with excellent quantum efficiencies at short wavelengths (<500 nm).

  13. Luminescence of porous silicon doped by erbium

    International Nuclear Information System (INIS)

    Bondarenko, V.P.; Vorozov, N.N.; Dolgij, L.N.; Dorofeev, A.M.; Kazyuchits, N.M.; Leshok, A.A.; Troyanova, G.N.

    1996-01-01

    The possibility of the 1.54 μm intensive luminescence in the silicon dense porous layers, doped by erbium, with various structures is shown. Low-porous materials of both porous type on the p-type silicon and porous silicon with wood-like structure on the n + type silicon may be used for formation of light-emitting structures

  14. Neutron transmutation doping of silicon in the SAFARI-1 research reactor

    International Nuclear Information System (INIS)

    Louw, P.A.; Robertson, D.G.; Strydom, W.J.

    1994-01-01

    The SAFARI-1 research reactor has operated with an exemplary safety record since commissioning in 1965. As part of a commercialisation effort a silicon irradiation facility (SILIRAD) has been installed in the poolside region of SAFARI-1 for Neutron Transmutation Doping (NTD) of silicon. Commissioning of the facility took place in the last quarter of 1992 with a series of trial irradiations which were performed in close collaboration with Wacker Chemitronic of Germany. A methodology for the determination of irradiation times necessary to achieve the target resistivities was verified on the basis of the results from the trial irradiations. All production activities are controlled by quality assurance procedures. To date some hundred and twelve silicon ingots (103 mm diameter) have been successfully irradiated on a commercial contract basis. The observed axial and radial variations in the resistivity profile of the ingots are very small compared to the profiles associated with conventionally doped silicon and small tolerances on target resistivities are attained. In this paper an overview of the design and characterisation of SILIRAD is given and the methods applied that ensure a quality product are described. Results obtained from trial and production irradiations are presented and the envisaged future modifications to SILIRAD discussed

  15. Neutron transmutation doping of silicon in the safari-1 research reactor

    International Nuclear Information System (INIS)

    Louw, P.A.; Robertson, D.G.; Strydom, W.J.

    1994-01-01

    The SAFARI-1 research reactor has operated with an exemplary safety record since commissioning in 1965. As part of a commercialisation effort a silicon irradiation facility (SILIRAD) has been installed in the poolside region of SAFARI-1 for Neutron Transmutation Doping (NTD) of silicon. Commissioning of the facility took place in the last quarter of 1992 with a series of trial irradiations which were performed in close collaboration the Wacker Chemitronic of Germany. A methodology for the determination of irradiation times necessary to achieve the target resistivities was verified on the basis of the results from the trial irradiations. All production activities are controlled by quality assurance procedures. To date some hundred and twelve silicon ingots (103 mm diameter) have been successfully irradiated on a commercial contract basis. The observed axial and radial variations in the resistivity profile of the ingots are very small compared to the profiles associated with conventionally doped silicon and small tolerances on target resistivities are attained. In this paper an overview of the design and characterisation of SILIRAD is given and the methods applied that ensure a quality product are described. Results obtained from trial and production irradiations are presented and the envisaged future modifications to SILIRAD discussed. 10 refs., 2 tabs., 6 figs

  16. Light-induced enhancement of the minority carrier lifetime in boron-doped Czochralski silicon passivated by doped silicon nitride

    International Nuclear Information System (INIS)

    Wang, Hongzhe; Chen, Chao; Pan, Miao; Sun, Yiling; Yang, Xi

    2015-01-01

    Graphical abstract: - Highlights: • The phosphorus-doped SiN x with negative fixed charge was deposited by PECVD. • The increase of lifetime was observed on P-doped SiN x passivated Si under illumination. • The enhancement of lifetime was caused by the increase of negative fixed charges. - Abstract: This study reports a doubling of the effective minority carrier lifetime under light soaking conditions, observed in a boron-doped p-type Czochralski grown silicon wafer passivated by a phosphorus-doped silicon nitride thin film. The analysis of capacitance–voltage curves revealed that the fixed charge in this phosphorus-doped silicon nitride film was negative, which was unlike the well-known positive fixed charges observed in traditional undoped silicon nitride. The analysis results revealed that the enhancement phenomenon of minority carrier lifetime was caused by the abrupt increase in the density of negative fixed charge (from 7.2 × 10 11 to 1.2 × 10 12 cm −2 ) after light soaking.

  17. Preliminary neutron design of the flux flatter for silicon doping at the RA10

    International Nuclear Information System (INIS)

    Cintas, A.; Bazzana, S.

    2012-01-01

    The neutron transmutation doping of silicon (NTD) is one of the facilities under development for the RA10 project. In order to obtain high quality semiconductor, commercial requirements of NTD include achieving high axial and radial uniformity in the silicon targets. Axial uniformity is achieved locating a neutron screen around the Si ingot, obtaining a flat axial distribution of the dopant concentration. We present the neutron design of this screen, also known as flux flattener. MCNP5 was used to model the screen design. We have reached a satisfactory preliminary screen design after numerous iterations. The fluctuation in the axial distribution of the reaction capture rate ( 30 Si(n,γ) 31 Si) is under ≠1,5%, which is the required level by the semiconductor industry to accept the final product (author)

  18. Iron solubility in highly boron-doped silicon

    International Nuclear Information System (INIS)

    McHugo, S.A.; McDonald, R.J.; Smith, A.R.; Hurley, D.L.; Weber, E.R.

    1998-01-01

    We have directly measured the solubility of iron in high and low boron-doped silicon using instrumental neutron activation analysis. Iron solubilities were measured at 800, 900, 1000, and 1100thinsp degree C in silicon doped with either 1.5x10 19 or 6.5x10 14 thinspboronthinspatoms/cm 3 . We have measured a greater iron solubility in high boron-doped silicon as compared to low boron-doped silicon, however, the degree of enhancement is lower than anticipated at temperatures >800thinsp degree C. The decreased enhancement is explained by a shift in the iron donor energy level towards the valence band at elevated temperatures. Based on this data, we have calculated the position of the iron donor level in the silicon band gap at elevated temperatures. We incorporate the iron energy level shift in calculations of iron solubility in silicon over a wide range of temperatures and boron-doping levels, providing a means to accurately predict iron segregation between high and low boron-doped silicon. copyright 1998 American Institute of Physics

  19. Use of hexamethyldisiloxane for p-type microcrystalline silicon oxycarbide layers

    Directory of Open Access Journals (Sweden)

    Goyal Prabal

    2016-01-01

    Full Text Available The use of hexamethyldisiloxane (HMDSO as an oxygen source for the growth of p-type silicon-based layers deposited by Plasma Enhanced Chemical Vapor Deposition is evaluated. The use of this source led to the incorporation of almost equivalent amounts of oxygen and carbon, resulting in microcrystalline silicon oxycarbide thin films. The layers were examined with characterisation techniques including Spectroscopic Ellipsometry, Dark Conductivity, Fourier Transform Infrared Spectroscopy, Secondary Ion Mass Spectrometry and Transmission Electron Microscopy to check material composition and structure. Materials studies show that the refractive indices of the layers can be tuned over the range from 2.5 to 3.85 (measured at 600 nm and in-plane dark conductivities over the range from 10-8 S/cm to 1 S/cm, suggesting that these doped layers are suitable for solar cell applications. The p-type layers were tested in single junction amorphous silicon p-i-n type solar cells.

  20. Study of the effects of neutron irradiation on silicon strip detectors

    International Nuclear Information System (INIS)

    Giubellino, P.; Panizza, G.; Hall, G.; Sotthibandhu, S.; Ziock, H.J.; Ferguson, P.; Sommer, W.F.; Edwards, M.; Cartiglia, N.; Hubbard, B.; Leslie, J.; Pitzl, D.; O'Shaughnessy, K.; Rowe, W.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E.

    1992-01-01

    Silicon strip detectors and test structures were exposed to neutron fluences up to Φ=6.1x10 14 n/cm 2 , using the ISIS neutron source at the Rutherford Appleton Laboratory (UK). In this paper we report some of our results concerning the effects of displacement damage, with a comparison of devices made of silicon of different resistivity. The various samples exposed showed a very similar dependence of the leakage current on the fluence received. We studied the change of effective doping concentration, and observed a behaviour suggesting the onset of type inversion at a fluence of ∝2.0x10 13 n/cm 2 , a value which depends on the initial doping concentration. The linear increase of the depletion voltage for fluences higher than the inversion point could eventually determine the maximum fluence tolerable by silicon detectors. (orig.)

  1. Neutron transmutation doping of gallium arsenide

    International Nuclear Information System (INIS)

    Alexiev, D.

    1987-12-01

    Neutron transmutation doping (NTD) was studied as a means of compensating p-type Cd-doped GaAs. By introducing specific donor concentrations, the net acceptor level was measured and showed a progressive reduction. The NTD constant K = 0.32 donor atoms.cm 3 per cm 2 was also measured. Radiation damage caused by neutron bombardment was annealed and no additional traps were generated

  2. Silicon doped InP as an alternative plasmonic material for mid-infrared

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Han, Li; Christensen, Dennis Valbjørn

    2016-01-01

    Silicon-doped InP is grown on top of semiinsulating iron-doped and sulfur-doped InP substrates by metalorganic vapor phase epitaxy (MOVPE), and the growth parameters are adjusted to obtain various free carrier concentrations from 1.05×1019 cm-3 up to 3.28×1019 cm-3. Midinfrared (IR) reflection...

  3. Hydrogen diffusion at moderate temperatures in p-type Czochralski silicon

    International Nuclear Information System (INIS)

    Huang, Y.L.; Ma, Y.; Job, R.; Ulyashin, A.G.

    2004-01-01

    In plasma-hydrogenated p-type Czochralski silicon, rapid thermal donor (TD) formation is achieved, resulting from the catalytic support of hydrogen. The n-type counter doping by TD leads to a p-n junction formation. A simple method for the indirect determination of the diffusivity of hydrogen via applying the spreading resistance probe measurements is presented. Hydrogen diffusion in silicon during both plasma hydrogenation and post-hydrogenation annealing is investigated. The impact of the hydrogenation duration, annealing temperature, and resistivity of the silicon wafers on the hydrogen diffusion is discussed. Diffusivities of hydrogen are determined in the temperature range 270-450 deg. C. The activation energy for the hydrogen diffusion is deduced to be 1.23 eV. The diffusion of hydrogen is interpreted within the framework of a trap-limited diffusion mechanism. Oxygen and hydrogen are found to be the main traps

  4. Irradiation and annealing of p-type silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Alexander A.; Bogdanova, Elena V.; Grigor' eva, Maria V.; Lebedev, Sergey P. [A.F. Ioffe Physical-Technical Institute, St. Petersburg, 194021 (Russian Federation); Kozlovski, Vitaly V. [St. Petersburg State Polytechnic University, St. Petersburg, 195251 (Russian Federation)

    2014-02-21

    The development of the technology of semiconductor devices based on silicon carbide and the beginning of their industrial manufacture have made increasingly topical studies of the radiation hardness of this material on the one hand and of the proton irradiation to form high-receptivity regions on the other hand. This paper reports on a study of the carrier removal rate (V{sub d}) in p-6H-SiC under irradiation with 8 MeV protons and of the conductivity restoration in radiation- compensated epitaxial layers of various p-type silicon carbide polytypes. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that the complete compensation of samples with the initial value of Na - Nd ≈ 1.5 × 10{sup 18} cm{sup −3} occurs at an irradiation dose of ∼1.1 × 10{sup 16} cm{sup −2}. It is shown that specific features of the sublimation layer SiC (compared to CVD layers) are clearly manifested upon the gamma and electron irradiation and are hardly noticeable under the proton and neutron irradiation. It was also found that the radiation-induced compensation of SiC is retained after its annealing at ≤1000°C. The conductivity is almost completely restored at T ≥ 1200°C. This character of annealing of the radiation compensation is independent of a silicon carbide polytype and the starting doping level of the epitaxial layer. The complete annealing temperatures considerably exceed the working temperatures of SiC-based devices. It is shown that the radiation compensation is a promising method in the technology of high-temperature devices based on SiC.

  5. Radiation damages and electro-conductive characteristics of Neutron-Transmutation-Doped GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Kazuo; Sato, Masataka; Sakai, Kiyohiro [Hosei Univ., Koganei, Tokyo (Japan). Coll. of Engineering; Okada, Moritami

    1996-04-01

    Neutron Transmutation Doping (NTD) method made it possible to do homogeneous doping of impurities and to easily control the doping level. Thus, the method has been put into practice for some materials such as silicon. Here, the annealing behavior of anti-site defects generated in neutron-irradiated GaAs was studied. Electric activations of NTD-impurities were started around 550degC in P1 and P2 radiation fields, which were coincident with the beginning of extinction of electron trapping which was caused by anti-site defects due to fast neutron radiation. The electric resistivities of GaAs in neutron radiation fields; P1, P2 and P3 changed depending with the annealing temperature. The electric resistivities of GaAs in P1 and P2 fields indicate the presence of hopping conduction through radiation damages. The resistance of GaAs irradiated in P1 was smaller by nearly 2 orders than that of the untreated control. Further, the electric activation process for NTD-impurities was investigated using ESR and Raman spectroscopy. (M.N.)

  6. Investigation of elements contamination and analysis of electrical effect of this contamination in silicon on the neutron transmutation doping in the RSG-GAS

    International Nuclear Information System (INIS)

    Sudjadi, U.

    1998-01-01

    The elements of the contamination on the Neutron Transmutation Doping Process (NTD) have investigated by Multi Channel Analyser (MCA). This Investigation is important to know the quality of silicon doping in NTD. We have found that Mn-45, Ga-72 and Au-198 are elements of contamination in silicon after NTD process. Analysis of electrical effect of this elements contamination on semiconductor silicon is described also in this paper

  7. Study of the effects of neutron irradiation on silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Giubellino, P.; Panizza, G. (INFN Torino (Italy)); Hall, G.; Sotthibandhu, S. (Imperial Coll., London (United Kingdom)); Ziock, H.J.; Ferguson, P.; Sommer, W.F. (Los Alamos National Lab., NM (United States)); Edwards, M. (Rutherford Appleton Lab., Chilton (United Kingdom)); Cartiglia, N.; Hubbard, B.; Leslie, J.; Pitzl, D.; O' Shaughnessy, K.; Rowe, W.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E. (Santa Cruz Inst. for Particle Physics, Univ. California, CA (United States))

    1992-05-01

    Silicon strip detectors and test structures were exposed to neutron fluences up to {Phi}=6.1x10{sup 14} n/cm{sup 2}, using the ISIS neutron source at the Rutherford Appleton Laboratory (UK). In this paper we report some of our results concerning the effects of displacement damage, with a comparison of devices made of silicon of different resistivity. The various samples exposed showed a very similar dependence of the leakage current on the fluence received. We studied the change of effective doping concentration, and observed a behaviour suggesting the onset of type inversion at a fluence of {proportional to}2.0x10{sup 13} n/cm{sup 2}, a value which depends on the initial doping concentration. The linear increase of the depletion voltage for fluences higher than the inversion point could eventually determine the maximum fluence tolerable by silicon detectors. (orig.).

  8. Estimation of Future Demand for Neutron-Transmutation-Doped Silicon Caused by Development of Hybrid Electric Vehicle

    International Nuclear Information System (INIS)

    Kim, Myong Seop; Park, Sang Jun

    2008-01-01

    By using this doping method, silicon semiconductors with an extremely uniform dopant distribution can be produced. They are usually used for high power devices such as thyristor (SCR), IGBT, IGCT and GTO. Now, the demand for high power semiconductor devices has increased rapidly due to the rapid increase of the green energy technologies. Among them, the productions of hybrid cars or fuel cell engines are excessively increased to reduce the amount of discharged air pollution substances, such as carbon dioxide which causes global warming. It is known that the neutron-transmutation-doped floating-zone (FZ) silicon wafers are used in insulated-gate bipolar transistors (IGBTs) which control the speed of the electric traction motors equipped in hybrid or fuel cell vehicles. Therefore, inevitably, it can be supposed that the demand of the NTD silicon is considerably increased. However, it is considered likely that the irradiation capacity will not be large enough to meet the increasing demand. After all, the large irradiation capacity for NTD such as a reactor dedicated to the silicon irradiation will be constructed depending on the industrial demand for NTD silicon. In this work, we investigated the relationship between the hybrid electric vehicle (HEV) industry and the NTD silicon production. Also, we surveyed the prospect for the production of the HEV. Then, we deduced the worldwide demand for the NTD silicon associated with the HEV production. This work can be utilized as the basic material for the construction of the new irradiation facility such as NTD-dedicated neutron source

  9. Complex Boron Redistribution in P+ Doped-polysilicon / Nitrogen Doped Silicon Bi-layers during Activation Annealing

    Science.gov (United States)

    Abadli, S.; Mansour, F.; Perrera, E. Bedel

    We have investigated and modeled the complex phenomenon of boron (B) redistribution process in strongly doped silicon bilayers structure. A one-dimensional two stream transfer model well adapted to the particular structure of bi- layers and to the effects of strong-concentrations has been developed. This model takes into account the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method, using in-situ nitrogen- doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P+) layer. To avoid long redistributions, thermal annealing was carried out at relatively lowtemperatures (600 °C and 700 °C) for various times ranging between 30 minutes and 2 hours. The good adjustment of the simulated profiles with the experimental secondary ion mass spectroscopy (SIMS) profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders kinetics.

  10. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    Gimbert, J.

    1999-01-01

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  11. Complementary p- and n-type polymer doping for ambient stable graphene inverter.

    Science.gov (United States)

    Yun, Je Moon; Park, Seokhan; Hwang, Young Hwan; Lee, Eui-Sup; Maiti, Uday; Moon, Hanul; Kim, Bo-Hyun; Bae, Byeong-Soo; Kim, Yong-Hyun; Kim, Sang Ouk

    2014-01-28

    Graphene offers great promise to complement the inherent limitations of silicon electronics. To date, considerable research efforts have been devoted to complementary p- and n-type doping of graphene as a fundamental requirement for graphene-based electronics. Unfortunately, previous efforts suffer from undesired defect formation, poor controllability of doping level, and subtle environmental sensitivity. Here we present that graphene can be complementary p- and n-doped by simple polymer coating with different dipolar characteristics. Significantly, spontaneous vertical ordering of dipolar pyridine side groups of poly(4-vinylpyridine) at graphene surface can stabilize n-type doping at room-temperature ambient condition. The dipole field also enhances and balances the charge mobility by screening the impurity charge effect from the bottom substrate. We successfully demonstrate ambient stable inverters by integrating p- and n-type graphene transistors, which demonstrated clear voltage inversion with a gain of 0.17 at a 3.3 V input voltage. This straightforward polymer doping offers diverse opportunities for graphene-based electronics, including logic circuits, particularly in mechanically flexible form.

  12. Cu gettering by phosphorus-doped emitters in p-type silicon: Effect on light-induced degradation

    Science.gov (United States)

    Inglese, Alessandro; Laine, Hannu S.; Vähänissi, Ville; Savin, Hele

    2018-01-01

    The presence of copper (Cu) contamination is known to cause relevant light-induced degradation (Cu-LID) effects in p-type silicon. Due to its high diffusivity, Cu is generally regarded as a relatively benign impurity, which can be readily relocated during device fabrication from the wafer bulk, i.e. the region affected by Cu-LID, to the surface phosphorus-doped emitter. This contribution examines in detail the impact of gettering by industrially relevant phosphorus layers on the strength of Cu-LID effects. We find that phosphorus gettering does not always prevent the occurrence of Cu-LID. Specifically, air-cooling after an isothermal anneal at 800°C results in only weak impurity segregation to the phosphorus-doped layer, which turns out to be insufficient for effectively mitigating Cu-LID effects. Furthermore, we show that the gettering efficiency can be enhanced through the addition of a slow cooling ramp (-4°C/min) between 800°C and 600°C, resulting in the nearly complete disappearance of Cu-LID effects.

  13. Neutron transmutation doping technology of silicon and overview of trial irradiations at Cirus reactor

    International Nuclear Information System (INIS)

    Singh, Tej; Bhatnagar, Anil; Singh, Kanchhi; Raina, V.K.

    2007-12-01

    Neutron transmutation doped silicon (NTD-Si) has been used extensively in manufacturing of high power semiconductor devices. The quality of NTD-Si, both from view points of dopant concentration and homogeneity has been found superior to the quality of doped silicon produced by conventional methods. The technology of NTD-Si has been perfected to achieve more accurate resistivity and homogenous resistivity with complete elimination of hot spots. In addition, the greater spatial uniformity, as well as the precise control over the resistivity achievable by using the NTD process, has led to a substantial increase in the breakdown voltage capability of thyristors. The report describes the fundamentals of NTD-Si production and discusses various techniques used for control of dopant concentration and homogeneity. Various aspects like radiation damage, residual radio-activity, nuclear heating, surface contamination and annealing requirements of the silicon ingots after irradiation have also been discussed. Details of trail irradiation and characterization of NTD-Si samples have been provided. Future plans for production of NTD-Si in Cirus and Dhruva reactors have also been discussed. (author)

  14. Comparison on mechanical properties of heavily phosphorus- and arsenic-doped Czochralski silicon wafers

    Science.gov (United States)

    Yuan, Kang; Sun, Yuxin; Lu, Yunhao; Liang, Xingbo; Tian, Daxi; Ma, Xiangyang; Yang, Deren

    2018-04-01

    Heavily phosphorus (P)- and arsenic (As)-doped Czochralski silicon (CZ-Si) wafers generally act as the substrates for the epitaxial silicon wafers used to fabricate power and communication devices. The mechanical properties of such two kinds of n-type heavily doped CZ silicon wafers are vital to ensure the quality of epitaxial silicon wafers and the manufacturing yields of devices. In this work, the mechanical properties including the hardness, Young's modulus, indentation fracture toughness and the resistance to dislocation motion have been comparatively investigated for heavily P- and As-doped CZ-Si wafers. It is found that heavily P-doped CZ-Si possesses somewhat higher hardness, lower Young's modulus, larger indentation fracture toughness and stronger resistance to dislocation motion than heavily As-doped CZ-Si. The mechanisms underlying this finding have been tentatively elucidated by considering the differences in the doping effects of P and As in silicon.

  15. Development of the irradiation facilities for silicon neutron doping in France

    International Nuclear Information System (INIS)

    Breant, P.; Cherruau, F.; Genthon, J.P.

    1980-08-01

    Irradiation facilities for silicon irradiations in France may be classified in two categories: on the one hand the devices directly implemented in the light water of α swimming-pool reactor and on the other hand the devices implemented in a neutronic medium -heavy water here- providing a high value of the thermal to fast neutron flux ratio. The tools used in France for silicon neutron doping are recapitulated according to this classification in tables, with their main characteristics; in addition it is specified that all existing facilities are instrumented with ingot rotation, flux monitoring, automatic time integration and are associated with handling, storage, cleaning, decontamination and activity control equipment. Finally, concerning the irradiation capacities given in these tables, it is pointed out that they are realistic and present capacities, for presently running devices and according to the way they are used on an average; that is to say that they take into account the real average dimensions of the ingot supplied and not the maximum possible loading with the maximum diameters. Further extensions of capacity are possible if need be by the installation of supplementary standard irradiation modules in the pools. Particular attention will given to the new developments: -new irradiaton facilities with a high Oth/Or ratio being developed in the new research reactor ORPHEE: - developments in the OSIRIS H 2 O reactor. In particular and in connection with the facilities developped in OSIRIS, neutronic problems typical and swimming-pool reactors will be contemplated and the adopted solutions given

  16. Mid-IR optical properties of silicon doped InP

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Han, Li; Norrman, Kion

    2017-01-01

    of growth conditions on the optical and electrical properties of silicon doped InP (InP:Si) in the wavelength range from 3 to 40 μm was studied. The carrier concentration of up to 3.9 × 1019 cm-3 is achieved by optimizing the growth conditions. The dielectric function, effective mass of electrons and plasma...

  17. CCE measurements and annealing studies on proton-irradiated p-type MCz silicon diodes

    CERN Document Server

    Hoedlmoser, H; Köhler, M; Nordlund, H

    2007-01-01

    Magnetic Czochralski (MCz) silicon has recently been investigated for the development of radiation tolerant detectors for future high-luminosity HEP experiments. A study of p-type MCz Silicon diodes irradiated with protons up to a fluence of has been performed by means of Charge Collection Efficiency (CCE) measurements as well as standard CV/IV characterizations. The changes of CCE, full depletion voltage and leakage current as a function of fluence are reported. A subsequent annealing study of the irradiated detectors shows an increase in effective doping concentration and a decrease in the leakage current, whereas the CCE remains basically unchanged. Two different series of detectors have been compared differing in the implantation dose of p-spray isolation as well as effective doping concentration (Neff) of the p-type bulk presumably due to a difference in thermal donor (TD) activation during processing. The series with the higher concentration of TDs shows a delayed reverse annealing of Neff after irradia...

  18. Study on 150μm thick n- and p-type epitaxial silicon sensors irradiated with 24 GeV/c protons and 1 MeV neutrons

    International Nuclear Information System (INIS)

    Kaska, Katharina; Moll, Michael; Fahrer, Manuel

    2010-01-01

    A study on 150μm epitaxial (EPI) n- and p-type silicon diodes irradiated with neutrons up to 8x10 15 n/cm 2 and protons up to 1.7x10 15 p/cm 2 has been performed by means of CV/IV, charge collection efficiency (CCE) and transient current technique (TCT) measurements. It is found that the effective space charge density increases three times faster after proton than after neutron irradiation with a slightly higher effective space charge generation rate for n-type material compared to p-type material. A drop in charge collection efficiency already at fluences of 1x10 12 n eq /cm 2 can be seen in n-type material, but is absent in p-type material. TCT measurements show space charge sign inversion from positive to negative charge in n-type material after neutron irradiation and from negative to positive space charge in p-type material after proton irradiation. No difference was found in the response of diodes manufactured by different producers out of the same wafer material.

  19. Effects of silicon cross section and neutron spectrum on the radial uniformity in neutron transmutation doping

    International Nuclear Information System (INIS)

    Kim, Haksung; Ho Pyeon, Cheol; Lim, Jae-Yong; Misawa, Tsuyoshi

    2012-01-01

    The effects of silicon cross section and neutron spectrum on the radial uniformity of a Si-ingot are examined experimentally with various neutron spectrum conditions. For the cross section effect, the numerical results using silicon single crystal cross section reveal good agreements with experiments within relative difference of 6%, whereas the discrepancy is approximately 20% in free-gas cross section. For the neutron spectrum effect, the radial uniformity in hard neutron spectrum is found to be more flattening than that in soft spectrum. - Highlights: ► The effects of silicon cross section and neutron spectrum on the radial uniformity in NTD were experimentally investigated. ► The numerical results using silicon single crystal cross section reveal good agreements. ► The radial uniformity in hard neutron spectrum was more flat than that in soft spectrum. ► The silicon single crystal cross section and hard neutron spectrum are recommended for numerical analyses and radial uniformity flattening in NTD, respectively.

  20. Annealing behaviour of excess carriers in neutron-transmutation-doped silicon

    International Nuclear Information System (INIS)

    Maekawa, T.; Nogami, S.; Inoue, S.

    1993-01-01

    In neutron-transmutation-doped silicon wafers excess carriers are clearly generated over the transmuted phosphorus atoms. The generation occurs for annealing temperatures above 900 o C. The maximum percentage of excess carriers obtained is about 24.5% of the final carrier concentration. Due to the difference in energy of generation and removal, the excess carriers can be removed by annealing above 800 o C. The radiation damage responsible for generation of excess carriers is fairly thermostable in the range of annealing temperatures below 800 o C. From deep-level transient spectroscopy measurements, it is found that the radiation damage remains insensitive to changes in carrier concentration. The activation energies of excess carrier generation and removal are estimated from the analysis of the thermal and temporal behaviours of radiation damage in the annealing process. (Author)

  1. Identification of photoluminescence P line in indium doped silicon as In{sub Si}-Si{sub i} defect

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Kevin, E-mail: klauer@cismst.de; Möller, Christian [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany); Schulze, Dirk [TU Ilmenau, Institut für Physik, Weimarer Str. 32, 98693 Ilmenau (Germany); Ahrens, Carsten [Infineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg (Germany)

    2015-01-15

    Indium and carbon co-implanted silicon was investigated by low-temperature photoluminescence spectroscopy. A photoluminescence peak in indium doped silicon (P line) was found to depend on the position of a silicon interstitial rich region, the existence of a SiN{sub x}:H/SiO{sub x} stack and on characteristic illumination and annealing steps. These results led to the conclusion that silicon interstitials are involved in the defect and that hydrogen impacts the defect responsible for the P line. By applying an unique illumination and annealing cycle we were able to link the P line defect with a defect responsible for degradation of charge carrier lifetime in indium as well as boron doped silicon. We deduced a defect model consisting of one acceptor and one silicon interstitial atom denoted by A{sub Si}-Si{sub i}, which is able to explain the experimental data of the P line as well as the light-induced degradation in indium and boron doped silicon. Using this model we identified the defect responsible for the P line as In{sub Si}-Si{sub i} in neutral charge state and C{sub 2v} configuration.

  2. Fabrication of p-type porous GaN on silicon and epitaxial GaN

    OpenAIRE

    Bilousov, Oleksandr V.; Geaney, Hugh; Carvajal, Joan J.; Zubialevich, Vitaly Z.; Parbrook, Peter J.; Giguere, A.; Drouin, D.; Diaz, Francesc; Aguilo, Magdalena; O'Dwyer, Colm

    2013-01-01

    Porous GaN layers are grown on silicon from gold or platinum catalyst seed layers, and self-catalyzed on epitaxial GaN films on sapphire. Using a Mg-based precursor, we demonstrate p-type doping of the porous GaN. Electrical measurements for p-type GaN on Si show Ohmic and Schottky behavior from gold and platinum seeded GaN, respectively. Ohmicity is attributed to the formation of a Ga2Au intermetallic. Porous p-type GaN was also achieved on epitaxial n-GaN on sapphire, and transport measurem...

  3. Substrate and p-layer effects on polymorphous silicon solar cells

    Directory of Open Access Journals (Sweden)

    Abolmasov S.N.

    2014-07-01

    Full Text Available The influence of textured transparent conducting oxide (TCO substrate and p-layer on the performance of single-junction hydrogenated polymorphous silicon (pm-Si:H solar cells has been addressed. Comparative studies were performed using p-i-n devices with identical i/n-layers and back reflectors fabricated on textured Asahi U-type fluorine-doped SnO2, low-pressure chemical vapor deposited (LPCVD boron-doped ZnO and sputtered/etched aluminum-doped ZnO substrates. The p-layers were hydrogenated amorphous silicon carbon and microcrystalline silicon oxide. As expected, the type of TCO and p-layer both have a great influence on the initial conversion efficiency of the solar cells. However they have no effect on the defect density of the pm-Si:H absorber layer.

  4. P-type silicon drift detectors

    International Nuclear Information System (INIS)

    Walton, J.T.; Krieger, B.; Krofcheck, D.; O'Donnell, R.; Odyniec, G.; Partlan, M.D.; Wang, N.W.

    1995-06-01

    Preliminary results on 16 CM 2 , position-sensitive silicon drift detectors, fabricated for the first time on p-type silicon substrates, are presented. The detectors were designed, fabricated, and tested recently at LBL and show interesting properties which make them attractive for use in future physics experiments. A pulse count rate of approximately 8 x l0 6 s -1 is demonstrated by the p-type silicon drift detectors. This count rate estimate is derived by measuring simultaneous tracks produced by a laser and photolithographic mask collimator that generates double tracks separated by 50 μm to 1200 μm. A new method of using ion-implanted polysilicon to produce precise valued bias resistors on the silicon drift detectors is also discussed

  5. Studies of defects in neutron-irradiated p-type silicon by admittance measurements of n+-p diodes

    International Nuclear Information System (INIS)

    Tokuda, Y.; Usami, A.

    1978-01-01

    Defects introduced in p-type silicon by neutron irradiation were studied by measuring the admittance of n + -p diodes. It was shown that the energy levels and capture cross sections estimated from the temperature dependence of the admittance had some uncertainty due to the temperature dependence of the concentration of free carriers in the bulk and the high-frequency-junction capacitance. So, we presented the method of determination of the energy levels, capture cross sections, and concentrations of defects from the frequency dependence of the admittance. This method consists of the measurements of G/ω and C as a function of frequency. From this method, assuming that capture cross sections are independent of temperature, the energy levels of E/sub v/+0.16 and E/sub v/+0.36 eV were obtained. For these defects, the calculated values of the hole capture cross section were 2.4 x 10 -14 and 3.7 x 10 -14 cm 2 , respectively. Comparing with other published data, the energy level of E/sub v/+0.36 eV was found to be correlated with the divacancy

  6. Leakage current of amorphous silicon p-i-n diodes made by ion shower doping

    International Nuclear Information System (INIS)

    Kim, Hee Joon; Cho, Gyuseong; Choi, Joonhoo; Jung, Kwan-Wook

    2002-01-01

    In this letter, we report the leakage current of amorphous silicon (a-Si:H) p-i-n photodiodes, of which the p layer is formed by ion shower doping. The ion shower doping technique has an advantage over plasma-enhanced chemical vapor deposition (PECVD) in the fabrication of a large-area amorphous silicon flat-panel detector. The leakage current of the ion shower diodes shows a better uniformity within a 30 cmx40 cm substrate than that of the PECVD diodes. However, it shows a higher leakage current of 2-3 pA/mm 2 at -5 V. This high current originates from the high injection current at the p-i junction

  7. Germanium-doped gallium phosphide obtained by neutron irradiation

    Science.gov (United States)

    Goldys, E. M.; Barczynska, J.; Godlewski, M.; Sienkiewicz, A.; Heijmink Liesert, B. J.

    1993-08-01

    Results of electrical, optical, electron spin resonance and optically detected magnetic resonance studies of thermal neutron irradiated and annealed at 800 °C n-type GaP are presented. Evidence is found to support the view that the main dopant introduced via transmutation of GaP, germanium, occupies cation sites and forms neutral donors. This confirms the possibility of neutron transmutation doping of GaP. Simultaneously, it is shown that germanium is absent at cation sites. Presence of other forms of Ge-related defects is deduced from luminescence and absorption data. Some of them are tentatively identified as VGa-GeGa acceptors leading to the self-compensation process. This observation means that the neutron transmutation as a doping method in application to GaP is not as efficient as for Si.

  8. a Study of Oxygen Precipitation in Heavily Doped Silicon.

    Science.gov (United States)

    Graupner, Robert Kurt

    processes. This could lead to more effective control and use of oxygen precipitation for gettering. One of the principal purposes of this thesis is the extension of the infrared interstitial oxygen measurement technique to situations outside the measurement capacities of the standard technique. These situations include silicon slices exhibiting interfering precipitate absorption bands and heavily doped n-type silicon wafers. A new method is presented for correcting for the effect of multiple reflections in silicon wafers with optically rough surfaces. The technique for the measurement of interstitial oxygen in heavily doped n-type wafers is then used to perform a comparative study of oxygen precipitation in heavily antimony doped (.035 ohm-cm) silicon and lightly doped p-type silicon. A model is presented to quantitatively explain the observed suppression of defect formation in heavily doped n-type wafers.

  9. Effect of cobalt-60 γ radiation and of thermal neutrons on high resistance P and N silicon. Possibility of obtaining a nuclear compensation for P type silicon

    International Nuclear Information System (INIS)

    Messier, J.

    1965-11-01

    Type P silicon has been compensated by the production of a controlled and uniform amount of donor atoms ( 31 P) using thermal neutrons to bring about a nuclear transformation. It is shown that it is possible in this way to reduce by a factor of about one hundred the overall concentration of residual ionised impurities in the purest crystals obtained by floating zone purification (2 x 10 12 atoms/cm 3 ). The degree compensation obtained is limited by the initial inhomogeneity of acceptor impurities which have to be compensated. Lattice defects which still remain after prolonged annealings reduce the life-time of the material to about 10 μs approximately. Particle detectors having thicknesses of 2 to 5 mm have been built by this process; they give good results, particularly at low temperatures. A study has also been made of the number and of the nature of lattice defects produced by thermal neutrons in high resistivity P and N type crystals. These defects have been compared to those produced by γ rays from 60 Co. A discussion is given of the validity of the Wertheim model concerning pronounced recombination at low temperatures (77 deg. K - 300 deg. K) of primary defect-interstitial pairs. The nature of the defects introducing energy levels into the lower half of the forbidden band has been studied. (author) [fr

  10. Piezoresistance in p-type silicon revisited

    DEFF Research Database (Denmark)

    Richter, Jacob; Pedersen, Jesper; Brandbyge, Mads

    2008-01-01

    We calculate the shear piezocoefficient pi44 in p-type Si with a 6×6 k·p Hamiltonian model using the Boltzmann transport equation in the relaxation-time approximation. Furthermore, we fabricate and characterize p-type silicon piezoresistors embedded in a (001) silicon substrate. We find...... to experiments. Finally, we present a fitting function of temperature and acceptor density to the 6×6 model that can be used to predict the piezoresistance effect in p-type silicon. ©2008 American Institute of Physics...... that the relaxation-time model needs to include all scattering mechanisms in order to obtain correct temperature and acceptor density dependencies. The k·p results are compared to results obtained using a recent tight-binding (TB) model. The magnitude of the pi44 piezocoefficient obtained from the TB model...

  11. Secondary ion mass spectrometry analysis of In-doped p-type GaN films

    International Nuclear Information System (INIS)

    Chiou, C.Y.; Wang, C.C.; Ling, Y.C.; Chiang, C.I.

    2003-01-01

    SIMS was used to investigate the isoelectronic In-doped p-type GaN films. The growth rate of the p-type GaN film decreased with increasing Mg and In doping. The Mg saturation in GaN was 3.55x10 19 atoms/cm 3 . The role of In as surfactant was evaluated by varying In concentrations and it was observed that the surface appeared smooth with increasing In incorporation. The Mg solubility in p-type GaN improved to 0.0025% molar ratio of the GaN with In incorporation. The In concentration results observed in neutron activation analysis (NAA) were found to be higher by a factor of 2.88 than that observed in SIMS and can be attributed to the difference in sensitivity of the two techniques. Good linearity in the results was observed from both techniques

  12. Electrical characterization of 10B doped diamond irradiated with low thermal neutron fluence

    International Nuclear Information System (INIS)

    Reed, M.L.; Reed, M.J.; Jagannadham, K.; Verghese, K.; Bedair, S.M.; El-Masry, N.; Butler, J.E.

    2004-01-01

    A sample of 10 B isotope doped diamond was neutron irradiated to a thermal fluence of 1.3x10 19 neutron cm -2 . The diamond sample was cooled continuously during irradiation in a nuclear reactor. 7 Li is formed by nuclear transmutation reaction from 10 B. Characterization for electrical conductance in the temperature range of 160 K 10 B doped sample and the 10 B doped and irradiated sample. The unirradiated diamond sample showed p-type conductance at higher temperature (T>200 K) and p-type surface conductance at lower temperature (T 7 Li that is formed by nuclear transmutation reaction from 10 B atoms. Also, compensation of n-type carriers from 7 Li by p-type carriers from 10 B is used to interpret the conductance above 400 K. A low concentration of radiation induced defects, absence of defect complexes, and the low activation energy of n-type 7 Li are thought responsible for the observed variation of conductance in the irradiated diamond. The present results illustrate that neutron transmutation from 10 B doped diamond is a useful method to achieve n-type conductivity in diamond

  13. Electrical properties of MOS structures on nitrogen-doped Czochralski-grown silicon: A positron annihilation study

    International Nuclear Information System (INIS)

    Slugen, V.; Harmatha, L.; Tapajna, M.; Ballo, P.; Pisecny, P.; Sik, J.; Koegel, G.; Krsjak, V.

    2006-01-01

    Measurements of interface trap density, effective generation lifetime (GL) and effective surface generation velocity have been performed using different methods on selected MOS structures prepared on nitrogen-doped Czochralski-grown (NCz) silicon. The application of the positron annihilation technique using a pulsed low energy positron system (PLEPS) focused on the detection of nitrogen-related defects in NCz silicon in the near surface region. In the case of p-type Cz silicon, all the results could be used for the testing of homogeneity. In n-type Cz silicon, positron annihilation was found insensitive to nitrogen doping

  14. Effect of the defect-phosphorus atom complex interaction on the formation of the properties of neutron-doped silicon

    International Nuclear Information System (INIS)

    Kolesnik, L.I.; Lejferov, B.M.

    1984-01-01

    Radiation-induced defect annealing and changes in the concentration of substituting phosphorus atoms in silicon irradiated with different neutron doses have been studied by the low-temperature photoluminescence (PL) method at 4 K. Based on the PL spectrum character dependence on the fast-to-thermal neutron ration in a flux, series of lines and bands associated with the preferential formation of radiation-induced defects (within the 1.100 eV energy range) and with the presence of phosphorus impurity (1.15-1.12 eV) are identified. Some peculiarities are studied of the stage-by-stage annealing (250-500, 430-600, 600-800 deg C) of recombination-active centers (RAC) determining the radiation in the mentioned spectrum region. The relation between the RAC variations within the 1.12-1.15 eV range and the substituting phosphorus atom concentration in the 400-500 deg C temperature range is found. Activation energy of the substituting phosphorus atom concentration variation is estimated (approximately 0.5 eV). It is shown that the formation of defect-phosphorus complexes plays an important role in the formation of neutron-doped silicon properties, the presence of fast neutron in a flux being most importants

  15. Effects of silicon cross section and neutron spectrum on the radial uniformity in neutron transmutation doping.

    Science.gov (United States)

    Kim, Haksung; Ho Pyeon, Cheol; Lim, Jae-Yong; Misawa, Tsuyoshi

    2012-01-01

    The effects of silicon cross section and neutron spectrum on the radial uniformity of a Si-ingot are examined experimentally with various neutron spectrum conditions. For the cross section effect, the numerical results using silicon single crystal cross section reveal good agreements with experiments within relative difference of 6%, whereas the discrepancy is approximately 20% in free-gas cross section. For the neutron spectrum effect, the radial uniformity in hard neutron spectrum is found to be more flattening than that in soft spectrum. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. A simple chemical method for the separation of phosphorus interfering the trace element determinations by neutron activation analysis in high doped silicon wafers

    International Nuclear Information System (INIS)

    Wagler, H.; Flachowsky, J.

    1986-01-01

    Neutron activation analysis is one of the most available method for the determination of trace elements, but in the case of P-doped silicon wafers the 32 P-activity interferes the gamma spectrometry. It is not possible to determine the trace elements without chemical manipulations. On the other hand, time consuming chemical separations should be avoided. Therefore, a simple and rapid P-separation method has to be developed, in which the following twelve trace elements should be taken into consideration: Ag, As, Au, Co, Cr, Cu, Fe, Mo, Na, Sb, W, and Zn. After acid oxidative dissolution of the activated sample, P is present as phosphate ion. The phosphate ion is removed by precipitation as BiPO 4 . (author)

  17. Charge collection measurements with p-type Magnetic Czochralski silicon single pad detectors

    International Nuclear Information System (INIS)

    Tosi, C.; Bruzzi, M.; Macchiolo, A.; Scaringella, M.; Petterson, M.K.; Sadrozinski, H.F.-W.; Betancourt, C.; Manna, N.; Creanza, D.; Boscardin, M.; Piemonte, C.; Zorzi, N.; Borrello, L.; Messineo, A.

    2007-01-01

    The charge collected from beta source particles in single pad detectors produced on p-type Magnetic Czochralski (MCz) silicon wafers has been measured before and after irradiation with 26 MeV protons. After a 1 MeV neutron equivalent fluence of 1x10 15 cm -2 the collected charge is reduced to 77% at bias voltages below 900 V. This result is compared with previous results from charge collection measurements

  18. Reversible and Precisely Controllable p/n-Type Doping of MoTe2 Transistors through Electrothermal Doping.

    Science.gov (United States)

    Chang, Yuan-Ming; Yang, Shih-Hsien; Lin, Che-Yi; Chen, Chang-Hung; Lien, Chen-Hsin; Jian, Wen-Bin; Ueno, Keiji; Suen, Yuen-Wuu; Tsukagoshi, Kazuhito; Lin, Yen-Fu

    2018-03-01

    Precisely controllable and reversible p/n-type electronic doping of molybdenum ditelluride (MoTe 2 ) transistors is achieved by electrothermal doping (E-doping) processes. E-doping includes electrothermal annealing induced by an electric field in a vacuum chamber, which results in electron (n-type) doping and exposure to air, which induces hole (p-type) doping. The doping arises from the interaction between oxygen molecules or water vapor and defects of tellurium at the MoTe 2 surface, and allows the accurate manipulation of p/n-type electrical doping of MoTe 2 transistors. Because no dopant or special gas is used in the E-doping processes of MoTe 2 , E-doping is a simple and efficient method. Moreover, through exact manipulation of p/n-type doping of MoTe 2 transistors, quasi-complementary metal oxide semiconductor adaptive logic circuits, such as an inverter, not or gate, and not and gate, are successfully fabricated. The simple method, E-doping, adopted in obtaining p/n-type doping of MoTe 2 transistors undoubtedly has provided an approach to create the electronic devices with desired performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Resistivity measurements on the neutron irradiated detector grade silicon materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng

    1993-11-01

    Resistivity measurements under the condition of no or low electrical field (electrical neutral bulk or ENB condition) have been made on various device configurations on detector grade silicon materials after neutron irradiation. Results of the measurements have shown that the ENB resistivity increases with neutron fluence ({Phi}{sub n}) at low {phi}{sub n} (<10{sup 13} n/cm{sup 2}) and saturates at a value between 300 and 400 k{Omega}-cm at {phi}{sub n} {approximately}10{sup 13} n/cm{sup 2}. Meanwhile, the effective doping concentration N{sub eff} in the space charge region (SCR) obtained from the C-V measurements of fully depleted p{sup +}/n silicon junction detectors has been found to increase nearly linearly with {phi}{sub n} at high fluences ({phi}{sub n} > 10{sup 13} n/cm{sup 2}). The experimental results are explained by the deep levels crossing the Fermi level in the SCR and near perfect compensation in the ENB by all deep levels, resulting in N{sub eff} (SCR) {ne} n or p (free carrier concentrations in the ENB).

  20. Neutron irradiation effects on silicon detectors structure, electrical and mechanical characteristics

    International Nuclear Information System (INIS)

    Rabinovich, E.; Golan, G.; Axelevich, A.; Inberg, A.; Oksman, M.; Rosenwaks, I.; Lubarsky, G.; Seidman, A.; Croitoru, N.; Rancoita, P.G.; Rattaggi, M.

    1999-01-01

    Neutron irradiation effects on (p-n) and Schottky-junction silicon detectors were studied. It was shown that neutron interactions with monocrystalline silicon create specific types of microstructure defects with morphology differing according to the level of neutron fluences (Φ). The isolated dislocation loops, formed by interstitial atoms were observed in microstructure images for 10 10 ≤ Φ ≤ 10 12 n/cm 2 . A strong change in the dislocation loops density and a cluster formation was observed for Φ ≥ 10 13 n/cm 2 . A drastic silicon damage was found for fluences over 10 14 n/cm 2 . These fluences created zones enriched with all types of dislocations, covering more than 50 % of the total surface area. A mechanical fragility appeared in that fluence range in a form of microcracks. 10 14 n/cm 2 appears to be a critical value of neutron irradiation because of the radiation damage described above and because the characteristics I f -V f of silicon detectors can be differentiated from those obtained at low fluences. (A.C.)

  1. Studies of frequency dependent C-V characteristics of neutron irradiated p+-n silicon detectors

    International Nuclear Information System (INIS)

    Li, Zheng; Kraner, H.W.

    1990-10-01

    Frequency-dependent capacitance-voltage fluence (C-V) characteristics of neutron irradiated high resistivity silicon p + -n detectors have been observed up to a fluence of 8.0 x 10 12 n/cm 2 . It has been found that frequency dependence of the deviation of the C-V characteristic (from its normal V -1/2 dependence), is strongly dependent on the ratio of the defect density and the effective doping density N t /N' d . As the defect density approaches the effective dopant density, or N t /N' d → 1, the junction capacitance eventually assumes the value of the detector geometry capacitance at high frequencies (f ≤ 10 5 Hz), independent of voltage. A two-trap-level model using the concept of quasi-fermi levels has been developed, which predicts both the effects of C-V frequency dependence and dopant compensation observed in this study

  2. Optical properties of erbium-doped porous silicon waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Najar, A. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B P. 80518, 22305 Lannion Cedex (France); Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Charrier, J. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B P. 80518, 22305 Lannion Cedex (France)]. E-mail: joel.charier@univ-rennes1.fr; Ajlani, H. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Lorrain, N. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B P. 80518, 22305 Lannion Cedex (France); Elhouichet, H. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Oueslati, M. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Haji, L. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B P. 80518, 22305 Lannion Cedex (France)

    2006-12-15

    Planar and buried channel porous silicon waveguides (WG) were prepared from p{sup +}-type silicon substrate by a two-step anodization process. Erbium ions were incorporated into pores of the porous silicon layers by an electrochemical method using ErCl{sub 3}-saturated solution. Erbium concentration of around 10{sup 20} at/cm{sup 3} was determined by energy-dispersive X-ray analysis performed on SEM cross-section. The luminescence properties of erbium ions in the IR range were determined and a luminescence time decay of 420 {mu}s was measured. Optical losses were studied on these WG. The increased losses after doping were discussed.

  3. Experimental verification of temperature coefficients of resistance for uniformly doped P-type resistors in SOI

    Science.gov (United States)

    Olszacki, M.; Maj, C.; Bahri, M. Al; Marrot, J.-C.; Boukabache, A.; Pons, P.; Napieralski, A.

    2010-06-01

    Many today's microsystems like strain-gauge-based piezoresistive pressure sensors contain doped resistors. If one wants to predict correctly the temperature impact on the performance of such devices, the accurate data about the temperature coefficients of resistance (TCR) are essential. Although such data may be calculated using one of the existing mobility models, our experiments showed that we can observe the huge mismatch between the calculated and measured values. Thus, in order to investigate the TCR values, a set of the test structures that contained doped P-type resistors was fabricated. As the TCR value also depends on the doping profile shape, we decided to use the very thin, 340 nm thick SOI wafers in order to fabricate the quasi-uniformly doped silicon layers ranging from 2 × 1017 at cm-3 to 1.6 × 1019 at cm-3. The results showed that the experimental data for the first-order TCR are quite far from the calculated ones especially over the doping range of 1018-1019 at cm-3 and quite close to the experimental ones obtained by Bullis about 50 years ago for bulk silicon. Moreover, for the first time, second-order coefficients that were not very consistent with the calculations were obtained.

  4. Experimental verification of temperature coefficients of resistance for uniformly doped P-type resistors in SOI

    International Nuclear Information System (INIS)

    Olszacki, M; Maj, C; Al Bahri, M; Marrot, J-C; Boukabache, A; Pons, P; Napieralski, A

    2010-01-01

    Many today's microsystems like strain-gauge-based piezoresistive pressure sensors contain doped resistors. If one wants to predict correctly the temperature impact on the performance of such devices, the accurate data about the temperature coefficients of resistance (TCR) are essential. Although such data may be calculated using one of the existing mobility models, our experiments showed that we can observe the huge mismatch between the calculated and measured values. Thus, in order to investigate the TCR values, a set of the test structures that contained doped P-type resistors was fabricated. As the TCR value also depends on the doping profile shape, we decided to use the very thin, 340 nm thick SOI wafers in order to fabricate the quasi-uniformly doped silicon layers ranging from 2 × 10 17 at cm −3 to 1.6 × 10 19 at cm −3 . The results showed that the experimental data for the first-order TCR are quite far from the calculated ones especially over the doping range of 10 18 –10 19 at cm −3 and quite close to the experimental ones obtained by Bullis about 50 years ago for bulk silicon. Moreover, for the first time, second-order coefficients that were not very consistent with the calculations were obtained.

  5. neutron transmutation doping of silicon a thesis submitted to nuclear engineering department for the degree of master of science in nuclear engineering

    International Nuclear Information System (INIS)

    Abdel Gawwad, M.M.

    2003-01-01

    When silicon is irradiated by thermal neutrons the objective is to produce a number of phosphorus atoms in the target sample, in order to obtain a given resistivity after treatment. The resistivity of the sample is decreased by the transmutation of the silicon (by neutrons) to phosphorus. After the sample irradiation and decay, the radiochemical cleaning is used to clean the sample. the next step is the sample heat treatment to remove the damage caused by fast neutrons( E> 0.1 MeV). after that, the sample is cut int wafer and polished. The characterization must be carried. out to characterize the specifications of the final product. the present work aims to: find an optimization of the silicon doping processes:sample preparation, for irradiation by cleaning the sample before irradiation to avoid impurity activation. process, by calculating the fluence required to reach the required resistivity. Decay of irradiated sample, it takes four days at least to be handled. handling, it must be carefully to avoid the mechanical damage since the silicon is hard material. etching , to remove the defected layer from the sample . heat treatment , to release the damage caused during irradiation. characterization, to measure the final resistivity and the minority carrier life . hence, calculating the irradiation constant for ETRR-2

  6. Capacity spectroscopy of minority-carrier radiation traps in n-type silicon

    International Nuclear Information System (INIS)

    Kuchinskij, P.V.; Lomako, V.M.; Shakhlevich, L.N.

    1987-01-01

    Minority charge-carrier radiation traps in n-silicon, produced by neutron transmutation doping (NTD) and zone melting method, were studied using unsteady capacity spectroscopy method. Studying the parameters of defects, formed in the lower half of the restricted zone, was performed using minority carrier injection by forward current pulses. Samples were p + -n-structures, produced on the basis of silicon with different oxygen content. It is shown, that a trap with activation energy ≅E v +0.34 eV appears to be the main defect in oxygen p-silicon. Investigation into thermal stability has shown, that centers with E v +0.34 eV and E v +0.27 eV activation energies are annealed within the same temperature interval (300-400 deg C)

  7. Doping of silicon by laser-induced diffusion

    International Nuclear Information System (INIS)

    Pretorius, R.; Allie, M.S.

    1986-01-01

    This report gives information on the doping of silicon by laser-induced diffusion, modelling and heat-flow calculation, doping from evaporated layers and silicon self-diffusion during pulsed laser irradiation. In order to tailor dopant profiles accurately a knowledge of the heat flow and the melt depths attained as a function of laser energy and material type is crucial. The heat flow calculations described can be used in conjuntion with most diffusion equations in order to predict the redistribution of the deposited dopant which occurs as a result of liquid phase diffusion during the melting period. Doping of Si was carried out by evaporating this films of Sb, In and Bi 10 to 300 A thick, onto the substrates. During pulsed laser irradiation the dopant film and underlying silicon substrate is melted and the dopant incorporated into the crystal lattice during recrystallization. Radioactive 31 Si(T1/2=2,62h) was used as a tracer to measure the self-diffusion of silicon in silicon during pulsed laser (pulsewidth = 30ns, wavelength = 694nm) irradiation

  8. Properties of p-type amorphous silicon carbide window layers prepared using boron trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    Gandia, J J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Gutierrez, M T [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Carabe, J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain)

    1993-03-01

    One set (A) of undoped and three sets (B, C and D) of doped hydrogenated amorphous silicon carbide samples have been made in the framework of a research plan for obtaining high quality p-type window layers by radiofrequency glow discharge of silane-based gas mixtures. The samples of sets A and B were made using different RF-power-density to mass-flow ratios for various methane percentages in the gas mixture. The best carbon incorporation in the amorphous silicon lattice was obtained at the highest RF-power density. The properties of sets C and D, prepared using different RF-power densities and silane and methane proportions have been analysed as functions of the concentration of boron trifluoride with respect to silane. In both cases, the optical gap E[sub G], after a slight initial decrease, remains at a value of approximately 2.1 eV without quenching in the doping ranges covered. The best conductivity obtained is 2x10[sup -7] ([Omega] cm)[sup -1]. IR spectra allow to associate these features with the structural quality of the films. (orig.)

  9. Porous silicon formation by hole injection from a back side p+/n junction for electrical insulation applications

    International Nuclear Information System (INIS)

    Fèvre, A; Menard, S; Defforge, T; Gautier, G

    2016-01-01

    In this paper, we propose to study the formation of porous silicon (PS) in low doped (1 × 10 14 cm −3 ) n-type silicon through hole injection from a back side p + /n junction in the dark. This technique is investigated within the framework of electrical insulation. Three different types of junctions are investigated. The first one is an epitaxial n-type layer grown on p + doped silicon wafer. The two other junctions are carried out by boron diffusion leading to p + regions with junction depths of 20 and 115 μm. The resulting PS morphology is a double layer with a nucleation layer (NL) and macropores fully filled with mesoporous material. This result is unusual for low doped n-type silicon. Morphology variations are described depending on the junction formation process, the electrolyte composition, the anodization current density and duration. In order to validate the more interesting industrial potentialities of the p + /n injection technique, a comparison is achieved with back side illumination in terms of resulting morphology and experiments confirm comparable results. Electrical characterizations of the double layer, including NL and fully filled macropores, are then performed. To our knowledge, this is the first electrical investigation in low doped n type silicon with this morphology. Compared to the bulk silicon, the measured electrical resistivities are 6–7 orders of magnitude higher at 373 K. (paper)

  10. First results on the charge collection properties of segmented detectors made with p-type bulk silicon

    International Nuclear Information System (INIS)

    Casse, G.; Allport, P.P.; Bowcock, T.J.V.; Greenall, A.; Hanlon, M.; Jackson, J.N.

    2002-01-01

    Radiation damage of n-type bulk detectors introduces stable defects acting as effective p-type doping and leads to the change of the conductivity type of the silicon substrate (type inversion) after a fluence of a few times 10 13 protons cm -2 . The diode junction after inversion migrates from the original side to the back plane of the detector. The migration of the junction can be prevented using silicon detectors with p-type substrates. Furthermore, the use of n-side readout gives higher charge collection efficiency for segmented devices operated below the full depletion voltage. Large area (∼6.4x6.4 cm 2 ) capacitively coupled 80 μm pitch detectors using polysilicon bias resistors have been fabricated on p-type substrates (n-in-p diode structure). These detectors have been irradiated with 24 GeV/c protons to an integrated fluence of 3x10 14 cm -2 and kept for 7 days at 25 deg. C to reach the broad minimum of the annealing curve. Results are presented on the comparison of their charge collection properties with detectors using p-strip read-out after corresponding dose and annealing

  11. Electrical parameters of metal doped n-CdO/p-Si heterojunction diodes

    Energy Technology Data Exchange (ETDEWEB)

    Umadevi, P. [Department of Physics, Sri Vidya College of Engineering & Technology, Virudhunagar 626005, Tamilnadu (India); Prithivikumaran, N., E-mail: janavi_p@yahoo.com [Nanoscience Research Lab, Department of Physics, VHNSN College, Virudhunagar 626001, Tamilnadu (India)

    2016-11-15

    The CdO, Al doped CdO and Cu doped CdO thin films were coated on p-type silicon substrates by sol–gel spin coating method. The structural, surface morphological and electrical properties of undoped, Al and Cu doped CdO films on silicon substrate were studied. The Ag/CdO/p-Si, Ag/Al: CdO/p-Si and Ag/Cu: CdO/p-Si heterojunction diodes were fabricated and the diode parameters such as reverse saturation current, barrier height and ideality factor of the diodes were investigated by current–voltage (I–V)characteristics. The reverse current of the diode was found to increase strongly with the doping. The values of barrier height and ideality factor were decreased by doping with aluminium and copper. Photo response of the heterojunction diodes was studied and it was found that, the heterojunction diode constructed with the doped CdO has larger Photo response than the undoped heterojunction diode.

  12. Doping of silicon carbide by ion implantation; Dopage du carbure de silicium par implantation ionique

    Energy Technology Data Exchange (ETDEWEB)

    Gimbert, J

    1999-03-04

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  13. Complex boron redistribution kinetics in strongly doped polycrystalline-silicon/nitrogen-doped-silicon thin bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Abadli, S. [Department of Electrical Engineering, University Aout 1955, Skikda, 21000 (Algeria); LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Mansour, F. [LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Pereira, E. Bedel [CNRS-LAAS, 7 avenue du colonel Roche, 31077 Toulouse (France)

    2012-10-15

    We have investigated the complex behaviour of boron (B) redistribution process via silicon thin bi-layers interface. It concerns the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method at 480 C, by using in-situ nitrogen-doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P{sup +}) layer. To avoid long-range B redistributions, thermal annealing was carried out at relatively low-temperatures (600 C and 700 C) for various times ranging between 30 min and 2 h. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of two thin layers and to the effects of strong-concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders. The increasing kinetics of the B peak concentration near the bi-layers interface is well reproduced by the established model. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Highly conducting p-type nanocrystalline silicon thin films preparation without additional hydrogen dilution

    Science.gov (United States)

    Patra, Chandralina; Das, Debajyoti

    2018-04-01

    Boron doped nanocrystalline silicon thin film has been successfully prepared at a low substrate temperature (250 °C) in planar inductively coupled RF (13.56 MHz) plasma CVD, without any additional hydrogen dilution. The effect of B2H6 flow rate on structural and electrical properties of the films has been studied. The p-type nc-Si:H films prepared at 5 ≤ B2H6 (sccm) ≤ 20 retains considerable amount of nanocrystallites (˜80 %) with high conductivity ˜101 S cm-1 and dominant crystallographic orientation which has been correlated with the associated increased ultra- nanocrystalline component in the network. Such properties together make the material significantly effective for utilization as p-type emitter layer in heterojunction nc-Si solar cells.

  15. Effect of fabrication parameters on morphological and optical properties of highly doped p-porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Maryam, E-mail: mar.zare@gmail.com [Young Researchers Club, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr (Iran, Islamic Republic of); Shokrollahi, Abbas [Young Researchers Club, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr (Iran, Islamic Republic of); Seraji, Faramarz E. [Optical Communication Group, Iran Telecom Research Center, Tehran (Iran, Islamic Republic of)

    2011-09-01

    Porous silicon (PS) layers were fabricated by anodization of low resistive (highly doped) p-type silicon in HF/ethanol solution, by varying current density, etching time and HF concentration. Atomic force microscopy (AFM) and field emission scanning electron microscope (FESEM) analyses were used to investigate the physical properties and reflection spectrum was used to investigate the optical behavior of PS layers in different fabrication conditions. Vertically aligned mesoporous morphology is observed in fabricated films and with HF concentration higher than 20%. The dependence of porosity, layer thickness and rms roughness of the PS layer on current density, etching time and composition of electrolyte is also observed in obtained results. Correlation between reflectivity and fabrication parameters was also explored. Thermal oxidation was performed on some mesoporous layers that resulted in changes of surface roughness, mean height and reflectivity of the layers.

  16. Surface passivation of n-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks

    Science.gov (United States)

    van de Loo, B. W. H.; Ingenito, A.; Verheijen, M. A.; Isabella, O.; Zeman, M.; Kessels, W. M. M.

    2017-06-01

    Black silicon (b-Si) nanotextures can significantly enhance the light absorption of crystalline silicon solar cells. Nevertheless, for a successful application of b-Si textures in industrially relevant solar cell architectures, it is imperative that charge-carrier recombination at particularly highly n-type doped black Si surfaces is further suppressed. In this work, this issue is addressed through systematically studying lowly and highly doped b-Si surfaces, which are passivated by atomic-layer-deposited Al2O3 films or SiO2/Al2O3 stacks. In lowly doped b-Si textures, a very low surface recombination prefactor of 16 fA/cm2 was found after surface passivation by Al2O3. The excellent passivation was achieved after a dedicated wet-chemical treatment prior to surface passivation, which removed structural defects which resided below the b-Si surface. On highly n-type doped b-Si, the SiO2/Al2O3 stacks result in a considerable improvement in surface passivation compared to the Al2O3 single layers. The atomic-layer-deposited SiO2/Al2O3 stacks therefore provide a low-temperature, industrially viable passivation method, enabling the application of highly n- type doped b-Si nanotextures in industrial silicon solar cells.

  17. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Minden 11800 Penang (Malaysia)

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  18. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Science.gov (United States)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.

    2015-04-01

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×1016 atoms/cm3) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  19. Production and aging of paramagnetic point defects in P-doped floating zone silicon irradiated with high fluence 27 MeV electrons

    Science.gov (United States)

    Joita, A. C.; Nistor, S. V.

    2018-04-01

    Enhancing the long term stable performance of silicon detectors used for monitoring the position and flux of the particle beams in high energy physics experiments requires a better knowledge of the nature, stability, and transformation properties of the radiation defects created over the operation time. We report the results of an electron spin resonance investigation in the nature, transformation, and long term stability of the irradiation paramagnetic point defects (IPPDs) produced by high fluence (2 × 1016 cm-2), high energy (27 MeV) electrons in n-type, P-doped standard floating zone silicon. We found out that both freshly irradiated and aged (i.e., stored after irradiation for 3.5 years at 250 K) samples mainly contain negatively charged tetravacancy and pentavacancy defects in the first case and tetravacancy defects in the second one. The fact that such small cluster vacancy defects have not been observed by irradiation with low energy (below 5 MeV) electrons, but were abundantly produced by irradiation with neutrons, strongly suggests the presence of the same mechanism of direct formation of small vacancy clusters by irradiation with neutrons and high energy, high fluence electrons, in agreement with theoretical predictions. Differences in the nature and annealing properties of the IPPDs observed between the 27 MeV electrons freshly irradiated, and irradiated and aged samples were attributed to the presence of a high concentration of divacancies in the freshly irradiated samples, defects which transform during storage at 250 K through diffusion and recombination processes.

  20. Development of silicone rubber-type neutron shielding material

    International Nuclear Information System (INIS)

    Do, Jae Bum; Cho, Soo Hang; Kim, Ik Soo; Oh, Seung Chul; Hong, Soon Seok; Noh, Sung Ki; Jeong, Duk Yeon.

    1997-06-01

    Because the exposure to radiation in the nuclear facilities can be fatal to human, it is important to reduce the radiation dose level to a tolerable level. The purpose of this study is to develop highly effective neutron shielding materials for the shipping and storage cask of radioactive materials or in the nuclear/radiation facilities. On this study, we developed silicone rubber based neutron shielding materials and their various material properties, including neutron shielding ability, fire resistance, combustion characteristics, radiation resistance, thermal and mechanical properties were evaluated experimentally. (author). 16 tabs., 17 figs., 25 refs

  1. Room-Temperature H2 Gas Sensing Characterization of Graphene-Doped Porous Silicon via a Facile Solution Dropping Method

    Directory of Open Access Journals (Sweden)

    Nu Si A. Eom

    2017-11-01

    Full Text Available In this study, a graphene-doped porous silicon (G-doped/p-Si substrate for low ppm H2 gas detection by an inexpensive synthesis route was proposed as a potential noble graphene-based gas sensor material, and to understand the sensing mechanism. The G-doped/p-Si gas sensor was synthesized by a simple capillary force-assisted solution dropping method on p-Si substrates, whose porosity was generated through an electrochemical etching process. G-doped/p-Si was fabricated with various graphene concentrations and exploited as a H2 sensor that was operated at room temperature. The sensing mechanism of the sensor with/without graphene decoration on p-Si was proposed to elucidate the synergetic gas sensing effect that is generated from the interface between the graphene and p-type silicon.

  2. Growth of misfit dislocation-free p/p+ thick epitaxial silicon wafers on Ge-B-codoped substrates

    International Nuclear Information System (INIS)

    Jiang Huihua; Yang Deren; Ma Xiangyang; Tian Daxi; Li Liben; Que Duanlin

    2006-01-01

    The growth of p/p + silicon epitaxial silicon wafers (epi-wafers) without misfit dislocations has been successfully achieved by using heavily boron-doped Czochralski (CZ) silicon wafers codoped with desirable level of germanium as the substrates. The lattice compensation by codoping of germanium and boron into the silicon matrix to reduce the lattice mismatch between the substrate (heavily boron-doped) and epi-layer (lightly boron-doped) is the basic idea underlying in the present achievement. In principle, the codoping of germanium and boron in the CZ silicon can be tailored to achieve misfit dislocation-free epi-layer with required thickness. It is reasonably expected that the presented solution to elimination of misfit dislocations in the p/p + silicon wafers can be applied in the volume production

  3. Doping process of p-type GaN nanowires: A first principle study

    Science.gov (United States)

    Xia, Sihao; Liu, Lei; Diao, Yu; Feng, Shu

    2017-10-01

    The process of p-type doping for GaN nanowires is investigated using calculations starting from first principles. The influence of different doping elements, sites, types, and concentrations is discussed. Results suggest that Mg is an optimal dopant when compared to Be and Zn due to its stronger stability, whereas Be atoms are more inclined to exist in the interspace of a nanowire. Interstitially-doped GaN nanowires show notable n-type conductivity, and thus, Be is not a suitable dopant, which is to be expected since systems with inner substitutional dopants are more favorable than those with surface substitutions. Both interstitial and substitutional doping affect the atomic structure near dopants and induce charge transfer between the dopants and adjacent atoms. By altering doping sites and concentrations, nanowire atomic structures remain nearly constant. Substitutional doping models show p-type conductivity, and Mg-doped nanowires with doping concentrations of 4% showing the strongest p-type conductivity. All doping configurations are direct bandgap semiconductors. This study is expected to direct the preparation of high-quality GaN nanowires.

  4. The Impact of Metallic Impurities on Minority Carrier Lifetime in High Purity N-type Silicon

    Science.gov (United States)

    Yoon, Yohan

    Boron-doped p-type silicon is the industry standard silicon solar cell substrate. However, it has serious limitations: iron boron (Fe-B) pairs and light induced degradation (LID). To suppress LID, the replacement of boron by gallium as a p-type dopant has been proposed. Although this eliminates B-O related defects, gallium-related pairing with iron, oxygen, and carbon can reduce lifetime in this material. In addition resistivity variations are more pronounced in gallium doped ingots, however Continuous-Czochralski (c-Cz) growth technologies are being developed to overcome this problem. In this work lifetime limiting factors and resistivity variations have been investigated in this material. The radial and axial variations of electrically active defects were observed using deep level transient spectroscopy (DLTS) these have been correlated to lifetime and resistivity variations. The DLTS measurements demonstrated that iron-related pairs are responsible for the lifetime variations. Specifically, Fe-Ga pairs were found to be important recombination sites and are more detrimental to lifetime than Fei. Typically n-type silicon has a higher minority carrier lifetime than p-type silicon with similar levels of contamination. That is because n-type silicon is more tolerant to metallic impurities, especially Fe. Also, it has no serious issues in relation to lifetime degradation, such as FeB pairs and light-induced degradation (LID). However, surface passivation of the p + region in p+n solar cells is much more problematic than the n+p case where silicon nitride provides very effective passivation of the cell. SiO2 is the most effective passivation for n type surfaces, but it does not work well on B-doped surfaces, resulting in inadequate performance. Al2O3 passivation layer suggested for B-doped emitters. With this surface passivation layer a 23.2 % conversion efficiency has been achieved. After this discovery n-type silicon is now being seriously considered for

  5. Wet chemical treatment of boron doped emitters on n-type (1 0 0) c-Si prior to amorphous silicon passivation

    Energy Technology Data Exchange (ETDEWEB)

    Meddeb, H., E-mail: hosny.meddeb@gmail.com [KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Research and Technology Center of Energy, Photovoltaic Department, Borj-Cedria Science and Technology Park, BP 95, 2050 (Tunisia); University of Carthage, Faculty of Sciences of Bizerta (Tunisia); Bearda, T.; Recaman Payo, M.; Abdelwahab, I. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Abdulraheem, Y. [Electrical Engineering Department, College of Engineering & Petroleum, Kuwait University, P.O. Box 5969, 13060 Safat (Kuwait); Ezzaouia, H. [Research and Technology Center of Energy, Photovoltaic Department, Borj-Cedria Science and Technology Park, BP 95, 2050 (Tunisia); Gordon, I.; Szlufcik, J. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Poortmans, J. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Department of Electrical Engineering (ESAT), K.U. Leuven, 3001 Leuven (Belgium); Faculty of Sciences, University of Hasselt, Martelarenlaan 42, 3500 Hasselt (Belgium)

    2015-02-15

    Highlights: • The influence of the cleaning process using different HF-based cleaning on the amorphous silicon passivation of homojunction boron doped emitters is analyzed. • The effect of boron doping level on surface characteristics after wet chemical cleaning: For heavily doped surfaces, the reduction in contact angle was less pronounced, which proves that such surfaces are more resistant to oxide formation and remain hydrophobic for a longer time. In the case of low HF concentration, XPS measurements show higher oxygen concentrations for samples with higher doping level, probably due to the incomplete removal of the native oxide. • Higher effective lifetime is achieved at lower doping for all considered different chemical pre-treatments. • A post-deposition annealing improves the passivation level yielding emitter saturation currents determined by Auger recombination in the order of 70 fA/cm{sup 2} and below. • The dominance of Auger recombination over other type of B-induced defects on lifetime quality in the case of our p+ emitter. - Abstract: The influence of the cleaning process on the amorphous silicon passivation of homojunction emitters is investigated. A significant variation in the passivation quality following different cleaning sequences is not observed, even though differences in cleaning performance are evident. These results point out the effectiveness of our cleaning treatment and provide a hydrogen termination for intrinsic amorphous silicon passivation. A post-deposition treatment improves the passivation level yielding emitter saturation currents determined by Auger recombination in the order of 70 fA/cm{sup 2} and below.

  6. Influence of the radiation type on properties of silicon doped by erbium

    International Nuclear Information System (INIS)

    Nazyrov, D.E.

    2006-01-01

    Full text: It is known that on effectiveness of formation and kinetics of annealing of radiation damages presence causing, uncontrollable electrical of fissile or inactive impurities, the concentration and position in a lattice of the semiconductor strongly influence. From this point of view, the impurities of group of rare earths elements (REE) represent major interest, since interacting with primary radiation imperfections they create electrical passive complexes such as 'impurity + defect', thus raising radiation stability of silicon. The purpose of sectional operation was the investigations of influence such as radiation exposures: in γ-quanta 60 Co and high-velocity electrons with an energy 3,5 MeV on properties of silicon doped REE-erbium. The doping of silicon REE was carried out during cultivation. The concentration REE in silicon, on sectional of a neutron-activation analysis was equaled 10 14 10 18 cm -3 . As control is model the monocrystalline silicon such as KEP-15 50 was investigation. The experimental outcomes are obtained through methods DLTS, IRC, and also at examination of a Hall effect and conductance is model, measuring of concentration optically active of centers of oxygen and carbon. In samples irradiated in the γ-quanta 60 Co in an interval of doses 10 16 -5·10 18 cm -2 and high-velocity electrons from 5·10 13 up to 10 18 el.·cm -2 the formation various DL in a forbidden region is revealed, which parameters are well-known A- and, E-centres etc. Depending on a radiation dose in an energy distribution of radiation imperfections in Si of essential concentration modifications is not observed. The comparison doses of associations detected DL in irradiated n-Si with similar associations in control samples shows, that a velocity of introduction of radiation imperfections (A- and E-centres) and imperfection with a deep level Ec-0,32 eV) in samples containing REE much lower, than in control samples. The lifetime of non-equilibrium charge carriers

  7. Silicon fiber with p-n junction

    International Nuclear Information System (INIS)

    Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B.

    2014-01-01

    In this study, we fabricated a p-n junction in a fiber with a phosphorous doped silicon core and fused silica cladding. The fibers were fabricated via a hybrid process of the core-suction and melt-draw techniques and maintained overall diameters ranging from 200 to 900 μm and core diameters of 20–800 μm. The p-n junction was formed by doping the fiber with boron and confirmed via the current-voltage characteristic. The demonstration of a p-n junction in a melt-drawn silicon core fiber paves the way for the seamless integration of optical and electronic devices in fibers.

  8. Application of neutron activation to the characterization of silicon doping technological procedures

    International Nuclear Information System (INIS)

    Jourdain, Daniel.

    1976-01-01

    Neutron activation techniques (examples of reactions, emission spectra) are recalled. Autoradiography is studied in detail: a theoretical study of the phenomena involved and the parameters that have an effect on the resolution, is made. Concentration profiles of doping impurities are analyzed in the case of ion implantation and deep diffusion. Autoradiography was applied to the study of the following technological problems: phosphorus and gold deep diffusion, phosphorus and arsenic ion implantation, deposition and diffusion of phosphorus-doped oxides. Correlations between doping material concentration and electric parameters such as recovering time and surface resistance were looked for [fr

  9. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    Science.gov (United States)

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  10. Effect of cobalt-60 {gamma} radiation and of thermal neutrons on high resistance P and N silicon. Possibility of obtaining a nuclear compensation for P type silicon; Effects du rayonnement {gamma} du cobalt 60 et de neutrons thermiques sur du silicium P et N de haute resistivite. Possibilite de realiser une compensation nucleaire d'un silicium du type P

    Energy Technology Data Exchange (ETDEWEB)

    Messier, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-11-01

    Type P silicon has been compensated by the production of a controlled and uniform amount of donor atoms ({sup 31}P) using thermal neutrons to bring about a nuclear transformation. It is shown that it is possible in this way to reduce by a factor of about one hundred the overall concentration of residual ionised impurities in the purest crystals obtained by floating zone purification (2 x 10{sup 12} atoms/cm{sup 3}). The degree compensation obtained is limited by the initial inhomogeneity of acceptor impurities which have to be compensated. Lattice defects which still remain after prolonged annealings reduce the life-time of the material to about 10 {mu}s approximately. Particle detectors having thicknesses of 2 to 5 mm have been built by this process; they give good results, particularly at low temperatures. A study has also been made of the number and of the nature of lattice defects produced by thermal neutrons in high resistivity P and N type crystals. These defects have been compared to those produced by {gamma} rays from {sup 60}Co. A discussion is given of the validity of the Wertheim model concerning pronounced recombination at low temperatures (77 deg. K - 300 deg. K) of primary defect-interstitial pairs. The nature of the defects introducing energy levels into the lower half of the forbidden band has been studied. (author) [French] On a compense du silicium de type P en produisant, au moyen de neutrons thermiques, par transmutation nucleaire une quantite controlee et uniforme d'atomes donneurs ({sup 31}P). On montre qu'on peut ainsi reduire de cent fois environ la densite nette d'impuretes ionisees residuelles subsistant dans les cristaux les plus purs obtenus par purification par zone flottante (2.10{sup 12} atomes/cm{sup 3}). Le degre de compensation obtenu est limite par i'inhomogeneite initiale des impuretes acceptrices a compenser. Des defauts de reseau qui subsistent meme apres des recuits prolonges reduisent la duree de vie du materiau a 10 {mu

  11. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays

    KAUST Repository

    Lu, Ming-Pei; Song, Jinhui; Lu, Ming-Yen; Chen, Min-Teng; Gao, Yifan; Chen, Lih-Juann; Wang, Zhong Lin

    2009-01-01

    Using phosphorus-doped ZnO nanowire (NW) arrays grown on silicon substrate, energy conversion using the p-type ZnO NWs has been demonstrated for the first time. The p-type ZnO NWs produce positive output voltage pulses when scanned by a conductive

  12. Porous silicon photonic devices using pulsed anodic etching of lightly doped silicon

    International Nuclear Information System (INIS)

    Escorcia-Garcia, J; Sarracino MartInez, O; Agarwal, V; Gracia-Jimenez, J M

    2009-01-01

    The fabrication of porous silicon photonic structures using lightly doped, p-type, silicon wafers (resistivity: 14-22 Ω cm) by pulsed anodic etching is reported. The optical properties have been found to be strongly dependent on the duty cycle and frequency of the applied current. All the interfaces of the single layered samples were digitally analysed by calculating the mean interface roughness (R m ). The interface roughness was found to be maximum for the sample with direct current. The use of a duty cycle above 50%, in a certain range of frequencies, is found to reduce the interface roughness. The optical properties of some microcavities and rugate filters are investigated from the optimized parameters of the duty cycle and frequency, using the current densities of 10, 90 and 150 mA cm -2 .

  13. Doping of silicon by carbon during laser ablation process

    Science.gov (United States)

    Raciukaitis, G.; Brikas, M.; Kazlauskiene, V.; Miskinis, J.

    2007-04-01

    Effect of laser ablation on properties of remaining material was investigated in silicon. It was established that laser cutting of wafers in air induced doping of silicon by carbon. The effect was found to be more distinct by the use of higher laser power or UV radiation. Carbon ions created bonds with silicon in the depth of silicon. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion was performed to clarify its depth profile in silicon. Photo-chemical reactions of such type changed the structure of material and could be a reason for the reduced quality of machining. A controlled atmosphere was applied to prevent carbonization of silicon during laser cutting.

  14. Doping of silicon by carbon during laser ablation process

    International Nuclear Information System (INIS)

    Raciukaitis, G; Brikas, M; Kazlauskiene, V; Miskinis, J

    2007-01-01

    Effect of laser ablation on properties of remaining material was investigated in silicon. It was established that laser cutting of wafers in air induced doping of silicon by carbon. The effect was found to be more distinct by the use of higher laser power or UV radiation. Carbon ions created bonds with silicon in the depth of silicon. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion was performed to clarify its depth profile in silicon. Photo-chemical reactions of such type changed the structure of material and could be a reason for the reduced quality of machining. A controlled atmosphere was applied to prevent carbonization of silicon during laser cutting

  15. Admittance studies of neutron-irradiated silicon p+-n diodes

    International Nuclear Information System (INIS)

    Tokuda, Y.; Usami, A.

    1977-01-01

    Defects introduced in n-type silicon by neutron irradiation were investigated by measuring the conductance (G) and the capacitance (C) of p + -n diodes. The method of the determination of the energy level, capture cross section, and concentration for each defect from the G-T and C-T curves for various frequencies was presented. Assuming that capture cross sections are independent of temperature, the energy levels of E/sub c/-0.15 eV, E/sub c/-0.22 eV, and E/sub c/-0.39 eV were obtained. For these defects, the calculated values of the electron capture cross section were 2.6 x 10 -14 , 3.7 x 10 -15 , and 2.0 x 10 -14 cm 2 , respectively. The introduction rate of defects for E/sub c/-0.39 eV was twice that for E/sub c/-0.22 eV which was twice that for E/sub c/-0.15 eV. Comparing with other published data, the energy levels of E/sub c/-0.15 eV and E/sub c/-0.39 eV were found to be correlated with the A center and the divacancy, respectively

  16. Radiation-induced conductivity of doped silicon in response to photon, proton and neutron irradiation

    International Nuclear Information System (INIS)

    Kishimoto, N.; Amekura, H.; Plaksin, O.A.; Stepanov, V.A.

    2000-01-01

    The opto-electronic performance of semiconductors during reactor operation is restricted by radiation-induced conductivity (RIC) and the synergistic effects of neutrons/ions and photons. The RICs of Si due to photons, protons and pulsed neutrons have been evaluated, aiming at radiation correlation. Protons of 17 MeV with an ionizing dose rate of 10 3 Gy/s and/or photons (hν=1.3 eV) were used to irradiate impurity-doped Si (2x10 16 B atoms/cm 3 ) at 300 and 200 K. Proton-induced RIC (p-RIC) and photoconductivity (PC) were intermittently detected in an accelerator device. Neutron-induced RIC (n-RIC) was measured for the same Si in a pulsed fast-fission reactor, BARS-6, with a 70-μs pulse of 2x10 12 n/cm 2 (E>0.01 MeV) and a dose rate of up to 6x10 5 Gy/s. The neutron irradiation showed a saturation tendency in the flux dependence at 300 K due to the strong electronic excitation. Normalization of the electronic excitation, including the pulsed regime, gave a fair agreement among the different radiation environments. Detailed comparison among PC, p-RIC and n-RIC is discussed in terms of radiation correlation including the in-pile condition

  17. Doping of silicon with carbon during laser ablation process

    Science.gov (United States)

    Račiukaitis, G.; Brikas, M.; Kazlauskienė, V.; Miškinis, J.

    2006-12-01

    The effect of laser ablation on properties of remaining material in silicon was investigated. It was found that laser cutting of wafers in the air induced the doping of silicon with carbon. The effect was more distinct when using higher laser power or UV radiation. Carbon ions created bonds with silicon atoms in the depth of the material. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion to clarify its depth profile in silicon was performed. Photochemical reactions of such type changed the structure of material and could be the reason of the reduced machining quality. The controlled atmosphere was applied to prevent carbonization of silicon during laser cutting.

  18. Influence of fabrication parameter on the nanostructure and photoluminescence of highly doped p-porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaoyuan [National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Metallurgical and energy engineering, Kunming University of Science and Technology, Kunming 650093 (China); Ma, Wenhui, E-mail: mwhsilicon@163.com [National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Metallurgical and energy engineering, Kunming University of Science and Technology, Kunming 650093 (China); Zhou, Yang, E-mail: zhouyangnano@163.com [National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Metallurgical and energy engineering, Kunming University of Science and Technology, Kunming 650093 (China); Chen, Xiuhua [Faculty of Physical Science and Technology, Yunnan University, Kunming 650091 (China); Ma, Mingyu [National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Metallurgical and energy engineering, Kunming University of Science and Technology, Kunming 650093 (China); Xiao, Yongyin [Faculty of Physical Science and Technology, Yunnan University, Kunming 650091 (China); Xu, Yaohui [National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Metallurgical and energy engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2014-02-15

    Porous silicon (PS) was prepared by anodizing highly doped p-type silicon in the solution of H{sub 2}O/ethanol/HF. The effects of key fabrication parameters (HF concentration, etching time and current density) on the nanostructure of PS were carefully investigated by AFM, SEM and TEM characterization. According to the experimental results, a more full-fledged model was developed to explain the crack behaviors on PS surface. The photoluminescence (PL) of resulting PS was studied by a fluorescence spectrophotometer and the results show that PL peak positions shift to shorter wavelength with the increasing current density, anodisation time and dilution of electrolyte. The PL spectra blue shift of the sample with higher porosity is confirmed by HRTEM results that the higher porosity results in smaller Si nanocrystals. A linear model (λ{sub PL/nm}=620.3–0.595P, R=0.905) was established to describe the correlation between PL peak positions and porosity of PS. -- Highlights: • The effect of fabrication parameter on the nanostructure of PS is investigated. • The influence of nanostructure on the photoluminescence behaviors is studied • A full-fledged model for expounding the crack behaviors of PS is presented. • The correlation between the porosity and PL peak blue shift is described by a linear model.

  19. The new generations of power components will depend on neutron and/or electron bombardment techniques

    International Nuclear Information System (INIS)

    Lilen, H.

    1976-01-01

    Neutron and electron bombardment techniques for materials doping, newly introduced in the fabrication of power semiconductor components: diodes, transistors, thyristors, and triacs are briefly outlined. A neutron bombardment of high purity silicon results in a short-lived 31 Si isotope (from 30 Si) decaying into 31 P. The phosphorus with its five peripheral electrons induces a negative doping (N), and the neutron technique gives a homogeneous doping. Furthermore, silicon bombardment with 1 to 2MeV electrons induces micro-ruptures in the lattice, that act as recombination traps reducing carrier lifetimes. Consequently, gold diffusion techniques can be replaced by electron bombardment with a gain in controlling carrier lifetimes [fr

  20. Optical properties of Mg doped p-type GaN nanowires

    Science.gov (United States)

    Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, S.; Tyagi, A. K.

    2015-06-01

    Mg doped p-type GaN nanowires are grown using chemical vapor deposition technique in vapor-liquid-solid (VLS) process. Morphological and structural studies confirm the VLS growth process of nanowires and wurtzite phase of GaN. We report the optical properties of Mg doped p-type GaN nanowires. Low temperature photoluminescence studies on as-grown and post-growth annealed samples reveal the successful incorporation of Mg dopants. The as-grwon and annealed samples show passivation and activation of Mg dopants, respectively, in GaN nanowires.

  1. A simple model to estimate the optimal doping of p - Type oxide superconductors

    Directory of Open Access Journals (Sweden)

    Adir Moysés Luiz

    2008-12-01

    Full Text Available Oxygen doping of superconductors is discussed. Doping high-Tc superconductors with oxygen seems to be more efficient than other doping procedures. Using the assumption of double valence fluctuations, we present a simple model to estimate the optimal doping of p-type oxide superconductors. The experimental values of oxygen content for optimal doping of the most important p-type oxide superconductors can be accounted for adequately using this simple model. We expect that our simple model will encourage further experimental and theoretical researches in superconducting materials.

  2. Porous silicon damage enhanced phosphorus and aluminium gettering of p-type Czochralski silicon

    International Nuclear Information System (INIS)

    Hassen, M.; Ben Jaballah, A.; Hajji, M.; Rahmouni, H.; Selmi, A.; Ezzaouia, H.

    2005-01-01

    In this work, porous silicon damage (PSD) is presented as a simple sequence for efficient external purification techniques. The method consists of using thin nanoporous p-type silicon on both sides of the silicon substrates with randomly hemispherical voids. Then, two main sample types are processed. In the first type, thin aluminium layers (≥1 μm) are thermally evaporated followed by photo-thermal annealing treatments in N 2 atmosphere at one of several temperatures ranging between 600 and 800 deg. C. In the second type, phosphorus is continually diffused in N 2 /O 2 ambient in a solid phase from POCl 3 solution during heating at one of several temperatures ranging between 750 and 1000 deg. C for 1 h. Hall Effect and Van Der Pauw methods prove the existence of an optimum temperature in the case of phosphorus gettering at 900 deg. C yielding a Hall mobility of about 982 cm 2 V -1 s -1 . However, in the case of aluminium gettering, there is no gettering limit in the as mentioned temperature range. Metal/Si Schottky diodes are elaborated to clarify these improvements. In this study, we demonstrate that enhanced metal solubility model cannot explain the gettering effect. The solid solubility of aluminium is higher than that of P atoms in silicon; however, the device yield confirms the effectiveness of phosphorus as compared to aluminium

  3. The doping concentration and physical properties measurement of silicon water using tera hertz wave

    International Nuclear Information System (INIS)

    Park, Sung Hyeon; Oh, Gyung Hwan; Kim, Hak Sung

    2017-01-01

    In this study, a tera hertz time domain spectroscopy (THz-TDS) imaging technique was used to measure doping concentration and physical properties (such as refractive index and permittivity) of the doped silicon (Si) wafers. The transmission and reflection modes with an incidence angle of 30° were employed to determine the physical properties of the doped Si wafers. The doping concentrations of the prepared Si wafers were varied from 10"1"4 to 10"1"8 in both N-type and P-type cases. Finally, the correlation between the doping concentration and the power of the THz wave was determined by measuring the powers of the transmitted and reflected THz waves of the doped Si wafers. Additionally, the doped thickness, the refractive index, and permittivity of each doped Si wafer were calculated using the THz time domain waveform. The results indicate that the THz-TDS imaging technique is potentially a promising technique to measure the doping concentration as well as other optical properties (such as the refractive index and permittivity) of the doped Si wafer

  4. The doping concentration and physical properties measurement of silicon water using tera hertz wave

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Hyeon; Oh, Gyung Hwan; Kim, Hak Sung [Dept. of Mechanical Convergence Engineering, Hanyang University, Seoul(Korea, Republic of)

    2017-02-15

    In this study, a tera hertz time domain spectroscopy (THz-TDS) imaging technique was used to measure doping concentration and physical properties (such as refractive index and permittivity) of the doped silicon (Si) wafers. The transmission and reflection modes with an incidence angle of 30° were employed to determine the physical properties of the doped Si wafers. The doping concentrations of the prepared Si wafers were varied from 10{sup 14} to 10{sup 18} in both N-type and P-type cases. Finally, the correlation between the doping concentration and the power of the THz wave was determined by measuring the powers of the transmitted and reflected THz waves of the doped Si wafers. Additionally, the doped thickness, the refractive index, and permittivity of each doped Si wafer were calculated using the THz time domain waveform. The results indicate that the THz-TDS imaging technique is potentially a promising technique to measure the doping concentration as well as other optical properties (such as the refractive index and permittivity) of the doped Si wafer.

  5. One-step synthesis of lightly doped porous silicon nanowires in HF/AgNO3/H2O2 solution at room temperature

    International Nuclear Information System (INIS)

    Bai, Fan; Li, Meicheng; Song, Dandan; Yu, Hang; Jiang, Bing; Li, Yingfeng

    2012-01-01

    One-step synthesis of lightly doped porous silicon nanowire arrays was achieved by etching the silicon wafer in HF/AgNO 3 /H 2 O 2 solution at room temperature. The lightly doped porous silicon nanowires (pNWs) have circular nanopores on the sidewall, which can emit strong green fluorescence. The surface morphologies of these nanowires could be controlled by simply adjusting the concentration of H 2 O 2 , which influences the distribution of silver nanoparticles (Ag NPs) along the nanowire axis. A mechanism based on Ag NPs-induced lateral etching of nanowires was proposed to explain the formation of pNWs. The controllable and widely applicable synthesis of pNWs will open their potential application to nanoscale photoluminescence devices. - Graphical abstract: The one-step synthesis of porous silicon nanowire arrays is achieved by chemical etching of the lightly doped p-type Si (100) wafer at room temperature. These nanowires exhibit strong green photoluminescence. SEM, TEM, HRTEM and photoluminescence images of pNWs. The scale bars of SEM, TEM HRTEM and photoluminescence are 10 μm, 20 nm, 10 nm, and 1 μm, respectively. Highlights: ► Simple one-step synthesis of lightly doped porous silicon nanowire arrays is achieved at RT. ► Etching process and mechanism are illustrated with etching model from a novel standpoint. ► As-prepared porous silicon nanowire emits strong green fluorescence, proving unique property.

  6. Modulation Doping of Silicon using Aluminium-induced Acceptor States in Silicon Dioxide

    OpenAIRE

    K?nig, Dirk; Hiller, Daniel; Gutsch, Sebastian; Zacharias, Margit; Smith, Sean

    2017-01-01

    All electronic, optoelectronic or photovoltaic applications of silicon depend on controlling majority charge carriers via doping with impurity atoms. Nanoscale silicon is omnipresent in fundamental research (quantum dots, nanowires) but also approached in future technology nodes of the microelectronics industry. In general, silicon nanovolumes, irrespective of their intended purpose, suffer from effects that impede conventional doping due to fundamental physical principles such as out-diffusi...

  7. The ALU+ concept: n-type silicon solar cells with surface passivated screen-printed aluminum-alloyed rear emitter

    NARCIS (Netherlands)

    Bock, R.; Schmidt, J.; Mau, S.; Hoex, B.; Kessels, W.M.M.; Brendel, R.

    2009-01-01

    Aluminum-doped p-type (Al-p+) silicon emitters fabricated by means of screen-printing and firing are effectively passivated by plasma-enhanced chemicalvapor deposited (PECVD) amorphous silicon (a-Si) and atomic-layer-deposited (ALD) aluminum oxide (Al2O3) as well as Al2O3/SiNx stacks, where the

  8. Method for the preparation of n-i-p type radiation detector from silicon

    International Nuclear Information System (INIS)

    Keleti, J.; Toeroek, T.; Lukacs, J.; Molnar, I.

    1978-01-01

    The patent describes a procedure for the preparation of n-i-p type silicon radiation detectors. The aim was to provide an adaquate procedure for the production of α, β, γ-detectors from silicon available on the market, either p-type single crystal silicon characterised by its boron level. The procedure and the 9 claims are illustrated by two examples. (Sz.J.)

  9. Eliminating Light-Induced Degradation in Commercial p-Type Czochralski Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Brett Hallam

    2017-12-01

    Full Text Available This paper discusses developments in the mitigation of light-induced degradation caused by boron-oxygen defects in boron-doped Czochralski grown silicon. Particular attention is paid to the fabrication of industrial silicon solar cells with treatments for sensitive materials using illuminated annealing. It highlights the importance and desirability of using hydrogen-containing dielectric layers and a subsequent firing process to inject hydrogen throughout the bulk of the silicon solar cell and subsequent illuminated annealing processes for the formation of the boron-oxygen defects and simultaneously manipulate the charge states of hydrogen to enable defect passivation. For the photovoltaic industry with a current capacity of approximately 100 GW peak, the mitigation of boron-oxygen related light-induced degradation is a necessity to use cost-effective B-doped silicon while benefitting from the high-efficiency potential of new solar cell concepts.

  10. Attenuation of Thermal Neutrons by Crystalline Silicon

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Ashry, A.; Fathalla, M.

    2002-01-01

    A simple formula is given which allows to calculate the contribution of the total neutron cross - section including the Bragg scattering from different (hkt) planes to the neutron * transmission through a solid crystalline silicon. The formula takes into account the silicon form of poly or mono crystals and its parameters. A computer program DSIC was developed to provide the required calculations. The calculated values of the total neutron cross-section of perfect silicon crystal at room and liquid nitrogen temperatures were compared with the experimental ones. The obtained agreement shows that the simple formula fits the experimental data with sufficient accuracy .A good agreement was also obtained between the calculated and measured values of polycrystalline silicon in the energy range from 5 eV to 500μ eV. The feasibility study on using a poly-crystalline silicon as a cold neutron filter and mono-crystalline as a thermal neutron one is given. The optimum crystal thickness, mosaic spread, temperature and cutting plane for efficiently transmitting the thermal reactor neutrons, while rejecting both fast neutrons and gamma rays accompanying the thermal ones for the mono crystalline silicon are also given

  11. Effect of Thermal Annealing on Light-Induced Minority Carrier Lifetime Enhancement in Boron-Doped Czochralski Silicon

    International Nuclear Information System (INIS)

    Wang Hong-Zhe; Zheng Song-Sheng; Chen Chao

    2015-01-01

    The effect of thermal annealing on the light-induced effective minority carrier lifetime enhancement (LIE) phenomenon is investigated on the p-type Czochralski silicon (Cz-Si) wafer passivated by a phosphorus-doped silicon nitride (P-doped SiN_x) thin film. The experimental results show that low temperature annealing (below 300°C) can not only increase the effective minority carrier lifetime of P-doped SiN_x passivated boron-doped Cz-Si, but also improve the LIE phenomenon. The optimum annealing temperature is 180°C, and its corresponding effective minority carrier lifetime can be increased from initial 7.5 μs to maximum 57.7 μs by light soaking within 15 min after annealing. The analysis results of high-frequency dark capacitance-voltage characteristics reveal that the mechanism of the increase of effective minority carrier lifetime after low temperature annealing is due to the sharp enhancement of field effect passivation induced by the negative fixed charge density, while the mechanism of the LIE phenomenon after low temperature annealing is attributed to the enhancement of both field effect passivation and chemical passivation. (paper)

  12. Thermal neutron imaging with rare-earth-ion-doped LiCaAlF6 scintillators and a sealed 252Cf source

    International Nuclear Information System (INIS)

    Kawaguchi, Noriaki; Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei; Fukuda, Kentaro; Suyama, Toshihisa; Watanabe, Kenichi; Yamazaki, Atsushi; Chani, Valery; Yoshikawa, Akira

    2011-01-01

    Thermal neutron imaging with Ce-doped LiCaAlF 6 crystals has been performed. The prototype of the neutron imager using a Ce-doped LiCaAlF 6 scintillating crystal and a position sensitive photomultiplier tube (PSPMT) which had 64 multi-channel anode was developed. The Ce-doped LiCaAlF 6 single crystal was grown by the Czochralski method. A plate with dimensions of a diameter of 50x2 mm 2 was cut from the grown crystal, polished, and optically coupled to PSPMT by silicone grease. The 252 Cf source ( 6 .

  13. Measurements and characterization of a hole trap in neutron-irradiated silicon

    International Nuclear Information System (INIS)

    Avset, B.S.

    1996-04-01

    The report describes measurements on a hole trap in neutron irradiated silicon diodes made one high resistivity phosphorus doped floatzone silicon. The hole trap was detected by Deep Level Transient Spectroscopy. This measurement gave a trap activation energy of 0.475 MeV. Other measurements showed that the trap has very small capture cross sections for both holes and electrons (10 -18 to 10 -20 cm 2 ) and that the hole capture cross section is temperature dependent. The energy level position of the trap has been estimated to be between 0.25 and 0.29 eV from the valence band. 25 refs., 21 figs., 4 tabs

  14. Investigation of charges carrier density in phosphorus and boron doped SiNx:H layers for crystalline silicon solar cells

    International Nuclear Information System (INIS)

    Paviet-Salomon, B.; Gall, S.; Slaoui, A.

    2013-01-01

    Highlights: ► We investigate the properties of phosphorus and boron-doped silicon nitride films. ► Phosphorus-doped layers yield higher lifetimes than undoped ones. ► The fixed charges density decreases when increasing the films phosphorus content. ► Boron-doped films feature very low lifetimes. ► These doped layers are of particular interest for crystalline silicon solar cells. -- Abstract: Dielectric layers are of major importance in crystalline silicon solar cells processing, especially as anti-reflection coatings and for surface passivation purposes. In this paper we investigate the fixed charge densities (Q fix ) and the effective lifetimes (τ eff ) of phosphorus (P) and boron (B) doped silicon nitride layers deposited by plasma-enhanced chemical vapour deposition. P-doped layers exhibit a higher τ eff than standard undoped layers. In contrast, B-doped layers exhibit lower τ eff . A strong Q fix decrease is to be seen when increasing the P content within the film. Based on numerical simulations we also demonstrate that the passivation obtained with P- and B-doped layers are limited by the interface states rather than by the fixed charges

  15. Solid-state diffusion as an efficient doping method for silicon nanowires and nanowire field effect transistors

    International Nuclear Information System (INIS)

    Moselund, K E; Ghoneim, H; Schmid, H; Bjoerk, M T; Loertscher, E; Karg, S; Signorello, G; Webb, D; Tschudy, M; Beyeler, R; Riel, H

    2010-01-01

    In this work we investigate doping by solid-state diffusion from a doped oxide layer, obtained by plasma-enhanced chemical vapor deposition (PECVD), as a means for selectively doping silicon nanowires (NWs). We demonstrate both n-type (phosphorous) and p-type (boron) doping up to concentrations of 10 20 cm -3 , and find that this doping mechanism is more efficient for NWs as opposed to planar substrates. We observe no diameter dependence in the range of 25 to 80 nm, which signifies that the NWs are uniformly doped. The drive-in temperature (800-950 deg. C) can be used to adjust the actual doping concentration in the range 2 x 10 18 to 10 20 cm -3 . Furthermore, we have fabricated NMOS and PMOS devices to show the versatility of this approach and the possibility of achieving segmented doping of NWs. The devices show high I on /I off ratios of around 10 7 and, especially for the PMOS, good saturation behavior and low hysteresis.

  16. Feasibility study on silicon doping using high temperature test engineering reactor

    International Nuclear Information System (INIS)

    Seki, Masaya; Takaki, Naoyuki; Goto, Minoru; Shimakawa, Satoshi

    2011-01-01

    The feasibility study on silicon doping using the High Temperature engineering Test Reactor (HTTR) is performed by numerical simulations. The HTTR is a High Temperature Gas-cooled Reactor (HTGR) situated at JAEA Oarai research and development center. It has a 30MW thermal power and the outlet coolant temperature is 950degC. The objective of this study is to evaluate the following issues, 1. The impact of loading Si-ingots into the core on the criticality, 2. The uniformity of the neutron capture reaction rate in Si-ingots, and 3. The production rate of silicon semiconductor. In this study, six Si-ingots are loaded into the irradiation area which is located in the peripheral region of the core. They are irradiated with rotation movement around the axial direction to obtain uniform neutron capture reaction rate in the radial direction. Additionally, the neutron filter, which is made of graphite containing boron, is used to obtain uniform neutron capture reaction rate in the axial direction. The evaluations were conducted by performing the HTTR whole core calculations with the Monte Carlo code MVP-2.0. In the calculations, several tally regions were defined on the Si-ingots to investigate the uniformity of the neutron capture reaction rate. As a result, loading the Si-ingots into the core causes negative reactivity by about 0.7%dk/k. Uniform neutron capture reaction rate of Si-ingot is obtained 98% in the radial and the axial direction. In case of the target of semiconductor resistivity is set to 50 Ωcm, the required irradiation time becomes 10 hours. The HTTR is able to produce silicon semiconductor of 540kg in one-time irradiation. This study was conducted as a joint research with JAEA, Nuclear Fuel Industries, LTD, Toyota Tsusho Corporation and Tokai University. (author)

  17. Studies of the dependence on oxidation thermal processes of effects on the electrical properties of silicon detectors by fast neutron radiation

    International Nuclear Information System (INIS)

    Li, Zheng; Kraner, H.W.

    1991-11-01

    High resistivity silicon detectors along with MOS capacitors made on five silicon dioxides with different thermal conditions (975 degree C to 1200 degree C) have been exposed to fast neutron irradiation up to the fluence of a few times 10 14 n/cm 2 . New measurement techniques such as capacitance-voltage (C-V) of MOS capacitors and current-voltage (I-V) of back to back diodes (p + -n - - p + if n - is not inverted to p) or resistors (p + -p-p + if inverted) have been introduced in this study in monitoring the possible type-inversion (n→p) under high neutron fluence. No type-inversion in the material underneath SiO 2 and the p + contact has been observed so far in this work for detectors made on the five oxides up to the neutron fluence of a few times 10 13 n/cm 2 . However, it has been found that detectors made on higher temperature oxides (T≤ 1100 degree C) exhibit less leakage current increase at high neutron fluence (φ ≤ 10 13 n/cm 2 )

  18. Doping efficiency analysis of highly phosphorous doped epitaxial/amorphous silicon emitters grown by PECVD for high efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    El-Gohary, H.G.; Sivoththaman, S. [Waterloo Univ., ON (Canada). Dept. of Electrical and Computer Engineering

    2008-08-15

    The efficient doping of hydrogenated amorphous and crystalline silicon thin films is a key factor in the fabrication of silicon solar cells. The most popular method for developing those films is plasma enhanced chemical vapor deposition (PECVD) because it minimizes defect density and improves doping efficiency. This paper discussed the preparation of different structure phosphorous doped silicon emitters ranging from epitaxial to amorphous films at low temperature. Phosphine (PH{sub 3}) was employed as the doping gas source with the same gas concentration for both epitaxial and amorphous silicon emitters. The paper presented an analysis of dopant activation by applying a very short rapid thermal annealing process (RTP). A spreading resistance profile (SRP) and SIMS analysis were used to detect both the active dopant and the dopant concentrations, respectively. The paper also provided the results of a structural analysis for both bulk and cross-section at the interface using high-resolution transmission electron microscopy and Raman spectroscopy, for epitaxial and amorphous films. It was concluded that a unity doping efficiency could be achieved in epitaxial layers by applying an optimized temperature profile using short time processing rapid thermal processing technique. The high quality, one step epitaxial layers, led to both high conductive and high doping efficiency layers.

  19. Thermal neutron imaging with rare-earth-ion-doped LiCaAlF{sub 6} scintillators and a sealed {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Noriaki, E-mail: famicom@mail.tagen.tohoku.ac.jp [Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Fukuda, Kentaro; Suyama, Toshihisa [Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Watanabe, Kenichi; Yamazaki, Atsushi [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Chani, Valery [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yoshikawa, Akira [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan)

    2011-10-01

    Thermal neutron imaging with Ce-doped LiCaAlF{sub 6} crystals has been performed. The prototype of the neutron imager using a Ce-doped LiCaAlF{sub 6} scintillating crystal and a position sensitive photomultiplier tube (PSPMT) which had 64 multi-channel anode was developed. The Ce-doped LiCaAlF{sub 6} single crystal was grown by the Czochralski method. A plate with dimensions of a diameter of 50x2 mm{sup 2} was cut from the grown crystal, polished, and optically coupled to PSPMT by silicone grease. The {sup 252}Cf source (<1 MBq) was sealed with 43 mm of polyethylene for neutron thermalization. Alphabet-shaped Cd pieces with a thickness of 2 mm were used as a mask for the thermal neutrons. After corrections for the pedestals and gain of each pixel, we successfully obtained two-dimensional neutron images using Ce-doped LiCaAlF{sub 6}.

  20. Quantitative analyses of impurity silicon-carbide (SiC) and high-purity-titanium by neutron activation analyses based on k0-standardization method. Development of irradiation silicon technology in productivity using research reactor (Joint research)

    International Nuclear Information System (INIS)

    Motohashi, Jun; Takahashi, Hiroyuki; Magome, Hirokatsu; Sasajima, Fumio; Tokunaga, Okihiro; Kawasaki, Kozo; Onizawa, Koji; Isshiki, Masahiko

    2009-07-01

    JRR-3 and JRR-4 have been providing neutron-transmutation-doped silicon (NTD-Si) by using the silicon NTD process, which is a method to produce a high quality semiconductor. The domestic supply of NTD-Si is insufficient for the demand, and the market of NTD-Si is significantly growing at present. It is very important to increase achieve the production. To fulfill the requirement, we have been investigating a neutron filter, which is made of high-purity-titanium, for uniform doping. Silicon-carbide (SiC) semiconductor doped with NTD technology is considered suitable for high power devices with superior performances to conventional Si-based devices. We are very interested in the SiC as well. This report presents the results obtained after the impurity contents in the high-purity-titanium and SiC were analyzed by neutron activation analyses (NAA) using k 0 -standardization method. There were 6 and 9 impurity elements detected from the high-purity-titanium and SiC, respectively. Among those Sc from the high-purity-titanium and Fe from SiC were comparatively long half life nuclides. From the viewpoint of exposure in handling them, we need to examine the impurity control of materials. (author)

  1. N-type polycrystalline silicon films formed on alumina by aluminium induced crystallization and overdoping

    Energy Technology Data Exchange (ETDEWEB)

    Tuezuen, O. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg (France)], E-mail: Ozge.Tuzun@iness.c-strasbourg.fr; Slaoui, A. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg (France); Gordon, I. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Focsa, A. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg (France); Ballutaud, D. [GEMaC-UMR 8635 CNRS, 1 place Aristide Briand, F-92195 Meudon (France); Beaucarne, G.; Poortmans, J. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2008-08-30

    In this work, we investigated the formation of n-type polysilicon films on alumina substrates by overdoping a p-type silicon layer obtained by aluminium induced crystallization of amorphous silicon (AIC), and subsequent epitaxy. The phosphorus doping of the AIC was carried out by thermal diffusion from a solid source. The structural quality of the n-type Si film was monitored by optical microscope and scanning electron microscope (SEM). The doping efficiency was determined by resistivity measurements and secondary ion mass spectroscopy (SIMS). The sheet resitivity changed from 2700{omega}/sq to 19.6{omega}/sq after thermal diffusion at 950 deg. C for 1h, indicating the overdoping effect. The SIMS profile carried out after the high temperature epitaxy exhibits a two steps phosphorus distribution, indicating the formation of an n{sup +}n structure.

  2. Development of the external cooling device of increase the productivity of neutron-transmutation-doped silicon semiconductor (NTD-Si) (Joint research)

    International Nuclear Information System (INIS)

    Hirose, Akira; Wada, Shigeru; Sasajima, Fumio; Kusunoki, Tsuyoshi; Kameyama, Iwao; Aizawa, Ryouji; Kikuchi, Naoyuki

    2007-01-01

    Neutron-Transmutation-Doped Silicon Semiconductor (hereinafter referred as 'NTD-Si') is the best semiconductor for the power device. The needs of NTD-Si increase recently in proportion to the popularization of hybrid-cars. A fission research reactor, which is a steady state neutron source, is being expected as the best device to meet the needs. So far, we have reconsidered the existing approach which is employed for NTD-Si production works at the research reactors JRR-3, JRR-4 and JMTR of JAEA so as to meet the needs. As one of the effective measures, we found out that the productivity can be increased by incorporating a new device to cool down radioactivity of irradiated silicon ingots at the place outside the main stream from the loading of silicon ingots to the withdrawal of irradiated ingots to the existing JRR-3 Uniformity Irradiation System. Consequently, we developed and installed the device (hereinafter referred as 'external cooling device'). After an ingot was irradiated once, it is turned over manually and irradiated again in order to irradiate the ingot uniformly. With the conventional system, it was necessary to wait the radioactivity of ingot decrease less than the permissible level with holding the ingot in the irradiation equipment. It was effective to shorten the waiting period by using an external cooling device for production increase of NTD-Si. It is expected that the productivity of NTD-Si will be increased by using the external cooling device. This report mentions the design of the external cooling device and verification between its design specifications and the performance of the device completed. (author)

  3. Thermodynamic analysis of Mg-doped p-type GaN semiconductor

    International Nuclear Information System (INIS)

    Li Jingbo; Liang Jingkui; Rao Guanghui; Zhang Yi; Liu Guangyao; Chen Jingran; Liu Quanlin; Zhang Weijing

    2006-01-01

    A thermodynamic modeling of Mg-doped p-type GaN was carried out to describe the thermodynamic behaviors of native defects, dopants (Mg and H) and carriers in GaN. The formation energies of charged component compounds in a four-sublattice model were defined as functions of the Fermi-level based on the results of the first-principles calculations and adjusted to fit experimental data. The effect of the solubility of Mg on the low doping efficiency of Mg in GaN and the role of H in the Mg-doping MOCVD process were discussed. The modeling provides a thermodynamic approach to understand the doping process of GaN semiconductors

  4. Electrical property studies of oxygen in Czochralski-grown neutron-transmutation-doped silicon

    International Nuclear Information System (INIS)

    Cleland, J.W.; Fukuoka, N.

    1980-10-01

    Electically active oxygen-related donors can be formed in Czochralski (Cz) Si either during crystal growth or during subsequent heat treatment; conventional n- or p-type dopant carrier concentrations are altered if these oxygen donors are present. Neutron transmutation doping (NTD) has been used to introduce a uniform concentration of 31 P in Si. However, oxygen donors can also be formed in NTD Cz Si during the process of annealing to remove NTD radiation damage. In the present experiments, the carrier concentration of Cz and NTD Cz Si samples was determined as a function of the initial dopant, oxygen, and 31 P concentration before and after isothermal or isochronal annealing. It is shown that low temperature (350 to 500 0 C) heat treatment can introduce a significant oxygen donor concentration in Cz Si and in NTD Cz Si that contains radiation-induced lattice defects. Intermediate temperature (550 to 750 0 C) heat treatment, which is intended to remove oxygen donors or lattice defects, can introduce other oxygen donors; annealing above 750 0 C is required to remove any of these oxygen donors. Extended (20 h) high-temperature (1000 to 1200 0 C) annealing can remove oxygen donors and lattice defects, but a significant concentration of oxygen donors can still be introduced by subsequent low temperature heat treatment. These results suggest that oxygen-related donor formation in NTD Cz Si at temperatures below 750 0 C may serve to mask any annealing study of lattice defects. It is concluded that annealing for 30 min at 750 0 C is sufficient to remove radiation damage in NTD Cz Si when the separate effects of oxygen donor formation are included

  5. Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC

    Science.gov (United States)

    Sakwe, S. A.; Müller, R.; Wellmann, P. J.

    2006-04-01

    We have developed a KOH-based defect etching procedure for silicon carbide (SiC), which comprises in situ temperature measurement and control of melt composition. As benefit for the first time reproducible etching conditions were established (calibration plot, etching rate versus temperature and time); the etching procedure is time independent, i.e. no altering in KOH melt composition takes place, and absolute melt temperature values can be set. The paper describes this advanced KOH etching furnace, including the development of a new temperature sensor resistant to molten KOH. We present updated, absolute KOH etching parameters of n-type SiC and new absolute KOH etching parameters for low and highly p-type doped SiC, which are used for quantitative defect analysis. As best defect etching recipes we found T=530 °C/5 min (activation energy: 16.4 kcal/mol) and T=500 °C/5 min (activation energy: 13.5 kcal/mol) for n-type and p-type SiC, respectively.

  6. Effects of phosphorus doping on structural and optical properties of silicon nanocrystals in a SiO2 matrix

    International Nuclear Information System (INIS)

    Hao, X.J.; Cho, E.-C.; Scardera, G.; Bellet-Amalric, E.; Bellet, D.; Shen, Y.S.; Huang, S.; Huang, Y.D.; Conibeer, G.; Green, M.A.

    2009-01-01

    Promise of Si nanocrystals highly depends on tailoring their behaviour through doping. Phosphorus-doped silicon nanocrystals embedded in a silicon dioxide matrix have been realized by a co-sputtering process. The effects of phosphorus-doping on the properties of Si nanocrystals are investigated. Phosphorus diffuses from P-P and/or P-Si to P-O upon high temperature annealing. The dominant X-ray photoelectron spectroscopy P 2p signal attributable to Si-P and/or P-P (130 eV) at 1100 o C indicates that the phosphorus may exist inside Si nanocrystals. It is found that existence of phosphorus enhances phase separation of silicon rich oxide and thereby Si crystallization. In addition, phosphorus has a considerable effect on the optical absorption and photoluminescence properties as a function of annealing temperature.

  7. Investigation of neutron-produced defects in silicon by transconductance measurements of junction field-effect transistors

    International Nuclear Information System (INIS)

    Tokuda, Y.; Usami, A.

    1976-01-01

    Defects introduced in silicon by neutron irradiation were investigated by measuring the phase angle theta of the small-signal transconductance of the junction field-effect transistors (JFET). Measurements of theta as a function of frequency allowed the determination of the time constant for each defect. From the temperature dependence of the time constant, assuming that capture cross sections are independent of temperature, the energy levels of E/sub v/+0.19 and E/sub v/+0.35 eV in p-type silicon and E/sub c/-0.16, E/sub c/-0.19, and E/sub c/-0.44 eV in n-type silicon were obtained. For these defects, calculations gave majority-carrier capture cross-section values of 2.8 x 10 -15 and 1.1 x 10 -14 cm 2 in p-type silicon, and 3.9 x 10 -14 , 1.6 x 10 -16 , and 2.3 x 10 -14 cm 2 in n-type silicon, respectively. Comparing with other published data, it was found that the energy level of E/sub c/-0.44 eV showed the value between the previously reported energy levels of E/sub c/-0.4 and E/sub c/-0.5 eV correlated with the doubly negative charge state and singly negative charge state of the divacancy, respectively. Thus, it is believed that a total of six energy levels are introduced in silicon by neutron irradiation. The energy levels of E/sub c/-0.16 and E/sub v/+0.35 eV were found to be correlated with the A center and the divacancy, respectively

  8. Electric fields in nonhomogeneously doped silicon. Summary of simulations

    International Nuclear Information System (INIS)

    Kotov, I.V.; Humanic, T.J.; Nouais, D.; Randel, J.; Rashevsky, A.

    2006-01-01

    Variations of the doping concentration inside a silicon device result in electric field distortions. These distortions, 'parasitic' fields, have been observed in Silicon Drift Detectors [D. Nouais, et al., Nucl. Instr. and Meth. A 501 (2003) 119; E. Crescio, et al., Nucl. Instr. and Meth. A 539 (2005) 250]. Electric fields inside a silicon device can be calculated for a given doping profile. In this study, the ATLAS device simulator. [Silvaco International, 4701 Patrick Henry Drive, Bldg.2, Santa Clara, CA 95054, USA and s imulation/atlas.html>] was used to calculate the electric field inside an inhomogeneously doped device. Simulations were performed for 1D periodic doping profiles. Results show strong dependence of the parasitic field strength on the 'smoothness' of the doping profile

  9. Reactor neutron activation analysis for aluminium in the presence of phosphorus and silicon

    International Nuclear Information System (INIS)

    Mizumoto, Yoshihiko; Iwata, Shiro; Sasajima, Kazuhisa; Yoshimasu, Fumio; Yase, Yoshiro.

    1984-01-01

    Reactor neutron activation analysis for aluminium in samples containing phosphorus and silicon was studied. The experiments were performed by using neumatic tube of the Kyoto University Reactor (KUR). At first, the ratios of the 28 Al activity produced from 27 Al(n, γ) 28 Al reaction by thermal neutrons to that from 31 P(n, α) 28 Al reaction by fast neutrons, and to that from 28 Si(n, p) 28 Al reaction were measured by γ-ray spectrometry. With a ratio of about 5 for the thermal to fast neutron flux of KUR, the ratio of the 28 Al activity from aluminium to that from phosphorus was to be 812 +- 7, and to that from silicon 282 +- 3. Secondly, the contributions of 28 Al activities from phosphorus and silicon and the determination limit of aluminium were calculated for various parameters, such as fast neutron flux, thermal to fast neutron flux ratio, amounts of phosphorus and silicon, etc. Thirdly, on the basis of these results, aluminium contents in spinal cords and brains of amyotrophic lateral sclerosis, Parkinsonism-dementia complex and control cases were determined. (author)

  10. Investigations of different doping concentration of phosphorus and boron into silicon substrate on the variable temperature Raman characteristics

    Science.gov (United States)

    Li, Xiaoli; Ding, Kai; Liu, Jian; Gao, Junxuan; Zhang, Weifeng

    2018-01-01

    Different doped silicon substrates have different device applications and have been used to fabricate solar panels and large scale integrated circuits. The thermal transport in silicon substrates are dominated by lattice vibrations, doping type, and doping concentration. In this paper, a variable-temperature Raman spectroscopic system is applied to record the frequency and linewidth changes of the silicon peak at 520 cm-1 in five chips of silicon substrate with different doping concentration of phosphorus and boron at the 83K to 1473K temperature range. The doping has better heat sensitive to temperature on the frequency shift over the low temperature range from 83K to 300K but on FWHM in high temperature range from 300K to 1473K. The results will be helpful for fundamental study and practical applications of silicon substrates.

  11. Superconductivity in heavily boron-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    Full Text Available The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  12. Influence of the doping level on the porosity of silicon nanowires prepared by metal-assisted chemical etching

    International Nuclear Information System (INIS)

    Geyer, Nadine; Wollschläger, Nicole; Tonkikh, Alexander; Berger, Andreas; Werner, Peter; Fuhrmann, Bodo; Leipner, Hartmut S; Jungmann, Marco; Krause-Rehberg, Reinhard

    2015-01-01

    A systematic method to control the porosity of silicon nanowires is presented. This method is based on metal-assisted chemical etching (MACE) and takes advantage of an HF/H_2O_2 etching solution and a silver catalyst in the form of a thin patterned film deposited on a doped silicon wafer. It is found that the porosity of the etched nanowires can be controlled by the doping level of the wafer. For low doping concentrations, the wires are primarily crystalline and surrounded by only a very thin layer of porous silicon (pSi) layer, while for highly doped silicon, they are porous in their entire volume. We performed a series of controlled experiments to conclude that there exists a well-defined critical doping concentration separating the crystalline and porous regimes. Furthermore, transmission electron microscopy investigations showed that the pSi has also a crystalline morphology on a length scale smaller than the pore size, determined from positron annihilation lifetime spectroscopy to be mesoscopic. Based on the experimental evidence, we devise a theoretical model of the pSi formation during MACE and apply it for better control of the nanowire morphology. (paper)

  13. Impurity doping processes in silicon

    CERN Document Server

    Wang, FFY

    1981-01-01

    This book introduces to non-experts several important processes of impurity doping in silicon and goes on to discuss the methods of determination of the concentration of dopants in silicon. The conventional method used is the discussion process, but, since it has been sufficiently covered in many texts, this work describes the double-diffusion method.

  14. Fabrication of p-type conductivity in SnO{sub 2} thin films through Ga doping

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, Chien-Yie, E-mail: cytsay@fcu.edu.tw; Liang, Shan-Chien

    2015-02-15

    Highlights: • P-type Ga-doped SnO{sub 2} semiconductor films were prepared by sol-gel spin coating. • Optical bandgaps of the SnO{sub 2}:Ga films are narrower than that of the SnO{sub 2} film. • SnO{sub 2}:Ga films exhibited p-type conductivity as Ga doping content higher than 10%. • A p-n heterojunction composed of p-type SnO{sub 2}:Ga and n-type ZnO:Al was fabricated. - Abstract: P-type transparent tin oxide (SnO{sub 2}) based semiconductor thin films were deposited onto alkali-free glass substrates by a sol-gel spin-coating method using gallium (Ga) as acceptor dopant. In this study, we investigated the influence of Ga doping concentration ([Ga]/[Sn] + [Ga] = 0%, 5%, 10%, 15%, and 20%) on the structural, optical and electrical properties of SnO{sub 2} thin films. XRD analysis results showed that dried Ga-doped SnO{sub 2} (SnO{sub 2}:Ga) sol-gel films annealed in oxygen ambient at 520 °C for 1 h exhibited only the tetragonal rutile phase. The average optical transmittance of as-prepared thin film samples was higher than 87.0% in the visible light region; the optical band gap energy slightly decreased from 3.92 eV to 3.83 eV with increases in Ga doping content. Hall effect measurement showed that the nature of conductivity of SnO{sub 2}:Ga thin films changed from n-type to p-type when the Ga doping level was 10%, and when it was at 15%, Ga-doped SnO{sub 2} thin films exhibited the highest mean hole concentration of 1.70 × 10{sup 18} cm{sup -3}. Furthermore, a transparent p-SnO{sub 2}:Ga (Ga doping level of 15%)/n-ZnO:Al (Al doping level of 2%) heterojunction was fabricated on alkali-free glass. The I-V curve measurement for the p-n heterojunction diode showed a typical rectifying characteristic with a forward turn-on voltage of 0.65 V.

  15. Neutron damage of silicon detectors at 20 deg C

    International Nuclear Information System (INIS)

    Bardos, R.; Gorfine, G.; Guy, L.; Moorhead, G.; Taylor, G.; Tovey, S.

    1992-01-01

    This contribution reports new data on the damage of silicon detectors by low energy (1 MeV) neutrons. The data were taken at the end of 1991. Three exposures of UA2 Inner Silicon detectors were made: at +20 deg C, -15 deg C and -95 deg C. A high neutron flux enabled the required fluences to be achieved in relatively short times. This increases the sensitivity of the experiment to damage types with shorter self-annealing time constants. This note discusses the new data taken at +20 deg C. Analysis of the low temperature exposures is in progress. 5 refs., 15 figs

  16. Functionalization of silicon-doped single walled carbon nanotubes at the doping site: An ab initio study

    International Nuclear Information System (INIS)

    Song Chen; Xia Yueyuan; Zhao Mingwen; Liu Xiangdong; Li Feng; Huang Boda; Zhang Hongyu; Zhang Bingyun

    2006-01-01

    We performed ab initio calculations on the cytosine-functionalized silicon-doped single walled carbon nanotubes (SWNT). The results show that silicon substitutional doping to SWNT can dramatically change the atomic and electronic structures of the SWNT. And more importantly, it may provide an efficient pathway for further sidewall functionalization to synthesize more complicated SWNT based complex materials, for example, our previously proposed base-functionalized SWNTs, because the doping silicon atom can improve the reaction activity of the tube at the doping site due to its preference to form sp3 hybridization bonding

  17. Multiplication in Silicon p-n Junctions

    DEFF Research Database (Denmark)

    Moll, John L.

    1965-01-01

    Multiplication values were measured in the collector junctions of silicon p-n-p and n-p-n transistors before and after bombardment by 1016 neutrons/cm2. Within experimental error there was no change either in junction fields, as deduced from capacitance measurements, or in multiplication values i...

  18. Electrical Properties Of Amorphous Selenium (aSe)/p-Type Silicon ...

    African Journals Online (AJOL)

    aSe) on four chemically etched p-type silicon crystals (pSi) each of 5Ω-cm resistivity and carrier concentration of 2.8x1015cm-3. Two of the pSi crystals have surface orientation of (111) while the other two crystals have (100) surface orientation.

  19. Neutron irradiation control in the neutron transmutation doping process in HANARO using SPND

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Gi-Doo; Kim, Myong-Seop [Korea Atomic Energy Research Institute, Yuseong, Daejeon, 305-353, (Korea, Republic of)

    2015-07-01

    The neutron irradiation control method by using self-powered neutron detector (SPND) is developed for the neutron transmutation doping (NTD) application in HANARO. An SPND is installed at a fixed position of the upper part of the sleeve in HANARO NTD hole for real-time monitoring of the neutron irradiation. It is confirmed that the SPND is significantly affected by the in-core condition and surroundings of the facility. Furthermore, the SPND signal changes about 15% throughout a whole cycle according to the change of the control rod position. But, it is also confirmed that the variation of the neutron flux on the silicon ingots inside the irradiation can is not so big while moving of the control rod. Accordingly, the relationship between the ratio of the neutron flux to the SPND signal output and the control rod position is established. In this procedure, the neutron flux measurement by using zirconium foil is utilized. The real NTD irradiation experiments are performed using the established relationship. The irradiated neutron fluence can be controlled within ±1.3% of the target one. The mean value of the irradiation/target ratio of the fluence is 0.9992, and the standard deviation is 0.0071. Thus, it is confirmed that the extremely accurate irradiation would be accomplished. This procedure can be useful for the SPND application installed at the fixed position to the field requiring the extremely high accuracy. (authors)

  20. Performance of silicon pad detectors after mixed irradiations with neutrons and fast charged hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Kramberger, G. [Jozef Stefan Institute, Department of Physics, University of Ljubljana, Jamova 39, SI-1000 Ljubljana (Slovenia)], E-mail: Gregor.Kramberger@ijs.si; Cindro, V.; Dolenc, I.; Mandic, I.; Mikuz, M.; Zavrtanik, M. [Jozef Stefan Institute, Department of Physics, University of Ljubljana, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2009-10-11

    A large set of silicon pad detectors produced on MCz and FZ wafer of p- and n-type was irradiated in two steps, first by fast charged hadrons followed by reactor neutrons. In this way the irradiations resemble the real irradiation fields at LHC. After irradiations controlled annealing started in steps during which the evolution of full depletion voltage, leakage current and charge collection efficiency was monitored. The damage introduced by different irradiation particles was found to be additive. The most striking consequence of that is a decrease of the full depletion voltage for n-type MCz detectors after additional neutron irradiation. This confirms that effective donors introduced by charged hadron irradiation are compensated by acceptors from neutron irradiation.

  1. Performance of silicon pad detectors after mixed irradiations with neutrons and fast charged hadrons

    International Nuclear Information System (INIS)

    Kramberger, G.; Cindro, V.; Dolenc, I.; Mandic, I.; Mikuz, M.; Zavrtanik, M.

    2009-01-01

    A large set of silicon pad detectors produced on MCz and FZ wafer of p- and n-type was irradiated in two steps, first by fast charged hadrons followed by reactor neutrons. In this way the irradiations resemble the real irradiation fields at LHC. After irradiations controlled annealing started in steps during which the evolution of full depletion voltage, leakage current and charge collection efficiency was monitored. The damage introduced by different irradiation particles was found to be additive. The most striking consequence of that is a decrease of the full depletion voltage for n-type MCz detectors after additional neutron irradiation. This confirms that effective donors introduced by charged hadron irradiation are compensated by acceptors from neutron irradiation.

  2. Activities towards p-type doping of ZnO

    International Nuclear Information System (INIS)

    Brauer, G; Kuriplach, J; Ling, C C; Djurisic, A B

    2011-01-01

    Zinc oxide (ZnO) is an interesting and promising semiconductor material for many potential applications, e.g. in opto-electronics and for sensor devices. However, its p-type doping represents a challenging problem, and the physical reasons of its mostly n-type conductivity are not perfectly clear at present. Efforts to achieve p-type conductivity by ion implantation are reviewed, and ways to achieve p-type ZnO nanorods and thin films through various growth conditions are summarized. Then, issues associated with the preparation of Schottky contacts is discussed in some detail as this is a requirement of the device formation process. Finally, the possible incorporation of hydrogen and nitrogen into structural defects, which can act as trapping sites for positrons, is discussed in the context of experimental and theoretical positron results and the estimated H and N content in a variety of ZnO materials.

  3. Activities towards p-type doping of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, G [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Postfach 510119, D-01314 Dresden (Germany); Kuriplach, J [Department of Low Temperature Physics, Charles University, V Holetovickach 2, CZ-18000 Prague (Czech Republic); Ling, C C; Djurisic, A B, E-mail: g.brauer@fzd.de [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong)

    2011-01-10

    Zinc oxide (ZnO) is an interesting and promising semiconductor material for many potential applications, e.g. in opto-electronics and for sensor devices. However, its p-type doping represents a challenging problem, and the physical reasons of its mostly n-type conductivity are not perfectly clear at present. Efforts to achieve p-type conductivity by ion implantation are reviewed, and ways to achieve p-type ZnO nanorods and thin films through various growth conditions are summarized. Then, issues associated with the preparation of Schottky contacts is discussed in some detail as this is a requirement of the device formation process. Finally, the possible incorporation of hydrogen and nitrogen into structural defects, which can act as trapping sites for positrons, is discussed in the context of experimental and theoretical positron results and the estimated H and N content in a variety of ZnO materials.

  4. Erbium doped stain etched porous silicon

    International Nuclear Information System (INIS)

    Gonzalez-Diaz, B.; Diaz-Herrera, B.; Guerrero-Lemus, R.; Mendez-Ramos, J.; Rodriguez, V.D.; Hernandez-Rodriguez, C.; Martinez-Duart, J.M.

    2008-01-01

    In this work a simple erbium doping process applied to stain etched porous silicon layers (PSLs) is proposed. This doping process has been developed for application in porous silicon solar cells, where conventional erbium doping processes are not affordable because of the high processing cost and technical difficulties. The PSLs were formed by immersion in a HF/HNO 3 solution to properly adjust the porosity and pore thickness to an optimal doping of the porous structure. After the formation of the porous structure, the PSLs were analyzed by means of nitrogen BET (Brunauer, Emmett and Teller) area measurements and scanning electron microscopy. Subsequently, the PSLs were immersed in a saturated erbium nitrate solution in order to cover the porous surface. Then, the samples were subjected to a thermal process to activate the Er 3+ ions. Different temperatures and annealing times were used in this process. The photoluminescence of the PSLs was evaluated before and after the doping processes and the composition was analyzed by Fourier transform IR spectroscopy

  5. Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides

    Science.gov (United States)

    Liu, Zhiqiang; Yi, Xiaoyan; Yu, Zhiguo; Yuan, Gongdong; Liu, Yang; Wang, Junxi; Li, Jinmin; Lu, Na; Ferguson, Ian; Zhang, Yong

    2016-01-01

    In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa1-xN/GaN superlattice structure, by modulation doping of Mg in the AlxGa1-xN barriers, high concentration of holes are generated throughout the material. A hole concentration as high as 1.1 × 1018 cm-3 has been achieved, which is about one order of magnitude higher than that typically achievable by direct doping GaN. Results from first-principle calculations indicate that the coupling and hybridization between Mg 2p impurity and the host N 2p orbitals are main reasons for the generation of resonant states in the GaN wells, which further results in the high hole concentration. We expect this approach to be equally applicable for other high bandgap materials where efficient p-type doing is difficult. Furthermore, a two-carrier-species Hall-effect model is proposed to delineate and discriminate the characteristics of the bulk and 2D hole, which usually coexist in superlattice-like doping systems. The model reported here can also be used to explain the abnormal freeze-in effect observed in many previous reports.

  6. Growth and characteristics of p-type doped GaAs nanowire

    Science.gov (United States)

    Li, Bang; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-05-01

    The growth of p-type GaAs nanowires (NWs) on GaAs (111) B substrates by metal-organic chemical vapor deposition (MOCVD) has been systematically investigated as a function of diethyl zinc (DEZn) flow. The growth rate of GaAs NWs was slightly improved by Zn-doping and kink is observed under high DEZn flow. In addition, the I–V curves of GaAs NWs has been measured and the p-type dope concentration under the II/III ratio of 0.013 and 0.038 approximated to 1019–1020 cm‑3. Project supported by the National Natural Science Foundation of China (Nos. 61376019, 61504010, 61774021) and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Nos. IPOC2017ZT02, IPOC2017ZZ01).

  7. SIMULATED 8 MeV NEUTRON RESPONSE FUNCTIONS OF A THIN SILICON NEUTRON SENSOR.

    Science.gov (United States)

    Takada, Masashi; Matsumoto, Tetsuro; Masuda, Akihiko; Nunomiya, Tomoya; Aoyama, Kei; Nakamura, Takashi

    2017-12-22

    Neutron response functions of a thin silicon neutron sensor are simulated using PHITS2 and MCNP6 codes for an 8 MeV neutron beam at angles of incidence of 0°, 30° and 60°. The contributions of alpha particles created from the 28Si(n,α)25Mg reaction and the silicon nuclei scattered elastically by neutrons in the silicon sensor have not been well reproduced using the MCNP6 code. The 8 MeV neutron response functions simulated using the PHITS2 code with an accurate event generator mode are in good agreement with experimental results and include the contributions of the alpha particles and silicon nuclei. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Electric fields in nonhomogeneously doped silicon. Summary of simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, I.V. [Ohio State University, Columbus, OH 43210 (United States)]. E-mail: kotov@mps.ohio-state.edu; Humanic, T.J. [Ohio State University, Columbus, OH 43210 (United States); Nouais, D. [INFN, Sezione di Torino, I-10125 Turin (Italy); Randel, J. [Ohio State University, Columbus, OH 43210 (United States); Rashevsky, A. [INFN, Sezione di Triste, I-34127 Trieste (Italy)

    2006-11-30

    Variations of the doping concentration inside a silicon device result in electric field distortions. These distortions, 'parasitic' fields, have been observed in Silicon Drift Detectors [D. Nouais, et al., Nucl. Instr. and Meth. A 501 (2003) 119; E. Crescio, et al., Nucl. Instr. and Meth. A 539 (2005) 250]. Electric fields inside a silicon device can be calculated for a given doping profile. In this study, the ATLAS device simulator. [Silvaco International, 4701 Patrick Henry Drive, Bldg.2, Santa Clara, CA 95054, USA and ] was used to calculate the electric field inside an inhomogeneously doped device. Simulations were performed for 1D periodic doping profiles. Results show strong dependence of the parasitic field strength on the 'smoothness' of the doping profile.

  9. Superlattice doped layers for amorphous silicon photovoltaic cells

    Science.gov (United States)

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  10. Predictable quantum efficient detector based on n-type silicon photodiodes

    Science.gov (United States)

    Dönsberg, Timo; Manoocheri, Farshid; Sildoja, Meelis; Juntunen, Mikko; Savin, Hele; Tuovinen, Esa; Ronkainen, Hannu; Prunnila, Mika; Merimaa, Mikko; Tang, Chi Kwong; Gran, Jarle; Müller, Ingmar; Werner, Lutz; Rougié, Bernard; Pons, Alicia; Smîd, Marek; Gál, Péter; Lolli, Lapo; Brida, Giorgio; Rastello, Maria Luisa; Ikonen, Erkki

    2017-12-01

    The predictable quantum efficient detector (PQED) consists of two custom-made induced junction photodiodes that are mounted in a wedged trap configuration for the reduction of reflectance losses. Until now, all manufactured PQED photodiodes have been based on a structure where a SiO2 layer is thermally grown on top of p-type silicon substrate. In this paper, we present the design, manufacturing, modelling and characterization of a new type of PQED, where the photodiodes have an Al2O3 layer on top of n-type silicon substrate. Atomic layer deposition is used to deposit the layer to the desired thickness. Two sets of photodiodes with varying oxide thicknesses and substrate doping concentrations were fabricated. In order to predict recombination losses of charge carriers, a 3D model of the photodiode was built into Cogenda Genius semiconductor simulation software. It is important to note that a novel experimental method was developed to obtain values for the 3D model parameters. This makes the prediction of the PQED responsivity a completely autonomous process. Detectors were characterized for temperature dependence of dark current, spatial uniformity of responsivity, reflectance, linearity and absolute responsivity at the wavelengths of 488 nm and 532 nm. For both sets of photodiodes, the modelled and measured responsivities were generally in agreement within the measurement and modelling uncertainties of around 100 parts per million (ppm). There is, however, an indication that the modelled internal quantum deficiency may be underestimated by a similar amount. Moreover, the responsivities of the detectors were spatially uniform within 30 ppm peak-to-peak variation. The results obtained in this research indicate that the n-type induced junction photodiode is a very promising alternative to the existing p-type detectors, and thus give additional credibility to the concept of modelled quantum detector serving as a primary standard. Furthermore, the manufacturing of

  11. On the use of silicon as thermal neutron filter

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Ashry, A.; Fathalla, M.

    2003-01-01

    A simple formula is given which allows to calculate the contribution of the total neutron cross-section including the Bragg scattering from different (hkl) planes to the neutron transmission through a solid crystalline silicon. The formula takes into account the silicon form of poly or mono crystals and its parameters. A computer program DSIC was developed to provide the required calculations. The calculated values of the total neutron cross-section of perfect silicon crystal at room and liquid nitrogen temperatures were compared with the experimental ones. The obtained agreement shows that the simple formula fits the experimental data with sufficient accuracy. A good agreement was also obtained between the calculated and measured values of polycrystalline silicon in the energy range from 5 eV to 500 μeV. The feasibility study on using a poly-crystalline silicon as a cold neutron filter and mono-crystalline as a thermal neutron one is given. The optimum crystal thickness, mosaic spread, temperature and cutting plane for efficiently transmitting the thermal reactor neutrons, while rejecting both fast neutrons and gamma rays accompanying the thermal ones for the mono crystalline silicon are also given

  12. On the use of silicon as thermal neutron filter

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Habib, N.; Ashry, A.; Fathalla, M. E-mail: mohamedfathalla@hotmail.com

    2003-12-01

    A simple formula is given which allows to calculate the contribution of the total neutron cross-section including the Bragg scattering from different (hkl) planes to the neutron transmission through a solid crystalline silicon. The formula takes into account the silicon form of poly or mono crystals and its parameters. A computer program DSIC was developed to provide the required calculations. The calculated values of the total neutron cross-section of perfect silicon crystal at room and liquid nitrogen temperatures were compared with the experimental ones. The obtained agreement shows that the simple formula fits the experimental data with sufficient accuracy. A good agreement was also obtained between the calculated and measured values of polycrystalline silicon in the energy range from 5 eV to 500 {mu}eV. The feasibility study on using a poly-crystalline silicon as a cold neutron filter and mono-crystalline as a thermal neutron one is given. The optimum crystal thickness, mosaic spread, temperature and cutting plane for efficiently transmitting the thermal reactor neutrons, while rejecting both fast neutrons and gamma rays accompanying the thermal ones for the mono crystalline silicon are also given.

  13. Low-temperature radiation damage in silicon - 1: Annealing studies on N-type material

    International Nuclear Information System (INIS)

    Awadelkarim, O.O.

    1986-07-01

    The presence of electrically active defects in electron-irradiated P-doped n-type silicon was monitored using capacitance and loss factor measurements. Irradiations were performed at temperatures c - 0.14) eV and (E c - 0.24) eV in the gap are ascribed to the carbon interstitial and the divacancy, respectively. (author)

  14. Phosphorous Doping of Nanostructured Crystalline Silicon

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Steckel, André

    Nano-textured silicon, known as black silicon (bSi), is attractive with excellent photon trapping properties. bSi can be produced using simple one-step fabrication reactive ion etching (RIE) technique. However, in order to use bSi in photovoltaics doping process should be developed. Due to high s...

  15. Characteristics of Mg-doped and In-Mg co-doped p-type GaN epitaxial layers grown by metal organic chemical vapour deposition

    International Nuclear Information System (INIS)

    Chung, S J; Lee, Y S; Suh, E-K; Senthil Kumar, M; An, M H

    2010-01-01

    Mg-doped and In-Mg co-doped p-type GaN epilayers were grown using the metal organic chemical vapour deposition technique. The effect of In co-doping on the physical properties of p-GaN layer was examined by high resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), Hall effect, photoluminescence (PL) and persistent photoconductivity (PPC) at room temperature. An improved crystalline quality and a reduction in threading dislocation density are evidenced upon In doping in p-GaN from HRXRD and TEM images. Hole conductivity, mobility and carrier density also significantly improved by In co-doping. PL studies of the In-Mg co-doped sample revealed that the peak position is blue shifted to 3.2 eV from 2.95 eV of conventional p-GaN and the PL intensity is increased by about 25%. In addition, In co-doping significantly reduced the PPC effect in p-type GaN layers. The improved electrical and optical properties are believed to be associated with the active participation of isolated Mg impurities.

  16. Prospects and limitations for p-type doping in boron nitride polymorphs

    Science.gov (United States)

    Weston, Leigh; van de Walle, Chris G.

    Using first-principles calculations, we examine the potential for p-type doping of BN polymorphs via substitutional impurities. Based on density functional theory with a hybrid functional, our calculations reveal that group-IV elements (C, Si) substituting at the N site result in acceptor levels that are more than 1 eV above the valence-band maximum in all of the BN polymorphs, and hence far too deep to allow for p-type doping. On the other hand, group-II elements (Be, Mg) substituting at the B site lead to shallower acceptor levels. However, for the ground-state hexagonal phase (h-BN), we show that p-type doping at the B site is inhibited by the formation of hole polarons. Our calculations reveal that hole localization is intrinsic to sp2 bonded h-BN, and this places fundamental limits on hole conduction in this material. In contrast, the sp3 bonded wurtzite (w-BN) and cubic (c-BN) polymorphs are capable of forming shallow acceptor levels. For Be dopants, the acceptor ionization energies are 0.31 eV and 0.24 eV for w-BN and c-BN, respectively; these values are only slightly larger than the ionization energy of the Mg acceptor in GaN. This work was supported by NSF.

  17. P-type Al-doped Cr-deficient CrN thin films for thermoelectrics

    Science.gov (United States)

    le Febvrier, Arnaud; Van Nong, Ngo; Abadias, Gregory; Eklund, Per

    2018-05-01

    Thermoelectric properties of chromium nitride (CrN)-based films grown on c-plane sapphire by dc reactive magnetron sputtering were investigated. In this work, aluminum doping was introduced in CrN (degenerate n-type semiconductor) by co-deposition. Under the present deposition conditions, over-stoichiometry in nitrogen (CrN1+δ) rock-salt structure is obtained. A p-type conduction is observed with nitrogen-rich CrN combined with aluminum doping. The Cr0.96Al0.04N1.17 film exhibited a high Seebeck coefficient and a sufficient power factor at 300 °C. These results are a starting point for designing p-type/n-type thermoelectric materials based on chromium nitride films, which are cheap and routinely grown on the industrial scale.

  18. Methods for enhancing P-type doping in III-V semiconductor films

    Science.gov (United States)

    Liu, Feng; Stringfellow, Gerald; Zhu, Junyi

    2017-08-01

    Methods of doping a semiconductor film are provided. The methods comprise epitaxially growing the III-V semiconductor film in the presence of a dopant, a surfactant capable of acting as an electron reservoir, and hydrogen, under conditions that promote the formation of a III-V semiconductor film doped with the p-type dopant. In some embodiments of the methods, the epitaxial growth of the doped III-V semiconductor film is initiated at a first hydrogen partial pressure which is increased to a second hydrogen partial pressure during the epitaxial growth process.

  19. The development of p-type silicon detectors for the high radiation regions of the LHC

    CERN Document Server

    Hanlon, M D L

    1998-01-01

    This thesis describes the production and characterisation of silicon microstrip detectors and test structures on p-type substrates. An account is given of the production and full parameterisation of a p-type microstrip detector, incorporating the ATLAS-A geometry in a beam test. This detector is an AC coupled device incorporating a continuous p-stop isolation frame and polysilicon biasing and is typical of n-strip devices proposed for operation at the LHC. It was successfully read out using the FELix-128 analogue pipeline chip and a signal to noise (s/n) of 17+-1 is reported, along with a spatial resolution of 14.6+-0.2 mu m. Diode test structures were fabricated on both high resistivity float zone material and on epitaxial material and subsequently irradiated with 24 GeV protons at the CERN PS up to a dose of (8.22+-0.23) x 10 sup 1 sup 4 per cm sup 2. An account of the measurement program is presented along with results on the changes in the effective doping concentration (N sub e sub f sub f) with irradiat...

  20. The influence of carrier density and doping type on lithium insertion and extraction processes at silicon surfaces

    International Nuclear Information System (INIS)

    McSweeney, W.; Lotty, O.; Glynn, C.; Geaney, H.; Holmes, J.D.; O’Dwyer, C.

    2014-01-01

    The Li + insertion and extraction characteristics at n-type and p-type Si(100) electrodes with different carrier density and doping type are investigated by cyclic voltammetry and constant current measurements. The insertion and extraction potentials are demonstrated to vary with cycling and the occurrence of an activation effect is shown in n-type electrodes where the charge capacity and voltammetric currents are found to be much higher than p-type electrodes. A rate-dependent redox process influenced by the surface region electronic density, which influences the magnitude of cyclic voltammetry current is found at Si(100) surface regions during Li insertion and extraction. At p-type Si(100) surface regions, a thin, uniform film forms at lower currents, while also showing a consistently high (>70%) Coulombic efficiency for Li extraction. The p-type Si(100) surface region does not undergo crack formation after deintercalation and the amorphization was demonstrated using transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS) and Raman scattering demonstrate that highly doped n-type Si(100) retains Li as a silicide and converts to an amorphous phase as a two-step phase conversion process. The findings show the succinct dependence of Li insertion and extraction processes for uniformly doped Si(100) single crystals and how the doping type and its effect on the semiconductor-solution interface dominate Li insertion and extraction, composition, crystallinity changes and charge capacity

  1. p-type ZnS:N nanowires: Low-temperature solvothermal doping and optoelectronic properties

    International Nuclear Information System (INIS)

    Wang, Ming-Zheng; Xie, Wei-Jie; Hu, Han; Yu, Yong-Qiang; Wu, Chun-Yan; Wang, Li; Luo, Lin-Bao

    2013-01-01

    Nitrogen doped p-type ZnS nanowires (NWs) were realized using thermal decomposition of triethylamine at a mild temperature. Field-effect transistors made from individual ZnS:N NWs revealed typical p-type conductivity behavior, with a hole mobility of 3.41 cm 2 V −1 s −1 and a hole concentration of 1.67 × 10 17  cm −3 , respectively. Further analysis found that the ZnS:N NW is sensitive to UV light irradiation with high responsivity, photoconductive gain, and good spectral selectivity. The totality of this study suggests that the solvothermal doping method is highly feasible to dope one dimensional semiconductor nanostructures for optoelectronic devices application

  2. Diffusion of ion-implanted B in high concentration P- and As-doped silicon

    International Nuclear Information System (INIS)

    Fair, R.B.; Pappas, P.N.

    1975-01-01

    The diffusion of ion-implanted B in Si in the presence of a uniform background of high concentration P or As was studied by correlating numerical profile calculations with profiles determined by secondary-ion mass spectrometry (SIMS). Retarded B diffusion is observed in both As- and P-doped Si, consistent with the effect of the local Fermi-level position in the Si band gap on B diffusivity, D/sub B/. It is shown that D/sub B/ is linearly dependent on the free hole concentration, p, over the range 0.1 less than p/n/sub ie/ less than 30, where n/sub ie/ is the effective intrinsic electron concentration. This result does not depend on the way in which the background dopant has been introduced (implantation predeposition or doped-oxide source), nor the type of dopant used (P or As). (U.S.)

  3. Assessing neutron generator output using neutron activation of silicon

    International Nuclear Information System (INIS)

    Kehayias, Pauli M.; Kehayias, Joseph J.

    2007-01-01

    D-T neutron generators are used for elemental composition analysis and medical applications. Often composition is determined by examining elemental ratios in which the knowledge of the neutron flux is unnecessary. However, the absolute value of the neutron flux is required when the generator is used for neutron activation analysis, to study radiation damage to materials, to monitor the operation of the generator, and to measure radiation exposure. We describe a method for absolute neutron output and flux measurements of low output D-T neutron generators using delayed activation of silicon. We irradiated a series of silicon oxide samples with 14.1 MeV neutrons and counted the resulting gamma rays of the 28 Al nucleus with an efficiency-calibrated detector. To minimize the photon self-absorption effects within the samples, we used a zero-thickness extrapolation technique by repeating the measurement with samples of different thicknesses. The neutron flux measured 26 cm away from the tritium target of a Thermo Electron A-325 D-T generator (Thermo Electron Corporation, Colorado Springs, CO) was 6.2 x 10 3 n/s/cm 2 ± 5%, which is consistent with the manufacturer's specifications

  4. Assessing neutron generator output using neutron activation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kehayias, Pauli M. [Body Composition Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111 (United States); Kehayias, Joseph J. [Body Composition Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111 (United States)]. E-mail: joseph.kehayias@tufts.edu

    2007-08-15

    D-T neutron generators are used for elemental composition analysis and medical applications. Often composition is determined by examining elemental ratios in which the knowledge of the neutron flux is unnecessary. However, the absolute value of the neutron flux is required when the generator is used for neutron activation analysis, to study radiation damage to materials, to monitor the operation of the generator, and to measure radiation exposure. We describe a method for absolute neutron output and flux measurements of low output D-T neutron generators using delayed activation of silicon. We irradiated a series of silicon oxide samples with 14.1 MeV neutrons and counted the resulting gamma rays of the {sup 28}Al nucleus with an efficiency-calibrated detector. To minimize the photon self-absorption effects within the samples, we used a zero-thickness extrapolation technique by repeating the measurement with samples of different thicknesses. The neutron flux measured 26 cm away from the tritium target of a Thermo Electron A-325 D-T generator (Thermo Electron Corporation, Colorado Springs, CO) was 6.2 x 10{sup 3} n/s/cm{sup 2} {+-} 5%, which is consistent with the manufacturer's specifications.

  5. Growth and characterization of heavily doped silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    Scala, R.; Porrini, M. [MEMC Electronic Materials SpA, via Nazionale 59, 39012 Merano (Italy); Borionetti, G. [MEMC Electronic Materials SpA, viale Gherzi 31, Novara (Italy)

    2011-08-15

    Silicon crystals grown with the Czochralski method are still the most common material used for the production of electronic devices. In recent years, a growing need of large diameter crystals with increasingly higher doping levels is observed, especially to support the expanding market of discrete devices and its trend towards lower and lower resistivity levels for the silicon substrate. The growth of such heavily doped, large-diameter crystals poses several new challenges to the crystal grower, and the presence of a high dopant concentration in the crystal affects significantly its main properties, requiring also the development of dedicated characterization techniques. This paper illustrates the recent advances in the growth and characterization of silicon crystals heavily doped with antimony, arsenic, phosphorus and boron. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC x (p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiC x (p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiC x (p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm -2 on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a V oc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p + /p-wafer full-side-passivated rear-side scheme shown here.

  7. P-Type Silicon Strip Sensors for the Future CMS Tracker

    CERN Document Server

    The Tracker Group of the CMS Collaboration

    2016-01-01

    The upgrade to the High-Luminosity LHC (HL-LHC) is expected to increase the LHC design luminosity by an order of magnitude. This will require silicon tracking detectors with a significantly higher radiation hardness. The CMS Tracker Collaboration has conducted an irradiation and measurement campaign to identify suitable silicon sensor materials and strip designs for the future outer tracker at CMS. Based on these results, the collaboration has chosen to use n-in-p type strip and macro-pixel sensors and focus further investigations on the optimization of that sensor type. This paper describes the main measurement results and conclusions that motivated this decision.

  8. The neutron silicon lens. An update of the thermal neutron lens results

    International Nuclear Information System (INIS)

    Johnson, M.W.; Daymond, M.R.

    2001-01-01

    This paper introduces the concept of the Neutron Silicon Lens (NSL) and provides and update on the experimental results achieved to date. The NSL design is a cylindrical neutron lens based on the use of multiple neutron mirrors supported and separated by silicon wafers. Such lenses would have many applications in both the primary and scattered beams on neutron instruments, and would lead to immediate improvements where the sample to be illuminated is small, as in high pressure or engineering strain scanning instruments. (author)

  9. The neutron silicon lens. An update of the thermal neutron lens results

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.W.; Daymond, M.R. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom)

    2001-03-01

    This paper introduces the concept of the Neutron Silicon Lens (NSL) and provides and update on the experimental results achieved to date. The NSL design is a cylindrical neutron lens based on the use of multiple neutron mirrors supported and separated by silicon wafers. Such lenses would have many applications in both the primary and scattered beams on neutron instruments, and would lead to immediate improvements where the sample to be illuminated is small, as in high pressure or engineering strain scanning instruments. (author)

  10. Optical gain at 1.53 {mu}m in Er{sup 3+}-Yb{sup 3+} co-doped porous silicon waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Najar, A. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France); Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 El Manar, Tunis (Tunisia)], E-mail: najar.adel@laposte.net; Charrier, J. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France); Ajlani, H. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 El Manar, Tunis (Tunisia); Lorrain, N.; Haesaert, S. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France); Oueslati, M. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 El Manar, Tunis (Tunisia); Haji, L. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France)

    2008-01-15

    Erbium-ytterbium (Er-Yb)-co-doped porous silicon planar waveguides were prepared from P{sup +}-type (1 0 0) oriented silicon wafer. Erbium and ytterbium ions were electrochemically introduced into the porous structure of the waveguide core. The doping profiles of erbium and ytterbium ions were determined by EDX analysis performed on sample cross-section. The mean concentration in the guiding layer is of about 1 x 10{sup 20} cm{sup -3}. The refractive indices were measured from co-doped porous silicon and undoped waveguides after the thermal treatments. The photoluminescence (PL) peak of optically activated erbium ions at 1.53 {mu}m was recorded. The PL enhancement is the result of the energy transfer from the excited state of Yb to the state of Er. Optical losses at 1.55 {mu}m were measured on these waveguides and were of about 2 dB/cm. An internal gain at 1.53 {mu}m of 5.8 dB/cm has been measured with a pump power of 65 mW at 980 nm.

  11. Porous silicon used as an oxide diffusion mask to produce a periodic micro doped n{sup ++}/n regions

    Energy Technology Data Exchange (ETDEWEB)

    Dimassi, Wissem; Jafel, Hayet; Lajnef, Mohamed; Ali Kanzari, M.; Bouaicha, Mongi; Bessais, Brahim; Ezzaouia, Hatem [Laboratoire de Photovoltaique, Centre de Recherche et des Technologies de l' Energie, PB: 95, Hammam Lif 2050 (Tunisia)

    2011-06-15

    The realization of screen-printed contacts on silicon solar cells requires highly doped regions under the fingers and lowly doped and thin ones between them. In this work, we present a low-cost approach to fabricate selective emitter (n{sup ++}/n doped silicon regions), using oxidized porous silicon (ox-PS) as a mask. Micro-periodic fingers were opened on the porous silicon layer using a micro groove machining process. Optimized phosphorous diffusion through the micro grooved ox-PS let us obtain n{sup ++} doped regions in opened zones and n doped large regions underneath the ox-PS layer. The dark I-V characteristics of the obtained device and Fourier transform infrared (FTIR) spectroscopy investigations of the PS layer show the possibility to use PS as a dielectric layer. The Light Beam Induced Current (LBIC) mapping of the realized device, confirm the presence of a micro periodic n{sup ++}/n type structure. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Second International Conference on Neutron Transmutation Doping in Semiconductors

    CERN Document Server

    Neutron Transmutation Doping in Semiconductors

    1979-01-01

    This volume contains the invited and contributed papers presented at the Second International Conference on Neutron Transmutation Doping in Semiconductors held April 23-26, 1978 at the University of Missouri-Columbia. The first "testing of the waters" symposium on this subject was organized by John Cleland and Dick Wood of the Solid-State Division of Oak Ridge National Laboratory in April of 1976, just one year after NTD-silicon appeared on the marketplace. Since this first meeting, NTD-silicon has become established as the starting material for the power device industry and reactor irradiations are now measured in tens of tons of material per annum making NTD processing the largest radiation effects technology in the semiconductor industry. Since the first conference at Oak Ridge, new applications and irradiation techniques have developed. Interest in a second con­ ference and in publishing the proceedings has been extremely high. The second conference at the University of Missouri was attended by 114 perso...

  13. Effect of sulphur-doping on the formation of deep centers in n-type InP under irradiation

    International Nuclear Information System (INIS)

    Kol'chenko, T.I.; Lomako, V.M.; Moroz, S.E.

    1988-01-01

    Effect of sulfur-doping on the efficiency of electron trap formation in InP under irradiation was studied using deep level capacity nonstationary spectroscopy method (DLCNS). Structures with Schottky barrier based on epitaxial InP films with ∼10μm thickness (n 0 =8x10 14 -6x10 17 cm -3 ) were irradiated with 60 Co γ-quanta at 40 deg C; the particle flux intensity made up ∼10 12 cm -2 xs -1 . Experimental results presented allow one to conclude that InP doping with sulfur up to n 0 =6x10 17 cm -3 in contrast to the case of silicon doping does not produce a notable effect on the electron trap formation efficiency under irradiation. The observed reduction of configuration-bistable M-center introduction rate in samples with n 0 >10 16 cm -3 is explained by the change of filling of E c -0.12 eV level belonging to unknown X defect

  14. Development of Doped Microcrystalline Silicon Oxide and its Application to Thin‑Film Silicon Solar Cells

    NARCIS (Netherlands)

    Lambertz, A.

    2015-01-01

    The aim of the present study is the development of doped microcrystalline silicon oxide (µc‑SiOx:H) alloys and its application in thin‑film silicon solar cells. The doped µc‑SiOx:H material was prepared from carbon dioxide (CO2), silane (SiH4), hydrogen (H2) gas mixtures using plasma enhanced

  15. Neutron transmutation doped Ge bolometers

    Science.gov (United States)

    Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.

    1983-01-01

    Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.

  16. The intrinsic gettering in neutron irradiation Czochralski-silicon

    CERN Document Server

    Li Yang Xian; Niu Ping Juan; Liu Cai Chi; Xu Yue Sheng; Yang Deren; Que Duan Lin

    2002-01-01

    The intrinsic gettering in neutron irradiated Czochralski-silicon is studied. The result shows that a denuded zone at the surface of the neutron irradiated Czochralski-silicon wafer may be formed through one-step short-time annealing. The width of the denuded zone is dependent on the annealing temperature and the dose of neutron irradiation, while it is irrelated to the annealing time in case the denuded zone is formed. The authors conclude that the interaction between the defects induced by neutron irradiation and the oxygen in the silicon accelerates the oxygen precipitation in the bulk, and becomes the dominating factor of the quick formation of intrinsic gettering. It makes the effect of thermal history as the secondary factor

  17. Novel method of separating macroporous arrays from p-type silicon substrate

    International Nuclear Information System (INIS)

    Peng Bobo; Wang Fei; Liu Tao; Yang Zhenya; Wang Lianwei; Fu, Ricky K. Y.; Chu, Paul K.

    2012-01-01

    This paper presents a novel method to fabricate separated macroporous silicon using a single step of photo-assisted electrochemical etching. The method is applied to fabricate silicon microchannel plates in 100 mm p-type silicon wafers, which can be used as electron multipliers and three-dimensional Li-ion microbatteries. Increasing the backside illumination intensity and decreasing the bias simultaneously can generate additional holes during the electrochemical etching which will create lateral etching at the pore tips. In this way the silicon microchannel can be separated from the substrate when the desired depth is reached, then it can be cut into the desired shape by using a laser cutting machine. Also, the mechanism of lateral etching is proposed. (semiconductor materials)

  18. Trench process and structure for backside contact solar cells with polysilicon doped regions

    Science.gov (United States)

    De Ceuster, Denis; Cousins, Peter John; Smith, David D.

    2010-12-14

    A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.

  19. Spin relaxation through lateral spin transport in heavily doped n -type silicon

    Science.gov (United States)

    Ishikawa, M.; Oka, T.; Fujita, Y.; Sugiyama, H.; Saito, Y.; Hamaya, K.

    2017-03-01

    We experimentally study temperature-dependent spin relaxation including lateral spin diffusion in heavily doped n -type silicon (n+-Si ) layers by measuring nonlocal magnetoresistance in small-sized CoFe/MgO/Si lateral spin-valve (LSV) devices. Even at room temperature, we observe large spin signals, 50-fold the magnitude of those in previous works on n+-Si . By measuring spin signals in LSVs with various center-to-center distances between contacts, we reliably evaluate the temperature-dependent spin diffusion length (λSi) and spin lifetime (τSi). We find that the temperature dependence of τSi is affected by that of the diffusion constant in the n+-Si layers, meaning that it is important to understand the temperature dependence of the channel mobility. A possible origin of the temperature dependence of τSi is discussed in terms of the recent theories by Dery and co-workers.

  20. Reactor neutron activation analysis for aluminium in the presence of phosphorus and silicon. Contributions of /sup 28/Al activities from /sup 31/P (n,. cap alpha. ) /sup 28/Al and /sup 28/Si (n,p) /sup 28/Al reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Yoshihiko (Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology); Iwata, Shiro; Sasajima, Kazuhisa; Yoshimasu, Fumio; Yase, Yoshiro

    1984-01-01

    Reactor neutron activation analysis for aluminium in samples containing phosphorus and silicon was studied. The experiments were performed by using pneumatic tube of the Kyoto University Reactor (KUR). At first, the ratios of the /sup 28/Al activity produced from /sup 27/Al(n, ..gamma..) /sup 28/Al reaction by thermal neutrons to that from /sup 31/P(n, ..cap alpha..)/sup 28/Al reaction by fast neutrons, and to that from /sup 28/Si(n, p)/sup 28/Al reaction were measured by ..gamma..-ray spectrometry. With a ratio of about 5 for the thermal to fast neutron flux of KUR, the ratio of the /sup 28/Al activity from aluminium to that from phosphorus was to be 812 +- 7, and to that from silicon 282 +- 3. Secondly, the contributions of /sup 28/Al activities from phosphorus and silicon and the determination limit of aluminium were calculated for various parameters, such as fast neutron flux, thermal to fast neutron flux ratio, amounts of phosphorus and silicon, etc. Thirdly, on the basis of these results, aluminium contents in spinal cords and brains of amyotrophic lateral sclerosis, Parkinsonism-dementia complex and control cases were determined.

  1. Flexural strength of proof-tested and neutron-irradiated silicon carbide

    Science.gov (United States)

    Price, R. J.; Hopkins, G. R.

    1982-08-01

    Proof testing before service is a valuable method for ensuring the reliability of ceramic structures. Silicon carbide has been proposed as a very low activation first-wall and blanket structural material for fusion devices, where it would experience a high flux of fast neutrons. Strips of three types of silicon carbide were loaded in four-point bending to a stress sufficient to break about a third of the specimens. Groups of 16 survivors were irradiated to 2 × 10 26n/ m2 ( E>0.05 MeV) at 740°C and bend tested to failure. The strength distribution of chemically vapor-deposited silicon carbide (Texas Instruments) was virtually unchanged by irradiation. The mean strength of sintered silicon carbide (Carborundum Alpha) was reduced 34% by irradiation, while the Weibull modulus and the truncated strength distribution characteristic of proof-tested material were retained. Irradiation reduced the mean strength of reaction-bonded silicon carbide (Norton NC-430) by 58%, and the spread in strength values was increased. We conclude that for the chemically vapor-deposited and the sintered silicon carbide the benefits of proof testing to eliminate low strength material are retained after high neutron exposures.

  2. The feasibility of tunable p-type Mg doping in a GaN monolayer nanosheet

    International Nuclear Information System (INIS)

    Xia, Congxin; Peng, Yuting; Wei, Shuyi; Jia, Yu

    2013-01-01

    Based on density functional theory, the electronic structures, formation energy and transition energy level of a p-type Mg-doped GaN nanosheet are investigated. Numerical results show that the transition energy level decreases monotonously with increasing Mg doping concentration in Mg-doped GaN nanosheet systems, which is lower than that of the Mg-doped bulk GaN case. Moreover, the formation energy calculations indicate that Mg-doped GaN nanosheet structures can be realized under N-rich experimental growth conditions

  3. Overcoming doping limits in MOVPE grown n-doped InP for plasmonic applications

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Xiao, Sanshui; Lavrinenko, Andrei

    2015-01-01

    Effect of the growth parameters on carrier concentration in MOVPE grown silicon-doped InP is studied. The dopant flow, V/III ratio and substrate temperature are optimized by considering the origin of the doping limits. In addition, two different group V precursors, namely PH3 and TBP, are compare......×1019cm-3 is achieved. Optical properties of the samples are investigated by Fourier transform infrared reflection (FTIR) spectroscopy and are fitted by a Drude-Lorentz function....

  4. X- and gamma-ray N+PP+ silicon detectors with high radiation resistance

    International Nuclear Information System (INIS)

    Petris, M.; Ruscu, R.; Moraru, R.; Cimpoca, V.

    1998-01-01

    We have investigated the use of p-type silicon detectors as starting material for X-and gamma-ray detectors because of several potential benefits it would bring: 1. high purity p-type silicon grown by the float-zone process exhibits better radial dopant uniformity than n-type float-zone silicon; 2. it is free of radiation damage due to the neutron transmutation doping process and behaves better in a radiation field because mainly acceptor like centers are created through the exposure and the bulk material type inversion does not occur as in the n-type silicon. But the p-type silicon, in combination with a passivating layer of silicon dioxide, leads to a more complex detector layout since the positive charge in the oxide causes an inversion in the surface layer under the silicon dioxide. Consequently, it would be expected that N + P diodes have a higher leakage current than P + N ones. All these facts have been demonstrated experimentally. These features set stringent requirements for the technology of p-type silicon detectors. Our work presents two new geometries and an improved technology for p-type high resistivity material to obtain low noise radiation detectors. Test structures were characterized before and after the gamma exposure with a cumulative dose in the range 10 4 - 5 x 10 6 rad ( 60 Co). Results indicate that proposed structures and their technology enable the development of reliable N + PP + silicon detectors. For some samples (0.8 - 12 mm 2 ), extremely low reverse currents were obtained and, in combination with a low noise charge preamplifier, the splitting of 241 Am X-ray lines was possible and also the Mn Kα line (5.9 keV) was extracted from the noise with a 1.9 keV FWHM at the room temperature. An experimental model of a nuclear probe based on these diodes was designed for X-ray detection applications. (authors)

  5. Surface Plasmons on Highly Doped InP

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Ottaviano, Luisa; Semenova, Elizaveta

    2016-01-01

    Silicon doped InP is grown by metal-organic vapor phase epitaxy (MOVPE) using optimized growth parameters to achieve high free carrier concentration. Reflectance of the grown sample in mid-IR range is measured using FTIR and the result is used to retrieve the parameters of the dielectric function...

  6. Valence band states in Si-based p-type delta-doped field effect transistors

    International Nuclear Information System (INIS)

    Martinez-Orozco, J C; Vlaev, Stoyan J

    2009-01-01

    We present tight-binding calculations of the hole level structure of δ-doped Field Effect Transistor in a Si matrix within the first neighbors sp 3 s* semi-empirical tight-binding model including spin. We employ analytical expressions for Schottky barrier potential and the p-type δ-doped well based on a Thomas-Fermi approximation, we consider these potentials as external ones, so in the computations they are added to the diagonal terms of the tight-binding Hamiltonian, by this way we have the possibility to study the energy levels behavior as we vary the backbone parameters in the system: the two-dimensional impurity density (p 2d ) of the p-type δ-doped well and the contact voltage (V c ). The aim of this calculation is to demonstrate that the tight-binding approximation is suitable for device characterization that permits us to propose optimal values for the input parameters involved in the device design.

  7. Valence band states in Si-based p-type delta-doped field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Orozco, J C; Vlaev, Stoyan J, E-mail: jcmover@correo.unam.m [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060, Zacatecas, Zac. (Mexico)

    2009-05-01

    We present tight-binding calculations of the hole level structure of delta-doped Field Effect Transistor in a Si matrix within the first neighbors sp{sup 3}s* semi-empirical tight-binding model including spin. We employ analytical expressions for Schottky barrier potential and the p-type delta-doped well based on a Thomas-Fermi approximation, we consider these potentials as external ones, so in the computations they are added to the diagonal terms of the tight-binding Hamiltonian, by this way we have the possibility to study the energy levels behavior as we vary the backbone parameters in the system: the two-dimensional impurity density (p{sub 2d}) of the p-type delta-doped well and the contact voltage (V{sub c}). The aim of this calculation is to demonstrate that the tight-binding approximation is suitable for device characterization that permits us to propose optimal values for the input parameters involved in the device design.

  8. Electronic structure and p-type doping of ZnSnN2

    Science.gov (United States)

    Wang, Tianshi; Janotti, Anderson; Ni, Chaoying

    ZnSnN2 is a promising solar-cell absorber material composed of earth abundant elements. Little is known about doping, defects, and how the valence and conduction bands in this material align with the bands in other semiconductors. Using density functional theory with the the Heyd-Scuseria-Ernzerhof hybrid functional (HSE06), we investigate the electronic structure of ZnSnN2, its band alignment to other semiconductors, such as GaN and ZnO, the possibility of p-type doping, and the possible causes of the observed unintentional n-type conductivity. We find that the position of the valence-band maximum of ZnSnN2 is 0.55 eV higher than that of GaN, yet the conduction-band minimum is close to that in ZnO. As possible p-type dopants, we explore Li, Na, and K substituting on the Zn site. Finally, we discuss the cause of unintentional n-type conductivity by analyzing the position of the conduction-band minimum with respect to that of GaN and ZnO.

  9. Phosphorus {delta}-doped silicon: mixed-atom pseudopotentials and dopant disorder effects

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Damien J; Marks, Nigel A [Nanochemistry Research Institute, Curtin University, PO Box U1987, Perth WA 6845 (Australia); Warschkow, Oliver; McKenzie, David R, E-mail: d.carter@curtin.edu.au [Centre for Quantum Computer Technology, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2011-02-11

    Within a full density functional theory framework we calculate the band structure and doping potential for phosphorus {delta}-doped silicon. We compare two different representations of the dopant plane; pseudo-atoms in which the nuclear charge is fractional between silicon and phosphorus, and explicit arrangements employing distinct silicon and phosphorus atoms. While the pseudo-atom approach offers several computational advantages, the explicit model calculations differ in a number of key points, including the valley splitting, the Fermi level and the width of the doping potential. These findings have implications for parameters used in device modelling.

  10. Phosphorus-doped Amorphous Silicon Nitride Films Applied to Crystalline Silicon Solar Cells

    NARCIS (Netherlands)

    Feinäugle, Matthias

    2008-01-01

    The Photovoltaics Group at the Universitat Politècnica de Catalunya is investigating silicon carbide (SiC) for the electronic passivation of the surface of crystalline silicon solar cells. The doping of SiC passivation layers with phosphorus resulted in a clear improvement of the minority carrier

  11. Tunable Bandgap Opening in the Proposed Structure of Silicon Doped Graphene

    OpenAIRE

    Azadeh, Mohammad S. Sharif; Kokabi, Alireza; Hosseini, Mehdi; Fardmanesh, Mehdi

    2011-01-01

    A specific structure of doped graphene with substituted silicon impurity is introduced and ab. initio density-functional approach is applied for energy band structure calculation of proposed structure. Using the band structure calculation for different silicon sites in the host graphene, the effect of silicon concentration and unit cell geometry on the bandgap of the proposed structure is also investigated. Chemically silicon doped graphene results in an energy gap as large as 2eV according t...

  12. Systematic investigation of background sources in neutron flux measurements with a proton-recoil silicon detector

    Energy Technology Data Exchange (ETDEWEB)

    Marini, P., E-mail: marini@cenbg.in2p3.fr [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France); Mathieu, L. [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France); Acosta, L. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México D.F. 01000 (Mexico); Aïche, M.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I. [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France)

    2017-01-01

    Proton-recoil detectors (PRDs), based on the well known standard H(n,p) elastic scattering cross section, are the preferred instruments to perform precise quasi-absolute neutron flux measurements above 1 MeV. The limitations of using a single silicon detector as PRD at a continuous neutron beam facility are investigated, with the aim of extending such measurements to neutron energies below 1 MeV. This requires a systematic investigation of the background sources affecting the neutron flux measurement. Experiments have been carried out at the AIFIRA facility to identify these sources. A study on the role of the silicon detector thickness on the background is presented and an energy limit on the use of a single silicon detector to achieve a neutron flux precision better than 1% is given.

  13. Radiation hardness test of un-doped CsI crystals and Silicon Photomultipliers for the Mu2e calorimeter

    Science.gov (United States)

    Baccaro, S.; Cemmi, A.; Cordelli, M.; Diociaiuti, E.; Donghia, R.; Giovannella, S.; Loreti, S.; Miscetti, S.; Pillon, M.; Sarra, I.

    2017-11-01

    The Mu2e calorimeter is composed by 1400 un-doped CsI crystals coupled to large area UV extended Silicon Photomultipliers arranged in two annular disks. This calorimeter has to provide precise information on energy, timing and position. It should also be fast enough to handle the high rate background and it must operate and survive in a high radiation environment. Simulation studies estimated that, in the hottest regions, each crystal will absorb a dose of 300 Gy and will be exposed to a neutron fluency of 6 × 1011 n/cm2 in 3 years of running. Test of un-doped CsI crystals irradiated up to 900 Gy and to a neutron fluency up to 9 × 1011 n/cm2 have been performed at CALLIOPE and FNG ENEA facilities in Italy. We present our study on the variation of light yield (LY) and longitudinal response uniformity (LRU) of these crystals after irradiation. The ionization dose does not modify LRU while a 20% reduction in LY is observed at 900 Gy. Similarly, the neutron flux causes an acceptable LY deterioration (≤ 15%). A neutron irradiation test on different types of SIPMs (two different array models from Hamamatsu and one from FBK) have also been carried out by measuring the variation of the leakage current and the charge response to an ultraviolet led. We concluded that, in the experiment, we will need to cool down the SIPMs to 0 °C reduce the leakage current to an acceptable level.

  14. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Kito, Masahiro; Hiramatsu, Kazumasa

    1989-01-01

    Distinct p-type conduction is realized with Mg-doped GaN by the low-energy electron-beam irradiation (LEEBI) treatment, and the properties of the GaN p-n junction LED are reported for the first time. It was found that the LEEBI treatment drastically lowers the resistivity and remarkably enhances the PL efficiency of MOVPE-grown Mg-doped GaN. The Hall effect measurement of this Mg-doped GaN treated with LEEBI at room temperature showed that the hole concentration is ∼2·10 16 cm -3 , the hole mobility is ∼8 cm 2 /V·s and the resistivity is ∼35Ω· cm. The p-n junction LED using Mg-doped GaN treated with LEEBI as the p-type material showed strong near-band-edge emission due to the hole injection from the p-layer to the n-layer at room temperature. (author)

  15. Studies of annealing of neutron-produced defects in silicon by transconductance measurements of junction field-effect transistors

    International Nuclear Information System (INIS)

    Tokuda, Y.; Usami, A.

    1978-01-01

    Annealing behavior of neutron-produced defects in silicon was studied by measuring the phase angle theta of the small-signal transconductance of the junction field-effect transistors (JFET's). Three deep levels (N-1, N-2, and N-3 levels) in n-type silicon and two deep levels (P-1 and P-2 levels) in p-type silicon, introduced by irradiation, annealed gradually. Their energy levels and capture cross sections have been already reported by us. Three deep levels (P-3, P-4, and P-5 levels) were observed in annealed p-type silicon in the temperature range 150--300 0 C. For these defects, theta was measured as a function of frequency to obtain the time constant. From the temperature dependence of the time constant, assuming that capture cross sections are independent of temperature, the energy levels of P-3, P-4, and P-5 were estimated to be E/sub v/+0.21, E/sub v/+0.40, and E/sub v/+0.30 eV, respectively. The calculated hole capture cross sections of these levels were 2.2 x 10 -15 , 8.7 x 10 -14 , and 1.2 x 10 -14 cm 2 , respectively. Comparison with other published data was made. It was found that N-3 and P-2 levels corresponded to the divacancy. Furthermore, it seemed that P-3, P-4, and P-5 levels corresponded to the high-order vacancy defects

  16. Annealing effects on resistivity and Hall coefficient of neutron irradiated silicon

    International Nuclear Information System (INIS)

    Biggeri, U.

    1995-01-01

    High Temperature Annealing (HTA) treatment has been carried out on fast-neutron irradiated silicon samples with temperatures up to 300 C. Fluences of irradiation up to 1x10 14 n/cm 2 were used. Before annealing, samples irradiated with fluences higher than 1x10 13 n/cm 2 suffered the type conductivity inversion from n-type to p-type. The changes in the resisitivity and Hall coefficient during each annealing step have been measured by Hall effect analysis. Results indicate the possible creation of acceptors for low temperature annealing up to 150 C and the phosphorous release by E centres at annealing temperatures among 150 C and 200 C. Heating samples up to 300 C allows the recovering of the sample resistivity to its value before irradiation, with the peculiarity that bulks inverted to p-type after irradiation does not come back to n-type after annealing. (orig.)

  17. Drastic reduction in the surface recombination velocity of crystalline silicon passivated with catalytic chemical vapor deposited SiNx films by introducing phosphorous catalytic-doped layer

    International Nuclear Information System (INIS)

    Thi, Trinh Cham; Koyama, Koichi; Ohdaira, Keisuke; Matsumura, Hideki

    2014-01-01

    We improve the passivation property of n-type crystalline silicon (c-Si) surface passivated with a catalytic chemical vapor deposited (Cat-CVD) Si nitride (SiN x ) film by inserting a phosphorous (P)-doped layer formed by exposing c-Si surface to P radicals generated by the catalytic cracking of PH 3 molecules (Cat-doping). An extremely low surface recombination velocity (SRV) of 2 cm/s can be achieved for 2.5 Ω cm n-type (100) floating-zone Si wafers passivated with SiN x /P Cat-doped layers, both prepared in Cat-CVD systems. Compared with the case of only SiN x passivated layers, SRV decreases from 5 cm/s to 2 cm/s. The decrease in SRV is the result of field effect created by activated P atoms (donors) in a shallow P Cat-doped layer. Annealing process plays an important role in improving the passivation quality of SiN x films. The outstanding results obtained imply that SiN x /P Cat-doped layers can be used as promising passivation layers in high-efficiency n-type c-Si solar cells.

  18. Fabrication and Doping Methods for Silicon Nano- and Micropillar Arrays for Solar-Cell Applications: A Review.

    Science.gov (United States)

    Elbersen, Rick; Vijselaar, Wouter; Tiggelaar, Roald M; Gardeniers, Han; Huskens, Jurriaan

    2015-11-18

    Silicon is one of the main components of commercial solar cells and is used in many other solar-light-harvesting devices. The overall efficiency of these devices can be increased by the use of structured surfaces that contain nanometer- to micrometer-sized pillars with radial p/n junctions. High densities of such structures greatly enhance the light-absorbing properties of the device, whereas the 3D p/n junction geometry shortens the diffusion length of minority carriers and diminishes recombination. Due to the vast silicon nano- and microfabrication toolbox that exists nowadays, many versatile methods for the preparation of such highly structured samples are available. Furthermore, the formation of p/n junctions on structured surfaces is possible by a variety of doping techniques, in large part transferred from microelectronic circuit technology. The right choice of doping method, to achieve good control of junction depth and doping level, can contribute to an improvement of the overall efficiency that can be obtained in devices for energy applications. A review of the state-of-the-art of the fabrication and doping of silicon micro and nanopillars is presented here, as well as of the analysis of the properties and geometry of thus-formed 3D-structured p/n junctions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structures of Pt clusters on graphene doped with nitrogen, boron, and silicon: a theoretical study

    Institute of Scientific and Technical Information of China (English)

    Dai Xian-Qi; Tang Ya-Nan; Dai Ya-Wei; Li Yan-Hui; Zhao Jian-Hua; Zhao Bao; Yang Zong-Xian

    2011-01-01

    The structures of Pt clusters on nitrogen-, boron-, silicon- doped graphenes are theoretically studied using densityfunctional theory. These dopants (nitrogen, boron and silicon) each do not induce a local curvature in the graphene and the doped graphenes all retain their planar form. The formation energy of the silicon-graphene system is lower than those of the nitrogen-, boron-doped graphenes, indicating that the silicon atom is easier to incorporate into the graphene.All the substitutional impurities enhance the interaction between the Pt atom and the graphene. The adsorption energy of a Pt adsorbed on the silicon-doped graphene is much higher than those on the nitrogen- and boron-doped graphenes.The doped silicon atom can provide more charges to enhance the Pt-graphene interaction and the formation of Pt clusters each with a large size. The stable structures of Pt clusters on the doped-graphenes are dimeric, triangle and tetrahedron with the increase of the Pt coverage. Of all the studied structures, the tetrahedron is the most stable cluster which has the least influence on the planar surface of doped-graphene.

  20. Fast neutron dosimeter with wide base silicon diode

    International Nuclear Information System (INIS)

    Ma Lu

    1986-01-01

    This paper briefly introduces a wide base silicon diode fast neutron dosimeter with wide measuring range and good energy response to fast neutron. It is suitable to be used to detect fast neutrons in the mixed field of γ-ray, thermal neutrons and fast neutrons

  1. Synthesis and characterization of p-type boron-doped IIb diamond large single crystals

    International Nuclear Information System (INIS)

    Li Shang-Sheng; Li Xiao-Lei; Su Tai-Chao; Jia Xiao-Peng; Ma Hong-An; Huang Guo-Feng; Li Yong

    2011-01-01

    High-quality p-type boron-doped IIb diamond large single crystals are successfully synthesized by the temperature gradient method in a china-type cubic anvil high-pressure apparatus at about 5.5 GPa and 1600 K. The morphologies and surface textures of the synthetic diamond crystals with different boron additive quantities are characterized by using an optical microscope and a scanning electron microscope respectively. The impurities of nitrogen and boron in diamonds are detected by micro Fourier transform infrared technique. The electrical properties including resistivities, Hall coefficients, Hall mobilities and carrier densities of the synthesized samples are measured by a four-point probe and the Hall effect method. The results show that large p-type boron-doped diamond single crystals with few nitrogen impurities have been synthesized. With the increase of quantity of additive boron, some high-index crystal faces such as {113} gradually disappear, and some stripes and triangle pits occur on the crystal surface. This work is helpful for the further research and application of boron-doped semiconductor diamond. (cross-disciplinary physics and related areas of science and technology)

  2. Sensitive optical bio-sensing of p-type WSe2 hybridized with fluorescent dye attached DNA by doping and de-doping effects

    Science.gov (United States)

    Han, Kyu Hyun; Kim, Jun Young; Jo, Seong Gi; Seo, Changwon; Kim, Jeongyong; Joo, Jinsoo

    2017-10-01

    Layered transition metal dichalcogenides, such as MoS2, WSe2 and WS2, are exciting two-dimensional (2D) materials because they possess tunable optical and electrical properties that depend on the number of layers. In this study, the nanoscale photoluminescence (PL) characteristics of the p-type WSe2 monolayer, and WSe2 layers hybridized with the fluorescent dye Cy3 attached to probe-DNA (Cy3/p-DNA), have been investigated as a function of the concentration of Cy3/DNA by using high-resolution laser confocal microscopy. With increasing concentration of Cy3/p-DNA, the measured PL intensity decreases and its peak is red-shifted, suggesting that the WSe2 layer has been p-type doped with Cy3/p-DNA. Then, the PL intensity of the WSe2/Cy3/p-DNA hybrid system increases and the peak is blue-shifted through hybridization with relatively small amounts of target-DNA (t-DNA) (50-100 nM). This effect originates from charge and energy transfer from the Cy3/DNA to the WSe2. For t-DNA detection, our systems using p-type WSe2 have the merit in terms of the increase of PL intensity. The p-type WSe2 monolayers can be a promising nanoscale 2D material for sensitive optical bio-sensing based on the doping and de-doping responses to biomaterials.

  3. Influence of pretreatment temperature cycling on the radiating defect formation in silicon doped by samarium

    International Nuclear Information System (INIS)

    Abdurakhmanov, K.P.; Nazyrov, D.E.

    2006-01-01

    Full text: The raise of thermal and radiation stability as it is known, is one of actual problems of physics semiconductors. Recently it is established, that the rare-earth elements (REE) raise a stability of silicon to exterior action. In this connection the investigation of silicon doped REE by samarium and influence on its properties of heat treatments and radiation exposure is important. In sectional operation the outcomes of investigations of influence of samarium on thermal (600 degree C are reduced; 600 deg. + 900 deg. C; 900 deg. C; 900 deg. C + 600 deg. C; 1100 deg. C; 600 deg. C + 900 deg. C + 1100 deg. C; 900 deg. C + 600 deg. C + 1100 deg. C) thermal defect formation and radiation defect formation (exposure of γ-quanta 60 Co) both in beforehand wrought, and in thermally unfinished samples. After each cycle of heat treatments samples cool fast (throwing off in oil) or slowly (together with the furnace). Doping n-silicon REE by gadolinium and samarium was carried out during cultivation. The concentration of gadolinium and samarium in silicon, on sectional of a neutron-activation analysis was equaled 10 14 - 10 18 cm -3 . As control is model monocrystal silicon such as KEP-15/50. Para-meters of deep levels originating in control and doped REE samples, both past heat treatment or temperature cycling, and irradiated by the γ-quanta are defined by methods of a capacity spectroscopy: DLTS and IRC. The obtained outcomes have shown, that in irradiated with the γ-quanta 60 Co deep levels samples are formed with energies: E C -0,17 eV, E C -0,32 eV, EC-0,41 eV. Thus the parameters of deep levels vary depending on requirements of prestress heat treatment. For example heat treatment at 600 deg. C essentially increments a velocity of introduction of and centre (deep level of E C -0,17 eV), in comparison with a velocity of introduction of this level in samples with prestress heat treatment at 900 deg. C. In samples n-Si doped by samarium effectiveness of formation

  4. Doping profile measurement on textured silicon surface

    Science.gov (United States)

    Essa, Zahi; Taleb, Nadjib; Sermage, Bernard; Broussillou, Cédric; Bazer-Bachi, Barbara; Quillec, Maurice

    2018-04-01

    In crystalline silicon solar cells, the front surface is textured in order to lower the reflection of the incident light and increase the efficiency of the cell. This texturing whose dimensions are a few micrometers wide and high, often makes it difficult to determine the doping profile measurement. We have measured by secondary ion mass spectrometry (SIMS) and electrochemical capacitance voltage profiling the doping profile of implanted phosphorus in alkaline textured and in polished monocrystalline silicon wafers. The paper shows that SIMS gives accurate results provided the primary ion impact angle is small enough. Moreover, the comparison between these two techniques gives an estimation of the concentration of electrically inactive phosphorus atoms.

  5. Characteristic of doping and diffusion of heavily doped n and p type InP and InGaAs epitaxial layers grown by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Pinzone, C.J.; Dupuis, R.D.; Ha, N.T.; Luftman, H.S.; Gerrard, N.D.

    1990-01-01

    Electronic and photonic device applications of the InGaAs/InP materials system often require the growth of epitaxial material doped to or near the solubility limit of the impurity in the host material. These requirements present an extreme challenge for the crystal grower. To produce devices with abrupt dopant profiles, preserve the junction during subsequent growth, and retain a high degree of crystalline perfection, it is necessary to understand the limits of dopant incorporation and the behavior of the impurity in the material. In this study, N-type doping above 10 19 cm -3 has been achieved in InP and InGaAs using Sn as a dopant. P-type Zn doping at these levels has also been achieved in these materials but p type activation above ∼3 x 10 18 cm -3 in InP has not been seen. All materials were grown by the metalorganic chemical vapor deposition (MOCVD) crystal growth technique. Effective diffusion coefficients have been measured for Zn and Sn in both materials from analysis of secondary ion mass spectra (SIMS) of specially grown and annealed samples

  6. Fast neutron-induced changes in net impurity concentration of high-resistivity silicon

    International Nuclear Information System (INIS)

    Tsveybak, I.; Bugg, W.; Harvey, J.A.; Walter, J.

    1992-01-01

    Resistivity changes produced by 1 MeV neutron irradiation at room temperature have been measured in float-zone grown n and p-type silicon with initial resistivities ranging from 1.8 to 100 kΩcm. Observed changes are discussed in terms of net electrically active impurity concentration. A model is presented which postulates escape of Si self-interstitials and vacancies from damage clusters and their subsequent interaction with impurities and other pre-existing defects in the lattice. These interactions lead to transfer of B and P from electrically active substitutional configurations into electrically inactive positions (B i , Pi i , and E-center), resulting in changes of net electrically active impurity concentration. The changes in spatial distribution of resistivity are discussed, and the experimental data are fit by theoretical curves. Differences in the behavior of n-type and p-type material are explained on the basis of a faster removal of substitutional P and a more nonuniform spatial distribution of the original P concentration

  7. The kinetics of solid phase epitaxy in As-doped buried amorphous silicon layers

    International Nuclear Information System (INIS)

    McCallum, J.C.

    1999-01-01

    Ion implantation is the principal method used to introduce dopants into silicon for fabrication of semiconductor devices. During ion implantation, damage accumulates in the crystalline silicon lattice and amorphisation may occur over the depth range of the ions if the implant dose is sufficiently high. As device dimensions shrink, the need to produce shallower and shallower highly-doped layers increases and the probability of amorphisation also increases. To achieve dopant-activation, the amorphous or damaged material must be returned to the crystalline state by thermal annealing. Amorphous silicon layers can be crystallised by the solid-state process of solid phase epitaxy (SPE) in which the amorphous layer transforms to crystalline silicon (c-Si) layer by layer using the underlying c-Si as a seed. The atomic mechanism that is responsible for the crystallisation is thought to involve highly-localised bond-breaking and rearrangement processes at the amorphous/crystalline (a/c) interface but the defect responsible for these bond rearrangements has not yet been identified. Since the bond breaking process necessarily generates dangling bonds, it has been suggested that the crystallisation process may solely involve the formation and migration of dangling bonds at the interface. One of the key factors which may shed further light on the nature of the SPE defect is the observed dopant-dependence of the rate of crystallisation. It has been found that moderate concentrations of dopants enhance the SPE crystallisation rate while the presence of equal concentrations of an n-type and a p-type dopant (impurity compensation) returns the SPE rate to the intrinsic value. This provides crucial evidence that the SPE mechanism is sensitive to the position of the Fermi level in the bandgap of the crystalline and/or the amorphous silicon phases and may lead to identification of an energy level within the bandgap that can be associated with the defect. This paper gives details of SPE

  8. P-stop isolation study of irradiated n-in-p type silicon strip sensors for harsh radiation environment

    CERN Document Server

    AUTHOR|(CDS)2084505

    2015-01-01

    In order to determine the most radiation hard silicon sensors for the CMS Experiment after the Phase II Upgrade in 2023 a comprehensive study of silicon sensors after a fluence of up to $1.5\\times10^{15} n_{eq}/cm^{2}$ corresponding to $3000 fb^{-1}$ after the HL-LHC era has been carried out. The results led to the decision that the future Outer Tracker (20~cm${<}R{<}$110~cm) of CMS will consist of n-in-p type sensors. This technology is more radiation hard but also the manufacturing is more challenging compared to p-in-n type sensors due to additional process steps in order to suppress the accumulation of electrons between the readout strips. One possible isolation technique of adjacent strips is the p-stop structure which is a p-type material implantation with a certain pattern for each individual strip. However, electrical breakdown and charge collection studies indicate that the process parameters of the p-stop structure have to be carefully calibrated in order to achieve a sufficient strip isolatio...

  9. Potassium-doped n-type bilayer graphene

    Science.gov (United States)

    Yamada, Takatoshi; Okigawa, Yuki; Hasegawa, Masataka

    2018-01-01

    Potassium-doped n-type bilayer graphene was obtained. Chemical vapor deposited bilayer and single layer graphene on copper (Cu) foils were used. After etching of Cu foils, graphene was dipped in potassium hydroxide aqueous solutions to dope potassium. Graphene on silicon oxide was characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopy. Both XPS and EDX spectra indicated potassium incorporation into the bilayer graphene via intercalation between the graphene sheets. The downward shift of the 2D peak position of bilayer graphene after the potassium hydroxide (KOH) treatment was confirmed in Raman spectra, indicating that the KOH-treated bilayer graphene was doped with electrons. Electrical properties were measured using Hall bar structures. The Dirac points of bilayer graphene were shifted from positive to negative by the KOH treatment, indicating that the KOH-treated bilayer graphene was n-type conduction. For single layer graphene after the KOH treatment, although electron doping was confirmed from Raman spectra, the peak of potassium in the X-ray photoelectron spectroscopy (XPS) spectrum was not detected. The Dirac points of single layer graphene with and without the KOH treatment showed positive.

  10. Electrical properties of InP irradiated by fast neutrons of a nuclear reactor

    International Nuclear Information System (INIS)

    Kolin, N.G.; Merkurisov, D.I.; Solov'ev, S.P.

    2000-01-01

    Electrophysical properties of InP single crystalline samples with different initial concentration of charge carriers have been studied in relation to irradiation conditions with fast neutrons of a nuclear reactor and subsequent heat treatments within the temperature range of 20-900 deg C. It has been shown that changes of the properties depend on the initial doping level. The annealing in the temperature range mentioned above results in the elimination of radiation defects. This makes possible to use the nuclear doping method for InP samples. In this respect the contribution of intermediate neutron reactions to the whole effect of the InP nuclear doping is estimated to be ∼ 10% [ru

  11. Chalcogen doping of silicon via intense femtosecond-laser irradiation

    International Nuclear Information System (INIS)

    Sheehy, Michael A.; Tull, Brian R.; Friend, Cynthia M.; Mazur, Eric

    2007-01-01

    We have previously shown that doping silicon with sulfur via femtosecond-laser irradiation leads to near-unity absorption of radiation from ultraviolet wavelengths to below band gap short-wave infrared wavelengths. Here, we demonstrate that doping silicon with two other group VI elements (chalcogens), selenium and tellurium, also leads to near-unity broadband absorption. A powder of the chalcogen dopant is spread on the silicon substrate and irradiated with femtosecond-laser pulses. We examine and compare the resulting morphology, optical properties, and chemical composition for each chalcogen-doped substrate before and after thermal annealing. Thermal annealing reduces the absorption of below band gap radiation by an amount that correlates with the diffusivity of the chalcogen dopant used to make the sample. We propose a mechanism for the absorption of below band gap radiation based on defects in the lattice brought about by the femtosecond-laser irradiation and the presence of a supersaturated concentration of chalcogen dopant atoms. The selenium and tellurium doped samples show particular promise for use in infrared photodetectors as they retain most of their infrared absorptance even after thermal annealing-a necessary step in many semiconductor device manufacturing processes

  12. Effect of doping on the modification of polycrystalline silicon by spontaneous reduction of diazonium salts

    Science.gov (United States)

    Girard, A.; Coulon, N.; Cardinaud, C.; Mohammed-Brahim, T.; Geneste, F.

    2014-09-01

    The chemical modification of doped polycrystalline silicon materials (N+, N++ and P++) and silicon (1 0 0) and (1 1 1) used as references is investigated by spontaneous reduction of diazonium salts. The effectiveness of the grafting process on all polySi surfaces is shown by AFM and XPS analyses. The effect of substrate doping on the efficiency of the electrografting process is compared by using the thicknesses of the deposited organic films. For a better accuracy, two methods are used to estimate the thicknesses: XPS and the coupling of a O2 plasma etching with AFM measurement. Structural characteristics of the poly-Si films were investigated by Scanning Electron Microscopy and X-ray diffraction to find a correlation between the structure of the material and its reactivity. Different parameters that could have an impact on the efficiency of the grafting procedure are discussed. The observed differences between differently doped silicon surfaces is rather limited, this is in agreement with the radical character of the reacting species.

  13. Effect of Current Density on Thermal and Optical Properties of p-Type Porous Silicon

    International Nuclear Information System (INIS)

    Kasra Behzad; Wan Mahmood Mat Yunus; Zainal Abidin Talib; Azmi Zakaria; Afarin Bahrami

    2011-01-01

    The different parameters of the porous silicon (PSi) can be tuned by changing some parameters in preparation process. We have chosen the anodization as formation method, so the related parameters should be changed. In this study the porous silicon (PSi) layers were formed on p-type Si wafer. The samples were anodized electrically in a fixed etching time under some different current densities. The structural and optical properties of porous silicon (PSi) on silicon (Si) substrates were investigated using photoluminescence (PL) and Photoacoustic Spectroscopy (PAS). (author)

  14. Other applications of neutron beams in material sciences; Autres utilisations des faisceaux de neutrons en science des materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Novion, C.H. de

    1997-12-31

    The various applications of neutron beams are reviewed. The different mechanisms involved in neutron interaction with matter are explained. We notice that generally neutron radiation effects are unfavorable but can be turned into efficient tools to add new structures or properties to materials, silicon doping is an example. The basis principles of neutron activation analysis and neutron radiography are described. (A.C.)

  15. The development of p-type silicon detectors for the high radiation regions of the LHC

    International Nuclear Information System (INIS)

    Hanlon, M.D.L.

    1998-04-01

    This thesis describes the production and characterisation of silicon microstrip detectors and test structures on p-type substrates. An account is given of the production and full parameterisation of a p-type microstrip detector, incorporating the ATLAS-A geometry in a beam test. This detector is an AC coupled device incorporating a continuous p-stop isolation frame and polysilicon biasing and is typical of n-strip devices proposed for operation at the LHC. It was successfully read out using the FELix-128 analogue pipeline chip and a signal to noise (s/n) of 17±1 is reported, along with a spatial resolution of 14.6±0.2 μm. Diode test structures were fabricated on both high resistivity float zone material and on epitaxial material and subsequently irradiated with 24 GeV protons at the CERN PS up to a dose of (8.22±0.23) x 10 14 per cm 2 . An account of the measurement program is presented along with results on the changes in the effective doping concentration (N eff ) with irradiation and the changes in bulk current. Changes in the effective doping concentration and leakage current for high resistivity p-type material under irradiation were found to be similar to to that of n-type material. Values of α=(3.30±0.08) x 10 -17 A cm -1 for the leakage current parameter and g c =(1.20±0.05)x10 -2 cm -1 for the effective dopant introduction rate were found for this material. The epitaxial material did not perform better than the float zone material for the range of doses studied. Surprising results were obtained for highly irradiated p-type diodes illuminated on the ohmic side with an α-source, in that signals were observed well below the full depletion voltage. The processing that had been used to fabricate the test structures and the initial prototype that was studied in the test beam was based on the process used to fabricate devices on n-type material. Presented in this thesis are the modifications that were made to the process, which centred on the oxidation

  16. Influence of hydrogen impurities on p-type resistivity in Mg-doped GaN films

    International Nuclear Information System (INIS)

    Yang, Jing; Zhao, Degang; Jiang, Desheng; Chen, Ping; Zhu, Jianjun; Liu, Zongshun; Le, Lingcong; He, Xiaoguang; Li, Xiaojing; Zhang, Y. T.; Du, G. T.

    2015-01-01

    The effects of hydrogen impurities on p-type resistivity in Mg-doped GaN films were investigated. It was found that hydrogen impurities may have the dual role of passivating Mg Ga acceptors and passivating donor defects. A decrease in p-type resistivity when O 2 is introduced during the postannealing process is attributed to the fact that annealing in an O 2 -containing environment can enhance the dissociation of Mg Ga -H complexes as well as the outdiffusion of H atoms from p-GaN films. However, low H concentrations are not necessarily beneficial in Mg-doped GaN films, as H atoms may also be bound at donor species and passivate them, leading to the positive effect of reduced compensation

  17. Chemical Vapor Deposition Growth of Degenerate p-Type Mo-Doped ReS2 Films and Their Homojunction.

    Science.gov (United States)

    Qin, Jing-Kai; Shao, Wen-Zhu; Xu, Cheng-Yan; Li, Yang; Ren, Dan-Dan; Song, Xiao-Guo; Zhen, Liang

    2017-05-10

    Substitutional doping of transition metal dichalcogenide two-dimensional materials has proven to be effective in tuning their intrinsic properties, such as band gap, transport characteristics, and magnetism. In this study, we realized substitutional doping of monolayer rhenium disulfide (ReS 2 ) with Mo via chemical vapor deposition. Scanning transmission electron microscopy demonstrated that Mo atoms are successfully doped into ReS 2 by substitutionally replacing Re atoms in the lattice. Electrical measurements revealed the degenerate p-type semiconductor behavior of Mo-doped ReS 2 field effect transistors, in agreement with density functional theory calculations. The p-n diode device based on a doped ReS 2 and ReS 2 homojunction exhibited gate-tunable current rectification behaviors, and the maximum rectification ratio could reach up to 150 at V d = -2/+2 V. The successful synthesis of p-type ReS 2 in this study could largely promote its application in novel electronic and optoelectronic devices.

  18. A new irradiation method with a neutron filter for silicon neutron transmutation doping at the Japan research reactor no. 3 (JRR-3).

    Science.gov (United States)

    Komeda, Masao; Kawasaki, Kozo; Obara, Toru

    2013-04-01

    We studied a new silicon irradiation holder with a neutron filter designed to make the vertical neutron flux profile uniform. Since an irradiation holder has to be made of a low activation material, we applied aluminum blended with B4C as the holder material. Irradiation methods to achieve uniform flux with a filter are discussed using Monte-Carlo calculation code MVP. Validation of the use of the MVP code for the holder's analyses is also discussed via characteristic experiments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Optical study of Erbium-doped-porous silicon based planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Najar, A. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B.P. 80518, 22305 Lannion Cedex (France) and Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia)]. E-mail: najar.adel@laposte.net; Ajlani, H. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Charrier, J. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B.P. 80518, 22305 Lannion Cedex (France); Lorrain, N. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B.P. 80518, 22305 Lannion Cedex (France); Haesaert, S. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B.P. 80518, 22305 Lannion Cedex (France); Oueslati, M. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Haji, L. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B.P. 80518, 22305 Lannion Cedex (France)

    2007-06-15

    Planar waveguides were formed from porous silicon layers obtained on P{sup +} substrates. These waveguides were then doped by erbium using an electrochemical method. Erbium concentration in the range 2.2-2.5 at% was determined by energy dispersive X-ray (EDX) analysis performed on SEM cross sections. The refractive index of layers was studied before and after doping and thermal treatments. The photoluminescence of Er{sup 3+} ions in the IR range and the decay curve of the 1.53 {mu}m emission peak were studied as a function of the excitation power. The value of excited Er density was equal to 0.07%. Optical loss contributions were analyzed on these waveguides and the losses were equal to 1.1 dB/cm at 1.55 {mu}m after doping.

  20. Photocatalysis of methylene blue contaminated water using titania fiber doped with silicon

    International Nuclear Information System (INIS)

    Ugarteche, C.V.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2009-01-01

    In this work, titania fibers doped with silicon were synthesized by electro spinning methodology, using titanium propoxide, silicon tetra propoxide and a solution of polyvinylpyrrolidone as precursors. The non-tissue material obtained was characterized by X-ray diffraction to determine the phase and crystallite size, BET method to determine the surface and SEM to analyze the microstructure of the fibers. The photo catalytic activity of the fibers in comparison with the standard TiO 2 Degussa P25 was evaluated using a 20ppm methylene blue solution. The composition containing 30% of silicon kept the anatase phase stable until the heat treatment temperature of 800 deg C. In the other compositions there was a formation of the rutile phase, which is less photoactive. The compositions containing silicon were photo catalytic efficient and some of them were more active that the standard P25. (author)

  1. Detection mechanisms in silicon diodes used as α-particle and thermal neutron detectors

    International Nuclear Information System (INIS)

    Cerofolini, G.F.; Ferla, G.; Foglio Para, A.

    1981-01-01

    Some common silicon devices (diodes, RAMs etc.) can be used as α and thermal neutron detectors. An α resolution of approx. equal to 3% can be obtained utilizing p + /n or n + /p diodes with no external bias. Thermal neutrons are detected by means of the reaction 10 B(n,α) 7 Li on the 10 B present in the devices. Neutron efficiency has been substantially improved by implantation of 10 B ions in the p + region of the diodes. Experimental results allow us to clarify the carrier collection mechanisms throughout the device. Some current opinions in the field are contradicted. (orig.)

  2. Electrical activation of phosphorus in silicon

    International Nuclear Information System (INIS)

    Goh, K.E.J.; Oberbeck, L.; Simmons, M.Y.; Clark, R.G.

    2003-01-01

    Full text: We present studies of phosphorus δ-doping in silicon with a view to determining the degree of electrical activation of the dopants. These results have a direct consequence for the use of phosphorus as a qubit in a silicon-based quantum computer such as that proposed by Kane. Room temperature and 4 K Hall effect measurements are presented for phosphorus δ-doped layers grown in n-type silicon using two different methods. In the first method, the δ-layer was deposited by a phosphorus effusion cell in an MBE chamber. In the second method, the Si surface was dosed with phosphine gas and then annealed to 550 deg C to incorporate P into the substrate. In both methods, the P δ-doped layer was subsequently encapsulated by ∼25 nm of Si grown epitaxially. We discuss the implications of our results on the fabrication of the Kane quantum computer

  3. Positron annihilation spectroscopy in doped p-type ZnO

    Science.gov (United States)

    Majumdar, Sayanee; Sanyal, D.

    2011-07-01

    Positron annihilation lifetime (PAL) spectroscopy has been used to investigate the vacancy type defect of the Li and N doped ZnO. The mono-vacancies, shallow -vacancies and open volume defects have been found in both the Li and N doped ZnO. The mono-vacancies, shallow-vacancies and open volume defects increase in N-doped ZnO as the size of N is quite high compared to Li. Positron annihilation study showed that the doping above 1-3% Li and 3-4% N in ZnO are not required in order to achieve low resistivity, high hole concentration and good mobility.

  4. Neutron absorbing room temperature vulcanizable silicone rubber compositions

    International Nuclear Information System (INIS)

    Zoch, H.L.

    1979-01-01

    A neutron absorbing composition is described and consists of a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide. 20 claims

  5. High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures.

    Science.gov (United States)

    Liu, Yuan; Sheng, Jiming; Wu, Hao; He, Qiyuan; Cheng, Hung-Chieh; Shakir, Muhammad Imran; Huang, Yu; Duan, Xiangfeng

    2016-06-01

    Scalable fabrication of vertical-tunneling transistors is presented based on heterostructures formed between graphene, highly doped silicon, and its native oxide. Benefiting from the large density of states of highly doped silicon, the tunneling transistors can deliver a current density over 20 A cm(-2) . This study demonstrates that the interfacial native oxide plays a crucial role in governing the carrier transport in graphene-silicon heterostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Photovoltaic characteristics of porous silicon /(n+ - p) silicon solar cells

    International Nuclear Information System (INIS)

    Dzhafarov, T.D.; Aslanov, S.S.; Ragimov, S.H.; Sadigov, M.S.; Nabiyeva, A.F.; Yuksel, Aydin S.

    2012-01-01

    Full text : The purpose of this work is to improve the photovoltaic parameters of the screen-printed silicon solar cells by formation the nano-porous silicon film on the frontal surface of the cell. The photovoltaic characteristics of two type silicon solar cells with and without porous silicon layer were measured and compared. A remarkable increment of short-circuit current density and the efficiency by 48 percent and 20 percent, respectively, have been achieved for PS/(n + - pSi) solar cell comparing to (n + - p)Si solar cell without PS layer

  7. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    CERN Document Server

    Bergmann, Benedikt; Caicedo, Ivan; Kierstead, James; Takai, Helio; Frojdh, Erik

    2016-01-01

    In this study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated. The data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.

  8. Neutron transmutation doping

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Jin

    2001-09-01

    HE OVERALL STATE OF THE ART RELATED WITH NEUTRON TRANSMUTATION DOPING(NCT) IS SURVEYED. ITEMS RELATED FOR THE REALIZATION OF NTD IN HANARO IS FOCUSED. IN ADDITION TO THE UNIFORM IRRADIATION AND ACHIEVING THE TARGET RESISTIVITY WHICH ARE THE MOST IMPORTANT TECHNICAL REQUIREMENTS FOR THE NTD, OTHER ITEMS SUCH AS THE FUNCTION AND ROLE OF NTD, MARKET TREND, QUALITY CONTROL ARE INCLUDED. MEANWHILE THE ONLY ADVANTAGE OF NTD IS ACHIEVING VERY HIGH UNIFORMITY OF DOPING, IT HAS SEVERAL DISADVANTAGES DUE TO THE USE OF NUCLEAR REACTOR. THEREFORE THE SEMICONDUCTOR INDUSTRY HAS CONTINUED DEVELOPMENT OF TECHNOLOGY TO REPLACE NTD, AND THE DEMAND OF NTD HAD BEEN DECREASED A LOT DURING 1990S. AS THE DEMAND FOR LARGE CRYSTAL INCREASES, HOWEVER, THE NTD DEMAND BEGAN TO INCREASE AGAIN FROM 2000. SINCE THE DEMAND FOR THE LARGER CRYSTAL WILL BE CONTINUED IN THE FUTURE, THE ROLE OF NTD WOULD BE NEEDED FOR THE LONGER TIME. IN ORDER TO MITIGATE THIS TREND OF DEMAND, THE REACTOR SHOULD BE CAPABLE OF ACCEPTING LARGE CRYSTAL AND THE EFFORT TO IMPROVE DOPING UNIFORMITY AND TO REDUCE THE COST SHOULD CONTINUED.

  9. Deep level transient spectroscopy and minority carrier lifetime study on Ga-doped continuous Czochralski silicon

    Science.gov (United States)

    Yoon, Yohan; Yan, Yixin; Ostrom, Nels P.; Kim, Jinwoo; Rozgonyi, George

    2012-11-01

    Continuous-Czochralski (c-Cz) crystal growth has been suggested as a viable technique for the fabrication of photovoltaic Si wafers due to its low resistivity variation of any dopant, independent of segregation, compared to conventional Cz. In order to eliminate light induced degradation due to boron-oxygen traps in conventional p-type silicon wafers, gallium doped wafers have been grown by c-Cz method and investigated using four point probe, deep level transient spectroscopy (DLTS), and microwave-photoconductance decay. Iron-gallium related electrically active defects were identified using DLTS as the main lifetime killers responsible for reduced non-uniform lifetimes in radial and axial positions of the c-Cz silicon ingot. A direct correlation between minority carrier lifetime and the concentration of electrically active Fe-Ga pairs was established.

  10. Measurements of possible type inversion in silicon junction detectors by fast neutron irradiation

    International Nuclear Information System (INIS)

    Li, Z.; Kraner, H.W.

    1991-05-01

    The successful application of silicon position sensitive detectors in experiments at the SSC or LHC depends on an accurate assessment of the radiation tolerance of this detector species. In particular, fast neutrons (E av = 1 MeV) produce bulk displacement damage that is projected, from estimated fluences, to cause increased generation (leakage) current, charge collection deficiencies, resistivity changes and possibly semiconductor type change or inversion. Whereas the leakage current increase was believed to be the major concern for estimated fluences of 10 12 n/cm 2 experiment year at the initial SSC luminosity of 10 33 /cm 2 -sec, increased luminosity and exposure time has raised the possible exposure to 10 14 n/cm 2 , which opens the door for the several other radiation effects suggested above to play observable and significant roles in detector degradation or change. 17 refs., 19 figs

  11. Chemical-free n-type and p-type multilayer-graphene transistors

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, D. M. N. M., E-mail: nandithad@voxtel-inc.com [Voxtel Inc, Lockey Laboratories, University of Oregon, Eugene Oregon 97402 (United States); Eisaman, M. D. [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York 11794 (United States); Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794 (United States)

    2016-08-01

    A single-step doping method to fabricate n- and p-type multilayer graphene (MG) top-gate field effect transistors (GFETs) is demonstrated. The transistors are fabricated on soda-lime glass substrates, with the n-type doping of MG caused by the sodium in the substrate without the addition of external chemicals. Placing a hydrogen silsesquioxane (HSQ) barrier layer between the MG and the substrate blocks the n-doping, resulting in p-type doping of the MG above regions patterned with HSQ. The HSQ is deposited in a single fabrication step using electron beam lithography, allowing the patterning of arbitrary sub-micron spatial patterns of n- and p-type doping. When a MG channel is deposited partially on the barrier and partially on the glass substrate, a p-type and n-type doping profile is created, which is used for fabricating complementary transistors pairs. Unlike chemically doped GFETs in which the external dopants are typically introduced from the top, these substrate doped GFETs allow for a top gate which gives a stronger electrostatic coupling to the channel, reducing the operating gate bias. Overall, this method enables scalable fabrication of n- and p-type complementary top-gated GFETs with high spatial resolution for graphene microelectronic applications.

  12. Heavy doping effects in high efficiency silicon solar cells

    Science.gov (United States)

    Lindholm, F. A.; Neugroschel, A.

    1986-01-01

    The temperature dependence of the emitter saturation current for bipolar devices was studied by varying the surface recombination velocity at the emitter surface. From this dependence, the value was derived for bandgap narrowing that is in better agreement with other determinations that were obtained from the temperature dependence measure on devices with ohmic contacts. Results of the first direct measurement of the minority-carrier transit time in a transparent heavily doped emitter layer were reported. The value was obtained by a high-frequency conductance method recently developed and used for doped Si. Experimental evidence is presented for significantly greater charge storage in highly excited silicon near room temperature than conventional theory would predict. These data are compared with various data for delta E sub G in heavily doped silicon.

  13. Synthesis and Doping of Silicon Nanocrystals for Versatile Nanocrystal Inks

    Science.gov (United States)

    Kramer, Nicolaas Johannes

    atmospheric pressures necessitates high plasma densities to reach temperatures required for crystallization of nanoparticles. Using experimentally determined plasma properties from the literature, the model estimates the nanoparticle temperature that is achieved during synthesis at atmospheric pressures. It was found that temperatures well above those required for crystallization can be achieved. Now that the synthesis of nanocrystals is understood, the second half of this thesis will focus on doping of the nanocrystals. The doping of semiconductor nanocrystals, which is vital for the optimization of nanocrystal-based devices, remains a challenge. Gas phase plasma approaches have been very successful in incorporating dopant atoms into nanocrystals by simply adding a dopant precursor during synthesis. However, little is known about the electronic activation of these dopants. This was investigated with field-effect transistor measurements using doped silicon nanocrystal films. It was found that, analogous to bulk silicon, boron and phosphorous electronically dope silicon nanocrystals. However, the dopant activation efficiency remains low as a result of self-purification of the dopants to the nanocrystal surface. Next the plasmonic properties of heavily doped silicon nanocrystals was explored. While the synthesis method was identical, the plasmonic behavior of phosphorus-doped and boron-doped nanocrystals was found the be significantly different. Phosphorus-doped nanocrystals exhibit a plasmon resonance immediately after synthesis, while boron-doped nanocrystals require a post-synthesis annealing or oxidation treatment. This is a result of the difference in dopant location. Phosphorus is more likely to be incorporated into the core of the nanocrystal, while the majority of boron is placed on the surface of the nanocrystal. The oxidized boron-doped particles exhibit stable plasmonic properties, and therefore this allows for the production of air-stable silicon-based plasmonic

  14. Gamma and Neutron Irradiation of Semitransparent Amorphous Silicon Sensors

    International Nuclear Information System (INIS)

    Carabe, J.; Fernandez, M. G.; Ferrando, A.; Fuentes, J.; Gandia, J.; Josa, M. I.; Molinero, A.; Oller, J. C.; Arce, P.; Calvo, E.; Figueroa, C. F.; Garcia, N.; Matorras, F.; Rodrigo, T.; Vila, I.; Virto, A. L.; Fenyvesi, A.; Molnar, J.; Sohler, D.

    1999-12-01

    Semitransparent amorphous silicon sensors are key elements for laser light 2D position reconstruction in the CMS multipoint alignment link system. Some of the sensors have to work in very hard radiation environment. We have irradiated with gammas, up to 10 Mrad, and neutrons, up to 10 ''14 cm''-2, two different type of sensors and measured their change in performance. (Author) 10 refs

  15. Preparation of p-type GaN-doped SnO2 thin films by e-beam evaporation and their applications in p-n junction

    Science.gov (United States)

    Lv, Shuliang; Zhou, Yawei; Xu, Wenwu; Mao, Wenfeng; Wang, Lingtao; Liu, Yong; He, Chunqing

    2018-01-01

    Various transparent GaN-doped SnO2 thin films were deposited on glass substrates by e-beam evaporation using GaN:SnO2 targets of different GaN weight ratios. It is interesting to find that carrier polarity of the thin films was converted from n-type to p-type with increasing GaN ratio higher than 15 wt.%. The n-p transition in GaN-doped SnO2 thin films was explained for the formation of GaSn and NO with increasing GaN doping level in the films, which was identified by Hall measurement and XPS analysis. A transparent thin film p-n junction was successfully fabricated by depositing p-type GaN:SnO2 thin film on SnO2 thin film, and a low leakage current (6.2 × 10-5 A at -4 V) and a low turn-on voltage of 1.69 V were obtained for the p-n junction.

  16. Other applications of neutron beams in material sciences

    International Nuclear Information System (INIS)

    Novion, C.H. de

    1997-01-01

    The various applications of neutron beams are reviewed. The different mechanisms involved in neutron interaction with matter are explained. We notice that generally neutron radiation effects are unfavorable but can be turned into efficient tools to add new structures or properties to materials, silicon doping is an example. The basis principles of neutron activation analysis and neutron radiography are described. (A.C.)

  17. Strong compensation hinders the p-type doping of ZnO: a glance over surface defect levels

    Science.gov (United States)

    Huang, B.

    2016-07-01

    We propose a surface doping model of ZnO to elucidate the p-type doping and compensations in ZnO nanomaterials. With an N-dopant, the effects of N on the ZnO surface demonstrate a relatively shallow acceptor level in the band gap. As the dimension of the ZnO materials decreases, the quantum confinement effects will increase and render the charge transfer on surface to influence the shifting of Fermi level, by evidence of transition level changes of the N-dopant. We report that this can overwhelm the intrinsic p-type conductivity and transport of the ZnO bulk system. This may provide a possible route of using surface doping to modify the electronic transport and conductivity of ZnO nanomaterials.

  18. Nuclear reactor ex-core startup neutron detector

    International Nuclear Information System (INIS)

    Wyvill, J.R.

    1980-01-01

    A sensitive ex-core neutron detector is needed to monitor the power level of reactors during startup. The neutron detector of this invention has a photomultiplier with window resistant to radiation darkening at the input end and an electrical connector at the output end. The photomultiplier receives light signals from a neutron-responsive scintillator medium, typically a cerium-doped lithium silicate glass, that responds to neutrons after they have been thermalized by a silicone resin moderator. Enclosing and shielding the photmultiplier, the scintillator medium and the moderator is a combined lead and borated silicone resin housing

  19. Comparison of silicon pin diode detector fabrication processes using ion implantation and thermal doping

    International Nuclear Information System (INIS)

    Zhou, C.Z.; Warburton, W.K.

    1996-01-01

    Two processes for the fabrication of silicon p-i-n diode radiation detectors are described and compared. Both processes are compatible with conventional integrated-circuit fabrication techniques and yield very low leakage currents. Devices made from the process using boron thermal doping have about a factor of 2 lower leakage current than those using boron ion implantation. However, the boron thermal doping process requires additional process steps to remove boron skins. (orig.)

  20. Determinations of silicon and phosphorus in Pepperbush standard reference material by neutron activation and x-ray fluorescence methods

    International Nuclear Information System (INIS)

    Mizumoto, Yoshihiko; Nishio, Hirofumi; Hayashi, Takeshi; Kusakabe, Toshio; Iwata, Shiro.

    1987-01-01

    Silicon and phosphorus contents in Pepperbush standard reference material were determined by neutron activation and X-ray fluorescence methods. In neutron activation analysis, β-ray spectra of 32 P produced by 31 P(n,γ) 32 P reaction on Pepperbush and standard samples were measured by a low background β-ray spectrometer. In X-ray fluorescence analysis, the standard samples were prepared by mixing the Pepperbush powder with silicon dioxide and diammonium hydrogenphosphate. Characteristic X-rays from the samples were analyzed by a wavelength dispersive X-ray fluorescence spectrometer. From the β and X-ray intensities, silicon and phosphorus contents in Pepperbush were determined to be 1840 ± 80 and 1200 ± 50 μg g -1 , respectively. (author)

  1. Synthesis and characterization of silicon-doped polycrystalline GaN ...

    Indian Academy of Sciences (India)

    Silicon-doped polycrystalline GaN films were successfully deposited at temperatures ranging from 300 to 623 K on fused silica and silicon substrates by radio frequency (r.f.) magnetron sputtering at a system pressure of ~ 5 Pa. The films were characterized by optical as well as microstructural measurements. The optical ...

  2. Neutron-transmutation-doped germanium bolometers

    International Nuclear Information System (INIS)

    Palaio, N.P.; Rodder, M.; Haller, E.E.; Kreysa, E.

    1983-02-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 16 and 1.88 x 10 18 cm - 2 . After thermal annealing the resistivity was measured down to low temperatures ( 0 exp(δ/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers

  3. Homojunction silicon solar cells doping by ion implantation

    Science.gov (United States)

    Milési, Frédéric; Coig, Marianne; Lerat, Jean-François; Desrues, Thibaut; Le Perchec, Jérôme; Lanterne, Adeline; Lachal, Laurent; Mazen, Frédéric

    2017-10-01

    Production costs and energy efficiency are the main priorities for the photovoltaic (PV) industry (COP21 conclusions). To lower costs and increase efficiency, we are proposing to reduce the number of processing steps involved in the manufacture of N-type Passivated Rear Totally Diffused (PERT) silicon solar cells. Replacing the conventional thermal diffusion doping steps by ion implantation followed by thermal annealing allows reducing the number of steps from 7 to 3 while maintaining similar efficiency. This alternative approach was investigated in the present work. Beamline and plasma immersion ion implantation (BLII and PIII) methods were used to insert n-(phosphorus) and p-type (boron) dopants into the Si substrate. With higher throughput and lower costs, PIII is a better candidate for the photovoltaic industry, compared to BL. However, the optimization of the plasma conditions is demanding and more complex than the beamline approach. Subsequent annealing was performed on selected samples to activate the dopants on both sides of the solar cell. Two annealing methods were investigated: soak and spike thermal annealing. Best performing solar cells, showing a PV efficiency of about 20%, was obtained using spike annealing with adapted ion implantation conditions.

  4. Effect of doping on the modification of polycrystalline silicon by spontaneous reduction of diazonium salts

    Energy Technology Data Exchange (ETDEWEB)

    Girard, A.; Coulon, N. [UMR-CNRS 6164, Institut d’Electronique et de Télécommunications de Rennes, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex (France); Cardinaud, C. [UMR-CNRS 6502, Institut des Matériaux Jean Rouxel, Université de Nantes, 2 rue de la Houssinière, BP32229, F-44322 Nantes cedex 3 (France); Mohammed-Brahim, T. [UMR-CNRS 6164, Institut d’Electronique et de Télécommunications de Rennes, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex (France); Geneste, F., E-mail: Florence.Geneste@univ-rennes1.fr [UMR-CNRS 6226, Institut des Sciences Chimiques de Rennes, Equipe MaCSE, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex (France)

    2014-09-30

    Highlights: • Spontaneous grafting of aryl diazonium salts on polycrystalline silicon surfaces. • Effect of the nature and level of doping on the efficiency of the functionalization. • The grafting process was more efficient on PolySi substrates than on monosilicon. • Influence of the crystal structure and grain boundaries on the modification procedure. • Role of the reducing power of the substrate on the grafting procedure. - Abstract: The chemical modification of doped polycrystalline silicon materials (N+, N++ and P++) and silicon (1 0 0) and (1 1 1) used as references is investigated by spontaneous reduction of diazonium salts. The effectiveness of the grafting process on all polySi surfaces is shown by AFM and XPS analyses. The effect of substrate doping on the efficiency of the electrografting process is compared by using the thicknesses of the deposited organic films. For a better accuracy, two methods are used to estimate the thicknesses: XPS and the coupling of a O{sub 2} plasma etching with AFM measurement. Structural characteristics of the poly-Si films were investigated by Scanning Electron Microscopy and X-ray diffraction to find a correlation between the structure of the material and its reactivity. Different parameters that could have an impact on the efficiency of the grafting procedure are discussed. The observed differences between differently doped silicon surfaces is rather limited, this is in agreement with the radical character of the reacting species.

  5. Effect of doping on the modification of polycrystalline silicon by spontaneous reduction of diazonium salts

    International Nuclear Information System (INIS)

    Girard, A.; Coulon, N.; Cardinaud, C.; Mohammed-Brahim, T.; Geneste, F.

    2014-01-01

    Highlights: • Spontaneous grafting of aryl diazonium salts on polycrystalline silicon surfaces. • Effect of the nature and level of doping on the efficiency of the functionalization. • The grafting process was more efficient on PolySi substrates than on monosilicon. • Influence of the crystal structure and grain boundaries on the modification procedure. • Role of the reducing power of the substrate on the grafting procedure. - Abstract: The chemical modification of doped polycrystalline silicon materials (N+, N++ and P++) and silicon (1 0 0) and (1 1 1) used as references is investigated by spontaneous reduction of diazonium salts. The effectiveness of the grafting process on all polySi surfaces is shown by AFM and XPS analyses. The effect of substrate doping on the efficiency of the electrografting process is compared by using the thicknesses of the deposited organic films. For a better accuracy, two methods are used to estimate the thicknesses: XPS and the coupling of a O 2 plasma etching with AFM measurement. Structural characteristics of the poly-Si films were investigated by Scanning Electron Microscopy and X-ray diffraction to find a correlation between the structure of the material and its reactivity. Different parameters that could have an impact on the efficiency of the grafting procedure are discussed. The observed differences between differently doped silicon surfaces is rather limited, this is in agreement with the radical character of the reacting species

  6. CHARACTERIZATION OF A THIN SILICON SENSOR FOR ACTIVE NEUTRON PERSONAL DOSEMETERS.

    Science.gov (United States)

    Takada, M; Nunomiya, T; Nakamura, T; Matsumoto, T; Masuda, A

    2016-09-01

    A thin silicon sensor has been developed for active neutron personal dosemeters for use by aircrews and first responders. This thin silicon sensor is not affected by the funneling effect, which causes detection of cosmic protons and over-response to cosmic neutrons. There are several advantages to the thin silicon sensor: a decrease in sensitivity to gamma rays, an improvement of the energy detection limit for neutrons down to 0.8 MeV and an increase in the sensitivity to fast neutrons. Neutron response functions were experimentally obtained using 2.5 and 5 MeV monoenergy neutron beams and a (252)Cf neutron source. Simulation results using the Monte Carlo N-Particle transport code agree quite well with the experimental ones when an energy deposition region shaped like a circular truncated cone is used in place of a cylindrical region. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Assessment of a silicon detector for pulsed neutron scattering experiments

    International Nuclear Information System (INIS)

    Tardocchi, M.; Arnaboldi, C.; Gorini, G.; Imberti, S.; Pessina, G.; Previtali, E.; Andreani, C.; Pietropaolo, A.; Senesi, R.

    2004-01-01

    Resonance detectors (RD) are being developed for neutron spectroscopy in the epithermal energy region at spallation neutron sources. Different choices of converter foils and gamma spectrometers are being compared as part of an optimization and selection process within the TECHNI project. This paper reports on the design of a silicon detector system and some preliminary tests on the VESUVIO spectrometer. The detector has a good efficiency in the X-ray energy range, where two intense photon peaks (at 12 and 48 keV) are expected to be emitted following neutron capture in a uranium converter foil. The detector energy resolution has been improved by nitrogen vapor cooling of the silicon chip and by careful design of the preamplifier electronics. Neutron time of flight spectra have been measured on VESUVIO when the converter foil is placed in the neutron beam. In that case, the detector response is dominated by a continuum due to Compton detection of gammas of higher energy. These results provide a basis for a critical assessment of the applicability of silicon detectors for RD measurements of epithermal neutrons

  8. Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells.

    Science.gov (United States)

    Yu, Linwei; Fortuna, Franck; O'Donnell, Benedict; Jeon, Taewoo; Foldyna, Martin; Picardi, Gennaro; Roca i Cabarrocas, Pere

    2012-08-08

    Silicon nanowires (SiNWs) are becoming a popular choice to develop a new generation of radial junction solar cells. We here explore a bismuth- (Bi-) catalyzed growth and doping of SiNWs, via vapor-liquid-solid (VLS) mode, to fabricate amorphous Si radial n-i-p junction solar cells in a one-pump-down and low-temperature process in a single chamber plasma deposition system. We provide the first evidence that catalyst doping in the SiNW cores, caused by incorporating Bi catalyst atoms as n-type dopant, can be utilized to fabricate radial junction solar cells, with a record open circuit voltage of V(oc) = 0.76 V and an enhanced light trapping effect that boosts the short circuit current to J(sc) = 11.23 mA/cm(2). More importantly, this bi-catalyzed SiNW growth and doping strategy exempts the use of extremely toxic phosphine gas, leading to significant procedure simplification and cost reduction for building radial junction thin film solar cells.

  9. Superconducting and normal state properties of carbon doped and neutron irradiated MgB2

    International Nuclear Information System (INIS)

    Wilke, R.H.T.; Samuely, P.; Szabo, P.; Holanova, Z.; Bud'ko, S.L.; Canfield, P.C.; Finnemore, D.K.

    2007-01-01

    Current research in MgB 2 focuses on the effects various types of perturbations have on the superconducting properties of this novel two-gap superconductor. In this article we summarize the effects of carbon doping and neutron irradiation in bulk MgB 2 . Low levels of carbon doping and light neutron irradiation result in significant enhancements in H c2 . At high fluences, where superconductivity is nearly fully suppressed, superconductivity can be restored through post exposure annealing. However, this results in a change in the interdependencies of the normal state and superconducting properties (ρ 0 , T c , H c2 ), with little or no enhancement in H c2

  10. Boron diffusion into nitrogen doped silicon films for P{sup +} polysilicon gate structures

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, Farida; Mahamdi, Ramdane; Jalabert, Laurent; Temple-Boyer, Pierre

    2003-06-23

    This paper deals with the study of the boron diffusion in nitrogen doped silicon (NIDOS) deposited from disilane Si{sub 2}H{sub 6} and ammonia NH{sub 3} for the development of P{sup +} polysilicon gate metal oxide semiconductor (MOS) devices. NIDOS films with varied nitrogen content have been boron implanted, then annealed and finally analysed by secondary ion mass spectroscopy (SIMS). In order to simulate the experimental SIMS of boron concentration profiles in the NIDOS films, a model adapted to the particular conditions of the samples elaboration, i.e. the very high boron concentration and the nitrogen content, has been established. The boron diffusion reduction in NIDOS films with increasing nitrogen rates has been evidenced by the profiles as well as by the obtained diffusion coefficients, which shows that the nitrogen incorporation reduces the boron diffusion. This has been confirmed by capacitance-voltage (C-V) measurements performed on MOS capacitors: the higher the nitrogen content, the lower the flat-band voltage. Finally, these results demonstrate that the improvement of the gate oxide quality occurs with the suppression of the boron penetration.

  11. Deep level centers in electron-irradiated silicon crystals doped with copper at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yarykin, Nikolai [Institute of Microelectronics Technology, RAS, Chernogolovka (Russian Federation); Weber, Joerg [Technische Universitaet Dresden (Germany)

    2017-07-15

    The effect of bombardment with energetic particles on the deep-level spectrum of copper-contaminated silicon wafers is studied by space charge spectroscopy methods. The p-type FZ-Si wafers were doped with copper in the temperature range of 645-750 C and then irradiated with the 10{sup 15} cm{sup -2} fluence of 5 MeV electrons at room temperature. Only the mobile Cu{sub i} species and the Cu{sub PL} centers are detected in significant concentrations in the non-irradiated Cu-doped wafers. The properties of the irradiated samples are found to qualitatively depend on the copper in-diffusion temperature T{sub diff}. For T{sub diff} > 700 C, the irradiation partially reduces the Cu{sub i} concentration and introduces additional Cu{sub PL} centers while no standard radiation defects are detected. If T{sub diff} was below ∝700 C, the irradiation totally removes the mobile Cu{sub i} species. Instead, the standard radiation defects and their complexes with copper appear in the deep-level spectrum. A model for the defects reaction scheme during the irradiation is derived and discussed. DLTS spectrum of the Cu-contaminated and then irradiated silicon qualitatively depends on the copper in-diffusion temperature. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Ion-beam doping of amorphous silicon with germanium isovalent impurity

    International Nuclear Information System (INIS)

    Khokhlov, A.F.; Mashin, A.I.; Ershov, A.V.; Mashin, N.I.; Ignat'eva, E.A.

    1988-01-01

    Experimental data on ion-beam doping of amorphous silicon containing minor germanium additions by donor and acceptor impurity are presented. Doping of a-Si:Ge films as well as of a-Si layers was performed by implantation of 40 keV energy B + ions or 120 keV energy phosphorus by doses from 3.2x10 13 up to 1.3x10 17 cm -2 . Ion current density did not exceed 1 μA/cm 2 . Radiation defect annealing was performed at 400 deg C temperature during 30 min. Temperature dependences of conductivity in the region of 160-500 K were studied. It is shown that a-Si:Ge is like hydrogenized amorphous silicon in relation to doping

  13. P type porous silicon resistivity and carrier transport

    International Nuclear Information System (INIS)

    Ménard, S.; Fèvre, A.; Billoué, J.; Gautier, G.

    2015-01-01

    The resistivity of p type porous silicon (PS) is reported on a wide range of PS physical properties. Al/PS/Si/Al structures were used and a rigorous experimental protocol was followed. The PS porosity (P % ) was found to be the major contributor to the PS resistivity (ρ PS ). ρ PS increases exponentially with P % . Values of ρ PS as high as 1 × 10 9 Ω cm at room temperature were obtained once P % exceeds 60%. ρ PS was found to be thermally activated, in particular, when the temperature increases from 30 to 200 °C, a decrease of three decades is observed on ρ PS . Based on these results, it was also possible to deduce the carrier transport mechanisms in PS. For P % lower than 45%, the conduction occurs through band tails and deep levels in the tissue surrounding the crystallites. When P % overpasses 45%, electrons at energy levels close to the Fermi level allow a hopping conduction from crystallite to crystallite to appear. This study confirms the potential of PS as an insulating material for applications such as power electronic devices

  14. Improvement in switching characteristics and long-term stability of Zn-O-N thin-film transistors by silicon doping

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsuji

    2017-06-01

    Full Text Available The effects of silicon doping on the properties of Zn-O-N (ZnON films and on the device characteristics of ZnON thin-film transistors (TFTs were investigated by co-sputtering silicon and zinc targets. Silicon doping was effective at decreasing the carrier concentration in ZnON films; therefore, the conductivity of the films can be controlled by the addition of a small amount of silicon. Doped silicon atoms also form bonds with nitrogen atoms, which suppresses nitrogen desorption from the films. Furthermore, Si-doped ZnON-TFTs are demonstrated to exhibit less negative threshold voltages, smaller subthreshold swings, and better long-term stability than non-doped ZnON-TFTs.

  15. Characterising large area silicon drift detectors with MOS injectors

    International Nuclear Information System (INIS)

    Bonvicini, V.; Rashevsky, A.; Vacchi, A.

    1999-01-01

    In the framework of the INFN DSI project, the first prototypes of a large-area Silicon Drift Detector (SDD) have been designed and produced on 5'' diameter wafers of Neutron Transmutation Doped (NTD) silicon with a resistivity of 3000 Ω·cm. The detector is a 'butterfly' bi-directional structure with a drift length of 32 mm and the drifting charge is collected by two arrays of anodes having a pitch of 200 μm. The high-voltage divider is integrated on-board and is realised with p + implantations. For test and calibration purposes, the detector has a new type of MOS injector. The paper presents results obtained to injecting charge at the maximum drift distance (32mm) from the anodes by means of the MOS injecting structure, As front-end electronics, the authors have used a 32-channels low-noise bipolar VLSI circuit (OLA, Omni-purpose Low-noise Amplifer) specifically designed for silicon drift detectors. The uniformity of the drift time in different regions of the sensitive area and its dependence on the ambient temperature are studied

  16. Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

    Directory of Open Access Journals (Sweden)

    Rafal Pietruszka

    2014-02-01

    Full Text Available Selected properties of photovoltaic (PV structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100 are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%.

  17. Short p-type silicon microstrip detectors in 3D-stc technology

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, S. [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder Strasse 3b, D-79104 Freiburg i. Br. (Germany)], E-mail: simon.eckert@physik.uni-freiburg.de; Jakobs, K.; Kuehn, S.; Parzefall, U. [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder Strasse 3b, D-79104 Freiburg i. Br. (Germany); Dalla-Betta, G.-F.; Zoboli, A. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita degli Studi di Trento, via Sommarive 14, I-38050 Povo di Trento (Italy); Pozza, A.; Zorzi, N. [FBK-irst Trento, Microsystems Division, via Sommarive 18, I-38050 Povo di Trento (Italy)

    2008-10-21

    The luminosity upgrade of the Large Hadron Collider (LHC), the sLHC, will constitute an extremely challenging radiation environment for tracking detectors. Significant improvements in radiation hardness are needed to cope with the increased radiation dose, requiring new tracking detectors. In the upgraded ATLAS detector the region from 20 to 50 cm distance to the beam will be covered by silicon strip detectors (SSD) with short strips. These will have to withstand a 1 MeV neutron equivalent fluence of about 1x10{sup 15}n{sub eq}/cm{sup 2}, hence extreme radiation resistance is necessary. For the short strips, we propose to use SSD realised in the radiation tolerant 3D technology, where rows of columns-etched into the silicon bulk-are joined together to form strips. To demonstrate the feasibility of 3D SSD for the sLHC, we have built prototype modules using 3D-single-type-column (stc) SSD with short strips and front-end electronics from the present ATLAS SCT. The modules were read out with the SCT Data Acquisition system and tested with an IR-laser. We report on the performance of these 3D modules, in particular the noise at 40 MHz which constitutes a measurement of the effective detector capacitance. Conclusions about options for using 3D SSD detectors for tracking at the sLHC are drawn.

  18. Low-field microwave absorption and magnetoresistance in iron nanostructures grown by electrodeposition on n-type lightly doped silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Felix, J.F. [Universidade Federal de Viçosa-UFV, Departamento de Física, 36570-900 Viçosa, MG (Brazil); Universidade de Brasília-UnB, Instituto de Física, Núcleo de Física Aplicada, 70910-900 Brasília, DF (Brazil); Figueiredo, L.C. [Universidade de Brasília-UnB, Instituto de Física, Núcleo de Física Aplicada, 70910-900 Brasília, DF (Brazil); Mendes, J.B.S. [Universidade Federal de Viçosa-UFV, Departamento de Física, 36570-900 Viçosa, MG (Brazil); Morais, P.C. [Universidade de Brasília-UnB, Instituto de Física, Núcleo de Física Aplicada, 70910-900 Brasília, DF (Brazil); Huazhong University of Science and Technology, School of Automation, 430074 Wuhan (China); Araujo, C.I.L. de., E-mail: dearaujo@ufv.br [Universidade de Brasília-UnB, Instituto de Física, Núcleo de Física Aplicada, 70910-900 Brasília, DF (Brazil)

    2015-12-01

    In this study we investigate magnetic properties, surface morphology and crystal structure in iron nanoclusters electrodeposited on lightly doped (100) n-type silicon substrates. Our goal is to investigate the spin injection and detection in the Fe/Si lateral structures. The samples obtained under electric percolation were characterized by magnetoresistive and magnetic resonance measurements with cycling the sweeping applied field in order to understand the spin dynamics in the as-produced samples. The observed hysteresis in the magnetic resonance spectra, plus the presence of a broad peak in the non-saturated regime confirming the low field microwave absorption (LFMA), were correlated to the peaks and slopes found in the magnetoresistance curves. The results suggest long range spin injection and detection in low resistive silicon and the magnetic resonance technique is herein introduced as a promising tool for analysis of electric contactless magnetoresistive samples. - Highlights: • Electrodeposition of Fe nanostructures on high resistive silicon substrates. • Spin polarized current among clusters through Si suggested by isotropic magnetoresistance. • Low field microwave absorption arising from the sample shape anisotropy. • Contactless magnetoresistive device characterization by resonance measurements.

  19. Investigation of p-type depletion doping for InGaN/GaN-based light-emitting diodes

    Science.gov (United States)

    Zhang, Yiping; Zhang, Zi-Hui; Tan, Swee Tiam; Hernandez-Martinez, Pedro Ludwig; Zhu, Binbin; Lu, Shunpeng; Kang, Xue Jun; Sun, Xiao Wei; Demir, Hilmi Volkan

    2017-01-01

    Due to the limitation of the hole injection, p-type doping is essential to improve the performance of InGaN/GaN multiple quantum well light-emitting diodes (LEDs). In this work, we propose and show a depletion-region Mg-doping method. Here we systematically analyze the effectiveness of different Mg-doping profiles ranging from the electron blocking layer to the active region. Numerical computations show that the Mg-doping decreases the valence band barrier for holes and thus enhances the hole transportation. The proposed depletion-region Mg-doping approach also increases the barrier height for electrons, which leads to a reduced electron overflow, while increasing the hole concentration in the p-GaN layer. Experimentally measured external quantum efficiency indicates that Mg-doping position is vitally important. The doping in or adjacent to the quantum well degrades the LED performance due to Mg diffusion, increasing the corresponding nonradiative recombination, which is well supported by the measured carrier lifetimes. The experimental results are well numerically reproduced by modifying the nonradiative recombination lifetimes, which further validate the effectiveness of our approach.

  20. FTIR studies of swift silicon and oxygen ion irradiated porous silicon

    International Nuclear Information System (INIS)

    Bhave, Tejashree M.; Hullavarad, S.S.; Bhoraskar, S.V.; Hegde, S.G.; Kanjilal, D.

    1999-01-01

    Fourier Transform Infrared Spectroscopy has been used to study the bond restructuring in silicon and oxygen irradiated porous silicon. Boron doped p-type (1 1 1) porous silicon was irradiated with 10 MeV silicon and a 14 MeV oxygen ions at different doses ranging between 10 12 and 10 14 ions cm -2 . The yield of PL in porous silicon irradiated samples was observed to increase considerably while in oxygen irradiated samples it was seen to improve only by a small extent for lower doses whereas it decreased for higher doses. The results were interpreted in view of the relative intensities of the absorption peaks associated with O-Si-H and Si-H stretch bonds

  1. Deep level transient spectroscopic investigation of phosphorus-doped silicon by self-assembled molecular monolayers.

    Science.gov (United States)

    Gao, Xuejiao; Guan, Bin; Mesli, Abdelmadjid; Chen, Kaixiang; Dan, Yaping

    2018-01-09

    It is known that self-assembled molecular monolayer doping technique has the advantages of forming ultra-shallow junctions and introducing minimal defects in semiconductors. In this paper, we report however the formation of carbon-related defects in the molecular monolayer-doped silicon as detected by deep-level transient spectroscopy and low-temperature Hall measurements. The molecular monolayer doping process is performed by modifying silicon substrate with phosphorus-containing molecules and annealing at high temperature. The subsequent rapid thermal annealing drives phosphorus dopants along with carbon contaminants into the silicon substrate, resulting in a dramatic decrease of sheet resistance for the intrinsic silicon substrate. Low-temperature Hall measurements and secondary ion mass spectrometry indicate that phosphorus is the only electrically active dopant after the molecular monolayer doping. However, during this process, at least 20% of the phosphorus dopants are electrically deactivated. The deep-level transient spectroscopy shows that carbon-related defects are responsible for such deactivation.

  2. Time changes of vertical profile of neutron fluence rate in LVR-15 reactor

    International Nuclear Information System (INIS)

    Viererbl, L.; Stehno, J.; Erben, O.; Lahodova, Z.; Marek, M.

    2003-01-01

    The LVR-15 reactor is a light water research type reactor, which is situated, in Nuclear Research Institute, Rez near Prague. The reactor is used as a multipurpose facility. For some experiments and material productions, e.g. for homogeneity of silicon resistance in production of radiation doped silicon, the time changes of vertical profile of neutron fluence rate are particularly important. The assembly used for silicon irradiation has two self-powered neutron detectors installed in a vertical irradiation channel in LVR-15 reactor. Vertical profile of thermal neutron fluence rate was automatically scanned during reactor operation. The results of measurements made in 2002 and 2003 with these detectors are presented. A set of vertical profile measurements was made during two 21-days reactor cycles. During the cycle the vertical profile slightly changes both in the position of its maximum and in the shape. The time dependences of the position of profile maximum and the profile width at half maximum during the cycle are given. (author)

  3. Performance of conversion efficiency of a crystalline silicon solar cell with base doping density

    Directory of Open Access Journals (Sweden)

    Gokhan Sahin

    Full Text Available In this study, we investigate theoretically the electrical parameters of a crystalline silicon solar cell in steady state. Based on a one-dimensional modeling of the cell, the short circuit current density, the open circuit voltage, the shunt and series resistances and the conversion efficiency are calculated, taking into account the base doping density. Either the I-V characteristic, series resistance, shunt resistance and conversion efficiency are determined and studied versus base doping density. The effects applied of base doping density on these parameters have been studied. The aim of this work is to show how short circuit current density, open circuit voltage and parasitic resistances are related to the base doping density and to exhibit the role played by those parasitic resistances on the conversion efficiency of the crystalline silicon solar. Keywords: Crystalline silicon solar cell, Base doping density, Series resistance, Shunt resistance, Conversion efficiency

  4. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays

    KAUST Repository

    Lu, Ming-Pei

    2009-03-11

    Using phosphorus-doped ZnO nanowire (NW) arrays grown on silicon substrate, energy conversion using the p-type ZnO NWs has been demonstrated for the first time. The p-type ZnO NWs produce positive output voltage pulses when scanned by a conductive atomic force microscope (AFM) in contact mode. The output voltage pulse is generated when the tip contacts the stretched side (positive piezoelectric potential side) of the NW. In contrast, the n-type ZnO NW produces negative output voltage when scanned by the AFM tip, and the output voltage pulse is generated when the tip contacts the compressed side (negative potential side) of the NW. In reference to theoretical simulation, these experimentally observed phenomena have been systematically explained based on the mechanism proposed for a nanogenerator. © 2009 American Chemical Society.

  5. The infra-red photoresponse of erbium-doped silicon nanocrystals

    International Nuclear Information System (INIS)

    Kenyon, A.J.; Bhamber, S.S.; Pitt, C.W.

    2003-01-01

    We have exploited the interaction between erbium ions and silicon nanoclusters to probe the photoresponse of erbium-doped silicon nanocrystals in the spectral region around 1.5 μm. We have produced an MOS device in which the oxide layer has been implanted with both erbium and silicon and annealed to produce silicon nanocrystals. Upon illumination with a 1480 nm laser diode, interaction between the nanocrystals and the rare-earth ions results in a modification of the conductivity of the oxide that enables a current to flow when a voltage is applied across the oxide layer

  6. Energy response of neutron area monitor with silicon semiconductor detector

    International Nuclear Information System (INIS)

    Kitaguchi, Hiroshi; Izumi, Sigeru; Kobayashi, Kaoru; Kaihara, Akihisa; Nakamura, Takashi.

    1993-01-01

    A prototype neutron area monitor with a silicon semiconductor detector has been developed which has the energy response of 1 cm dose equivalent recommended by the ICRP-26. Boron and proton radiators are coated on the surface of the silicon semiconductor detector. The detector is set at the center of a cylindrical polyethylene moderator. This moderator is covered by a porous cadmium board which serves as the thermal neutron absorber. Neutrons are detected as α-particles generated by the nuclear reaction 10 B(n,α) 7 Li and as recoil protons generated by the interaction of fast neutrons with hydrogen. The neutron energy response of the monitor was measured using thermal neutrons and monoenergetic fast neutrons generated by an accelerator. The response was consistent with the 1 cm dose equivalent response required for the monitor within ±34% in the range of 0.025 - 15 Mev. (author)

  7. Analysis of Photoluminescence Thermal Quenching: Guidance for the Design of Highly Effective p-type Doping of Nitrides

    Science.gov (United States)

    Liu, Zhiqiang; Huang, Yang; Yi, Xiaoyan; Fu, Binglei; Yuan, Guodong; Wang, Junxi; Li, Jinmin; Zhang, Yong

    2016-08-01

    A contact-free diagnostic technique for examining position of the impurity energy level of p-type dopants in nitride semiconductors was proposed based on photoluminescence thermal quenching. The Mg ionization energy was extracted by the phenomenological rate-equation model we developed. The diagnostic technique and analysis model reported here are priorities for the design of highly effective p-doping of nitrides and could also be used to explain the abnormal and seldom analyzed low characteristic temperature T0 (about 100 K) of thermal quenching in p-type nitrides systems. An In-Mg co-doped GaN system is given as an example to prove the validity of our methods. Furthermore, a hole concentration as high as 1.94 × 1018 cm-3 was achieved through In-Mg co-doping, which is nearly one order of magnitude higher than typically obtained in our lab.

  8. Compensation of native donor doping in ScN: Carrier concentration control and p-type ScN

    Science.gov (United States)

    Saha, Bivas; Garbrecht, Magnus; Perez-Taborda, Jaime A.; Fawey, Mohammed H.; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Hultman, Lars; Sands, Timothy D.

    2017-06-01

    Scandium nitride (ScN) is an emerging indirect bandgap rocksalt semiconductor that has attracted significant attention in recent years for its potential applications in thermoelectric energy conversion devices, as a semiconducting component in epitaxial metal/semiconductor superlattices and as a substrate material for high quality GaN growth. Due to the presence of oxygen impurities and native defects such as nitrogen vacancies, sputter-deposited ScN thin-films are highly degenerate n-type semiconductors with carrier concentrations in the (1-6) × 1020 cm-3 range. In this letter, we show that magnesium nitride (MgxNy) acts as an efficient hole dopant in ScN and reduces the n-type carrier concentration, turning ScN into a p-type semiconductor at high doping levels. Employing a combination of high-resolution X-ray diffraction, transmission electron microscopy, and room temperature optical and temperature dependent electrical measurements, we demonstrate that p-type Sc1-xMgxN thin-film alloys (a) are substitutional solid solutions without MgxNy precipitation, phase segregation, or secondary phase formation within the studied compositional region, (b) exhibit a maximum hole-concentration of 2.2 × 1020 cm-3 and a hole mobility of 21 cm2/Vs, (c) do not show any defect states inside the direct gap of ScN, thus retaining their basic electronic structure, and (d) exhibit alloy scattering dominating hole conduction at high temperatures. These results demonstrate MgxNy doped p-type ScN and compare well with our previous reports on p-type ScN with manganese nitride (MnxNy) doping.

  9. Exploring the doping effects of Ag in p-type PbSe compounds with enhanced thermoelectric performance

    Science.gov (United States)

    Wang, Shanyu; Zheng, Gang; Luo, Tingting; She, Xiaoyu; Li, Han; Tang, Xinfeng

    2011-11-01

    In this study, we prepared a series of Ag-doped PbSe bulk materials by a melting-quenching process combined with a subsequent spark plasma sintering process, and systematically investigated the doping effects of Ag on the thermoelectric properties. Ag substitution in the Pb site does not introduce resonant levels near the valence band edge or detectable change in the density of state in the vicinity of the Fermi level, but moves the Fermi level down and increases the carrier concentration to a maximum value of ~4.7 × 1019 cm-3 which is still insufficient for heavily doped PbSe compounds. Nonetheless, the non-monotonic variation in carrier concentration with increasing Ag content indicates that Ag doping reaches the solution limit at ~1.0% and the excessive Ag presumably acts as donors in the materials. Moreover, the large energy gap of the PbSe-based material wipes off significant 'roll-over' in the Seebeck coefficient at elevated temperatures which gives rise to high power factors, being comparable to p-type Te analogues. Consequently, the maximum ZT reaches ~1.0 for the 1.5% Ag-doped samples with optimized carrier density, which is ~70% improvement in comparison with an undoped sample and also superior to the commercialized p-type PbTe materials.

  10. Silicon diode measurements for monoenergetic neutrons and critical assemblies (H.P.R.R. and VIPER)

    International Nuclear Information System (INIS)

    Delafield, H.J.; Reading, A.H.

    1981-04-01

    The response of the silicon diode (AEI FNDD1) has been measured for monoenergetic neutrons of mean energies 0.56, 2.00 and 3.68 MeV. Using conversion factors from neutron fluence to kerma (ICRU, 1977) it is shown that the theoretical kerma response in muscle tissue is substantially uniform (+- 20%) over the neutron energy range from 250 keV to 17 MeV. Diode measurements were made at the Health Physics Research Reactor at the Oak Ridge National Laboratory, Tennessee, U.S.A., during the 1979 international intercomparison of nuclear accident dosimetry systems. Measurements of kerma in free air and of the surface absorbed dose on the front surface of a phantom were made with the reactor bare, shielded by 20 cm concrete and by 5 cm steel. Further tests were made at the VIPER reactor at AWRE. These diode measurements, covering a range of neutron spectra, were in good agreement (+- 20%) with measurements made by the threshold detector system. (author)

  11. Surface chemistry of a hydrogenated mesoporous p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Media, El-Mahdi, E-mail: belhadidz@tahoo.fr; Outemzabet, Ratiba, E-mail: oratiba@hotmail.com

    2017-02-15

    Highlights: • Due to its large specific surface porous silicon is used as substrate for drug therapy and biosensors. • We highlight the evidency of the contribution of the hydrides (SiHx) in the formation of the porous silicon. • The responsible species in the porous silicon formation are identified and quantified at different conditions. • By some chemical treatments we show that silicon surface can be turn from hydrophobic to hydrophilic. - Abstract: The finality of this work is devoted to the grafting of organic molecules on hydrogen passivated mesoporous silicon surfaces. The study would aid in the development for the formation of organic monolayers on silicon surface to be exploited for different applications such as the realisation of biosensors and medical devices. The basic material is silicon which has been first investigated by FTIR at atomistic plane during the anodic forward and backward polarization (i.e. “go” and “return”). For this study, we applied a numerical program based on least squares method to infrared absorbance spectra obtained by an in situ attenuated total reflection on p-type silicon in diluted HF electrolyte. Our numerical treatment is based on the fitting of the different bands of IR absorbance into Gaussians corresponding to the different modes of vibration of molecular groups such as siloxanes and hydrides. An adjustment of these absorbance bands is done systematically. The areas under the fitted bands permit one to follow the intensity of the different modes of vibration that exist during the anodic forward and backward polarization in order to compare the reversibility of the phenomenon of the anodic dissolution of silicon. It permits also to follow the evolution between the hydrogen silicon termination at forward and backward scanning applied potential. Finally a comparison between the states of the initial and final surface was carried out. We confirm the presence of clearly four and three distinct vibration modes

  12. Doping in silicon nanocrystals: An ab initio study of the structural, electronic and optical properties

    International Nuclear Information System (INIS)

    Iori, Federico; Degoli, Elena; Luppi, Eleonora; Magri, Rita; Marri, Ivan; Cantele, G.; Ninno, D.; Trani, F.; Ossicini, Stefano

    2006-01-01

    There are experimental evidences that doping control at the nanoscale can significantly modify the optical properties with respect to the pure systems. This is the case of silicon nanocrystals (Si-nc), for which it has been shown that the photoluminescence (PL) peak can be tuned also below the bulk Si band gap by properly controlling the impurities, for example by boron (B) and phosphorus (P) codoping. In this work, we report on an ab initio study of impurity states in Si-nc. We consider B and P substitutional impurities for Si-nc with a diameter up to 2.2 nm. Formation energies (FEs), electronic, optical and structural properties have been determined as a function of the cluster dimension. For both B-doped and P-doped Si-nc the FE increases on decreasing the dimension, showing that the substitutional doping gets progressively more difficult for the smaller nanocrystals. Moreover, subsurface impurity positions result to be the most stable ones. The codoping reduces the FE strongly favoring this process with respect to the simple n-doping or p-doping. Such an effect can be attributed to charge compensation between the donor and the acceptor atoms. Moreover, smaller structural deformations, with respect to n-doped and p-doped cases, localized only around the impurity sites are observed. The band gap and the optical threshold are largely reduced with respect to the undoped Si-nc showing the possibility of an impurity-based engineering of the Si-nc PL properties

  13. Neutron spectrometry with a monolithic silicon telescope.

    Science.gov (United States)

    Agosteo, S; D'Angelo, G; Fazzi, A; Para, A Foglio; Pola, A; Zotto, P

    2007-01-01

    A neutron spectrometer was set-up by coupling a polyethylene converter with a monolithic silicon telescope, consisting of a DeltaE and an E stage-detector (about 2 and 500 microm thick, respectively). The detection system was irradiated with monoenergetic neutrons at INFN-Laboratori Nazionali di Legnaro (Legnaro, Italy). The maximum detectable energy, imposed by the thickness of the E stage, is about 8 MeV for the present detector. The scatter plots of the energy deposited in the two stages were acquired using two independent electronic chains. The distributions of the recoil-protons are well-discriminated from those due to secondary electrons for energies above 0.350 MeV. The experimental spectra of the recoil-protons were compared with the results of Monte Carlo simulations using the FLUKA code. An analytical model that takes into account the geometrical structure of the silicon telescope was developed, validated and implemented in an unfolding code. The capability of reproducing continuous neutron spectra was investigated by irradiating the detector with neutrons from a thick beryllium target bombarded with protons. The measured spectra were compared with data taken from the literature. Satisfactory agreement was found.

  14. Study of aluminum-doped silicon clusters

    International Nuclear Information System (INIS)

    Zhan Shichang; Li Baoxing; Yang Jiansong

    2007-01-01

    Using full-muffin-tin-orbital molecular-dynamics (FP-LMTO-MD) method, we have investigated the effect of aluminum heteroatoms on the geometric structures and bond characteristics of Si n (n=5-10) clusters in detail. It is found that the geometric framework of the ground state structures for Si n (n=5-10) clusters change to some extent upon the substitution of Al atoms in some Si atoms. The effect of aluminum doping on the silicon clusters depends on the geometric structures of Si n (n=5-10) clusters. In particular, the calculations suggest that the aluminum doping would improve the bond strength of some Si-Si bonds in the mixed Si n - m Al m clusters

  15. Spectra of fast neutrons using a lithiated glass film on silicon

    International Nuclear Information System (INIS)

    Wallace, Steven; Stephan, Andrew C.; Womble, Phillip C.; Begtrup, Gavi; Dai Sheng

    2003-01-01

    Experimental results of a neutron detector manufactured by coating a silicon charged particle detector with a film of lithiated glass are presented. The silicon surface barrier detector (SBD) responds to the 6 Li(n, alpha)triton reaction products generated in the thin film of lithiated glass entering the SBD. Neutron spectral information is present in the pulse height spectrum. An energy response is seen that clearly shows that neutrons from a Pu-Be source and from a deuterium-tritium (D-T) pulsed neutron generator can be differentiated and counted above a gamma background. The significant result is that the fissile content within a container can be measured using a pulsed D-T neutron generator using the neutrons that are counted in the interval between the pulses

  16. Theory of Doping and Defects in III-V Nitrides

    OpenAIRE

    van de Walle, Chris G.; Stampfl, Catherine; Neugebauer, Joerg

    1998-01-01

    Doping problems in GaN and in AlGaN alloys are addressed on the basis of state-of-the-art first-principles calculations. For n-type doping we find that nitrogen vacancies are too high in energy to be incorporated during growth, but silicon and oxygen readily form donors. The properties of oxygen, including DX-center formation, support it as the main cause of unintentional n-type conductivity. For p-type doping we find that the solubility of Mg is the main factor limiting the hole concentratio...

  17. Electron and gamma-ray irradiated NTD Si p-n structures static and dynamic parameters trade-off

    International Nuclear Information System (INIS)

    Marchenko, I.G.; Zhdanovich, N.E.; Karas', V.I.

    2005-01-01

    The comparison of different radiation defects types influence on static and dynamic parameters trade-off of power diodes fabricated on neutron-transmutation doped silicon have been fulfilled. Various defects sets were introduced utilizing electron irradiation (E=6 MeV), gamma-ray Co 60 irradiation and electron irradiation and subsequent annealing at temperature 700 degrees centigrade. It is established that optimal trade-of between forward voltage drop and operation speed is achieved in case of electron irradiation and annealing. In this case recombination process is governed by defect with energy level near middle of forbidden gap (E c -0.53 eV). The results obtained indicate on possibility of using these defect recombination properties for speed control in production of power fast high-voltage devices on the base of neutron-transmutation doped silicon. (authors)

  18. Amorphous silicon passivation for 23.3% laser processed back contact solar cells

    Science.gov (United States)

    Carstens, Kai; Dahlinger, Morris; Hoffmann, Erik; Zapf-Gottwick, Renate; Werner, Jürgen H.

    2017-08-01

    This paper presents amorphous silicon deposited at temperatures below 200 °C, leading to an excellent passivation layer for boron doped emitter and phosphorus doped back surface field areas in interdigitated back contact solar cells. A higher deposition temperature degrades the passivation of the boron emitter by an increased hydrogen effusion due to lower silicon hydrogen bond energy, proved by hydrogen effusion measurements. The high boron surface doping in crystalline silicon causes a band bending in the amorphous silicon. Under these conditions, at the interface, the intentionally undoped amorphous silicon becomes p-type conducting, with the consequence of an increased dangling bond defect density. For bulk amorphous silicon this effect is described by the defect pool model. We demonstrate, that the defect pool model is also applicable to the interface between amorphous and crystalline silicon. Our simulation shows the shift of the Fermi energy towards the valence band edge to be more pronounced for high temperature deposited amorphous silicon having a small bandgap. Application of optimized amorphous silicon as passivation layer for the boron doped emitter and phosphorus doped back surface field on the rear side of laser processed back contact solar cells, fabricated using four laser processing steps, yields an efficiency of 23.3%.

  19. Investigation of magnetism in aluminum-doped silicon carbide nanotubes

    Science.gov (United States)

    Behzad, Somayeh; Chegel, Raad

    2013-11-01

    The effect of aluminum doping on the structural, electronic and magnetic properties of (8,0) silicon carbide nanotube (SiCNT) is investigated using spin-polarized density functional theory. It is found from the calculation of the formation energies that aluminum substitution for silicon atom is preferred. Our results show that the magnetization depends on the substitutional site, aluminum substitution at silicon site does not introduce any spin-polarization, whereas the aluminum substitution for carbon atom yields a spin polarized, almost dispersionless π band within the original band gap.

  20. DFT plus U studies of Cu doping and p-type compensation in crystalline and amorphous ZnS

    NARCIS (Netherlands)

    Pham, Hieu H.; Barkema, Gerard T.|info:eu-repo/dai/nl/101275080; Wang, Lin-Wang

    2015-01-01

    Zinc sulfide is an excellent candidate for the development of a p-type transparent conducting material that has great demands in solar energy and optoelectronic applications. Doping with Cu is one potential way to make ZnS p-type while preserving its optical transparency for the solar spectrum;

  1. Neutron-transmutation-doped germanium bolometers

    Science.gov (United States)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  2. Easily doped p-type, low hole effective mass, transparent oxides

    Science.gov (United States)

    Sarmadian, Nasrin; Saniz, Rolando; Partoens, Bart; Lamoen, Dirk

    2016-02-01

    Fulfillment of the promise of transparent electronics has been hindered until now largely by the lack of semiconductors that can be doped p-type in a stable way, and that at the same time present high hole mobility and are highly transparent in the visible spectrum. Here, a high-throughput study based on first-principles methods reveals four oxides, namely X2SeO2, with X = La, Pr, Nd, and Gd, which are unique in that they exhibit excellent characteristics for transparent electronic device applications - i.e., a direct band gap larger than 3.1 eV, an average hole effective mass below the electron rest mass, and good p-type dopability. Furthermore, for La2SeO2 it is explicitly shown that Na impurities substituting La are shallow acceptors in moderate to strong anion-rich growth conditions, with low formation energy, and that they will not be compensated by anion vacancies VO or VSe.

  3. type doping in the channel of graphene nanoribbon

    Indian Academy of Sciences (India)

    type doping in the channel is better with smaller supply voltage compared to higher supply voltage. On increasing the n -type doping concentration, we obtained better on-current and output characteristics in comparison with undoped and p ...

  4. Effect of silicon, tantalum, and tungsten doping and polarization on bioactivity of hydroxyapatite

    Science.gov (United States)

    Dhal, Jharana

    Hydroxyapatite (HAp) ceramics has important applications as bone graft because of the structural and compositional similarities with bone tissue. However, inferior osteogenic capacity to bone and poor mechanical properties have been identified to be major disadvantages of synthetic HAp compared to the living bone tissue. The objective of the current study is to evaluate the effect of doping with higher valent cations (Tungsten, tantalum, and silicon) and polarization or combination of both on change in property of doped HAp and subsequent impact its bioactivity. In vitro study with human osteoblast cells was used to investigate the influences of doping and polarization on bone cell-materials interactions. The bioactivity of doped HAp was compared with pure HAp. Effect of doping and polarization on the change in HAp was investigated by monitoring change in mineral phases, stored charge, and activation energy of HAp. Activation energy of depolarization was used to explain the possible mechanism of polarization in doped samples. Bioactivity of HAp increased when doped with tantalum and tungsten. Polarization further increased the bioactivity of tungsten- and tantalum-doped samples. Increase in bioactivity on polarized and doped samples was attributed to increase in surface energy and increase in surface wettability. Whereas, an increase in bioactivity on doped unpolarized surface was attributed to change in microstructure. Polarized charge calculated from TSDC indicates that polarized charge decreases on tantalum- and tungsten-doped HAp. The decrease in polarized charge was attributed to the presence of significant amount of different phases that may hinder the ionic motion in doped samples. However, for silicon-doped HAp, TSDC study showed no difference in the mechanism of polarization between doped and undoped samples. Increase in silicon doping decreased the grain size though mechanism is not affected by grain size. Total stored charge decreased with increase in

  5. Subband structure comparison between n- and p- type double delta-doped Ga As quantum wells

    International Nuclear Information System (INIS)

    Rodriguez V, I.; Gaggero S, L.M.

    2004-01-01

    We compute the electron level structure (n-type) and the hole subband structure (p-type) of double -doped GaAs (DDD) quantum wells, considering exchange effects. The Thomas-Fermi (TF), and Thomas-Fermi-Dirac (TFD) approximations have been applied in order to describe the bending of the conduction and valence band, respectively. The electron and the hole subband structure study indicates that exchange effects are more important in p-type DDD quantum wells than in n-type DDD Also our results agree with the experimental data available. (Author) 33 refs., 2 tabs., 5 figs

  6. Passivation mechanism in silicon heterojunction solar cells with intrinsic hydrogenated amorphous silicon oxide layers

    Science.gov (United States)

    Deligiannis, Dimitrios; van Vliet, Jeroen; Vasudevan, Ravi; van Swaaij, René A. C. M. M.; Zeman, Miro

    2017-02-01

    In this work, we use intrinsic hydrogenated amorphous silicon oxide layers (a-SiOx:H) with varying oxygen content (cO) but similar hydrogen content to passivate the crystalline silicon wafers. Using our deposition conditions, we obtain an effective lifetime (τeff) above 5 ms for cO ≤ 6 at. % for passivation layers with a thickness of 36 ± 2 nm. We subsequently reduce the thickness of the layers using an accurate wet etching method to ˜7 nm and deposit p- and n-type doped layers fabricating a device structure. After the deposition of the doped layers, τeff appears to be predominantly determined by the doped layers themselves and is less dependent on the cO of the a-SiOx:H layers. The results suggest that τeff is determined by the field-effect rather than by chemical passivation.

  7. Physically sound parameterization of incomplete ionization in aluminum-doped silicon

    Directory of Open Access Journals (Sweden)

    Heiko Steinkemper

    2016-12-01

    Full Text Available Incomplete ionization is an important issue when modeling silicon devices featuring aluminum-doped p+ (Al-p+ regions. Aluminum has a rather deep state in the band gap compared to boron or phosphorus, causing strong incomplete ionization. In this paper, we considerably improve our recent parameterization [Steinkemper et al., J. Appl. Phys. 117, 074504 (2015]. On the one hand, we found a fundamental criterion to further reduce the number of free parameters in our fitting procedure. And on the other hand, we address a mistake in the original publication of the incomplete ionization formalism in Altermatt et al., J. Appl. Phys. 100, 113715 (2006.

  8. Electronic structure of p type Delta doped systems

    International Nuclear Information System (INIS)

    Gaggero S, L.M.; Perez A, R.

    1998-01-01

    We summarize of the results obtained for the electronic structure of quantum wells that consist in an atomic layer doped with impurities of p type. The calculations are made within the frame worth of the wrapper function approach to independent bands and with potentials of Hartree. We study the cases reported experimentally (Be in GaAs and B in Si). We present the levels of energy, the wave functions and the rate of the electronic population between the different subbands, as well as the dependence of these magnitudes with the density of impurities in the layer. The participation of the bans of heavy holes is analysed, light and split-off band in the total electronic population. The effect of the temperature is discussed and we give a possible qualitative explanation of the experimental optical properties. (Author)

  9. Exploring the doping effects of Ag in p-type PbSe compounds with enhanced thermoelectric performance

    International Nuclear Information System (INIS)

    Wang Shanyu; Zheng Gang; Luo Tingting; She Xiaoyu; Li Han; Tang Xinfeng

    2011-01-01

    In this study, we prepared a series of Ag-doped PbSe bulk materials by a melting-quenching process combined with a subsequent spark plasma sintering process, and systematically investigated the doping effects of Ag on the thermoelectric properties. Ag substitution in the Pb site does not introduce resonant levels near the valence band edge or detectable change in the density of state in the vicinity of the Fermi level, but moves the Fermi level down and increases the carrier concentration to a maximum value of ∼4.7 × 10 19 cm -3 which is still insufficient for heavily doped PbSe compounds. Nonetheless, the non-monotonic variation in carrier concentration with increasing Ag content indicates that Ag doping reaches the solution limit at ∼1.0% and the excessive Ag presumably acts as donors in the materials. Moreover, the large energy gap of the PbSe-based material wipes off significant 'roll-over' in the Seebeck coefficient at elevated temperatures which gives rise to high power factors, being comparable to p-type Te analogues. Consequently, the maximum ZT reaches ∼1.0 for the 1.5% Ag-doped samples with optimized carrier density, which is ∼70% improvement in comparison with an undoped sample and also superior to the commercialized p-type PbTe materials.

  10. Variation of minority charge carrier lifetime in high-resistance p-type silicon under irradiation

    International Nuclear Information System (INIS)

    Basheleishvili, Z.V.; Garnyk, V.S.; Gorin, S.N.; Pagava, T.A.

    1984-01-01

    The minority carrier lifetime (tau) variation was studied in the process of p-type silicon bombardment with fast 8 MeV electrons. The irradiation and all measurements were carried out at room temperature. The tau quantity was measured by the photoconductivity attenuation method at a low injection level 20% measurement error; the resistivity was measured by the four-probe method (10% error). The resistivity and minority charge carrier lifetime tau are shown to increase with the exposure dose. It is supposed that as radiation dose increases, the rearrangement of the centres responsible for reducing the lifetime occurs and results in a tau increase in the material being irradiated, however the tau value observed in the original samples is not attained. The restoration of the minority carrier lifetime in p-type high-resistance silicon with a growing exposure dose might proceed due to reduction in the free carrier concentration

  11. Controlling the Er content of porous silicon using the doping current intensity

    KAUST Repository

    Mula, Guido

    2014-07-04

    The results of an investigation on the Er doping of porous silicon are presented. Electrochemical impedance spectroscopy, optical reflectivity, and spatially resolved energy dispersive spectroscopy (EDS) coupled to scanning electron microscopy measurements were used to investigate on the transient during the first stages of constant current Er doping. Depending on the applied current intensity, the voltage transient displays two very different behaviors, signature of two different chemical processes. The measurements show that, for equal transferred charge and identical porous silicon (PSi) layers, the applied current intensity also influences the final Er content. An interpretative model is proposed in order to describe the two distinct chemical processes. The results can be useful for a better control over the doping process.

  12. Radiation damage and defect behavior in proton irradiated lithium-counterdoped n+p silicon solar cells

    Science.gov (United States)

    Stupica, John; Goradia, Chandra; Swartz, Clifford K.; Weinberg, Irving

    1987-01-01

    Two lithium-counterdoped n+p silicon solar cells with different lithium concentrations were irradiated by 10-MeV protons. Cell performance was measured as a function of fluence, and it was found that the cell with the highest concentration of lithium had the highest radiation resistance. Deep level transient spectroscopy which showed two deep level defects that were lithium related. Relating the defect energy levels obtained from this study with those from earlier work using 1-MeV electron irradiation shows no correlation of the defect energy levels. There is one marked similarity: the absence of the boron-interstitial-oxygen-interstitial defect. This consistency strengthens the belief that lithium interacts with oxygen to prevent the formation of the boron interstitial-oxygen interstitial defect. The results indicate that, in general, addition of lithium in small amounts to the p-base of a boron doped silicon solar cell such that the base remains p-type, tends to increase the radiation resistance of the cell.

  13. Narrow, highly P-doped, planar wires in silicon created by scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruess, F J [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, NSW 2052 (Australia); Goh, K E J [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, NSW 2052 (Australia); Butcher, M J [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Reusch, T C G [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, NSW 2052 (Australia); Oberbeck, L [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, NSW 2052 (Australia); Weber, B [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Hamilton, A R [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Simmons, M Y [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, NSW 2052 (Australia)

    2007-01-31

    We demonstrate the use of a scanning tunnelling microscope (STM) to pattern buried, highly planar phosphorus-doped silicon wires with widths down to the sub-10 nm level. We confirm the structural integrity of these wires using both buried dopant imaging techniques and ex situ electrical characterization. Four terminal I-V characteristics at 4 K show ohmic behaviour for all wires with resistivities between 1 and 24 x 10{sup -8} {omega} cm. Magnetotransport measurements reveal that conduction is dominated by disordered scattering with quantum corrections consistent with 2D weak localization theory. Our results show that these quantum corrections become more pronounced as the electron phase coherence length approaches the width of the wire.

  14. Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics

    KAUST Repository

    Nogay, Gizem

    2016-09-26

    Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation. © 2011-2012 IEEE.

  15. Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics

    KAUST Repository

    Nogay, Gizem; Seif, Johannes Peter; Riesen, Yannick; Tomasi, Andrea; Jeangros, Quentin; Wyrsch, Nicolas; Haug, Franz-Josef; De Wolf, Stefaan; Ballif, Christophe

    2016-01-01

    Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation. © 2011-2012 IEEE.

  16. Effect of compressive stress on stability of N-doped p-type ZnO

    International Nuclear Information System (INIS)

    Chen Xingyou; Zhang Zhenzhong; Jiang Mingming; Wang Shuangpeng; Li Binghui; Shan Chongxin; Liu Lei; Zhao Dongxu; Shen Dezhen; Yao Bin

    2011-01-01

    Nitrogen-doped p-type zinc oxide (p-ZnO:N) thin films were fabricated on a-/c-plane sapphire (a-/c-Al 2 O 3 ) by plasma-assisted molecular beam epitaxy. Hall-effect measurements show that the p-type ZnO:N on c-Al 2 O 3 degenerated into n-type after a preservation time; however, the one grown on a-Al 2 O 3 showed good stability. The conversion of conductivity in the one grown on c-Al 2 O 3 ascribed to the faster disappearance of N O and the growing N 2(O) , which is demonstrated by x-ray photoelectron spectroscopy (XPS). Compressive stress, caused by lattice misfit, was revealed by Raman spectra and optical absorption spectra, and it was regarded as the root of the instability in ZnO:N.

  17. Microstructure and wear behaviour of silicon doped Cr-N nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bao Mingdong, E-mail: bmingd@yahoo.com.c [School of mechanical engineering, Ningbo University of Technology, Ningbo 315016 (China); Yu Lei; Xu Xuebo [School of mechanical engineering, Ningbo University of Technology, Ningbo 315016 (China); He Jiawen [State Key Lab. for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an, 710049 (China); Sun Hailin [Teer Coatings Ltd., Berry Hill Industrial Estate, Droitwich Worcestershire WR9 9AS (United Kingdom); Zhejiang Huijin-Teer Coatings Technolgy Co., Ltd., Lin' an 311305 (China); Teer, D.G. [Teer Coatings Ltd., Berry Hill Industrial Estate, Droitwich Worcestershire WR9 9AS (United Kingdom)

    2009-07-01

    Hard Cr-N and silicon doped Cr-Si-N nanocomposite coatings were deposited using closed unbalanced magnetron sputtering ion plating system. Coatings doped with various Si contents were synthesized by changing the power applied on Si targets. Composition of the films was analyzed using glow discharge optical emission spectrometry (GDOES). Microstructure and properties of the coatings were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and nano-indentation. The harnesses and the elastic modulus of Cr-Si-N coatings gradually increased with rising of silicon content and exhibited a maximum at silicon content of 4.1 at.% and 5.5 at.%. The maximum hardness and elastic modulus of the Cr-Si-N nanocomposite coatings were approximately 30 GPa and 352 GPa, respectively. Further increase in the silicon content resulted in a decrease in the hardness and the elastic modulus of the coatings. Results from XRD analyses of CrN coatings indicated that strongly preferred orientations of (111) were detected. The diffraction patterns of Cr-Si-N coatings showed a clear (220) with weak (200) and (311) preferred orientations, but the peak of CrN (111) was decreased with the increase of Si concentration. The XRD data of single-phase Si{sub 3}N{sub 4} was free of peak. The peaks of CrN (111) and (220) were shifted slightly and broadened with the increase of silicon content. SEM observations of the sections of Cr-Si-N coatings with different silicon concentrations showed a typical columnar structure. It was evident from TEM observation that nanocomposite Cr-Si-N coatings exhibited nano-scale grain size. Friction coefficient and specific wear rate (SWR) of silicon doped Cr-N coatings from pin-on-disk test were significantly lower in comparison to that of CrN coatings.

  18. Silicon photo-multiplier radiation hardness tests with a beam controlled neutron source

    International Nuclear Information System (INIS)

    Angelone, M.; Pillon, M.; Faccini, R.; Pinci, D.; Baldini, W.; Calabrese, R.; Cibinetto, G.; Cotta Ramusino, A.; Malaguti, R.; Pozzati, M.

    2010-01-01

    Radiation hardness tests were performed at the Frascati Neutron Generator on silicon Photo-Multipliers that were made of semiconductor photon detectors built from a square matrix of avalanche photo-diodes on a silicon substrate. Several samples from different manufacturers have been irradiated, integrating up to 7x10 10 1-MeV-equivalent neutrons per cm 2 . Detector performance was recorded during the neutron irradiation, and a gradual deterioration of their properties began after an integrated fluence of the order of 10 8 1-MeV-equivalent neutrons per cm 2 was reached.

  19. Transmission electron microscope study of neutron irradiation-induced defects in silicon

    International Nuclear Information System (INIS)

    Oshima, Ryuichiro; Kawano, Tetsuya; Fujimoto, Ryoji

    1994-01-01

    Commercial Czochralski-grown silicon (Cz-Si) and float-zone silicon (Fz-Si) wafers were irradiated with fission neutrons at various fluences from 10 19 to 10 22 n/cm 2 at temperatures ranging from 473 K to 1043 K. The irradiation induced defect structures were examined by transmission electron microscopy and ultra high voltage electron microscopy, which were compared with Marlowe code computer simulation results. It was concluded that the vacancy-type damage structure formed at 473 K were initiated from collapse of vacancy-rich regions of cascades, while interstitial type defect clusters formed by irradiation above 673 K were associated with interstitial oxygen atoms and free interstitials which diffused out of the cascades. Complex defect structures were identified to consist of {113} and {111} planar faults by the parallel beam illumination diffraction analysis. (author)

  20. p-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Xiu, F.X.; Yang, Z.; Mandalapu, L.J.; Liu, J.L.; Beyermann, W. P.

    2006-01-01

    Phosphorus-doped p-type ZnO films were grown on r-plane sapphire substrates using molecular-beam epitaxy with a solid-source GaP effusion cell. X-ray diffraction spectra and reflection high-energy electron diffraction patterns indicate that high-quality single crystalline (1120) ZnO films were obtained. Hall and resistivity measurements show that the phosphorus-doped ZnO films have high hole concentrations and low resistivities at room temperature. Photoluminescence (PL) measurements at 8 K reveal a dominant acceptor-bound exciton emission with an energy of 3.317 eV. The acceptor energy level of the phosphorus dopant is estimated to be 0.18 eV above the valence band from PL spectra, which is also consistent with the temperature dependence of PL measurements

  1. Radiation Hardness tests with neutron flux on different Silicon photomultiplier devices

    Science.gov (United States)

    Cattaneo, P. W.; Cervi, T.; Menegolli, A.; Oddone, M.; Prata, M.; Prata, M. C.; Rossella, M.

    2017-07-01

    Radiation hardness is an important requirement for solid state readout devices operating in high radiation environments common in particle physics experiments. The MEG II experiment, at PSI, Switzerland, investigates the forbidden decay μ+ → e+ γ. Exploiting the most intense muon beam of the world. A significant flux of non-thermal neutrons (kinetic energy Ek>= 0.5 MeV) is present in the experimental hall produced along the beam-line and in the hall itself. We present the effects of neutron fluxes comparable to the MEG II expected doses on several Silicon Photomultiplier (SiPMs). The tested models are: AdvanSiD ASD-NUV3S-P50 (used in MEG II experiment), AdvanSiD ASD-NUV3S-P40, AdvanSiD ASD-RGB3S-P40, Hamamatsu and Excelitas C30742-33-050-X. The neutron source is the thermal Sub-critical Multiplication complex (SM1) moderated with water, located at the University of Pavia (Italy). We report the change of SiPMs most important electric parameters: dark current, dark pulse frequency, gain, direct bias resistance, as a function of the integrated neutron fluency.

  2. Direct Electroplating on Highly Doped Patterned Silicon Wafers

    NARCIS (Netherlands)

    Vargas Llona, Laura Dolores; Jansen, Henricus V.; Elwenspoek, Michael Curt

    Nickel thin films have been electrodeposited directly on highly doped silicon wafers after removal of the native oxide layer. These substrates conduct sufficiently well to allow deposition using a periferical electrical contact on the wafer. Films 2 μm thick were deposited using a nickel sulfamate

  3. Nondestructive neutron activation analysis of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Vandergraaf, T. T.; Wikjord, A. G.

    1973-10-15

    Instrumentel neutron activation analysis was used to determine trace constituents in silicon carbide. Four commercial powders of different origin, an NBS reference material, and a single crystal were characterized. A total of 36 activation species were identified nondestructively by high resolution gamma spectrometry; quantitative results are given for 12 of the more predominant elements. The limitations of the method for certain elements are discussed. Consideration is given to the depression of the neutron flux by impurities with large neutron absorption cross sections. Radiation fields from the various specimens were estimated assuming all radionuclides have reached their saturation activities. (auth)

  4. Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Behzad, Somayeh, E-mail: somayeh.behzad@gmail.co [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Moradian, Rostam [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Science and Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of); Computational Physical Science Research Laboratory, Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Chegel, Raad [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)

    2010-12-01

    The effects of boron doping on the structural and electronic properties of (6,0)-(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.

  5. Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes

    International Nuclear Information System (INIS)

    Behzad, Somayeh; Moradian, Rostam; Chegel, Raad

    2010-01-01

    The effects of boron doping on the structural and electronic properties of (6,0)-(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.

  6. Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes

    Science.gov (United States)

    Behzad, Somayeh; Moradian, Rostam; Chegel, Raad

    2010-12-01

    The effects of boron doping on the structural and electronic properties of (6,0)@(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.

  7. Preliminary study on 2-dimensional distributions of 10B reaction rate in a water phantom with boron-doped CR-39 for 7Li(p, n)7Be neutrons by 1.95 MeV protons

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Tanaka, K.; Tsuruta, T.

    2000-01-01

    In an Accelerator-based neutron irradiation field using 7 Li(p, n) 7 Be neutrons by 1.95 MeV protons, the distributions of 10 B reaction rates and thermal neutron fluence in a water phantom were measured using Boron-doped CR-39 and Au activation analysis, respectively. Comparing the results of the measurements, we discussed the validity of the evaluation method of 10 B reaction rate using thermal neutron fluence. (author)

  8. Silicon Photo-Multiplier Radiation Hardness Tests with a White Neutron Beam

    International Nuclear Information System (INIS)

    Montanari, A.; Tosi, N.; Pietropaolo, A.; Andreotti, M.; Baldini, W.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Cotta Ramusino, A.; Malaguti, R.; Santoro, V.; Tellarini, G.; Tomassetti, L.; De Donato, C.; Reali, E.

    2013-06-01

    We report radiation hardness tests performed, with a white neutron beam, at the Geel Electron Linear Accelerator in Belgium on silicon Photo-Multipliers. These are semiconductor photon detectors made of a square matrix of Geiger-Mode Avalanche photo-diodes on a silicon substrate. Several samples from different manufacturers have been irradiated integrating up to about 6.2 x 10 9 1-MeV-equivalent neutrons per cm 2 . (authors)

  9. Neutron shielding material

    International Nuclear Information System (INIS)

    Nodaka, M.; Iida, T.; Taniuchi, H.; Yosimura, K.; Nagahama, H.

    1993-01-01

    From among the neutron shielding materials of the 'kobesh' series developed by Kobe Steel, Ltd. for transport and storage packagings, silicon rubber base type material has been tested for several items with a view to practical application and official authorization, and in order to determine its adaptability to actual vessels. Silicon rubber base type 'kobesh SR-T01' is a material in which, from among the silicone rubber based neutron shielding materials, the hydrogen content is highest and the boron content is most optimized. Its neutron shielding capability has been already described in the previous report (Taniuchi, 1986). The following tests were carried out to determine suitability for practical application; 1) Long-term thermal stability test 2) Pouring test on an actual-scale model 3) Fire test The experimental results showed that the silicone rubber based neutron shielding material has good neutron shielding capability and high long-term fire resistance, and that it can be applied to the advanced transport packaging. (author)

  10. Microstructured silicon neutron detectors for security applications

    International Nuclear Information System (INIS)

    Esteban, S; Fleta, C; Jumilla, C; Pellegrini, G; Quirion, D; Rodriguez, J; Lozano, M; Guardiola, C

    2014-01-01

    In this paper we present the design and performance of a perforated thermal neutron silicon detector with a 6 LiF neutron converter. This device was manufactured within the REWARD project workplace whose aim is to develop and enhance technologies for the detection of nuclear and radiological materials. The sensor perforated structure results in a higher efficiency than that obtained with an equivalent planar sensor. The detectors were tested in a thermal neutron beam at the nuclear reactor at the Instituto Superior Técnico in Lisbon and the intrinsic detection efficiency for thermal neutrons and the gamma sensitivity were obtained. The Geant4 Monte Carlo code was used to simulate the experimental conditions, i.e. thermal neutron beam and the whole detector geometry. An intrinsic thermal neutron detection efficiency of 8.6%±0.4% with a discrimination setting of 450 keV was measured

  11. Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals

    International Nuclear Information System (INIS)

    Makarova, Maria; Sih, Vanessa; Vuckovic, Jelena; Warga, Joe; Li Rui; Dal Negro, Luca

    2008-01-01

    Photonic crystal nanocavities are fabricated in silicon membranes covered by thermally annealed silicon-rich nitride films with Erbium-doped silicon nanocrystals. Silicon nitride films were deposited by sputtering on top of silicon on insulator wafers. The nanocavities were carefully designed in order to enhance emission from the nanocrystal sensitized Erbium at the 1540 nm wavelength. Experimentally measured quality factors of ∼6000 were found to be consistent theoretical predictions. The Purcell factor of 1.4 was estimated from the observed 20-fold enhancement of Erbium luminescence

  12. Generation of neutron scattering cross sections for silicon dioxide

    International Nuclear Information System (INIS)

    Ramos, R; Marquez Damian, J.I; Granada, J.R.; Cantargi, F

    2009-01-01

    A set of neutron scattering cross sections for silicon and oxygen bound in silicon dioxide were generated and validated. The cross sections were generated in the ACE format for MCNP using the nuclear data processing system NJOY, and the validation was done with published experimental data. This cross section library was applied to the calculation of five critical configurations published in the benchmark Critical Experiments with Heterogeneous Compositions of Highly Enriched Uranium, Silicon Dioxide and Polyethylene. The original calculations did not use the thermal scattering libraries generated in this work and presented significant differences with the experimental results. For this reason, the newly generated library was added to the input and the multiplication factor for each configuration was recomputed. The utilization of the thermal scattering libraries did not result in an improvement of the computational results. Based on this we conclude that integral experiments to validate this type of thermal cross sections need to be designed with a higher influence of thermal scattering in the measured result, and the experiments have to be performed under more controlled conditions. [es

  13. Epitaxy - a new technology for fabrication of advanced silicon radiation detectors

    International Nuclear Information System (INIS)

    Kemmer, J.; Wiest, F.; Pahlke, A.; Boslau, O.; Goldstrass, P.; Eggert, T.; Schindler, M.; Eisele, I.

    2005-01-01

    Twenty five years after the introduction of the planar process to the fabrication of silicon radiation detectors a new technology, which replaces the ion implantation doping by silicon epitaxy is presented. The power of this new technique is demonstrated by fabrication of silicon drift detectors (SDDs), whereby both the n-type and p-type implants are replaced by n-type and p-type epi-layers. The very first SDDs ever produced with this technique show energy resolutions of 150 eV for 55 Fe at -35 deg C. The area of the detectors is 10 mm 2 and the thickness 300 μm. The high potential of epitaxy for future detectors with integrated complex electronics is described

  14. Uranium doping and neutron irradiation of Bi-2223 superconduction tapes for improved critical current density

    International Nuclear Information System (INIS)

    Moss, S.D.; Wang, W.G.; Dou, S.X.; Weinstein, R.

    1998-01-01

    It is demonstrated that a combination of neutron irradiation with uranium doping introduce fission tracks through a Bi-2223 tape which act as effective pinning centres, leading to a substantial increase in critical current. Preliminary data suggests that the combination of uranium doping and neutron irradiation produces improved flux pinning in Bi-2223 tapes over neutron irradiation alone. Before irradiation, SEM, DTA and XRD analyses were performed on the tapes. Both before and after irradiation the trapped maximum magnetic flux was measured at 77K. Before neutron irradiation, uranium doping has no effect on critical current. Preliminary SEM data suggested that the uranium is homogeneously distributed throughout the oxide core of the tape. The presence of 2212 and other secondary phases in the doped tapes suggest further refinement of the sintering procedure is necessary. (authors)

  15. Neutrons for probing matter

    International Nuclear Information System (INIS)

    Torres, F. Ed.; Mazzucchetti, D.

    2008-01-01

    The authors tell the story of the French Orphee reactor located in Saclay from the decision to build it in the seventies, to its commissioning in 1980, to its upgrading in the nineties and to its today's operating life. As early as its feasibility studies Orphee has been designed as a dual-purpose reactor: scientific research for instance in crystallography and magnetism, and industrial uses like neutron radiography, silicon doping or radionuclide production. This book is divided into 4 parts: 1) the neutron: an explorer of the matter, 2) the Orphee reactor: a neutron source, 3) the adventurers of the matter: Leon Brillouin laboratory's staff, and 4) the perspectives for neutrons

  16. RBS and XRD analysis of silicon doped titanium diboride films

    International Nuclear Information System (INIS)

    Mollica, S.; Sood, D.K.; Ghantasala, M.K.; Kothari, R.

    1999-01-01

    Titanium diboride is a newly developed material suitable for protective coatings. Its high temperature oxidation resistance at temperatures of 700 deg C and beyond is limited due to its poor oxidative behaviour. This paper presents a novel approach to improving the coatings' oxidative characteristics at temperatures of 700 deg C by doping with silicon. Titanium diboride films were deposited onto Si(100) wafer substrates using a DC magnetron sputtering system. Films were deposited in two different compositions, one at pure TiB 2 and the other with 20 % Si doping. These samples were vacuum annealed at 700 deg C at 1x10 -6 Torr to investigate the anaerobic behaviour of the material at elevated temperatures and to ensure that they were crystalline. Samples were then oxidised in air at 700 deg C to investigate their oxidation resistance. Annealing the films at 700 deg C in air results in the oxidation of the film as titanium and boron form TiO 2 and B 2 O 3 . Annealing is seen to produce only minor changes in the films. There is some silicon diffusion from the substrate at elevated temperatures, which is related to the porous nature of the deposited film and the high temperature heat treatments. However, silicon doped films showed relatively less oxidation characteristics after annealing in air compared with the pure TiB 2 samples

  17. Results on photon and neutron irradiation of semitransparent amorphous-silicon sensors

    CERN Document Server

    Carabe, J; Ferrando, A; Fuentes, J; Gandia, J J; Josa-Mutuberria, I; Molinero, A; Oller, J C; Arce, P; Calvo, E; Figueroa, C F; García, N; Matorras, F; Rodrigo, T; Vila, I; Virto, A L; Fenyvesi, A; Molnár, J; Sohler, D

    2000-01-01

    Semitransparent amorphous-silicon sensors are basic elements for laser 2D position reconstruction in the CMS multipoint alignment link system. Some of the sensors have to work in a very hard radiation environment. Two different sensor types have been irradiated with /sup 60/Co photons (up to 100 kGy) and fast neutrons (up to 10/sup 15 / cm/sup -2/), and the subsequent change in their performance has been measured. (13 refs).

  18. Effect of compressive stress on stability of N-doped p-type ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xingyou [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Dongnanhu Road, Changchun 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang Zhenzhong; Jiang Mingming; Wang Shuangpeng; Li Binghui; Shan Chongxin; Liu Lei; Zhao Dongxu; Shen Dezhen [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Dongnanhu Road, Changchun 130033 (China); Yao Bin [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China)

    2011-08-29

    Nitrogen-doped p-type zinc oxide (p-ZnO:N) thin films were fabricated on a-/c-plane sapphire (a-/c-Al{sub 2}O{sub 3}) by plasma-assisted molecular beam epitaxy. Hall-effect measurements show that the p-type ZnO:N on c-Al{sub 2}O{sub 3} degenerated into n-type after a preservation time; however, the one grown on a-Al{sub 2}O{sub 3} showed good stability. The conversion of conductivity in the one grown on c-Al{sub 2}O{sub 3} ascribed to the faster disappearance of N{sub O} and the growing N{sub 2(O)}, which is demonstrated by x-ray photoelectron spectroscopy (XPS). Compressive stress, caused by lattice misfit, was revealed by Raman spectra and optical absorption spectra, and it was regarded as the root of the instability in ZnO:N.

  19. Investigation on the structural characterization of pulsed p-type porous silicon

    Science.gov (United States)

    Wahab, N. H. Abd; Rahim, A. F. Abd; Mahmood, A.; Yusof, Y.

    2017-08-01

    P-type Porous silicon (PS) was sucessfully formed by using an electrochemical pulse etching (PC) and conventional direct current (DC) etching techniques. The PS was etched in the Hydrofluoric (HF) based solution at a current density of J = 10 mA/cm2 for 30 minutes from a crystalline silicon wafer with (100) orientation. For the PC process, the current was supplied through a pulse generator with 14 ms cycle time (T) with 10 ms on time (Ton) and pause time (Toff) of 4 ms respectively. FESEM, EDX, AFM, and XRD have been used to characterize the morphological properties of the PS. FESEM images showed that pulse PS (PPC) sample produces more uniform circular structures with estimated average pore sizes of 42.14 nm compared to DC porous (PDC) sample with estimated average size of 16.37nm respectively. The EDX spectrum for both samples showed higher Si content with minimal presence of oxide.

  20. Photon response of silicon diode neutron detectors

    International Nuclear Information System (INIS)

    McCall, R.C.; Jenkins, T.M.; Oliver, G.D. Jr.

    1976-07-01

    The photon response of silicon diode neutron detectors was studied to solve the problem on detecting neutrons in the presence of high energy photons at accelerator neutron sources. For the experiment Si diodes, Si discs, and moderated activation foil detectors were used. The moderated activation foil detector consisted of a commercial moderator and indium foils 2'' in diameter and approximately 2.7 grams each. The moderator is a cylinder of low-density polyethylene 6 1 / 4 '' in diameter by 6 1 / 16 '' long covered with 0.020'' of cadmium. Neutrons are detected by the reaction 115 In (n,γ) 116 In(T/sub 1 / 2 / = 54 min). Photons cannot be detected directly but photoneutrons produced in the moderator assembly can cause a photon response. The Si discs were thin slices of single-crystal Si about 1.4 mils thick and 1'' in diameter which were used as activation detectors, subsequently being counted on a thin-window pancake G.M. counter. The Si diode fast neutron dosimeter 5422, manufactured by AB Atomenergi in Studsvik, Sweden, consists of a superdoped silicon wafer with a base width of 0.050 inches between two silver contacts coated with 2 mm of epoxy. For this experiment, the technique of measuring the percent change of voltage versus dose was used. Good precision was obtained using both unirradiated and preirradiated diodes. All diodes, calibrated against 252 CF in air,were read out 48 hours after irradiation to account for any room temperature annealing. Results are presented and discussed

  1. Electrical effects of transient neutron irradiation of silicon devices

    International Nuclear Information System (INIS)

    Hjalmarson, H.P.; Pease, R.L.; Van Ginhoven, R.M.; Schultz, P.A.; Modine, N.A.

    2007-01-01

    The key effects of combined transient neutron and ionizing radiation on silicon diodes and bipolar junctions transistors are described. The results show that interstitial defect reactions dominate the annealing effects in the first stage of annealing for certain devices. Furthermore, the results show that oxide trapped charge can influence the effects of bulk silicon displacement damage for particular devices

  2. The electronic structure of radial p-n junction silicon nanowires

    Science.gov (United States)

    Chiou, Shan-Haw; Grossman, Jeffrey

    2007-03-01

    Silicon nanowires with radial p-n junctions have recently been suggested for photovoltaic applications because incident light can be absorbed along the entire length of the wire, while photogenerated carriers only need to diffuse a maximum of one radius to reach the p-n junction. If the differential of the potential is larger than the binding energy of the electron-hole pair and has a range larger than the Bohr radius of electron-hole pair, then the charge separation mechanism will be similar to traditional silicon solar cells. However, in the small-diameter limit, where quantum confinement effects are prominent, both the exciton binding energy and the potential drop will increase, and the p-n junction itself may have a dramatically different character. We present ab initio calculations based on the generalized gradient approximation (GGA) of silicon nanowires with 2-3 nm diameter in the [111] growth direction. A radial p-n junction was formed by symmetrically doping boron and phosphorous at the same vertical level along the axis of the nanowire. The competition between the slope and character of the radial electronic potential and the exciton binding energy will presented in the context of a charge separation mechanism.

  3. Theoretical exploration of structural, electro-optical and magnetic properties of gallium-doped silicon carbide nanotubes

    Science.gov (United States)

    Behzad, Somayeh; Chegel, Raad; Moradian, Rostam; Shahrokhi, Masoud

    2014-09-01

    The effects of gallium doping on the structural, electro-optical and magnetic properties of (8,0) silicon carbide nanotube (SiCNT) are investigated by using spin-polarized density functional theory. It is found from the calculation of the formation energies that gallium substitution for silicon atom is preferred. Our results show that gallium substitution at either single carbon or silicon atom site in SiCNT could induce spontaneous magnetization. The optical studies based on dielectric function indicate that new transition peaks and a blue shift are observed after gallium doping.

  4. Realization of a Hole-Doped Mott Insulator on a Triangular Silicon Lattice

    Science.gov (United States)

    Ming, Fangfei; Johnston, Steve; Mulugeta, Daniel; Smith, Tyler S.; Vilmercati, Paolo; Lee, Geunseop; Maier, Thomas A.; Snijders, Paul C.; Weitering, Hanno H.

    2017-12-01

    The physics of doped Mott insulators is at the heart of some of the most exotic physical phenomena in materials research including insulator-metal transitions, colossal magnetoresistance, and high-temperature superconductivity in layered perovskite compounds. Advances in this field would greatly benefit from the availability of new material systems with a similar richness of physical phenomena but with fewer chemical and structural complications in comparison to oxides. Using scanning tunneling microscopy and spectroscopy, we show that such a system can be realized on a silicon platform. The adsorption of one-third monolayer of Sn atoms on a Si(111) surface produces a triangular surface lattice with half filled dangling bond orbitals. Modulation hole doping of these dangling bonds unveils clear hallmarks of Mott physics, such as spectral weight transfer and the formation of quasiparticle states at the Fermi level, well-defined Fermi contour segments, and a sharp singularity in the density of states. These observations are remarkably similar to those made in complex oxide materials, including high-temperature superconductors, but highly extraordinary within the realm of conventional s p -bonded semiconductor materials. It suggests that exotic quantum matter phases can be realized and engineered on silicon-based materials platforms.

  5. Silicon nanowire structures as high-sensitive pH-sensors

    International Nuclear Information System (INIS)

    Belostotskaya, S O; Chuyko, O V; Kuznetsov, A E; Kuznetsov, E V; Rybachek, E N

    2012-01-01

    Sensitive elements for pH-sensors created on silicon nanostructures were researched. Silicon nanostructures have been used as ion-sensitive field effect transistor (ISFET) for the measurement of solution pH. Silicon nanostructures have been fabricated by 'top-down' approach and have been studied as pH sensitive elements. Nanowires have the higher sensitivity. It was shown, that sensitive element, which is made of 'one-dimensional' silicon nanostructure have bigger pH-sensitivity as compared with 'two-dimensional' structure. Integrated element formed from two p- and n-type nanowire ISFET ('inverter') can be used as high sensitivity sensor for local relative change [H+] concentration in very small volume.

  6. Hydrogen interaction with radiation defects in p-type silicon

    CERN Document Server

    Feklisova, O V; Yakimov, E B; Weber, J

    2001-01-01

    Hydrogen interaction with radiation defects in p-type silicon has been investigated by deep-level non-stationary spectroscopy. Hydrogen is introduced into the high-energy electron-irradiated crystals under chemical etching in acid solutions at room temperature followed by the reverse-bias annealing at 380 K. It is observed that passivation of the irradiation-induced defects is accompanied by formation of novel electrically active defects with hydrogen-related profiles. Effect of hydrogen on the electrical activity of the C sub s C sub i complexes is shown for the first time. Based on the spatial distribution and passivation kinetics, possible nature of the novel complexes is analyzed. The radii for hydrogen capture by vacancies, K-centers, C sub s C sub i centers and the novel complexes are determined

  7. Low p-type contact resistance by field-emission tunneling in highly Mg-doped GaN

    Science.gov (United States)

    Okumura, Hironori; Martin, Denis; Grandjean, Nicolas

    2016-12-01

    Mg-doped GaN with a net acceptor concentration (NA-ND) in the high 1019 cm-3 range was grown using ammonia molecular-beam epitaxy. Electrical properties of NiO contact on this heavily doped p-type GaN were investigated. A potential-barrier height of 0.24 eV was extracted from the relationship between NA-ND and the specific contact resistivity (ρc). We found that there is an optimum NA-ND value of 5 × 1019 cm-3 for which ρc is as low as 2 × 10-5 Ω cm2. This low ρc is ascribed to hole tunneling through the potential barrier at the NiO/p+-GaN interface, which is well accounted for by the field-emission model.

  8. NTD Silicon; Product Characteristics, Main Uses and Growth Potential

    International Nuclear Information System (INIS)

    Hansen, M. G.; Bjorling, C. F.

    2013-01-01

    Topsil is a specialised manufacturer of ultrapure float zone silicon since 1959, headquartered in Denmark. Topsil co-pioneered the invention of Neutron Transmutation Doped (NTD) monocrystalline silicon with research institute Risoe in the 1970s and has since then been world leading manufacturer of NTD silicon for the power market. This presentation will focus on NTD silicon; its characteristics, invention and main uses. It will address the trends of the power market and market projections for NTD, and discuss the growth potential in the years ahead, including larger silicon wafers and management of the NTD supply chain

  9. NTD Silicon; Product Characteristics, Main Uses and Growth Potential

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M. G.; Bjorling, C. F. [Topsil Semiconductor Materials A/S, Odense (Denmark)

    2013-07-01

    Topsil is a specialised manufacturer of ultrapure float zone silicon since 1959, headquartered in Denmark. Topsil co-pioneered the invention of Neutron Transmutation Doped (NTD) monocrystalline silicon with research institute Risoe in the 1970s and has since then been world leading manufacturer of NTD silicon for the power market. This presentation will focus on NTD silicon; its characteristics, invention and main uses. It will address the trends of the power market and market projections for NTD, and discuss the growth potential in the years ahead, including larger silicon wafers and management of the NTD supply chain.

  10. Microelectronic temperature sensor; silicon temperature sensor

    International Nuclear Information System (INIS)

    Beitner, M.; Kanert, W.; Reichert, H.

    1982-01-01

    The goal of this work was to develop a silicon temperature sensor with a sensitivity and a reliability as high and a tolerance as small as possible, for use in measurement and control. By employing the principle of spreading-resistance, using silicon doped by neutron transmutation, and trimming of the single wafer tolerances of resistance less than +- 5% can be obtained; overstress tests yielded a long-term stability better than 0.2%. Some applications show the advantageous use of this sensor. (orig.) [de

  11. Characterization of epitaxial GaAs MOS capacitors using atomic layer-deposited TiO2/Al2O3 gate stack: study of Ge auto-doping and p-type Zn doping.

    Science.gov (United States)

    Dalapati, Goutam Kumar; Shun Wong, Terence Kin; Li, Yang; Chia, Ching Kean; Das, Anindita; Mahata, Chandreswar; Gao, Han; Chattopadhyay, Sanatan; Kumar, Manippady Krishna; Seng, Hwee Leng; Maiti, Chinmay Kumar; Chi, Dong Zhi

    2012-02-02

    Electrical and physical properties of a metal-oxide-semiconductor [MOS] structure using atomic layer-deposited high-k dielectrics (TiO2/Al2O3) and epitaxial GaAs [epi-GaAs] grown on Ge(100) substrates have been investigated. The epi-GaAs, either undoped or Zn-doped, was grown using metal-organic chemical vapor deposition method at 620°C to 650°C. The diffusion of Ge atoms into epi-GaAs resulted in auto-doping, and therefore, an n-MOS behavior was observed for undoped and Zn-doped epi-GaAs with the doping concentration up to approximately 1017 cm-3. This is attributed to the diffusion of a significant amount of Ge atoms from the Ge substrate as confirmed by the simulation using SILVACO software and also from the secondary ion mass spectrometry analyses. The Zn-doped epi-GaAs with a doping concentration of approximately 1018 cm-3 converts the epi-GaAs layer into p-type since the Zn doping is relatively higher than the out-diffused Ge concentration. The capacitance-voltage characteristics show similar frequency dispersion and leakage current for n-type and p-type epi-GaAs layers with very low hysteresis voltage (approximately 10 mV).PACS: 81.15.Gh.

  12. Comparison of pad detectors produced on different silicon materials after irradiation with neutrons, protons and pions

    International Nuclear Information System (INIS)

    Kramberger, G.; Cindro, V.; Dolenc, I.; Mandic, I.; Mikuz, M.; Zavrtanik, M.

    2010-01-01

    A set of 44 pad detectors produced on p- and n-type MCz and Fz wafers was irradiated with 23 GeV protons, 200 MeV pions and reactor neutrons up to the equivalent fluences of Φ eq =3x10 15 cm -2 . The evolution of the full depletion voltage and the leakage current were monitored during short- and long-term annealing. At selected representative annealing steps, charge collection measurements were performed for all samples with LHC speed electronics. Measurements of full depletion voltage, leakage current and charge collection efficiency were compared for different irradiation particles and silicon materials.

  13. Comparison of pad detectors produced on different silicon materials after irradiation with neutrons, protons and pions

    Energy Technology Data Exchange (ETDEWEB)

    Kramberger, G., E-mail: Gregor.Kramberger@ijs.s [Jozef Stefan Institute and Department of Physics, University of Ljubljana, SI-1000 Ljubljana (Slovenia); Cindro, V.; Dolenc, I.; Mandic, I.; Mikuz, M.; Zavrtanik, M. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, SI-1000 Ljubljana (Slovenia)

    2010-01-01

    A set of 44 pad detectors produced on p- and n-type MCz and Fz wafers was irradiated with 23 GeV protons, 200 MeV pions and reactor neutrons up to the equivalent fluences of PHI{sub eq}=3x10{sup 15}cm{sup -2}. The evolution of the full depletion voltage and the leakage current were monitored during short- and long-term annealing. At selected representative annealing steps, charge collection measurements were performed for all samples with LHC speed electronics. Measurements of full depletion voltage, leakage current and charge collection efficiency were compared for different irradiation particles and silicon materials.

  14. Chromium Trioxide Hole-Selective Heterocontacts for Silicon Solar Cells.

    Science.gov (United States)

    Lin, Wenjie; Wu, Weiliang; Liu, Zongtao; Qiu, Kaifu; Cai, Lun; Yao, Zhirong; Ai, Bin; Liang, Zongcun; Shen, Hui

    2018-04-25

    A high recombination rate and high thermal budget for aluminum (Al) back surface field are found in the industrial p-type silicon solar cells. Direct metallization on lightly doped p-type silicon, however, exhibits a large Schottky barrier for the holes on the silicon surface because of Fermi-level pinning effect. As a result, low-temperature-deposited, dopant-free chromium trioxide (CrO x , x solar cell as a hole-selective contact at the rear surface. By using 4 nm CrO x between the p-type silicon and Ag, we achieve a reduction of the contact resistivity for the contact of Ag directly on p-type silicon. For further improvement, we utilize a CrO x (2 nm)/Ag (30 nm)/CrO x (2 nm) multilayer film on the contact between Ag and p-type crystalline silicon (c-Si) to achieve a lower contact resistance (40 mΩ·cm 2 ). The low-resistivity Ohmic contact is attributed to the high work function of the uniform CrO x film and the depinning of the Fermi level of the SiO x layer at the silicon interface. Implementing the advanced hole-selective contacts with CrO x /Ag/CrO x on the p-type silicon solar cell results in a power conversion efficiency of 20.3%, which is 0.1% higher than that of the cell utilizing 4 nm CrO x . Compared with the commercialized p-type solar cell, the novel CrO x -based hole-selective transport material opens up a new possibility for c-Si solar cells using high-efficiency, low-temperature, and dopant-free deposition techniques.

  15. Site selective doping of Zn for the p-type Cu(In,Ga)Se{sub 2} thin film for solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Shirakata, Sho [Faculty of Engineering, Ehime University, Matsuyama 790-8577 (Japan); Tokyo University of Science, Research Institute for Science and Technology, Noda, Chiba 278-8510 (Japan)

    2017-06-15

    Selective doping of a Zn impurity at the group III site in a Cu(In, Ga)Se{sub 2} (CIGS) film was performed by the doping of Zn at the first stage of the three-stage method. The p-type CIGS:Zn film was obtained, which is in contrast to the n-type CIGS:Zn film obtained by the Zn impurity doping at the second and third-stages. Based on excitation intensity dependence of photoluminescence (PL) at low-temperature, the change in the acceptor level was observed. The enhancement of carrier concentration as a result of Zn-doping in the p-type CIGS:Zn film was observed. The CIGS:Zn solar cells exhibited η of 14.5% and V{sub oc} of 0.658 V, which are higher than that of the corresponding solar cells using the undoped CIGS films. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Progress in efficient doping of high aluminum-containing group III-nitrides

    Science.gov (United States)

    Liang, Y.-H.; Towe, E.

    2018-03-01

    The group III-nitride (InN, GaN, and AlN) class of semiconductors has become one of two that are critical to a number of technologies in modern life—the other being silicon. Light-emitting diodes made from (In,Ga)N, for example, dominate recent innovations in general illumination and signaling. Even though the (In,Ga)N materials system is fairly well established and widely used in advanced devices, challenges continue to impede development of devices that include aluminum-containing nitride films such as (Al,Ga)N. The main difficulty is efficient doping of films with aluminum-rich compositions; the problem is particularly severe for p-type doping, which is essential for Ohmic contacts to bipolar device structures. This review briefly summarizes the fundamental issues related to p-type doping, and then discusses a number of approaches that are being pursued to resolve the doping problem or for circumventing the need for p-type doping. Finally, we discuss an approach to doping under liquid-metal-enabled growth by molecular beam epitaxy. Recent results from a number of groups appear to indicate that p-type doping of nitride films under liquid-metal-enabled growth conditions might offer a solution to the doping problem—at least for materials grown by molecular beam epitaxy.

  17. Electrochemical doping of mesoporous silicon with Er: the effect of the current intensity

    Energy Technology Data Exchange (ETDEWEB)

    Mula, Guido, E-mail: guido.mula@unica.it [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Pinna, Elisa [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Falqui, Andrea [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Ruffilli, Roberta [Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Palmas, Simonetta; Mascia, Michele [Dipartimento di Ingegneria Meccanica Chimica e dei Materiali, Università degli Studi di Cagliari, Piazza d’Armi, 09126 Cagliari (Italy)

    2014-08-30

    Graphical abstract: - Highlights: • A multidisciplinary approach on porous Si electrochemical Er doping is proposed. • The phenomena taking place at the large developed surface of porous silicon are studied. • Electrochemical, optical and structural characterizations are used. • The early stages of doping are studied by electrochemical impedance spectroscopy. • The dependence of the final amount of Er deposited on the current intensity and not only on the transferred charge is shown. - Abstract: There is an ongoing intense research for cost-effective Er-doped Si-based light-emitting devices at the 1.5 μm wavelength. The efficient electrochemical Er-doping of porous silicon for this purpose requires a good understanding of the phenomena involved, since those taking place at the pores inner surface control the doping process. However, almost no attention has been given, to date, to the relevant effects of the current intensity onto the doping results. In this work, the effect of the current intensity on the doping process is explored by means of electrochemical impedance spectroscopy, optical reflectivity and energy dispersive spectrometry via scanning electron microscopy. The combined analysis of all results strongly suggests that the formation of a gel-like Er ethanolate, unaffected by changes in the sample thickness, occurs from the very first stages of the doping process. Moreover, while for constant current doping processes we show that, under any given doping condition, the doping level is proportional to the transferred charge, we demonstrate that performing the doping process using different current intensities may lead to dramatically different results.

  18. P-type doping of semipolar GaN(11 anti 22) by plasma-assisted molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Das, A.; Lahourcade, L. [Equipe Mixte CEA-CNRS, Nanophysique et Semiconducteurs, CEA-Grenoble, INAC/SP2M, Grenoble (France); Pernot, J. [Institut Neel, CNRS et Universite Joseph Fourier, Grenoble (France); Valdueza-Felip, S. [Equipe Mixte CEA-CNRS, Nanophysique et Semiconducteurs, CEA-Grenoble, INAC/SP2M, Grenoble (France); Dept. Electronica, Escuela Politecnica, Universidad de Alcala, Alcala de Henares, Madrid (Spain); Ruterana, P. [CIMAP, UMR6252, CNRS-ENSICAEN-CEA-UCBN, Caen (France); Laufer, A.; Eickhoff, M. [I. Physikalisches Institut, Justus-Liebig-Universitaet Giessen (Germany); Monroy, E.

    2010-07-15

    We report the effect of Mg doping on the growth kinetics of semipolar GaN(11-22) synthesized by plasma-assisted molecular-beam epitaxy. Mg tends to segregate on the surface, inhibiting the formation of the self-regulated Ga film which is used as a surfactant for the growth of undoped and Si-doped GaN(11-22). As a result, the growth widow is reduced for Mg doped layers, and we observe a certain deterioration of the surface morphology. In spite of this difficulties, homogenous Mg incorporation is achieved and layers display p -type conductivity for Mg atomic concentration higher than 7 x 10{sup 18} cm{sup -3}. Microscopy studies show no evidence of the pyramidal defects or polarity inversion domains found in Mg-doped GaN(0001). (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Development of neutron-transmutation-doped germanium bolometer material

    International Nuclear Information System (INIS)

    Palaio, N.P.

    1983-08-01

    The behavior of lattice defects generated as a result of the neutron-transmutation-doping of germanium was studied as a function of annealing conditions using deep level transient spectroscopy (DLTS) and mobility measurements. DLTS and variable temperature Hall effect were also used to measure the activation of dopant impurities formed during the transmutation process. In additioon, a semi-automated method of attaching wires on to small chips of germanium ( 3 ) for the fabrication of infrared detecting bolometers was developed. Finally, several different types of junction field effect transistors were tested for noise at room and low temperature (approx. 80 K) in order to find the optimum device available for first stage electronics in the bolometer signal amplification circuit

  20. Tests of a silicon wafer based neutron collimator

    International Nuclear Information System (INIS)

    Cussen, L.D.; Vale, C.J.; Anderson, I.S.; Hoeghoj, P.

    2001-01-01

    A Soller slit neutron collimator has been prepared by stacking 160 μm thick single crystal silicon wafers coated on one surface with 4 μm of gadolinium metal. The collimator has an angular width of 20 min full width at half maximum and an effective length of 2.75 cm. The collimator has beam dimensions of 1 cm wide by 5.3 cm high. Tests at neutron wavelengths 7.5A and 1.8A showed a peak transmission of 88% within 2% of the optimum theoretical possibility. The background suppression in the wings is comparable with that of conventional neutron collimators

  1. Tests of a silicon wafer based neutron collimator

    CERN Document Server

    Cussen, L D; Anderson, I S; Hoeghoj, P

    2001-01-01

    A Soller slit neutron collimator has been prepared by stacking 160 mu m thick single crystal silicon wafers coated on one surface with 4 mu m of gadolinium metal. The collimator has an angular width of 20 min full width at half maximum and an effective length of 2.75 cm. The collimator has beam dimensions of 1 cm wide by 5.3 cm high. Tests at neutron wavelengths 7.5A and 1.8A showed a peak transmission of 88% within 2% of the optimum theoretical possibility. The background suppression in the wings is comparable with that of conventional neutron collimators.

  2. Silicon-based thin films as bottom electrodes in chalcogenide nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yun [IT Convergence and Components Laboratory, Electronics and Telecommunications Research Institute (ETRI), Yuseong-gu, Daejeon 305-350 (Korea, Republic of)], E-mail: seungyun@etri.re.kr; Yoon, Sung-Min; Choi, Kyu-Jeong; Lee, Nam-Yeal; Park, Young-Sam; Ryu, Sang-Ouk; Yu, Byoung-Gon; Kim, Sang-Hoon; Lee, Sang-Heung [IT Convergence and Components Laboratory, Electronics and Telecommunications Research Institute (ETRI), Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2007-10-31

    The effect of the electrical resistivity of a silicon-germanium (SiGe) thin film on the phase transition in a GeSbTe (GST) chalcogenide alloy and the manufacturing aspect of the fabrication process of a chalcogenide memory device employing the SiGe film as bottom electrodes were investigated. While p-type SiGe bottom electrodes were formed using in situ doping techniques, n-type ones could be made in a different manner where phosphorus atoms diffused from highly doped silicon underlayers to undoped SiGe films. The p-n heterojunction did not form between the p-type GST and n-type SiGe layers, and the semiconduction type of the SiGe alloys did not influence the memory device switching. It was confirmed that an optimum resistivity value existed for memory operation in spite of proportionality of Joule heating to electrical resistivity. The very high resistivity of the SiGe film had no effect on the reduction of reset current, which might result from the resistance decrease of the SiGe alloy at high temperatures.

  3. Formation of photoluminescent n-type macroporous silicon: Effect of magnetic field and lateral electric potential

    Energy Technology Data Exchange (ETDEWEB)

    Antunez, E.E. [Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210 (Mexico); Estevez, J.O. [Instituto de Física, B. Universidad Autónoma de Puebla, A.P. J-48, Puebla 72570 (Mexico); Campos, J. [Instituto de Energías Renovables, UNAM, Priv. Xochicalco S/N, Temixco, Morelos, CP 62580 (Mexico); Basurto-Pensado, M.A. [Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210 (Mexico); Agarwal, V., E-mail: vagarwal@uaem.mx [Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210 (Mexico)

    2014-11-15

    Metal electrode-free electrochemical etching of low doped n-type silicon substrates, under the combined effect of magnetic and lateral electric field, is used to fabricate photoluminescent n-type porous silicon structures in dark conditions. A lateral gradient in terms of structural characteristics (i.e. thickness and pore dimensions) along the electric field direction is formed. Enhancement of electric and magnetic field resulted in the increase of pore density and a change in the shape of the macropore structure, from circular to square morphology. Broad photoluminescence (PL) emission from 500 to 800 nm, with a PL peak wavelength ranging from 571 to 642 nm, is attributed to the wide range of microporous features present on the porous silicon layer.

  4. Study of Nitrogen Effect on the Boron Diffusion during Heat Treatment in Polycrystalline Silicon/Nitrogen-Doped Silicon Thin Films

    Science.gov (United States)

    Saci, Lynda; Mahamdi, Ramdane; Mansour, Farida; Boucher, Jonathan; Collet, Maéva; Bedel Pereira, Eléna; Temple-Boyer, Pierre

    2011-05-01

    The present paper studies the boron (B) diffusion in nitrogen (N) doped amorphous silicon (a-Si) layer in original bi-layer B-doped polycrystalline silicon (poly-Si)/in-situ N-doped Si layers (NIDOS) thin films deposited by low pressure chemical vapor deposition (LPCVD) technique. The B diffusion in the NIDOS layer was investigated by secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectroscopy (FTIR) analysis. A new extended diffusion model is proposed to fit the SIMS profile of the bi-layer films. This model introduces new terms which take into account the effect of N concentration on the complex diffusion phenomena of B atoms in bi-layer films. SIMS results show that B diffusion does not exceed one third of NIDOS layer thickness after annealing. The reduction of the B diffusion in the NIDOS layer is due to the formation of complex B-N as shown by infrared absorption measurements. Electrical measurements using four-probe and Hall effect techniques show the good conductivity of the B-doped poly-Si layer after annealing treatment.

  5. Characterization of Ag-porous silicon nanostructured layer formed by an electrochemical etching of p-type silicon surface for bio-application

    Science.gov (United States)

    Naddaf, M.; Al-Mariri, A.; Haj-Mhmoud, N.

    2017-06-01

    Nanostructured layers composed of silver-porous silicon (Ag-PS) have been formed by an electrochemical etching of p-type (1 1 1) silicon substrate in a AgNO3:HF:C2H5OH solution at different etching times (10 min-30 min). Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) results reveal that the produced layers consist of Ag dendrites and a silicon-rich porous structure. The nanostructuring nature of the layer has been confirmed by spatial micro-Raman scattering and x-ray diffraction techniques. The Ag dendrites exhibit a surface-enhanced Raman scattering (SERS) spectrum, while the porous structure shows a typical PS Raman spectrum. Upon increasing the etching time, the average size of silicon nanocrystallite in the PS network decreases, while the average size of Ag nanocrystals is slightly affected. In addition, the immobilization of prokaryote Salmonella typhimurium DNA via physical adsorption onto the Ag-PS layer has been performed to demonstrate its efficiency as a platform for detection of biological molecules using SERS.

  6. Thermoelectric Properties of High-Doped Silicon from Room Temperature to 900 K

    Science.gov (United States)

    Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.

    2013-07-01

    Silicon is investigated as a low-cost, Earth-abundant thermoelectric material for high-temperature applications up to 900 K. For the calculation of module design the Seebeck coefficient and the electrical as well as thermal properties of silicon in the high-temperature range are of great importance. In this study, we evaluate the thermoelectric properties of low-, medium-, and high-doped silicon from room temperature to 900 K. In so doing, the Seebeck coefficient, the electrical and thermal conductivities, as well as the resulting figure of merit ZT of silicon are determined.

  7. Ultrafast Silicon Photonics with Visible to Mid-Infrared Pumping of Silicon Nanocrystals.

    Science.gov (United States)

    Diroll, Benjamin T; Schramke, Katelyn S; Guo, Peijun; Kortshagen, Uwe R; Schaller, Richard D

    2017-10-11

    Dynamic optical control of infrared (IR) transparency and refractive index is achieved using boron-doped silicon nanocrystals excited with mid-IR optical pulses. Unlike previous silicon-based optical switches, large changes in transmittance are achieved without a fabricated structure by exploiting strong light coupling of the localized surface plasmon resonance (LSPR) produced from free holes of p-type silicon nanocrystals. The choice of optical excitation wavelength allows for selectivity between hole heating and carrier generation through intraband or interband photoexcitation, respectively. Mid-IR optical pumping heats the free holes of p-Si nanocrystals to effective temperatures greater than 3500 K. Increases of the hole effective mass at high effective hole temperatures lead to a subpicosecond change of the dielectric function, resulting in a redshift of the LSPR, modulating mid-IR transmission by as much as 27%, and increasing the index of refraction by more than 0.1 in the mid-IR. Low hole heat capacity dictates subpicosecond hole cooling, substantially faster than carrier recombination, and negligible heating of the Si lattice, permitting mid-IR optical switching at terahertz repetition frequencies. Further, the energetic distribution of holes at high effective temperatures partially reverses the Burstein-Moss effect, permitting the modulation of transmittance at telecommunications wavelengths. The results presented here show that doped silicon, particularly in micro- or nanostructures, is a promising dynamic metamaterial for ultrafast IR photonics.

  8. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells.

    Science.gov (United States)

    Zhang, S J; Lin, S S; Li, X Q; Liu, X Y; Wu, H A; Xu, W L; Wang, P; Wu, Z Q; Zhong, H K; Xu, Z J

    2016-01-07

    Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications.

  9. Reduction in Recombination Current Density in Boron Doped Silicon Using Atomic Hydrogen

    Science.gov (United States)

    Young, Matthew Garett

    The solar industry has grown immensely in recent years and has reached a point where solar energy has now become inexpensive enough that it is starting to emerge as a mainstream electrical generation source. However, recent economic analysis has suggested that for solar to become a truly wide spread source of electricity, the costs still need to plummet by a factor of 8x. This demands new and innovative concepts to help lower such cost. In pursuit of this goal, this dissertation examines the use of atomic hydrogen to lessen the recombination current density in the boron doped region of n-type silicon solar cells. This required the development of a boron diffusion process that maintained the bulk lifetime of n-type silicon such that the recombination current density could be extracted by photoconductance spectroscopy. It is demonstrated that by hydrogenating boron diffusions, the majority carrier concentration can be controlled. By using symmetrically diffused test structures with quinhydrone-methanol surface passivation the recombination current density of a hydrogenated boron profile is shown to be less than that of a standard boron profile, by as much as 30%. This is then applied to a modified industrial silicon solar cell process to demonstrate an efficiency enhancement of 0.4%.

  10. Silicon diode for measurement of integral neutron dose and method of its production

    International Nuclear Information System (INIS)

    Frank, H.; Seda, J.; Trousil, J.

    1978-01-01

    The silicon diode consists of an N or P type silicon plate having a specific resistance exceeding 10 ohm.cm and minority carrier life exceeding 100μs. The plate thickness is a quintuple to a ten-tuple of the diffusion length and the plate consists of layers. Ions of, eg., boron, at a concentration exceeding 10 14 cm -2 are implanted into the P + type silicon layer and a layer of a metal, eg., nickel, is deposited onto it. Ions of eg., phosphorus, at a concentration exceeding 10 14 cm -2 are implanted in the N + type layer and a metal layer, eg., nickel is again depositeJ onto it. Implantation proceeds at an ion acceleration voltage of 10 to 200 kV. Metal layer deposition follows, and simultaneously with annealing of the P + and N + types of silicon layers, the metal layers are annealed at 600 to 900 degC for 1 to 60 minutes with subsequent temperature decrease at a rate less than 10 degC/min, down to a temperature of 300 degC. (J.P.)

  11. Specific features of doping with antimony during the ion-beam crystallization of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Pashchenko, A. S., E-mail: as.pashchenko@gmail.com; Chebotarev, S. N.; Lunin, L. S. [Russian Academy of Sciences, Southern Scientific Center (Russian Federation); Irkha, V. A. [Special Engineering and Technology Department “Inversiya” Ltd. (Russian Federation)

    2016-04-15

    A method of doping during the growth of thin films by ion-beam crystallization is proposed. By the example of Si and Sb, the possibility of controllably doping semiconductors during the ion-beam crystallization process is shown. A calibrated temperature dependence of the antimony vapor flow rate in the range from 150 to 400°C is obtained. It is established that, an increase in the evaporator temperature above 200°C brings about the accumulation of impurities in the layer growth direction. Silicon layers doped with antimony to a concentration of 10{sup 18} cm{sup –3} are grown. It is shown that, as the evaporator temperature is increased, the efficiency of the activation of antimony in silicon nonlinearly decreases from ~10{sup 0} to ~10{sup –3}.

  12. Impurity engineering for germanium-doped Czochralski silicon wafer used for ultra large scale integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiahe; Yang, Deren [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou (China)

    2009-07-01

    Internal gettering (IG) technology has been challenged by both the reduction of thermal budget during device fabrication and the enlargement of wafer diameter. Improving the properties of Czochralski (Cz) silicon wafers by intentional impurity doping, the so-called 'impurity engineering (IE)', is defined. Germanium has been found to be one of the important impurities for improving the internal gettering effect in Cz silicon wafer. In this paper, the investigations on IE involved with the conventional furnace anneal based denudation processing for germanium-doped Cz silicon wafer are reviewed. Meanwhile, the potential mechanisms of germanium effects for the IE of Cz silicon wafer are also interpreted based on the experimental facts. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Electronegativity and doping in semiconductors

    KAUST Repository

    Schwingenschlö gl, Udo; Chroneos, Alexander; Grimes, R. W.; Schuster, Cosima

    2012-01-01

    Charge transfer predicted by standard models is at odds with Pauling’s electronegativities but can be reconciled by the introduction of a cluster formation model [Schwingenschlögl et al., Appl. Phys. Lett. 96, 242107 (2010)]. Using electronic structure calculations, we investigate p- and n-type doping in silicon and diamond in order to facilitate comparison as C has a higher electronegativity compared to Si. All doping conditions considered can be explained in the framework of the cluster formation model. The implications for codoping strategies and dopant-defect interactions are discussed.

  14. Electronegativity and doping in semiconductors

    KAUST Repository

    Schwingenschlögl, Udo

    2012-08-23

    Charge transfer predicted by standard models is at odds with Pauling’s electronegativities but can be reconciled by the introduction of a cluster formation model [Schwingenschlögl et al., Appl. Phys. Lett. 96, 242107 (2010)]. Using electronic structure calculations, we investigate p- and n-type doping in silicon and diamond in order to facilitate comparison as C has a higher electronegativity compared to Si. All doping conditions considered can be explained in the framework of the cluster formation model. The implications for codoping strategies and dopant-defect interactions are discussed.

  15. Rate equation modelling of erbium luminescence dynamics in erbium-doped silicon-rich-silicon-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Miraj, E-mail: m.shah@ee.ucl.ac.uk [Department of Electronic and Electrical Engineering, UCL, Torrington Place, London WC1E 7JE (United Kingdom); Wojdak, Maciej; Kenyon, Anthony J. [Department of Electronic and Electrical Engineering, UCL, Torrington Place, London WC1E 7JE (United Kingdom); Halsall, Matthew P.; Li, Hang; Crowe, Iain F. [Photon Science Institute and School of Electrical and Electronic Engineering, University of Manchester, Sackville St Building, Manchester M13 9PL (United Kingdom)

    2012-12-15

    Erbium doped silicon-rich silica offers broad band and very efficient excitation of erbium photoluminescence (PL) due to a sensitization effect attributed to silicon nanocrystals (Si-nc), which grow during thermal treatment. PL decay lifetime measurements of sensitised Er{sup 3+} ions are usually reported to be stretched or multi exponential, very different to those that are directly excited, which usually show a single exponential decay component. In this paper, we report on SiO{sub 2} thin films doped with Si-nc's and erbium. Time resolved PL measurements reveal two distinct 1.54 {mu}m Er decay components; a fast microsecond component, and a relatively long lifetime component (10 ms). We also study the structural properties of these samples through TEM measurements, and reveal the formation of Er clusters. We propose that these Er clusters are responsible for the fast {mu}s decay component, and we develop rate equation models that reproduce the experimental transient observations, and can explain some of the reported transient behaviour in previously published literature.

  16. Surface passivation at low temperature of p- and n-type silicon wafers using a double layer a-Si:H/SiNx:H

    International Nuclear Information System (INIS)

    Focsa, A.; Slaoui, A.; Charifi, H.; Stoquert, J.P.; Roques, S.

    2009-01-01

    Surface passivation of bare silicon or emitter region is of great importance towards high efficiency solar cells. Nowadays, this is usually accomplished by depositing an hydrogenated amorphous silicon nitride (a-SiNx:H) layer on n + p structures that serves also as an excellent antireflection layer. On the other hand, surface passivation of p-type silicon is better assured by an hydrogenated amorphous silicon (a-Si:H) layer but suffers from optical properties. In this paper, we reported the surface passivation of p-type and n-type silicon wafers by using an a-Si:H/SiNx:H double layer formed at low temperature (50-400 deg. C) with ECR-PECVD technique. We first investigated the optical properties (refraction index, reflectance, and absorbance) and structural properties by FTIR (bonds Si-H, N-H) of the deposited films. The hydrogen content in the layers was determined by elastic recoil detection analysis (ERDA). The passivation effect was monitored by measuring the minority carrier effective lifetime vs. different parameters such as deposition temperature and amorphous silicon layer thickness. We have found that a 10-15 nm a-Si film with an 86 nm thick SiN layer provides an optimum of the minority carriers' lifetime. It increases from an initial value of about 50-70 μs for a-Si:H to about 760 and 800 μs for a-Si:H/SiNx:H on Cz-pSi and FZ-nSi, respectively, at an injection level 2 x 10 15 cm -3 . The effective surface recombination velocity, S eff , for passivated double layer on n-type FZ Si reached 11 cm/s and for FZ-pSi-14 cm/s, and for Cz-pSi-16-20 cm/s. Effect of hydrogen in the passivation process is discussed.

  17. A buffer-layer/a-SiO{sub x}:H(p) window-layer optimization for thin film amorphous silicon based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinjoo; Dao, Vinh Ai [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shin, Chonghoon [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Hyeongsik [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Minbum; Jung, Junhee [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Doyoung [School of Electricity and Electronics, Ulsan College West Campus, Ulsan 680-749 (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.kr [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2013-11-01

    Amorphous silicon based (a-Si:H-based) solar cells with a buffer-layer/boron doped hydrogenated amorphous silicon oxide (a-SiO{sub x}:H(p)) window-layer were fabricated and investigated. In the first part, in order to reduce the Schottky barrier height at the fluorine doped tin oxide (FTO)/a-SiO{sub x}:H(p) window-layer heterointerface, we have used buffer-layer/a-SiO{sub x}:H(p) for the window-layer, in which boron doped hydrogenated amorphous silicon (a-Si:H(p)) or boron doped microcrystalline silicon (μc-Si:H(p)) is introduced as a buffer layer between the a-SiO{sub x}:H(p) and FTO of the a-Si:H-based solar cells. The a-Si:H-based solar cell using a μc-Si:H(p) buffer-layer shows the highest efficiency compared to the optimized bufferless, and a-Si:H(p) buffer-layer in the a-Si:H-based solar cells. This highest performance was attributed not only to the lower absorption of the μc-Si:H(p) buffer-layer but also to the lower Schottky barrier height at the FTO/window-layer interface. Then, we present the dependence of the built-in potential (V{sub bi}) and blue response of the devices on the inversion of activation energy (ξ) of the a-SiO{sub x}:H(p), in the μc-Si:H(p)/a-SiO{sub x}:H(p) window-layer. The enhancement of both V{sub bi} and blue response is observed, by increasing the value of ξ. The improvement of V{sub bi} and blue response can be ascribed to the enlargement of the optical gap of a-SiO{sub x}:H(p) films in the μc-Si:H(p)/a-SiO{sub x}:H(p) window-layer. Finally, the conversion efficiency was increased by 22.0%, by employing μc-Si:H(p) as a buffer-layer and raising the ξ of the a-SiO{sub x}:H(p), compared to the optimized bufferless case, with a 10 nm-thick a-SiO{sub x}:H(p) window-layer. - Highlights: • Low Schottky barrier height benefits fill factor, and open-circuit voltage (V{sub oc}). • High band gap is beneficial for short-circuit current density (J{sub sc}). • Boron doped microcrystalline silicon is a suitable buffer-layer for

  18. Scaling theory put into practice: First-principles modeling of transport in doped silicon nanowires

    DEFF Research Database (Denmark)

    Markussen, Troels; Rurali, R.; Jauho, Antti-Pekka

    2007-01-01

    We combine the ideas of scaling theory and universal conductance fluctuations with density-functional theory to analyze the conductance properties of doped silicon nanowires. Specifically, we study the crossover from ballistic to diffusive transport in boron or phosphorus doped Si nanowires...

  19. Neutron activation determination of phosphorus and sulfur in semiconductor materials by 32P-isotope

    International Nuclear Information System (INIS)

    Nikolaev, A.V.; Gol'dshtejn, M.M.; Gil'bert, Eh.N.; Verevkin, G.V.; Yudelevich, I.G.

    1977-01-01

    A neutron-activation method has been developed for determining phosphorus and sulphur in germanium, gallium, gallium arsenide, and silicon structures using 32 P isotope. The dioctyl-sulphoxide (DOSO) extraction of phosphoric molybdenum acid (PMA) has been used to separate 32 P in a radiochemically pure form. Correction factors have been calculated due to the 2nd order interference on 30 Si nuclei in determining phosphorus in silicon for various irradiation times and at various cadmium proportions

  20. Direct observation of the lattice sites of implanted manganese in silicon

    CERN Document Server

    Silva, Daniel; Wahl, Ulrich; Martins Correia, Joao; Amorim, Lígia; Decoster, Stefan; Castro Ribeiro Da Silva, Manuel; Da Costa Pereira, Lino Miguel; Esteves De Araujo, Araujo Joao Pedro

    2016-01-01

    Mn-doped Si has attracted significant interest in the context of dilute magnetic semiconductors. We investigated the lattice location of implanted Mn in silicon of different doping types (n, n+ and p+) in the highly dilute regime. Three different lattice sites were identified by means of emission channeling experiments: ideal substitutional sites; sites displaced from bond-centered towards substitutional sites and sites displaced from anti-bonding towards tetrahedral interstitial sites. For all doping types investigated, the substitutional fraction remained below ∼ 30%. We discuss the origin of the observed lattice sites as well as the implications of such structures on the understanding of Mn-doped Si systems.

  1. Fe-Doping Effect on Thermoelectric Properties of p-Type Bi0.48Sb1.52Te3

    Directory of Open Access Journals (Sweden)

    Hyeona Mun

    2015-03-01

    Full Text Available The substitutional doping approach has been shown to be an effective strategy to improve ZT of Bi2Te3-based thermoelectric raw materials. We herein report the Fe-doping effects on electronic and thermal transport properties of polycrystalline bulks of p-type Bi0.48Sb1.52Te3. After a small amount of Fe-doping on Bi/Sb-sites, the power factor could be enhanced due to the optimization of carrier concentration. Additionally, lattice thermal conductivity was reduced by the intensified point-defect phonon scattering originating from the mass difference between the host atoms (Bi/Sb and dopants (Fe. An enhanced ZT of 1.09 at 300 K was obtained in 1.0 at% Fe-doped Bi0.48Sb1.52Te3 by these synergetic effects.

  2. Radiation damage and defect behavior in proton irradiated lithium-counterdoped n/sup +/p silicon solar cells

    International Nuclear Information System (INIS)

    Stupica, J.; Goradia, C.; Swartz, C.K.; Weinberg, I.

    1987-01-01

    Two lithium-counterdoped n/sup +/p silicon solar cells with different lithium concentrations were irradiated by 10 MeV protons. Cell performance was measured as a function of fluence, and it was found that the cell with the highest concentration of lithium had the higher radiation resistance. Deep level defects were studied using deep level transient spectroscopy which yielded two defects that were lithium related. Relating the defect energy levels obtained from this study under 10 MeV protons, with an earlier work using 1 MeV electron irradiations shows no correlation of the defect energy levels. There is one marked comparison though. The absence of the boron interstitial-oxygen interstitial defect. This consistency strengthens the belief that lithium interacts with oxygen to prevent the formation of the boron interstitial-oxygen interstitial defect. The present results indicate that, in general, addition of lithium in small amounts to the p-base of a boron doped silicon solar cell such that the base remains p-type, tends to increase the radiation resistance of the cell

  3. Optical response of laser-doped silicon carbide for an uncooled midwave infrared detector.

    Science.gov (United States)

    Lim, Geunsik; Manzur, Tariq; Kar, Aravinda

    2011-06-10

    An uncooled mid-wave infrared (MWIR) detector is developed by doping an n-type 4H-SiC with Ga using a laser doping technique. 4H-SiC is one of the polytypes of crystalline silicon carbide and a wide bandgap semiconductor. The dopant creates an energy level of 0.30  eV, which was confirmed by optical spectroscopy of the doped sample. This energy level corresponds to the MWIR wavelength of 4.21  μm. The detection mechanism is based on the photoexcitation of electrons by the photons of this wavelength absorbed in the semiconductor. This process modifies the electron density, which changes the refractive index, and, therefore, the reflectance of the semiconductor is also changed. The change in the reflectance, which is the optical response of the detector, can be measured remotely with a laser beam, such as a He-Ne laser. This capability of measuring the detector response remotely makes it a wireless detector. The variation of refractive index was calculated as a function of absorbed irradiance based on the reflectance data for the as-received and doped samples. A distinct change was observed for the refractive index of the doped sample, indicating that the detector is suitable for applications at the 4.21  μm wavelength.

  4. Neutron-activation analysis of phosphorus in aluminium-silicon alloys

    International Nuclear Information System (INIS)

    Rajchev, Kh.

    1976-01-01

    Silicon-aluminium alloy samples weighing about 50 mg are irradiated in a nuclear reactor with a neutron flow of 5x10 12 neutrons, cm -2 .s -1 . After a period of one week for decay of the short-lived isotopes, the sample is dissolved in a mixture of nitric and hydrofluoric acid. It is neutralized up to pH 2,5 and the present radioactive two- and three-valent cations are sorbed on chelating ion exchange resin Dowex A1. An ammonium phosphate standard is irradiated in parallel with the sample for qualitative determinations. The quantity of phosphorus is measured in aliquots from the sample and the standard with a liquid counter. The method proposed for separating and determining the phosphorus in silumins ensures practically the full separation of phosphorus (98,5 +- 0,5 %) and a precise determination of microquantities of the element - up to 10 -10 g. (author)

  5. Beryllium doped p-type GaN grown by metal-organic chemical vapor depostion

    International Nuclear Information System (INIS)

    Al-Tahtamouni, T.M.; Sedhain, A.; Lin, J.Y.; Jiang, H.X.

    2010-01-01

    The authors report on the growth of Be-doped p-type GaN epilayers by metal-organic chmical vapor deposition (MOCVD). The electrical and optical properties of the Be-doped GaN epilayers were studied by Hall-effect measurements and photoluminescence (PL) spectroscopy. The PL spectra of Be-doped GaN epilayers ethibited two emission lines at 3.36 and 2.71 eV, which were obsent in undoped epilayers. The transition at 3.36 eV was at 3.36 and 2.71eV, which were absent in undoped epilayers. The transition at 3.36 eV was assigned to the transition of free electrons to the neutral Be acceptor Be d eg.. The transition at 2.71 eV was assigned to the transition of electrons bound to deep level donors to the Be d eg. acceptors. Three independent measurements: (a) resistivity vs. temperature, (b) PL peak positions between Be doped and undoped GaN and (c) activation energy of 2.71 eV transition all indicate that the Be energy level is between 120 and 140 meV above the valence band. This is about 20-40 meV shallower than the Mg energy level (160 meV) in GaN. It is thus concluded that Be could be an excellent acceptor dopant in nitride materials. (authors).

  6. Study of the response of a silicon detector irradiated with 1 MeV neutrons; Etude de la reponse d`un detecteur Si irradie par des neutrons de 1 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Roy, P [Montreal Univ., PQ (Canada). Lab. de Physique Nucleaire

    1994-12-31

    The author studied the response of an n-type silicon detector irradiated with 1 MeV neutrons at fluences ranging from 0.26x10{sup 13} to 11.19x10{sup 13} neutrons/cm{sup 2}. The response of the irradiated detector to {sup 241}Am alpha particles was measured. 13 refs., 7 figs.

  7. Precision calibration of the silicon doping level in gallium arsenide epitaxial layers

    Science.gov (United States)

    Mokhov, D. V.; Berezovskaya, T. N.; Kuzmenkov, A. G.; Maleev, N. A.; Timoshnev, S. N.; Ustinov, V. M.

    2017-10-01

    An approach to precision calibration of the silicon doping level in gallium arsenide epitaxial layers is discussed that is based on studying the dependence of the carrier density in the test GaAs layer on the silicon- source temperature using the Hall-effect and CV profiling techniques. The parameters are measured by standard or certified measuring techniques and approved measuring instruments. It is demonstrated that the use of CV profiling for controlling the carrier density in the test GaAs layer at the thorough optimization of the measuring procedure ensures the highest accuracy and reliability of doping level calibration in the epitaxial layers with a relative error of no larger than 2.5%.

  8. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells

    Science.gov (United States)

    Zhang, S. J.; Lin, S. S.; Li, X. Q.; Liu, X. Y.; Wu, H. A.; Xu, W. L.; Wang, P.; Wu, Z. Q.; Zhong, H. K.; Xu, Z. J.

    2015-12-01

    Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications.Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron

  9. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

    OpenAIRE

    Geissbühler Jonas; Werner Jérémie; Martin de Nicolas Silvia; Barraud Loris; Hessler-Wyser Aïcha; Despeisse Matthieu; Nicolay Sylvain; Tomasi Andrea; Niesen Bjoern; De Wolf Stefaan; Ballif Christophe

    2015-01-01

    Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p type amorphous silicon with molybdenum oxide films. In this article we evidence that annealing above 130?°C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited c...

  10. Light-Ion Production in the Interaction of 96 MeV Neutrons with Silicon

    International Nuclear Information System (INIS)

    Tippawan, U.; Dangtip, S.; Pomp, S.; Atac, A.; Bergenwall, B.; Blomgren, J.; Hildebrand, A.; Johansson, C.; Klug, J.; Mermod, P.; Oesterlund, M.; Nilsson, L.; Elmgren, K.; Olsson, N.; Jonsson, O.; Prokofiev, A.V.; Renberg, P.-U.; Nadel-Turonski, P.; Corcalciuc, V.; Watanabe, Y.

    2005-01-01

    Radiation effects induced by terrestrial cosmic rays in microelectronics, on board aircrafts as well as at sea level, have recently attracted much attention. The most important particle radiation is due to spallation neutrons, created in the atmosphere by cosmic-ray protons. When, e.g., an electronic memory circuit is exposed to neutron radiation, charged particles can be produced in a nuclear reaction. The charge released by ionization can cause a flip of the memory content in a bit, which is called a single-event upset (SEU). This induces no hardware damage to the circuit, but unwanted re-programming of memories, CPUs, etc., can have consequences for the reliability, and ultimately also for the safety of the system.Data on energy and angular distributions of the secondary particles produced by neutrons in silicon nuclei are essential input for analyses and calculation of SEU rate. In this work, double-differential cross sections of inclusive light-ion (p, d, t, 3He and α) production in silicon, induced by 96 MeV neutrons, are presented. Energy distributions are measured at eight laboratory angles from 20 deg. to 160 deg. in steps of 20 deg. Deduced energy-differential and production cross sections are reported as well. Experimental cross sections are compared to theoretical reaction model calculations and existing experimental data in the literature

  11. Discovering a Defect that Imposes a Limit to Mg Doping in p-Type GaN

    International Nuclear Information System (INIS)

    Liliental-Weber, Z.; Tomaszewicz, T.; Zakharov, D.; O'Keefe, M.A.

    2006-01-01

    Gallium nitride (GaN) is the III-V semiconductor used to produce blue light-emitting diodes (LEDs) and blue and ultraviolet solid-state lasers. To be useful in electronic devices, GaN must be doped with elements that function either as electron donors or as acceptors to turn it into either an n-type semiconductor or a p-type semiconductor. It has been found that GaN can easily be grown with n-conductivity, even up to large concentrations of donors--in the few 10 19 cm -3 range. However, p-doping, the doping of the structure with atoms that provide electron sinks or holes, is not well understood and remains extremely difficult. The only efficient p-type dopant is Mg, but it is found that the free hole concentration is limited to 2 x 10 18 cm -3 , even when Mg concentrations are pushed into the low 10 19 cm -3 range. This saturation effect could place a limit on further development of GaN based devices. Further increase of the Mg concentration, up to 1 x 10 20 cm -3 leads to a decrease of the free hole concentration and an increase in defects. While low- to medium-brightness GaN light-emitting diodes (LEDs) are remarkably tolerant of crystal defects, blue and UV GaN lasers are much less so. We used electron microscopy to investigate Mg doping in GaN. Our transmission electron microscopy (TEM) studies revealed the formation of different types of Mg-rich defects [1,2]. In particular, high-resolution TEM allowed us to characterize a completely new type of defect in Mg-rich GaN. We found that the type of defect depended strongly on crystal growth polarity. For crystals grown with N-polarity, planar defects are distributed at equal distances (20 unit cells of GaN); these defects can be described as inversion domains [1]. For growth with Ga-polarity, we found a different type of defect [2]. These defects turn out to be three-dimensional Mg-rich hexagonal pyramids (or trapezoids) with their base on the (0001) plane and their six walls formed on {1123} planes (Fig. 1a). In

  12. Photoluminescence Studies of P-type Modulation Doped GaAs/AlGaAs Quantum Wells in the High Doping Regime

    Science.gov (United States)

    Wongmanerod, S.; Holtz, P. O.; Reginski, K.; Bugaiski, M.; Monemar, B.

    The influence of high Be-acceptor doping on the modulation-doped GaAs/Al0.3Ga0.7As quantum wells structures has been optically studied by using the low-temperature photoluminescence (PL) and photoluminescence excitation (PLE) techniques.The modulation doped samples were grown by the molecular-beam epitaxy technique with a varying Be acceptor concentration ranging from 1×1018 to 8×1018cm-3. Several novels physical effects were observed. The main effect is a significant shift of the main emission towards lower energies as the doping concentrations increase. There are two contradictory mechanisms, which determine the peak energy of the main emission; the shrinkage of the effective bandgap due to many body effects and the reduction of the exciton binding energy due to the carrier screening effect. We conclude that the first one is the dominating effect. At a sufficiently high doping concentration (roughly 2×1018cm-3), the lineshape of the main PL emission is modified, and a new feature, the so called Fermi-edge singularity (FES), appears on the high energy side of the PL emission and exhibits a blue-shift as a function of doping concentration. This feature has been found to be very sensitive to a temperature change, already in the range of 4.4-50K. In addition, PLE spectra with a suitable detection energy show that the absorption edge is blue-shifted with respect to the PL main emission. The resulting Stoke shift is due to phase-space-filling of the carriers, in agreement with the FES interpretation. Finally, we have found from the PLE spectra that the exciton quenching is initiated in the same doping regime. Compared to the exciton quenching in other p-type structures, the critical acceptor concentration required to quench the excitons is significantly lower than in the case of 2D structures with acceptor doping within the well, but larger than in the case of 3D bulk.

  13. Breakdown voltage analysis of Al0.25Ga0.75N/GaN high electron mobility transistors with partial silicon doping in the AlGaN layer

    International Nuclear Information System (INIS)

    Duan Bao-Xing; Yang Yin-Tang

    2012-01-01

    In this paper, two-dimensional electron gas (2DEG) regions in AlGaN/GaN high electron mobility transistors (HEMTs) are realized by doping partial silicon into the AlGaN layer for the first time. A new electric field peak is introduced along the interface between the AlGaN and GaN buffer by the electric field modulation effect due to partial silicon positive charge. The high electric field near the gate for the complete silicon doping structure is effectively decreased, which makes the surface electric field uniform. The high electric field peak near the drain results from the potential difference between the surface and the depletion regions. Simulated breakdown curves that are the same as the test results are obtained for the first time by introducing an acceptor-like trap into the N-type GaN buffer. The proposed structure with partial silicon doping is better than the structure with complete silicon doping and conventional structures with the electric field plate near the drain. The breakdown voltage is improved from 296 V for the conventional structure to 400 V for the proposed one resulting from the uniform surface electric field. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Study of the effect of neutron and electron irradiations on the low temperature thermal conductivity of germanium and silicon

    International Nuclear Information System (INIS)

    Vandevyver, M.

    1967-06-01

    The main results obtained from this work are the following: 1 Neutron irradiation (at 300 deg. K) produces lattice defects in germanium and silicon, and a corresponding very large lowering of the thermal conductivity is observed in the low temperature region (4-300 ). The results obtained have been explained with the help of the following hypotheses: for silicon a scattering of phonons by the stress fields produced by the defects; for germanium, a supplementary scattering of the electron phonon type. 2 Annealing treatments carried out on these materials above 373 deg. K restored the thermal conductivity over the whole temperature range of the measurements (4-300 deg. K); in the case of both germanium and silicon there were two steps in the annealing process. 3 A study of the thermal conductivity of germanium (initially P or N) after an electronic irradiation showed that the scattering of phonons could depend on the state of charge of the defects thus produced. (author) [fr

  15. Silicon nanowire-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Stelzner, Th; Pietsch, M; Andrae, G; Falk, F; Ose, E; Christiansen, S [Institute of Photonic Technology, Albert-Einstein-Strasse 9, D-07745 Jena (Germany)], E-mail: thomas.stelzner@ipht-jena.de

    2008-07-23

    The fabrication of silicon nanowire-based solar cells on silicon wafers and on multicrystalline silicon thin films on glass is described. The nanowires show a strong broadband optical absorption, which makes them an interesting candidate to serve as an absorber in solar cells. The operation of a solar cell is demonstrated with n-doped nanowires grown on a p-doped silicon wafer. From a partially illuminated area of 0.6 cm{sup 2} open-circuit voltages in the range of 230-280 mV and a short-circuit current density of 2 mA cm{sup -2} were obtained.

  16. Silicon nanowire-based solar cells

    International Nuclear Information System (INIS)

    Stelzner, Th; Pietsch, M; Andrae, G; Falk, F; Ose, E; Christiansen, S

    2008-01-01

    The fabrication of silicon nanowire-based solar cells on silicon wafers and on multicrystalline silicon thin films on glass is described. The nanowires show a strong broadband optical absorption, which makes them an interesting candidate to serve as an absorber in solar cells. The operation of a solar cell is demonstrated with n-doped nanowires grown on a p-doped silicon wafer. From a partially illuminated area of 0.6 cm 2 open-circuit voltages in the range of 230-280 mV and a short-circuit current density of 2 mA cm -2 were obtained

  17. Use of B{sub 2}O{sub 3} films grown by plasma-assisted atomic layer deposition for shallow boron doping in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kalkofen, Bodo, E-mail: bodo.kalkofen@ovgu.de; Amusan, Akinwumi A.; Bukhari, Muhammad S. K.; Burte, Edmund P. [Institute of Micro and Sensor Systems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Garke, Bernd [Institute for Experimental Physics, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Lisker, Marco [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Gargouri, Hassan [SENTECH Instruments GmbH, Schwarzschildstraße 2, 12489 Berlin (Germany)

    2015-05-15

    Plasma-assisted atomic layer deposition (PALD) was carried for growing thin boron oxide films onto silicon aiming at the formation of dopant sources for shallow boron doping of silicon by rapid thermal annealing (RTA). A remote capacitively coupled plasma source powered by GaN microwave oscillators was used for generating oxygen plasma in the PALD process with tris(dimethylamido)borane as boron containing precursor. ALD type growth was obtained; growth per cycle was highest with 0.13 nm at room temperature and decreased with higher temperature. The as-deposited films were highly unstable in ambient air and could be protected by capping with in-situ PALD grown antimony oxide films. After 16 weeks of storage in air, degradation of the film stack was observed in an electron microscope. The instability of the boron oxide, caused by moisture uptake, suggests the application of this film for testing moisture barrier properties of capping materials particularly for those grown by ALD. Boron doping of silicon was demonstrated using the uncapped PALD B{sub 2}O{sub 3} films for RTA processes without exposing them to air. The boron concentration in the silicon could be varied depending on the source layer thickness for very thin films, which favors the application of ALD for semiconductor doping processes.

  18. Low-temperature micro-photoluminescence spectroscopy on laser-doped silicon with different surface conditions

    Science.gov (United States)

    Han, Young-Joon; Franklin, Evan; Fell, Andreas; Ernst, Marco; Nguyen, Hieu T.; Macdonald, Daniel

    2016-04-01

    Low-temperature micro-photoluminescence spectroscopy (μ-PLS) is applied to investigate shallow layers of laser-processed silicon for solar cell applications. Micron-scale measurement (with spatial resolution down to 1 μm) enables investigation of the fundamental impact of laser processing on the electronic properties of silicon as a function of position within the laser-processed region, and in particular at specific positions such as at the boundary/edge of processed and unprocessed regions. Low-temperature μ-PLS enables qualitative analysis of laser-processed regions by identifying PLS signals corresponding to both laser-induced doping and laser-induced damage. We show that the position of particular luminescence peaks can be attributed to band-gap narrowing corresponding to different levels of subsurface laser doping, which is achieved via multiple 248 nm nanosecond excimer laser pulses with fluences in the range 1.5-4 J/cm2 and using commercially available boron-rich spin-on-dopant precursor films. We demonstrate that characteristic defect PL spectra can be observed subsequent to laser doping, providing evidence of laser-induced crystal damage. The impact of laser parameters such as fluence and number of repeat pulses on laser-induced damage is also analyzed by observing the relative level of defect PL spectra and absolute luminescence intensity. Luminescence owing to laser-induced damage is observed to be considerably larger at the boundaries of laser-doped regions than at the centers, highlighting the significant role of the edges of laser-doped region on laser doping quality. Furthermore, by comparing the damage signal observed after laser processing of two different substrate surface conditions (chemically-mechanically polished and tetramethylammonium hydroxide etched), we show that wafer preparation can be an important factor impacting the quality of laser-processed silicon and solar cells.

  19. Simulation of a silicon neutron detector coated with TiB2 absorber

    International Nuclear Information System (INIS)

    Krapohl, D; Nilsson, H-E; Petersson, S; Slavicek, T; Thungström, G; Pospisil, S

    2012-01-01

    Neutron radiation cannot be directly detected in semiconductor detectors and therefore needs converter layers. Planar clean-room processing can be used in the manufacturing process of semiconductor detectors with metal layers to produce a cost-effective device. We used the Geant4 Monte-Carlo toolkit to simulate the performance of a semiconductor neutron detector. A silicon photo-diode was coated with vapour deposited titanium, aluminium thin films and a titaniumdiboride (TiB 2 ) neutron absorber layer. The neutron capture reaction 10B(n, alpha)7Li is taken advantage of to create charged particles that can be counted. Boron-10 has a natural abundance of about SI 19.8%. The emitted alpha particles are absorbed in the underlying silicon detector. We varied the thickness of the converter layer and ran the simulation with a thermal neutron source in order to find the best efficiency of the TiB 2 converter layer and optimize the clean room process.

  20. Electrical Properties of Photodiode Ba0.25Sr0.75TiO3 (BST Thin Film Doped with Ferric Oxide on p-type Si (100 Substrate using Chemical Solution Deposition Method

    Directory of Open Access Journals (Sweden)

    Irzaman

    2011-12-01

    Full Text Available In this paper we have grown pure Ba0.25Sr0.75TiO3 (BST and BST doped by Ferric Oxide Fe2O3 (BFST with doping variations of 5%, 10%, and 15% above type-p Silicon (100 substrate using the chemical solution deposition (CSD method with spin coating technique at rotation speed of 3000 rpm, for 30 seconds. BST thin film are made with a concentration of 1 M 2-methoxyethanol and annealing temperature of 850OC for the Si (100 substrate. Characterization of the thin film is performed for the electrical properties such as the current-voltage (I-V curve using Keithley model 2400 as well as dielectric constant, time constant, pyroelectric characteristics, and depth measurement. The results show that the thin film depth increases if the concentration of the Ferric Oxide doping increases. The I-V characterization shows that the BST and BFST thin film has photodiode properties. The dielectric constant increases with the addition of doping. The maximum dielectric constant value is obtained for 15 % doping concentration namely 83.1 for pure BST and 6.89, 11.1, 41.63 and 83.1, respectively for the Ferric Oxide doping based BST with concentration of 5%, 10%, and 15%. XRD spectra of 15 % of ferric oxide doped BST thin film tetragonal phase, we carried out the lattice constant were a = b = 4.203 Å; c = 4.214 Å; c/a ratio = 1.003

  1. 1.54 μm Er3+ electroluminescence from an erbium-compound-doped organic light emitting diode with a p-type silicon anode

    International Nuclear Information System (INIS)

    Zhao, W Q; Wang, P F; Ran, G Z; Ma, G L; Zhang, B R; Liu, W M; Wu, S K; Dai, L; Qin, G G

    2006-01-01

    By doping an erbium complex, erbium (III) 2, 4-pentanedionate (Er(acac) 3 ), into the ALQ layer, we fabricate a series of infrared emission organic light emitting diodes (OLED) with structures of p-Si/SiO 2 /NPB/ALQ/ ALQ:Er(acac) 3 /ALQ/Sm/Au, where p-Si is the anode and Sm/Au is the cathode. The 1.54 μm emission from Er 3+ is observed. The impact of doping level of Er(acac) 3 in ALQ on 1.54 μm electroluminescence (EL) intensity is studied, and the best mass ratio of Er(acac) 3 to ALQ is found at 1:60. A competitive EL mechanism from the ALQ and Er(acac) 3 is found and the Er 3+ ions excitations are attributed to energy transfer from the ligands to Er ions

  2. Hydrogenation of gold-related levels in silicon by electrolytic doping

    International Nuclear Information System (INIS)

    Pearton, S.J.; Hansen, W.L.; Haller, E.E.; Kahn, J.M.

    1984-01-01

    The deep gold-related donor and acceptor levels in silicon have been neutralized to several μm depth by introducing atomic hydrogen using an electrolytic method. Using phosphoric or sulfuric acid as the electrolyte, it is possible to dope the crystalline silicon with hydrogen at elevated temperatures (200--280 0 C) allowing direct comparison with other means of introduction, such as hydrogen plasma exposure. We find the electrolytic method is not as efficient as plasma treatment for the same conditions, possibly due to oxide formation during the immersion in the acid

  3. P3HT:PCBM Incorporated with Silicon Nanoparticles as Photoactive Layer in Efficient Organic Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Shang-Chou Chang

    2013-01-01

    Full Text Available Silicon nanoparticles doped poly(3-hexylthiophene and [6,6]-phenyl C61-butyric acid methyl ester blends (P3HT:PCBM: Si NP have been produced as the photoactive layer of organic photovoltaic devices (OPVs. The silicon nanoparticles’ size is between 80 and 100 nm checked by transmission electron microscope (TEM. The 0.35 wt% Si NP doping OPVs exhibit higher power conversion efficiency (PCE than other OPVs. The PCE of the OPVs increases from 3.01% to 3.38% mainly due to increasing short-circuit current density from 8.38 to 9.48 mA/cm2, while the open-circuit voltage remains the same. The Si NP can provide extra exciton separation and electron pathways in hybrid solar cells.

  4. High-field EPR spectroscopy of thermal donors in silicon

    DEFF Research Database (Denmark)

    Dirksen, R.; Rasmussen, F.B.; Gregorkiewicz, T.

    1997-01-01

    Thermal donors generated in p-type boron-doped Czochralski-grown silicon by a 450 degrees C heat treatment have been studied by high-field magnetic resonance spectroscopy. In the experiments conducted at a microwave frequency of 140 GHz and in a magnetic field of approximately 5 T four individual...

  5. Enhancing the far-ultraviolet sensitivity of silicon complementary metal oxide semiconductor imaging arrays

    Science.gov (United States)

    Retherford, Kurt D.; Bai, Yibin; Ryu, Kevin K.; Gregory, James A.; Welander, Paul B.; Davis, Michael W.; Greathouse, Thomas K.; Winters, Gregory S.; Suntharalingam, Vyshnavi; Beletic, James W.

    2015-10-01

    We report our progress toward optimizing backside-illuminated silicon P-type intrinsic N-type complementary metal oxide semiconductor devices developed by Teledyne Imaging Sensors (TIS) for far-ultraviolet (UV) planetary science applications. This project was motivated by initial measurements at Southwest Research Institute of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures, which revealed a promising QE in the 100 to 200 nm range. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include the following: (1) representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory; (2) preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; (3) detector fabrication was completed through the pre-MBE step; and (4) initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments.

  6. Scanning spreading resistance microscopy of shallow doping profiles in silicon

    International Nuclear Information System (INIS)

    Suchodolskis, A.; Hallen, A.; Gran, J.; Hansen, T.-E.; Karlsson, U.O.

    2006-01-01

    We demonstrate the application of scanning spreading resistance microscopy (SSRM) for characterization of shallow highly-conductive layers formed by boron implantation of lowly doped n-type silicon substrate followed by a post-implantation annealing. The electrically active dopant concentration versus depth was obtained from a cross-section of freshly cleaved samples where the Si-surface could be clearly distinguished by depositing a SiO 2 -layer before cleavage. To quantify free carrier concentration we calibrated our data against samples with implanted/annealed boron profiles established by secondary ion mass spectrometry (SIMS). A good fit of SSRM and SIMS data is possible for free carrier concentrations lower than 10 20 cm -3 , but for higher concentrations there is a discrepancy indicating an incomplete activation of the boron

  7. A DLTS study of hydrogen doped czochralski-grown silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, M. [Infineon Technologies Austria AG, 9500 Villach (Austria); Laven, J.G. [Infineon Technologies AG, 81726 Munich (Germany); Kirnstoetter, S. [Institute of Solid State Physics, Graz University of Technology, 8010 Graz (Austria); Schustereder, W. [Infineon Technologies Austria AG, 9500 Villach (Austria); Schulze, H.-J. [Infineon Technologies AG, 81726 Munich (Germany); Rommel, M. [Fraunhofer Institute of Integrated Systems and Devices IISB, 91058 Erlangen (Germany); Frey, L. [Fraunhofer Institute of Integrated Systems and Devices IISB, 91058 Erlangen (Germany); Chair of Electron Devices, FAU Erlangen-Nuremberg, 91058 Erlangen (Germany)

    2015-12-15

    In this study we examine proton implanted and subsequently annealed commercially available CZ wafers with the DLTS method. Depth-resolved spreading resistance measurements are shown, indicating an additional peak in the induced doping profile, not seen in the impurity-lean FZ reference samples. The additional peak lies about 10–15 μm deeper than the main peak near the projected range of the protons. A DLTS characterization in the depth of the additional peak indicates that it is most likely not caused by classical hydrogen-related donors known also from FZ silicon but by an additional donor complex whose formation is assisted by the presence of silicon self-interstitials.

  8. Influence of rare earth elements on radiation defect formation in silicon

    International Nuclear Information System (INIS)

    Nazyrov, D.E.

    2006-01-01

    Full text: It is known that efficiency of form and kinetics annealing of radiation defects influence greatly presence of initial in controlling electrically active or inactive impurities, their concentration and position in a lattice of a semiconductor. From this point of view of impurities of group of rare earths elements (REE) are of great interest, they interact with primary radiation defects creating electrically passive complexes such as . Thus they increase radiation stability of silicon. The purpose of the given work was the investigation of effect of irradiation by γ-quanta 60 Co properties of silicon doped REE-by samarium, gadolinium and erbium. The doping of silicon was carried out by growth process. Concentration of REE - samarium, gadolinium and erbium in silicon according to neutron-activation analysis equaled 10 14 /5·10 18 cm 2 . Silicon doped by phosphorus - 15/50 Ωcm were used as control samples. The results of investigations were obtained from DLTS (deep level transient spectroscopy) measurements, Hall effect and electrical measurements on definition of a resistivity, lifetime of minority carriers of a charge and optically active of concentrations of oxygen and carbon. The optical recharge by the infrared light emitting diode (P=10 mV, λ=0,95 μm) was used for investigation of deep levels (DL) situated in lower half of band gap. In control samples irradiated by the γ-quanta 60 Co with a dose 10 16 / 5·10 18 cm -2 formation DL was found in band, the parameters of which are well-known: A-, E-centers etc. Depending on a dose of an effect of irradiate in an energy spectrum of radiation defects in Si of essential changes, except for concentration is not observed. The deep levels concentration the E c -0,17 eV and E c -0,4 eV in Si is essentially reduced with respect control samples. The comparison the dose of associations of observable levels in irradiated n-Si with similar associations in control samples shows, that a velocity of introduction

  9. Detection of protein kinases P38 based on reflectance spectroscopy with n-type porous silicon microcavities for diagnosing hydatidosis hydatid disease

    Science.gov (United States)

    Lv, Xiaoyi; Lv, Guodong; Jia, Zhenhong; Wang, Jiajia; Mo, Jiaqing

    2014-11-01

    Detection of protein kinases P38 of Echinococcus granulosus and its homologous antibody have great value for early diagnosis and treatment of hydatidosis hydatid disease. In this experiment, n-type mesoporous silicon microcavities have been successfully fabricated without KOH etching or oxidants treatment that reported in other literature. We observed the changes of the reflectivity spectrum before and after the antigen-antibody reaction by n-type mesoporous silicon microcavities. The binding of protein kinases P38 and its homologous antibody causes red shifts in the reflection spectrum of the sensor, and the red shift was proportional to the protein kinases P38 concentration with linear relationship.

  10. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Hay, J.C.

    1998-01-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 10 25 n/m 2 . Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  11. Synthesis of p-type GaN nanowires.

    Science.gov (United States)

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-09-21

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.

  12. P -type transparent conducting oxides

    International Nuclear Information System (INIS)

    Zhang, Kelvin H L; Xi, Kai; Blamire, Mark G; Egdell, Russell G

    2016-01-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n -type, such as Sn doped In 2 O 3 , Al doped ZnO, and F doped SnO 2 . However, the development of efficient p -type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2 p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2 p orbitals with close-shell Cu 3 d 10 orbitals. This work has sparked tremendous interest in designing p -TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p -TCOs, including Cu + -based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr 3+ -based oxides (3 d 3 ) and post-transition metal oxides with lone pair state (ns 2 ). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p -type conductivity and optical properties. Device applications based on p -TCOs for transparent p – n junctions will also be briefly discussed. (topical review)

  13. Diffuse X-ray scattering near the Bragg reflection of P-doped Czochralski silicon

    International Nuclear Information System (INIS)

    Stojanoff, V.; Pimentel, C.A.F.

    1983-01-01

    Bragg line profile and high resolution diffuse X-ray scattering measurements around the (400) reciprocal lattice point of dislocation-free Czochralski Si single crystals P-doped have shown defects of interstitial nature with typical size about 1000 A. (Author) [pt

  14. P- and N-type implantation doping of GaN with Ca and O

    International Nuclear Information System (INIS)

    Zolper, J.C.; Wilson, R.G.; Pearton, S.J.

    1996-01-01

    III-N photonic devices have made great advances in recent years following the demonstration of doping of GaN p-type with Mg and n-type with Si. However, the deep ionization energy level of Mg in GaN (∼ 160 meV) limits the ionized of acceptors at room temperature to less than 1.0% of the substitutional Mg. With this in mind, the authors used ion implantation to characterize the ionization level of Ca in GaN since Ca had been suggested by Strite to be a shallow acceptor in GaN. Ca-implanted GaN converted from n-to-p type after a 1,100 C activation anneal. Variable temperature Hall measurements give an ionization level at 169 meV. Although this level is equivalent to that of Mg, Ca-implantation may have advantages (shallower projected range and less straggle for a given energy) than Mg for electronic devices. In particular, the authors report the first GaN device using ion implantation doping. This is a GaN junction field effect transistor (JFET) which employed Ca-implantation. A 1.7 microm JFET had a transconductance of 7 mS/mm, a saturation current at 0 V gate bias of 33 mA/mm, a f t of 2.7 GHz, and a f max of 9.4 GHz. O-implantation was also studied and shown to create a shallow donor level (∼ 25 meV) that is similar to Si. SIMS profiles of as-implanted and annealed samples showed no measurable redistribution of either Ca or O in GaN at 1,125 C

  15. APTES-Terminated ultrasmall and iron-doped silicon nanoparticles as X-Ray dose enhancer for radiation therapy.

    Science.gov (United States)

    Klein, Stefanie; Wegmann, Marc; Distel, Luitpold V R; Neuhuber, Winfried; Kryschi, Carola

    2018-04-15

    Silicon nanoparticles with sizes between were synthesized through wet-chemistry procedures using diverse phase transfer reagents. On the other hand, the preparation of iron-doped silicon nanoparticles was carried out using the precursor Na 4 Si 4 containing 5% Fe. Biocompatibility of all silicon nanoparticle samples was achieved by surface-stabilizing with (3-aminopropyl)triethoxysilane. These surface structures provided positive surface charges which facilitated electrostatic binding to the negatively charged biological membranes. The mode of interaction with membranes, being either incorporation or just attachment, was found to depend on the nanoparticle size. The smallest silicon nanoparticles (ca. 1.5 nm) were embedded in the mitochondrial membrane in MCF-7 cells. When interacting with X-rays these silicon nanoparticles were observed to enhance the superoxide formation upon depolarizing the mitochondrial membrane. X-ray irradiation of MCF-7 cells loaded with the larger silicon nanoparticles was shown to increase the intracellular singlet oxygen generation. The doping of the silicon nanoparticles with iron led to additional production of hydroxyl radicals via the Fenton reaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Radiative recombination in doped indium phosphide crystals

    International Nuclear Information System (INIS)

    Negreskul, V.V.; Russu, E.V.; Radautsan, S.I.; Cheban, A.G.; AN Moldavskoj SSR, Kishinev. Inst. Prikladnoj Fiziki)

    1975-01-01

    Photoluminiscence spectra of nondoped n-InP and their change upon doping with silicon, cadmium, zinc and copper impurities were studied. The shortest wave band at 1.41 eV is connected with radiative electron transition from a shallow donor level (probably silicon) to valent zone, while the band with maximum at 1.37 - 1.39 eV is due to radiative electron transition to an acceptor level whose energy depends upon the nature and concentration of impurity implanted. The luminescence of Light-doped p-InP crystals enables to estimate the ionization energies of acceptor levels in cadmium (Esub(a)=0.043 eV) and zinc (Esub(a)=0.027 eV). Energies of acceptor levels (0.22 and 0.40 eV) due to copper impurity are determined. Intensity of edge emission in the specimens light-doped with silicon is higher than in the nondoped n-InP crystals

  17. Silicon P.I.N. Junctions used for studies of radiation damage; Etude de l'irradiation aux neutrons rapides du silicium au moyen de jonctions P.I.N

    Energy Technology Data Exchange (ETDEWEB)

    Lanore, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-06-01

    Irradiation of silicon P.I.N. junction has been studied primarily for the purpose of developing a radiation damage dosimeter, but also for the purpose of investigating silicon itself. It is known that the rate of recombination of electrons and holes is a linear function of defects introduced by neutron irradiation. Two methods have been used to measure that rate of recombination: forward characteristic measurements, recovery time measurements. In order to explain how these two parameters depend on recombination rate we have given a theory of the P.I.N. junction. We have also given an idea of the carrier lifetime dependence versus temperature. Annealing effects in the range of 70 to 700 K have also been studied, we found five annealing stages with corresponding activation energies. As an application for these studies, we developed a radiation damage dosimeter with which we made several experiments in facilities such as Naiade or Marias. (author) [French] L'irradiation de structures P.I.N. etait faite dans le but d'etudier principalement la mise au point d'un dosimetre a ''radiation damage'' et aussi pour etudier plus profondement le silicium lui-meme. On sait que le taux de recombinaison electrons-trous est une fonction lineaire du taux de defauts introduits par irradiation aux neutrons. Deux methodes ont ete utilisees pour atteindre ce taux de recombinaison: mesures de la caracteristique directe, mesures du temps de retournement. Pour expliquer de quelle facon ces parametres dependent du taux de recombinaison. Nous avons donne une theorie de la jonction P.I.N. Nous avons aussi donne l'allure des variations du temps de vie des porteurs en fonction de la temperature. Nous avons d'autre part effectue des recuits entre 70 et 700 K, domaine dans lequel nous avons trouve cinq etapes de ''guerison'' avec les energies d'activation correspondantes. En application de ces etudes nous avons mis ou point un dosimetre a ''radiation damage'' avec lequel nous avons effectue des

  18. Silicon heterojunction transistor

    International Nuclear Information System (INIS)

    Matsushita, T.; Oh-uchi, N.; Hayashi, H.; Yamoto, H.

    1979-01-01

    SIPOS (Semi-insulating polycrystalline silicon) which is used as a surface passivation layer for highly reliable silicon devices constitutes a good heterojunction for silicon. P- or B-doped SIPOS has been used as the emitter material of a heterojunction transistor with the base and collector of silicon. An npn SIPOS-Si heterojunction transistor showing 50 times the current gain of an npn silicon homojunction transistor has been realized by high-temperature treatments in nitrogen and low-temperature annealing in hydrogen or forming gas

  19. Doping dependence of the elastic behaviour of silicon; Dotierungsabhaengikeit des elastischen Verhaltens von Silizium

    Energy Technology Data Exchange (ETDEWEB)

    Santen, Nicole

    2010-02-24

    For a continuous increasement of the power of semiconductor components and integrated circuits beside the progressing miniaturization also strained silicon plays an important role. By inserting of a mechanical stress in the channel region of a MOSFET it is possible to increase the charge-carrier mobility and by this the switching velocities of transistors. In order to guarantee a failure-less function of the components, systematic studies of these stresses in the elementary semiconductor silicon and their interactions with defects, to which also belong doping atoms, are necessary. The method of the perturbed {gamma}-{gamma} angular correlation (PAC) is very well suited for the study of local stress fields in thin layers of semiconductors, because it yields informations about the direct lattice environment of a probe nucleus on atomic scale. By this way local lattice strains in silicon can be studied, which occur on the one hand in implanted layers and arise on the other hand by externally applied tensile and compressive stresses. In the present thesis the influence of a doping on the elastic behaviour of silicon was studied. Beside the PAC probe {sup 111}In diverse extraneous atoms were inserted in the silicon crystal by means of ion implantation. Thereafter the radiation damages arised thereby were annealed by a thermal treatment. For the generation of uniaxially internal stresses the samples were stressed in the holder with different curvature radii, which induced in the implanted near-surface layer lattice deformations of up to 0.1%. It was proved that p-implanted and n-implanted silicon react differentially upon external stresses, i. e. the resulting lattice strain because of the sample bending depends of the type of the doping atoms. So silicon samples show after implantation of the acceptors B, Al, and In the same elastic behaviour as undoped silicon. If however the donors P, As, Sb, and Te are implanted, so a complete relaxation of the externally applied

  20. Oxygen-related 1-platinum defects in silicon: An electron paramagnetic resonance study

    Science.gov (United States)

    Juda, U.; Scheerer, O.; Höhne, M.; Riemann, H.; Schilling, H.-J.; Donecker, J.; Gerhardt, A.

    1996-09-01

    A monoclinic 1-platinum defect recently detected was investigated more thoroughly by electron paramagnetic resonance (EPR). The defect is one of the dominating defects in platinum doped silicon. With a perfect reproducibility it is observed in samples prepared from n-type silicon as well as from p-type silicon, in float zone (FZ) silicon as well as in Czochralski (Cz) silicon. Its concentration varies with the conditions of preparation and nearly reaches that of isolated substitutional platinum in Cz silicon annealed for 2 h at 540 °C after quenching from the temperature of platinum diffusion. Because of its concentration which in Cz-Si exceeds that in FZ-Si the defect is assumed to be oxygen-related though a hyperfine structure with 17O could not be resolved. The defect causes a level close to the valence band. This is concluded from variations of the Fermi level and from a discussion of the spin Hamiltonian parameters. In photo-EPR experiments the defect is coupled to recently detected acceptorlike self-interstitial related defects (SIRDs); their level position turns out to be near-midgap. These defects belong to the lifetime limiting defects in Pt-doped Si.

  1. Synthesis and properties of silicon nanowire devices

    Science.gov (United States)

    Byon, Kumhyo

    Silicon nanowire (SiNW) is a very attractive one-dimensional material for future nanoelectronic applications. Reliable control of key field effect transistor (FET) parameters such as conductance, mobility, threshold voltage and on/off ratio is crucial to the applications of SiNW to working logic devices and integrated circuits. In this thesis, we fabricated silicon nanowire field effect transistors (SiNW FETs) and studied the dependence of their electrical transport properties upon various parameters including SiNW growth conditions, post-growth doping, and contact annealing. From these studies, we found how different processes control important FET characteristics. Key accomplishments of this thesis include p-channel enhancement mode FETs, n-channel FETs by post-growth vapor doping and high performance ambipolar devices. In the first part of this work, single crystalline SiNWs were synthesized by thermal evaporation without gold catalysts. FETs were fabricated using both as-grown SiNWs and post-growth n-doped SiNWs. FET from p-type source materials behaves as a p-channel enhancement mode FET which is predominant in logic devices due to its fast operation and low power consumption. Using bismuth vapor, the as-grown SiNWs were doped into n-type materials. The majority carriers in SiNWs can therefore be controlled by proper choice of the vapor phase dopant species. Post-growth doping using vapor phase is applicable to other nanowire systems. In the second part, high performance ambipolar FETs were fabricated. A two step annealing process was used to control the Schottky barrier between SiNW and metal contacts in order to enhance device performance. Initial p-channel SiNW FETs were converted into ambipolar SiNW FETs after contact annealing. Furthermore, significant increases in both on/off ratio and channel mobilities were achieved after contact annealing. Promising device structures to implement ambipolar devices into large scale integrated circuits were proposed

  2. Effect of doping concentration on the conductivity and optical properties of p-type ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Trilok Kumar [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Kumar, Vinod, E-mail: vinod.phy@gmail.com [Department of Physics, University of the Free State, Bloemfontein (South Africa); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, Bloemfontein (South Africa); Purohit, L.P., E-mail: proflppurohitphys@gmail.com [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India)

    2016-01-01

    Nitrogen doped ZnO (NZO) thin films were synthesized on glass substrates by the sol–gel and spin coating method. Zinc acetate dihydrates and ammonium acetate were used as precursors for zinc and nitrogen, respectively. X-ray diffraction study showed that the thin films have a hexagonal wurtzite structure corresponding (002) peak for undoped and doped ZnO thin films. The transmittance of the films was above 80% and the band gap of the film varies from 3.21±0.03 eV for undoped and doped ZnO. The minimum resistivity of NZO thin films was obtained as 0.473 Ω cm for the 4 at% of nitrogen (N) doping with a mobility of 1.995 cm{sup 2}/V s. The NZO thin films showed p-type conductivity at 2 and 3 at% of N doping. The AC conductivity measurements that were carried out in the frequency range 10 kHz to 0.1 MHz showed localized conduction in the NZO thin films. These highly transparent ZnO films can be used as a possible window layer in solar cells.

  3. Effects of thin heavily Mg-doped GaN capping layer on ohmic contact formation of p-type GaN

    International Nuclear Information System (INIS)

    Wu, L L; Zhao, D G; Jiang, D S; Chen, P; Le, L C; Li, L; Liu, Z S; Zhang, S M; Zhu, J J; Wang, H; Zhang, B S; Yang, H

    2013-01-01

    The growth condition of thin heavily Mg-doped GaN capping layer and its effect on ohmic contact formation of p-type GaN were investigated. It is confirmed that the excessive Mg doping can effectively enhance the Ni/Au contact to p-GaN after annealing at 550 °C. When the flow rate ratio between Mg and Ga gas sources is 6.4% and the layer width is 25 nm, the capping layer grown at 850 °C exhibits the best ohmic contact properties with respect to the specific contact resistivity (ρ c ). This temperature is much lower than the conventional growth temperature of Mg-doped GaN, suggesting that the deep-level-defect induced band may play an important role in the conduction of capping layer. (paper)

  4. The effect of doping on thermoelectric performance of p-type SnSe: Promising thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Niraj Kumar; Bathula, Sivaiah; Gahtori, Bhasker [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Tyagi, Kriti [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Acdemy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (NPL) Campus, New Delhi (India); Haranath, D. [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Dhar, Ajay, E-mail: adhar@nplindia.org [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2016-05-25

    Tin selenide (SnSe) based thermoelectric materials are being explored for making inexpensive and efficient thermoelectric devices with improved thermoelectric efficiency. As both Sn and Se are earth abundant and relatively inexpensive and these alloys do not involve toxic materials, such as lead and expensive tellurium. Hence, in the present study, we have synthesized SnSe doped with 2 at% of aluminium (Al), lead (Pb), indium (In) and copper (Cu) individually, which is not reported in literature. Out of these, Cu doped SnSe resulted in enhancement of figure-of-merit (zT) of ∼0.7 ± 0.02 at 773 K, synthesized employing conventional fusion method followed by spark plasma sintering. This enhancement in zT is ∼16% over the existing state-of-the-art value for p-type SnSe alloy doped with expensive Ag. This enhancement in ZT is primarily due to the presence of Cu{sub 2}Se second phase associated with intrinsic nanostructure formation of SnSe. This enhancement has been corroborated with the microstructural characterization using field emission scanning electron microscopy and X-ray diffraction studies. Also, Cu doped SnSe exhibited a higher value of carrier concentration in comparison to other samples doped with Al, Pb and In. Further, the compatibility factor of Cu doped SnSe alloys exhibited value of 1.62 V{sup −1} at 773 K and it is suitable to segment with most of the novel TE materials for obtaining the higher thermoelectric efficiencies. - Highlights: • Tin selenide (SnSe) doped with non-toxic and inexpensive dopants. • Synthesized highly dense SnSe employing Spark plasma sintering. • Enhanced thermoelectric compatibility factor of SnSe. • Enhanced thermoelectric performance of SnSe doped with Copper.

  5. Near-infrared free carrier absorption in heavily doped silicon

    International Nuclear Information System (INIS)

    Baker-Finch, Simeon C.; McIntosh, Keith R.; Yan, Di; Fong, Kean Chern; Kho, Teng C.

    2014-01-01

    Free carrier absorption in heavily doped silicon can have a significant impact on devices operating in the infrared. In the near infrared, the free carrier absorption process can compete with band to band absorption processes, thereby reducing the number of available photons to optoelectronic devices such as solar cells. In this work, we fabricate 18 heavily doped regions by phosphorus and boron diffusion into planar polished silicon wafers; the simple sample structure facilitates accurate and precise measurement of the free carrier absorptance. We measure and model reflectance and transmittance dispersion to arrive at a parameterisation for the free carrier absorption coefficient that applies in the wavelength range between 1000 and 1500 nm, and the range of dopant densities between ∼10 18 and 3 × 10 20  cm −3 . Our measurements indicate that previously published parameterisations underestimate the free carrier absorptance in phosphorus diffusions. On the other hand, published parameterisations are generally consistent with our measurements and model for boron diffusions. Our new model is the first to be assigned uncertainty and is well-suited to routine device analysis

  6. Suppression of photo-leakage current in amorphous silicon thin-film transistors by n-doped nanocrystalline silicon

    International Nuclear Information System (INIS)

    Lin, Hung-Chien; Ho, King-Yuan; Hsu, Chih-Chieh; Yan, Jing-Yi; Ho, Jia-Chong

    2011-01-01

    The reduction of photo-leakage current of amorphous silicon thin-film transistors (a-Si TFTs) is investigated and is found to be successfully suppressed by the use of an n-doped nanocrystalline silicon layer (n+ nc-Si) as an ohmic contact layer. The shallow-level defects of n+ nc-Si can become trapping centres of photo-induced electrons as the a-Si TFT is operated under light illumination. A lower oxygen concentration during n+ nc-Si deposition can increase the creation of shallow-level defects and improve the contrast ratio of active matrix organic light-emitting diode panels.

  7. Studies on the oxygen precipitation in highly boron doped silicon; Untersuchungen zur Sauerstoffausscheidung in hoch bordotiertem Silicium

    Energy Technology Data Exchange (ETDEWEB)

    Zschorsch, Markus

    2007-12-14

    The aim of this thesis was the getting of new knowledge on the elucidation of the oxygen precipitation in highly doped silicon. In the study of the early phases of the oxygen precipitation boron-oxygen complexes and their kinetics could be indirectly detected. These arise already during the cooling of the crystal and can be destroyed by subsequent temperature processes. The formation of the here as BO assumed species during the cooling after the silicon crystal fabrication could be numerically reproduced. Furthermore the study of early precipitation phases by means of neutron small angle scattering a maximum of the oxygen precipitation at {rho}=9 m{omega}cm. It could be shown that the decreasing of this at increasing boron concentration can be most probably reduced to boron precipitations. Furthermore it could be shown that after a tempering time of 24 hours at 700 C in silicon with {rho}=9 m{omega}cm platelet-shaped precipitates form. By the study of the precipitate growth could be shown that also in this phase the oxygen precipitation in silicon is strongest with a specific resistance of {rho}=9 m{omega}cm. By means of FTIR spectroscopy a new absorption band at a wave number of 1038 cm{sup -1} was found, which could be assigned to a boron species. By different experiments it is considered as probable that at this species it deals with BI respectively B{sub 2}I complexes.

  8. Correlation of displacement effects produced by electrons, protons, and neutrons in silicon

    International Nuclear Information System (INIS)

    van Lint, V.A.J.; Gigas, G.; Barengoltz, J.

    1975-01-01

    The correlation of displacement effects produced by electrons, protons, and neutrons in silicon is studied. Available data from the literature is employed. In particular the scope of the study is limited to the degradation of excess carrier lifetime and device electrical parameters directly related to it. The degree to which displacement effects may be correlated in order to predict semiconductor device response based on response data to another type of radiation is discussed. Useful ranges of the correlation factors (K/sub tau/ ratios) as a function of device majority carrier type, device resistivity, and injection level are presented. A significant dependence on injection level for the correlation factors is found

  9. Cross-section imaging and p-type doping assessment of ZnO/ZnO:Sb core-shell nanowires by scanning capacitance microscopy and scanning spreading resistance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin, E-mail: lin.wang@insa-lyon.fr; Brémond, Georges [Institut des Nanotechnologies de Lyon (INL), Université de Lyon, CNRS UMR 5270, INSA Lyon, Bat. Blaise Pascal, 7 Avenue, Jean Capelle, 69621 Villeurbanne (France); Sallet, Vincent; Sartel, Corinne [Groupe d' étude de la Matière Condensée (GEMaC), CNRS - Université de Versailles St Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles (France)

    2016-08-29

    ZnO/ZnO:Sb core-shell structured nanowires (NWs) were grown by the metal organic chemical vapor deposition method where the shell was doped with antimony (Sb) in an attempt to achieve ZnO p-type conduction. To directly investigate the Sb doping effect in ZnO, scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) were performed on the NWs' cross-sections mapping their two dimensional (2D) local electrical properties. Although no direct p-type inversion in ZnO was revealed, a lower net electron concentration was pointed out for the Sb-doped ZnO shell layer with respect to the non-intentionally doped ZnO core, indicating an evident compensating effect as a result of the Sb incorporation, which can be ascribed to the formation of Sb-related acceptors. The results demonstrate SCM/SSRM investigation being a direct and effective approach for characterizing radial semiconductor one-dimensional (1D) structures and, particularly, for the doping study on the ZnO nanomaterial towards its p-type realization.

  10. Ab initio study on the effect of structural relaxation on the electronic and optical properties of P-doped Si nanocrystals

    International Nuclear Information System (INIS)

    Pi, Xiaodong; Ni, Zhenyi; Yang, Deren; Delerue, Christophe

    2014-01-01

    In contrast to the conventional doping of bulk silicon (Si), the doping of Si nanocrystals (NCs) that are often smaller than 5 nm in diameter may lead to serious structural changes. Since the electronic and optical properties of Si NCs are intimately associated with their structures, it is critical to understand how doping impacts the structures of Si NCs. By means of ab initio calculation we now compare 1.4 nm phosphorus (P)-doped Si NCs without structural relaxation and those with structural relaxation. Structural changes induced by structural relaxation are manifested by the stretching and compressing of bonds and apparent variations in bond angles. With the increase of the concentration of P structural changes induced by structural relaxation become more serious. It is found that structural relaxation makes differences in the energy-level schemes of P-doped Si NCs. Structural relaxation also causes the binding energy of an electron in a P-doped Si NC to more significantly increase as the concentration of P increases. With the increase of the concentration of P structural relaxation leads to more pronounced changes in the optical absorption of P-doped Si NCs

  11. Scanning transient current study of the I-V stabilization phenomena in silicon detectors irradiated by fast neutrons

    International Nuclear Information System (INIS)

    Eremin, V.; Verbitskaya, E.; Sidorov, A.; Fretwurst, E.; Lindstrom, G.

    1996-03-01

    Investigation of the I-V stabilization phenomena in neutron irradiated silicon detectors has been carried out using scanning transient current technique (STCT) on non-irradiated PP + -p-n + detectors. The PP + -p-n + detectors were used to simulate the PP + -n-n + detectors irradiated beyond the space charge sign inversion (SCSI). Two mechanisms partially responsible for the I- V stabilization have been identified

  12. Oxygen effects on the interfacial electronic structure of titanyl phthalocyanine film: p-Type doping, band bending and Fermi level alignment

    International Nuclear Information System (INIS)

    Nishi, Toshio; Kanai, Kaname; Ouchi, Yukio; Willis, Martin R.; Seki, Kazuhiko

    2006-01-01

    The effect of oxygen doping on titanyl phthalocyanine (TiOPc) film was investigated by ultraviolet photoelectron spectroscopy (UPS). The electronic structure of the interface formed between TiOPc films deposited on highly oriented pyrolytic graphite (HOPG) was clearly different between the films prepared in ultrahigh vacuum (UHV) and under O 2 atmosphere (1.3 x 10 -2 Pa). The film deposited in UHV showed downward band bending characteristic of n-type semiconductor, possibly due to residual impurities working as unintentional n-type dopants. On the other hand, the film deposited under O 2 atmosphere showed upward band bending characteristic of p-type semiconductor. Such trends, including the conversion from n- to p-type, are in excellent correspondence with reported field effect transistor characteristics of TiOPc, and clearly demonstrates that bulk TiOPc film was p-doped with oxygen. In order to examine the Fermi level alignment between TiOPc film and the substrate, the energy of the highest occupied molecular orbital (HOMO) of TiOPc relative to the Fermi level of the conductive substrate was determined for various substrates. The alignment between the Fermi level of conductive substrate and Fermi level of TiOPc film at fixed energy in the bandgap was not observed for the TiOPc film prepared in UHV, possibly because of insufficient charge density in the TiOPc film. This situation was drastically changed when the TiOPc film exposed to O 2 , and clear alignment of the Fermi level fixed at 0.6 eV above the HOMO with the Fermi level of the conducting substrate was observed, probably by p-type doping effect of oxygen. These are the first direct and quantitative information about bulk oxygen doping from the viewpoint of the electronic structure. These results suggest that similar band bending with Fermi level alignment may be also achieved for other organic semiconductors under practical device conditions, and also call for caution at the comparison of experimental

  13. Quality evaluation of resistivity-controlled silicon crystals

    Science.gov (United States)

    Wang, Jong Hoe

    2006-01-01

    The segregation phenomenon of dopants causes a low production yield of silicon crystal that meets the resistivity tolerance required by device manufacturers. In order to control the macroscopic axial resistivity distribution in bulk crystal growth, numerous studies including continuous Czochralski method and double crucible technique have been studied. The simple B-P codoping method for improving the productivity of p-type silicon single-crystal growth by controlling axial specific resistivity distribution was proposed by Wang [Jpn. J. Appl. Phys. 43 (2004) 4079]. In this work, the quality of Czochralski-grown silicon single crystals with a diameter 200 mm using B-P codoping method was studied from the chemical and structural points of view. It was found that the characteristics of B-P codoped wafers including the oxygen precipitation behavior and the grown-in defects are same as that of conventional B-doped Czochralski crystals.

  14. Doping enhanced barrier lowering in graphene-silicon junctions

    Science.gov (United States)

    Zhang, Xintong; Zhang, Lining; Chan, Mansun

    2016-06-01

    Rectifying properties of graphene-semiconductor junctions depend on the Schottky barrier height. We report an enhanced barrier lowering in graphene-Si junction and its essential doping dependence in this paper. The electric field due to ionized charge in n-type Si induces the same type doping in graphene and contributes another Schottky barrier lowering factor on top of the image-force-induced lowering (IFIL). We confirm this graphene-doping-induced lowering (GDIL) based on well reproductions of the measured reverse current of our fabricated graphene-Si junctions by the thermionic emission theory. Excellent matching between the theoretical predictions and the junction data of the doping-concentration dependent barrier lowering serves as another evidence of the GDIL. While both GDIL and IFIL are enhanced with the Si doping, GDIL exceeds IFIL with a threshold doping depending on the as-prepared graphene itself.

  15. Optical properties of phosphorescent nano-silicon electrochemically doped with terbium

    Energy Technology Data Exchange (ETDEWEB)

    Gelloz, Bernard [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Mentek, Romain; Koshida, Nobuyoshi [Tokyo University A and T, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan)

    2012-12-15

    Hybrid thin films consisting of oxidized nano-silicon doped with terbium have been fabricated. Nano-silicon was formed by electrochemical etching of silicon wafers. Terbium was incorporated into nano-silicon pores by electrochemical deposition. Different oxidizing thermal treatments were applied to the films. The samples treated by high-pressure water vapor annealing (HWA) exhibited strong blue emission with a phosphorescent component, as previously reported by our group. The low temperature (260 C) HWA also led to strong emission from Tb{sup 3+} ions, whereas typical high temperature (900 C) treatment generally used to activate Tb{sup 3+} ions in silicon-based materials led to less luminescent samples. Spectroscopic and dynamic analyses suggest that terbium was incorporated as a separate oxide phase in the pores of the porous nano-silicon. The PL of the terbium phase and nano-silicon phase exhibit different temperature and excitation power dependences suggesting little optical or electronic interaction between the two phases. The luminescence of terbium is better activated at low temperature (260 C) than at high temperature (900 C). The hybrid material may find some applications in photonics, for instance as a display material. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Method of enhanced lithiation of doped silicon carbide via high temperature annealing in an inert atmosphere

    Science.gov (United States)

    Hersam, Mark C.; Lipson, Albert L.; Bandyopadhyay, Sudeshna; Karmel, Hunter J; Bedzyk, Michael J

    2014-05-27

    A method for enhancing the lithium-ion capacity of a doped silicon carbide is disclosed. The method utilizes heat treating the silicon carbide in an inert atmosphere. Also disclosed are anodes for lithium-ion batteries prepared by the method.

  17. The thermal neutron absorption cross-sections, resonance integrals and resonance parameters of silicon and its stable isotopes

    International Nuclear Information System (INIS)

    Story, J.S.

    1969-09-01

    The data available up to the end of November 1968 on the thermal neutron absorption cross-sections, resonance absorption integrals, and resonance parameters of silicon and its stable isotopes are collected and discussed. Estimates are given of the mean spacing of the energy levels of the compound nuclei near the neutron binding energy. It is concluded that the thermal neutron absorption cross-section and resonance absorption integral of natural silicon are not well established. The data on these two parameters are somewhat correlated, and three different assessments of the resonance integral are presented which differ over-all by a factor of 230. Many resonances have been detected by charged particle reactions which have not yet been observed in neutron cross-section measurements. One of these resonances of Si 2 8, at E n = 4 ± 5 keV might account for the large resonance integral which is derived, very uncertainly, from integral data. The principal source of the measured resonance integral of Si 3 0 has not yet been located. The thermal neutron absorption cross-section of Si 2 8 appears to result mainly from a negative energy resonance, possibly the resonance at E n = - 59 ± 5 keV detected by the Si 2 8 (d,p) reaction. (author)

  18. Thermal neutron scattering kernels for sapphire and silicon single crystals

    International Nuclear Information System (INIS)

    Cantargi, F.; Granada, J.R.; Mayer, R.E.

    2015-01-01

    Highlights: • Thermal cross section libraries for sapphire and silicon single crystals were generated. • Debye model was used to represent the vibrational frequency spectra to feed the NJOY code. • Sapphire total cross section was measured at Centro Atómico Bariloche. • Cross section libraries were validated with experimental data available. - Abstract: Sapphire and silicon are materials usually employed as filters in facilities with thermal neutron beams. Due to the lack of the corresponding thermal cross section libraries for those materials, necessary in calculations performed in order to optimize beams for specific applications, here we present the generation of new thermal neutron scattering kernels for those materials. The Debye model was used in both cases to represent the vibrational frequency spectra required to feed the NJOY nuclear data processing system in order to produce the corresponding libraries in ENDF and ACE format. These libraries were validated with available experimental data, some from the literature and others obtained at the pulsed neutron source at Centro Atómico Bariloche

  19. Electrical leakage phenomenon in heteroepitaxial cubic silicon carbide on silicon

    Science.gov (United States)

    Pradeepkumar, Aiswarya; Zielinski, Marcin; Bosi, Matteo; Verzellesi, Giovanni; Gaskill, D. Kurt; Iacopi, Francesca

    2018-06-01

    Heteroepitaxial 3C-SiC films on silicon substrates are of technological interest as enablers to integrate the excellent electrical, electronic, mechanical, thermal, and epitaxial properties of bulk silicon carbide into well-established silicon technologies. One critical bottleneck of this integration is the establishment of a stable and reliable electronic junction at the heteroepitaxial interface of the n-type SiC with the silicon substrate. We have thus investigated in detail the electrical and transport properties of heteroepitaxial cubic silicon carbide films grown via different methods on low-doped and high-resistivity silicon substrates by using van der Pauw Hall and transfer length measurements as test vehicles. We have found that Si and C intermixing upon or after growth, particularly by the diffusion of carbon into the silicon matrix, creates extensive interstitial carbon traps and hampers the formation of a stable rectifying or insulating junction at the SiC/Si interface. Although a reliable p-n junction may not be realistic in the SiC/Si system, we can achieve, from a point of view of the electrical isolation of in-plane SiC structures, leakage suppression through the substrate by using a high-resistivity silicon substrate coupled with deep recess etching in between the SiC structures.

  20. Thermoelectric characteristics of Pt-silicide/silicon multi-layer structured p-type silicon

    International Nuclear Information System (INIS)

    Choi, Wonchul; Jun, Dongseok; Kim, Soojung; Shin, Mincheol; Jang, Moongyu

    2015-01-01

    Electric and thermoelectric properties of silicide/silicon multi-layer structured devices were investigated with the variation of silicide/silicon heterojunction numbers from 3 to 12 layers. For the fabrication of silicide/silicon multi-layered structure, platinum and silicon layers are repeatedly sputtered on the (100) silicon bulk substrate and rapid thermal annealing is carried out for the silicidation. The manufactured devices show ohmic current–voltage (I–V) characteristics. The Seebeck coefficient of bulk Si is evaluated as 195.8 ± 15.3 μV/K at 300 K, whereas the 12 layered silicide/silicon multi-layer structured device is evaluated as 201.8 ± 9.1 μV/K. As the temperature increases to 400 K, the Seebeck coefficient increases to 237.2 ± 4.7 μV/K and 277.0 ± 1.1 μV/K for bulk and 12 layered devices, respectively. The increase of Seebeck coefficient in multi-layered structure is mainly attributed to the electron filtering effect due to the Schottky barrier at Pt-silicide/silicon interface. At 400 K, the thermal conductivity is reduced by about half of magnitude compared to bulk in multi-layered device which shows the efficient suppression of phonon propagation by using Pt-silicide/silicon hetero-junctions. - Highlights: • Silicide/silicon multi-layer structured is proposed for thermoelectric devices. • Electric and thermoelectric properties with the number of layer are investigated. • An increase of Seebeck coefficient is mainly attributed the Schottky barrier. • Phonon propagation is suppressed with the existence of Schottky barrier. • Thermal conductivity is reduced due to the suppression of phonon propagation

  1. Boron-Doped Diamond (BDD) Coatings Protect Underlying Silicon in Aqueous Acidic Media–Application to the Hydrogen Evolution Reaction

    International Nuclear Information System (INIS)

    Halima, A.F.; Rana, U.A.; MacFarlane, D.R.

    2014-01-01

    Abstract: Silicon has potential application as a functional semiconductor electrode in proposed solar water splitting cells. It is abundant and has excellent photovoltaic attributes, however it is extremely susceptible to corrosion, even in the dark, resulting in the formation of an electrochemically passive oxide upon interaction with aqueous media. This work investigates the potential for conductive, inert and transparent boron doped diamond (BDD) coatings to protect p-type Silicon (p-Si). The stability and electrochemical performance of p-Si and p-Si|BDD were investigated using voltammetric techniques in 1 M H 2 SO 4 , before and after long-term exposure to the acidic medium (up to 280 hours) under no applied potential bias. Unprotected Si degraded very rapidly whilst BDD was shown to protect the underlying Si, as evident from I-V curves that indicated no increased resistance across the Si-diamond interface. Furthermore, BDD supported facile proton reduction at significantly lower onset potential for the hydrogen evolution reaction (up to -500 mV vs. SCE) compared with bare Si cathode (-850 mV vs. SCE). The activity of the BDD electrode/electrolyte interface was further improved by coating with platinum catalyst particles, to produce a p-Si|BDD|Pt strucure, which reduced the HER onset to nearly zero overpotential. Tafel analysis indicated that desirable electrochemical activity and stability were achieved for p-Si|BDD|Pt, making this a promising electrode for application in water splitting cells

  2. Metal-assisted chemical etch porous silicon formation method

    Science.gov (United States)

    Li, Xiuling; Bohn, Paul W.; Sweedler, Jonathan V.

    2004-09-14

    A thin discontinuous layer of metal such as Au, Pt, or Au/Pd is deposited on a silicon surface. The surface is then etched in a solution including HF and an oxidant for a brief period, as little as a couple seconds to one hour. A preferred oxidant is H.sub.2 O.sub.2. Morphology and light emitting properties of porous silicon can be selectively controlled as a function of the type of metal deposited, Si doping type, silicon doping level, and/or etch time. Electrical assistance is unnecessary during the chemical etching of the invention, which may be conducted in the presence or absence of illumination.

  3. Size limit on the phosphorous doped silicon nanocrystals for dopant activation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, P., E-mail: pengyuan.yang@surrey.ac.uk [Surrey Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 5XH (United Kingdom); Gwilliam, R.M. [Surrey Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 5XH (United Kingdom); Crowe, I.F.; Papachristodoulou, N.; Halsall, M.P. [Photon Science Institute, School of Electrical and Electronic Engineering, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Hylton, N.P. [Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Hulko, O.; Knights, A.P. [Department of Engineering Physics and the Centre for Emerging Device Technologies, McMaster University, 1280 Main Street West, Hamilton L8S 4L7, Ontario (Canada); Shah, M.; Kenyon, A.J. [Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE (United Kingdom)

    2013-07-15

    We studied the photoluminescence spectra of silicon nanocrystals doped with and without phosphorus as a function of isothermal annealing time. Silicon nanocrystals were prepared by the implantation of 80 keV Si{sup +} into a 500 nm SiO{sub 2} film to an areal density of 8 × 10{sup 16} at/cm{sup 2}. Half of the samples were co-implanted with P{sup +} at 80 keV to 5 × 10{sup 15} at/cm{sup 2}. The photoluminescence of the annealed samples were photo-excited at wavelength of 405 nm. For short anneal times, when the nanocrystal size distribution has a relatively small mean diameter, formation in the presence of phosphorus yields an increase in the luminescence intensity and a blue shift in the emission peak compared with intrinsic nanocrystals. As the mean size increases with annealing time, this enhancement rapidly diminishes and the peak energy shifts to the red. Our results indicate the donor electron generation depends strongly on the nanocrystal size. We also found a critical limit above which it allows dopant activation.

  4. Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces

    International Nuclear Information System (INIS)

    Bashiri, Hadi; Azim Karami, Mohammad; Mohammadnejad, Shahramm

    2017-01-01

    By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact (IBC) silicon solar cell, a new passivation layer is investigated. The passivation layer performance is characterized by numerical simulations. Moreover, the dependence of the output parameters of the solar cell on the additional layer parameters (doping concentration and thickness) is studied. By optimizing the additional passivation layer in terms of doping concentration and thickness, the power conversion efficiency could be improved by a factor of 2.5%, open circuit voltage is increased by 30 mV and the fill factor of the solar cell by 7.4%. The performance enhancement is achieved due to the decrease of recombination rate, a decrease in solar cell resistivity and improvement of field effect passivation at heterojunction interface. The above-mentioned results are compared with reported results of the same conventional interdigitated back-contact silicon solar cell structure. Furthermore, the effect of a-Si:H/c-Si interface defect density on IBC silicon solar cell parameters with a new passivation layer is studied. The additional passivation layer also reduces the sensitivity of output parameter of solar cell to interface defect density. (paper)

  5. Potential therapeutic gain from using p(66)/Be neutrons

    International Nuclear Information System (INIS)

    Slabbert, J.P.; Jones, D.T.L.; Theron, C.; Serafin, A.; Bohm, L.; Schmitt, G.

    1997-01-01

    Neutron therapy will be beneficial to patients with tumor types which are resistant to photons but relatively sensitive to high-LET radiation. In this work 15 different cell types, mostly of human tumor decent, were exposed in vitro to 60 Co γ-rays and p(66)/Be neutrons. Micronuclei frequencies in bi-nucleated cells and surviving fractions were determined for each cell type. Following exposure to either 1 or 1.5 Gy neutrons, micronuclei frequencies were significantly correlated with that observed from 2 Gy photons. A strong correlation between mean inactivation doses determined for these radiation modalities from survival curve inactivation parameters, was also noted. In spite of this a significant correlation between the variation in neutron RBE values and photon resistance was established. It is concluded that although neutron and photo sensitivities are related in the group of cell types studies, the use of this high energy neutron source may constitute a potential therapeutic gain for some tumor types. (authors)

  6. Reactivity of silicon and germanium doped CNTs toward aromatic sulfur compounds: A theoretical approach

    International Nuclear Information System (INIS)

    Galano, Annia; Francisco-Marquez, Misaela

    2008-01-01

    Adsorption processes of thiophene and benzothiophene on pristine carbon nanotubes (CNTs), and on CNTs doped with Si or Ge, have been modeled with Density Functional. This is the first study on the chemical reactivity of such doped tubes. The calculated data suggest that the presence of silicon or germanium atoms in CNTs increases their reactivity toward thiophene, and benzothiophene. The adsorption of these species on pristine CNTs seems very unlikely to occur, while the addition products involving doped CNTs were found to be very stable, with respect to the isolated reactants, in terms of Gibbs free energy. Several of these adsorption processes were found to be significantly exergonic (ΔG < 0) in non-polar liquid phase. The results reported in this work suggest that Si and Ge defects on CNTs increase their reactivity toward unsaturated species, and could make them useful in the removal processes of aromatic sulfur compounds from oil-hydrocarbons. However, according to our results, CNTs doped with Si atoms are expected to be more efficient as aromatic sulfur compounds scavengers than those doped with Ge. These results also suggest that the presence of silicon and germanium atoms in the CNTs structures enhances their reactivity toward nucleophilic molecules, compared to pristine carbon nanotubes

  7. The new high flux neutron source FRM-2 in Munich

    International Nuclear Information System (INIS)

    Roegler, H.J.; Wierheim, G.

    2002-01-01

    Quite some years ago in 1974 to be exact, the first consideration on a new neutron source started at the technical university of Munich (Germany). 27 years later the new high flux neutron source (FRM-2) was read for hot operation, now delayed by a refused approval for its third partial license by the federal government of Germany despite a wide support from the scientific community. FRM-2 is a tank-type research reactor cooled by water, moderated by heavy water and whose thermal power was limited to 20 MW maximum. The extreme compact core together with the applied inverse flux principle led to a neutron flux design value of 8.10 18 n/m 2 .s at the reflector peak. 10 beam tubes will allow an optimized use of the high neutron flux. A hot neutron source with graphite at about 2200 Celsius degrees and a cold neutron source with liquid D 2 at about 25 K will provide shifted energy spectra. The utilization of FRM-2 is many-fold: neutronography and tomography, medical irradiation, radio-nuclide production, doping of pure silicon, neutron activation analysis. (A.C.)

  8. Integrated porous-silicon light-emitting diodes: A fabrication process using graded doping profiles

    International Nuclear Information System (INIS)

    Barillaro, G.; Diligenti, A.; Pieri, F.; Fuso, F.; Allegrini, M.

    2001-01-01

    A fabrication process, compatible with an industrial bipolar+complementary metal - oxide - semiconductor (MOS)+diffusion MOS technology, has been developed for the fabrication of efficient porous-silicon-based light-emitting diodes. The electrical contact is fabricated with a double n + /p doping, achieving a high current injection efficiency and thus lower biasing voltages. The anodization is performed as the last step of the process, thus reducing potential incompatibilities with industrial processes. The fabricated devices show yellow-orange electroluminescence, visible with the naked eye in room lighting. A spectral characterization of light emission is presented and briefly discussed. [copyright] 2001 American Institute of Physics

  9. Effect of Carbon Doping on the Structure and Magnetic Phase Transition in (Mn,Fe2(P,Si))

    Science.gov (United States)

    Thang, N. V.; Yibole, H.; Miao, X. F.; Goubitz, K.; van Eijck, L.; van Dijk, N. H.; Brück, E.

    2017-08-01

    Given the potential applications of (Mn,Fe2(P,Si))-based materials for room-temperature magnetic refrigeration, several research groups have carried out fundamental studies aimed at understanding the role of the magneto-elastic coupling in the first-order magnetic transition and further optimizing this system. Inspired by the beneficial effect of the addition of boron on the magnetocaloric effect of (Mn,Fe2(P,Si))-based materials, we have investigated the effect of carbon (C) addition on the structural properties and the magnetic phase transition of Mn_{1.25}Fe_{0.70}P_{0.50}Si_{0.50}C_z and Mn_{1.25}Fe_{0.70}P_{0.55}Si_{0.45}C_z compounds by x-ray diffraction, neutron diffraction and magnetic measurements in order to find an additional control parameter to further optimize the performance of these materials. All samples crystallize in the hexagonal Fe_2P-type structure (space group P-62m), suggesting that C doping does not affect the phase formation. It is found that the Curie temperature increases, while the thermal hysteresis and the isothermal magnetic entropy change decrease by adding carbon. Room-temperature neutron diffraction experiments on Mn_{1.25}Fe_{0.70}P_{0.55}Si_{0.45}C_z compounds reveal that the added C substitutes P/Si on the 2 c site and/or occupies the 6 k interstitial site of the hexagonal Fe_2P-type structure.

  10. Arsenic doped p-type zinc oxide films grown by radio frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Fan, J. C.; Zhu, C. Y.; Fung, S.; To, C. K.; Yang, B.; Beling, C. D.; Ling, C. C.; Zhong, Y. C.; Wong, K. S.; Xie, Z.; Brauer, G.; Skorupa, W.; Anwand, W.

    2009-01-01

    As-doped ZnO films were grown by the radio frequency magnetron sputtering method. As the substrate temperature during growth was raised above ∼400 deg. C, the films changed from n type to p type. Hole concentration and mobility of ∼6x10 17 cm -3 and ∼6 cm 2 V -1 s -1 were achieved. The ZnO films were studied by secondary ion mass spectroscopy, x-ray photoelectron spectroscopy (XPS), low temperature photoluminescence (PL), and positron annihilation spectroscopy (PAS). The results were consistent with the As Zn -2V Zn shallow acceptor model proposed by Limpijumnong et al. [Phys. Rev. Lett. 92, 155504 (2004)]. The results of the XPS, PL, PAS, and thermal studies lead us to suggest a comprehensive picture of the As-related shallow acceptor formation.

  11. Arsenic doped p-type zinc oxide films grown by radio frequency magnetron sputtering

    Science.gov (United States)

    Fan, J. C.; Zhu, C. Y.; Fung, S.; Zhong, Y. C.; Wong, K. S.; Xie, Z.; Brauer, G.; Anwand, W.; Skorupa, W.; To, C. K.; Yang, B.; Beling, C. D.; Ling, C. C.

    2009-10-01

    As-doped ZnO films were grown by the radio frequency magnetron sputtering method. As the substrate temperature during growth was raised above ˜400 °C, the films changed from n type to p type. Hole concentration and mobility of ˜6×1017 cm-3 and ˜6 cm2 V-1 s-1 were achieved. The ZnO films were studied by secondary ion mass spectroscopy, x-ray photoelectron spectroscopy (XPS), low temperature photoluminescence (PL), and positron annihilation spectroscopy (PAS). The results were consistent with the AsZn-2VZn shallow acceptor model proposed by Limpijumnong et al. [Phys. Rev. Lett. 92, 155504 (2004)]. The results of the XPS, PL, PAS, and thermal studies lead us to suggest a comprehensive picture of the As-related shallow acceptor formation.

  12. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    International Nuclear Information System (INIS)

    Schrof, Julian; Müller, Ralph; Benick, Jan; Hermle, Martin; Reedy, Robert C.

    2015-01-01

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr 3 furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr 3 diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr 3

  13. Electrically active defects in p-type silicon after alpha-particle irradiation

    Science.gov (United States)

    Danga, Helga T.; Auret, F. Danie; Tunhuma, Shandirai M.; Omotoso, Ezekiel; Igumbor, Emmanuel; Meyer, Walter E.

    2018-04-01

    In this work, we investigated the defects introduced when boron (B) doped silicon (Si) was irradiated by making use of a 5.4 MeV americium (Am) 241 foil radioactive source with a fluence rate of 7×106 cm-2 s-1 at room temperature. Deep level transient spectroscopy (DLTS) and Laplace-DLTS measurements were used to investigate the electronic properties of the introduced defects. After exposure at a fluence of 5.1×1010 cm-2, the energy levels of the hole traps measured were: H(0.10), H(0.16), H(0.33) and H(0.52) The defect level H(0.10) was tri-vacancy related. H(0.33) was identified as the interstitial carbon (Ci) related defect which was a result of radiation induced damage. H(0.52) was a B-related defect. Explicit deductions about the origin of H(0.16) have not yet been achieved.

  14. Highly doped InP as a low loss plasmonic material for mid-IR region.

    Science.gov (United States)

    Panah, M E Aryaee; Takayama, O; Morozov, S V; Kudryavtsev, K E; Semenova, E S; Lavrinenko, A V

    2016-12-12

    We study plasmonic properties of highly doped InP in the mid-infrared (IR) range. InP was grown by metal-organic vapor phase epitaxy (MOVPE) with the growth conditions optimized to achieve high free electron concentrations by doping with silicon. The permittivity of the grown material was found by fitting the calculated infrared reflectance spectra to the measured ones. The retrieved permittivity was then used to simulate surface plasmon polaritons (SPPs) propagation on flat and structured surfaces, and the simulation results were verified in direct experiments. SPPs at the top and bottom interfaces of the grown epilayer were excited by the prism coupling. A high-index Ge hemispherical prism provides efficient coupling conditions of SPPs on flat surfaces and facilitates acquiring their dispersion diagrams. We observed diffraction into symmetry-prohibited diffraction orders stimulated by the excitation of surface plasmon-polaritons in a periodically structured epilayer. Characterization shows good agreement between the theory and experimental results and confirms that highly doped InP is an effective plasmonic material aiming it for applications in the mid-IR wavelength range.

  15. Automatically controlled facilities for irradiation of silicon crystals at the Rossendorf Research Reactor

    International Nuclear Information System (INIS)

    Ross, R.

    1988-01-01

    This report describes the facilities for neutron transmutation doping of silicon in GDR. The irradiation of silicon single crystals began at Rossendorf in 1978 with simple equipment. Only a small amount of silicon could be irradiated in it. The fast increasing need of NTD-silicon made it necessary to design and construct new and better facilities. The new facilities are capable of irradiating silicon from 2'' to 3'' in diameter. The irradiation process takes place automatically with the assistance of a computer. Material produced has an axial homogeneity of ± 7%. Irradiation riggs, techniques, irradiation control and quality control are discussed. (author). 4 figs

  16. Electronic properties of pure and p-type doped hexagonal sheets and zigzag nanoribbons of InP

    International Nuclear Information System (INIS)

    Longo, R C; Carrete, J; Alemany, M M G; Gallego, L J

    2013-01-01

    Unlike graphene, a hexagonal InP sheet (HInPS) cannot be obtained by mechanical exfoliation from the native bulk InP, which crystallizes in the zinc blende structure under ambient conditions. However, by ab initio density functional theory calculations we found that a slightly buckled HInPS is stable both in pristine form and when doped with Zn atoms; the same occurred for hydrogen-passivated zigzag InP nanoribbons (ZInPNRs), quasi-one-dimensional versions of the quasi-two-dimensional material. We investigated the electronic properties of both nanostructures, in the latter case also in the presence of an external transverse electric field, and the results are compared with those of hypothetical planar HInPS and ZInPNRs. The band gaps of planar ZInPNRs were found to be tunable by the choice of strength of this field, and to show an asymmetric behavior under weak electric fields, by which the gap can either be increased or decreased depending on their direction; however, this effect is absent from slightly buckled ZInPNRs. The binding energies of the acceptor impurity states of Zn-doped HInPS and ZInPNRs were found to be similar and much larger than that of Zn-doped bulk InP. These latter findings show that the reduction of the dimensionality of these materials limits the presence of free carriers. (paper)

  17. A Density Functional Theory Study of Doped Tin Monoxide as a Transparent p-type Semiconductor

    KAUST Repository

    Bianchi Granato, Danilo

    2012-05-01

    In the pursuit of enhancing the electronic properties of transparent p-type semiconductors, this work uses density functional theory to study the effects of doping tin monoxide with nitrogen, antimony, yttrium and lanthanum. An overview of the theoretical concepts and a detailed description of the methods employed are given, including a discussion about the correction scheme for charged defects proposed by Freysoldt and others [Freysoldt 2009]. Analysis of the formation energies of the defects points out that nitrogen substitutes an oxygen atom and does not provide charge carriers. On the other hand, antimony, yttrium, and lanthanum substitute a tin atom and donate n-type carriers. Study of the band structure and density of states indicates that yttrium and lanthanum improves the hole mobility. Present results are in good agreement with available experimental works and help to improve the understanding on how to engineer transparent p-type materials with higher hole mobilities.

  18. P-type Al-doped Cr-deficient CrN thin films for thermoelectrics

    DEFF Research Database (Denmark)

    Febvrier, Arnaud le; Van Nong, Ngo; Abadias, Gregory

    2018-01-01

    Thermoelectric properties of chromium nitride (CrN)-based films grown on c-plane sapphire by dc reactive magnetron sputtering were investigated. In this work, aluminum doping was introduced in CrN (degenerate n-type semiconductor) by co-deposition. Under the present deposition conditions, over......-type/n-type thermoelectric materials based on chromium nitride films, which are cheap and routinely grown on the industrial scale....

  19. 14 MeV neutron activation analysis for oxygen determination in silicon single-crystals

    International Nuclear Information System (INIS)

    Timus, D.M.; Galatanu, V.; Catana, D.

    1985-01-01

    The nondestructive fast neutron activation method has been applied for the total oxygen content determination with regards to the correlation of this content with the material properties of the silicon. The nuclear reaction used is: 16 O (n,p) 16 N, (Tsub(1/2)=7,4 s). The equipment and experimental set-up of the analytical system contained fast neutron generator GENEDAC, gamma scintillation detector (NaI crystal), a photomultiplier, a preamplifier, a linear amplifier with variable energy discrimination thresholds and a pneumatic conveyor system. The method proposed is rapid (total analysis time is less than 60 s), specific (allows a good energetic discrimination in relation to other elements) and precise, being able to characterize nondestructively the whole volume of the analysed sample

  20. Lanthanide-Doped Ceria Nanoparticles as Backside Coaters to Improve Silicon Solar Cell Efficiency.

    Science.gov (United States)

    Hajjiah, Ali; Samir, Effat; Shehata, Nader; Salah, Mohamed

    2018-05-23

    This paper introduces lanthanide-doped ceria nanoparticles as silicon solar cell back-side coaters, showing their influence on the solar cell efficiency. Ceria nanoparticles can be synthesized to have formed oxygen vacancies (O-vacancies), which are associated with converting cerium ions from the Ce 4+ state ions to the Ce 3+ ones. These O-vacancies follow the rule of improving silicon solar cell conductivity through a hopping mechanism. Besides, under near-ultra violet (near-UV) excitation, the reduced trivalent cerium Ce 3+ ions are directly responsible for down converting the un-absorbed UV wavelengths to a resultant green photo-luminescence emission at ~520 nm, which is absorbed through the silicon solar cell’s active layer. Adding lanthanide elements such as Neodymium “Nd” as ceria nanoparticle dopants helps in forming extra oxygen vacancies (O-vacancies), followed by an increase in the number of Ce 4+ to Ce 3+ ion reductions, thus enhancing the conductivity and photoluminescence down conversion mechanisms. After introducing lanthanide-doped ceria nanoparticles on a silicon solar cell surface, a promising enhancement in the behavior of the solar cell current-voltage curve is observed, and the efficiency is improved by about 25% of its initial value due to the mutual impact of improving both electric conductivity and optical conversions.

  1. Evaluation of neutron irradiated near-stoichiometric silicon carbide fiber composites

    International Nuclear Information System (INIS)

    Snead, L.L.; Katoh, Y.; Kohyama, A.; Bailey, J.L.; Vaughn, N.L.; Lowden, R.A.

    2000-01-01

    Composites have been fabricated by chemical vapor infiltration of silicon carbide (SiC) into SiC-based fiber preforms. Fibers were Ceramic Grade Nicalon TM , Hi-Nicalon TM and Hi-Nicalon TM Type-S. Results are presented for two parallel studies on the effects of neutron irradiation on these materials. In the first study, neutron irradiation induced changes in mechanical properties, as measured by bend testing, for Hi-Nicalon TM fiber materials of varied interphase structures is measured. Results indicate that both the Ceramic Grade Nicalon TM and Hi-Nicalon TM materials degrade substantially under irradiation, though the higher oxygen content Ceramic Grade fiber degrades more rapidly and more substantially. Of the three interfaces studied in the Hi-Nicalon TM system, the multilayer SiC is the most radiation resistant. At a dose of ∼1 dpa the mechanical property degradation of the Hi-Nicalon TM composite is consistent with a fiber densification-induced debonding. At a dose of 10 dpa the properties continue to degrade raising the question of degradation in the CVD SiC matrix as well. Low-dose results on the Hi-Nicalon TM Type-S fabricated material are encouraging, as they appear to not lose, and perhaps slightly increase, in ultimate bend strength. This result is consistent with the supposition that as the oxygen content in SiC-based fibers is reduced, the irradiation stability and hence composite performance under irradiation will improve

  2. Hole states in diamond p-delta-doped field effect transistors

    International Nuclear Information System (INIS)

    Martinez-Orozco, J C; Rodriguez-Vargas, I; Mora-Ramos, M E

    2009-01-01

    The p-delta-doping in diamond allows to create high density two-dimensional hole gases. This technique has already been applied in the design and fabrication of diamond-based field effect transistors. Consequently, the knowledge of the electronic structure is of significant importance to understand the transport properties of diamond p-delta-doped systems. In this work the hole subbands of diamond p-type delta-doped quantum wells are studied within the framework of a local-density Thomas-Fermi-based approach for the band bending profile. The calculation incorporates an independent three-hole-band scheme and considers the effects of the contact potential, the delta-channel to contact distance, and the ionized impurity density.

  3. Hole states in diamond p-delta-doped field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Orozco, J C; Rodriguez-Vargas, I [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Calzada Solidaridad Esquina con Paseo la Bufa S/N, CP 98060 Zacatecas, ZAC. (Mexico); Mora-Ramos, M E, E-mail: jcmover@correo.unam.m [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, CP 62209 Cuernavaca, MOR. (Mexico)

    2009-05-01

    The p-delta-doping in diamond allows to create high density two-dimensional hole gases. This technique has already been applied in the design and fabrication of diamond-based field effect transistors. Consequently, the knowledge of the electronic structure is of significant importance to understand the transport properties of diamond p-delta-doped systems. In this work the hole subbands of diamond p-type delta-doped quantum wells are studied within the framework of a local-density Thomas-Fermi-based approach for the band bending profile. The calculation incorporates an independent three-hole-band scheme and considers the effects of the contact potential, the delta-channel to contact distance, and the ionized impurity density.

  4. Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement

    International Nuclear Information System (INIS)

    Yang Yongliang; Li Xinxin

    2011-01-01

    The p-type silicon giant piezoresistive coefficient is measured in top-down fabricated nano-thickness single-crystalline-silicon strain-gauge resistors with a macro-cantilever bending experiment. For relatively thicker samples, the variation of piezoresistive coefficient in terms of silicon thickness obeys the reported 2D quantum confinement effect. For ultra-thin samples, however, the variation deviates from the quantum-effect prediction but increases the value by at least one order of magnitude (compared to the conventional piezoresistance of bulk silicon) and the value can change its sign (e.g. from positive to negative). A stress-enhanced Si/SiO 2 interface electron-trapping effect model is proposed to explain the 'abnormal' giant piezoresistance that should be originated from the carrier-concentration change effect instead of the conventional equivalent mobility change effect for bulk silicon piezoresistors. An interface state modification experiment gives preliminary proof of our analysis.

  5. Room-temperature electroluminescence of Er-doped hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, Oleg; Bresler, Mikhail; Kuznetsov, Alexey; Kudoyarova, Vera; Pak, Petr; Terukov, Evgenii; Tsendin, Konstantin; Yassievich, Irina [A F Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Fuhs, Walther [Hahn-Meitner Institut, Abteilung Photovoltaik, Rudower Chaussee 5, D-12489 Berlin (Germany); Weiser, Gerhard [Phillips-Universitat Marburg, Fachbereich Physik, D-35032 Marburg (Germany)

    1998-05-11

    We have observed room-temperature erbium-ion electroluminescence in erbium-doped amorphous silicon. Electrical conduction through the structure is controlled by thermally activated ionization of deep D{sup -} defects in an electric field and the reverse process of capture of mobile electrons by D{sup 0} states. Defect-related Auger excitation (DRAE) is responsible for excitation of erbium ions located close to dangling-bond defects. Our experimental data are consistent with the mechanisms proposed

  6. Study of an Amorphous Silicon Oxide Buffer Layer for p-Type Microcrystalline Silicon Oxide/n-Type Crystalline Silicon Heterojunction Solar Cells and Their Temperature Dependence

    Directory of Open Access Journals (Sweden)

    Taweewat Krajangsang

    2014-01-01

    Full Text Available Intrinsic hydrogenated amorphous silicon oxide (i-a-SiO:H films were used as front and rear buffer layers in crystalline silicon heterojunction (c-Si-HJ solar cells. The surface passivity and effective lifetime of these i-a-SiO:H films on an n-type silicon wafer were improved by increasing the CO2/SiH4 ratios in the films. Using i-a-SiO:H as the front and rear buffer layers in c-Si-HJ solar cells was investigated. The front i-a-SiO:H buffer layer thickness and the CO2/SiH4 ratio influenced the open-circuit voltage (Voc, fill factor (FF, and temperature coefficient (TC of the c-Si-HJ solar cells. The highest total area efficiency obtained was 18.5% (Voc=700 mV, Jsc=33.5 mA/cm2, and FF=0.79. The TC normalized for this c-Si-HJ solar cell efficiency was −0.301%/°C.

  7. Laser annealed in-situ P-doped Ge for on-chip laser source applications (Conference Presentation)

    Science.gov (United States)

    Srinivasan, Ashwyn; Pantouvaki, Marianna; Shimura, Yosuke; Porret, Clement; Van Deun, Rik; Loo, Roger; Van Thourhout, Dries; Van Campenhout, Joris

    2016-05-01

    Realization of a monolithically integrated on-chip laser source remains the holy-grail of Silicon Photonics. Germanium (Ge) is a promising semiconductor for lasing applications when highly doped with Phosphorous (P) and or alloyed with Sn [1, 2]. P doping makes Ge a pseudo-direct band gap material and the emitted wavelengths are compatible with fiber-optic communication applications. However, in-situ P doping with Ge2H6 precursor allows a maximum active P concentration of 6×1019 cm-3 [3]. Even with such active P levels, n++ Ge is still an indirect band gap material and could result in very high threshold current densities. In this work, we demonstrate P-doped Ge layers with active n-type doping beyond 1020 cm-3, grown using Ge2H6 and PH3 and subsequently laser annealed, targeting power-efficient on-chip laser sources. The use of Ge2H6 precursors during the growth of P-doped Ge increases the active P concentration level to a record fully activated concentration of 1.3×1020 cm-3 when laser annealed with a fluence of 1.2 J/cm2. The material stack consisted of 200 nm thick P-doped Ge grown on an annealed 1 µm Ge buffer on Si. Ge:P epitaxy was performed with PH3 and Ge2H6 at 320oC. Low temperature growth enable Ge:P epitaxy far from thermodynamic equilibrium, resulting in an enhanced incorporation of P atoms [3]. At such high active P concentration, the n++ Ge layer is expected to be a pseudo-direct band gap material. The photoluminescence (PL) intensities for layers with highest active P concentration show an enhancement of 18× when compared to undoped Ge grown on Si as shown in Fig. 1 and Fig. 2. The layers were optically pumped with a 640 nm laser and an incident intensity of 410 mW/cm2. The PL was measured with a NIR spectrometer with a Hamamatsu R5509-72 NIR photomultiplier tube detector whose detectivity drops at 1620 nm. Due to high active P concentration, we expect band gap narrowing phenomena to push the PL peak to wavelengths beyond the detection limit

  8. Improvement on p-type CVD diamond semiconducting properties by fabricating thin heavily-boron-doped multi-layer clusters isolated each other in unintentionally boron-doped diamond layer

    Science.gov (United States)

    Maida, Osamu; Tabuchi, Tomohiro; Ito, Toshimichi

    2017-12-01

    We have developed a new fabrication process to decrease the effective activation energy of B atoms doped in diamond without a significant decrease in the carrier mobility by fabricating heavily B-doped clusters with very low mobility which are embedded in lightly-B-doped diamond layers. The resistivities of the heavily B-doped and unintentionally B-doped diamond stacked layers had almost no temperature dependence, suggesting the presence of an impurity-band conduction in these diamond layers. On the other hand, the resistivities of the samples after the embedding growth process of the stacked layers that had been appropriately divided to innumerable small clusters by means of a suitable etching process increased with decreasing the temperature from 330 to 130 K. The effective activation energies and Hall mobilities at room temperature of both samples were estimated to be 0.21 eV, 106 cm2 V-1 s-1 for micron-sized clusters and 0.23 eV, 470 cm2 V-1 s-1 for nano-sized clusters, respectively, indicating that the diamond film structure fabricated in this work is effective for the improvement of the p-type performance for the B-doped CVD diamond.

  9. Pristine and Al-doped hematite printed films as photoanodes of p-type dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Congiu, Mirko, E-mail: mirko.congiu@fc.unesp.br [UNESP–Univ. Estadual Paulista, POSMAT-Programa de Pós-Graduação em Ciência e Tecnologia de Materiais (Brazil); De Marco, Maria L.; Bonomo, Matteo [DC-FC-UNESP–Univ. Estadual Paulista (Brazil); Nunes-Neto, Oswaldo [UNESP–Univ. Estadual Paulista, POSMAT-Programa de Pós-Graduação em Ciência e Tecnologia de Materiais (Brazil); Dini, Danilo [DC-FC-UNESP–Univ. Estadual Paulista (Brazil); Graeff, Carlos F.O. [UNESP–Univ. Estadual Paulista, POSMAT-Programa de Pós-Graduação em Ciência e Tecnologia de Materiais (Brazil)

    2017-01-15

    We hereby propose a non-expensive method for the deposition of pure and Al-doped hematite photoanodes in the configuration of thin films for the application of dye-sensitized solar cells (DSSC). The electrodes have been prepared from hematite nanoparticles that were obtained by thermal degradation of a chemical precursor. The particles have been used in the preparation of a paste, suitable for both screen printing and doctor blade deposition. The paste was then spread on fluorine-doped tin oxide (FTO) to obtain porous hematite electrodes. The electrodes have been sensitized using N3 and D5 dyes and were characterized through current/voltage curves under simulated sun light (1 sun, AM 1.5) with a Pt counter electrode. Al-doping of hematite showed interesting changes in the physical and electrochemical characteristics of sensitized photoanodes since we could notice the growth of AlFe{sub 2}O{sub 4} (hercynite) as a secondary crystal phase into the oxides obtained by firing the mixtures of two chemical precursors at different molar ratios. Pure and Al-doped hematite electrodes have been used in a complete n-type DSSCs. The kinetics of charge transfer through the interface dye/electrolyte was studied and compared to that of a typical p-type DSSC based on NiO photocathodes sensitized with erythrosine B. The results suggest a potential application of both Fe{sub 2}O{sub 3} and Fe{sub 2}O{sub 3}/AlFe{sub 2}O{sub 4} as photoanodes of a tandem DSSC.

  10. Reinventing a p-type doping process for stable ZnO light emitting devices

    Science.gov (United States)

    Xie, Xiuhua; Li, Binghui; Zhang, Zhenzhong; Shen, Dezhen

    2018-06-01

    A tough challenge for zinc oxide (ZnO) as the ultraviolet optoelectronics materials is realizing the stable and reliable p-type conductivity. Self-compensation, coming from native donor-type point defects, is a big obstacle. In this work, we introduce a dynamic N doping process with molecular beam epitaxy, which is accomplished by a Zn, N-shutter periodic switch (a certain time shift between them for independent optimization of surface conditions). During the epitaxy, N adatoms are incorporated under the condition of (2  ×  2)  +  Zn vacancies reconstruction on a Zn-polar surface, at which oxygen vacancies (V O), the dominating compensating donors, are suppressed. With the p-ZnO with sufficient holes surviving, N concentration ~1  ×  1019 cm‑3, is employed in a p-i-n light emitting devices. Significant ultraviolet emission of electroluminescence spectra without broad green band (related to V O) at room-temperature are demonstrated. The devices work incessantly without intentional cooling for over 300 h at a luminous intensity reduction of one order of magnitude under the driving of a 10 mA continuous current, which are the demonstration for p-ZnO stability and reliability.

  11. Bi-Sn alloy catalyst for simultaneous morphology and doping control of silicon nanowires in radial junction solar cells

    International Nuclear Information System (INIS)

    Yu, Zhongwei; Lu, Jiawen; Qian, Shengyi; Xu, Jun; Xu, Ling; Wang, Junzhuan; Shi, Yi; Chen, Kunji; Misra, Soumyadeep; Roca i Cabarrocas, Pere; Yu, Linwei

    2015-01-01

    Low-melting point metals such as bismuth (Bi) and tin (Sn) are ideal choices for mediating a low temperature growth of silicon nanowires (SiNWs) for radial junction thin film solar cells. The incorporation of Bi catalyst atoms leads to sufficient n-type doping in the SiNWs core that exempts the use of hazardous dopant gases, while an easy morphology control with pure Bi catalyst has never been demonstrated so far. We here propose a Bi-Sn alloy catalyst strategy to achieve both a beneficial catalyst-doping and an ideal SiNW morphology control. In addition to a potential of further growth temperature reduction, we show that the alloy catalyst can remain quite stable during a vapor-liquid-solid growth, while providing still sufficient n-type catalyst-doping to the SiNWs. Radial junction solar cells constructed over the alloy-catalyzed SiNWs have demonstrated a strongly enhanced photocurrent generation, thanks to optimized nanowire morphology, and largely improved performance compared to the reference samples based on the pure Bi or Sn-catalyzed SiNWs

  12. First-principles study on silicon atom doped monolayer graphene

    Science.gov (United States)

    Rafique, Muhammad; Shuai, Yong; Hussain, Nayyar

    2018-01-01

    This paper illustrates the structural, electronic and optical properties of individual silicon (Si) atom-doped single layer graphene using density functional theory method. Si atom forms tight bonding with graphene layer. The effect of doping has been investigated by varying the concentration of Si atoms from 3.125% to 9.37% (i.e. From one to three Si atoms in 4 × 4 pure graphene supercell containing 32 carbon atoms), respectively. Electronic structure, partial density of states (PDOS) and optical properties of pure and Si atom-doped graphene sheet were calculated using VASP (Vienna ab-initio Simulation Package). The calculated results for pure graphene sheet were then compared with Si atom doped graphene. It is revealed that upon Si doping in graphene, a finite band gap appears at the high symmetric K-point, thereby making graphene a direct band gap semiconductor. Moreover, the band gap value is directly proportional to the concentration of impurity Si atoms present in graphene lattice. Upon analyzing the optical properties of Si atom-doped graphene structures, it is found that, there is significant change in the refractive index of the graphene after Si atom substitution in graphene. In addition, the overall absorption spectrum of graphene is decreased after Si atom doping. Although a significant red shift in absorption is found to occur towards visible range of radiation when Si atom is substituted in its lattice. The reflectivity of graphene improves in low energy region after Si atom substitution in graphene. These results can be useful for tuning the electronic structure and to manipulate the optical properties of graphene layer in the visible region.

  13. Boron, phosphorus, and gallium determination in silicon crystals doped with gallium

    International Nuclear Information System (INIS)

    Shklyar, B.L.; Dankovskij, Yu.V.; Trubitsyn, Yu.V.

    1989-01-01

    When studying IR transmission spectra of silicon doped with gallium in the range of concentrations 1 x 10 14 - 5 x 10 16 cm -3 , the possibility to quantity at low (∼ 20 K) temperatures residual impurities of boron and phosphorus is ascertained. The lower determination limit of boron is 1 x 10 12 cm -3 for a sample of 10 nm thick. The level of the impurities in silicon crystals, grown by the Czochralski method and method of crucible-free zone melting, is measured. Values of boron and phosphorus concentrations prior to and after their alloying with gallium are compared

  14. Plasmon-enhanced phonon and ionized impurity scattering in doped silicon

    International Nuclear Information System (INIS)

    Chen, Ming-Jer; Hsieh, Shang-Hsun; Chen, Chuan-Li

    2015-01-01

    Historically, two microscopic electron scattering calculation methods have been used to fit macroscopic electron mobility data in n-type silicon. The first method was performed using a static system that included long-range electron-plasmon scattering; however, the well-known Born approximation fails in this case when dealing with electron-impurity scattering. In the second method, sophisticated numerical simulations were developed around plasmon-excited potential fluctuations and successfully reproduced the mobility data at room temperature. In this paper, we propose a third method as an alternative to the first method. First, using a fluctuating system, which was characterized on the basis of our recently experimentally extracted plasmon-excited potential fluctuations, the microscopic calculations reveal enhanced short-range scattering of electrons by phonons and ionized impurities due to increased electron temperature and increased screening length, respectively. The increased hot electron population makes the Born approximation hold, which eases the overall calculation task substantially. Then, we return to the static system while incorporating plasmon-enhanced impurity scattering. The resulting macroscopic electron mobility shows fairly good agreement with data over wide ranges of temperatures (200–400 K) and doping concentrations (10 15 –10 20  cm −3 ). Application of the proposed method to strained silicon is also demonstrated

  15. a-Si:H/c-Si heterojunction front- and back contacts for silicon solar cells with p-type base

    Energy Technology Data Exchange (ETDEWEB)

    Rostan, Philipp Johannes

    2010-07-01

    This thesis reports on low temperature amorphous silicon back and front contacts for high-efficiency crystalline silicon solar cells with a p-type base. The back contact uses a sequence of intrinsic amorphous (i-a-Si:H) and boron doped microcrystalline (p-{mu}c-Si:H) silicon layers fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) and a magnetron sputtered ZnO:Al layer. The back contact is finished by evaporating Al onto the ZnO:Al and altogether prepared at a maximum temperature of 220 C. Analysis of the electronic transport of mobile charge carriers at the back contact shows that the two high-efficiency requirements low back contact series resistance and high quality c-Si surface passivation are in strong contradiction to each other, thus difficult to achieve at the same time. The preparation of resistance- and effective lifetime samples allows one to investigate both requirements independently. Analysis of the majority charge carrier transport on complete Al/ZnO:Al/a-Si:H/c-Si back contact structures derives the resistive properties. Measurements of the effective minority carrier lifetime on a-Si:H coated wafers determines the back contact surface passivation quality. Both high-efficiency solar cell requirements together are analyzed in complete photovoltaic devices where the back contact series resistance mainly affects the fill factor and the back contact passivation quality mainly affects the open circuit voltage. The best cell equipped with a diffused emitter with random texture and a full-area a-Si:H/c-Si back contact has an independently confirmed efficiency {eta} = 21.0 % with an open circuit voltage V{sub oc} = 681 mV and a fill factor FF = 78.7 % on an area of 1 cm{sup 2}. An alternative concept that uses a simplified a-Si:H layer sequence combined with Al-point contacts yields a confirmed efficiency {eta} = 19.3 % with an open circuit voltage V{sub oc} = 655 mV and a fill factor FF = 79.5 % on an area of 2 cm{sup 2}. Analysis of the

  16. Experimental study of the organic light emitting diode with a p-type silicon anode

    International Nuclear Information System (INIS)

    Ma, G.L.; Xu, A.G.; Ran, G.Z.; Qiao, Y.P.; Zhang, B.R.; Chen, W.X.; Dai, L.; Qin, G.G.

    2006-01-01

    We have fabricated and studied an organic light emitting diode (OLED) with a p-type silicon anode and a SiO 2 buffer layer between the anode and the organic layers which emits light from a semitransparent top Yb/Au cathode. The luminance of the OLED is up to 5600 cd/m 2 at 17 V and 1800 mA/cm 2 , the current efficiency is 0.31 cd/A. Both its luminance and current efficiency are much higher than those of the OLEDs with silicon as the anodes reported previously. The enhancement of the luminance and efficiency can be attributed to an improved balance between the hole- and electron-injection through two efficient ways: 1) restraining the hole-injection by inserting an ultra-thin SiO 2 buffer layer between the Si anode and the organic layers; and 2) enhancing the electron-injection by using a low work function, low optical reflectance and absorption semitransparent Yb/Au cathode

  17. Highly doped InP as a low loss plasmonic material for mid-IR region

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Takayama, Osamu; Morozov, S. V.

    2016-01-01

    by fitting the calculated infrared reflectance spectra to the measured ones. The retrieved permittivity was then used to simulate surface plasmon polaritons (SPPs) propagation on flat and structured surfaces, and the simulation results were verified in direct experiments. SPPs at the top and bottom......We study plasmonic properties of highly doped InP in the mid-infrared (IR) range. InP was grown by metal-organic vapor phase epitaxy (MOVPE) with the growth conditions optimized to achieve high free electron concentrations by doping with silicon. The permittivity of the grown material was found...... interfaces of the grown epilayer were excited by the prism coupling. A high-index Ge hemispherical prism provides efficient coupling conditions of SPPs on flat surfaces and facilitates acquiring their dispersion diagrams. We observed diffraction into symmetry-prohibited diffraction orders stimulated...

  18. Process Characterization of Electrical Discharge Machining of Highly Doped Silicon

    Science.gov (United States)

    2012-06-01

    of mechanism is shown in Figure 2 showing the wire feed panel where the spool of 5 (DiBitonto, et...Uno High efficiency boring of monocrystalline silicon ingot by EDM RAM Si (P-type) conductivity 0.01 ohm-cm 1mm Cu pipe electrode, rotating at

  19. H{sub 2}-Ar dilution for improved c-Si quantum dots in P-doped SiN{sub x}:H thin film matrix

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jia [Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Zhang, Weijia, E-mail: zwjghx@126.com [Center of Condensed Matter and Material Physics, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191 (China); Liu, Shengzhong, E-mail: szliu@dicp.ac.cn [Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); State key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023 (China)

    2017-02-28

    Highlights: • Phosphorous-doped SiN{sub x}:H thin films containing c-Si QDs were prepared by PECVD in H{sub 2}-Ar mixed dilution under low temperature. • QD density and QD size can be controlled by tuning H{sub 2}/Ar flow ratio. • The sample prepared at the H{sub 2}/Ar flow ratio of 100/100 possesses both wide band gap and excellent conductivity. • Detail discussion has been presented for illustrating the influence of H{sub 2}/Ar mixed dilution on the crystallization process and P-doping. - Abstract: Phosphorus-doped hydrogenated silicon nitride (SiN{sub x}:H) thin films containing crystalline silicon quantum dot (c-Si QD) was prepared by plasma enhanced chemical vapor deposition (PECVD) using hydrogen-argon mixed dilution. The effects of H{sub 2}/Ar flow ratio on the structural, electrical and optical characteristics of as-grown P-doped SiN{sub x}:H thin films were systematically investigated. Experimental results show that crystallization is promoted by increasing the H{sub 2}/Ar flow ratio in dilution, while the N/Si atomic ratio is higher for thin film deposited with argon-rich dilution. As the H{sub 2}/Ar flow ratio varies from 100/100 to 200/0, the samples exhibit excellent conductivity owing to the large volume fraction of c-Si QDs and effective P-doping. By adjusting the H{sub 2}/Ar ratio to 100/100, P-doped SiN{sub x}:H thin film containing tiny and densely distributed c-Si QDs can be obtained. It simultaneously possesses wide optical band gap and high dark conductivity. Finally, detailed discussion has been made to analyze the influence of H{sub 2}-Ar mixed dilution on the properties of P-doped SiN{sub x}:H thin films.

  20. Soft error modeling and analysis of the Neutron Intercepting Silicon Chip (NISC)

    International Nuclear Information System (INIS)

    Celik, Cihangir; Unlue, Kenan; Narayanan, Vijaykrishnan; Irwin, Mary J.

    2011-01-01

    Soft errors are transient errors caused due to excess charge carriers induced primarily by external radiations in the semiconductor devices. Soft error phenomena could be used to detect thermal neutrons with a neutron monitoring/detection system by enhancing soft error occurrences in the memory devices. This way, one can convert all semiconductor memory devices into neutron detection systems. Such a device is being developed at The Pennsylvania State University and named Neutron Intercepting Silicon Chip (NISC). The NISC is envisioning a miniature, power efficient, and active/passive operation neutron sensor/detector system. NISC aims to achieve this goal by introducing 10 B-enriched Borophosphosilicate Glass (BPSG) insulation layers in the semiconductor memories. In order to model and analyze the NISC, an analysis tool using Geant4 as the transport and tracking engine is developed for the simulation of the charged particle interactions in the semiconductor memory model, named NISC Soft Error Analysis Tool (NISCSAT). A simple model with 10 B-enriched layer on top of the lumped silicon region is developed in order to represent the semiconductor memory node. Soft error probability calculations were performed via the NISCSAT with both single node and array configurations to investigate device scaling by using different node dimensions in the model. Mono-energetic, mono-directional thermal and fast neutrons are used as the neutron sources. Soft error contribution due to the BPSG layer is also investigated with different 10 B contents and the results are presented in this paper.

  1. Effect of low level doping of boron and phosphorus on the properties of amorphous silicon films

    International Nuclear Information System (INIS)

    Tran, N.T.; Epstein, K.A.; Grimmer, D.P.; Vernstrom, G.D.

    1987-01-01

    Effect of the low level doping of boron and phosphorus on the properties of amorphous silicon films (a-Si:H) were studied. Doping level of both boron and phosphorus was in the range of 10/sup 17/ atoms/cm/sup 3/. Apparent improvement in the stability of dark and photoconductivity of a-Si: films upon low level doping does not result from the elimination of light-induced defects. The stability of the dark and photoconductivity upon doping is an indication of pinning of the Fermi level

  2. Determination of Al, Si and P in certified reference materials by Instrumental Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Noyori, Amanda; Saiki, Mitiko, E-mail: anoyori@gmail.com, E-mail: mitiko@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Neutron analysis activation is not commonly used for aluminum, phosphorus and silicon determination, due to the difficulty to obtain reliable results. In this study, Al was determined by measuring {sup 28}Al and the contribution of P and Si due to {sup 28}Al formed in {sup 31}P(n,α){sup 28}Al and {sup 28}Si(n,p){sup 28}Al reactions were corrected using correction factors determined experimentally. Phosphorus was determined by measuring {sup 32}P (pure beta emitter) formed in reaction {sup 31}P(n,γ){sup 32}P. Silicon was determined by epithermal neutron analysis activation (ENAA) and measuring {sup 29}Al radionuclide formed in {sup 29}Si(n,p){sup 29}Al reaction. Aliquots of certified reference materials (CRMs) and synthetic standards of the elements were irradiated together, using the pneumatic transfer station of IEA-R1 nuclear research reactor. Results obtained for biological and geological CRMs showed good precision and accuracy with |Z-score| < 2 for Al, P and Si determinations. The detection limits for Al, P and Si determinations CRMs were also evaluated. Results obtained in this study demonstrated the viability of applying INAA procedures in the determination of Al, P and Si. (author)

  3. Determination of Al, Si and P in certified reference materials by Instrumental Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Noyori, Amanda; Saiki, Mitiko

    2017-01-01

    Neutron analysis activation is not commonly used for aluminum, phosphorus and silicon determination, due to the difficulty to obtain reliable results. In this study, Al was determined by measuring "2"8Al and the contribution of P and Si due to "2"8Al formed in "3"1P(n,α)"2"8Al and "2"8Si(n,p)"2"8Al reactions were corrected using correction factors determined experimentally. Phosphorus was determined by measuring "3"2P (pure beta emitter) formed in reaction "3"1P(n,γ)"3"2P. Silicon was determined by epithermal neutron analysis activation (ENAA) and measuring "2"9Al radionuclide formed in "2"9Si(n,p)"2"9Al reaction. Aliquots of certified reference materials (CRMs) and synthetic standards of the elements were irradiated together, using the pneumatic transfer station of IEA-R1 nuclear research reactor. Results obtained for biological and geological CRMs showed good precision and accuracy with |Z-score| < 2 for Al, P and Si determinations. The detection limits for Al, P and Si determinations CRMs were also evaluated. Results obtained in this study demonstrated the viability of applying INAA procedures in the determination of Al, P and Si. (author)

  4. Investigations of solution-processed charge generation unit with low concentration of small molecule doped in p-type/HAT-CN6 for tandem OLED

    International Nuclear Information System (INIS)

    Talik, N.A.; Yeoh, K.H.; Ng, C.Y.B.; Tan, C.Y.; Yap, B.K.

    2016-01-01

    We investigated the charge generation and injection mechanism in solution processed charge generation unit (CGU) used in our high performance tandem organic light emitting diode (OLED) via capacitance–voltage (C–V) and current density–voltage (J–V) measurements. By doping 2 wt% of small molecule 1,1-bis-(4-bis(4-tolyl)-aminophenyl) cyclohexene (TAPC) into Poly (N-vinylcarbazole) (PVK) as p-type layer of the CGU, we obtained more than two folds improvement in the tandem device efficiency compared to single device. The performance improvement of the TAPC doped CGU could be attributed to low built-in potential, large vacuum level shift as well as high charge density for efficient charge generation. - Highlights: • Charge-generation and injection mechanism in CGU for tandem OLED is investigated. • Small molecule, TAPC doped in p-type/HAT-CN 6 has been used for tandem OLED. • The improvement attributes to the lower V bi and larger ΔV L in doped layer. • Narrower W and high carrier density also contribute to efficiency improvement.

  5. Laminated Amorphous Silicon Neutron Detector (pre-print)

    International Nuclear Information System (INIS)

    McHugh, Harry; Branz, Howard; Stradins, Paul; Xu, Yueqin

    2009-01-01

    An internal R and D project was conducted at the Special Technologies Laboratory (STL) of National Security Technologies, LLC (NSTec), to determine the feasibility of developing a multi-layer boron-10 based thermal neutron detector using the amorphous silicon (AS) technology currently employed in the manufacture of liquid crystal displays. The boron-10 neutron reaction produces an alpha that can be readily detected. A single layer detector, limited to an approximately 2-micron-thick layer of boron, has a theoretical sensitivity of about 3%; hence a thin multi-layer device with high sensitivity can theoretically be manufactured from single layer detectors. Working with National Renewable Energy Laboratory (NREL), an AS PiN diode alpha detector was developed and tested. The PiN diode was deposited on a boron-10 coated substrate. Testing confirmed that the neutron sensitivity was nearly equal to the theoretical value of 3%. However, adhesion problems with the boron-10 coating prevented successful development of a prototype detector. Future efforts will include boron deposition work and development of integrated AS signal processing circuitry.

  6. Tailoring Thermal Radiative Properties with Doped-Silicon Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuomin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-08-28

    Aligned doped-silicon nanowire (D-SiNW) arrays form a hyperbolic metamaterial in the mid-infrared and have unique thermal radiative properties, such as broadband omnidirectional absorption, low-loss negative refraction, etc. A combined theoretical and experimental investigation will be performed to characterize D-SiNW arrays and other metamaterials for tailoring thermal radiative properties. Near-field thermal radiation between anisotropic materials with hyperbolic dispersions will also be predicted for potential application in energy harvesting. A new kind of anisotropic metamaterial with a hyperbolic dispersion in a broad infrared region has been proposed and demonstrated based on aligned doped-silicon nanowire (D-SiNW) arrays. D-SiNW-based metamaterials have unique thermal radiative properties, such as broadband omnidirectional absorption whose width and location can be tuned by varying the filling ratio and/or doping level. Furthermore, high figure of merit (FOM) can be achieved in a wide spectral region, suggesting that D-SiNW arrays may be used as a negative refraction material with much less loss than other structured materials, such as layered semiconductor materials. We have also shown that D-SiNWs and other nanostructures can significantly enhance near-field thermal radiation. The study of near-field radiative heat transfer between closely spaced objects and the electromagnetic wave interactions with micro/nanostructured materials has become an emerging multidisciplinary field due to its importance in advanced energy systems, manufacturing, local thermal management, and high spatial resolution thermal sensing and mapping. We have performed extensive study on the energy streamlines involving anisotropic metamaterials and the applicability of the effective medium theory for near-field thermal radiation. Graphene as a 2D material has attracted great attention in nanoelectronics, plasmonics, and energy harvesting. We have shown that graphene can be used to

  7. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

    Energy Technology Data Exchange (ETDEWEB)

    Geissbühler, Jonas, E-mail: jonas.geissbuehler@epfl.ch; Werner, Jérémie; Martin de Nicolas, Silvia; Hessler-Wyser, Aïcha; Tomasi, Andrea; Niesen, Bjoern; De Wolf, Stefaan [Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering (IMT), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2000 Neuchâtel (Switzerland); Barraud, Loris; Despeisse, Matthieu; Nicolay, Sylvain [CSEM PV-Center, Jaquet-Droz 1, CH-2000 Neuchâtel (Switzerland); Ballif, Christophe [Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering (IMT), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2000 Neuchâtel (Switzerland); CSEM PV-Center, Jaquet-Droz 1, CH-2000 Neuchâtel (Switzerland)

    2015-08-24

    Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.

  8. Neutron Transmutation Doped (NTD) germanium thermistors for sub-mm bolometer applications

    Science.gov (United States)

    Haller, E. E.; Itoh, K. M.; Beeman, J. W.

    1996-01-01

    Recent advances in the development of neutron transmutation doped (NTD) semiconductor thermistors fabricated from natural and controlled isotopic composition germanium are reported. The near ideal doping uniformity that can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor preamplifiers led to the widespread acceptance of these thermal sensors in ground-based, airborne and spaceborne radio telescopes. These features made possible the development of efficient bolometer arrays.

  9. Influence of the transition region between p- and n-type polycrystalline silicon passivating contacts on the performance of interdigitated back contact silicon solar cells

    Science.gov (United States)

    Reichel, Christian; Müller, Ralph; Feldmann, Frank; Richter, Armin; Hermle, Martin; Glunz, Stefan W.

    2017-11-01

    Passivating contacts based on thin tunneling oxides (SiOx) and n- and p-type semi-crystalline or polycrystalline silicon (poly-Si) enable high passivation quality and low contact resistivity, but the integration of these p+/n emitter and n+/n back surface field junctions into interdigitated back contact silicon solar cells poses a challenge due to high recombination at the transition region from p-type to n-type poly-Si. Here, the transition region was created in different configurations—(a) p+ and n+ poly-Si regions are in direct contact with each other ("pn-junction"), using a local overcompensation (counterdoping) as a self-aligning process, (b) undoped (intrinsic) poly-Si remains between the p+ and n+ poly-Si regions ("pin-junction"), and (c) etched trenches separate the p+ and n+ poly-Si regions ("trench")—in order to investigate the recombination characteristics and the reverse breakdown behavior of these solar cells. Illumination- and injection-dependent quasi-steady state photoluminescence (suns-PL) and open-circuit voltage (suns-Voc) measurements revealed that non-ideal recombination in the space charge regions with high local ideality factors as well as recombination in shunted regions strongly limited the performance of solar cells without a trench. In contrast, solar cells with a trench allowed for open-circuit voltage (Voc) of 720 mV, fill factor of 79.6%, short-circuit current (Jsc) of 41.3 mA/cm2, and a conversion efficiencies (η) of 23.7%, showing that a lowly conducting and highly passivating intermediate layer between the p+ and n+ poly-Si regions is mandatory. Independent of the configuration, no hysteresis was observed upon multiple stresses in reverse direction, indicating a controlled and homogeneously distributed breakdown, but with different breakdown characteristics.

  10. Intravitreal properties of porous silicon photonic crystals

    Science.gov (United States)

    Cheng, L; Anglin, E; Cunin, F; Kim, D; Sailor, M J; Falkenstein, I; Tammewar, A; Freeman, W R

    2009-01-01

    Aim To determine the suitability of porous silicon photonic crystals for intraocular drug-delivery. Methods A rugate structure was electrochemically etched into a highly doped p-type silicon substrate to create a porous silicon film that was subsequently removed and ultrasonically fractured into particles. To stabilise the particles in aqueous media, the silicon particles were modified by surface alkylation (using thermal hydrosilylation) or by thermal oxidation. Unmodified particles, hydrosilylated particles and oxidised particles were injected into rabbit vitreous. The stability and toxicity of each type of particle were studied by indirect ophthalmoscopy, biomicroscopy, tonometry, electroretinography (ERG) and histology. Results No toxicity was observed with any type of the particles during a period of >4 months. Surface alkylation led to dramatically increased intravitreal stability and slow degradation. The estimated vitreous half-life increased from 1 week (fresh particles) to 5 weeks (oxidised particles) and to 16 weeks (hydrosilylated particles). Conclusion The porous silicon photonic crystals showed good biocompatibility and may be used as an intraocular drug-delivery system. The intravitreal injectable porous silicon photonic crystals may be engineered to host a variety of therapeutics and achieve controlled drug release over long periods of time to treat chronic vitreoretinal diseases. PMID:18441177

  11. Ion-implantation and analysis for doped silicon slot waveguides

    Directory of Open Access Journals (Sweden)

    McCallum J. C.

    2012-10-01

    Full Text Available We have utilised ion implantation to fabricate silicon nanocrystal sensitised erbium-doped slot waveguide structures in a Si/SiO2/Si layered configuration and photoluminescence (PL and Rutherford backscattering spectrometry (RBS to analyse these structures. Slot waveguide structures in which light is confined to a nanometre-scale low-index region between two high-index regions potentially offer significant advantages for realisation of electrically-pumped Si devices with optical gain and possibly quantum optical devices. We are currently investigating an alternative pathway in which high quality thermal oxides are grown on silicon and ion implantation is used to introduce the Er and Si-ncs into the SiO2 layer. This approach provides considerable control over the Er and Si-nc concentrations and depth profiles which is important for exploring the available parameter space and developing optimised structures. RBS is well-suited to compositional analysis of these layered structures. To improve the depth sensitivity we have used a 1 MeV α beam and results indicate that a layered silicon-Er:SiO2/silicon structure has been fabricated as desired. In this paper structural results will be compared to Er photoluminescence profiles for samples processed under a range of conditions.

  12. High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1 eV.

    Science.gov (United States)

    Tran, Thai-Truong D; Sun, Hao; Ng, Kar Wei; Ren, Fan; Li, Kun; Lu, Fanglu; Yablonovitch, Eli; Chang-Hasnain, Constance J

    2014-06-11

    The growth of III-V nanowires on silicon is a promising approach for low-cost, large-scale III-V photovoltaics. However, performances of III-V nanowire solar cells have not yet been as good as their bulk counterparts, as nanostructured light absorbers are fundamentally challenged by enhanced minority carriers surface recombination rates. The resulting nonradiative losses lead to significant reductions in the external spontaneous emission quantum yield, which, in turn, manifest as penalties in the open-circuit voltage. In this work, calibrated photoluminescence measurements are utilized to construct equivalent voltage-current characteristics relating illumination intensities to Fermi level splitting ΔF inside InP microillars. Under 1 sun, we show that splitting can exceed ΔF ∼ 0.90 eV in undoped pillars. This value can be increased to values of ΔF ∼ 0.95 eV by cleaning pillar surfaces in acidic etchants. Pillars with nanotextured surfaces can yield splitting of ΔF ∼ 0.90 eV, even though they exhibit high densities of stacking faults. Finally, by introducing n-dopants, ΔF of 1.07 eV can be achieved due to a wider bandgap energy in n-doped wurzite InP, the higher brightness of doped materials, and the extraordinarily low surface recombination velocity of InP. This is the highest reported value for InP materials grown on a silicon substrate. These results provide further evidence that InP micropillars on silicon could be a promising material for low-cost, large-scale solar cells with high efficiency.

  13. Silicon P.I.N. Junctions used for studies of radiation damage; Etude de l'irradiation aux neutrons rapides du silicium au moyen de jonctions P.I.N

    Energy Technology Data Exchange (ETDEWEB)

    Lanore, J. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-06-01

    Irradiation of silicon P.I.N. junction has been studied primarily for the purpose of developing a radiation damage dosimeter, but also for the purpose of investigating silicon itself. It is known that the rate of recombination of electrons and holes is a linear function of defects introduced by neutron irradiation. Two methods have been used to measure that rate of recombination: forward characteristic measurements, recovery time measurements. In order to explain how these two parameters depend on recombination rate we have given a theory of the P.I.N. junction. We have also given an idea of the carrier lifetime dependence versus temperature. Annealing effects in the range of 70 to 700 K have also been studied, we found five annealing stages with corresponding activation energies. As an application for these studies, we developed a radiation damage dosimeter with which we made several experiments in facilities such as Naiade or Marias. (author) [French] L'irradiation de structures P.I.N. etait faite dans le but d'etudier principalement la mise au point d'un dosimetre a ''radiation damage'' et aussi pour etudier plus profondement le silicium lui-meme. On sait que le taux de recombinaison electrons-trous est une fonction lineaire du taux de defauts introduits par irradiation aux neutrons. Deux methodes ont ete utilisees pour atteindre ce taux de recombinaison: mesures de la caracteristique directe, mesures du temps de retournement. Pour expliquer de quelle facon ces parametres dependent du taux de recombinaison. Nous avons donne une theorie de la jonction P.I.N. Nous avons aussi donne l'allure des variations du temps de vie des porteurs en fonction de la temperature. Nous avons d'autre part effectue des recuits entre 70 et 700 K, domaine dans lequel nous avons trouve cinq etapes de ''guerison'' avec les energies d'activation correspondantes. En application de ces etudes nous avons mis ou point un

  14. Electrochemical lithiation of silicon electrodes. Neutron reflectometry and secondary ion mass spectrometry investigations

    Energy Technology Data Exchange (ETDEWEB)

    Jerliu, Bujar; Doerrer, Lars; Hueger, Erwin [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). AG Mikrokinetik; Seidlhofer, Beatrix-Kamelia; Steitz, Roland [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Borchardt, Guenter; Schmidt, Harald [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). AG Mikrokinetik; Clausthaler Zentrum fuer Materialtechnik (CZM), Clausthal-Zellerfeld (Germany)

    2017-11-15

    In-situ neutron reflectometry and ex-situ secondary ion mass spectrometry in combination with electrochemical methods were used to study the lithiation of amorphous silicon electrodes. For that purpose specially designed closed three-electrode electrochemical cells with thin silicon films as the working electrode and lithium as counter and reference electrodes were used. The neutron reflectometry results obtained in-situ during galvanostatic cycling show that the incorporation, redistribution and removal of Li in amorphous silicon during a lithiation cycle can be monitored. It was possible to measure the volume modification during lithiation, which is found to be rather independent of cycle number, current density and film thickness and in good agreement with first-principles calculations as given in literature. Indications for an inhomogeneous lithiation mechanism were found by secondary ion mass spectrometry measurements. Lithium tracer diffusion experiments indicate that the diffusivities inside the lithiated region (D > 10{sup -15} m{sup 2} s{sup -1}) are considerably higher than in pure amorphous silicon as known from literature. This suggests a kinetics based explanation for the occurrence of an inhomogeneous lithiation mechanism.

  15. Incubation and nanostructure formation on n- and p-type Si(1 0 0) and Si(1 1 1) at various doping levels induced by sub-nanojoule femto- and picosecond near-infrared laser pulses

    International Nuclear Information System (INIS)

    Schüle, M.; Afshar, M.; Feili, D.; Seidel, H.; König, K.; Straub, M.

    2014-01-01

    Highlights: • Nanorifts, ripples of period 130 nm and randomly nanoporous surface structures were generated. • Such nanostructures emerged on heavily and lightly n- and p-doped Si(1 0 0) and Si(1 1 1) surfaces. • Strong incubation occurred irrespective of dopant type and concentration or surface orientation. • Incubation is attributed to photoexcitation from laser-induced defect states in the bandgap. • Aggregation of defects results in nanocracks, which turn into nanorift and nanoripple patterns. • Ablation involved predominantly single-photon processes but also multiphoton absorption. - Abstract: N- and p-doped Si(1 0 0) and Si(1 1 1) surfaces with dopant concentrations of 2 × 10 14 –1 × 10 19 cm −3 were irradiated by tightly focused 85-MHz repetition rate Ti:sapphire laser light (central wavelength 800 nm, bandwidth 120 nm) at pulse durations of 12 fs to 1.6 ps. Dependent on pulse peak intensity and exposure time nanorifts, ripples of period 130 nm as well as sponge-like randomly nanoporous surface structures were generated with water immersion and, thereafter, laid bare by etching off aggregated oxide nanoparticles. The same structure types emerged in air or water with transform-limited 100-fs pulses. At a pulse length of 12 fs pronounced incubation occurred with incubation coefficients S = 0.66–0.85, whereas incubation was diminished for picosecond pulses (S > 0.95). The ablation threshold strongly rose with dopant concentration. At similar doping level it was higher for n-type than for p-type samples and for Si(1 0 0) compared to Si(1 1 1) surfaces. These observations are attributed to laser-induced defect states in the bandgap which participate in photoexcitation, deactivation of dopants by complex formation, and different densities of interface states at the boundary with the ultrathin native silicon dioxide surface layer. The threshold increase with pulse length revealed predominant single-photon excitation as well as multiphoton

  16. Simulation of silicon microdosimetry spectra in fast neutron therapy using the GEANT4 Monte Carlo toolkit

    International Nuclear Information System (INIS)

    Cornelius, I.M.; Rosenfeld, A.B.

    2003-01-01

    Microdosimetry is used to predict the biological effects of the densely ionizing radiation environments of hadron therapy and space. The creation of a solid state microdosimeter to replace the conventional Tissue Equivalent Proportional Counter (TEPC) is a topic of ongoing research. The Centre for Medical Radiation Physics has been investigating a technique using microscopic arrays of reverse biased PN junctions. A prototype silicon-on-insulator (SOI) microdosimeter was developed and preliminary measurements have been conducted at several hadron therapy facilities. Several factors impede the application of silicon microdosimeters to hadron therapy. One of the major limitations is that of tissue equivalence, ideally the silicon microdosimeter should provide a microdosimetry distribution identical to that of a microscopic volume of tissue. For microdosimetry in neutron fields, such as Fast Neutron Therapy, it is important that products resulting from neutron interactions in the non tissue equivalent sensitive volume do not contribute significantly to the spectrum. Experimental measurements have been conducted at the Gershenson Radiation Oncology Center, Harper Hospital, Detroit by Bradley et al. The aim was to provide a comparison with measurements performed with a TEPC under identical experimental conditions. Monte Carlo based calculations of these measurements were made using the GEANT4 Monte Carlo toolkit. Agreement between experimental and theoretical results was observed. The model illustrated the importance of neutron interactions in the non tissue equivalent sensitive volume and showed this effect to decrease with sensitive volume size as expected. Simulations were also performed for 1 micron cubic silicon sensitive volumes embedded in tissue equivalent material to predict the best case scenario for silicon microdosimetry in Fast Neutron Therapy

  17. Investigation on the improved radiation hardness of silicon detectors with high oxygen concentration

    CERN Document Server

    Moll, Michael; Lindström, G

    2000-01-01

    We present an investigation on the influence of the oxygen concentration on radiation-induced changes in the effective doping concentration of silicon detectors. Diodes fabricated from silicon with interstitial oxygen content ranging from below 2*10/sup 14/ to 9*10/sup 17/ cm/sup -3/ have been irradiated with fast neutrons up to a fluence of 2*10/sup 15/ cm/sup -2/. Our main interest focused on the so-called stable damage component in the change of the effective doping concentration being of prime importance for the application of silicon detectors in high-energy physics experiments. We demonstrate, that with a high oxygen enrichment the donor removal is appreciably reduced, reaching a value of only 10601130f the initial doping concentration for [O/sub i/]=9*10/sup 17/ cm/sup -3/, while for normal detector grade material with [O/sub i/] below 5*10/sup 16/ cm /sup -3/ that value is 60-90Furthermore, we show that the fluence proportional introduction of stable acceptors is independent of the oxygen concentratio...

  18. Advanced Non-Destructive Assessment Technology to Determine the Aging of Silicon Containing Materials for Generation IV Nuclear Reactors

    Science.gov (United States)

    Koenig, T. W.; Olson, D. L.; Mishra, B.; King, J. C.; Fletcher, J.; Gerstenberger, L.; Lawrence, S.; Martin, A.; Mejia, C.; Meyer, M. K.; Kennedy, R.; Hu, L.; Kohse, G.; Terry, J.

    2011-06-01

    To create an in-situ, real-time method of monitoring neutron damage within a nuclear reactor core, irradiated silicon carbide samples are examined to correlate measurable variations in the material properties with neutron fluence levels experienced by the silicon carbide (SiC) during the irradiation process. The reaction by which phosphorus doping via thermal neutrons occurs in the silicon carbide samples is known to increase electron carrier density. A number of techniques are used to probe the properties of the SiC, including ultrasonic and Hall coefficient measurements, as well as high frequency impedance analysis. Gamma spectroscopy is also used to examine residual radioactivity resulting from irradiation activation of elements in the samples. Hall coefficient measurements produce the expected trend of increasing carrier concentration with higher fluence levels, while high frequency impedance analysis shows an increase in sample impedance with increasing fluence.

  19. Texture investigation in aluminium and iron - silicon samples by neutron diffraction technique

    International Nuclear Information System (INIS)

    Pugliese, R.; Yamasaki, J.M.

    1988-09-01

    By means of the neutron diffraction technique the texture of 5% and 98% rolled-aluminium and of iron-silicon steel used in the core of electric transformers, have been determined. The measurements were performed by using a neutron diffractometer installed at the IEA-R1 Nuclear Research Reactor, in the Beam-Hole n 0 . 6. To avoid corrections such as neutron absorption and sample luminosity the geometric form of the samples were approximated to spheric or octagonal prism, and its dimensions do not exceed that of the neutron beam. The texture of the samples were analysed with the help of a computer programme that analyses the intensity of the diffracted neutron beam and plot the pole figures. (author) [pt

  20. Selective etching of n-type silicon in pn junction structure in hydrofluoric acid and its application in silicon nanowire fabrication

    International Nuclear Information System (INIS)

    Wang Huiquan; Jin Zhonghe; Zheng Yangming; Ma Huilian; Wang Yuelin; Li Tie

    2008-01-01

    Boron is selectively implanted on the surface of an n-type silicon wafer to form a p-type area surrounded by an n-type area. The wafer is then put into a buffered oxide etch solution. It is found that the n-type area can be selectively etched without illumination, with an etching rate lower than 1 nm min -1 , while the p-type area can be selectively etched under illumination with a much higher etching rate. The possible mechanism of the etching phenomenon is discussed. A simple fabrication process of silicon nanowires is proposed according to the above phenomenon. In this process only traditional micro-electromechanical system technology is used. Dimensions of the fabricated nanowire can be controlled well. A 50 nm wide and 50 nm thick silicon nanowire has been formed using this method