WorldWideScience

Sample records for neutron-capture cross sections

  1. Measurements of neutron capture cross sections

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1984-01-01

    A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238 U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)

  2. Neutron capture cross section of ^243Am

    Science.gov (United States)

    Jandel, M.

    2009-10-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for neutron capture cross section measurement on ^243Am. The high granularity of DANCE (160 BaF2 detectors in a 4π geometry) enables the efficient detection of prompt gamma-rays following neutron capture. DANCE is located on the 20.26 m neutron flight path 14 (FP14) at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). The methods and techniques established in [1] were used for the determination of the ^243Am neutron capture cross section. The cross sections were obtained in the range of neutron energies from 0.02 eV to 400 keV. The resonance region was analyzed using SAMMY7 and resonance parameters were extracted. The results will be compared to existing evaluations and calculations. Work was performed under the auspices of the U.S. Department of Energy at Los Alamos National Laboratory by the Los Alamos National Security, LLC under Contract No. DE-AC52-06NA25396 and at Lawrence Livermore National Laboratory by the Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344. [4pt] [1] M. Jandel et al., Phys. Rev. C78, 034609 (2008)

  3. Neutron capture cross sections of Kr

    Directory of Open Access Journals (Sweden)

    Fiebiger Stefan

    2017-01-01

    Full Text Available Neutron capture and β− -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL using the Detector for Advanced Neutron Capture Experiments (DANCE. 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.

  4. Neutron capture cross section of $^{93}$Zr

    CERN Document Server

    We propose to measure the neutron capture cross section of the radioactive isotope $^{93}$Zr. This project aims at the substantial improvement of existing results for applications in nuclear astrophysics and emerging nuclear technologies. In particular, the superior quality of the data that can be obtained at n_TOF will allow on one side a better characterization of s-process nucleosynthesis and on the other side a more accurate material balance in systems for transmutation of nuclear waste, given that this radioactive isotope is widely present in fission products.

  5. Measurement of thermal neutron capture cross section

    International Nuclear Information System (INIS)

    Huang Xiaolong; Han Xiaogang; Yu Weixiang; Lu Hanlin; Zhao Wenrong

    2001-01-01

    The thermal neutron capture cross sections of 71 Ga(n, γ) 72 Ga, 94 Zr(n, γ) 95 Zr and 191 Ir(n, γ) 192 Ir m1+g,m2 reactions were measured by using activation method and compared with other measured data. Meanwhile the half-life of 72 Ga was also measured. The samples were irradiated with the neutron in the thermal column of heavy water reactor of China Institute of Atomic Energy. The activities of the reaction products were measured by well-calibrated Ge(Li) detector

  6. Thermal neutron capture cross sections of tellurium isotopes

    International Nuclear Information System (INIS)

    Tomandl, I.; Honzatko, J.; Egidy, T. von; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2003-01-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122 Te, 124 Te, 125 Te, 126 Te, 128 Te, and 130 Te are reported. These values are based on a combination of newly determined partial γ-ray cross sections obtained from experiments on targets contained natural Te and γ intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given

  7. Thermal neutron capture cross sections of tellurium isotopes

    International Nuclear Information System (INIS)

    Tomandl, I.; Honzatko, J.; Egidy, T. von; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-01-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given

  8. Thermal neutron capture cross sections of tellurium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Tomandl, I.; Honzatko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-03-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.

  9. Precise measurements of neutron capture cross sections for FP

    International Nuclear Information System (INIS)

    Nakamura, Shoji; Harada, Hideo; Katoh, Toshio

    2000-01-01

    The thermal neutron capture cross sections (σ 0 ) and the resonance integrals (I 0 ) of some fission products (FP), such as 137 Cs, 90 Sr, 99 Tc, 129 I and 135 Cs, were measured by the activation and γ-ray spectroscopic methods. Moreover, the cross section measurements were done for other FP elements, such as 127 I, 133 Cs and 134 Cs. This paper provides the summary of the FP cross section measurements, which have been performed by authors. (author)

  10. Neutron capture cross section standards for BNL 325, Fourth Edition

    International Nuclear Information System (INIS)

    Holden, N.E.

    1981-01-01

    This report evaluates the experimental data and recommends values for the thermal neutron cross sections and resonance integrals for the neutron capture reactions: 55 Mn(n,γ), 59 Co(n,γ) and 197 Au(n,γ). The failure of lithium and boron as standards due to the natural variation of the absorption cross sections of these elements is discussed. The Westcott convention, which describes the neutron spectrum as a thermal Maxwellian distribution with an epithermal component, is also discussed

  11. Fast neutron capture cross section facility at Cadarache

    International Nuclear Information System (INIS)

    Le Rigoleur, C.; Arnaud, A.

    1975-01-01

    The total energy weighting technique has been applied to measure absolute fast neutron capture cross section at Cadarache. We use a non hydrogeneous liquid scintillator to detect the gamma from the cascade. The neutron flux is measured with a B 10 INa(Tl) detector or Li 6 glass scintillator of well known efficiency. Time of flight technique is used with on line digital computer data processing. (orig.) [de

  12. Neutron capture cross section measurements: case of lutetium isotopes

    International Nuclear Information System (INIS)

    Roig, O.; Meot, V.; Belier, G.

    2011-01-01

    The neutron radiative capture is a nuclear reaction that occurs in the presence of neutrons on all isotopes and on a wide energy range. The neutron capture range on Lutetium isotopes, presented here, illustrates the variety of measurements leading to the determination of cross sections. These measurements provide valuable fundamental data needed for the stockpile stewardship program, as well as for nuclear astrophysics and nuclear structure. Measurements, made in France or in United-States, involving complex detectors associated with very rare targets have significantly improved the international databases and validated models of nuclear reactions. We present results concerning the measurement of neutron radiative capture on Lu 173 , Lu 175 , Lu 176 and Lu 177m , the measurement of the probability of gamma emission in the substitution reaction Yb 174 (He 3 ,pγ)Lu 176 . The measurement of neutron cross sections on Lu 177m have permitted to highlight the process of super-elastic scattering

  13. Stellar neutron capture cross sections of the Ba isotopes

    International Nuclear Information System (INIS)

    Voss, F.; Wisshak, K.; Guber, K.; Kaeppeler, F.; Reffo, G.

    1994-03-01

    The neutron capture cross sections of 134 Ba, 135 Ba, 136 Ba, and 137 Ba were measured in the energy range from 5 to 225 keV at the Karlsruhe 3.75 MV Van de Graaff accelerator. Neutrons were produced via the 7 Li(p,n) 7 Be reaction by bombarding metallic Li targets with a pulsed proton beam. Capture events were registered with the Karlsruhe 4π Barium Fluoride Detector. Several runs have been performed under different experimental conditions to study the systematic uncertainties, which resulted mainly from the large ratios of total to capture cross sections of up to 400. The cross section ratios were determined with an overall uncertainty of ∼3%, an improvement by factors of five to eight compared to existing data. Severe discrepancies were found with respect to previous results. Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT=10 keV and 100 keV. These stellar cross sections were used in an s-process analysis. For the s-only isotopes 134 Ba and 136 Ba the N s ratio was determined to 0.875±0.025. Hence, a significant branching of the s-process path at 134 Cs can be claimed for the first time, in contrast to predictions from the classical approach. This branching yields information on the s-process temperature, indicating values around T 8 =2. The new cross sections are also important for the interpretation of barium isotopic anomalies, which were recently discovered in SiC grains of carbonaceous chondrite meteorites. Together with the results from previous experiments on tellurium and samarium, a general improvement of the N s systematics in the mass range A=120 to 150 is achieved. This allows for a more reliable separation of s- and r-process yields, resulting in an improved assignment of the respective contributions to elemental barium that is required for comparison with stellar observations. (orig.) [de

  14. Measurements of neutron capture cross sections of wolfram and thulium

    International Nuclear Information System (INIS)

    Xia Yijun; Wang Chunhao; Yang Jingfu; Yang Zhihua; Luo Xiaobing

    1992-01-01

    The neutron capture cross sections of wolfram and thulium were measured in the energy range from 10 to 100 KeV using gold as the standard. Kinematically collimated neutrons were produced via the 7 Li(p, n) 7 Be reaction with a 2.5 MV pulsed Van de Graaff accelerator at Sichuan University. The capture events were detected by a pair of Moxon-Rae detectors. Time-of-flight technique was used to improve the signal-background ratio. The present results are compared with data by other authors. The capture cross section were calculated from 10 to 100 KeV for two nuclides by the Hauser-Feshbach statistical theory with width fluctuation correction. The nonstatistical effects such as potential capture and radiative capture in elastic and inelastic channels of a compound nucleus were included in the calculations. The calculated results show that the nonstatistical contribution to the capture cross sections is negligible compared with that of the statistical effects

  15. Simple, empirical approach to predict neutron capture cross sections from nuclear masses

    Science.gov (United States)

    Couture, A.; Casten, R. F.; Cakirli, R. B.

    2017-12-01

    Background: Neutron capture cross sections are essential to understanding the astrophysical s and r processes, the modeling of nuclear reactor design and performance, and for a wide variety of nuclear forensics applications. Often, cross sections are needed for nuclei where experimental measurements are difficult. Enormous effort, over many decades, has gone into attempting to develop sophisticated statistical reaction models to predict these cross sections. Such work has met with some success but is often unable to reproduce measured cross sections to better than 40 % , and has limited predictive power, with predictions from different models rapidly differing by an order of magnitude a few nucleons from the last measurement. Purpose: To develop a new approach to predicting neutron capture cross sections over broad ranges of nuclei that accounts for their values where known and which has reliable predictive power with small uncertainties for many nuclei where they are unknown. Methods: Experimental neutron capture cross sections were compared to empirical mass observables in regions of similar structure. Results: We present an extremely simple method, based solely on empirical mass observables, that correlates neutron capture cross sections in the critical energy range from a few keV to a couple hundred keV. We show that regional cross sections are compactly correlated in medium and heavy mass nuclei with the two-neutron separation energy. These correlations are easily amenable to predict unknown cross sections, often converting the usual extrapolations to more reliable interpolations. It almost always reproduces existing data to within 25 % and estimated uncertainties are below about 40 % up to 10 nucleons beyond known data. Conclusions: Neutron capture cross sections display a surprisingly strong connection to the two-neutron separation energy, a nuclear structure property. The simple, empirical correlations uncovered provide model-independent predictions of

  16. Neutron-capture cross sections from indirect measurements

    Directory of Open Access Journals (Sweden)

    Scielzo N.D.

    2012-02-01

    Full Text Available Cross sections for compound-nuclear reactions reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f reactions, but need to be improved upon for applications to capture reactions.

  17. Neutron-capture Cross Sections from Indirect Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  18. Isotonic and isotopic dependence of the radiative neutron capture cross-section on the neutron excess

    International Nuclear Information System (INIS)

    Trofimov, Yu.N.

    1991-01-01

    The radiative neutron capture cross-section of nuclei has been derived as a function of neutron excess on the basis of the exponential dependence of the cross-section on the reaction energy. It is shown that unknown cross-sections of stable and radioactive nuclei may be evaluated by using the isotonic and isotopic dependence together with available reference cross-section measurements. (author). 4 refs, 3 figs

  19. Neutron capture cross section standards for BNL-325

    International Nuclear Information System (INIS)

    Holden, N.E.

    1980-01-01

    The most common cross section standards for capture reactions in the thermal neutron energy region are gold, cobalt, and manganese. In preparation for the fourth edition of BNL-325, data on the thermal cross section and resonance integral were evaluated for these three standards. For gold, only measurements below the Bragg scattering cutoff were used and extrapolated to a neutron velocity of 2200 meters/second. A non 1/v correction due to the 4.9 eV resonance was made. The resonance integral is based on Jirlow's integral measurement and Tellier's parameters. The resonance integrals for cobalt and manganese are based solely on integral measurements because the capture widths of the first major resonance either vary by 20% in various measurements (cobalt), or have never been measured (manganese). Recommended thermal cross sections and resonance integrals are respectively gold: 98.65/plus or minus/0.9 barns, 1550/plus or minus/28 barns; cobalt: 37.18/plus or minus/0.06 barns, 74.2/plus or minus/2.0 barns and manganese: 13.3/plus or minus/0.2 barns, and 14.0/plus or minus/0.3 barns. 72 refs

  20. Resonance parameters for measured keV neutron capture cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, A.R. de L

    1969-05-01

    All available neutron capture cross sections in the keV region ({approx} to 100 keV) have been fitted with resonance parameters. Capture cross sections for nuclides with reasonably well known average s-wave parameters, but no measured cross section, have been calculated and tabulated using p-and d- wave strength functions interpolated between fitted values. Several of these nuclides are of interest in the theory of slow nucleosynthesis of heavy elements in stars, and the product of cosmic abundance (due to the s-process) and capture cross section at 30 keV has been plotted versus mass number. (author)

  1. Filtered thermal neutron captured cross sections measurements and decay heat calculations

    International Nuclear Information System (INIS)

    Pham Ngoc Son; Vuong Huu Tan

    2015-01-01

    Recently, a pure thermal neutron beam has been developed for neutron capture measurements based on the horizontal channel No.2 of the research reactor at the Nuclear Research Institute, Dalat. The original reactor neutron spectrum is transmitted through an optimal composition of Bi and Si single crystals for delivering a thermal neutron beam with Cadmium ratio (R ed ) of 420 and neutron flux (Φ th ) of 1.6*10 6 n/cm 2 .s. This thermal neutron beam has been applied for measurements of capture cross sections for nuclide of 51 V, by the activation method relative to the standard reaction 197 Au(n,γ) 198 Au. In addition to the activities of neutron capture cross sections measurements, the study on nuclear decay heat calculations has been also considered to be developed at the Institute. Some results on calculation procedure and decay heat values calculated with update nuclear database for 235 U are introduced in this report. (author)

  2. Stellar Neutron Capture Cross Sections of the Lu and Hf Isotopes

    International Nuclear Information System (INIS)

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Krticka, M.

    2005-01-01

    The neutron capture cross sections of 175,176Lu and 176,177,178,179,180Hf have been measured in the energy range from 3 to 225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator relative to the gold standard. Neutrons were produced by the 7Li(p,n)7Be reaction and capture events were detected by the Karlsruhe 4πBaF2 detector. The cross section ratios could be determined with uncertainties between 0.9 and 1.8% about a factor of five more accurate than previous data. A strong population of isomeric states was found in neutron capture of the Hf isotopes, which are only partially explained by CASINO/GEANT simulations based on the known level schemes.Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 keV and 100 keV. Severe differences up to40% were found to the data of a recent evaluation based on existing experimental results. The new data allow for a much more reliable analysis of the important branching in the s-process synthesis path at 176Lu which can be interpreted as an s-process thermometer

  3. Neutron capture cross section of $^{25}$Mg and its astrophysical implications

    CERN Multimedia

    We propose to measure the neutron capture cross section of the stable $^{25}$Mg isotope. This experiment aims at the improvement of existing results for nuclear astrophysics.The measurement will be carried out under similar conditions as for the Mgexperiment that was completed at n_TOF during 2003. A metal $^{25}$Mg-enriched sample will be used in the proposed experiment instead of a MgO powder sample, which was used in the previous measurement and prevented us to minimize the uncertainty of the measured cross section. This experiment will be part of an ongoing study for a comprehensive discussion of the s-process abundances in massive stars.

  4. Measurement of neutron captured cross-sections in 1-2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gi Dong; Kim, Young Sek; Kim, Jun Kon; Yang, Tae Keun [Korea Institutes of Geoscience and Mineral Resources, Taejeon (Korea)

    2001-04-01

    The measurement of neutron captured reaction cross sections was performed to build the infra system for the production of nuclear data. MeV neutrons were produced with TiT target and {sup 3}T(p,n){sup 3}He reaction. The characteristics of TiT thin film was analyzed with ERD-TOF and RBS. The results was published at Journal of the Korea Physical Society (SCI registration). The energy, the energy spread and the flux of the produced neutron were measured. The neutron excitation functions of {sup 12}C and {sup 16}O were obtained to confirm the neutron energy and neutron energy spread. The neutron energy spread found to be 1.3 % at the neutron energy of 2.077 MeV. The {sup 197}Au(n,{gamma}) reaction was performed to obtain the nerutron flux. The maximum neutron flux found to be 1 x 10{sup 8} neutrons/sec at the neutron energy of 2 MeV. The absolute efficiency of liquid scintillation detector was obtained in the neutron energy of 1 - 2 MeV. The fast neutron total reaction cross sections of Cu, Fe, and Au were measured with sample in-out method. Also the neutron captured reaction cross sections of {sup 63}Cu were measured with fast neutron activation method. The measurement of neutron total reaction cross sections and the neutron captured reaction cross sections with fast neutrons were first tried in Korea. The beam pulsing system was investigated and the code of calculating the deposition spectrums for primary gamma rays was made to have little errors at nuclear data. 25 refs., 28 figs., 14 tabs. (Author)

  5. Neutron capture cross section of $^{90}$Zr Bottleneck in the s-process reaction flow

    CERN Document Server

    Tagliente, G; Milazzo, P M; Moreau, C; Aerts, G; Abbondanno, U; Alvarez, H; Alvarez-Velarde, F; Andriamonje, Samuel A; Andrzejewski, J; Assimakopoulos, Panayiotis; Audouin, L; Badurek, G; Baumann, P; Bečvář, F; Berthoumieux, E; Bisterzo, S; Calviño, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapiço, C; Cennini, P; Chepel, V; Chiaveri, Enrico; Colonna, N; Cortés, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Domingo-Pardo, C; Dridi, W; Durán, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Furman, W; Gallino, R; Gonçalves, I; Gonzalez-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Igashira, M; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Köhler, P; Kossionides, E; Krtička, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Mosconi, M; Neves, F; Oberhummer, Heinz; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Santos, J; Sarchiapone, L; Savvidis, I; Stéphan, C; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente, M, C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2008-01-01

    The neutron capture cross sections of the Zr isotopes have important implications in nuclear astrophysics and for reactor design. The small cross section of the neutron magic nucleus 90Zr, which accounts for more than 50% of natural zirconium represents one of the key isotopes for the stellar s-process, because it acts as a bottleneck in the neutron capture chain between the Fe seed and the heavier isotopes. The same element, Zr, also is an important component of the structural materials used in traditional and advanced nuclear reactors. The (n,γ) cross section has been measured at CERN, using the n_TOF spallation neutron source. In total, 45 resonances could be resolved in the neutron energy range below 70 keV, 10 being observed for the first time thanks to the high resolution and low backgrounds at n_TOF. On average, the Γγ widths obtained in resonance analyses with the R-matrix code SAMMY were 15% smaller than reported previously. By these results, the accuracy of the Maxwellian averaged cross section f...

  6. Neutron capture cross section of /sup 197/Au: A standard for stellar nucleosynthesis

    International Nuclear Information System (INIS)

    Ratynski, W.; Kaeppeler, F.

    1988-01-01

    We have measured the neutron capture cross section of gold using the 7 Li(p,n) 7 Be reaction for neutron production. This reaction not only provides the integrated neutron flux via the 7 Be activity of the target, but also allows for the simulation of a Maxwellian neutron energy spectrum at kT = 25 keV. As this spectrum is emitted in a forward cone of 120 0 opening angle, the cross section can be measured in good geometry and independent of any other standard. Systematic uncertainties were studied experimentally in a series of activations. The final stellar cross section at kT = 25 keV was found to be 648 +- 10 mb, and extrapolation to the common s-process temperature kT = 30 keV yields 582 +- 9 mb. This result is used for renormalization of a number of cross sections which had been measured relative to gold

  7. Absorption and activation techniques in measurements of fast-neutron capture cross sections

    International Nuclear Information System (INIS)

    Bergqvist, I.

    1982-01-01

    The absorption and activation methods have been applied for a long time to systematic studies of fast neutron capture cross sections. Both methods are simple in principle but difficult in practice. The simplicity should ensure a wider use of the methods in particular for problems which may be complicated to approach with other methods. The difficulties encountered in absorption measurements are related to multiple scattering and resonance shielding effects. In activation experiments the influence of secondary low-energy neutrons causes the main problems

  8. Aborption and activation techniques in measurements of fast-neutron capture cross sections

    International Nuclear Information System (INIS)

    Bergqvist, I.

    1982-01-01

    The absorption and activation methods have been applied for a long time to systematic studies of fast neutron capture cross sections. Both methods are simple in principle but difficult in practice. The simplicity should ensure a wider use of the methods in particular for problems which may be complicated to approach with other methods The difficulties encountered in absorption measurements are related to multiple scattering and resonance shielding effects. In activation experiments the influence of secondary low-energy neutrons c causes the main problems. (Author)

  9. Partial neutron capture cross sections of actinides using cold neutron prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Genreith, Christoph

    2015-01-01

    Nuclear waste needs to be characterized for its safe handling and storage. In particular long-lived actinides render the waste characterization challenging. The results described in this thesis demonstrate that Prompt Gamma Neutron Activation Analysis (PGAA) with cold neutrons is a reliable tool for the non-destructive analysis of actinides. Nuclear data required for an accurate identification and quantification of actinides was acquired. Therefore, a sample design suitable for accurate and precise measurements of prompt γ-ray energies and partial cross sections of long-lived actinides at existing PGAA facilities was presented. Using the developed sample design the fundamental prompt γ-ray data on 237 Np, 241 Am and 242 Pu were measured. The data were validated by repetitive analysis of different samples at two individual irradiation and counting facilities - the BRR in Budapest and the FRM II in Garching near Munich. Employing cold neutrons, resonance neutron capture by low energetic resonances was avoided during the experiments. This is an improvement over older neutron activation based works at thermal reactor neutron energies. 152 prompt γ-rays of 237 Np were identified, as well as 19 of 241 Am, and 127 prompt γ-rays of 242 Pu. In all cases, both high and lower energetic prompt γ-rays were identified. The most intense line of 237 Np was observed at an energy of E γ =182.82(10) keV associated with a partial capture cross section of σ γ =22.06(39) b. The most intense prompt γ-ray lines of 241 Am and of 242 Pu were observed at E γ =154.72(7) keV with σ γ =72.80(252) b and E γ =287.69(8) keV with σ γ =7.07(12) b, respectively. The measurements described in this thesis provide the first reported quantifications on partial radiative capture cross sections for 237 Np, 241 Am and 242 Pu measured simultaneously over the large energy range from 45 keV to 12 MeV. Detailed uncertainty assessments were performed and the validity of the given uncertainties was

  10. Kilo-electron-volt neutron capture cross sections of the krypton isotopes

    International Nuclear Information System (INIS)

    Walter, G.; Leugers, B.; Kappeler; Bao, Z.Y.; Reffo, G.; Fabbri, F.

    1986-01-01

    The neutron capture cross sections of the stable krypton isotopes were determined in the energy interval from 4 to 250 keV using a C/sub 6/D/sub 6/-detector system in conjunction with the time-of-flight technique. The energy resolution of the measurement was 4% at 20 keV and 6% at 100 keV, and the experimental uncertainties were typically 6 to 10%. The measurements were complemented by statistical model calculations of all krypton isotopes in the mass range 78 < A < 86 to also obtain reliable cross sections for the unstable nuclei /sup 79,81,85/Kr. These calculations were based on local systematics for all relevant parameters, and the results were estimated to show uncertainties of 20 to 25%. Maxwellian average cross sections were calculated for kT=30 keV

  11. Filtered thermal neutron captured cross-sections measurements and decay heat calculations

    International Nuclear Information System (INIS)

    Son, Pham Ngoc; Tan, Vuong Huu

    2014-01-01

    Recently, a pure thermal neutron beam has been developed for neutron capture measurements based on the horizontal channel No.2 of the research reactor at the Nuclear Research Institute, Dalat. The original reactor neutron spectrum is transmitted through an optimal composition of Bi and Si single crystals for delivering a thermal neutron beam with Cadmium ratio (R cd ) of 420 and neutron flux (Φ th ) of 1.6x10 6 n/cm 2 .s. This thermal neutron beam has been applied for measurements of capture cross-sections for nuclide of 51 V, 55 Mn, 180 Hf and 186 W by the activation method relative to the standard reaction 197 Au(n,g) 198 Au. In addition to the activities of neutron capture cross-sections measurements, the study on nuclear decay heat calculations has been also considered to be developed at the Institute. Some results on calculation procedure and decay heat values calculated with update nuclear database for 235 U, 238 U, 239 Pu and 232 Th are introduced in this report. (author)

  12. The neutron capture cross section of the ${s}$-process branch point isotope $^{63}$Ni

    CERN Multimedia

    Neutron capture nucleosynthesis in massive stars plays an important role in Galactic chemical evolution as well as for the analysis of abundance patterns in very old metal-poor halo stars. The so-called weak ${s}$-process component, which is responsible for most of the ${s}$ abundances between Fe and Sr, turned out to be very sensitive to the stellar neutron capture cross sections in this mass region and, in particular, of isotopes near the seed distribution around Fe. In this context, the unstable isotope $^{63}$Ni is of particular interest because it represents the first branching point in the reaction path of the ${s}$-process. We propose to measure this cross section at n_TOF from thermal energies up to 500 keV, covering the entire range of astrophysical interest. These data are needed to replace uncertain theoretical predicitons by first experimental information to understand the consequences of the $^{63}$Ni branching for the abundance pattern of the subsequent isotopes, especially for $^{63}$Cu and $^{...

  13. Neutron capture cross sections of $^{70,72,73,74,76}$ Ge at n_TOF EAR-1

    CERN Multimedia

    We propose to measure the (n;$\\gamma$ ) cross sections of the isotopes $^{70;72;73;74;76}$Ge. Neutron induced reactions on Ge are of importance for the astrophysical slow neutron capture process, which is responsible for forming about half of the overall elemental abundances heavier than Fe. The neutron capture cross section on Ge affects the abundances produced in this process for a number of heavier isotopes up to a mass number of A = 90. Additionally, neutron capture on Ge is of interest for low background experiments involving Ge detectors. Experimental cross section data presently available for Ge (n;$\\gamma$ ) are scarce and cover only a fraction of the neutron energy range of interest. (n;$\\gamma$ ) cross sections will be measured in the full energy range from 25 meV to about 200 keV at n TOF EAR-1.

  14. High-resolution neutron capture and transmission measurements and the stellar neutron capture cross sections of 116,120Sn

    International Nuclear Information System (INIS)

    Koehler, P.E.; Spencer, R.R.; Guber, K.H.

    1997-01-01

    Improved astrophysical reaction rates for 116,120 Sn(n, γ) are of interest because nucleosynthesis models have not been able to reproduce the observed abundances in this mass region. For example, previous s-process calculations have consistently underproduced the s-only isotope 116 Sn. Also, these studies have resulted in residual reprocess abundances for the tin isotopes which are systematically larger than predicted by reprocess calculations. It has been suggested that these problems could be solved by reducing the solar tin abundance by 10-20%, but there is no experimental evidence to justify this renormalization. Instead, it is possible that the problem lies in the (n,T) cross sections used in the reaction network calculations or in the s-process models. One reason to suspect the (n, γ) data is that previous measurements did not extend to low enough energies to determine accurately the Maxwellian-averaged capture cross sections at the low temperatures (kT=6-8 keV) favored by the most recent stellar models of the s process. Also, the two most recent high-precision measurements of the 120 Sn(n, γ) cross section are in serious disagreement. Because of its small size, this cross section could affect (via the s-process branching at 121 Sn) the relative abundances of the three s-only isotopes of Te

  15. Neutron-capture-activation cross sections of 9496Zr and 98100Mo at thermal and 30 keV energy

    International Nuclear Information System (INIS)

    Wyrick, J.M.; Poenitz, W.P.

    1982-01-01

    Neutron-capture cross sections of 94 96 Zr and 98 100 Mo were measured relative to the standard-capture cross section of gold at thermal and 30 keV neutron energies using the activation technique. The reported values are based upon available decay-scheme information

  16. Thermal neutron capture cross section of gadolinium by pile-oscillation measurements in MINERVE

    International Nuclear Information System (INIS)

    Leconte, P.; Di-Salvo, J.; Antony, M.; Pepino, A.; Hentati, A.

    2012-01-01

    Natural gadolinium is used as a burnable poison in most LWR to account for the excess of reactivity of fresh fuels. For an accurate prediction of the cycle length, its nuclear data and especially its neutron capture cross section needs to be known with a high precision. Recent microscopic measurements at Rensselaer Polytechnic Inst. (RPI) suggest a 11% smaller value for the thermal capture cross section of 157 Gd, compared with most of evaluated nuclear data libraries. To solve this inconsistency, we have analyzed several pile-oscillation experiments, performed in the MINERVE reactor. They consist in the measurement of the reactivity variation involved by the introduction in the reactor of small-samples, containing different mass amounts of natural gadolinium. The analysis of these experiments is done through the exact perturbation theory, using the PIMS calculation tool, in order to link the reactivity effect to the thermal capture cross section. The measurement of reactivity effects is used to deduce the 2200 m.s-1 capture cross section of nat Gd which is (49360 ± 790) b. This result is in good agreement with the JEFF3.1.1 value (48630 b), within 1.6% uncertainty at 1σ, but is strongly inconsistent with the microscopic measurements at RPI which give (44200 ± 500) b. (authors)

  17. Thermal neutron capture cross section of gadolinium by pile-oscillation measurements in MINERVE

    Energy Technology Data Exchange (ETDEWEB)

    Leconte, P.; Di-Salvo, J.; Antony, M.; Pepino, A. [CEA, DEN, DER, Cadarache, F-13108 Saint-Paul-Lez-Durance (France); Hentati, A. [International School in Nuclear Engineering, Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2012-07-01

    Natural gadolinium is used as a burnable poison in most LWR to account for the excess of reactivity of fresh fuels. For an accurate prediction of the cycle length, its nuclear data and especially its neutron capture cross section needs to be known with a high precision. Recent microscopic measurements at Rensselaer Polytechnic Inst. (RPI) suggest a 11% smaller value for the thermal capture cross section of {sup 157}Gd, compared with most of evaluated nuclear data libraries. To solve this inconsistency, we have analyzed several pile-oscillation experiments, performed in the MINERVE reactor. They consist in the measurement of the reactivity variation involved by the introduction in the reactor of small-samples, containing different mass amounts of natural gadolinium. The analysis of these experiments is done through the exact perturbation theory, using the PIMS calculation tool, in order to link the reactivity effect to the thermal capture cross section. The measurement of reactivity effects is used to deduce the 2200 m.s-1 capture cross section of {sup nat}Gd which is (49360 {+-} 790) b. This result is in good agreement with the JEFF3.1.1 value (48630 b), within 1.6% uncertainty at 1{sigma}, but is strongly inconsistent with the microscopic measurements at RPI which give (44200 {+-} 500) b. (authors)

  18. Measurements and analysis of the 127I and 129I neutron capture and total cross sections

    International Nuclear Information System (INIS)

    Noguere, G.

    2005-01-01

    Most of the experimental work on the interaction of neutrons with matter has focused on materials important to reactor physics and reactor structures. By comparison, the corresponding data for minor actinides or long-lived fission products are poor. A significant demand has developed for improved neutron cross-section data of these little-studied nuclides due to the surge of interest in the transmutation of nuclear waste. With 400 kg of 129 I produced yearly in the reactors of the EU countries and a very long β - half-life of 1.57 x 10 7 years, iodine requires disposal strategies that will isolate this isotope from the environment for long periods of time. Therefore, 129 I is potentially a key long-lived fission product for transmutation applications, since 129 I transmutes in 130 I after a single neutron capture and decays to 130 Xe with a 12.36 h half-life. Accurate capture cross sections would help to reduce uncertainties in waste management concepts. For that purpose, Time-Of-Flight measurements covering the [0.5 eV-100 keV] energy range have been carried out at the 150 MeV pulsed neutron source GELINA of the Institute for Reference Materials and Measurements (IRMM). Two types of experiments have been performed at the IRMM, namely capture and transmission experiments. They are respectively related to the neutron capture and total cross sections. Since the PbI 2 samples used in this work contain natural and radioactive iodine, extensive measurements of 129 I have been carried out under the same experimental conditions as for the 129 I. The data reduction process was performed with the AGS system, and the resonance parameters were extracted with the SAMMY and REFIT shape analysis codes. In a last step, the parameters have been converted into ENDF-6 format and processed with the NJOY code to produce point-wise and multigroup cross sections, as well as MCNP and ERANOS libraries. (author)

  19. Response of Moxon-Rae type gamma detectors for neutron capture cross section measurements

    International Nuclear Information System (INIS)

    Iyengar, K.V.K.; Lal, B.; Jhingan, M.L.

    1974-01-01

    A detector devised by Moxon and Rae for the absolute measurement of (n,γ) cross sections is briefly described. This detector is supposed to have an efficiency per MeV of γ-ray energy independent of the energy of the γ-rays. Such a detector consists of an electron converter placed before a thin plastic scintillator which detects the electron emitted by interaction of the γ-ray in the converter. The performance of this type of detector depends on the thickness and composition of the converter. Detailed Monte-Carlo calculations of the response for γ-ray energies from 0.2 to 12 MeV has been carried out for elements ranging from C to Bi and for a mixture of elements as well as for a mixture of an element plus compound, to find out the suitable material and thickness of the converter. Among the elements studied for the converter, Ni, Mo and Sn have a uniform response over the photon energy range 1-12 MeV. Out of these elements Mo has a low neutron capture cross section in the energy range 1-1000 keV and is thus to be preferred. A mixture of C + Bi 2 O 3 in the weight ratio 11.6 : 88.4 gives a uniform response over the photon energy range 1-12 MeV. (K.B.)

  20. Neutron Capture Gamma Ray Cross Sections for Ta, Ag, In and Au between 30 and 175 keV

    International Nuclear Information System (INIS)

    Hellstroem, J.; Beshai, S.

    1971-11-01

    A new detector has been used to determine neutron capture gamma ray cross sections for Ta, Ag, In and Au. The results are listed and discussed together with associated problems. The energy range from 30 keV to 175 keV is considered

  1. Neutron Capture Gamma Ray Cross Sections for Ta, Ag, In and Au between 30 and 175 keV

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, J; Beshai, S

    1971-11-15

    A new detector has been used to determine neutron capture gamma ray cross sections for Ta, Ag, In and Au. The results are listed and discussed together with associated problems. The energy range from 30 keV to 175 keV is considered

  2. Radiochemical determination of the neutron capture cross sections of {sup 241}Am irradiated in the JMTR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, N.; Hatsukawa, Y.; Hata, K.; Kohno, N. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The thermal neutron capture cross section {sigma}{sub 0} and Resonance integral I{sub 0} of {sup 241}Am leading to the production of {sup 242m}Am and {sup 242g}Am were measured by radiochemical method. The cross sections obtained in this study are {sigma}{sub 0}=60.9 {+-} 2.6 barn, I{sub 0}=213 {+-} 13 barn for {sup 241}Am(n,{gamma}){sup 242m}Am and {sigma}{sub 0}=736 {+-} 31 barn, I{sub 0}=1684 {+-} 92 barn for {sup 241}Am(n,{gamma}){sup 242g}Am. (author)

  3. Neutron capture cross section measurement of $^{151}Sm$ at the CERN neutron Time of Flight Facility (nTOF)

    CERN Document Server

    Abbondanno, U; Alvarez-Velarde, F; Alvarez-Pol, H; Andriamonje, Samuel A; Andrzejewski, J; Badurek, G; Baumann, P; Becvar, F; Benlliure, J; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Cennini, P; Chepel, V; Chiaveri, Enrico; Colonna, N; Cortés, G; Cortina-Gil, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Dolfini, R; Domingo-Pardo, C; Durán, I; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Kölbl, H; Furman, W; Gonçalves, I; Gallino, R; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Isaev, S; Jericha, E; Kappeler, F; Kadi, Y; Karadimos, D; Kerveno, M; Ketlerov, V; Köhler, P; Konovalov, V; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez-Val, J; Mastinu, P; Mengoni, A; Milazzo, P M; Molina-Coballes, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; O'Brien, S; Pancin, J; Papaevangelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Perlado, J M; Perrot, L; Pignatari, M; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, Armando; Pretel, C; Quesada, J; Raman, S; Rapp, W; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Soares, J C; Stéphan, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente, M C; Vlachoudis, V; Voss, F; Wendler, H; Wiescher, M; Wissha, K

    2004-01-01

    The measurement of **1**5**1Sm(n, gamma)**1**5**2Sm (samarium) cross section showed improved performance of the new spallation neutron facility. It covered a wide energy range with good resolution, high neutron flux, low backgrounds and a favourable duty factor. The samarium cross section was found to be of great importance for characterizing neutron capture nucleosynthesis in asymptotic giant stars. The combination of these features provided a promising basis for a broad experimental program directed towards application in astrophysics and advanced nuclear technologies. (Edited abstract)

  4. Measurement of keV-neutron capture cross sections and capture gamma-ray spectra of Er isotopes

    International Nuclear Information System (INIS)

    Harun-Ar-Rashid, A.K.M.; Igashira, Masayuki; Ohsaki, Toshiro

    2000-01-01

    Neutron capture cross sections and capture γ-ray spectra of 166,167, 168 Er were measured in the energy region of 10 to 550 keV. The measurements were performed with a pulsed 7 Li(p,n) 7 Be neutron source and a large anti-Compton NaI(Tl) γ-ray spectrometer. A pulse-height weighting technique and the standard capture cross sections of gold were used to derive the capture cross sections. The errors of the derived cross sections were about 5%. The present results were compared with other measurements and evaluations. The observed capture γ-ray pulse-height spectra were unfolded to obtain the corresponding γ-ray spectra. An anomalous shoulder was observed around 3 MeV in each of the capture γ-ray spectra. (author)

  5. Cross Sections for High-Energy Gamma Transitions from MeV Neutron Capture in {sup 206}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bergqvist, I; Lundberg, B; Nilsson, L

    1970-03-15

    Gamma-ray spectra from neutron capture in Pb (radiogenic lead) in the energy range 1.5 to 8.5 MeV were recorded using time-of-flight techniques. The spectrometer was a Nal (Tl) crystal, 20.8 cm long and 22.6 cm in diameter. The spectra are dominated by gamma transitions to levels with large single-particle strength, in agreement with predictions of semi-direct capture theories. The theories predict enhancements of the direct capture cross section by a factor of 10 - 15 in the region of the giant dipole resonance. The observed enhancement is about 50.

  6. Interim report on research between Oak Ridge National Laboratory and Japan Nuclear Cycle Development Institute on neutron-capture cross sections by long-lived fission product nuclides

    International Nuclear Information System (INIS)

    Furutaka, Kazuyoshi; Nakamura, Shoji; Harada, Hideo

    2004-03-01

    Neutron capture cross sections of long-lived fission products (LLFP) are important quantities as fundamental data for the study of nuclear transmutation of radioactive wastes. Previously obtained thermal-neutron capture gamma-ray data were analyzed to deduce the partial neutron-capture cross sections of LLFPs including 99 Tc, 93 Zr, and 107 Pd for thermal neutrons. By comparing the decay gamma-ray data and prompt gamma-ray data for 99 Tc, the relation between the neutron-capture cross section deduced by the two different methods was studied. For the isotopes 93 Zr and 107 Pd, thermal neutron-capture gamma-ray production cross sections were deduced for the first time. The level schemes of 99 Tc, 93 Zr, and 107 Pd have also been constructed form the analyzed data and compared with previously reported levels. This work has been done under the cooperative program 'Neutron Capture Cross Sections of Long-Lived Fission products (LLFPs)' by Japan Nuclear Cycle Development Institute (JNC) and Oak Ridge National Laboratory (ORNL). (author)

  7. Fast-neutron capture cross sections for the most important fission-product nuclei

    International Nuclear Information System (INIS)

    Gruppelaar, H.

    1982-01-01

    The main activity of the fission-product (FP) Working Group was the discussion of the current status of neutron capture knowledge of the most important FP nuclides, including the formulation of recommendations toward improved understanding. The results of the discussion are summarized. General conclusions and recommendations are given. The status of integral data is summarized by R. Anderl; and nuclear models and calculations are reviewed by D. Gardner and G. Reffo

  8. New neutron capture and total cross section measurements on 88Sr and their impact on s-process nucleosynthesis

    International Nuclear Information System (INIS)

    Koehler, P.E.; Spencer, R.R.; Guber, K.H.

    1998-01-01

    The authors have made new and improved measurements of the neutron capture and total cross sections of 88 Sr at the Oak Ridge Electron Linear Accelerator (ORELA). Improvements over previous measurements include a wider incident neutron energy range, the use of metallic rather than carbonate samples, better background subtraction, reduced sensitivity to sample-dependent backgrounds, and better pulse-height weighting functions. Because of its small cross section, the 88 Sr(n,γ) reaction is an important bottleneck during the s-process nucleosynthesis. Hence, an accurate determination of this rate is needed to better constrain the neutron exposure in s-process models and to more fully exploit the recently discovered isotopic anomalies in certain meteorites. They describe the experimental procedures, compare the results to previous data, and discuss their astrophysical impact

  9. Neutron Capture Cross Sections of Zr and La: Probing Neutron Exposure and Neutron Flux in Red Giant Stars

    CERN Document Server

    Kitis, G; Wiescher, M; Dahlfors, M; Soares, J

    2002-01-01

    We propose to measure the neutron capture cross sections of $^{139}$La, of $^{93}$Zr (t$_{1/2}$)=1.5 10$^{6}$ yr), and of all the stable Zr isotopes at n_TOF. The aim of these measurements is to improve the accuracy of existing results by at least a factor of three in order to meet the quality required for using the s-process nucleosynthesis as a diagnostic tool for neutron exposure and neutron flux during the He burning stages of stellar evolution. Combining these results with a wealth of recent information coming from high-resolution stellar spectroscopy and from the detailed analysis of presolar dust grains will shed new light on the chemical history of the universe. The investigated cross sections are also needed for technological applications, in particular since $^{93}$Zr is one of the major long-lived fission products.

  10. Sensitivity coefficients for the 238U neutron-capture shielded-group cross sections

    International Nuclear Information System (INIS)

    Munoz-Cobos, J.L.; de Saussure, G.; Perez, R.B.

    1981-01-01

    In the unresolved resonance region cross sections are represented with statistical resonance parameters. The average values of these parameters are chosen in order to fit evaluated infinitely dilute group cross sections. The sensitivity of the shielded group cross sections to the choice of mean resonance data has recently been investigated for the case of 235 U and 239 Pu by Ganesan and by Antsipov et al; similar sensitivity studies for 238 U are reported

  11. Use of gamma ray strength functions for predicting the neutron capture cross section of 88Y

    International Nuclear Information System (INIS)

    Gardner, D.G.; Gardner, M.A.

    1977-01-01

    The present study indicates that the estimation of the gamma-ray strength function is the approach least subject to error when unmeasured capture cross sections are to be computed. An estimate is given for the 88 γ(n,γ) cross section

  12. Neutron capture cross-section of fission products in the European activation file EAF-3

    International Nuclear Information System (INIS)

    Kopecky, J.; Delfini, M.G.; Kamp, H.A.J. van der; Gruppelaar, H.; Nierop, D.

    1992-05-01

    This paper contains a description of the work performed to extend and revise the neutron capture data in the European Activation File (EAF-3) with emphasis on nuclides in the fission-product mass range. The starter was the EAF-1 data file from 1989. The present version, EAF/NG-3, contains (n,γ) excitation functions for all nuclides (729 targets) with half-lives exceeding 1/2 day in the mass range from H-1 to Cm-248. The data file is equipped with a preliminary uncertainty file, that will be improved in the near future. (author). 19 refs.; 5 figs.; 3 tabs

  13. Photoneutron cross sections measurements in 9Be, 13C e 17O with thermal neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Semmler, Renato

    2006-01-01

    Photoneutron cross sections measurements of 9 Be, 13 C and 17 O have been obtained in the energy interval between 1,6 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 a 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (5 MW) research reactor. The samples have been irradiated inside a 4π geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm 3 , 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A inversion matrix methodology to solve inversion problems for unfolding the set of experimental compound cross sections, was used in order to obtain the cross sections at specific excitation energy values (principal gamma line energies of the capture targets). The cross sections obtained at the energy values of the principal gamma lines were compared with experimental data reported by other authors, with have employed different gamma-ray sources. A good agreement was observed among the experimental data in this work with reported in the literature. (author)

  14. Thermal neutron capture cross section for the K isomer 177Lum

    International Nuclear Information System (INIS)

    Belier, G.; Roig, O.; Daugas, J.-M.; Giarmana, O.; Meot, V.; Letourneau, A.; Marie, F.; Foucher, Y.; Aupiais, J.; Abt, D.; Jutier, Ch.; Le Petit, G.; Bettoni, C.; Gaudry, A.; Veyssiere, Ch.; Barat, E.; Dautremer, T.; Trama, J.-Ch.

    2006-01-01

    The thermal neutron radiative capture cross section for the K isomeric state in 177 Lu has been measured for the first time. Several 177 Lu m targets have been prepared and irradiated in various neutron fluxes at the Lauee Langevin Institute in Grenoble and at the CEA reactors OSIRIS and ORPHEE in Saclay. The method consists of measuring the 178 Lu activity by γ-ray spectroscopy. The values obtained in four different neutron spectra have been used to calculate the resonance integral of the radiative capture cross section for 177 Lu m . In addition, an indirect method leads to the determination of the 177 Lu g neutron radiative capture cross section

  15. Measurement of the effective thermal cross section of {sup 134}Cs by triple neutron capture reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Shoji; Harada, Hideo; Katoh, Toshio [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works; Hatsukawa, Yuichi; Shinohara, Nobuo; Hata, Kentaro; Kobayashi, Katsutoshi; Motoishi, Shoji; Tanase, Masakazu

    1998-03-01

    The effective thermal cross section ({sigma}{sub eff}) of the {sup 134}Cs(n,{gamma}){sup 135}Cs reaction was measured by the activation method and the {gamma}-ray spectroscopic method in order to obtain fundamental data for research on the transmutation of nuclear wastes. The effective thermal cross section of the reaction {sup 134}Cs(n,{gamma}){sup 135}Cs was found to be 140.6{+-}8.5 barns. (author)

  16. Importance of nuclear triaxiality for electromagnetic strength, level density and neutron capture cross sections in heavy nuclei

    CERN Document Server

    Grosse, Eckart; Massarczyk, Ralph

    2014-01-01

    Cross sections for neutron capture in the range of unresolved resonances are predicted simultaneously to level distances at the neutron threshold for more than 100 spin-0 target nuclei with A >70. Assuming triaxiality in nearly all these nuclei a combined parameterization for both, level density and photon strength is presented. The strength functions used are based on a global fit to IVGDR shapes by the sum of three Lorentzians adding up to the TRK sum rule and theory-based predictions for the A-dependence of pole energies and spreading widths. For the small spins reached by capture level densities are well described by only one free global parameter; a significant collective enhancement due to the deviation from axial symmetry is observed. Reliable predictions for compound nuclear reactions also outside the valley of stability as expected from the derived global parameterization are important for nuclear astrophysics and for the transmutation of nuclear waste.

  17. Neutron capture cross section measurements and theoretical calculation for the {sup 186}W(n,γ){sup 187}W reaction

    Energy Technology Data Exchange (ETDEWEB)

    Al-abyad, Mogahed; Mohamed, Gehan Y. [Atomic Energy Authority, Cairo (Egypt). Experimental Nuclear Physics Dept.

    2017-08-01

    Neutron capture cross section (σ{sub 0}) and resonance integral (I{sub 0}) of the reaction {sup 186}W(n,γ){sup 187}W were measured experimentally using the research reactor (ETRR-2) and an Am-Be neutron source, also calculated using TALYS-1.6 code. The present results of σ{sub 0} are (39.08±2.6, 38.75±0.98 and 38.33 barn) and I{sub 0} are (418.5±74, 439.3±36 and 445.5 barn) by using the reactor, neutron source and TALYS-1.6, respectively. The present results are in acceptable agreement with most of the previous experimental and evaluated data as well as the theoretical calculations.

  18. Thermal neutron capture cross sections resonance integrals and g-factors

    International Nuclear Information System (INIS)

    Mughabghab, S.F.

    2003-02-01

    The thermal radiative capture cross sections and resonance integrals of elements and isotopes with atomic numbers from 1 to 83 (as well as 232 Th and 238 U) have been re-evaluated by taking into consideration all known pertinent data published since 1979. This work has been undertaken as part of an IAEA co-ordinated research project on 'Prompt capture gamma-ray activation analysis'. Westcott g-factors for radiative capture cross sections at a temperature of 300K were computed by utilizing the INTER code and ENDF-B/VI (Release 8) library files. The temperature dependence of the Westcott g-factor is illustrated for 113 Cd, 124 Xe and 157 Gd at temperatures of 150, 294 and 400K. Comparisons have also been made of the newly evaluated capture cross sections of 6 Li, 7 Li, 12 C and 207 Pb with those determined by the k 0 method. (author)

  19. Neutron capture cross-section measurements for 238U between 0.4 and 1.4 MeV

    Science.gov (United States)

    Krishichayan, Fnu; Finch, S. W.; Howell, C. R.; Tonchev, A. P.; Tornow, W.

    2017-09-01

    Neutron-induced radiative-capture cross-section data of 238U are crucial for fundamental nuclear physics as well as for Stewardship Science, for advanced-fuel-cycle calculations, and for nuclear astrophysics. Based on different techniques, there are a large number of 238U(n, γ) 239U cross-section data available in the literature. However, there is a lack of systematic and consistent measurements in the 0.1 to 3.0 MeV energy range. The goal of the neutron-capture project at TUNL is to provide accurate 238U(n, γ) 239U cross-section data in this energy range. The 238U samples, sandwiched between gold foils of the same size, were irradiated for 8-14 hours with monoenergetic neutrons. To avoid any contribution from thermal neutrons, the 238U and 197Au targets were placed inside of a thin-walled pill-box made of 238U. Finally, the whole pill-box was wrapped in a gold foil as well. After irradiation, the samples were gamma-counted at the TUNL's low-background counting facility using high-efficient HPGe detectors. The 197Au monitor foils were used to calculate the neutron flux. The experimental technique and 238U(n, γ) 239U cross-section results at 6 energies will be discussed during the meeting.

  20. Measurement of the neutron capture cross-section of 232Th using the neutron activation technique

    International Nuclear Information System (INIS)

    Naik, H.; Singh, Sarbjit; Goswami, A.; Manchanda, V.K.; Prajapati, P.M.; Surayanarayana, S.V.; Nayak, B.K.; Sharma, S.C.; Jagadeesan, K.C.; Thakare, S.V.; Raj, D.; Ganesan, S.; Mulik, V.K.; Sivashankar, B.S.; Mukherjee, S.

    2011-01-01

    The 232 Th(n, γ) reaction cross-section at average neutron energies of 3.7±0.3 MeV and 9.85±0.38 MeV from the 7 Li(p, n) reaction has been determined for the first time using activation and off-line γ -ray spectrometric technique. The 232 Th(n, 2n) reaction cross-section at the average neutron energy of 9.85±0.38 MeV has been also determined using the same technique. The experimentally determined 232 Th(n, γ) and 232 Th(n, 2n) reaction cross-sections were compared with the evaluated data of ENDF/B-VII, JENDL-4.0 and JEFF-3.1 and were found to be in good agreement. The present data along with literature data in a wide range of neutron energies were interpreted in terms of competition between different reaction channels including fission. The 232 Th(n, γ) and 232 Th(n, 2n) reaction cross-sections were also calculated theoretically using the TALYS 1.2 computer code and were found to be slightly higher than the experimental data. (orig.)

  1. Determination of Thermal Neutron Capture Cross Sections Using Cold Neutron Beams at the Budapest PGAA-NIPS Facilities

    International Nuclear Information System (INIS)

    Belgya, T.

    2006-01-01

    A complete elemental gamma-ray library was measured with our guided thermal beam at the Budapest PGAA facility in the period of 1995-2000. Using this data library in an IAEA CRP on PGAA it was managed to re-normalize the ENSDF intensity data with the Budapest intensities. Based on this renormalization thermal neutron cross sections were deduced for several isotopes. Most of these calculations were done by Richard B. Firestone. The Budapest PGAA-NIPS facilities have been used for routine prompt gamma activation analysis with cold neutrons since the year of 2000. The advantage of the cold neutron beam is that the neutron guide has much higher neutron transmission. This resulted in a gain factor about 20 relative to our thermal guide. For the analytical works a precise comparator technique was developed that is routinely used to determine partial gamma-ray production cross sections. An additional development of our methodology was necessary to be worked out to determine thermal neutron capture cross sections based on the partial gamma-ray production cross sections. In this talk our methodology of radiative capture cross section determination will be presented, including our latest results on 129 I, 204,206,207 Pb and 209 Bi. Most of these works were done in cooperation with people from EU-JRC-IRMM, Geel, Belgium and CEA Cadarache, France. Many partial cross sections of short lived nuclei have been re-measured with our new chopper technique. The uncertainty calculations of the radiative capture cross section determination procedures will be also shown. (authors)

  2. Neutron Capture Cross Section of Unstable Ni63: Implications for Stellar Nucleosynthesis

    Science.gov (United States)

    Lederer, C.; Massimi, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Korschinek, G.; Krtička, M.; Kroll, J.; Langer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Pignatari, M.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T. J.; Žugec, P.

    2013-01-01

    The Ni63(n,γ) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from kT=5-100keV with uncertainties around 20%. Stellar model calculations for a 25M⊙ star show that the new data have a significant effect on the s-process production of Cu63, Ni64, and Zn64 in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova.

  3. New Maxwellian averaged neutron capture cross sections for 35,37Cl

    International Nuclear Information System (INIS)

    Guber, K.H.; Sayer, R.O.; Valentine, T.E.; Leal, L.C.; Spencer, R.R.; Harvey, J.A.; Koehler, P.E.; Rauscher, T.

    2002-01-01

    The Oak Ridge Electron Linear Accelerator (ORELA) was used to measure neutron total and capture cross sections of natural chlorine in the energy range from 100 eV to 600 keV. We performed an R-matrix analysis of our new capture and transmission data up to 500 keV. From these resonance parameters new (n,γ) astrophysical reaction rates were determined over the entire energy range needed by the latest stellar models of the s process

  4. Thermal neutron capture and resonance integral cross sections of {sup 45}Sc

    Energy Technology Data Exchange (ETDEWEB)

    Van Do, Nguyen; Duc Khue, Pham; Tien Thanh, Kim [Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi (Viet Nam); Thi Hien, Nguyen [Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi (Viet Nam); Department of Physics and Center for High Energy Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Guinyun, E-mail: gnkim@knu.ac.kr [Department of Physics and Center for High Energy Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Kwangsoo [Department of Physics and Center for High Energy Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Shin, Sung-Gyun; Cho, Moo-Hyun [Department of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, Manwoo [Research Center, Dongnam Institute of Radiological and Medical Science, Busan 619-953 (Korea, Republic of)

    2015-11-01

    The thermal neutron cross section (σ{sub 0}) and resonance integral (I{sub 0}) of the {sup 45}Sc(n,γ){sup 46}Sc reaction have been measured relative to that of the {sup 197}Au(n,γ){sup 198}Au reaction by means of the activation method. High-purity natural scandium and gold foils without and with a cadmium cover of 0.5 mm thickness were irradiated with moderated pulsed neutrons produced from the Pohang Neutron Facility (PNF). The induced activities in the activated foils were measured with a high purity germanium (HPGe) detector. In order to improve the accuracy of the experimental results the counting losses caused by the thermal (G{sub th}) and resonance (G{sub epi}) neutron self-shielding, the γ-ray attenuation (F{sub g}) and the true γ-ray coincidence summing effects were made. In addition, the effect of non-ideal epithermal spectrum was also taken into account by determining the neutron spectrum shape factor (α). The thermal neutron cross-section and resonance integral of the {sup 45}Sc(n,γ){sup 46}Sc reaction have been determined relative to the reference values of the {sup 197}Au(n,γ){sup 198}Au reaction, with σ{sub o,Au} = 98.65 ± 0.09 barn and I{sub o,Au} = 1550 ± 28 barn. The present thermal neutron cross section has been determined to be σ{sub o,Sc} = 27.5 ± 0.8 barn. According to the definition of cadmium cut-off energy at 0.55 eV, the present resonance integral cross section has been determined to be I{sub o,Sc} = 12.4 ± 0.7 barn. The present results are compared with literature values and discussed.

  5. Thermal neutron capture cross section for Fe-56(n,gamma)

    Czech Academy of Sciences Publication Activity Database

    Firestone, R. B.; Belgya, T.; Krtička, M.; Bečvář, F.; Szentmiklosi, L.; Tomandl, Ivo

    2017-01-01

    Roč. 95, č. 1 (2017), č. článku 014328. ISSN 2469-9985 R&D Projects: GA ČR GA13-07117S; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : neutron cross section * gamma gamma-coincidence data Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 3.820, year: 2016

  6. Thermal neutron capture cross section of chromium, vanadium, titanium and nickel isotopes

    International Nuclear Information System (INIS)

    Venturini, L.; Pecequilo, B.R.S.

    1990-04-01

    The thermal neutron cross section of chromium, vanadium, titanium and nickel can be determined by measuring the pair spectrum of prompt gamma-rays emitted targets of these elements are irradiated by a thermal neutron beam. Such measurements were carried out by irradiating the natural element mixed with a nitrogen standard (melamine) in the tangential beam hole of the IEA-R1 research reactor. The pair spectrometer efficiency calibration curve in the 1.5 to 11 MeV energy range was performed with a melamine plus ammonium chloride mixed target. The cross section was calculated for the most prominent gamma transitions of each isotope, using nitrogen as standard and averaged over the obtained values. The resulting mean cross sections are as follows: (13.4 ± 0.7)b for 50 Cr, (0.79 ± 0,02)b for 52 Cr, (18.1 ± 0,7)b for 53 Cr, (4.9 ± 0.2)b for 51 V, (8.4 ± 0.1)b for 48 Ti, (4.41 ± 0.08)b 58 Ni, (2.54 ± 0.07)b for 60 Ni, (15.2 ± 0.5)b for 62 Ni and (1.6 ± 0.1) for 64 Ni. (author) [pt

  7. Neutron capture and fission cross section of Americium-243 in the energy range from 5 to 250 keV

    International Nuclear Information System (INIS)

    Wisshak, K.; Kaeppeler, F.

    1983-04-01

    The neutron capture and subthreshold fission cross section of 243 Am was measured in the energy range from 5 to 250 keV using 197 Au and 235 U as the respective standards. Neutrons were produced via the 7 Li(p,n) and the T(p,n) reaction with the Karlsruhe 3-MV pulsed Van de Graaff accelerator. Capture events were detected by two MoxonRae detectors with graphite and bismuthgraphite converters, respectively. Fission events were registered by a NE-213 liquid scintillator with pulse-shape discriminator equipment. Flight paths as short as 50-70 mm were used to obtain optimum signal-to-background ratio. After correction for the different efficiency of the individual converter materials the capture cross section could be determined with a total uncertainty of 3-6%. The respective values for the fission cross section are 8-12%. The results are compared to predictions of recent evaluations, which in some cases are severely discrepant. (orig.)

  8. THE WEAK s-PROCESS IN MASSIVE STARS AND ITS DEPENDENCE ON THE NEUTRON CAPTURE CROSS SECTIONS

    International Nuclear Information System (INIS)

    Pignatari, M.; Herwig, F.; Gallino, R.; Bisterzo, S.; Heil, M.; Wiescher, M.; Kaeppeler, F.

    2010-01-01

    The slow neutron capture process in massive stars (weak s process) produces most of the s-process isotopes between iron and strontium. Neutrons are provided by the 22 Ne(α,n) 25 Mg reaction, which is activated at the end of the convective He-burning core and in the subsequent convective C-burning shell. The s-process-rich material in the supernova ejecta carries the signature of these two phases. In the past years, new measurements of neutron capture cross sections of isotopes beyond iron significantly changed the predicted weak s-process distribution. The reason is that the variation of the Maxwellian-averaged cross sections (MACS) is propagated to heavier isotopes along the s path. In the light of these results, we present updated nucleosynthesis calculations for a 25 M sun star of Population I (solar metallicity) in convective He-burning core and convective C-burning shell conditions. In comparison with previous simulations based on the Bao et al. compilation, the new measurement of neutron capture cross sections leads to an increase of s-process yields from nickel up to selenium. The variation of the cross section of one isotope along the s-process path is propagated to heavier isotopes, where the propagation efficiency is higher for low cross sections. New 74 Ge, 75 As, and 78 Se MACS result in a higher production of germanium, arsenic, and selenium, thereby reducing the s-process yields of heavier elements by propagation. Results are reported for the He core and for the C shell. In shell C-burning, the s-process nucleosynthesis is more uncertain than in the He core, due to higher MACS uncertainties at higher temperatures. We also analyze the impact of using the new lower solar abundances for CNO isotopes on the s-process predictions, where CNO is the source of 22 Ne, and we show that beyond Zn this is affecting the s-process yields more than nuclear or stellar model uncertainties considered in this paper. In particular, using the new updated initial

  9. Measurement of the radiative neutron capture cross section of 206Pb and its astrophysical implications

    CERN Document Server

    Domingo-Pardo, C.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Bisterzo, S.; Calvino, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Dolfini, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; Oshima, M.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2007-01-01

    The (n, gamma) cross section of 206Pb has been measured at the CERN n_TOF facility with high resolution in the energy range from 1 eV to 600 keV by using two optimized C6D6 detectors. In the investigated energy interval about 130 resonances could be observed, from which 61 had enough statistics to be reliably analyzed via the R-matrix analysis code SAMMY. Experimental uncertainties were minimized, in particular with respect to (i) angular distribution effects of the prompt capture gamma-rays, and to (ii) the TOF-dependent background due to sample-scattered neutrons. Other background components were addressed by background measurements with an enriched 208Pb sample. The effect of the lower energy cutoff in the pulse height spectra of the C6D6 detectors was carefully corrected via Monte Carlo simulations. Compared to previous 206Pb values, the Maxwellian averaged capture cross sections derived from these data are about 20% and 9% lower at thermal energies of 5 keV and 30 keV, respectively. These new results hav...

  10. Experimental determination of neutron capture cross sections of fast reactor structure materials integrated in intermediate energy spectra. Vol. 2: description of experimental structure

    International Nuclear Information System (INIS)

    Tassan, S.

    1978-01-01

    A selection of technical documents is given concerning the experimental determination of the neutron capture cross-sections of fast reactor structural materials (Fe, Cr, Ni...) integrated over the intermediate energy spectra. The experimental structure project and modifications of the reactor RB2 for this experiment, together with criticality and safety calculations, are presented

  11. SB2. Experiment on secondary gamma-ray production cross sections arising from thermal-neutron capture in each of 14 different elements plus a stainless steel

    International Nuclear Information System (INIS)

    Maerker, R.E.

    1976-01-01

    The experimental and calculational details for a CSEWG integral data testing shielding experiment are presented. This particular experiment measured the secondary gamma-ray production cross sections arising from thermal-neutron capture in iron, nitrogen, sodium, aluminum, copper, titanium, calcium, potassium, chlorine, silicon, ickel, zinc, barium, sulfur and a type 321 stainless steel. 1 figure, 30 tables

  12. The 236U neutron capture cross-section measured at the n_TOF CERN facility

    Directory of Open Access Journals (Sweden)

    Mastromarco M.

    2017-01-01

    Full Text Available The 236U isotope plays an important role in nuclear systems, both for future and currently operating ones. The actual knowledge of the capture reaction of this isotope is satisfactory in the thermal region, but it is considered insufficient for Fast Reactor and ADS applications. For this reason the 236U(n, γ reaction cross-section has been measured for the first time in the whole energy region from thermal energy up to 1 MeV at the n_TOF facility with two different detection systems: an array of C6D6 detectors, employing the total energy deposited method, and a FX1 total absorption calorimeter (TAC, made of 40 BaF2 crystals. The two n_TOF data sets agree with each other within the statistical uncertainty in the Resolved Resonance Region up to 800 eV, while sizable differences (up to ≃ 20% are found relative to the current evaluated data libraries. Moreover two new resonances have been found in the n_TOF data. In the Unresolved Resonance Region up to 200 keV, the n_TOF results show a reasonable agreement with previous measurements and evaluated data.

  13. Neutron capture cross section measurements of $^{238}$U, $^{241}$Am and $^{243}$Am at n_TOF

    CERN Multimedia

    Koehler, P E; Plag, R

    The increase of the world energy demand and the need of low carbon energy sources have triggered the renaissance and/or enhancement of nuclear energy in many countries. Fundamental nuclear physics can contribute in a practical way to the sustainability and safety of the nuclear energy production and the management of the nuclear waste. There exists a series of recent studies which address the most relevant isotopes, decay data, nuclear reaction channels and energy ranges which have to be investigated in more detail for improving the design of different advanced nuclear systems [1] and nuclear fuel cycles [2]. In this proposal, we aim at the measurement of the neutron capture cross sections of $^{238}$U, $^{241}$Am and $^{243}$Am. All three isotopes are listed in the NEA High Priority Request List [37], are recommended for measurements [1] and play an important role in the nuclear energy production and fuel cycle scenarios. The measurements will provide as well valuable nuclear structure data necessary for the...

  14. The Gogny-HFB+QRPA dipole strength function and its application to radiative neutron capture cross section

    Directory of Open Access Journals (Sweden)

    Goriely Stephane

    2018-01-01

    Full Text Available Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different nuclear applications, including in particular nuclear astrophysics. Here we extend our large-scale calculations of the E1 and M1 absorption γ-ray strength function obtained in the framework of the axially-symmetric deformed quasiparticle random phase approximation (QRPA based on the finite-range D1M Gogny force to the determination of the de-excitation strength function. To do so, shell-model calculations of the de-excitation dipole strength function as well as experimental data are considered to provide insight in the low-energy limit and to complement the QRPA estimate phenomenologically. We compare our final prediction of the E1 and M1 strengths with available experimental data at low energies and show that a relatively good agreement can be obtained. Its impact on the average radiative width as well as radiative neutron capture cross section is discussed.

  15. Comparison of neutron capture cross sections obtained from two Hauser-Feshbach statistical models on a short-lived nucleus using experimentally constrained input

    Science.gov (United States)

    Lewis, Rebecca; Liddick, Sean; Spyrou, Artemis; Crider, Benjamin; Dombos, Alexander; Naqvi, Farheen; Prokop, Christopher; Quinn, Stephen; Larsen, Ann-Cecilie; Crespo Campo, Lucia; Guttormsen, Magne; Renstrom, Therese; Siem, Sunniva; Bleuel, Darren; Couture, Aaron; Mosby, Shea; Perdikakis, George

    2017-09-01

    A majority of the abundance of the elements above iron are produced by neutron capture reactions, and, in explosive stellar processes, many of these reactions take place on unstable nuclei. Direct neutron capture experiments can only be performed on stable and long-lived nuclei, requiring indirect methods for the remaining isotopes. Statistical neutron capture can be described using the nuclear level density (NLD), the γ strength function (γSF), and an optical model. The NLD and γSF can be obtained using the β-Oslo method. The NLD and γSF were recently determined for 74Zn using the β-Oslo method, and were used in both TALYS and CoH to calculate the 73Zn(n, γ)74Zn neutron capture cross section. The cross sections calculated in TALYS and CoH are expected to be identical if the inputs for both codes are the same, however, after a thorough investigation into the inputs for the 73Zn(n, γ)74Zn reaction there is still a factor of two discrepancy between the two codes.

  16. Real-Time Monitoring of Neutron Capture Cross Section in the IPR-R1 TRIGA Research Reactor as a Fuel Temperature Function

    Energy Technology Data Exchange (ETDEWEB)

    Palma, D.A.P. [Comissao Nacional de Energia Nuclear, CNEN, General Severiano Street, 90, 22290-901, Rio de Janeiro (Brazil); Mesquita, A.Z.; Souza, R.M.G.P. [Comissao Nacional de Energia Nuclear, CNEN/CDTN, Av. Presidente Antonio Carlos, 6627, 31270-901, Belo Horizonte (Brazil); Martinez, A.S. [Programa de Engenharia Nuclear, COPPE/UFRJ, Av. Horacio Macedo, 2030, Bloco G, 21941- 914, Rio de Janeiro (Brazil)

    2011-07-01

    Nuclear reactor operators have to monitor the behaviour of different nuclear and design parameters that vary in time to ensure the operating safety of the reactor. In recent years several operating parameters for the IPR-R1 TRIGA research reactor were monitored and indicated in real-time by the data acquisition system developed for the reactor, with all the data being stored in a hard disk in the data acquisition computer, to build in this way a database. The goal of this work is to insert in the set of parameters already collected the neutron capture cross sections for the fuel, from the power and temperature numbers obtained in real-time. The experimental data was obtained by using a fuel element instrumented with temperature sensors, located in the core of the IPR-R1 TRIGA research reactor at the CDTN - Centre for Development of Nuclear. This information is useful for the continuous monitoring of the reaction rate in neutron capture. For that, a new analytical formulation is used for the Doppler broadening function proposed by Palma and Martinez which is free from special functions in its functional form and with easy computing implementation. The results obtained were satisfactory from the standpoint of accuracy in comparison with the numerical reference method and indicate that it is possible to carry out real-time monitoring of the neutron capture cross section in the fuel. (author)

  17. Neutron capture cross sections of rhodium, thulium, iridium, and gold between 0.5 and 3.0 MeV

    International Nuclear Information System (INIS)

    Joly, S.; Voignier, J.; Grenier, G.; Drake, D.M.; Nilsson, L.

    1979-01-01

    Measurements of the neutron capture cross sections of rhodium, thulium, gold, and iridium were carried out in the 0.5- to 3.0-MeV energy range. The cross sections are deduced from the capture gamma-ray spectra recorded by a NaI spectrometer consisting of central and annulus detectors. Time-of-flight techniques are used to improve the signal-to-background ratio. When comparison is possible, the present results are found to be in general agreement with the previous data. 5 figures, 3 tables

  18. Neutron capture cross sections of 69Ga and 71Ga at 25 keV and Epeak = 90 keV

    Directory of Open Access Journals (Sweden)

    Göbel Kathrin

    2017-01-01

    Full Text Available We measured the neutron capture cross sections of 69Ga and 71Ga for a quasi-stellar spectrum at kBT = 25 keV and a spectrum with a peak energy at 90 keV by the activation technique at the Joint Research Centre (JRC in Geel, Belgium. Protons were provided by an electrostatic Van de Graaff accelerator to produce neutrons via the reaction 7Li(p,n. The produced activity was measured via the γ emission of the product nuclei by high-purity germanium detectors. We present preliminary results.

  19. Neutron capture cross sections of 69Ga and 71Ga at 25 keV and Epeak = 90 keV

    Science.gov (United States)

    Göbel, Kathrin; Beinrucker, Clemens; Erbacher, Philipp; Fiebiger, Stefan; Fonseca, Micaela; Heftrich, Michael; Heftrich, Tanja; Käppeler, Franz; Krása, Antonin; Lederer-Woods, Claudia; Plag, Ralf; Plompen, Arjan; Reifarth, René; Schmidt, Stefan; Sonnabend, Kerstin; Weigand, Mario

    2017-09-01

    We measured the neutron capture cross sections of 69Ga and 71Ga for a quasi-stellar spectrum at kBT = 25 keV and a spectrum with a peak energy at 90 keV by the activation technique at the Joint Research Centre (JRC) in Geel, Belgium. Protons were provided by an electrostatic Van de Graaff accelerator to produce neutrons via the reaction 7Li(p,n). The produced activity was measured via the γ emission of the product nuclei by high-purity germanium detectors. We present preliminary results.

  20. Neutron-capture cross-section measurement for 163Dy In the neutron energy range from 15 to 75 keV

    International Nuclear Information System (INIS)

    Kim, Hyun Duk; Jung, Eui Jung; Ahn, Jung Keun; Lee, Dae Won; Kim, Guin Yun; Ro, Tae Ik; Min, Young Ki; Igashira, Masayuki; Ohsaki, Toshiro; Mizuno, Satoshi

    2002-01-01

    The neutron-capture cross-section of 163 Dy were measured in the neutron energy range from 15 to 75 keV at the 3-MV Pelletron accelerator of the Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology. Pulsed neutrons were produced from the 7 Li(p,n) 7 Be reaction by bombarding a metallic lithium target with the 1.903-MeV proton beam. The incident neutron spectra were measured by means of a neutron time-of-flight method with a 6 Li-glass detector. Capture γ-rays were detected with a large anti-Compton NaI(Tl) spectrometer. A pulse-height weighting technique was applied to the capture γ-ray pulse-height spectra to obtain capture yields. The neutron capture cross-section were determined relative to the standard capture cross-sections of 197 Au. The present results were compared with the previous measurements and the evaluated values of ENDF/B-VI

  1. Measurement of the neutron capture cross section of U234 in n-TOF at CERN for Generation IV nuclear reactors

    International Nuclear Information System (INIS)

    Dridi, W.

    2006-11-01

    Accurate and reliable neutron capture cross sections are needed in many research areas, including stellar nucleosynthesis, advanced nuclear fuel cycles, waste transmutation, and other applied programs. In particular, the accurate knowledge of U 234 (n,γ) reaction cross section is required for the design and realization of nuclear power plants based on the thorium fuel cycle. We have measured the neutron capture cross section of U 234 , with a 4π BaF 2 Total Absorption Calorimeter, at the recently constructed neutron time-of-flight facility n-TOF at CERN in the energy range from 0.03 eV to 1 MeV. Monte-Carlo simulations with GEANT4 and MCNPX of the detector response have been performed. After the background subtraction and correction with dead time and pile-up, the capture yield from 0.03 eV up to 1.5 keV was derived. The analysis of the capture yield in terms of R-matrix resonance parameters is discussed. We have identified 123 resonances and measured the resonance parameters in the energy range from 0.03 eV to 1.5 keV. The mean radiative width γ > is found to be (38.2 ± 1.5) meV and the mean spacing parameter 0 > is (11.0 ± 0.2) eV, both values agree well with recommended values

  2. Neutron capture cross section measurements of 109Ag, 186W and 158Gd on filtered neutron beams of 55 and 144 keV

    International Nuclear Information System (INIS)

    Vuong Huu Tan; Nguyen Canh Hai; Pham Ngoc Son; Tran Tuan Anh

    2004-12-01

    The neutron capture cross sections of the 109 Ag(n, γ) 110 mAg, 186 W(n, γ) 187 W and 158 Gd(n, γ) 159 Gd have been measured at 55 and 144 keV by the activation method with filtered neutron beams of the Dalat nuclear research reactor. The cross sections were determined relative to the standard capture cross sections of 197 Au using highly purity metallic foils of Ag, W, Gd and Au. The high efficient HPGe detector was used for the gamma rays measurement from the samples, and absolute efficiency calibration was performed by using a set of standard radioisotope sources and a multi-nuclides standard solution. The present results were compared with the previous measurements listed in EXFOR-CINDA, and the evaluated data of ENDF/B-VI. (author)

  3. Neutron capture cross section measurements: case of lutetium isotopes; Mesures de donnees de sections efficaces de capture radiative de neutrons: application au cas du lutecium

    Energy Technology Data Exchange (ETDEWEB)

    Roig, O.; Meot, V.; Belier, G. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-07-15

    The neutron radiative capture is a nuclear reaction that occurs in the presence of neutrons on all isotopes and on a wide energy range. The neutron capture range on Lutetium isotopes, presented here, illustrates the variety of measurements leading to the determination of cross sections. These measurements provide valuable fundamental data needed for the stockpile stewardship program, as well as for nuclear astrophysics and nuclear structure. Measurements, made in France or in United-States, involving complex detectors associated with very rare targets have significantly improved the international databases and validated models of nuclear reactions. We present results concerning the measurement of neutron radiative capture on Lu{sup 173}, Lu{sup 175}, Lu{sup 176} and Lu{sup 177m}, the measurement of the probability of gamma emission in the substitution reaction Yb{sup 174}(He{sup 3},p{gamma})Lu{sup 176}. The measurement of neutron cross sections on Lu{sup 177m} have permitted to highlight the process of super-elastic scattering

  4. Determination of the neutron resonance parameters for 206Pb and of the thermal neutron capture cross section for 206Pb and 209Bi

    International Nuclear Information System (INIS)

    Borella, A.

    2005-01-01

    Chapter 1 describes the motivation of the measurements (accelerator driven systems, stellar nucleosynthesis, neutron induced reactions on 206 Pb), the present status of the neutron capture data for 206 Pb and 209 Bi and the structure of this work. In Chapter 2 the basic reaction theory underlying this work is described. The neutron induced reaction mechanism and formalism are explained. The parameterisation of the cross section in terms of R-matrix theory is discussed and we put particular emphasis on the statistical behaviour of the resonance parameters and the impact of the angular distribution of gamma rays following neutron capture. The relation between experimental observables and the resonance parameters is discussed together with general comments related to resonance shape analysis. Chapter 3 is focused on the determination of resonance parameters for 206 Pb. We performed high-resolution transmission and capture measurements at the Time-Of-Flight (TOF) facility GELINA of the IRMM at Geel (B) and determined the resonance parameters. For nuclei like 206 Pb, where the total width is dominated by Γ n , the capture area allows to determine G . Transmission measurements were carried out to determine Γ n , and the statistical factor g of resonances. Before performing a Resonance Shape Analysis (RSA) on the transmission and capture data, we verified the neutron flux and resolution at GELINA. We also compared the characteristics of GELINA with those of the n-TOF facility at CERN. A special emphasis is placed on the total energy detection technique using C 6 D 6 detectors. This technique was applied for the determination of the capture cross section. To reduce systematic bias effects on the capture cross section, the response of the detectors was determined by Monte Carlo simulations, which has been validated by experiments. Using these response functions the partial capture cross sections for individual resonances of 206 Pb have been deduced, by unfolding the

  5. Evaluation of sodium-23 neutron capture cross section data for the ENDF/B V-III file

    International Nuclear Information System (INIS)

    Paik, N.C.; Pitterle, T.A.

    1975-01-01

    The evaluation of neutron cross sections of 23 Na, material number 1156, for the ENDF/B File is described. Cross sections were evaluated between 10 -5 eV and 15 MeV. Experimental data available up to March 1971 were included in the evaluation

  6. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234,236,238U Neutron-Capture Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kawano, Toshihiko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bredeweg, Todd Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baramsai, Bayarbadrakh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haight, Robert Cameron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jandel, Marian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Donnell, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vieira, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilhelmy, Jerry B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Becker, John A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Ching-Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Krticka, Milan [Charles Univ., Prague (Czech Republic)

    2015-05-28

    Neutron capture cross sections in the “continuum” region (>≈1 keV) and gamma-emission spectra are of importance to basic science and many applied fields. Careful measurements have been made on most common stable nuclides, but physicists must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides. Calculations must be benchmarked against measurements (cross sections, gamma-ray spectra, and <Γγ>). Gamma-ray spectrum measurements from resolved resonances were made with 1 - 2 mg/cm2 thick targets; cross sections at >1 keV were measured using thicker targets. The results show that the shape of capture cross section vs neutron energy is not sensitive to the form of the strength function (although the magnitude is); the generalized Lorentzian E1 strength function is not sufficient to describe the shape of observed gamma-ray spectra; MGLO + “Oslo M1” parameters produces quantitative agreement with the measured 238U(n,γ) cross section; additional strength at low energies (~ 3 MeV) -- likely M1-- is required; and careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations.

  7. Measurement and analysis of the $^{243}$Am neutron capture cross section at the n_TOF facility at CERN

    CERN Document Server

    Mendoza, E; Guerrero, C; Berthoumieux, E; Abbondanno, U; Aerts, G; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Balibrea, J; Baumann, P; Becvar, F; Belloni, F; Calvino, F; Calviani, M; Capote, R; Carrapico, C; Carrillo de Albornoz, A; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Ferrant†, L; Ferrari, A; Ferreira-Marques, R; Fitzpatrick, L; Frais-Koelbl, H; Fujii, K; Furman, W; Goncalves, I; Gonz alez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Isaev, S; Jericha, E; Kappeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Ketlerov, V; Kerveno, M; Koehler, P; Konovalov, V; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lossito, R; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Martınez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O’Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vicente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2014-01-01

    Background:The design of new nuclear reactors and transmutation devices requires to reduce the present neutron cross section uncertainties of minor actinides. Purpose: Reduce the $^{243}$Am(n,$\\gamma$) cross section uncertainty. Method: The $^{243}$Am(n,$\\gamma$) cross section has been measured at the n_TOF facility at CERN with a BaF$_{2}$ Total Absorption Calorimeter, in the energy range between 0.7 eV and 2.5 keV. Results: The $^{243}$Am(n,$\\gamma$) cross section has been successfully measured in the mentioned energy range. The resolved resonance region has been extended from 250 eV up to 400 eV. In the unresolved resonance region our results are compatible with one of the two incompatible capture data sets available below 2.5 keV. The data available in EXFOR and in the literature has been used to perform a simple analysis above 2.5 keV. Conclusions: The results of this measurement contribute to reduce the $^{243}$Am(n,$\\gamma$) cross section uncertainty and suggest that this cross section is underestimate...

  8. Fast neutron capture cross sections of /sup 169/Tm, /sup 191/Ir, /sup 193/Ir, and /sup 175/Lu for 3 less than or equal to E/sub n/ less than or equal to 2000 keV

    Energy Technology Data Exchange (ETDEWEB)

    Macklin, R.L.; Drake, D.M.; Malanify, J.J.

    1977-11-01

    Fast neutron capture cross sections of /sup 169/Tm, /sup 191/Ir, /sup 193/Ir, and /sup 175/Lu, and the /sup 6/Li(n,..cap alpha..)/sup 3/H cross sections to which they are normalized are presented in tabular form for neutron energies between 3 and 2000 keV.

  9. Application of modified REFIT code for J-PARC/MLF to evaluation of neutron capture cross section on 155,157Gd

    Science.gov (United States)

    Mizuyama, Kazuhito; Iwamoto, Nobuyuki; Iwamoto, Osamu; Hasemi, Hiroyuki; Kino, Koichi; Kimura, Atsushi; Kiyanagi, Yoshiaki

    2017-09-01

    In order to analyze the experimental data measured by the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) at the Japan Proton Accelerator Research Complex/Materials and Life Science Experimental Facility (J-PARC/MLF), it is necessary to take into account the double-bunch structure of the neutron pulse and the energy resolution function for the operational condition of the J-PARC/MLF. The modified REFIT code has been developed to treat the double-bunch neutron pulse and the energy resolution function for J-PARC/MLF. In this study, we applied the modified REFIT code to analyze the new data of the neutron capture cross section of 155Gd and 157Gd recently measured by ANNRI in the J-PARC/MLF, and obtained the resonance parameters of two Gd isotopes. We discussed the differences between the our obtained results and the other libraries.

  10. Study on keV-neutron capture cross sections and capture γ-ray spectra of 117,119Sn

    International Nuclear Information System (INIS)

    Nishiyama, J.; Igashira, M.; Ohsaki, T.; Kim, G.N.; Chung, W.C.; Ro, T.I.

    2006-01-01

    The capture cross sections and capture γ-ray spectra of 117,119 Sn were measured in an incident neutron energy region from 10 to 100 keV and at 570 keV, using a 1.5-ns pulsed neutron source by the 7 Li(p,n) 7 Be reaction and a large anti-Compton NaI(Tl) γ-ray spectrometer. A pulse-height weighting technique was applied to observed capture γ-ray pulse-height spectra to derive capture yields. The capture cross sections of 117,119 Sn were obtained with the error of about 5% by using the standard capture cross sections of 197 Au. The present cross sections were compared with previous experimental data and the evaluated values in JENDL-3.3 and ENDF/B-VI. The capture γ-ray spectra of 117,119 Sn were derived by unfolding the observed capture γ-ray pulse-height spectra. The calculations of capture cross sections and capture γ-ray spectra of 117,119 Sn were performed with the EMPIRE-II code. The calculated results were compared with the present experimental ones. (author)

  11. Measurement and analysis of the 241Am neutron capture cross section at the n_TOF facility at CERN

    Science.gov (United States)

    Mendoza, E.; Cano-Ott, D.; Altstadt, S.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Balibrea, J.; Bécares, V.; Barbagallo, M.; Bečvář, F.; Belloni, F.; Berthier, B.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Calviño, F.; Calviani, M.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Dillmann, I.; Domingo-Pardo, C.; Durán, I.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Furman, V.; Gómez-Hornillos, M. B.; Ganesan, S.; García, A. R.; Giubrone, G.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Katabuchi, T.; Ketlerov, V.; Khryachkov, V.; Koehler, P.; Kokkoris, M.; Kroll, J.; Krtička, M.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Lerendegui-Marco, J.; Licata, M.; López, D.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A. J. M.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Roman, F.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Versaci, R.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiss, C.; Wright, T.; Žugec, P.; n TOF Collaboration

    2018-05-01

    The 241Am(n ,γ ) cross section has been measured at the n_TOF facility at CERN with the n_TOF BaF2 Total Absorption Calorimeter in the energy range between 0.2 eV and 10 keV. Our results are analyzed as resolved resonances up to 700 eV, allowing a more detailed description of the cross section than in the current evaluations, which contain resolved resonances only up to 150-160 eV. The cross section in the unresolved resonance region is perfectly consistent with the predictions based on the average resonance parameters deduced from the resolved resonances, thus obtaining a consistent description of the cross section in the full neutron energy range under study. Below 20 eV, our results are in reasonable agreement with JEFF-3.2 as well as with the most recent direct measurements of the resonance integral, and differ up to 20-30% with other experimental data. Between 20 eV and 1 keV, the disagreement with other experimental data and evaluations gradually decreases, in general, with the neutron energy. Above 1 keV, we find compatible results with previously existing values.

  12. Measurement of the 241Am neutron capture cross section at the n_TOF facility at CERN

    Directory of Open Access Journals (Sweden)

    Mendoza E.

    2017-01-01

    Full Text Available New neutron cross section measurements of minor actinides have been performed recently in order to reduce the uncertainties in the evaluated data, which is important for the design of advanced nuclear reactors and, in particular, for determining their performance in the transmutation of nuclear waste. We have measured the 241Am(n,γ cross section at the n_TOF facility between 0.2 eV and 10 keV with a BaF2 Total Absorption Calorimeter, and the analysis of the measurement has been recently concluded. Our results are in reasonable agreement below 20 eV with the ones published by C. Lampoudis et al. in 2013, who reported a 22% larger capture cross section up to 110 eV compared to experimental and evaluated data published before. Our results also indicate that the 241Am(n,γ cross section is underestimated in the present evaluated libraries between 20 eV and 2 keV by 25%, on average, and up to 35% for certain evaluations and energy ranges.

  13. Nuclear level densities and γ-ray strength functions of 180,181Ta and neutron capture cross sections

    Science.gov (United States)

    Malatji, K. L.; Kheswa, B. V.; Wiedeking, M.; Bello Garrote, F. L.; Brits, C. P.; Bleuel, D. L.; Giacoppo, F.; Görgen, A.; Guttormsen, M.; Hadynska-Klek, K.; Hagen, T. W.; Ingeberg, V. W.; Klintefjord, M.; Larsen, A. C.; Nyhus, H. T.; Renstrøm, T.; Rose, S.; Sahin, E.; Siem, S.; Tveten, G. M.; Zeiser, F.

    2017-09-01

    The γ-ray strength functions and nuclear level densities in the quasi-continuum of 180,181Ta are extracted from particle-γ coincidence events with the Oslo Method, below the Sn. The data were used as input in the TALYS reaction code for calculations of the astrophysical Maxwellian-averaged (n,γ) cross-sections to investigate nucleosynthesis of nature's rarest stable isotope 180Ta.

  14. Nuclear level densities and γ-ray strength functions of 180,181Ta and neutron capture cross sections

    Directory of Open Access Journals (Sweden)

    Malatji K.L.

    2017-01-01

    Full Text Available The γ-ray strength functions and nuclear level densities in the quasi-continuum of 180,181Ta are extracted from particle-γ coincidence events with the Oslo Method, below the Sn. The data were used as input in the TALYS reaction code for calculations of the astrophysical Maxwellian-averaged (n,γ cross-sections to investigate nucleosynthesis of nature's rarest stable isotope 180Ta.

  15. Thermal neutron capture cross-section measurements of 243Am and 242Pu using the new mini-INCA α- and γ-spectroscopy station

    International Nuclear Information System (INIS)

    Marie, F.; Letourneau, A.; Fioni, G.; Deruelle, O.; Veyssiere, Ch.; Faust, H.; Mutti, P.; AlMahamid, I.; Muhammad, B.

    2006-01-01

    In the framework of the Mini-INCA project, dedicated to the study of Minor Actinide transmutation process in high neutron fluxes, an α- and γ-spectroscopy station has been developed and installed at the High Flux Reactor of the Laue-Langevin Institut. This set-up allows short irradiations as well as long irradiations in a high quasi-thermal neutron flux and post-irradiation spectroscopy analysis. It is well suited to measure precisely, in reference to 59 Co cross-section, neutron capture cross-sections, for all the actinides, in the thermal energy region. The first measurements using this set-up were done on 243 Am and 242 Pu isotopes. Cross-section values, at E n =0.025eV, were found to be (81.8+/-3.6)b for 243 Am and (22.5+/-1.1)b for 242 Pu. These values differ from evaluated data libraries by a factor of 9% and 17%, respectively, but are compatible with the most recent measurements, validating by the way the experimental apparatus

  16. Study on neutron capture cross sections using the filtered neutron beams of 55 keV and 144 keV at the Dalat reactor and related applications

    International Nuclear Information System (INIS)

    Vuong Huu Tan; Nguyen Canh Hai; Pham Ngoc Son; Tran Tuan Anh

    2007-01-01

    In this fundamental research project on nuclear physics in period of 2006, the neutron capture cross sections for the reactions of 139 La (n,γ) 140 La, 152 Sm (n,γ) 153 Sm, 191 Ir (n,γ) 192 Ir and 193 Ir (n,γ) 194 Ir have been measured at 55 keV and 144 keV by the activation method using the filtered neutron beams of the Dalat nuclear research reactor. The cross sections were determined relative to the standard capture cross sections of 197 Au. The samples and standard were prepaid from high purity (99.99%) foil of Au and natural oxide powders of La 2 O 3 , Sm 2 O 3 and IrO 2 . A high efficient HPGe detector (58%) was used to detect the gamma rays, emitted from the activated samples. The absolute efficiency curve of the detector has been precisely calibrated thanks to a set of standard radioisotope sources and a multi-nuclide standard solution, supported by IAEA. The present results were compared with the previous measurements from EXFOR-2003, and the evaluated values of JENDL 3.3 and ENDF/B-6.8. (author)

  17. A new approach for precise measurements of keV neutron capture cross sections: The examples of 93Nb, 103Rh, and 181Ta

    International Nuclear Information System (INIS)

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Reffo, G.

    1990-04-01

    A new experimental method has been implemented for precise measurements of neutron capture cross sections in the energy range from 3 to 200 keV. Neutrons are produced via the 7 Li(p,n) 7 Be reaction using a pulsed 3 MV Van de Graaff accelerator. The neutron energy is determined by the time of flight technique using flight paths of less than 1 m. Capture events are detected with the Karlsruhe 4π Barium Fluoride Detector. This detector is characterized by a resolution in gamma-ray energy of 14% at 662 keV and 7% at 2.5 MeV, a time resolution of 500 ps, and a peak efficiency of 90% at 1 MeV. Capture events are registered with ≅ 95% probability above a gamma-ray threshold of 2.5 MeV. The combined effect of the relatively short primary flight path, the 10 cm inner radius of the detector sphere, and of the low capture cross section of BaF 2 allows to discriminate the main background due to capture of sample scattered neutrons in the scintillator via time of flight, leaving part of the neutron energy range completely undisturbed. The high efficiency and good energy resolution for capture gamma-rays yields a further reduction of this background by using only the relevant energy channels for data evaluation. In the first measurements with the new detector, the neutron capture cross sections of 93 Nb, 103 Rh, and 181 Ta were determined in the energy range from 3 to 200 keV relative to gold as a standard. The cross section ratios could be determined with overall systematic uncertainties of 0.7 to 0.8%; statistical uncertainties were less than 1% in the energy range from 20 to 100 keV, if the data are combined in 20 keV wide bins. The necessary sample masses were of the order of one gram. Further improvements with respect to sensitivity and accuracy are discussed. (orig.) [de

  18. Neutron-capture cross-section measurements of Xe136 between 0.4 and 14.8 MeV

    Science.gov (United States)

    Bhike, Megha; Tornow, W.

    2014-03-01

    Fast-neutron-capture cross-section data on Xe136 have been measured with the activation method between 0.4 and 14.8 MeV. The cross section was found to be of the order of 1 mb at the eleven energies investigated. This result is important to interpret potential neutron-induced backgrounds in the enriched xenon observatory and KamLAND-Zen neutrinoless double-β decay searches that use xenon as both source and detector. A high-pressure sphere filled with Xe136 was irradiated with monoenergetic neutrons produced by the reactions 3H(p ,n)3He, 2H(d ,n)3He, and 3H(d ,n)4He. Indium and gold monitor foils were irradiated simultaneously with the Xe136 to determine the incident neutron flux. The activities of the reaction products were measured with high-resolution γ-ray spectroscopy. The present results are compared to predictions from ENDF/B-VII.1 and TENDL-2012.

  19. Measurement of the 232Th neutron capture cross section in the region 5 keV-150 keV

    International Nuclear Information System (INIS)

    Lobo, Georges; Corvi, Franco; Schillebeeckx, Peter; Brusegan, Antonio; Mutti, Paolo; Janeva, Natalia

    2002-01-01

    The average capture cross-section of 232 Th has been measured at the 14.37 m flight path of GELINA, IRMM-Geel, in the energy range from 5 to 150 keV. The capture events were detected by two C 6 D 6 liquid scintillators and the neutron flux was measured with a 10 B-loaded ionisation chamber. The data, corrected with the pulse-height weighting technique, have been normalised to the well-isolated and nearly saturated 232 Th (n, γ) resonances at 21.8 eV and 23.5 eV. Below 15 keV neutron energy, we do not observe the discrepancies, up to 40%, with the evaluated ENDF/B-VI data as reported by Wisshak et al.. Between 5 and 80 keV our results are about 10% systematically above the ENDF/B-VI data and approach the evaluated data between 80 and 100 keV. (author)

  20. Measurement of the Neutron Capture Cross Sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm with a Total Absorption Calorimeter at n_TOF

    CERN Multimedia

    Beer, H; Wiescher, M; Cox, J; Rapp, W; Embid, M; Dababneh, S

    2002-01-01

    Accurate and reliable neutron capture cross section data for actinides are necessary for the poper design, safety regulation and precise performance assessment of transmutation devices such as Fast Critical Reactors or Accelerator Driven Systems (ADS). The goal of this proposal is the measurement of the neutron capture cross sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm at n_TOF with an accuracy of 5~\\%. $^{233}$U plays an essential role in the Th fuel cycle, which has been proposed as a safer and cleaner alternative to the U fuel cycle. The capture cross sections of $^{237}$Np,$^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm play a key role in the design and optimization of a strategy for the Nuclear Waste Transmutation. A high accuracy can be achieved at n_TOF in such measurements due to a combination of features unique in the world: high instantaneous neutron fluence and excellent energy resolution of the facility, innovative Data Acquisition System based on flash ADCs and t...

  1. Production of a {sup 44} Ti target and its cross section of thermal neutron capture; Producao de um alvo de {sup 44} Ti e sua secao de choque para captura de neutrons termicos

    Energy Technology Data Exchange (ETDEWEB)

    Ejnisman, R

    1994-12-31

    A study of the production of a {sup 44} Ti target was carried out aiming the determination of its thermal neutron capture cross-section. With this purpose, the cross-section of the reaction {sup 45} Sc(p,2 n) {sup 44} Ti was determined in the energies 16-, 18-, 20-22- and 45 MeV. The cross-section of the reactions (p,n) {sup 45} Ti, (p,pn) {sup 44m} Sc, (p,pn) {sup 44g} Sc and (p,p2n){sup 43} Sc were also measured. The results in the low energy region are in good agreement with a previous work by McGee et al. On the other hand, the cross-section at 45 MeV is different from McGee`s result and indicates the existence of an abnormal behavior of the excitation function at higher energies. Furthermore, a radiochemical separation method was developed in order to eliminate Sc from the {sup 44} Ti target which was irradiated with neutrons. It was possible to determine an upper limit for the cross-section of the reaction {sup 44} Ti (n, {gamma}) of 4 x 10{sup 3} b. At last, it is presented a discussion of the results obtained and their possible astrophysical implications. (author) 94 refs.

  2. Measurement of the 241Am and the 243Am Neutron Capture Cross Sections at the n_TOF Facility at CERN

    CERN Document Server

    Mendoza, E; Guerrero, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Massimi, C; Meaze, M; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Žugec, P

    2014-01-01

    The capture cross sections of Am-241 and Am-243 were measured at the n\\_TOF facility at CERN in the epithermal energy range with a BaF2 Total Absorption Calorimeter. A preliminary analysis of the Am-241 and a complete analysis of the Am-243 measurement, including the data reduction and the resonance analysis, have been performed.

  3. Measurement of the neutron-capture cross section on 63,65Cu between 0.4 and 7.5 MeV

    Science.gov (United States)

    Bray, Isabel; Bhike, Megha; Krishichayan, (None); Tornow, W.

    2015-10-01

    Copper is currently being used as a cooling and shielding material in most experimental searches for 0 ν β β decay. In order to accurately interpret background events in these experiments, the cross section of neutron-induced reactions on copper must be known. The purpose of this work was to measure the cross section of the 63,65Cu(n, γ)64,66Cu reactions. Data were collected through the activation method at a range of energies from approximately 0.4 MeV to 7.5 MeV, employing the neutron production reactions 3H(p,n)3Heand2H(d,n)3He. Previous data were limited to energies below approximately 3 MeV. The results are compared to predictions from the nuclear data libraries ENDF/B-VII.1 and TENDL-2014.

  4. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(Ei), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after

  5. Neutron-capture cross-section measurements of 74Ge and 76Ge in the energy region 0.4-14.8 MeV for neutrinoless double β decay applications

    Science.gov (United States)

    Bhike, Megha; Tornow, Werner

    2013-10-01

    Fast neutron capture cross sections for the reactions 74Ge(n, γ)75Ge and 76Ge(n, γ)77Ge have been measured in the neutron energy region 0.4-14.8 MeV with the activation method. The results are important to identify backgrounds in the neutrinoless double- β decay experiments GERDA and MAJORANA, which use germanium as both source and detector. Isotopically enriched targets which consisted of 86% of 76Ge and 14% of 74Ge were irradiated with mono-energetic neutrons produced via 3H(p,n)3He, 2H(d,n)3He and 3H(d,n)4He reactions. The cross sections were determined relative to 197Au(n, γ)198Au, 115In(n,n')115mIn and 197Au(n,2n)196Au standard cross sections. The activities of the products were measured using high-resolution γ-ray spctroscopy. The present results are compared with the evaluated data from ENDF/B-VII.1 and TALYS.

  6. Thermal neutron capture cross-section and resonance integral measurements of {sup 139}La(n, γ){sup 140}La and {sup 140}Ce(n, γ){sup 141}Ce using a Am-Be neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Panikkath, Priyada; Mohanakrishnan, P. [Manipal University, Manipal Centre for Natural Sciences, Karnataka (India)

    2017-03-15

    Thermal neutron capture cross-sections and resonance integrals of {sup 139}La(n, γ){sup 140}La and {sup 140}Ce (n, γ){sup 141}Ce are measured with respect to reference reactions {sup 197}Au(n, γ){sup 198}Au and {sup 55}Mn(n, γ){sup 56}Mn using the neutron activation technique. Measurements are carried out using neutrons from an Am-Be source located inside a concrete bunker. Two different methods are used for determining self-shielding factors of activation foils as well as for finding the epithermal neutron spectrum shape factor. For {sup 139}La with reference to {sup 197}Au and {sup 55}Mn the measured thermal cross sections are 9.24 ± 0.25 b and 9.28 ± 0.37 b, respectively, while the measured resonance integrals are 12.18 ± 0.67 b and 11.81 ± 0.94 b, respectively. For {sup 140}Ce with reference to {sup 197}Au and {sup 55}Mn the measured thermal cross sections are 0.44 ± 0.01 b and 0.44 ± 0.02 b, respectively, while the measured resonance integrals are 0.55 ± 0.03 b and 0.54 ± 0.04 b, respectively. The present measurements are compared with earlier measurements and evaluations. Presently estimated values confirm the established {sup 139}La(n, γ){sup 140}La cross-sections. The presently measured thermal capture cross-section {sup 140}Ce(n, γ){sup 141}Ce, though lower than the evaluated data, is having higher accuracy compared to previous measurements with large uncertainties. The resonance integral measured is higher (like most previous measurements) than most evaluations requiring a revision of the evaluated data. (orig.)

  7. Measurements of the neutron capture cross sections and incineration potentials of minor-actinides in high thermal neutron fluxes: Impact on the transmutation of nuclear wastes

    International Nuclear Information System (INIS)

    Bringer, O.

    2007-10-01

    This thesis comes within the framework of minor-actinide nuclear transmutation studies. First of all, we have evaluated the impact of minor actinide nuclear data uncertainties within the cases of 241 Am and 237 Np incineration in three different reactor spectra: EFR (fast), GT-MHR (epithermal) and HI-HWR (thermal). The nuclear parameters which give the highest uncertainties were thus highlighted. As a result of fact, we have tried to reduce data uncertainties, in the thermal energy region, for one part of them through experimental campaigns in the moderated high intensity neutron fluxes of ILL reactor (Grenoble). These measurements were focused onto the incineration and transmutation of the americium-241, the curium-244 and the californium-249 isotopes. Finally, the values of 12 different cross sections and the 241 Am isomeric branching ratio were precisely measured at thermal energy point. (author)

  8. Measurement of the neutron capture cross section of U{sup 234} in n-TOF at CERN for Generation IV nuclear reactors; Mesure de la section efficace de capture neutronique de l'{sup 234}U a n-TOF au CERN pour les reacteurs nucleaires de generation 4

    Energy Technology Data Exchange (ETDEWEB)

    Dridi, W

    2006-11-15

    Accurate and reliable neutron capture cross sections are needed in many research areas, including stellar nucleosynthesis, advanced nuclear fuel cycles, waste transmutation, and other applied programs. In particular, the accurate knowledge of U{sup 234}(n,{gamma}) reaction cross section is required for the design and realization of nuclear power plants based on the thorium fuel cycle. We have measured the neutron capture cross section of U{sup 234}, with a 4{pi} BaF{sub 2} Total Absorption Calorimeter, at the recently constructed neutron time-of-flight facility n-TOF at CERN in the energy range from 0.03 eV to 1 MeV. Monte-Carlo simulations with GEANT4 and MCNPX of the detector response have been performed. After the background subtraction and correction with dead time and pile-up, the capture yield from 0.03 eV up to 1.5 keV was derived. The analysis of the capture yield in terms of R-matrix resonance parameters is discussed. We have identified 123 resonances and measured the resonance parameters in the energy range from 0.03 eV to 1.5 keV. The mean radiative width <{gamma}{sub {gamma}}> is found to be (38.2 {+-} 1.5) meV and the mean spacing parameter is (11.0 {+-} 0.2) eV, both values agree well with recommended values.

  9. Measurement of the neutron capture cross section of U{sup 234} in n-TOF at CERN for Generation IV nuclear reactors; Mesure de la section efficace de capture neutronique de l'{sup 234}U a n-TOF au CERN pour les reacteurs nucleaires de generation 4

    Energy Technology Data Exchange (ETDEWEB)

    Dridi, W

    2006-11-15

    Accurate and reliable neutron capture cross sections are needed in many research areas, including stellar nucleosynthesis, advanced nuclear fuel cycles, waste transmutation, and other applied programs. In particular, the accurate knowledge of U{sup 234}(n,{gamma}) reaction cross section is required for the design and realization of nuclear power plants based on the thorium fuel cycle. We have measured the neutron capture cross section of U{sup 234}, with a 4{pi} BaF{sub 2} Total Absorption Calorimeter, at the recently constructed neutron time-of-flight facility n-TOF at CERN in the energy range from 0.03 eV to 1 MeV. Monte-Carlo simulations with GEANT4 and MCNPX of the detector response have been performed. After the background subtraction and correction with dead time and pile-up, the capture yield from 0.03 eV up to 1.5 keV was derived. The analysis of the capture yield in terms of R-matrix resonance parameters is discussed. We have identified 123 resonances and measured the resonance parameters in the energy range from 0.03 eV to 1.5 keV. The mean radiative width <{gamma}{sub {gamma}}> is found to be (38.2 {+-} 1.5) meV and the mean spacing parameter is (11.0 {+-} 0.2) eV, both values agree well with recommended values.

  10. Preliminary study of the α ratio measurement, ratio of the neutron capture cross section to the fission one for 233U, on the PEREN platform. Development and study of the experimental setup

    International Nuclear Information System (INIS)

    Cognet, M.A.

    2007-12-01

    Producing nuclear energy in order to reduce anthropic CO 2 emission and to meet high energy demand, implies three conditions to the nuclear plants of the IV. generation: safety improvements, radioactive waste minimization, and fuel breeding for a sustainable use of the resources. The Thorium fuel cycle used in Molten Salt Reactors seems promising. Many numerical studies based on probabilistic codes are carried out in order to analyse the behaviour of such reactors. Nevertheless, one of the most important parameters is badly known: the alpha ratio of 233 U, ratio of the neutron capture cross section to fission one for 233 U. This key-parameter is necessary to calculate the breeding ratio and thus, the deployment capacities of those reactors. This Ph-D thesis was intended to prepare a precise measurement of the alpha ratio of 233 U between 1 eV and 10 keV. Preliminary measurements have been performed on the experimental platform PEREN. This experimental environment is composed of a lead slowing-down time spectrometer associated with an intense pulsed neutron generator. Capture and fission rates are measured thanks to eight scintillators with their photomultipliers, surrounding a fission chamber. A software analysis sets the coincidence rate between the scintillators. In order to understand perfectly the experimental setup, preliminary tests using a 235 U fission chamber have been done. This experiment resulted in a very low signal to background ratio (1 %). The background coming from the scintillators themselves seriously handicapped the measurement. Another series of experiment has been done with scintillators 5 times thinner. Nevertheless, the signal to background ratio should still be increased to measure the capture of 235 U. To make sure that the experimental setup has totally been understood, we made many comparisons between experimental results and simulations. Two simulation codes were mainly used: MCNP and GEANT4. We paid special attention to quantify the

  11. L2 Milestone: Neutron Capture Cross Sections from Surrogate (p, d) Measurements: Determination of the Unknown 87Y(n, g) Cross Section and Assessment of the Method Via the 90Zr(n, g) Benchmark Case: Theory Report

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-06

    Cross sections for compound-nuclear reactions involving unstable targets are important for many applications, but can often not be measured directly. Here we describe a method for extracting cross sections for neutron-capture on unstable isotopes from indirect (surrogate) measurements. The surrogate reaction, which produces the compound nucleus of interest, has to be described and the decay of the nucleus has to be modeled. We outline the approach for one-neutron pickup and report on the determination of the 90Zr(n, γ ) reaction from surrogate 92Zr(p,d) data, which is compared to the directly-measured capture cross section and thus provides a benchmark for the method. We then apply the method to determine the 87Y(n, γ ) cross section, which has not been measured directly. The work was carried out in the context of an LLNL L2 Milestone. This report addresses the theory aspects of the milestone. A complementary document summarizes the experimental efforts [1].

  12. Measurements and analysis of the {sup 127}I and {sup 129}I neutron capture and total cross sections; Mesure et analyses des sections efficaces neutroniques totales et de capture radiative des iodes 127 et 129 de 0.5 eV a 100keV

    Energy Technology Data Exchange (ETDEWEB)

    Noguere, G

    2005-07-01

    Most of the experimental work on the interaction of neutrons with matter has focused on materials important to reactor physics and reactor structures. By comparison, the corresponding data for minor actinides or long-lived fission products are poor. A significant demand has developed for improved neutron cross-section data of these little-studied nuclides due to the surge of interest in the transmutation of nuclear waste. With 400 kg of {sup 129}I produced yearly in the reactors of the EU countries and a very long {beta}{sup -} half-life of 1.57 x 10{sup 7} years, iodine requires disposal strategies that will isolate this isotope from the environment for long periods of time. Therefore, {sup 129}I is potentially a key long-lived fission product for transmutation applications, since {sup 129}I transmutes in {sup 130}I after a single neutron capture and decays to {sup 130}Xe with a 12.36 h half-life. Accurate capture cross sections would help to reduce uncertainties in waste management concepts. For that purpose, Time-Of-Flight measurements covering the [0.5 eV-100 keV] energy range have been carried out at the 150 MeV pulsed neutron source GELINA of the Institute for Reference Materials and Measurements (IRMM). Two types of experiments have been performed at the IRMM, namely capture and transmission experiments. They are respectively related to the neutron capture and total cross sections. Since the PbI{sub 2} samples used in this work contain natural and radioactive iodine, extensive measurements of {sup 129}I have been carried out under the same experimental conditions as for the {sup 129}I. The data reduction process was performed with the AGS system, and the resonance parameters were extracted with the SAMMY and REFIT shape analysis codes. In a last step, the parameters have been converted into ENDF-6 format and processed with the NJOY code to produce point-wise and multigroup cross sections, as well as MCNP and ERANOS libraries. (author)

  13. Measurement of 241Am Ground State Radiative Neutron Capture Cross Section with Cold Neutron Beam. Progress Report on Research Contract HUN14318 for the CRP on Minor Actinide Neutron Reaction Data (MANREAD)

    International Nuclear Information System (INIS)

    Belgya, T.; Szentmiklosi, L.; Kis, Z.; Nagy, N.M.; Konya, J.

    2012-01-01

    The ground state cross section of 242 Am has been measured with beams of cold neutrons at the Budapest Research Reactor using the X-ray emission of the decay product of 242 Pu. This methodology avoids the uncertainty caused by resonance neutrons in the pile activations. The target was characterized with gamma and X-ray spectrometry. The obtained ground state cross section is 540 ± 32 b, which is at the low end of the most recent literature values, but agrees with most of them within their uncertainty. (author)

  14. Measurement of the neutron-capture cross section of 76Ge and 74Ge below 15 MeV and its relevance to 0 νββ decay searches of 76Ge

    Science.gov (United States)

    Bhike, Megha; Fallin, B.; Krishichayan; Tornow, W.

    2015-02-01

    The neutron radiative-capture cross section of 76Ge was measured between 0.4 and 14.8 MeV using the activation technique. Germanium samples with the isotopic abundance of ∼ 86%76Ge and ∼ 14%74Ge used in the 0 νββ searches by the GERDA and Majorana Collaborations were irradiated with monoenergetic neutrons produced at eleven energies via the 3H (p , n)3He, 2H (d , n)3He and 3H (d , n)4He reactions. Previously, data existed only at thermal energies and at 14 MeV. As a by-product, capture cross-section data were also obtained for 74Ge at neutron energies below 8 MeV. Indium and gold foils were irradiated simultaneously for neutron fluence determination. High-resolution γ-ray spectroscopy was used to determine the γ-ray activity of the daughter nuclei of interest. For the 76Ge total capture cross section the present data are in good agreement with the TENDL-2013 model calculations and the ENDF/B-VII.1 evaluations, while for the 74Ge (n , γ)75Ge reaction, the present data are about a factor of two larger than predicted. It was found that the 74Ge (n , γ)75Ge yield in the High-Purity Germanium (HPGe) detectors used by the GERDA and Majorana Collaborations is only about a factor of two smaller than the 76Ge (n , γ)77Ge yield due to the larger cross section of the former reaction.

  15. Thermal Neutron Capture and Thermal Neutron Burn-up of K isomeric state of 177mLu: a way to the Neutron Super-Elastic Scattering cross section

    International Nuclear Information System (INIS)

    Roig, O.; Belier, G.; Meot, V.; Daugas, J.-M.; Romain, P.; Aupiais, J.; Jutier, Ch.; Le Petit, G.; Letourneau, A.; Marie, F.; Veyssiere, Ch.

    2006-01-01

    Thermal neutron radiative capture and burn-up measurements of the K isomeric state in 177Lu form part of an original method to indirectly obtain the neutron super-elastic scattering cross section at thermal energy. Neutron super-elastic scattering, also called neutron inelastic acceleration, occurs during the neutron collisions with an excited nuclear level. In this reaction, the nucleus could partly transfer its excitation energy to the scattered neutron

  16. Photoneutron cross sections measurements in {sup 9}Be, {sup 13}C e {sup 17}O with thermal neutron capture gamma-rays; Medidas das secoes de choque de fotoneutrons do {sup 9}Be, {sup 13}C e {sup 17}O com radiacao gama de captura de neutrons termicos

    Energy Technology Data Exchange (ETDEWEB)

    Semmler, Renato

    2006-07-01

    Photoneutron cross sections measurements of {sup 9}Be, {sup 13}C and {sup 17}O have been obtained in the energy interval between 1,6 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 a 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (5 MW) research reactor. The samples have been irradiated inside a 4{pi} geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm{sup 3}, 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A inversion matrix methodology to solve inversion problems for unfolding the set of experimental compound cross sections, was used in order to obtain the cross sections at specific excitation energy values (principal gamma line energies of the capture targets). The cross sections obtained at the energy values of the principal gamma lines were compared with experimental data reported by other authors, with have employed different gamma-ray sources. A good agreement was observed among the experimental data in this work with reported in the literature. (author)

  17. Neutron capture cross section measurement of 238U at the n TOF CERN facility with C6D6 scintillation detectors in the energy region from 1 eV to 700 keV

    CERN Document Server

    Mingrone, F.

    2017-01-01

    The aim of this work is to provide a precise and accurate measurement of the 238U(n,g) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behaviour of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the uncertainty in the radiative capture cross-section of 238U should be further reduced to 1-3% in the energy region from 20 eV to 25 keV. To this purpose, addressed by the Nuclear Energy Agency as a priority nuclear data need, complementary experiments, one at the GELINA and two at the n_TOF facility, were proposed and carrie...

  18. Neutron capture cross section measurement of $^{238}$U at the n_TOF CERN facility in the energy region from 1 eV to 700 keV

    CERN Document Server

    Mingrone, F; Vannini, G; Colonna, N; Gunsing, F; Zugec, P; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Becares, V; Becvavr, F; Belloni, F; Berthoumieux, E; Billowes, J; Bosnar, D; Brugger, M; Calviani, M; Calvino, F; Cano-Ott, D; Carrapico, C; Cerutti, F; Chiaveri, E; Chin, M; Cortes, G; Cortes-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; Garcia, A R; Giubrone, G; Goncalves, I F; Gonzalez-Romero, E; Griesmayer, E; Guerrero, C; Hernandez-Prieto, A; Jenkins, D G; Jericha, E; Kadi, Y; Kappeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Krticka, M; Kroll, J; Lampoudis, C; Langer, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L S; Lo Meo, S; Losito, R; Mallick, A; Manousos, A; Marganiec, J; Martinez, T; Mastinu, P F; Mastromarco, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mirea Horia, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Robles, M S; Rubbia, C; Sabate-Gilarte, M; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; LTain, J; Tarrio, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Variale, V; Vaz, P; Ventura, A; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T

    2016-01-01

    The aim of this work is to provide a precise and accurate measurement of the $^{238}$U(n,$\\gamma$) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behaviour of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the uncertainty in the radiative capture cross-section of $^{238}$U should be further reduced to 1-3% in the energy region from 20 eV to 25 keV. To this purpose, addressed by the Nuclear Energy Agency as a priority nuclear data need, complementary experiments, one at the GELINA and two at the n_TOF facility, were pr...

  19. Chromatographic purification of neutron capture molybdenum-99 from cross-contaminant radionuclides

    International Nuclear Information System (INIS)

    Mostafa, M.A.M.

    2011-01-01

    Technetium-99m is called the work horse, for many reasons, in nuclear medicine diagnostic purposes. It is produced as the β - decay of 99 Mo radionuclide. Molybdenum-99 gel type generators are considered as a suitable alternative of the conventional chromatographic alumina columns loaded with fission molybdenum-99. 99 Mo neutron-capture is cross-contaminated with radionuclides originated from activation of chemical impurities in the Mo target such 60 C0, 65 Zn, 95 Zr, 175 Hf, 181 Hf, 86 Rb, 134 Cs, 141 Ce, 152 Eu, 140 La, 51 Cr, 124 Sb, 46 Sc, 54 Mn, 59 Fe and / or fast neutrons interactions with the stable isotopes of molybdenum such as 92m Nb, 95 Nb and 95 Zr. To prevent contamination of the eluted 99m Tc, successive purification methods were made. After complete dissolution of the irradiated target wrapped with thin Al foil in 5 M NaOH solution, hydrogen peroxide was added to start precipitation of Fe(OH) 3 . The formed Fe (III) minerals allow complete elimination of some radio contaminants from the molybdate solute such as 152 Eu, 140 La, 141 Ce, 45 Mn and 92m Nb in addition to partial elimination of 46 Sc, 60 Co and 59 Fe radionuclides. The remaining supernatant was acidified by concentrated nitric acid to ph 9.5 for precipitation of Al(OH) 3 with complete elimination of radio contaminants such as 95 Zr 175 Hf, 181 Hf, 65 Zn, 124 Sb, 51 Cr, 46 Sc, 60 Co and 59 Fe. 134 Cs and 86 Rb radionuclides were not affected by precipitation of Fe(OH) 3 or Al(OH) 3 . Chromatographic column of potassium nickel hexacyanoferrate (II) (KNHCF) has high affinity towards elimination of 134 Cs and 86 Rb radionuclides. Highly pure molybdate- 99 Mo solution was processed for preparation of zirconium molybdate gel generator with 99m Tc eluate of high radionuclidic, radiochemical and chemical purity suitable for use in medical purposes.

  20. Neutron Capture Reactions on Fe and Ni Isotopes for the Astrophysical s-process

    Energy Technology Data Exchange (ETDEWEB)

    Lederer, C., E-mail: claudia.lederer@ed.ac.uk [University of Vienna, Faculty of Physics, 1090 Vienna (Austria); Johann-Wolfgang-Goethe Universität, 60438 Frankfurt (Germany); Giubrone, G. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia, 46071 Valencia (Spain); Massimi, C. [Dipartimento di Fisica, Università di Bologna, and Sezione INFN di Bologna, 40100 Bologna (Italy); Žugec, P. [Department of Physics, Faculty of Science, University of Zagreb, 10002 Zagreb (Croatia); Barbagallo, M.; Colonna, N. [Istituto Nazionale di Fisica Nucleare, 70125 Bari (Italy); Domingo-Pardo, C. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia, 46071 Valencia (Spain); Guerrero, C. [European Organization for Nuclear Research (CERN), CH-1211 Geneva (Switzerland); Gunsing, F. [Commissariat à l' Énergie Atomique (CEA) Saclay – Irfu, 91191 Gif-sur-Yvette (France); Käppeler, F. [Karlsruhe Institute of Technology, Campus Nord, Institut für Kernphysik, 76021 Karlsruhe (Germany); Tain, J.L. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia, 46071 Valencia (Spain); Altstadt, S. [Johann-Wolfgang-Goethe Universität, 60438 Frankfurt (Germany); Andrzejewski, J. [Uniwersytet Łódzki, 90131 Lodz (Poland); Audouin, L. [Centre National de la Recherche Scientifique/IN2P3 – IPN, 91406 Orsay (France); Bécares, V. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid (Spain); Bečvář, F. [Faculty of Mathematics and Physics, Charles University, CZ-180 00 Prague (Czech Republic); and others

    2014-06-15

    Neutron capture cross sections in the keV neutron energy region are the key nuclear physics input to study the astrophysical slow neutron capture process. In the past years, a series of neutron capture cross section measurements has been performed at the neutron time-of-flight facility n{sub T}OF at CERN focussing on the Fe/Ni mass region. Recent results and future developments in the neutron time-of-flight technique are discussed.

  1. A Simple Correlation for Neutron Capture Rates from Nuclear Masses

    Energy Technology Data Exchange (ETDEWEB)

    Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-30

    Recent studies of neutron capture performed at LANL have revealed a previously unrecognized connection between nuclear masses and the average neutron capture cross section. A team of three scientists from Los Alamos (P-27), Yale Univ., and Istanbul Univ. (Turkey) recently discovered this connection and have published their results as a Rapid Communication in Physical Review C. Neutron capture is a reaction in which a free neutron is absorbed by the nucleus, keeping the element unchanged, but changing isotopes. This reaction is typically exothermic. As a result, the reaction can proceed even when many other reaction channels are closed. In an astrophysical environment, this means that neutron capture is the primary mechanism by which all of the elements with atomic number greater than nickel are produced is neutron capture.

  2. Thermal neutron capture cross sections of tellurium isotopes

    Czech Academy of Sciences Publication Activity Database

    Tomandl, Ivo; Honzátko, Jaroslav; Egidy, T. von; Wirth, HF.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Z.; Molnar, GL.; Firestone, RB.; Bondarenko, V.

    2003-01-01

    Roč. 68, č. 6 (2003), 067602 ISSN 0556-2813 R&D Projects: GA ČR GA202/03/0891; GA ČR GA202/99/D087 Institutional research plan: CEZ:AV0Z1048901 Keywords : nuclear -structure * resonance integrals * gamma Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.708, year: 2003

  3. Capture cross sections on unstable nuclei

    Science.gov (United States)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.

    2017-09-01

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  4. Capture cross sections on unstable nuclei

    Directory of Open Access Journals (Sweden)

    Tonchev A.P.

    2017-01-01

    Full Text Available Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  5. Neutron capture measurements on 62Ni, 63Ni and 197Au and their relevance for stellar nucleosynthesis

    CERN Document Server

    Lederer, Claudia

    Neutron capture reactions in stars are responsible for forming about 99% of the elemental abundances heavier than Fe. Two processes contribute about equally to the overall abundance pattern: the slow neutron capture process (s process) where neutron densities are small and therefore radioactive decay is generally faster than subsequent neutron capture on radionuclides, and the rapid neutron capture process (r process) which takes place in environments of high neutron densities, driving the reaction path towards the neutron rich side. The key nuclear physics input for s process studies are stellar neutron capture cross sections, called MACS (Maxwellian-averaged cross section). In the course of this work, dierent reactions relevant to s process nucleosynthesis have been studied. To improve and check existing information, neutron capture cross sections of most stable Fe and Ni isotopes were measured via the time-of-flight technique at the n TOF facility at CERN. This campaign was triggered by a work of Sneden et...

  6. Possibility of a crossed-beam experiment involving slow-neutron capture by unstable nuclei - ``rapid-process tron''

    Science.gov (United States)

    Yamazaki, T.; Katayama, I.; Uwamino, Y.

    1993-02-01

    The possibility of a crossed beam facility of slow neutrons capturing unstable nuclei is examined in connection with the Japanese Hadron Project. With a pulsed proton beam of 50 Hz repetition and with a 100 μA average beam current, one obtains a spallation neutron source of 2.4 × 10 8 thermal neutrons/cm 3/spill over a 60 cm length with a 3 ms average duration time by using a D 2O moderator. By confining radioactive nuclei of 10 9 ions in a beam circulation ring of 0.3 MHz revolution frequency, so that nuclei pass through the neutron source, one obtains a collision luminosity of 3.9 × 10 24/cm 2/s. A new research domain aimed at studying rapid processes in nuclear genetics in a laboratory will be created.

  7. Preliminary study of the {alpha} ratio measurement, ratio of the neutron capture cross section to the fission one for {sup 233}U, on the PEREN platform. Development and study of the experimental setup; Etude preliminaire de la mesure du rapport {alpha}, rapport de la section efficace moyenne de capture sur celle de fission de l'{sup 233}U, sur la plateforme PEREN. Developpement et etude du dispositif experimental

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, M A

    2007-12-15

    Producing nuclear energy in order to reduce anthropic CO{sub 2} emission and to meet high energy demand, implies three conditions to the nuclear plants of the IV. generation: safety improvements, radioactive waste minimization, and fuel breeding for a sustainable use of the resources. The Thorium fuel cycle used in Molten Salt Reactors seems promising. Many numerical studies based on probabilistic codes are carried out in order to analyse the behaviour of such reactors. Nevertheless, one of the most important parameters is badly known: the alpha ratio of {sup 233}U, ratio of the neutron capture cross section to fission one for {sup 233}U. This key-parameter is necessary to calculate the breeding ratio and thus, the deployment capacities of those reactors. This Ph-D thesis was intended to prepare a precise measurement of the alpha ratio of {sup 233}U between 1 eV and 10 keV. Preliminary measurements have been performed on the experimental platform PEREN. This experimental environment is composed of a lead slowing-down time spectrometer associated with an intense pulsed neutron generator. Capture and fission rates are measured thanks to eight scintillators with their photomultipliers, surrounding a fission chamber. A software analysis sets the coincidence rate between the scintillators. In order to understand perfectly the experimental setup, preliminary tests using a {sup 235}U fission chamber have been done. This experiment resulted in a very low signal to background ratio (1 %). The background coming from the scintillators themselves seriously handicapped the measurement. Another series of experiment has been done with scintillators 5 times thinner. Nevertheless, the signal to background ratio should still be increased to measure the capture of {sup 235}U. To make sure that the experimental setup has totally been understood, we made many comparisons between experimental results and simulations. Two simulation codes were mainly used: MCNP and GEANT4. We paid

  8. Preliminary study of the {alpha} ratio measurement, ratio of the neutron capture cross section to the fission one for {sup 233}U, on the PEREN platform. Development and study of the experimental setup; Etude preliminaire de la mesure du rapport {alpha}, rapport de la section efficace moyenne de capture sur celle de fission de l'{sup 233}U, sur la plateforme PEREN. Developpement et etude du dispositif experimental

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, M.A

    2007-12-15

    Producing nuclear energy in order to reduce anthropic CO{sub 2} emission and to meet high energy demand, implies three conditions to the nuclear plants of the IV. generation: safety improvements, radioactive waste minimization, and fuel breeding for a sustainable use of the resources. The Thorium fuel cycle used in Molten Salt Reactors seems promising. Many numerical studies based on probabilistic codes are carried out in order to analyse the behaviour of such reactors. Nevertheless, one of the most important parameters is badly known: the alpha ratio of {sup 233}U, ratio of the neutron capture cross section to fission one for {sup 233}U. This key-parameter is necessary to calculate the breeding ratio and thus, the deployment capacities of those reactors. This Ph-D thesis was intended to prepare a precise measurement of the alpha ratio of {sup 233}U between 1 eV and 10 keV. Preliminary measurements have been performed on the experimental platform PEREN. This experimental environment is composed of a lead slowing-down time spectrometer associated with an intense pulsed neutron generator. Capture and fission rates are measured thanks to eight scintillators with their photomultipliers, surrounding a fission chamber. A software analysis sets the coincidence rate between the scintillators. In order to understand perfectly the experimental setup, preliminary tests using a {sup 235}U fission chamber have been done. This experiment resulted in a very low signal to background ratio (1 %). The background coming from the scintillators themselves seriously handicapped the measurement. Another series of experiment has been done with scintillators 5 times thinner. Nevertheless, the signal to background ratio should still be increased to measure the capture of {sup 235}U. To make sure that the experimental setup has totally been understood, we made many comparisons between experimental results and simulations. Two simulation codes were mainly used: MCNP and GEANT4. We paid

  9. Present status of the radiative neutron capture mechanisms -nonstatistical effects

    International Nuclear Information System (INIS)

    Brzosko, J.S.

    1976-01-01

    The present status of our knowledge about neutron radiative capture mechanisms is described. In the first section there are given a review on mathematical description of the neutron capture cross section and possible sources of correlation effects. The point of lecture is the explanation of connections between the intermediate structures and correlation effects. In one of the sections the explanation of the bump in γ-ray spectra is discussed. The typical experimental results are presented. (author)

  10. Neutron capture reactions on Lu isotopes at DANCE

    CERN Document Server

    Roig, O

    2010-01-01

    The DANCE (Detector for Advanced Neutron Capture Experiments) array located at the Los Alamos national laboratory has been used to obtain the neutron capture cross sections for 175Lu and 176Lu with neutron energies from thermal up to 100 keV. Both isotopes are of current interest for the nucleosynthesis s-process in astrophysics and for applications as in reactor physics or in nuclear medicine. Three targets were used to perform these measurements. One was natLu foil and the other two were isotope-enriched targets of 175Lu and 176Lu. The cross sections are obtained for now through a precise neutron flux determination and a normalization at the thermal neutron cross section value. A comparison with the recent experimental data and the evaluated data of ENDF/B-VII.0 will be presented. In addition, resonances parameters and spin assignments for some resonances will be featured.

  11. Measurements of the neutron capture cross sections and incineration potentials of minor-actinides in high thermal neutron fluxes: Impact on the transmutation of nuclear wastes; Mesures des sections efficaces de capture et potentiels d'incineration des actinides mineurs dans les hauts flux de neutrons: Impact sur la transmutation des dechets

    Energy Technology Data Exchange (ETDEWEB)

    Bringer, O

    2007-10-15

    This thesis comes within the framework of minor-actinide nuclear transmutation studies. First of all, we have evaluated the impact of minor actinide nuclear data uncertainties within the cases of {sup 241}Am and {sup 237}Np incineration in three different reactor spectra: EFR (fast), GT-MHR (epithermal) and HI-HWR (thermal). The nuclear parameters which give the highest uncertainties were thus highlighted. As a result of fact, we have tried to reduce data uncertainties, in the thermal energy region, for one part of them through experimental campaigns in the moderated high intensity neutron fluxes of ILL reactor (Grenoble). These measurements were focused onto the incineration and transmutation of the americium-241, the curium-244 and the californium-249 isotopes. Finally, the values of 12 different cross sections and the {sup 241}Am isomeric branching ratio were precisely measured at thermal energy point. (author)

  12. Neutron capture studies of {sup 206}Pb at a cold neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Schillebeeckx, P.; Kopecky, S.; Quetel, C.R.; Tresl, I.; Wynants, R. [Institute for Reference Materials and Measurements, European Commission, Joint Research Centre, Geel (Belgium); Belgya, T.; Szentmiklosi, L. [Institute for Energy Security and Environmental Safety, Centre for Energy Research, Budapest (Hungary); Borella, A. [Institute for Reference Materials and Measurements, European Commission, Joint Research Centre, Geel (Belgium); SCK CEN, Mol (Belgium); Mengoni, A. [Nuclear Data Section, International Atomic Energy Agency (IAEA), Wagramerstrasse 5, PO Box 100, Vienna (Austria); Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Bologna (Italy)

    2013-11-15

    Gamma-ray transitions following neutron capture in {sup 206}Pb have been studied at the cold neutron beam facility of the Budapest Neutron Centre using a metallic sample enriched in {sup 206}Pb and a natural lead nitrate powder pellet. The measurements were performed using a coaxial HPGe detector with Compton suppression. The observed {gamma} -rays have been incorporated into a decay scheme for neutron capture in {sup 206}Pb. Partial capture cross sections for {sup 206}Pb(n, {gamma}) at thermal energy have been derived relative to the cross section for the 1884 keV transition after neutron capture in {sup 14}N. From the average crossing sum a total thermal neutron capture cross section of 29{sup +2}{sub -1} mb was derived for the {sup 206}Pb(n, {gamma}) reaction. The thermal neutron capture cross section for {sup 206}Pb has been compared with contributions due to both direct capture and distant unbound s-wave resonances. From the same measurements a thermal neutron-induced capture cross section of (649 {+-} 14) mb was determined for the {sup 207}Pb(n, {gamma}) reaction. (orig.)

  13. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    International Nuclear Information System (INIS)

    Sleaford, B. W.; Summers, N.; Escher, J.; Firestone, R. B.; Basunia, S.; Hurst, A.; Krticka, M.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H. D.

    2011-01-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  14. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    International Nuclear Information System (INIS)

    Sleaford, B.W.; Firestone, R.B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H.D.

    2010-01-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. this can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. They are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  15. Gadolinium neutron capture therapy

    International Nuclear Information System (INIS)

    Akine, Yasuyuki; Tokita, Nobuhiko; Tokuuye, Koichi; Satoh, Michinao; Churei, Hisahiko

    1993-01-01

    Gadolinium neutron capture therapy makes use of photons and electrons produced by nuclear reactions between gadolinium and lower-energy neutrons which occur within the tumor. The results of our studies have shown that its radiation effect is mostly of low LET and that the electrons are the significant component in the over-all dose. The dose from gadolinium neutron capture reactions does not seem to increase in proportion to the gadolinium concentration, and the Gd-157 concentration of about 100 μg/ml appears most optimal for therapy. Close contact between gadolinium and the cell is not necessarily required for cell inactivation, however, the effect of electrons released from intracellular gadolinium may be significant. Experimental studies on tumor-bearing mice and rabbits have shown that this is a very promising modality though further improvements in gadolinium delivery to tumors are needed. (author)

  16. Induction of chromosomal aberrations by neutron capture reactions

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1993-01-01

    Boron neutron capture reaction (B-NCR) has been practiced in the treatment of malignancies of the central nervous system and melanoma using a thermal neutron beam from the KUR. Because of the very large neutron absorption cross-section and high kinetic energy released, gadolinium (Gd-157) has been expected to be an another promising element for neutron capture therapy. The dose-response relationship was determined for the induction of chromosomal aberrations by neutron capture reactions by B-10 and Gd-157 in cultured mammalian cells. The cells were exposed to thermal neutron beam with and without B-10 enriched (97 atom %) boric acid or Gd-DTPA, and chromosome-type aberrations were analysed in the first metaphases following irradiation. The frequency of dicentrics and rings increased linearly with neutron fluence either in the presence or absence of B-10 boric acid, while the yield of chromosomal aberrations induced by Gd-NCR increased in a linear quadratic fashion as a function of dose as in γ-rayed cells. Survival curves for the cells exposed to thermal neutrons showed no shoulder irrespective of the loading of B-10, but Gd-NCR produced the survival curve with a small shoulder. The differential chromosomal response to B-NCR and Gd-NCR might reflect the difference in radiation quality generated from the two types of thermal neutron capture reaction. (J.P.N.)

  17. Fast neutron capture and the microscopic isovector optical potential

    International Nuclear Information System (INIS)

    Chakrabarty, D.R.; Gupta, S.K.

    Neutron capture cross-sections are calculated with the direct-semidirect model employing the complex microscopic optical potential recently calculated by Jeukenne, Lejoune and Mahaux. The data for 89 Y, Ce and 208 Pb for Esub(n)=6-16 MeV agree well with the calculation for a twofold increase in the magnitude of the isovector part of the microscopic potential. (auth.)

  18. Study of thermal neutron capture in 58 Ni

    International Nuclear Information System (INIS)

    Carbonari, A.W.; Pecequilo, B.R.S.

    1988-08-01

    The energies and intensities of the primary gamma-rays from 58 Ni (n, γ) 59 Ni reaction have been measured with a Ge(li) pair-spectrometer in the region of 3.7 to 9.3 MeV. The thermal neutron capture cross section of 58 Ni was determined to be 4.52 +- 0.10 by summing the primary transition intensities. The neutron separation energy was found to be 8999.93 +- 0.34 KeV. It is shown that the decay of the capture state is non-statistical and that there is a strong correlation between the strengths of excitation of levels by the (n, γ) and (d,p) reactions. These results are discussed in terms of a direct neutron capture reaction mechanism. (author) [pt

  19. Review of Livermore-Led Neutron Capture Studies Using DANCE

    International Nuclear Information System (INIS)

    Parker, W; Sheets, S; Agvaanluvsan, U; Becker, J; Becvar, F; Bredeweg, T; Clement, R; Couture, A; Esch, E; Haight, R; Jandel, M; Krticka, M; Mitchell, G; Macri, R; O'Donnell, J; Reifarth, R; Rundberg, R; Schwantes, J; Ullmann, J; Vieira, D; Wouters, J; Wilk, P

    2007-01-01

    We have made neutron capture cross-section measurements using the white neutron source at the Los Alamos Science Center, the DANCE detector array (Detector for Advanced Neutron Capture Experiments) and targets important for basic science and stockpile stewardship. In this paper, we review results from (n,γ) reactions on 94,95 Mo, 152,154,157,160,nat Gd, 151,153 Eu and 242m Am for neutron energies from 94,95 Mo, we focused on the spin and parity assignments of the resonances and the determination of the photon strength functions for the compound nuclei 95,96 Mo. Future plans include measurements on actinide targets; our immediate interest is in 242m Am

  20. Self-absorption of neutron capture gamma-rays in gold samples

    International Nuclear Information System (INIS)

    Wisshak, K.; Walter, G.; Kaeppeler, F.

    1983-06-01

    The self absorption of neutron capture gamma rays in gold samples has been determined experimentally for two standard setups used in measurements of neutron capture cross sections. One makes use of an artificially collimated neutron beam and two C 6 D 6 detectors, the other of kinematically collimated neutrons and three Moxon-Rae detectors. Correction factors for an actual measurement of a neutron capture cross section using a gold standard of 1 mm thickness up to 12% were found for the first setup while they are only 4% for the second setup. The present data allow to determine the correction in an actual measurement with an accuracy of 0.5-1%. (orig.) [de

  1. New aspects of the neutron capture in light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mengoni, A. [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    Several neutron capture cross sections of light nuclei (A {<=} 40) for neutron energies up to the MeV region have been recently calculated. Examples are (target nuclei): {sup 12}C, {sup 13}C, {sup 16}O and {sup 10}Be. The results of these calculations will be shown together with a comparison with the most recent experimental data. In the case of n + {sup 10}Be case, the cross section of the inverse process (Coulomb dissociation of {sup 11}Be) is considered and compared with the measurement. A discussion on the relevant nuclear structure information required for the evaluation of nuclear data of light nuclei is given. (author)

  2. Review of the neutron capture process in fission reactors

    International Nuclear Information System (INIS)

    Poenitz, W.P.

    1981-07-01

    The importance of the neutron capture process and the status of the more important cross section data are reviewed. The capture in fertile and fissile nuclei is considered. For thermal reactors the thermal to epithermal capture ratio for 238 U and 232 Th remains a problem though some improvements were made with more recent measurements. The capture cross section of 238 U in the fast energy range remains quite uncertain and a long standing discrepancy for the calculated versus experimental central reaction rate ratio C28/F49 persists. Capture in structural materials, fission product nuclei and the higher actinides is also considered

  3. Neutron capture therapy

    International Nuclear Information System (INIS)

    Jun, B. J.

    1998-11-01

    The overall state of the art related with neutron capture therapy(NCT) is surveyed. Since the field related with NCT is very wide, it is not intended to survey all related subjects in depth. The primary objective of this report is to help those working for the installation of a NCT facility and a PGNAA(prompt gamma ray neutron activation analysis) system for the boron analysis understand overall NCT at Hanaro. Therefore, while the parts of reactor neutron source and PGNAA are dealt in detail, other parts are limited to the level necessary to understand related fields. For example, the subject of chemical compound which requires intensive knowledge on chemistry, is not dealt as a separated item. However, the requirement of a compound for NCT, currently available compounds, their characteristics, etc. could be understood through this report. Although the subject of cancer treated by NCT is out of the capability of the author, it is dealt focussing its characteristics related with the success of NCT. Each detailed subject is expected to be dealt more detail by specialists in future. This report would be helpful for the researchers working for the NCT to understand related fields. (author). 128 refs., 3 tabs., 12 figs

  4. Synovectomy by Neutron capture

    International Nuclear Information System (INIS)

    Vega C, H.R.; Torres M, C.

    1998-01-01

    The Synovectomy by Neutron capture has as purpose the treatment of the rheumatoid arthritis, illness which at present does not have a definitive curing. This therapy requires a neutron source for irradiating the articulation affected. The energy spectra and the intensity of these neutrons are fundamental since these neutrons induce nuclear reactions of capture with Boron-10 inside the articulation and the freely energy of these reactions is transferred at the productive tissue of synovial liquid, annihilating it. In this work it is presented the neutron spectra results obtained with moderator packings of spherical geometry which contains in its center a Pu 239 Be source. The calculations were realized through Monte Carlo method. The moderators assayed were light water, heavy water base and the both combination of them. The spectra obtained, the average energy, the neutron total number by neutron emitted by source, the thermal neutron percentage and the dose equivalent allow us to suggest that the moderator packing more adequate is what has a light water thickness 0.5 cm (radius 2 cm) and 24.5 cm heavy water (radius 26.5 cm). (Author)

  5. Model-Independent Calculation of Radiative Neutron Capture on Lithium-7

    NARCIS (Netherlands)

    Rupak, Gautam; Higa, Renato

    2011-01-01

    The radiative neutron capture on lithium-7 is calculated model independently using a low-energy halo effective field theory. The cross section is expressed in terms of scattering parameters directly related to the S-matrix elements. It depends on the poorly known p-wave effective range parameter

  6. Direct neutron capture and related mechanisms

    International Nuclear Information System (INIS)

    Lynn, J.E.; Raman, S.

    1990-01-01

    We consider the evidence for the role of direct and related mechanisms in neutron capture at low and medium energies. Firstly, we compare the experimental data on the thermal neutron cross sections for El transitions in light nuclei with careful estimates of direct capture. Over the full range of light nuclei with small cross sections direct capture is found to be the predominant mechanism, in some cases being remarkable accurate, but in a few showing evidence for collective effects. When resonance effects become substantial there is evidence for an important contribution from the closely related valence mechanism, but full agreement with the data in such cases appears to require the introduction of a more generalised valence model. The possibility of direct and valence mechanisms playing a role in M1 capture is studied, and it is concluded that in light nuclei at relatively low gamma ray energies, it does indeed play some role. In heavier nuclei it appears that the evidence, especially from the correlations between E1 and M1 transitions to the same final states, favours the hypothesis that the main transition strength is governed by the M1 giant resonance. 31 refs., 2 tabs

  7. Iodine neutron capture therapy

    Science.gov (United States)

    Ahmed, Kazi Fariduddin

    A new technique, Iodine Neutron Capture Therapy (INCT) is proposed to treat hyperthyroidism in people. Present thyroid therapies, surgical removal and 131I treatment, result in hypothyroidism and, for 131I, involve protracted treatment times and excessive whole-body radiation doses. The new technique involves using a low energy neutron beam to convert a fraction of the natural iodine stored in the thyroid to radioactive 128I, which has a 24-minute half-life and decays by emitting 2.12-MeV beta particles. The beta particles are absorbed in and damage some thyroid tissue cells and consequently reduce the production and release of thyroid hormones to the blood stream. Treatment times and whole-body radiation doses are thus reduced substantially. This dissertation addresses the first of the several steps needed to obtain medical profession acceptance and regulatory approval to implement this therapy. As with other such programs, initial feasibility is established by performing experiments on suitable small mammals. Laboratory rats were used and their thyroids were exposed to the beta particles coming from small encapsulated amounts of 128I. Masses of 89.0 mg reagent-grade elemental iodine crystals have been activated in the ISU AGN-201 reactor to provide 0.033 mBq of 128I. This activity delivers 0.2 Gy to the thyroid gland of 300-g male rats having fresh thyroid tissue masses of ˜20 mg. Larger iodine masses are used to provide greater doses. The activated iodine is encapsulated to form a thin (0.16 cm 2/mg) patch that is then applied directly to the surgically exposed thyroid of an anesthetized rat. Direct neutron irradiation of a rat's thyroid was not possible due to its small size. Direct in-vivo exposure of the thyroid of the rat to the emitted radiation from 128I is allowed to continue for 2.5 hours (6 half-lives). Pre- and post-exposure blood samples are taken to quantify thyroid hormone levels. The serum T4 concentration is measured by radioimmunoassay at

  8. Neutron capture experiments with 4π DANCE Calorimeter

    Directory of Open Access Journals (Sweden)

    Krtička M.

    2012-02-01

    Full Text Available In recent years we have performed a series of neutron capture experiments with the DANCE detector array located at the Los Alamos Neutron Science Center. The radiative decay spectrum from the compound nucleus contains important information about nuclear structure and the reaction mechanism. The primary goals of the measurements are to obtain improved capture cross sections, to determine properties of the photon strength function, to improve neutron level densities and strength functions by determining the spin and parity of the capturing states. We shall present examples of our recent results.

  9. Experimental and Theoretical Understanding of Neutron Capture on Uranium Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-21

    Neutron capture cross sections on uranium isotopes are important quantities needed to model nuclear explosion performance, nuclear reactor design, nuclear test diagnostics, and nuclear forensics. It has been difficult to calculate capture accurately, and factors of 2 or more be- tween calculation and measurements are not uncommon, although normalization to measurements of the average capture width and nuclear level density can improve the result. The calculations of capture for 233,235,237,239U are further complicated by the need to accurately include the fission channel.

  10. Considerations for boron neutron capture therapy studies

    International Nuclear Information System (INIS)

    Faria Gaspar, P. de.

    1994-01-01

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps

  11. Stellar neutron capture rates and the s process

    Directory of Open Access Journals (Sweden)

    Käppeler F.

    2012-02-01

    Full Text Available Neutron reactions are responsible for the formation of the elements heavier than iron. The corresponding scenarios relate to helium burning in Red Giant stars (s process and to supernova explosions (r and p processes. The s process, which operates in or near the valley of β-stability, has produced about half of the elemental abundances between Fe and Bi. Accurate (n, γ cross sections are the essential input for s process studies, because they determine the abundances produced by that process. Following a brief summary of the neutron capture processes, the focus will be set on the s process in massive stars, where the role of reliable cross section information is particularly important. Eventually, the intriguing aspects of the origin of 60Fe will be addressed. Attempts to determine the stellar cross section of that isotope are pushing experimental possibilities to their limits and present a pertinent challenge for future facilities.

  12. Measurement of the neutron capture cross-sections of $^{53}$Mn at EAR-2

    CERN Multimedia

    Discussing the experiment proposal CERN-INTC-2014-012, INTC-P-408 the INTC asked in the minutes of the 46th meeting of the INTC (CERN-INTC-2014 - INTC-046) for some clarifications for a final decision. We will address in this letter of clarification the three main topics mentioned in the INTC minutes: (i) a more detailed scientific justification, (ii) the radioprotection issue using the off-line mass separator setup and (iii) the more precise time estimation of use the on-line ISOLDE setup in off-line mode.

  13. Non-destructive assay of 242Pu by resonance neutron capture

    International Nuclear Information System (INIS)

    Kane, W.R.; Lu, Ming-Shih; Aronson, A.; Forman, L.; Vanier, P.E.

    1995-01-01

    For the accurate assay of plutonium by neutron correlation measurements, especially for material derived from high-burnup reactor fuel, the content of 242 Pu in a sample must be determined. Since 242 Pu has a long half-life (387,000 yr) and decays to 238 U by alpha particle emission with the accompanying emission of only weak, low-energy gamma rays, gamma-ray spectrometry methods which are ordinarily employed to determine the isotopic composition of a plutonium sample are not feasible for 242 Pu. The existence of a resonance in the neutron capture cross section of 242 Pu at an energy of 2.67 electron volts (eV) with a large (72, 000 barn) cross section affords the possibility for the quantitative assay of this isotope by epithermal neutron capture. Essential for this purpose is an appropriately designed geometry of neutron moderators and absorbers which will provide maximum flux in the eV region while suppressing thermal neutron capture by the fissile plutonium isotopes. Signatures for neutron capture in 242 Pu include the decay of 243 Pu (4.9 hr), prompt capture gamma rays (total energy 5.034 MeV), and the decay of an isomeric state (330 nanosecond). Experiments to determine the feasibility of this approach are currently in progress

  14. Current status of fast-neutron-capture calculations

    International Nuclear Information System (INIS)

    Gardner, D.G.

    1982-01-01

    This work is primarily concerned with the calculation of neutron capture cross sections and capture gamma-ray spectra, in the framework of the Hauser-Feshbach statistical model and for neutrons from the resonance region up to several MeV. An argument is made that, for applied purposes such as constructing evaluated cross-section libraries, nonstatistical capture mechanisms may be completely neglected at low energies and adequately approximated at high energies in a simple way. The use of gamma-ray strength functions to obtain radiation widths is emphasized. Using the reaction 89 Y + n as an example, the problems encountered in trying to construct a case that could be run equivalently on two different nuclear reaction codes are illustrated, and the effects produced by certain parameter variations are discussed

  15. Neutron cross section measurements using the ORELA: the stable tellurium isotopes (n,γ), 238U(n,n'), 232Th(n,n'), 187Os(n,n'), 186187188Os(n,nn'γ), and 205Tl(n,nγ). Progress report, September 1, 1980-September 1, 1981

    International Nuclear Information System (INIS)

    Winters, R.R.

    1981-08-01

    Progress on the following subjects is reviewed: (1) high resolution neutron cross sections and the optical model potential, (2) renormalization of neutron capture cross sections, and (3) measurement of the argon 40 total cross section

  16. Commissioning of accelerator based boron neutron capture therapy system

    International Nuclear Information System (INIS)

    Nakamura, S.; Wakita, A.; Okamoto, H.; Igaki, H.; Itami, J.; Ito, M.; Abe, Y.; Imahori, Y.

    2017-01-01

    Boron neutron capture therapy (BNCT) is a treatment method using a nuclear reaction of 10 B(n, α) 7 Li. BNCT can be deposited the energy to a tumor since the 10 B which has a higher cross-section to a neutron is high is concentrated on the tumor. It is different from conventional radiation therapies that BNCT expects higher treatment effect to radiation resistant tumors since the generated alpha and lithium particles have higher radiological biological effectiveness. In general, BNCT has been performed in research nuclear reactor. Thus, BNCT is not widely applied in a clinical use. According to recent development of accelerator-based boron neutron capture therapy system, the system has an adequate flux of neutrons. Therefore, National Cancer Canter Hospital, Tokyo, Japan is planning to install accelerator based BNCT system. Protons with 2.5 MeV are irradiated to a lithium target system to generate neutrons. As a result, thermal load of the target is 50 kW since current of the protons is 20.0 mA. Additionally, when the accelerator-based BNCT system is installed in a hospital, the facility size is disadvantage in term of neutron measurements. Therefore, the commissioning of the BNCT system is being performed carefully. In this article, we report about the commissioning. (author)

  17. Radiative neutron capture: Hauser Feshbach vs. statistical resonances

    Energy Technology Data Exchange (ETDEWEB)

    Rochman, D., E-mail: dimitri-alexandre.rochman@psi.ch [Reactor Physics and Systems Behavior Laboratory, Paul Scherrer Institute, Villigen (Switzerland); Goriely, S. [Institut d' Astronomie et d' Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels (Belgium); Koning, A.J. [Nuclear Data Section, IAEA, Vienna (Austria); Uppsala University, Uppsala (Sweden); Ferroukhi, H. [Reactor Physics and Systems Behavior Laboratory, Paul Scherrer Institute, Villigen (Switzerland)

    2017-01-10

    The radiative neutron capture rates for isotopes of astrophysical interest are commonly calculated on the basis of the statistical Hauser Feshbach (HF) reaction model, leading to smooth and monotonically varying temperature-dependent Maxwellian-averaged cross sections (MACS). The HF approximation is known to be valid if the number of resonances in the compound system is relatively high. However, such a condition is hardly fulfilled for keV neutrons captured on light or exotic neutron-rich nuclei. For this reason, a different procedure is proposed here, based on the generation of statistical resonances. This novel technique, called the “High Fidelity Resonance” (HFR) method is shown to provide similar results as the HF approach for nuclei with a high level density but to deviate and be more realistic than HF predictions for light and neutron-rich nuclei or at relatively low sub-keV energies. The MACS derived with the HFR method are systematically compared with the traditional HF calculations for some 3300 neutron-rich nuclei and shown to give rise to significantly larger predictions with respect to the HF approach at energies of astrophysical relevance. For this reason, the HF approach should not be applied to light or neutron-rich nuclei. The Doppler broadening of the generated resonances is also studied and found to have a negligible impact on the calculated MACS.

  18. Analysis of MCNP simulated gamma spectra of CdTe detectors for boron neutron capture therapy.

    Science.gov (United States)

    Winkler, Alexander; Koivunoro, Hanna; Savolainen, Sauli

    2017-06-01

    The next step in the boron neutron capture therapy (BNCT) is the real time imaging of the boron concentration in healthy and tumor tissue. Monte Carlo simulations are employed to predict the detector response required to realize single-photon emission computed tomography in BNCT, but have failed to correctly resemble measured data for cadmium telluride detectors. In this study we have tested the gamma production cross-section data tables of commonly used libraries in the Monte Carlo code MCNP in comparison to measurements. The cross section data table TENDL-2008-ACE is reproducing measured data best, whilst the commonly used ENDL92 and other studied libraries do not include correct tables for the gamma production from the cadmium neutron capture reaction that is occurring inside the detector. Furthermore, we have discussed the size of the annihilation peaks of spectra obtained by cadmium telluride and germanium detectors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The nTOF Total Absorption Calorimeter for neutron capture measurements at CERN

    International Nuclear Information System (INIS)

    Guerrero, C.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Cennini, P.; Chepel, V.

    2009-01-01

    The n T OF Collaboration has built and commissioned a high-performance detector for (n,γ) measurements called the Total Absorption Calorimeter (TAC). The TAC was especially designed for measuring neutron capture cross-sections of low-mass and/or radioactive samples with the accuracy required for nuclear technology and stellar nucleosynthesis. We present a detailed description of the TAC and discuss its overall performance in terms of energy and time resolution, background discrimination, detection efficiency and neutron sensitivity.

  20. Time derived sigma for pulsed neutron capture logging

    International Nuclear Information System (INIS)

    Randall, R.R.; Fertl, W.F.; Hopkinson, E.C.

    1981-01-01

    The purpose of this study is to review field applications of the Atlas Neutron Lifetime Log service and to examine recent technical advances in the instrumentation and data analysis system. The major improvement to be discussed is a new method for computing /SIGMA/, the thermal neutron capture cross section of an earth formation. In the new method, the time after the neutron burst is measured for each gamma ray pulse detected by the instrumentation system within a gate of fixed width. This ''average pulse time'' is uniquely related to the thermal neutron decay rate observed in a borehole environment. The technique discussed is applicable for any condition where the neutron or gamma ray flux is time dependent. The advantages of this signal processing method, however, are most apparent for cases of rapid flux change with time, as in an exponential decay. 7 refs

  1. Neutron capture therapy. Principles and applications

    International Nuclear Information System (INIS)

    Sauerwein, Wolfgang A.G.; Moss, Raymond; Wittig, Andrea; Nakagawa, Yoshinobu

    2012-01-01

    State of the art report on neutron capture therapy. Summarizes the progress made in recent decades. Multidisciplinary approach. Written by the most experienced specialists Neutron capture therapy (NCT) is based on the ability of the non-radioactive isotope boron-10 to capture thermal neutrons with very high probability and immediately to release heavy particles with a path length of one cell diameter. This in principle allows for tumor cell-selective high-LET particle radiotherapy. NCT is exciting scientifically but challenging clinically, and a key factor in success is close collaboration among very different disciplines. This book provides a comprehensive summary of the progress made in NCT in recent years. Individual sections cover all important aspects, including neutron sources, boron chemistry, drugs for NCT, dosimetry, and radiation biology. The use of NCT in a variety of malignancies and also some non-malignant diseases is extensively discussed. NCT is clearly shown to be a promising modality at the threshold of wider clinical application. All of the chapters are written by experienced specialists in language that will be readily understood by all participating disciplines.

  2. Neutron cross section measurements for the Fast Breeder Program

    International Nuclear Information System (INIS)

    Block, R.C.

    1979-06-01

    This research was concerned with the measurement of neutron cross sections of importance to the Fast Breeder Reactor. The capture and total cross sections of fission products ( 101 102 104 Ru, 143 145 Nd, 149 Sm, 95 97 Mo, Cs, Pr, Pd, 107 Pd, 99 Tc) and tag gases (Kr, 78 80 Kr) were measured up to 100 keV. Filtered neutron beams were used to measure the capture cross section of 238 U (with an Fe filter) and the total cross section of Na (with a Na filter). A radioactive neutron capture detector was developed. A list of publications is included

  3. Neutron capture therapy for melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Coderre, J.A.; Glass, J.D.; Micca, P.; Fairchild, R.G.

    1988-01-01

    The development of boron-containing compounds which localize selectively in tumor may require a tumor-by-tumor type of approach that exploits any metabolic pathways unique to the particular type of tumor. Melanin-producing melanomas actively transport and metabolize aromatic amino acids for use as precursors in the synthesis of the pigment melanin. It has been shown that the boron-containing amino acid analog p-borono-phenylalanine (BPA) is selectively accumulated in melanoma tissue, producing boron concentrations in tumor that are within the range estimated to be necessary for successful boron neutron capture therapy (BNCT). We report here the results of therapy experiments carried out at the Brookhaven Medical Research Reactor (BMRR). 21 refs., 5 figs., 3 tabs.

  4. Workshop on neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Bond, V.P. (eds.)

    1986-01-01

    Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.

  5. Neutron capture therapy for melanoma

    International Nuclear Information System (INIS)

    Coderre, J.A.; Glass, J.D.; Micca, P.; Fairchild, R.G.

    1988-01-01

    The development of boron-containing compounds which localize selectively in tumor may require a tumor-by-tumor type of approach that exploits any metabolic pathways unique to the particular type of tumor. Melanin-producing melanomas actively transport and metabolize aromatic amino acids for use as precursors in the synthesis of the pigment melanin. It has been shown that the boron-containing amino acid analog p-borono-phenylalanine (BPA) is selectively accumulated in melanoma tissue, producing boron concentrations in tumor that are within the range estimated to be necessary for successful boron neutron capture therapy (BNCT). We report here the results of therapy experiments carried out at the Brookhaven Medical Research Reactor (BMRR). 21 refs., 5 figs., 3 tabs

  6. Workshop on neutron capture therapy

    International Nuclear Information System (INIS)

    Fairchild, R.G.; Bond, V.P.

    1986-01-01

    Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior

  7. Tangential channel for nuclear gamma-resonance spectroscopy in thermal neutron capture

    International Nuclear Information System (INIS)

    Belogurov, V.N.; Bondars, H.Ya.; Lapenas, A.A.; Reznikov, R.S.; Senkov, P.E.

    1979-01-01

    Design of a tangential reactor channel which has been made to replace the radial one in the pulsed research reactor IRT-2000 is described. It allows to use the same hole in biological reactor schielding. Characteristics of neutron and gamma-background spectra at the excit of the channel are given and compared with analogous characteristics of the radial one. The gamma background in the tangential channel is lower than in the radial channel. The gamma spectra in the Gd 155 (n, γ)Gd 156 , Gd 157 (n, γ)Gd 158 , Er 167 (n, γ)Er 168 and Hf 177 (n, γ)Hf 178 reactions show that the application of X-ray detection units BDR with the tangential channel allows to carry out the gamma spectrometry of gamma quanta emitted in the thermal neutron capture by both high and low neutron capture cross section nuclei (e.g., Gdsup(157, 155) and Er 167 , Hf 177 , respectively)

  8. Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments

    International Nuclear Information System (INIS)

    MJ Trbovich; DP Barry; RE Slovacck; Y Danon; RC Block; JA Burke; NJ Drindak; G Leinweber; RV Ballad

    2004-01-01

    The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping 176 Hf and 178 Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions. Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. 6 Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically-enriched liquid samples. The liquid samples were designed to provide information on the 176 Hf and 178 Hf contributions to the 8 eV doublet without saturation. Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY [1] and INTER [2] codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little

  9. Neutron Capture Measuremetns on Minor Actinides at the n_TOF Facility at CERN: Past, Present and Future

    CERN Document Server

    Cano-Ott, D; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Abbondanno, U; Vannini, G; Oshima, M; Gramegna, F; Wiescher, M; Pigni, M T; Wiendler, H; Mengoni, A; Quesada, J; Becvar, F; Rosetti, M; Cennini, P; Mosconi, M; Duran, I; Rauscher, T; Ketlerov, V; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Pavlopoulos, P; Karamanis, D; Krticka, M; Griesmayer, E; Jericha, E; Ferrari, A; Martinez, T; Oberhummer, H; Karadimos, D; Plompen, A; Mendoza, E; Terlizzi, R; Cortes, G; Cox, J; Voss, F; Pretel, C; Colonna, N; Berthoumieux, E; Dolfini, R; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Stephan, C; Tain, J L; Belloni, F; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Milazzo, P M; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Meaze, M H; O'Brien, S; Gunsing, F; Reifarth, R; Perrot, L; Lindote, A; Neves, F; Poch, A; Konovalov, V; Kerveno, M; Marques, L; Rubbia, C; Koehler, P; Dahlfors, M; Wisshak, K; Fujii, K; De Albornoz, A C; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Dillman, I; Assimakopoulos, P; Ferrant, L; Lozano, M; Patronis, N; Chiaveri, E; Guerrero, C; Kadi, Y; Vicente, M C; Praena, J; Baumann, P; Moreau, C; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Paradela, C; Audouin, L; Tassan-Got, L; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Isaev, S; Pancin, J; Papadopoulos, C; Tagliente, G; Alvarez, H; Haight, R; Goverdovski, A; Chepel, V; Plag, R; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Frais-Koelbl, H; Pavlik, A; Goncalves, I

    2011-01-01

    The successful development of advanced nuclear systems for sustainable energy production and nuclear waste management depends on high quality nuclear data libraries. Recent sensitivity studies and reports {[}1-3] have identified the need for substantially improving the accuracy of neutron cross-section data for minor actinides. The n\\_TOF collaboration has initiated an ambitious experimental program for the measurement of neutron capture cross sections of minor actinides. Two experimental setups have been constructed for this purpose: a Total Absorption Calorimeter (TAC) {[}4] for measuring neutron capture cross-sections of low-mass and/or radioactive samples and a set of two low neutron sensitivity C(6)D(6) detectors for the less radioactive materials.

  10. Monte Carlo analysis of the long-lived fission product neutron capture rates at the Transmutation by Adiabatic Resonance Crossing (TARC) experiment

    International Nuclear Information System (INIS)

    Abánades, A.; Álvarez-Velarde, F.; González-Romero, E.M.; Ismailov, K.; Lafuente, A.; Nishihara, K.; Saito, M.; Stanculescu, A.; Sugawara, T.

    2013-01-01

    Highlights: ► TARC experiment benchmark capture rates results. ► Utilization of updated databases, included ADSLib. ► Self-shielding effect in reactor design for transmutation. ► Effect of Lead nuclear data. - Abstract: The design of Accelerator Driven Systems (ADS) requires the development of simulation tools that are able to describe in a realistic way their nuclear performance and transmutation rate capability. In this publication, we present an evaluation of state of the art Monte Carlo design tools to assess their performance concerning transmutation of long-lived fission products. This work, performed under the umbrella of the International Atomic Energy Agency, analyses two important aspects for transmutation systems: moderation on Lead and neutron captures of 99 Tc, 127 I and 129 I. The analysis of the results shows how shielding effects due to the resonances at epithermal energies of these nuclides affects strongly their transmutation rate. The results suggest that some research effort should be undertaken to improve the quality of Iodine nuclear data at epithermal and fast neutron energy to obtain a reliable transmutation estimation.

  11. Monte Carlo analysis of the long-lived fission product neutron capture rates at the Transmutation by Adiabatic Resonance Crossing (TARC) experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [Grupo de Modelizacion de Sistemas Termoenergeticos, ETSII, Universidad Politecnica de Madrid, c/Ramiro de Maeztu, 7, 28040 Madrid (Spain); Alvarez-Velarde, F.; Gonzalez-Romero, E.M. [Centro de Investigaciones Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense, 40, Ed. 17, 28040 Madrid (Spain); Ismailov, K. [Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Lafuente, A. [Grupo de Modelizacion de Sistemas Termoenergeticos, ETSII, Universidad Politecnica de Madrid, c/Ramiro de Maeztu, 7, 28040 Madrid (Spain); Nishihara, K. [Transmutation Section, J-PARC Center, JAEA, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Saito, M. [Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Stanculescu, A. [International Atomic Energy Agency (IAEA), Vienna (Austria); Sugawara, T. [Transmutation Section, J-PARC Center, JAEA, Tokai-mura, Ibaraki-ken 319-1195 (Japan)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer TARC experiment benchmark capture rates results. Black-Right-Pointing-Pointer Utilization of updated databases, included ADSLib. Black-Right-Pointing-Pointer Self-shielding effect in reactor design for transmutation. Black-Right-Pointing-Pointer Effect of Lead nuclear data. - Abstract: The design of Accelerator Driven Systems (ADS) requires the development of simulation tools that are able to describe in a realistic way their nuclear performance and transmutation rate capability. In this publication, we present an evaluation of state of the art Monte Carlo design tools to assess their performance concerning transmutation of long-lived fission products. This work, performed under the umbrella of the International Atomic Energy Agency, analyses two important aspects for transmutation systems: moderation on Lead and neutron captures of {sup 99}Tc, {sup 127}I and {sup 129}I. The analysis of the results shows how shielding effects due to the resonances at epithermal energies of these nuclides affects strongly their transmutation rate. The results suggest that some research effort should be undertaken to improve the quality of Iodine nuclear data at epithermal and fast neutron energy to obtain a reliable transmutation estimation.

  12. Constraining the cross section of 82Se(n, γ)83Se to validate the β-Oslo method

    Science.gov (United States)

    Childers, K.; Liddick, S. N.; Crider, B. P.; Dombos, A. C.; Lewis, R.; Spyrou, A.; Couture, A.; Mosby, S.; Prokop, C. J.; Naqvi, F.; Larsen, A. C.; Guttormsen, M.; Campo, L. C.; Renstrom, T.; Siem, S.; Bleuel, D. L.; Perdikakis, G.; Quinn, S.

    2017-09-01

    Neutron capture cross sections of short-lived nuclei are important for a variety of basic and applied nuclear science problems. However, because of the short half-lives of the nuclei involved and the nonexistence of a neutron target, indirect measurement methods are required. One such method is the β-Oslo method. The nuclear level density and γ strength function of a nucleus are extracted after β-decay and used in a statistical reaction model to constrain the neutron capture cross section. This method has been used previously, but must be validated against a directly measured neutron capture cross section. The neutron capture cross section of 82Se has been measured previously, and 83Se can be accessed by the β-decay of 83As. The β-decay of 83As to 83Se was studied using the SuN detector at the NSCL and the β-Oslo method was utilized to constrain the neutron capture cross section of 82Se, which is compared to the directly measured value.

  13. Neutron capture in 122,123,124Te: A critical test for s-process studies

    International Nuclear Information System (INIS)

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Reffo, G.

    1991-11-01

    The neutron capture cross sections of 122,123,124,125,126 Te were measured in the energy range from 10 to 200 keV at the Karlsruhe Van de Graaff accelerator using gold as a standard. Neutrons were produced via the 7 Li(p,n) 7 Be reaction by bombarding metallic Li targets with a pulsed proton beam. Capture events were registered with the Karlsruhe 4π Barium Fluoride Detector. Several runs have been performed under different experimental conditions to study the systematic uncertainties in detail. The cross section ratios were determined with an overall uncertainty of ∝ 1%. This is an improvement by about a factor of five compared to the existing data. Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT=10 and 100 keV by normalizing the cross section shape up to 600 keV neutron energy reported in literature to the present data. These stellar cross sections were used in an s-process analysis. With the classical approach the abundances of the three s-only isotopes 122,123,124 Te could be reproduced within the experimental uncertainties of ∝ 1%. The accuracy of the present data allowed also to derive constraints for the existing stellar models with respect to the effective neutron density. Furthermore, the p-process abundances for the tellurium isotopes are discussed. (orig.) [de

  14. Neutron capture in borehole logging

    International Nuclear Information System (INIS)

    Randall, R.R.

    1981-01-01

    The use is described of a pulsed source of fast neutrons and a radiation detector to measure the thermal neutron population decay rate in a well logging instrument. The macroscopic neutron absorption cross-section is calculated by taking the natural logarithm of the ratio of the detected radiation counts occurring within two measurement intervals of fixed duration and starting at a fixed time after a neutron burst. (U.K.)

  15. Development of response transforms from comparative study of commercial pulsed neutron capture logging systems

    International Nuclear Information System (INIS)

    Salaita, G.N.; Youngblood, W.E.

    1991-01-01

    This paper reports that the absence of a common calibration facility to ascertain the accuracy of commercial pulsed neutron capture logging systems, coupled with the desire for more accurate saturation determination from time-lapse logs, prompted Saudi Aramco to carry out this comparative study. Three generations of Schlumberger's Thermal Decay Time (TDT) logging devices, viz., TDT-K, TDT-M, and TDT-P along with Atlas Wireline PDK-100 system were run in an Aramco well. The wellbore 8-1/2 inch with 7-inch casing-penetrated clean sand, shaly sand, and shale streaks sequence as exhibited by the open hole natural gamma ray log. initially, the wellbore fluid was diesel. The fluid was then changed to brines of 42-kppm and 176-kppm NACl, respectively. Three repeat passes at a logging speed of 900 ft/hr were obtained by each device for each of the three borehole liquids. In the case of PDK-100, a second set of log runs was obtained at 1800 ft/hr. The results of this extensive comparative study have increased the author's understanding of the borehole liquid and the diffusion effects on the response of pulsed neutron capture logging systems and also on the relative accuracy and precision of measured formation thermal neutron capture cross section by each system

  16. Nominal effective radiation doses delivered during clinical trials of boron neutron capture therapy

    International Nuclear Information System (INIS)

    Capala, J.; Diaz, A.Z.; Chanana, A.D.

    1997-01-01

    Boron neutron capture therapy (BNCT) is a binary system that, in theory, should selectively deliver lethal, high linear energy transfer (LET) radiation to tumor cells dispersed within normal tissues. It is based on the nuclear reaction 10-B(n, α)7-Li, which occurs when the stable nucleus of boron-10 captures a thermal neutron. Due to the relatively high cross-section of the 10-B nucleus for thermal neutron capture and short ranges of the products of this reaction, tumor cells in the volume exposed to thermal neutrons and containing sufficiently high concentration of 10-B would receive a much higher radiation dose than the normal cells contained within the exposed volume. Nevertheless, radiation dose deposited in normal tissue by gamma and fast neutron contamination of the neutron beam, as well as neutron capture in nitrogen, 14-N(n,p)14-C, hydrogen, 1-H(n,γ)2-H, and in boron present in blood and normal cells, limits the dose that can be delivered to tumor cells. It is, therefore, imperative for the success of the BNCT the dosed delivered to normal tissues be accurately determined in order to optimize the irradiation geometry and to limit the volume of normal tissue exposed to thermal neutrons. These are the major objectives of BNCT treatment planning

  17. Neutron cross section measurement using the Oak Ridge Electron Linear Accelerator

    International Nuclear Information System (INIS)

    Winters, R.R.

    1991-08-01

    This report discusses: argon-40 -- neutron reaction total cross sections from 6.9 kev to 50 kev; The maxwellian averaged neutron capture cross section of oxygen-16; r-matrix parameter analysis of the lead-208 -- neutron reaction cross section measurement; r-matrix parameter analysis of the ORELA neutron transmission zirconium-90 low energy measurement; porting computer codes from the HP9000 to the IBM RISC/6000;and measurements of neutron reactions with strontium-88, zirconium-90, and calcium-40

  18. Test of RIPL-2 cross section calculations

    International Nuclear Information System (INIS)

    Herman, M.

    2002-01-01

    The new levels and optical segments and microscopic HF-BCS level densities (part of the density segment) were tested in practical calculations of cross sections for neutron induced reactions on 22 targets (40-Ca, 47-Ti, 52-Cr, 55-Mn, 58-Ni, 63-Cu, 71-Ga, 80-Se, 92-Mo, 93-Nb, 100-Mo, 109-Ag, 114-Cd, 124-Sn, 127-I, 133-Cs, 140-Ce, 153-Eu, 169-Tm, 186-W, 197-Au, 208-Pb). For each target all reactions involving up to 3 neutron, 1 proton and 1 α-particle emissions (subject to actual reaction thresholds) were considered in the incident energy range from 1 keV up to 20 MeV (in some cases up to 27 MeV). In addition, total, elastic, and neutron capture cross sections were calculated

  19. Preclinical studies on gadolinium neutron capture therapy

    International Nuclear Information System (INIS)

    Akine, Yasuyuki

    1994-01-01

    Gadolinium neutron capture therapy is based on radiations (photons and electrons) produced in the tumor by a nuclear reaction between gadolinium and lower-energy neutrons. Studies with Chinese hamster cells have shown that the radiation effect resulting from gadolinium neutron capture reactions is mostly of low LET and that released electrons are the significant component in the over-all dose. Biological dosimetry revealed that the dose does not seem to increase in proportion to the gadolinium concentration, leading to a conclusion that there is a range of gadolinium concentrations most efficient for gadolinium neutron capture therapy. The in vivo studies with transplantable tumors in mice and rabbits have revealed that close contact between gadolinium and the cell is not necessarily required for cell inactivation and that gadolinium delivery selective to tumors is crucial. The results show that the potential of gadolinium neutron capture therapy as a therapeutic modality appears very promising. (author)

  20. New measurement of neutron capture resonances of 209Bi

    CERN Document Server

    Domingo-Pardo, C.; Aerts, G.; Alvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Cano-Ott, D.; Capote, R.; Carrillode Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Dolfini, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Kappeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; Oshima, M.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, Alberto; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2006-01-01

    The neutron capture cross section of Bi209 has been measured at the CERN n TOF facility by employing the pulse-height-weighting technique. Improvements over previous measurements are mainly because of an optimized detection system, which led to a practically negligible neutron sensitivity. Additional experimental sources of systematic error, such as the electronic threshold in the detectors, summing of gamma-rays, internal electron conversion, and the isomeric state in bismuth, have been taken into account. Gamma-ray absorption effects inside the sample have been corrected by employing a nonpolynomial weighting function. Because Bi209 is the last stable isotope in the reaction path of the stellar s-process, the Maxwellian averaged capture cross section is important for the recycling of the reaction flow by alpha-decays. In the relevant stellar range of thermal energies between kT=5 and 8 keV our new capture rate is about 16% higher than the presently accepted value used for nucleosynthesis calculations. At th...

  1. Progress Towards an Indirect Neutron Capture Capability at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Paul E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-20

    There are many neutron-capture cross sections of importance to radiochemical diagnostics and nuclear forensics which are beyond the reach of direct measurements. Hence, we have been developing an apparatus on flight path (FP) 13 at target 1 at LANSCE for tightly constraining these cross sections via determination of the underlying physical quantities. FP-13 was initially a cold-neutron beam line for materials science and therefore required substantial modification for use for nuclear physics. In FY17, we made several improvements to FP-13, demonstrated improved performance due to these changes via measurements on a variety of samples, identified a few more needed improvements, and reconfigured the beam line to implement the most important of these. New measurements to assess the impact of the most recent improvement will commence when beam is restored to LANSCE. Although FP-13 has not yet reached the performance required for small radioactive samples, measurements on a gold sample have led to an important science result which we are preparing for publication.

  2. Measurements of keV-neutron capture {gamma} rays of fission products. 3

    Energy Technology Data Exchange (ETDEWEB)

    Igashira, Masayuki [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    1997-03-01

    {gamma} rays from the keV-neutron capture reactions by {sup 143,145}Nd and {sup 153}Eu have been measured in a neutron energy region of 10 to 80 keV, using a large anti-Compton NaI(Tl) {gamma}-ray spectrometer and the {sup 7}Li(p,n){sup 7}Be pulsed neutron source with a 3-MV Pelletron accelerator. The preliminary results for the capture cross sections and {gamma}-ray spectra of those nuclei are presented and discussed. (author)

  3. Measurements of keV-neutron capture γ rays of fission products. 2

    International Nuclear Information System (INIS)

    Igashira, Masayuki

    1996-01-01

    γ rays from the keV-neutron capture reactions by 140 Ce, 141 Pr, and 147,148,149,150 Sm have been measured in a neutron energy region of 10 to 550 keV, using a large anti-Compton NaI(Tl) γ-ray spectrometer and the 7 Li(p,n) 7 Be pulsed neutron source with a 3-MV Pelletron accelerator. The preliminary results for the capture cross sections and γ-ray spectra of those nuclei are presented and discussed. (author)

  4. The pdk-100 enhances interpretation capabilities for pulsed neutron capture logs

    International Nuclear Information System (INIS)

    Randall, R.R.; Oliver, D.W.; Ferti, W.H.

    1986-01-01

    The PDK-100 is a new pulsed neutron logging system designed to measure Sigma (Σ), the macroscopic thermal neutron capture cross section. In addition to determining Σ, the system provides logging curves which are a measure of formation porosity and which furnish information concerning borehole conditions. This paper reviews the principles of operation of the PDK-100, and presents examples which illustrate the utility of the logging system. In addition, the progress of investigations into new parameters which can be derived with pulsed neutron logging data will be reported

  5. Chemical processes in neutron capture therapy

    International Nuclear Information System (INIS)

    Brown, B.J.

    1975-01-01

    Research into the radiation chemical effects of neutron capture therapy are described. In the use of neutron capture therapy for the treatment of brain tumours, compounds containing an activatable nuclide are selectively concentrated within tumour tissue and irradiated with neutrons. Target compounds for use in therapy must accumulate selectively in high concentrations in the tumour and must be non toxic to the patient. The most suitable of these are the boron hydrides. Radiation dosages, resulting from neutron capture in normal tissue constituents are tabulated. As part of the program to study the radiation-induced chemical processes undergone by boron target compounds, the radiolytic degredation of boron hydride and phenyl boric acid system was investigated. No direct dependence between the yield of the transient radiolytic species and the concentration of the B-compound was observed. (author)

  6. Approach to magnetic neutron capture therapy

    International Nuclear Information System (INIS)

    Kuznetsov, Anatoly A.; Podoynitsyn, Sergey N.; Filippov, Victor I.; Komissarova, Lubov Kh.; Kuznetsov, Oleg A.

    2005-01-01

    Purpose: The method of magnetic neutron capture therapy can be described as a combination of two methods: magnetic localization of drugs using magnetically targeted carriers and neutron capture therapy itself. Methods and Materials: In this work, we produced and tested two types of particles for such therapy. Composite ultradispersed ferro-carbon (Fe-C) and iron-boron (Fe-B) particles were formed from vapors of respective materials. Results: Two-component ultradispersed particles, containing Fe and C, were tested as magnetic adsorbent of L-boronophenylalanine and borax and were shown that borax sorption could be effective for creation of high concentration of boron atoms in the area of tumor. Kinetics of boron release into the physiologic solution demonstrate that ultradispersed Fe-B (10%) could be applied for an effective magnetic neutron capture therapy. Conclusion: Both types of the particles have high magnetization and magnetic homogeneity, allow to form stable magnetic suspensions, and have low toxicity

  7. Gamma rays from fast neutron capture in silicon and sulphur

    International Nuclear Information System (INIS)

    Lindholm, A.; Nilsson, L.; Bergqvist, I.

    1975-01-01

    Gamma-ray spectra from neutron capture in natural samples of silicon and sulphur have been recorded at eight neutron energies between 4 and 15 MeV. Time-of-flight techniques were used to improve the signal-to-background ratio and the gamma radiation was detected by a large NaI(Tl) scintillator. Cross sections have been determined for transitions to individual (or groups of) levels in the final nucleus. Calculations based on the direct-semidirect model show that this model gives a reasonable description of the shapes of the gamma-ray spectra, but fails to account for observed excitation functions. The inclusion of the compound-nucleus capture process gives a conclusive improvement in the description of the excitation functions, in particular at low neutron energies. The ability of the compound-nucleus model to account for the shapes of the gamma-ray spectra is as good as that of the direct-semidirect model. At higher neutron energies, an improvement is obtained for transitions to the region of weakly bound levels, where the single-particle structure is poorly known. (Auth.)

  8. Fast-neutron capture in fissile and fertile nuclides

    International Nuclear Information System (INIS)

    Peelle, R.W.

    1982-01-01

    Extensive graphical and numerical presentations, available to the working group, assisted us in exploring the rich data base established through the labors of many skilled persons. Consistent with the meeting setting, the working group discussion concentrated on data for fast-breeder reactor (FBR) applications. All but 1 to 3% of the magnitude of cross section sensitivities of FBR parameters come from the energy region below approx. = 1.5 MeV, so the statistical model is the relevant theoretical concept. The Meeting emphasizes energies above approx. = 10 keV where resonance fluctuations are not a dominant factor. However, we should remember that approximately half the FBR sensitivity to 238 U capture data, as relfected in integral parameters, lies below 25 keV where resonance fluctuations are strong and resonance self-protection is a most important consideration in reactor physics. There are similar low-energy aspects to 239 Pu capture in that approx. = 30% of the FBR-parameter data sensitivity lies below approx. = 4 keV. Even with the discussion largely cofined to the approx. = 10 to 1500 keV region, the working group could only scratch the surface of the available body of information. The reader is referred to the papers presented at the Meeting and to the references contained therein in order to obtain a more detailed understanding of current issues related to fissile and fertile fast-neutron capture

  9. A theoretical model for the production of Ac-225 for cancer therapy by neutron capture transmutation of Ra-226.

    Science.gov (United States)

    Melville, G; Melville, P

    2013-02-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation by bombarding Ra-226 with high-energy neutrons from a neutron source to produce Ra-225 and hence Ac-225, which can be used as a generator to produce Bi-213 for use in 'Targeted Alpha Therapy' for cancer. This paper examines the possibility of producing Ac-225 by neutron capture using a theoretical model in which neutron energy is convoluted with the corresponding neutron cross sections of Ra-226. The total integrated yield can then be obtained. This study shows that an intense beam of high-energy neutrons could initiate neutron capture on Ra-226 to produce Ra-225 and hence practical amounts of Ac-225 and a useful reduction of Ra-226. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Measurement of the $^{233}$U neutron capture cross section at the n_TOF facility at CERN

    CERN Document Server

    Carrapiço, Carlos; Berthoumieux, Eric; Gonçalves, Isabel; Gunsing, Frank

    2012-12-12

    The Thorium-Uranium (Th-U) fuel cycle has been envisaged as an alternative to the Uranium-Plutonium (U-Pu) fuel cycle for electricity generation using nuclear power reactors. Indeed, thorium can be used as a nuclear fuel, and several studies and R&D programs seem to provide evidence on the sustainability of the Th-U fuel cycle, due to (i) the natural abundance of Thorium, (ii) the improved proliferation resistance offered by the Th-U fuel cycle relative to the U-Pu fuel cycle, (iii) the better neutronics performance of the Th-U fuel cycle throughout the whole neutron energy range compared to the U-Pu fuel cycle, (iv) the lower radiotoxicity of the generated spent fuel in reactors with Th-U fuel cycle and, consequently (v) better economics and public acceptance of the reactors operated using the Th-U fuel cycle compared to those using the U-Pu fuel cycle (prior to the Generation IV nuclear reactors). In a nuclear reactor operated using the Th-U fuel cycle, $^{233}$U is a key nuclide governing the neutr...

  11. Gadolinium atom on neutron capture therapy

    International Nuclear Information System (INIS)

    Oda, Y.; Takagaki, M.; Miyatake, S.; Kikuchi, H.

    1994-01-01

    This report describes our measurements of gadolinium concentrations in several brain tumors obtained from fresh surgical specimens, as compared with corresponding concentrations in the blood. Moreover we tried to find out if the gadolinium concentration is high enough to use this compound in the treatment of brain tumors by neutron capture therapy. (J.P.N.)

  12. Investigation of the two-photon decay following the neutron capture in hydrogen

    International Nuclear Information System (INIS)

    Wuest, N.

    1978-01-01

    The continuous two-photon radiation, resulting from thermal neutron capture in hydrogen, has been measured. This reaction can be described in second order perturbation theory and occurs besides the dominating 2223.4 keV single-photon radiation. The theoretical ratio between two-photon and one-photon process is 2.8 10 -7 for the case considered here, so coincidence experiments with extremely high sensitivity have to be performed. In order to exclude systematical errors, three measurements with a different experimental set-up have been performed. Besides the total cross section for the two-photon process, the differential cross section has been studied in one of the experiments as a function of the energy ratio of the two photons. For the branching ratio between the two- and one-photon process an upper limit of 2 x 10 -5 could be obtained. So the hypothesis that the neutron capture state and the deuterium ground state one non-orthogonal, is shown to be false. (orig.) [de

  13. Fast Neutron Radiative Capture Cross Sections for some Important Standards from 30 keV to 1.5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, J

    1971-12-15

    Neutron capture radiative cross sections for Ta, Ag, In and Au have been measured between 30 keV and 1.5 MeV using time-of-flight technique. The detector used was a large liquid scintillator. Cross sections are given in relative and absolute units

  14. Fast Neutron Radiative Capture Cross Sections for some Important Standards from 30 keV to 1.5 MeV

    International Nuclear Information System (INIS)

    Hellstroem, J.

    1971-12-01

    Neutron capture radiative cross sections for Ta, Ag, In and Au have been measured between 30 keV and 1.5 MeV using time-of-flight technique. The detector used was a large liquid scintillator. Cross sections are given in relative and absolute units

  15. FEMA DFIRM Cross Sections

    Data.gov (United States)

    Minnesota Department of Natural Resources — FEMA Cross Sections are required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally...

  16. Measurement of actinide neutron cross sections

    International Nuclear Information System (INIS)

    Firestone, Richard B.; Nitsche, Heino; Leung, Ka-Ngo; Perry, DaleL.; English, Gerald

    2003-01-01

    The maintenance of strong scientific expertise is critical to the U.S. nuclear attribution community. It is particularly important to train students in actinide chemistry and physics. Neutron cross-section data are vital components to strategies for detecting explosives and fissile materials, and these measurements require expertise in chemical separations, actinide target preparation, nuclear spectroscopy, and analytical chemistry. At the University of California, Berkeley and the Lawrence Berkeley National Laboratory we have trained students in actinide chemistry for many years. LBNL is a leader in nuclear data and has published the Table of Isotopes for over 60 years. Recently, LBNL led an international collaboration to measure thermal neutron capture radiative cross sections and prepared the Evaluated Gamma-ray Activation File (EGAF) in collaboration with the IAEA. This file of 35, 000 prompt and delayed gamma ray cross-sections for all elements from Z=1-92 is essential for the neutron interrogation of nuclear materials. LBNL has also developed new, high flux neutron generators and recently opened a 1010 n/s D+D neutron generator experimental facility

  17. Prospects for direct neutron capture measurements on s-process branching point isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, C.; Lerendegui-Marco, J.; Quesada, J.M. [Universidad de Sevilla, Dept. de Fisica Atomica, Molecular y Nuclear, Sevilla (Spain); Domingo-Pardo, C. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Kaeppeler, F. [Karlsruhe Institute of Technology, Institut fuer Kernphysik, Karlsruhe (Germany); Palomo, F.R. [Universidad de Sevilla, Dept. de Ingenieria Electronica, Sevilla (Spain); Reifarth, R. [Goethe-Universitaet Frankfurt am Main, Frankfurt am Main (Germany)

    2017-05-15

    The neutron capture cross sections of several unstable key isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure directly due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n, γ) measurement, where high neutron fluxes and effective background rejection capabilities are required. At present there are about 21 relevant s-process branching point isotopes whose cross section could not be measured yet over the neutron energy range of interest for astrophysics. However, the situation is changing with some very recent developments and upcoming technologies. This work introduces three techniques that will change the current paradigm in the field: the use of γ-ray imaging techniques in (n, γ) experiments, the production of moderated neutron beams using high-power lasers, and double capture experiments in Maxwellian neutron beams. (orig.)

  18. Experimental neutron capture data of 58Ni from the CERN n_TOF facility

    Directory of Open Access Journals (Sweden)

    Žugec P.

    2015-01-01

    Full Text Available The neutron capture cross section of 58Ni was measured at the neutron time of flight facility n_TOF at CERN, from 27 meV to 400 keV neutron energy. Special care has been taken to identify all the possible sources of background, with the so-called neutron background obtained for the first time using high-precision GEANT4 simulations. The energy range up to 122 keV was treated as the resolved resonance region, where 51 resonances were identified and analyzed by a multilevel R-matrix code SAMMY. Above 122 keV the code SESH was used in analyzing the unresolved resonance region of the capture yield. Maxwellian averaged cross sections were calculated in the temperature range of kT = 5 – 100 keV, and their astrophysical implications were investigated.

  19. Radiation Transport Simulation for Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Ziegner, M.; Blaickner, M. [AIT Austrian Institute of Technology GmbH, Health and Environment Department, Molecular Medicine, Muthgasse 11, 1190 Wien (Austria); Ziegner, M.; Khan, R.; Boeck, H. [Vienna University of Technology, Institute of Atomic and Subatomic Physics, Stadionallee 2, 1020 Wien (Austria); Bortolussi, S.; Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, National Institute of Nuclear Physics (INFN) Pavia Section, Pavia (Italy); Schmitz, T.; Hampel, G. [Nuclear Chemistry, University of Mainz, Fritz Strassmann Weg 2, 55099 Mainz (Germany)

    2011-07-01

    This work is part of a larger project initiated by the University of Mainz and aiming to use the university's TRIGA reactor to develop a treatment for liver metastases based on Boron Neutron Capture Therapy (BNCT). Diffuse distribution of cancerous cells within the organ makes complete resection difficult and the vicinity to radiosensitive organs impedes external irradiation. Therefore the method of 'autotransplantation', first established at the University of Pavia, is used. The liver is taken out of the body, irradiated in the thermal column of the reactor, therewith purged of metastases and then reimplanted. A highly precise dosimetry system is to be developed by means of measurements at the University of Mainz and computational calculations at the AIT. The stochastic MCNP-5 Monte Carlo-Code, developed by Los Alamos Laboratories, is applied. To verify the calculations of the flux and the absorbed dose in matter a number of measurements are performed irradiating different phantoms and liver sections in a 20cm x 20cm beam tube, which was created by removing graphite blocks from the thermal column of the reactor. The detector material consists of L- {alpha} -alanine pellets which are thought to be the most suitable because of their good tissue equivalence, small size and their wide response range. Another experiment focuses on the determination of the relative biological effectiveness (RBE-factor) of the neutron and photon dose for liver cells. Therefore cell culture plates with the cell medium enriched with {sup 157}Gd and {sup 10}B at different concentrations are irradiated. With regard to the alanine pellets MCNP-5 calculations give stable results. Nevertheless the absorbed dose is underestimated compared to the measurements, a phenomenon already observed in previous works. The cell culture calculations showed the enormous impact of the added isotopes with high thermal neutron cross sections, especially {sup 157}Gd, on the absorbed dose

  20. High energy resolution measurement of the sup 238 U neutron capture yield from 1 to 100 keV

    Energy Technology Data Exchange (ETDEWEB)

    Macklin, R.L. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering); Perez, R.B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering Oak Ridge National Lab., TN (United States)); De Saussure, G.; Ingle, R.W. (Oak Ridge National Lab., TN (United States))

    1991-01-01

    The purpose of this work is the precise determination of the {sup 238}U neutron capture yield (i.e. the probability of neutron capture) as a function of neutron energy with the highest available neutron energy resolution. The motivation for this undertaking arises from the central role played by the {sup 238}U neutron capture process in the neutron balance of both thermal reactors and fast breeder reactors. The present measurement was performed using the Oak Ridge Electron Linear Accelerator (ORELA) facility. The pulsed beam of neutrons from the ORELA facility is collimated on a sample of {sup 238}U. The neutron capture rate in the sample is measured, as a function of neutron time-of-flight (TOF) by detecting the {gamma}-rays from the {sup 238}U(n, {gamma}){sup 239}U reaction with a large {gamma}-ray detector surrounding the {sup 238}U sample. At each energy, the capture yield is proportional to the observed capture rate divided by the measured intensity of the neutron beam. The constant of proportionality (the normalization constant) is obtained from the ratio of theoretical to experimentally measured areas under small {sup 238}U resonances where the resonance parameters have been determined from high-resolution {sup 238}U transmission measurements. The cross section for the reaction {sup 238}U(n,{gamma}){sup 239}U can be derived from the measured capture yield if one applies appropriate corrections for multiple scattering and resonance self-shielding. Some 200 {sup 238}U neutron resonances in the energy range from 250 eV to 10 keV have been observed which had not been detected in previous measurements. (author).

  1. Measurements of neutron cross sections of radioactive waste nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Toshio [Gifu College of Medical Technology, Seki, Gifu (Japan); Harada, Hideo; Nakamura, Shoji; Tanase, Masakazu; Hatsukawa, Yuichi

    1998-01-01

    Accurate nuclear reaction cross sections of radioactive fission products and transuranic elements are required for research on nuclear transmutation methods in nuclear waste management. Important fission products in the nuclear waste management are {sup 137}Cs, {sup 135}Cs, {sup 90}Sr, {sup 99}Tc and {sup 129}I because of their large fission yields and long half-lives. The present authors have measured the neutron capture cross sections and resonance integrals of {sup 137}Cs, {sup 90}Sr and {sup 99}Tc. The purpose of this study is to measure the neutron capture cross sections and resonance integrals of nuclides, {sup 129}I and {sup 135}Cs accurately. Preliminary experiments were performed by using Rikkyo University Reactor and JRR-3 reactor at Japan Atomic Energy Research Institute (JAERI). Then, it was decided to measure the cross section and resonance integral of {sup 135}Cs by using the JRR-3 Reactor because this measurement required a high flux reactor. On the other hand, those of {sup 129}I were measured at the Rikkyo Reactor because the product nuclides, {sup 130}I and {sup 130m}I, have short half-lives and this reactor is suitable for the study of short lived nuclide. In this report, the measurements of the cross section and resonance integral of {sup 135}Cs are described. To obtain reliable values of the cross section and resonance integral of {sup 135}Cs(n, {gamma}){sup 136}Cs reaction, a quadrupole mass spectrometer was used for the mass analysis of nuclide in the sample. A progress report on the cross section of {sup 134}Cs, a neighbour of {sup 135}Cs, is included in this report. A report on {sup 129}I will be presented in the Report on the Joint-Use of Rikkyo University Reactor. (author)

  2. Production, separation and target preparation of 171Tm an 147Pm for neutron cross section measurements

    CERN Document Server

    Heinitz, S; Schumann, D; Dressler, R; Kivel, N; Guerrero, C; Köster, U; Tessler, M; Paul, M; Halfon, S

    2015-01-01

    The knowledge of the neutron capture cross sections of s-process branching point isotopes represents a basic requirement for the understanding of star evolution. Since such branching point isotopes are by definition radioactive, the measurement of their cross sections from thermal to stellar energies becomes a challenging task. Considerable amounts of material have to be produced, representing a significant radioactive hazard. We report here on the production and separation of 3.5 mg 171Tm from 240 mg 170Er2O3 and 72 µg 147Pm from 100 mg 146Nd2O3 irradiated at the ILL high flux reactor. Thin targets were prepared with high chemical and radioisotopic purity suitable for neutron capture measurements at n_TOF CERN and the SARAF-LiLiT facility.

  3. Recent advances in neutron capture therapy (NCT)

    International Nuclear Information System (INIS)

    Fairchild, R.G.

    1985-01-01

    The application of the 10 B(n,α) 7 Li reaction to cancer radiotherapy (Neutron Capture therapy, or NCT) has intrigued investigators since the discovery of the neutron. This paper briefly summarizes data describing recently developed boronated compounds with evident tumor specificity and extended biological half-lives. The implication of these compounds to NCT is evaluated in terms of Therapeutic Gain (TG). The optimization of NCT using band-pass filtered beams is described, again in terms of TG, and irradiation times with these less intense beams are estimated. 24 refs., 3 figs., 3 tabs

  4. In-phantom dosimetry using the 13C(d,n)14N reaction for BNCT (boron neutron capture therapy)

    International Nuclear Information System (INIS)

    Burlon, Alejandro; Kreiner, Andres J.; White, S.; Blackburn, B.; Gierga, David; Yanch, Jacquelyn C.

    2000-01-01

    The use of the 13 C(d,n) 14 N reaction at E d =1.5 MeV for accelerator-based boron neutron capture therapy is investigated. The 13 C(d,n) 14 N reaction presents the advantages of carbon as a target material and its large cross section. The deuteron beam was produced by a tandem accelerator at MIT's Laboratory for Accelerator Beam Applications. The resulting neutron spectra were evaluated in terms of RBE-dose rates at different depths inside a water-filled brain phantom using a heavy water moderator and lead reflector assembly. All results were simulated using the code MCNP. (author)

  5. Measurement of the stellar (n,γ) cross section of the shortlived radioactive isotope 147Pm

    International Nuclear Information System (INIS)

    Gerstenhoefer, T.W.

    1993-05-01

    During helium burning in the red giant phase of stellar evolution, nuclei with A>60 are produced by the slow neutron capture process (s-process). Starting from the iron group isotopes, the synthesis path works along the valley of beta stability by subsequent neutron captures and beta decays. An important feature of the s-process is the occurence of branchings in this path whenever unstable isotopes with half-lives comparable to the typical neutron capture time scale of about one year are encountered. The analysis of the corresponding abundance patterns can be used to derive estimates for the stellar neutron flux, temperature, and density. Quantitative branching analyses require reliable (n,γ) cross sections for the branch point nuclei. This report presents the first ever measured (n,γ) cross section for the branch point 147 Pm (t 1/2 =2.6 yr) in the neutron energy range 1 n 7 Li(p,n) 7 Be reaction that allowes to simulate a quasi-stellar neutron spectrum. To this end, the rf gas discharge ion source and optical components of the Karlsruhe 3.75 Van de Graaff accelerator were revised. Last but not least, the radiation hazard of the 147 Pm sample (180 GBq) had to be accounted for. In addition of the measurements on 147 Pm, the stellar (n,γ) cross section on its stable daughter, 147 Sm was also determined, mainly in order to verify the experimental technique with Moxon-Rae detectors. (orig.)

  6. Evaluated cross section libraries

    International Nuclear Information System (INIS)

    Maqurno, B.A.

    1976-01-01

    The dosimetry tape (ENDF/B-IV tape 412) was issued in a general CSEWG distribution, August 1974. The pointwise cross section data file was tested with specified reference spectra. A group averaged cross section data file (620 groups based on tape 412) was tested with the above spectra and the results are presented in this report

  7. Jet inclusive cross sections

    International Nuclear Information System (INIS)

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons

  8. Radiative neutron capture on a proton at big-bang nucleosynthesis energies

    International Nuclear Information System (INIS)

    Ando, S.; Cyburt, R. H.; Hong, S. W.; Hyun, C. H.

    2006-01-01

    The total cross section for radiative neutron capture on a proton, np→dγ, is evaluated at big-bang nucleosynthesis (BBN) energies. The electromagnetic transition amplitudes are calculated up to next-to-leading-order within the framework of pionless effective field theory with dibaryon fields. We also calculate the dγ→np cross section and the photon analyzing power for the dγ(vector sign)→np process from the amplitudes. The values of low-energy constants that appear in the amplitudes are estimated by a Markov Chain Monte Carlo analysis using the relevant low-energy experimental data. Our result agrees well with those of other theoretical calculations except for the np→dγ cross section at some energies estimated by an R-matrix analysis. We also study the uncertainties in our estimation of the np→dγ cross section at relevant BBN energies and find that the estimated cross section is reliable to within ∼1% error

  9. Microdosimetry for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Maughan, R.L.; Kota, C.

    2000-01-01

    The specific aims of the research proposal were as follows: (1) To design and construct small volume tissue equivalent proportional counters for the dosimetry and microdosimetry of high intensity thermal and epithermal neutron beams used in BNCT, and of modified fast neutron beams designed for boron neutron capture enhanced fast neutron therapy (BNCEFNT). (2) To develop analytical methods for estimating the biological effectiveness of the absorbed dose in BNCT and BNCEFNT based on the measured microdosimetric spectra. (3) To develop an analytical framework for comparing the biological effectiveness of different epithermal neutron beams used in BNCT and BNCEFNT, based on correlated sets of measured microdosimetric spectra and radiobiological data. Specific aims (1) and (2) were achieved in their entirety and are comprehensively documented in Jay Burmeister's Ph.D. dissertation entitled ''Specification of physical and biologically effective absorbed dose in radiation therapies utilizing the boron neutron capture reaction'' (Wayne State University, 1999). Specific aim (3) proved difficult to accomplish because of a lack of sufficient radiobiological data

  10. Progress in study of a medical reactor for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Sasaki, Makoto; Hirota, Jitsuya; Tamao, Shigeo; Kanda, Keiji; Mishima, Yutaka.

    1993-01-01

    A design study of a medical reactor for Boron Neutron Capture Therapy has made progress. Main specifications of the reactor are as follows; thermal power of 2 MW, water cooling by natural convection, semitight core of hexagonal lattice, UO 2 fuel rod of 9.5 mm diameter and no refueling in the reactor-life. Three horizontal and one vertical neutron beam holes are to be provided for simultaneous treatments by thermal and epithermal neutrons and for further biomedical research. The design objectives for the beam holes are to deliver the therapeutic doses in a modest time (30 to 60 min) with minimal fast neutron and gamma contaminants. The n-γ coupling Sn transport calculations have been carried out using n-21 and γ-9 group cross sections on 2-dim. practical models. The calculated results indicate that the design objectives will be achievable even if the thermal power of the reactor is reduced to 1 MW. (author)

  11. Floodplain Cross Section Lines

    Data.gov (United States)

    Department of Homeland Security — This table is required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally any FIRM...

  12. Multitrajectory eikonal cross sections

    International Nuclear Information System (INIS)

    Turner, R.E.

    1983-01-01

    With the use of reference and distorted transition operators, a time-correlation-function representation of the inelastic differential cross section has recently been used to obtain distorted eikonal cross sections. These cross sections involve straight-line and reference classical translational trajectories that are unaffected by any internal-state changes which have occurred during the collision. This distorted eikonal theory is now extended to include effects of internal-state changes on the translational motion. In particular, a different classical trajectory is associated with each pair of internal states. Expressions for these inelastic cross sections are obtained in terms of time-ordered cosine and sine memory functions using the Zwanzig-Feshbach projection-operator method. Explicit formulas are obtained in the time-disordered perturbation approximation

  13. Thermal neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Tuli, J.K.

    1983-01-01

    The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,α), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,#betta#) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide

  14. Current status of neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    There are about 6000 new glioblastoma multiform brain tumours diagnosed each year in the United States of America alone. This cancer is usually fatal within six months of diagnosis even with current standard treatments. Research on boron neutron capture therapy (BNCT) has been considered as a method of potentially curing such cancers. There is a great interest at under-utilised research reactors institutions to identify new medical utilization, attractive to the general public. Neutron capture therapy is a true multidisciplinary topic with a large variety of individuals involved. This publication attempts to provide current information for all those thinking about being involved with NCT, based on the knowledge and experience of those who have pioneered the treatment. It covers the whole range of NCT from designing reactor conversions or new facilities, through to clinical trials and their effectiveness. However, since most work has been done with boron capture therapy for brain tumours using modified thermal research reactors, this tends to be the focus of the report. One of the factors which need to be addressed at the beginning is the timing of the further development of NCT facilities. It should be emphasised that all current work is still at the research stage. Many of those now involved believe that there is little need for many more research facilities until such time as the treatment shows more promising results. For this and other reasons discussed in the report, very serious consideration should be given by research reactor owners and operators before spending large sums of money converting their facilities for NCT.

  15. Current status of neutron capture therapy

    International Nuclear Information System (INIS)

    2001-05-01

    There are about 6000 new glioblastoma multiform brain tumours diagnosed each year in the United States of America alone. This cancer is usually fatal within six months of diagnosis even with current standard treatments. Research on boron neutron capture therapy (BNCT) has been considered as a method of potentially curing such cancers. There is a great interest at under-utilised research reactors institutions to identify new medical utilization, attractive to the general public. Neutron capture therapy is a true multidisciplinary topic with a large variety of individuals involved. This publication attempts to provide current information for all those thinking about being involved with NCT, based on the knowledge and experience of those who have pioneered the treatment. It covers the whole range of NCT from designing reactor conversions or new facilities, through to clinical trials and their effectiveness. However, since most work has been done with boron capture therapy for brain tumours using modified thermal research reactors, this tends to be the focus of the report. One of the factors which need to be addressed at the beginning is the timing of the further development of NCT facilities. It should be emphasised that all current work is still at the research stage. Many of those now involved believe that there is little need for many more research facilities until such time as the treatment shows more promising results. For this and other reasons discussed in the report, very serious consideration should be given by research reactor owners and operators before spending large sums of money converting their facilities for NCT

  16. Neutron capture at the s-process branching points $^{171}$Tm and $^{204}$Tl

    CERN Multimedia

    Branching points in the s-process are very special isotopes for which there is a competition between the neutron capture and the subsequent b-decay chain producing the heavy elements beyond Fe. Typically, the knowledge on the associated capture cross sections is very poor due to the difficulty in obtaining enough material of these radioactive isotopes and to measure the cross section of a sample with an intrinsic activity; indeed only 2 out o the 21 ${s}$-process branching points have ever been measured by using the time-of-flight method. In this experiment we aim at measuring for the first time the capture cross sections of $^{171}$Tm and $^{204}$Tl, both of crucial importance for understanding the nucleosynthesis of heavy elements in AGB stars. The combination of both (n,$\\gamma$) measurements on $^{171}$Tm and $^{204}$Tl will allow one to accurately constrain neutron density and the strength of the 13C(α,n) source in low mass AGB stars. Additionally, the cross section of $^{204}$Tl is also of cosmo-chrono...

  17. Precise measurement of the neutron capture reaction 54Fe(n,γ)55Fe via AMS

    International Nuclear Information System (INIS)

    Wallner, A; Buczak, K; Forstner, O; Golser, R; Kutschera, W; Lederer, C; Priller, A; Steier, P; Belgya, T; Szentmiklosi, L; Bichler, M; Coquard, L; Dillmann, I; Kaeppeler, F; Mengoni, A; Reifarth, R

    2010-01-01

    The measurement of cross sections relevant to nuclear astrophysics has become one main research topic at the VERA (Vienna Environmental Research Accelerator) facility. The technique applied, accelerator mass spectrometry (AMS), offers excellent sensitivity for the detection of long-lived radionuclides through ultra-low isotope ratio measurements. We discuss the potential and preliminary results of ongoing precision measurements of neutron-capture cross sections of 54 Fe. Such measurements might help to clarify the recently found discrepancy of s-process nucleosynthesis at lower-mass nuclei (A 55 Fe (t 1/2 = 2.72 yr) was analyzed using AMS. At VERA, detection of 55 Fe was developed with a reproducibility of about 1%, which makes the 54 Fe(n,γ) 55 Fe reaction a precise and unique laboratory measurement, which can serve as a reference to complementary techniques. In this regard a new 55 Fe standard for AMS measurements was produced. The final cross-section data are expected to be accurate to better than 3%. We report a preliminary, however, already significantly improved thermal neutron cross section value of (2.32 ± 0.10) barn, and a value of (6.3 ± 0.6) mbarn for E n = (520 ± 50) keV.

  18. Neutron cross section measurements at ORELA

    International Nuclear Information System (INIS)

    Dabbs, J.W.T.

    1979-01-01

    ORELA (Oak Ridge Electron Linear Accelerator) has been for the last decade the most powerful and useful pulsed neutron time-of-flight facility in the world, particularly in the broad midrange of neutron energies (10 eV to 1 MeV). This position will be enhanced with the addition of a pulse narrowing prebuncher, recently installed and now under test. Neutron capture, fission, scattering, and total cross sections are measured by members of the Physics and Engineering Physics Divisions of ORNL, and by numerous guests and visitors. Several fundamental and applied measurements are described, with some emphasis on instrumentation used. The facility comprises the accelerator and its target(s), 10 evacuated neutron flight paths having 18 measurement stations at flight path distances 8.9 to 200 meters, and a complex 4-computer data acquisition system capable of handling some 17,000 32-bit events/s from a total of 12 data input ports. The system provides a total of 2.08 x 10 6 words of data storage on 3 fast disk units. In addition, a dedicated PDP-10 timesharing system with a 250-megabyte disk system and 4 PDP-15 graphic display satellites permits on-site data reduction and analysis. More than 10 man-years of application software development supports the system, which is used directly by individual experiments. 12 figures, 1 table

  19. Resonance capture cross section of 207Pb

    CERN Document Server

    Domingo-Pardo, C.; Aerts, G.; Alvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Bisterzo, S.; Calvino, F.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Dolfini, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Kappeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; Oshima, M.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2006-01-01

    The radiative neutron capture cross section of 207Pb has been measured at the CERN neutron time of flight installation n_TOF using the pulse height weighting technique in the resolved energy region. The measurement has been performed with an optimized setup of two C6D6 scintillation detectors, which allowed us to reduce scattered neutron backgrounds down to a negligible level. Resonance parameters and radiative kernels have been determined for 16 resonances by means of an R-matrix analysis in the neutron energy range from 3 keV to 320 keV. Good agreement with previous measurements was found at low neutron energies, whereas substantial discrepancies appear beyond 45 keV. With the present results, we obtain an s-process contribution of 77(8)% to the solar abundance of 207Pb. This corresponds to an r-process component of 23(8)%, which is important for deriving the U/Th ages of metal poor halo stars.

  20. Measurement of the radiative capture cross section of the s-process branching points 204Tl and 171Tm at the n_TOF facility (CERN)

    Science.gov (United States)

    Casanovas, A.; Domingo-Pardo, C.; Guerrero, C.; Lerendegui-Marco, J.; Calviño, F.; Tarifeño-Saldivia, A.; Dressler, R.; Heinitz, S.; Kivel, N.; Quesada, J. M.; Schumann, D.; Aberle, O.; Alcayne, V.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Barbagallo, M.; Bečvář, F.; Bellia, G.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Busso, M.; Caamaño, M.; Caballero-Ontanaya, L.; Calviani, M.; Cano-Ott, D.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Cristallo, S.; Damone, L. A.; Diakaki, M.; Dietz, M.; Dupont, E.; Durán, I.; Eleme, Z.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Furman, V.; Göbel, K.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González-Romero, E.; Gunsing, F.; Heyse, J.; Jenkins, D. G.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kimura, A.; Kokkoris, M.; Kopatch, Y.; Krtička, M.; Kurtulgil, D.; Ladarescu, I.; Lederer-Woods, C.; Meo, S. Lo; Lonsdale, S. J.; Macina, D.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Michalopoulou, V.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Ogállar, F.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Persanti, L.; Porras, I.; Praena, J.; Radeck, D.; Ramos, D.; Rauscher, T.; Reifarth, R.; Rochman, D.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Simone, S.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Talip, T.; Tassan-Got, L.; Tsinganis, A.; Ulrich, J.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Woods, P. J.; Wright, T.; Žugec, P.; Köster, U.

    2018-05-01

    The neutron capture cross section of some unstable nuclei is especially relevant for s-process nucleosynthesis studies. This magnitude is crucial to determine the local abundance pattern, which can yield valuable information of the s-process stellar environment. In this work we describe the neutron capture (n,γ) measurement on two of these nuclei of interest, 204Tl and 171Tm, from target production to the final measurement, performed successfully at the n_TOF facility at CERN in 2014 and 2015. Preliminary results on the ongoing experimental data analysis will also be shown. These results include the first ever experimental observation of capture resonances for these two nuclei.

  1. Non-statistical effects in the radiative capture cross sections of the neodymium isotopes

    International Nuclear Information System (INIS)

    Musgrove, A.R.; Allen, B.J.; Boldeman, J.W.

    1977-01-01

    The neutron capture cross sections of the stable neodymium isotopes have been measured with high energy resolution in the keV region at the 40 m station of ORELA. Average resonance parameters are extracted for s-wave resonances. Significant positive correlations are found between gamma-n-0 and gamma-gamma for all isotopes. The magnitude of the observed correlation coefficient, particularly for 142 Nd (rho = 0.9), cannot be explained in terms of valence neutron capture and additional mechanisms are discussed. The average s-wave radiative widths for the odd-A isotopes are markedly greater than for the even-A isotopes, while the p-wave radiative width for 142 Nd is considerably less than the s-wave width. (author)

  2. Neutron capture therapy: Years of experimentation---Years of reflection

    International Nuclear Information System (INIS)

    Farr, L.E.

    1991-01-01

    This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven's Medical Research Center program

  3. Neutron cross section covariances in the resonance region: 52Cr, 56Fe, 58Ni

    Energy Technology Data Exchange (ETDEWEB)

    Oblozinsky, P.; Cho, Y.-S.; Mattoon, C.M.; Mughabghab, S.F.

    2010-08-03

    We evaluated covariances for neutron capture and elastic scattering cross sections on major structural materials, {sup 52}Cr, {sup 56}Fe and {sup 58}Ni, in the resonance region which extends beyond 800 keV for each of them. Use was made of the recently developed covariance formalism based on kernel approximation along with data in the Atlas of Neutron Resonances. The data of most interest for AFCI applications, elastic scattering cross section uncertainties at energies above about few hundred keV, are on the level of about 12% for {sup 52}Cr, 7-8% for {sup 56}Fe and 5-6% for {sup 58}Ni.

  4. Synovectomy by neutron capture in boron

    International Nuclear Information System (INIS)

    Vega C, H.R.

    2002-01-01

    The rheumatoid arthritis is an illness which affect approximately at 3% of the World population. This illness is characterized by the inflammation of the joints which reduces the quality of life and the productivity of the patients. Since, it is an autoimmune illness, the inflammation is due to the overproduction of synovial liquid by the increase in the quantity of synoviocytes. The rheumatoid arthritis does not have a definitive recovery and the patients have three options of treatment: the use of drugs, the surgery and the radio synovectomy. The synovectomy by neutron capture in Boron is a novel proposal of treatment of the rheumatoid arthritis that consists in using a charged compound with Boron 10 that is preferently incorporated in the synoviocytes and to a less extent in the rest of surrounding tissues of the joint. Then, the joint is exposed to a thermal neutron field that induces the reaction (n, α) in the 10 B. the products of this reaction place their energy inside synoviocytes producing their reduction and therefore the reduction of the joint inflammation. Since it is a novel procedure, the synovectomy by neutron capture in boron has two problems: the source design and the design of the adequate drug. In this work it has been realized a Monte Carlo study with the purpose to design a moderating medium that with a 239 Pu Be source in its center, produces a thermal neutron field. With the produced neutron spectra, the neutrons spectra and neutron doses were calculated in different sites inside a model of knee joint. In Monte Carlo studies it is necessary to know the elemental composition of all the joint components, for the case of synovia and the synovial liquid this information does not exist in such way that it is supposed that its composition is equal than the water. In this work also it has been calculated the kerma factors by neutrons of synovia and the synovial liquid supposing that their elemental composition are similar to the blood tissue

  5. Study on the keV neutron capture reaction in 56Fe and 57Fe

    Science.gov (United States)

    Wang, Taofeng; Lee, Manwoo; Kim, Guinyun; Ro, Tae-Ik; Kang, Yeong-Rok; Igashira, Masayuki; Katabuchi, Tatsuya

    2014-03-01

    The neutron capture cross-sections and the radiative capture gamma-ray spectra from the broad resonances of 56Fe and 57Fe in the neutron energy range from 10 to 90keV and 550keV have been measured with an anti-Compton NaI(Tl) detector. Pulsed keV neutrons were produced from the 7Li 7Be reaction by bombarding the lithium target with the 1.5ns bunched proton beam from the 3MV Pelletron accelerator. The incident neutron spectrum on a capture sample was measured by means of a time-of-flight (TOF) method with a 6Li -glass detector. The number of weighted capture counts of the iron or gold sample was obtained by applying a pulse height weighting technique to the corresponding capture gamma-ray pulse height spectrum. The neutron capture gamma-ray spectra were obtained by unfolding the observed capture gamma-ray pulse height spectra. To achieve further understanding on the mechanism of neutron radiative capture reaction and study on physics models, theoretical calculations of the -ray spectra for 56Fe and 57Fe with the POD program have been performed by applying the Hauser-Feshbach statistical model. The dominant ingredients to perform the statistical calculation were the Optical Model Potential (OMP), the level densities described by the Mengoni-Nakajima approach, and the -ray transmission coefficients described by -ray strength functions. The comparison of the theoretical calculations, performed only for the 550keV point, show a good agreement with the present experimental results.

  6. Medical application of neutron capture γ-ray spectroscopy: measurement of cadmium and nitrogen in living human subjects

    International Nuclear Information System (INIS)

    Vartsky, D.; Ellis, K.J.; Cohn, S.H.

    1978-01-01

    In-vivo measurement of small quantities of Cd is possible due to the high radiative neutron-capture cross-section of 113 Cd (12.3%, 20000 b). Under slow neutron capture in 113 Cd, the excited 114 Cd decays by prompt emission of cascade of gamma-rays of which the most intense is the 559 keV transition from the first excited state to the ground state. For a total kidney or liver dose of 670 mrem, the detection limits are 2.5 mg or 1.5 μg/g respectively. A table shows the results of a study on normal subjects with smoking and non-smoking history. The study indicates higher cadmium levels in the group of smokers. The method of measuring body N utilizes the 14 N(n,γ) 15 N reaction. The total energy available on slow neutron capture is 10.83 MeV and approximately 15% of the de-excitations take place directly to the ground state of 15 N. The irradiation facility is basically the same as that described for measurement of Cd. The Cd collimator, however is replaced by a second collimator designed to provide a wide beam 13 x 60 cm at the level of the bed. During the irradiation the subject lies on a motorized bed which moves across the neutron beam. The precision or reproducibility of the measurements was performed using an Alderson phantom. For a standard 70 kg man having 2000 g of N, the accuracy of the measurement is +-2% with an error of 1.3% for reproducibility, based on several measurements over a 6-month period. The total radiation dose for a bilateral irradiation is 45 mrem. Initial clinical studies will concentrate on sequential measurements of body N

  7. Experimental neutron capture data of $^{58}$Ni from the CERN n_TOF facility

    CERN Document Server

    Žugec, P.; Colonna, N.; Bosnar, D.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M.A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A.R.; Giubrone, G.; Gómez-Hornillos, M.B.; Gonçalves, I.F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Jenkins, D.G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Koehler, P.; Kokkoris, M.; Krtička, M.; Kroll, J.; Langer, C.; Lederer, C.; Leeb, H.; Leong, L.S.; Losito, R.; Manousos, A.; Marganiec, J.; Martìnez, T.; Massimi, C.; Mastinu, P.F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P.M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Pignatari, M.; Plompen, A.; Praena, J.; Quesada, J.M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Tagliente, G.; Tain, J.L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M.J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.

    2013-01-01

    The $^{58}$Ni $(n,\\gamma)$ cross section has been measured at the neutron time of flight facility n_TOF at CERN, in the energy range from 27 meV up to 400 keV. In total, 51 resonances have been analyzed up to 122 keV. Maxwellian averaged cross sections (MACS) have been calculated for stellar temperatures of kT$=$5-100 keV with uncertainties of less than 6%, showing fair agreement with recent experimental and evaluated data up to kT = 50 keV. The MACS extracted in the present work at 30 keV is 34.2$\\pm$0.6$_\\mathrm{stat}\\pm$1.8$_\\mathrm{sys}$ mb, in agreement with latest results and evaluations, but 12% lower relative to the recent KADoNIS compilation of astrophysical cross sections. When included in models of the s-process nucleosynthesis in massive stars, this change results in a 60% increase of the abundance of $^{58}$Ni, with a negligible propagation on heavier isotopes. The reason is that, using both the old or the new MACS, 58Ni is efficiently depleted by neutron captures.

  8. Boron thermal/epithermal neutron capture therapy

    International Nuclear Information System (INIS)

    Fairchild, R.G.

    1982-01-01

    The development of various particle beams for radiotherapy represents an attempt to improve dose distribution, and to provide high LET radiations which are less sensitive to ambient physical and radiobiological factors such as oxygen tension, cell cycle, and dose rate. In general, a compromise is necessary as effective RBE is reduced in order to spread the dose distribution over the anticipated tumor volume. The approach of delivering stable non-toxic isotopes to tumor, and then activating these atoms subsequently via an external radiation beam has mator advantages; problems associated with high uptake of these isotopes in competing cell pools are obviated, and the general tumor volume can be included in the treatment field of the activating beam. As long as the normal tissues supporting tumor show a low uptake of the isotope to be activated, and as long as the range of the reaction products is short, dose will be restricted to tumor, with a consequent high therapeutic ratio. Neutron Capture Therapy (NCT) is generally carried out by activating boron-10 with low energy neutrons. The range of the high LET, low OER particles from the 10 B(n, α) 7 Li reaction is approx. 10μ, or one cell diameter, a situation that is optimal for cell killing. Significant advantages may be gained by using the NCT procedure in conjunction with improved tissue penetration provided with epithermal or filtered beams, and new compounds showing physiological binding to tumor

  9. Research needs for neutron capture therapy

    International Nuclear Information System (INIS)

    1995-01-01

    Key issues and questions addressed by the workshop related to optimization of Boron Neutron Capture Therapy (BNCT), in general, and to the possibility of success of the present BNCT trials at Brookhaven National Laboratory (BNL) and Massachusetts Institute of Technology (MIT), in particular. Both trials use nuclear fission reactors as neutron sources for BNCT of glioblastoma multiforme (BNL) and of deep seated melanoma (MIT). Presentations and discussions focussed on optimal boron-labeled compounds, mainly for brain tumors such as glioblastoma multiforme, and the best mode of compound delivery to the tumor. Also, optimizing neutron irradiation with dose delivery to the tumor cells and the issues of dosimetry of BNCT especially in the brain were discussed. Planning of treatment and of follow-up of patients, coordination of BNCT at various treatment sites, and the potential of delivering BNCT to various types of cancer with an appropriately tailored protocol were additional issues. The need for multicentric interdisciplinary cooperation among the different medical specialties was highlighted

  10. Nuclear spectroscopy using the neutron capture reaction

    International Nuclear Information System (INIS)

    Egidy, T.

    1982-01-01

    Experimental methods using neutron spectroscopy as a means to study the nucleus structure are described. Since reactions of neutron capture (n, γ) are non-selective, they permit to study the nature of excitation (monoparticle and collective) of nuclear levels, the nature of vibrational excitations, to check the connection between shell model and liquid drop model etc. In many cases (n, γ) reactions are the only way to check the forecast of nuclear models. Advantages of (n, γ) spectroscopy, possessing a high precision of measurement and high sensitivity, are underlined. Using neutron spectroscopy on facilities with a high density of neutron flux the structures of energy levels of a large group of nuclei are studied. In different laboratories complete schemes of energy levels of nuclei are obtained, a great number of new levels are found, the evergy level densities are determined, multipolarities of γ-transitions, spins, level parities are considered. StrUctures of rotational bands of heavy deformed nuclei are studied. The study of the structure of high-spin states is possible only using the methods of (n, γ) spectroscopy Investigation results of the nuclei 24 Na, 114 Cd, 154 Eu, 155 Cd, 155 Sm, 233 Th are considered as examples. The most interesting aspects of the investigations using neutron spectroscopy are discUssed

  11. Production, separation and target preparation of {sup 171}Tm and {sup 147}Pm for neutron cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Heinitz, Stephan; Maugeri, Emilio A.; Schumann, Dorothea; Dressler, Rugard; Kivel, Niko [Paul Scherrer Institute, Villigen (Switzerland); Guerrero, Carlos [Sevilla Univ. (Spain); Koester, Ullrich [Institut Laue-Langevin, Grenoble (France); Tessler, Moshe; Paul, Michael [Hebrew Univ. of Jerusalem (Israel); Halfon, Shlomi [Soreq Nuclear Research Center, Yavne (Israel); Collaboration: nTOF Collaboration

    2017-07-01

    The knowledge of the neutron capture cross sections of s-process branching point isotopes represents a basic requirement for the understanding of star evolution. Since such branching point isotopes are by definition radioactive, the measurement of their cross sections from thermal to stellar energies becomes a challenging task. Considerable amounts of material have to be produced, representing a significant radioactive hazard. We report here on the production and separation of 3.5 mg {sup 171}Tm from 240 mg {sup 170}Er{sub 2}O{sub 3} and 72 μg {sup 147}Pm from 100 mg {sup 146}Nd{sub 2}O{sub 3} irradiated at the ILL high flux reactor. Thin targets were prepared with high chemical and radioisotopic purity suitable for neutron capture measurements at nTOF CERN and the SARAF-LiLiT facility.

  12. Progress on FP13 Total Cross Section Measurements Capability

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Paul E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-26

    An accurate knowledge of the neutron capture cross section is important for many applications. Experimental measurements are important since theoretical calculations of capture have been notoriously difficult, with the ratio of measured to calculated cross sections often a factor of 2 or more in the 10 keV to 1 MeV region. However, a direct measurement of capture cannot be made on many interesting radioactive nuclides because of their short half-life or backgrounds caused by their nuclear decay. On the other hand, neutron transmission measurements of the total cross section are feasible for a wide range of radioactive nuclides since the detectors are far from the sample, and often are less sensitive to decay radiation. The parameters extracted from a total cross section measurement, which include the average resonance spacing, the neutron strength function, and the average total radiation width, (Γγ), provide tight constraints on the calculation of the capture cross section, and when applied produce much more accurate results. These measurements can be made using the intense epithermal neutron flux at the Lujan Center on relatively small quantities of target material. It was the purpose of this project to investigate and develop the capability to make these measurements. A great deal of progress was made towards establishing this capability during 2016, including setting up the flight path and obtaining preliminary results, but more work remains to be done.

  13. Reconstruction of point cross-section from ENDF data file for Monte Carlo applications

    International Nuclear Information System (INIS)

    Kumawat, H.; Saxena, A.; Carminati, F.; )

    2016-12-01

    Monte Carlo neutron transport codes are one of the best tools to simulate complex systems like fission and fusion reactors, Accelerator Driven Sub-critical systems, radio-activity management of spent fuel and waste, optimization and characterization of neutron detectors, optimization of Boron Neutron Capture Therapy, imaging etc. The neutron cross-section and secondary particle emission properties are the main input parameters of such codes. The fission, capture and elastic scattering cross-sections have complex resonating structures. Evaluated Nuclear Data File (ENDF) contains these cross-sections and secondary parameters. We report the development of reconstruction procedure to generate point cross-sections and probabilities from ENDF data file. The cross-sections are compared with the values obtained from PREPRO and in some cases NJOY codes. The results are in good agreement. (author)

  14. Dose prescription in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Gupta, N.M.S.; Gahbauer, R.A.; Blue, T.E.; Wambersie, A.

    1994-01-01

    The purpose of this paper is to address some aspects of the many considerations that need to go into a dose prescription in boron neutron capture therapy (BNCT) for brain tumors; and to describe some methods to incorporate knowledge from animal studies and other experiments into the process of dose prescription. Previously, an algorithm to estimate the normal tissue tolerance to mixed high and low linear energy transfer radiations in BNCT was proposed. The authors have developed mathematical formulations and computational methods to represent this algorithm. Generalized models to fit the central axis dose rate components for an epithermal neutron field were also developed. These formulations and beam fitting models were programmed into spreadsheets to simulate two treatment techniques which are expected to be used in BNCT: a two-field bilateral scheme and a single-field treatment scheme. Parameters in these spreadsheets can be varied to represent the fractionation scheme used, the 10 B microdistribution in normal tissue, and the ratio of 10 B in tumor to normal tissue. Most of these factors have to be determined for a given neutron field and 10 B compound combination from large animal studies. The spreadsheets have been programmed to integrate all of the treatment-related information and calculate the location along the central axis where the normal tissue tolerance is exceeded first. This information is then used to compute the maximum treatment time allowable and the maximum tumor dose that may be delivered for a given BNCT treatment. The effect of different treatment variables on the treatment time and tumor dose has been shown to be very significant. It has also been shown that the location of D max shifts significantly, depending on some of the treatment variables-mainly the fractionation scheme used. These results further emphasize the fact that dose prescription in BNCT is very complicated and nonintuitive. 11 refs., 6 figs., 3 tabs

  15. Neutron dosimetry in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Fairchild, R.G.; Miola, U.J.; Ettinger, K.V.

    1981-01-01

    The recent development of various borated compounds and the utilization of one of these (Na 2 B 12 H 11 SH) to treat brain tumors in clinical studies in Japan has renewed interest in neutron capture therapy. In these procedures thermal neutrons interact with 10 B in boron containing cells through the 10 B(n,α) 7 Li reaction producing charged particles with a maximum range of approx. 10μm in tissue. Borated analogs of chlorpromazine, porphyrin, thiouracil and deoxyuridine promise improved tumor uptake and blood clearance. The therapy beam from the Medical Research Reactor in Brookhaven contains neutrons from a modified and filtered fission spectrum and dosimetric consequences of the use of the above mentioned compounds in conjunction with thermal and epithermal fluxes are discussed in the paper. One of the important problems of radiation dosimetry in capture therapy is determination of the flux profile and, hence, the dose profile in the brain. This has been achieved by constructing a brain phantom made of TE plastic. The lyoluminescence technique provides a convenient way of monitoring the neutron flux distributions; the detectors for this purpose utilize 6 Li and 10 B compounds. Such compounds have been synthesized specially for the purpose of dosimetry of thermal and epithermal beams. In addition, standard lyoluminescent phosphors, like glutamine, could be used to determine the collisional component of the dose as well as the contribution of the 14 N(n,p) 14 C reaction. Measurements of thermal flux were compared with calculations and with measurements done with activation foils

  16. Advances in neutron capture therapy 2006. Proceedings of 12th international congress on neutron capture therapy

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Kobayashi, Tooru; Fukuda, Hiroshi

    2006-01-01

    The Twelfth International Congress on Neutron Capture Therapy (ICNCT-12) is being held from October 9th to 13th, 2006 at the Kagawa International Congress Hall in Takamatsu, Kagawa, Japan. The main theme of the congress is From the past to the Future'. Five symposiums were organized to accommodate all the contributions from the international scientific committees of the International Society for Neutron Capture Therapy (ISNCT), and two symposiums were added to balance the number of fields of specialties. The seven symposiums for ICNCT-12 are as follows: 1) Clinical Results of BNCT for Brain Tumors, 2) Dosimetry, 3) Treatment Planning system, 4) Drug Delivery System, 5) Biomedical and General Matters, 6) BNCT Systems using Accelerators, 7) New Applications and Protocols for BNCT. There are a total of 195 presentations in this congress: 3 special lectures, 34 symposium presentations, 10 presentations in two special sessions from the recipients of the Ralph G. Fairchild Award, 70 presentations in the oral parallel sessions and 78 presentations in the poster sessions. A compilation of 169 papers are published in this proceedings. The 165 of the presented papers are indexed individually. (J.P.N.)

  17. Proton linacs for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1993-08-01

    Recent advances in the ability to deliver boron-containing drugs to brain tumors have generated interest in ∼4 MeV linacs as sources of epithermal neutrons for radiation therapy. In addition, fast neutron therapy facilities have been studying methods to moderate their beams to take advantage of the high cross section for epithermal neutrons on boron-10. This paper describes the technical issues involved in each approach and presents the motivation for undertaking such studies using the Fermilab linac. the problems which must be solved before therapy can begin are outlined. Status of preparatory work and results of preliminary measurements are presented

  18. Anesthetic management of Boron Neutron Capture Therapy for glioblastoma

    International Nuclear Information System (INIS)

    Shinomura, T.; Furutani, H.; Osawa, M.; Ono, K.; Fukuda, K.

    2000-01-01

    General anesthesia was given to twenty-seven patients who received Boron Neutron Capture Therapy (BNCT) under craniotomy at Kyoto University Research Reactor from 1991 to 1999. Special considerations are required for anesthesia. (author)

  19. Review of the fundamentals of the neutron-capture reaction

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1982-01-01

    Fifty years of research into the nature of the radiative capture reaction mechanisms is briefly summarized. A variety of such mechanisms is exploited to explain neutron capture over nine decades of neutron energy

  20. Beam neutron energy optimization for boron neutron capture therapy using monte Carlo method

    International Nuclear Information System (INIS)

    Pazirandeh, A.; Shekarian, E.

    2006-01-01

    In last two decades the optimal neutron energy for the treatment of deep seated tumors in boron neutron capture therapy in view of neutron physics and chemical compounds of boron carrier has been under thorough study. Although neutron absorption cross section of boron is high (3836b), the treatment of deep seated tumors such as glioblastoma multiform requires beam of neutrons of higher energy that can penetrate deeply into the brain and thermalized in the proximity of the tumor. Dosage from recoil proton associated with fast neutrons however poses some constraints on maximum neutron energy that can be used in the treatment. For this reason neutrons in the epithermal energy range of 10eV-10keV are generally to be the most appropriate. The simulation carried out by Monte Carlo methods using MCBNCT and MCNP4C codes along with the cross section library in 290 groups extracted from ENDF/B6 main library. The ptimal neutron energy for deep seated tumors depends on the sue and depth of tumor. Our estimated optimized energy for the tumor of 5cm wide and 1-2cm thick stands at 5cm depth is in the range of 3-5keV

  1. Radar cross section

    CERN Document Server

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  2. Dosimetry methods in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Artuso, E.; Felisi, M.; Regazzoni, V.; Giove, D. [Universita degli Studi di Milano, Department of Physics, Via Festa del Patrono 7, 20122 Milano (Italy); Agosteo, S.; Barcaglioni, L. [Istituto Nazionale di Fisica Nucleare, Milano (Italy); Campi, F.; Garlati, L. [Politecnico di Milano, Energy Department, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); De Errico, F. [Universita degli Studi di Pisa, Department of Civil and Industrial Engineering, Lungamo Pacinotti 43, 56126 Pisa (Italy); Borroni, M.; Carrara, M. [Fondazione IRCCS Istituto Nazionale Tumori, Medical Physics Unit, Via Venezian 1, 20133 Milano (Italy); Burian, J.; Klupak, V.; Viererbl, L.; Marek, M. [Research Centre Rez, Department of Neutron Physics, 250-68 Husinec-Rez (Czech Republic)

    2014-08-15

    Dosimetry studies have been carried out at thermal and epithermal columns of Lvr-15 research reactor for investigating the spatial distribution of gamma dose, fast neutron dose and thermal neutron fluence. Two different dosimetry methods, both based on solid state detectors, have been studied and applied and the accuracy and consistency of the results have been inspected. One method is based on Fricke gel dosimeters that are dilute water solutions and have good tissue equivalence for neutrons and also for all the secondary radiations produced by neutron interactions in tissue or water phantoms. Fricke gel dosimeters give the possibility of separating the various dose contributions, i.e. the gamma dose, the fast neutron dose and the dose due to charged particles generated during thermal neutron reactions by isotopes having high cross section, like 10-B. From this last dose, thermal neutron fluence can be obtained by means of the kerma factor. The second method is based on thermoluminescence dosimeters. In particular, the developed method draw advantage from the different heights of the peaks of the glow curve of such phosphors when irradiated with photons or with thermal neutrons. The results show that satisfactory results can be obtained with simple methods, in spite of the complexity of the subject. However, the more suitable dosimeters and principally their utilization and analysis modalities are different for the various neutron beams, mainly depending on the relative intensities of the three components of the neutron field, in particular are different for thermal and epithermal columns. (Author)

  3. Dosimetry methods in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Gambarini, G.; Artuso, E.; Felisi, M.; Regazzoni, V.; Giove, D.; Agosteo, S.; Barcaglioni, L.; Campi, F.; Garlati, L.; De Errico, F.; Borroni, M.; Carrara, M.; Burian, J.; Klupak, V.; Viererbl, L.; Marek, M.

    2014-08-01

    Dosimetry studies have been carried out at thermal and epithermal columns of Lvr-15 research reactor for investigating the spatial distribution of gamma dose, fast neutron dose and thermal neutron fluence. Two different dosimetry methods, both based on solid state detectors, have been studied and applied and the accuracy and consistency of the results have been inspected. One method is based on Fricke gel dosimeters that are dilute water solutions and have good tissue equivalence for neutrons and also for all the secondary radiations produced by neutron interactions in tissue or water phantoms. Fricke gel dosimeters give the possibility of separating the various dose contributions, i.e. the gamma dose, the fast neutron dose and the dose due to charged particles generated during thermal neutron reactions by isotopes having high cross section, like 10-B. From this last dose, thermal neutron fluence can be obtained by means of the kerma factor. The second method is based on thermoluminescence dosimeters. In particular, the developed method draw advantage from the different heights of the peaks of the glow curve of such phosphors when irradiated with photons or with thermal neutrons. The results show that satisfactory results can be obtained with simple methods, in spite of the complexity of the subject. However, the more suitable dosimeters and principally their utilization and analysis modalities are different for the various neutron beams, mainly depending on the relative intensities of the three components of the neutron field, in particular are different for thermal and epithermal columns. (Author)

  4. Dynamic stellar neutron-capture nucleosynthesis: the need for more nuclear data for the s-process

    International Nuclear Information System (INIS)

    Mathews, G.J.; Howard, W.M.; Takahashi, K.; Ward, R.A.

    1984-09-01

    We summarize results from a detailed parameter study of the s-process in models which produce an exponential distribution of exposures by sequential irradiations and dredge up in the stellar environment. The calculations are based on a complete network of measured and calculated neutron capture and beta-decay rates as well as estimates for their temperature dependence. In the framework of these models we identify and systematically vary the astrophysical variables which affect the observed solar-system sigmaN (cross section times abundance) curve. Constraints are placed on the s-process neutron exposure and flux as well as the temperatures, densities, neutron pulse shape and inter-pulse period. The results also highlight important needs for better nuclear data in various mass regions. 26 references

  5. Standard cross-section data

    International Nuclear Information System (INIS)

    Carlson, A.D.

    1984-01-01

    The accuracy of neutron cross-section measurement is limited by the uncertainty in the standard cross-section and the errors associated with using it. Any improvement in the standard immediately improves all cross-section measurements which have been made relative to that standard. Light element, capture and fission standards are discussed. (U.K.)

  6. General considerations for neutron capture therapy at a reactor facility

    International Nuclear Information System (INIS)

    Binney, S.E.

    2001-01-01

    In addition to neutron beam intensity and quality, there are also a number of other significant criteria related to a nuclear reactor that contribute to a successful neutron capture therapy (NCT) facility. These criteria are classified into four main categories: Nuclear design factors, facility management and operations factors, facility resources, and non-technical factors. Important factors to consider are given for each of these categories. In addition to an adequate neutron beam intensity and quality, key requirements for a successful neutron capture therapy facility include necessary finances to construct or convert a facility for NCT, a capable medical staff to perform the NCT, and the administrative support for the facility. The absence of any one of these four factors seriously jeopardizes the overall probability of success of the facility. Thus nuclear reactor facility management considering becoming involved in neutron capture therapy, should it be proven clinically successful, should take all these factors into consideration. (author)

  7. Experimental Neutron Capture Rate Constraint Far from Stability.

    Science.gov (United States)

    Liddick, S N; Spyrou, A; Crider, B P; Naqvi, F; Larsen, A C; Guttormsen, M; Mumpower, M; Surman, R; Perdikakis, G; Bleuel, D L; Couture, A; Crespo Campo, L; Dombos, A C; Lewis, R; Mosby, S; Nikas, S; Prokop, C J; Renstrom, T; Rubio, B; Siem, S; Quinn, S J

    2016-06-17

    Nuclear reactions where an exotic nucleus captures a neutron are critical for a wide variety of applications, from energy production and national security, to astrophysical processes, and nucleosynthesis. Neutron capture rates are well constrained near stable isotopes where experimental data are available; however, moving far from the valley of stability, uncertainties grow by orders of magnitude. This is due to the complete lack of experimental constraints, as the direct measurement of a neutron-capture reaction on a short-lived nucleus is extremely challenging. Here, we report on the first experimental extraction of a neutron capture reaction rate on ^{69}Ni, a nucleus that is five neutrons away from the last stable isotope of Ni. The implications of this measurement on nucleosynthesis around mass 70 are discussed, and the impact of similar future measurements on the understanding of the origin of the heavy elements in the cosmos is presented.

  8. Cross sections for atmospheric corrections

    International Nuclear Information System (INIS)

    Meyer, J.P.; Casse, M.; Westergaard, N.

    1975-01-01

    A set of cross sections for spallation of relativistic nuclei is proposed based on (i) the best available proton cross sections, (ii) an extrapolation to heavier nuclei of the dependence on the number of nucleons lost of the 'target factor' observed for C 12 and O 16 by Lindstrom et al. (1975), in analogy with Rudstam's formalism, and (iii) on a normalization of all cross sections to the total cross sections for production of fragments with Asub(f) >= 6. The obtained cross sections for peripheral interactions are not inconsistent with simple geometrical considerations. (orig.) [de

  9. Neutron capture therapy with thermal neutrons at IRT MIFI

    International Nuclear Information System (INIS)

    Zajtsev, K.N.; Portnov, A.A.; Savkin, V.A.; Kulakov, V.N.; Khokhlov, V.F.; Shejno, I.N.; Vajnson, A.A.; Kozlovskaya, N.G.; Meshcherikova, V.V.; Mitin, V.N.; Yarmonenko, S.P.

    2001-01-01

    Combined preclinical investigations into neutron capture therapy are conducted. Malignant melanoma was adopted as the line of investigation; boron-containing and gadolinium-containing preparations were used during the neutron capture therapy working off. Preparations produce secondary varying radiations when used in tumor. Dogs with spontaneous melanoma were used for the experiments. Procedures for the irradiation of dogs by neutron beam as the stage before use for the treatment of oncology patients were finished off; efficiency of neutron beam influence on normal tissues during the irradiation of dogs with melanoma (and without it) in antitumor and side effect sense was estimated [ru

  10. Role of gel dosimeters in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Khajeali, Azim; Farajollahi, Ali Reza; Khodadadi, Roghayeh; Kasesaz, Yaser; Khalili, Assef

    2015-01-01

    Gel dosimeters have acquired a unique status in radiotherapy, especially with the advent of the new techniques in which there is a need for three-dimensional dose measurement with high spatial resolution. One of the techniques in which the use of gel dosimeters has drawn the attention of the researchers is the boron neutron capture therapy. Exploring the history of gel dosimeters, this paper sets out to study their role in the boron neutron capture therapy dosimetric process. - Highlights: • Gel dosimeters have been investigated. • Conventional dosimetric proses of BNCT has been investigated. • Role of gel dosimeters in BNCT has been investigated

  11. Neutron-capture reactions with the R{sup 3}B-CaveC setup

    Energy Technology Data Exchange (ETDEWEB)

    Heine, Marcel [IKP, TU Darmstadt (Germany)

    2014-07-01

    Recent research has shown that the (n,γ) transition-rates on light nuclei can have an influence on the neutron-balance during the r-process. Especially neutron rich carbon isotopes play an important role in r-process nucleo synthesis network calculations which include light nuclei, since these nuclei are aligned along major flow-paths. In particular {sup 18}C is of interest, because it can be interpreted as a waiting point. The {sup 17}C(n,γ){sup 18}C rate could so far only be estimated theoretically and has an uncertainty of a factor of ten [1]. At the R{sup 3}B-CaveC setup at GSI we have measured the (n,γ) time reversed reaction, i.e. {sup 18}C(γ,n){sup 17}C for the above mentioned nucleus, via the Coulomb-breakup of {sup 18}C beam. The kinematically complete measurement allows extracting energy dependent neutron-capture cross section with respect to the excitation energy by using the invariant-mass method. Experimental results are presented in comparison to theoretical calculations.

  12. Neutron capture and (n,2n) measurements on {sup 241}Am

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, D.J.; Jandel, M.; Bredeweg, T.A.; Bond, E.M.; Clement, R.R.; Couture, A.; Haight, R.C.; O' Donnell, J.M.; Reifarth, R.; Rundberg, R.S.; Ullmann, J.L.; Wilhelmy, J.B.; Wouters, J.M. [Los Alamos National Laboratory, NM (United States); Tonchev, A.P.; Hutcheson, A.; Angell, C.T.; Crowell, A.S.; Fallin, B.; Hammond, S.; Howell, C.R.; Karowowski, H.J.; Kelley, J.H.; Pedroni, R.; Tornow, W. [Triangle Univ. Nuclear Laboratory, Durham, NC (United States); Macri, R.A.; Agvaanluvsan, U.; Becker, J.A.; Dashdorj, D.; Stoyer, M.A.; Wu, C.Y. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2008-07-01

    We report on a set of neutron-induced reaction measurements on {sup 241}Am which are important for nuclear forensics and advanced nuclear reactor design. Neutron capture measurements have been performed on the DANCE detector array at the Los Alamos Neutron Scattering Center (LANSCE). In general, good agreement is found with the most recent data evaluations up to an incident neutron energy of about 300 keV where background limits the measurement. Using mono-energetic neutrons produced in the {sup 2}H(d,n){sup 3}He reaction at the Triangle Universities Nuclear Laboratory (TUNL), we have measured the {sup 241}Am(n,2n) excitation function from 7.6 to 14.5 MeV using the activation method. Good agreement is found with previous measurements, with the exception of the three data points reported by Perdikakis et al. around 11 MeV, where we obtain a much lower cross section that is more consistent with theoretical estimates. (authors)

  13. Slow neutron capture therapy for malignant glioma (boron or lithium neutron capture therapy)

    International Nuclear Information System (INIS)

    Hatanaka, Hiroshi

    1981-01-01

    In recurrent glioblastoma, the mean survival period is approx. 6 months by the routine methods of treatment, but is extended more than 3-fold by neutron capture therapy. This method and a routine method with 60 Co or an accelerator were used for comparison in the clinical treatment of 26 patients with supratentorial malignant glioma. There were no significant differences as for prognostic factors of the group treated by this method and those of the control group; No. of cases 14 and 12, the mean age 46 and 53.5 yr, and the stage (TNM) 3.14 and 2.83, respectively. As of the end of Feb. 1980, this method showed a lifeprolonging effect 3 times that of the control, the mean survival period being 67 weeks for this method and 21 for the control. Although 100% improvement was observed in about one half of the cases by this method, the control group showed improvement of only 80% at maximum. It is also possible to treat any deep portion of the brain with thermal neutrons. As a Boron compound, mercaptoundecahydrododecarborate with a low toxicity has been put into practical use for brain tumors, and as Li, the use of 6 LiCl for lung cancer is under examination. (Chiba, N.)

  14. Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Samarium

    International Nuclear Information System (INIS)

    Leinweber, G.; Burke, J.A.; Knox, H.D.; Drindak, N.J.; Mesh, D.W.; Haines, W.T.; Ballad, R.V.; Block, R.C.; Slovacek, R.E.; Werner, C.J.; Trbovich, M.J.; Barry, D.P.; Sato, T.

    2001-01-01

    The purpose of the present work is to accurately measure the neutron cross sections of samarium. The most significant isotope is 149 Sm, which has a large neutron absorption cross section at thermal energies and is a 235 U fission product with a 1% yield. Its cross sections are thus of concern to reactor neutronics. Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic institute (RPI) LINAC facility using metallic and liquid Sm samples. The capture measurements were made at the 25 meter flight station with a multiplicity-type capture detector, and the transmission total cross-section measurements were performed at 15- and 25-meter flight stations with 6 Li glass scintillation detectors. Resonance parameters were determined by a combined analysis of six experiments (three capture and three transmission) using the multi-level R-matrix Bayesian code SAMMY version M2. The significant features of this work are as follows. Dilute samples of samarium nitrate in deuterated water (D 2 O) were prepared to measure the strong resonances at 0.1 and 8 eV without saturation. Disk-shaped spectroscopic quartz cells were obtained with parallel inner surfaces to provide a uniform thickness of solution. The diluent feature of the SAMMY program was used to analyze these data. The SAMMY program also includes multiple scattering corrections to capture yield data and resolution functions specific to the RPI facility. Resonance parameters for all stable isotopes of samarium were deduced for all resonances up to 30 eV. Thermal capture cross-section and capture resonance integral calculations were made using the resultant resonance parameters and were compared to results obtained using resonance parameters from ENDF/B-VI updated through release 3. Extending the definition of the capture resonance integral to include the strong 0.1 eV resonance in 149 Sm, present measurements agree within estimated uncertainties with En

  15. Capture cross-section measurements for different elements at neutron energies between 0.5 and 3.0 MeV

    International Nuclear Information System (INIS)

    Grenier, Gerard; Voignier, Jacques; Joly, Serge.

    1981-03-01

    Neutron capture cross-sections have been measured for the nuclides: Rb, Y, Nb, Gd, W, Pt, Tl, and for the isotopes 155 Gd, 156 Gd, 157 Gd, 158 Gd, 160 Gd, 182 W, 183 W, 184 W, 186 W, 203 Tl and 205 Tl in the 0.5 MeV to 3.0 MeV neutron energy range. Neutron capture cross-sections are determined through direct γ-ray spectrum emitted by the sample. The gamma-rays are detected by a NaI scintillator surrounded by an annular NaI detector. The time-of-flight method is used. Our results are compared with previous data, evaluations and statistical model calculations [fr

  16. Proceedings of the first international symposium on neutron capture therapy

    International Nuclear Information System (INIS)

    Fairchild, R.G.; Brownell, G.L.

    1982-01-01

    This meeting was arranged jointly by MIT and BNL in order to illuminate progress in the synthesis and targeting of boron compounds and to evaluate and document progress in radiobiological and dosimetric aspects of neutron capture therapy. It is hoped that this meeting will facilitate transfer of information between groups working in these fields, and encourage synergistic collaboration

  17. Proceedings of the first international symposium on neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Brownell, G.L. (eds.)

    1982-01-01

    This meeting was arranged jointly by MIT and BNL in order to illuminate progress in the synthesis and targeting of boron compounds and to evaluate and document progress in radiobiological and dosimetric aspects of neutron capture therapy. It is hoped that this meeting will facilitate transfer of information between groups working in these fields, and encourage synergistic collaboration.

  18. Neutron-capture nucleosynthesis in the first stars

    International Nuclear Information System (INIS)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-01-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars.

  19. Feasibility studies of thermonuclear neutron capture synthesis of SHE

    International Nuclear Information System (INIS)

    Meldner, H.W.

    1978-01-01

    A variety of thermonuclear neutron sources and neutron capture targets were investigated for their potential of allowing signigicant production of heavy, perhaps superheavy, isotopes. The neutron sources considered range from inertial confinement microexplosives to (underground) macroexplosives. Optimal capture targets appear to be composites containing uranium and protactinium. 1 figure

  20. NDS multigroup cross section libraries

    International Nuclear Information System (INIS)

    DayDay, N.

    1981-12-01

    A summary description and documentation of the multigroup cross section libraries which exist at the IAEA Nuclear Data Section are given in this report. The libraries listed are available either on tape or in printed form. (author)

  1. Study on the keV neutron capture reaction in {sup 56}Fe and {sup 57}Fe

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Taofeng [Beihang University, International Research Center for Nuclei and Particles in the Cosmos, Beijing (China); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Lee, Manwoo [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Dong-nam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of); Kim, Guinyun [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Ro, Tae-Ik [Dong-A University, Department of Physics, Busan (Korea, Republic of); Kang, Yeong-Rok [Dong-A University, Department of Physics, Busan (Korea, Republic of); Dong-nam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of); Igashira, Masayuki; Katabuchi, Tatsuya [Tokyo Institute of Technology, Research Laboratory for Nuclear Reactors, Tokyo (Japan)

    2014-03-15

    The neutron capture cross-sections and the radiative capture gamma-ray spectra from the broad resonances of {sup 56}Fe and {sup 57}Fe in the neutron energy range from 10 to 90 keV and 550 keV have been measured with an anti-Compton NaI(Tl) detector. Pulsed keV neutrons were produced from the {sup 7}Li (p,n) {sup 7}Be reaction by bombarding the lithium target with the 1.5ns bunched proton beam from the 3MV Pelletron accelerator. The incident neutron spectrum on a capture sample was measured by means of a time-of-flight (TOF) method with a {sup 6}Li -glass detector. The number of weighted capture counts of the iron or gold sample was obtained by applying a pulse height weighting technique to the corresponding capture gamma-ray pulse height spectrum. The neutron capture gamma-ray spectra were obtained by unfolding the observed capture gamma-ray pulse height spectra. To achieve further understanding on the mechanism of neutron radiative capture reaction and study on physics models, theoretical calculations of the γ-ray spectra for {sup 56}Fe and {sup 57}Fe with the POD program have been performed by applying the Hauser-Feshbach statistical model. The dominant ingredients to perform the statistical calculation were the Optical Model Potential (OMP), the level densities described by the Mengoni-Nakajima approach, and the γ-ray transmission coefficients described by γ-ray strength functions. The comparison of the theoretical calculations, performed only for the 550keV point, show a good agreement with the present experimental results. (orig.)

  2. XCOM: Photon Cross Sections Database

    Science.gov (United States)

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  3. Doppler broadening of cross sections

    International Nuclear Information System (INIS)

    Buckler, P.A.C.; Pull, I.C.

    1962-12-01

    Expressions for temperature dependent cross-sections in terms of resonance parameters are obtained, involving generalisations of the conventional Doppler functions, ψ and φ. Descriptions of Fortran sub-routines, which calculate broadened cross-sections in accordance with the derived formulae, are included. (author)

  4. A set-up for measuring neutron cross sections and radiation multiplicity from neutron-nucleus interaction

    International Nuclear Information System (INIS)

    Georgiev, G.P.; Ermakov, V.A.; Grigor'ev, Yu.V.

    1988-01-01

    A multiplicity detector of the ''Romashka'' type has been used on the 500 m flight part of the IBR-30 pulsed reactor. The detector consists of 16 independent sections with NaJ(Tl) crystals with a total volume of 36 liters. The geometric efficiency of single-ray detection is ∼ 80%. The gamma-ray to neutron detection efficiency ratio is ≥600 for neutrons with energies below 200 keV. This detector allows one to perform neutron capture and fission cross section measurements and to study gamma-ray multiplicity and resonance selfabsorption effects in the 20 eV-200keV neutron energy range

  5. Re/Os cosmochronometer: measurement of neutron cross sections

    International Nuclear Information System (INIS)

    Mosconi, M.

    2007-01-01

    This experimental work is devoted to the improved assessment of the Re/Os cosmochronometer. The dating technique is based on the decay of 187 Re (t 1/2 =41.2 Gyr) into 187 Os and determines the age of the universe by the time of onset of nucleosynthesis. The nucleosynthesis mechanisms, which are responsible for the 187 Re/ 187 Os pair, provide the possibility to identify the radiogenic fraction of 187 Os exclusively by nuclear physics considerations. Apart from its radiogenic component, 187 Os can be synthesized otherwise only by the s process, which means that this missing fraction can be reliably determined and subtracted by proper s-process modeling. On the other hand, 187 Re is almost completely produced by the r process. The only information needed for the interpretation as a cosmic clock is the production rate of 187 Re as a function of time. The accuracy of the s-process calculations that are needed to determine the nucleosynthetic abundance of 187 Os depends on the quality of the neutron capture cross sections averaged over the thermal neutron spectrum at the s-process sites. Laboratory measurements of these cross sections have to be corrected for the effect of nuclear levels, which can be significantly populated at the high stellar temperatures during the s process. The neutron capture cross sections of 186 Os, 187 Os and 188 Os have been measured at the CERN n TOF facility in the range between 0.7 eV and 1 MeV. From these data, Maxwellian averaged cross sections have been determined for thermal energies from 5 to 100 keV with an accuracy around 4%, 3%, and 5% for 186 Os, 187 Os, and 188 Os, respectively. Since, the first excited state in 187 Os occurs at 9.75 keV, the cross section of this isotope requires a substantial correction for thermal population of low lying nuclear levels. This effect has been evaluated on the basis of resonance data derived in the (n, γ) experiments and by an improved measurements of the inelastic scattering cross section for

  6. Re/Os cosmochronometer: measurement of neutron cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Mosconi, M.

    2007-12-21

    This experimental work is devoted to the improved assessment of the Re/Os cosmochronometer. The dating technique is based on the decay of {sup 187}Re (t{sub 1/2}=41.2 Gyr) into {sup 187}Os and determines the age of the universe by the time of onset of nucleosynthesis. The nucleosynthesis mechanisms, which are responsible for the {sup 187}Re/{sup 187}Os pair, provide the possibility to identify the radiogenic fraction of {sup 187}Os exclusively by nuclear physics considerations. Apart from its radiogenic component, {sup 187}Os can be synthesized otherwise only by the s process, which means that this missing fraction can be reliably determined and subtracted by proper s-process modeling. On the other hand, {sup 187}Re is almost completely produced by the r process. The only information needed for the interpretation as a cosmic clock is the production rate of {sup 187}Re as a function of time. The accuracy of the s-process calculations that are needed to determine the nucleosynthetic abundance of {sup 187}Os depends on the quality of the neutron capture cross sections averaged over the thermal neutron spectrum at the s-process sites. Laboratory measurements of these cross sections have to be corrected for the effect of nuclear levels, which can be significantly populated at the high stellar temperatures during the s process. The neutron capture cross sections of {sup 186}Os, {sup 187}Os and {sup 188}Os have been measured at the CERN n TOF facility in the range between 0.7 eV and 1 MeV. From these data, Maxwellian averaged cross sections have been determined for thermal energies from 5 to 100 keV with an accuracy around 4%, 3%, and 5% for {sup 186}Os, {sup 187}Os, and {sup 188}Os, respectively. Since, the first excited state in {sup 187}Os occurs at 9.75 keV, the cross section of this isotope requires a substantial correction for thermal population of low lying nuclear levels. This effect has been evaluated on the basis of resonance data derived in the (n, {gamma

  7. Accelerator based neutron source for neutron capture therapy

    International Nuclear Information System (INIS)

    Salimov, R.; Bayanov, B.; Belchenko, Yu.; Belov, V.; Davydenko, V.; Donin, A.; Dranichnikov, A.; Ivanov, A.; Kandaurov, I; Kraynov, G.; Krivenko, A.; Kudryavtsev, A.; Kursanov, N.; Savkin, V.; Shirokov, V.; Sorokin, I.; Taskaev, S.; Tiunov, M.

    2004-01-01

    Full text: The Budker Institute of Nuclear Physics (Novosibirsk) and the Institute of Physics and Power Engineering (Obninsk) have proposed an accelerator based neutron source for neutron capture and fast neutron therapy for hospital. Innovative approach is based upon vacuum insulation tandem accelerator (VITA) and near threshold 7 Li(p,n) 7 Be neutron generation. Pilot accelerator based neutron source for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, Novosibirsk, Russia. In the present report, the pilot facility design is presented and discussed. Design features of facility components are discussed. Results of experiments and simulations are presented. Complete experimental tests are planned by the end of the year 2005

  8. Neutron capture therapy of ocular melanoma: dosimetry and microdosimetry approaches

    International Nuclear Information System (INIS)

    Pignol, J.P.; Methlin, G.; Abbe, J.C.; Lefebvre, O.; Sahel, J.

    1994-01-01

    Neutron capture therapy (NCT) aims at destroying cancerous cells with the α and 7 Li particles produced by the neutron capture reaction on 10 B. This note reports on the study of the boron distribution in tissues on an animal model (nude mice) xenografted with a human ocular melanoma after an i.p.injection of 2g/kg of 10 B-BPA and in cells cultured in the presence of 530 μmol/l of 10 B-BPA. A concentration of 64 ppm of 10 B in the active part of the tumour with a ratio of concentrations versus the skin of 3.7 are observed. Investigations on cells reveal the presence of boron in the cytoplasm. The biological, dosimetric and microdosimetric consequences of these findings are discussed. (authors). 15 refs., 2 tabs., 2 figs

  9. Maxwellian-averaged cross sections calculated from JENDL-3.2

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuneo; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ohsaka, Toshiro; Igashira, Masayuki [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo (Japan)

    2000-02-01

    Maxwellian-averaged cross sections of neutron capture, fission, (n,p) and (n,{alpha}) reactions are calculated from the Japanese Evaluated Nuclear Data Library, JENDL-3.2, for applications in the astrophysics. The calculation was made in the temperature (kT) range from 1 keV to 1 MeV. Results are listed in tables. The Maxwellian-averaged capture cross sections were compared with recommendations of other authors and recent experimental data. Large discrepancies were found among them especially in the light mass nuclides. Since JENDL-3.2 reproduces relatively well the recent experimental data, we conclude that JENDL-3.2 is superior to the others in such a mass region. (author)

  10. Shape Isomer in 236U Populated by Thermal Neutron Capture

    DEFF Research Database (Denmark)

    Andersen, Verner; Christensen, Carl Jørgen; Borggreen, J.

    1976-01-01

    The 116 ns shape isomer in 236U was populated by thermal neutron capture. Conversion electrons and X-rays were detected simultaneously in delayed coincidence with fission. The ratio of delayed to prompt fission was measured with the result, σIIf/σf = (1.0±0.2) × 10−5. A branching of the isomeric ...... decay σIIγ/σIIf = 7±2 was deduced from this number. No definite electron line structure was observed....

  11. Neutron-capture Nucleosynthesis in the First Stars

    Science.gov (United States)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-04-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and The McDonald Observatory of The University of Texas at Austin.

  12. Neutron capture on nitrogen as a means of detecting explosives

    International Nuclear Information System (INIS)

    Thompson, M.N.; Rassool, R.P.

    1995-01-01

    A research prototype was developed on the basis of neutron capture on nitrogen and is demonstrated to be able to detect parcel and letter bombs. Is the gamma radiation that is detected as an indication of the presence of nitrogen, and the probable presence of nitrogen-containing explosive. The conceptual design of the explosive detector and some experimental results are briefly presented. figs., ills

  13. Clinical considerations for neutron capture therapy of brain tumors

    International Nuclear Information System (INIS)

    Madoc-Jones, H.; Wazer, D.E.; Zamenhof, R.G.; Harling, O.K.; Bernard, J.A. Jr.

    1990-01-01

    The radiotherapeutic management of primary brain tumors and metastatic melanoma in brain has had disappointing clinical results for many years. Although neutron capture therapy was tried in the US in the 1950s and 1960s, the results were not as hoped. However, with the newly developed capability to measure boron concentrations in blood and tissue both quickly and accurately, and with the advent of epithermal neutron beams obviating the need for scalp and skull reflection, it should not be possible to mount such a clinical trial of NCT again and avoid serious complications. As a prerequisite, it will be important to demonstrate the differential uptake of boron compound in brain tumor as compared with normal brain and its blood supply. If this can be done, then a trial of boron neutron capture therapy for brain tumors should be feasible. Because boronated phenylalanine has been demonstrated to be preferentially taken up by melanoma cells through the biosynthetic pathway for melanin, there is special interest in a trial of boron neutron capture therapy for metastatic melanoma in brain. Again, the use of an epithermal beam would make this a practical possibility. However, because any epithermal (or thermal) beam must contain a certain contaminating level of gamma rays, and because even a pure neutron beam cases gamma rays to be generated when it interacts with tissue, they think that it is essential to deliver treatments with an epithermal beam for boron neutron capture therapy in fractions in order to minimize the late-effects of low-LET gamma rays in the normal tissue

  14. Modern alchemy: Fred Hoyle and element building by neutron capture

    Science.gov (United States)

    Burbidge, E. Margaret

    Fred Hoyle's fundamental work on building the chemical elements by nuclear processes in stars at various stages in their lives began with the building of elements around iron in the very dense hot interiors of stars. Later, in the paper by Burbidge, Burbidge, Fowler and Hoyle, we four showed that Hoyle's "equilibrium process" is one of eight processes required to make all of the isotopes of all the elements detected in the Sun and stars. Neutron capture reactions, which Fred had not considered in his epochal 1946 paper, but for which experimental data were just becoming available in 1957, are very important, in addition to the energy-generating reactions involving hydrogen, helium, carbon, nitrogen and oxygen, for building all of the elements. They are now providing clues to the late stages of stellar evolution and the earliest history of our Galaxy. I describe here our earliest observational work on neutron capture processes in evolved stars, some new work on stars showing the results of the neutron capture reactions, and data relating to processes ending in the production of lead, and I discuss where this fits into the history of stars in our own Galaxy.

  15. Photon-splitting cross sections

    International Nuclear Information System (INIS)

    Johannessen, A.M.; Mork, K.J.; Overbo, I.

    1980-01-01

    The differential cross section for photon splitting (scattering of one photon into two photons) in a Coulomb field, obtained earlier by Shima, has been integrated numerically to yield various differential cross sections. Energy spectra differential with respect to the energy of one of the outgoing photons are presented for several values of the primary photon energy. Selected examples of recoil momentum distributions and some interesting doubly or multiply differential cross sections are also given. Values for the total cross section are obtained essentially for all energies. The screening effect caused by atomic electrons is also taken into account, and is found to be important for high energies, as in e + e - pair production. Comparisons with various approximate results obtained by previous authors mostly show fair agreement. We also discuss the possibilities for experimental detection and find the most promising candidate to be a measurement of both photons, and their energies, at a moderately high energy

  16. Investigation of the 232Th neutron cross-sections in resonance energy range

    International Nuclear Information System (INIS)

    Grigoriev, Yu.V.; Kitaev, V.Ya.; Sinitsa, V.V.; Zhuravlev, B.V.; Borzakov, S.B.; Faikov-Stanchik, H.; Ilchev, G.L.; Panteleev, Ts.Ts.; Kim, G.N.

    2001-01-01

    The alternative path in the development of atomic energy is the uranium-thorium cycle. In connection with this, the measurements of the 232 Th neutron capture and total cross-sections and its resonance self-shielding coefficients in resonance energy range are necessary because of their low accuracy. In this work, the results of the investigations of the thorium-232 neutron cross-sections are presented. The measurements have been carried out on the gamma-ray multisection liquid detector and neutron detector as a battery of boron counters on the 120 m flight path of the pulsed fast reactor IBR-30. As the filter samples were used the metallic disks of various thickness and diameter of 45 mm. Two plates from metallic thorium with thickness of 0.2 mm and with the square of 4.5x4.5 cm 2 were used as the radiator samples. The group neutron total and capture cross-sections within the accuracy of 2-7% in the energy range of (10 eV-10 keV) were obtained from the transmissions and the sum spectra of g-rays from the fourth multiplicity to the seventh one. The neutron capture group cross-sections of 238 U were used as the standard for obtaining of thorium ones. Analogous values were calculated on the GRUCON code with the ENDF/B-6, JENDL-3 evaluated data libraries. Within the limits of experimental errors an agreement between the experiment and calculation is observed, but in some groups the experimental values are larger than the calculated ones. (author)

  17. Neutron Cross Sections for Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Leif

    1963-08-15

    Total, elastic, inelastic, (n, 2n), (n, {alpha}), (n, p), and (n, {gamma}) cross sections for aluminium have been compiled from thermal to 100 MeV based upon literature search and theoretical interpolations and estimates. Differential elastic cross sections in the centre of mass system are represented by the Legendre coefficients. This method was chosen in order to obtain the best description of the energy dependence of the anisotropy.

  18. Accurate Cross Sections for Microanalysis

    OpenAIRE

    Rez, Peter

    2002-01-01

    To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a...

  19. Spectroscopic Analyses of Neutron Capture Elements in Open Clusters

    Science.gov (United States)

    O'Connell, Julia E.

    The evolution of elements as a function or age throughout the Milky Way disk provides strong constraints for galaxy evolution models, and on star formation epochs. In an effort to provide such constraints, we conducted an investigation into r- and s-process elemental abundances for a large sample of open clusters as part of an optical follow-up to the SDSS-III/APOGEE-1 near infrared survey. To obtain data for neutron capture abundance analysis, we conducted a long-term observing campaign spanning three years (2013-2016) using the McDonald Observatory Otto Struve 2.1-meter telescope and Sandiford Cass Echelle Spectrograph (SES, R(lambda/Deltalambda) ˜60,000). The SES provides a wavelength range of ˜1400 A, making it uniquely suited to investigate a number of other important chemical abundances as well as the neutron capture elements. For this study, we derive abundances for 18 elements covering four nucleosynthetic families- light, iron-peak, neutron capture and alpha-elements- for ˜30 open clusters within 6 kpc of the Sun with ages ranging from ˜80 Myr to ˜10 Gyr. Both equivalent width (EW) measurements and spectral synthesis methods were employed to derive abundances for all elements. Initial estimates for model stellar atmospheres- effective temperature and surface gravity- were provided by the APOGEE data set, and then re-derived for our optical spectra by removing abundance trends as a function of excitation potential and reduced width log(EW/lambda). With the exception of Ba II and Zr I, abundance analyses for all neutron capture elements were performed by generating synthetic spectra from the new stellar parameters. In order to remove molecular contamination, or blending from nearby atomic features, the synthetic spectra were modeled by a best-fit Gaussian to the observed data. Nd II shows a slight enhancement in all cluster stars, while other neutron capture elements follow solar abundance trends. Ba II shows a large cluster-to-cluster abundance spread

  20. Evidence for valence neutron capture in s-wave neutron capture in 38Ar and 54Fe

    International Nuclear Information System (INIS)

    Mughabghab, S.F.

    1975-01-01

    The valence and channel neutron model of Lane and Lynn remarkably account for partial radiative widths of neutron resonances in the 3p-giant resonance. Evidence is presented for valence neutron capture at and in the neighborhood of the 3s-giant resonance in target nuclei 36 Ar and 54 Fe. In addition, the variation of the correlation coefficient rho with the reduction power factor n of the γ ray energy is studied. (4 figures, 1 table) (U.S.)

  1. Precision mass measurements for studies of nucleosynthesis via the rapid neutron-capture process. Penning-trap mass measurements of neutron-rich cadmium and caesium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Dinko

    2016-07-06

    Although the theory for the rapid neutron-capture process (r-process) was developed more than 55 years ago, the astrophysical site is still under a debate. Theoretical studies predict that the r-process path proceeds through very neutron-rich nuclei with very asymmetric proton-to-neutron ratios. Knowledge about the properties of neutron-rich isotopes found in similar regions of the nuclear chart and furthermore suitable for r-process studies is still little or even not existing. The basic nuclear properties such as binding energies, half-lives, neutron-induced or neutron-capture reaction cross-sections, play an important role in theoretical simulations and can vary or even drastically alternate results of these studies. Therefore, a considerable effort was put forward to access neutron-rich isotopes at radioactive ion-beam facilities like ISOLDE at CERN. The goal of this PhD thesis is to describe the experimental work done for the precision mass measurements of neutron-rich cadmium ({sup 129-131}Cd) and caesium ({sup 132,146-148}Cs) isotopes. Measurements were done at the on-line radioactive ion-beam facility ISOLDE by using the four-trap mass spectrometer ISOLTRAP. The cadmium isotopes are key nuclides for the synthesis of stable isotopes around the mass peak A = 130 in the Solar System abundance.

  2. Precision mass measurements for studies of nucleosynthesis via the rapid neutron-capture process Penning-trap mass measurements of neutron-rich cadmium and caesium isotopes

    CERN Document Server

    AUTHOR|(CDS)2085660; Litvinov, Yuri A.; Kreim, Susanne

    Although the theory for the rapid neutron-capture process (r-process) was developed more than 55 years ago, the astrophysical site is still under a debate. Theoretical studies predict that the r-process path proceeds through very neutron-rich nuclei with very asymmetric proton- to-neutron ratios. Knowledge about the properties of neutron-rich isotopes found in similar regions of the nuclear chart and furthermore suitable for r-process studies is still little or even not existing. The basic nuclear properties such as binding energies, half-lives, neutron-induced or neutron-capture reaction cross-sections, play an important role in theoretical simulations and can vary or even drastically alternate results of these studies. Therefore, a considerable effort was put forward to access neutron-rich isotopes at radioactive ion-beam facilities like ISOLDE at CERN. The goal of this PhD thesis is to describe the experimental work done for the precision mass measurements of neutron-rich cadmium (129−131 Cd) and caesium...

  3. Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Niobium

    International Nuclear Information System (INIS)

    NJ Drindak; JA Burke; G Leinweber; JA Helm; JG Hoole; RC Block; Y Danon; RE Slovacek; BE Moretti; CJ Werner; ME Overberg; SA Kolda; MJ Trbovich; DP Barry

    2005-01-01

    Epithermal neutron capture and transmission measurements were performed using the time-of-flight method at the RPI linac using metallic Nb samples. The capture measurements were made at the 25-meter flight station with a 16-section sodium iodide multiplicity detector and the transmission measurements at the 25-meter flight station with a Li-6 glass scintillation detector. Resonance parameters were determined for all resonances up to 500eV with a combined analysis of capture and transmission data using the multi-level R-matrix Bayesian code SAMMY. The present results are compared to those presented in ENDF/B-VI, updated through Release 3

  4. Neutron Capture Gamma-Ray Spectroscopy. Proceedings of the International Symposium on Neutron Capture Gamma-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-11-15

    Experimental capabilities in the field of neutron capture gamma-ray spectroscopy have expanded greatly in the last few years; this has been due in large part to the advent of high-quality Ge(Li) detectors, improvements in electronic data processing, and improvements in bent-crystal spectrometers. Previously unsuspected phenomena, such as the '5. 5-MeV1 anomaly, have appeared and new research tools, such as neutron guide tubes, have been brought into use. Equally exciting developments have occurred in the theory of neutron capture. Complex spectra have yielded to analysis after account had been taken of such effects as vibration, rotation and Coriolis forces, and the theoretical prediction of capture spectra seems to be a future possibility. In view of the International Atomic Energy Agency's close interest in this subject and the need for an international exchange of ideas to analyse and study the latest developments, the organizers of the Symposium felt that work on neutron capture gamma-ray spectroscopy had achieved such valuable and significant results that the time had come for this information to be presented, examined and discussed internationally.

  5. Neutron Capture Gamma-Ray Spectroscopy. Proceedings of the International Symposium on Neutron Capture Gamma-Ray Spectroscopy

    International Nuclear Information System (INIS)

    1969-01-01

    Experimental capabilities in the field of neutron capture gamma-ray spectroscopy have expanded greatly in the last few years; this has been due in large part to the advent of high-quality Ge(Li) detectors, improvements in electronic data processing, and improvements in bent-crystal spectrometers. Previously unsuspected phenomena, such as the '5. 5-MeV1 anomaly, have appeared and new research tools, such as neutron guide tubes, have been brought into use. Equally exciting developments have occurred in the theory of neutron capture. Complex spectra have yielded to analysis after account had been taken of such effects as vibration, rotation and Coriolis forces, and the theoretical prediction of capture spectra seems to be a future possibility. In view of the International Atomic Energy Agency's close interest in this subject and the need for an international exchange of ideas to analyse and study the latest developments, the organizers of the Symposium felt that work on neutron capture gamma-ray spectroscopy had achieved such valuable and significant results that the time had come for this information to be presented, examined and discussed internationally

  6. Low Energy Neutrino Cross Sections

    International Nuclear Information System (INIS)

    Zeller, G.P.

    2004-01-01

    Present atmospheric and accelerator based neutrino oscillation experiments operate at low neutrino energies (Ev ∼ 1 GeV) to access the relevant regions of oscillation parameter space. As such, they require precise knowledge of the cross sections for neutrino-nucleon interactions in the sub-to-few GeV range. At these energies, neutrinos predominantly interact via quasi-elastic (QE) or single pion production processes, which historically have not been as well studied as the deep inelastic scattering reactions that dominate at higher energies.Data on low energy neutrino cross sections come mainly from bubble chamber, spark chamber, and emulsion experiments that collected their data decades ago. Despite relatively poor statistics and large neutrino flux uncertainties, these measurements provide an important and necessary constraint on Monte Carlo models in present use. The following sections discuss the current status of QE, resonant single pion, coherent pion, and single kaon production cross section measurements at low energy

  7. Europium resonance parameters from neutron capture and transmission measurements in the energy range 0.01–200 eV

    International Nuclear Information System (INIS)

    Leinweber, G.; Barry, D.P.; Burke, J.A.; Rapp, M.J.; Block, R.C.; Danon, Y.; Geuther, J.A.; Saglime III, F.J.

    2014-01-01

    Highlights: • Metal samples were sealed and imaged with X-rays to determine sample uniformity. • Eleven new resonances were identified below 100 eV. • The resonance regions of 151 Eu and 153 Eu have been extended from 100 to 200 eV. • The thermal total cross section for 151 Eu was measured, up (9 ± 3)% from ENDF/B-VII.1. • Radiation widths were assigned for all resonances from experimental data. - Abstract: Europium is a good absorber of neutrons suitable for use as a nuclear reactor control material. It is also a fission product in the low-yield tail at the high end of the fission fragment mass distribution. Measurements have been made of the stable isotopes with natural and enriched samples. The linear electron accelerator center (LINAC) at the Rensselaer Polytechnic Institute (RPI) was used to explore neutron interactions with europium in the energy region from 0.01 to 200 eV. Neutron capture and transmission measurements were performed by the time-of-flight technique. Two transmission measurements were performed at flight paths of 15 and 25 m with 6 Li glass scintillation detectors. The neutron capture measurements were performed at a flight path of 25 m with a 16-segment sodium iodide multiplicity detector. Resonance parameters were extracted from the data using the multilevel R-matrix Bayesian code SAMMY. A table of resonance parameters and their uncertainties is presented. To prevent air oxidation metal samples were sealed in airtight aluminum cans in an inert environment. Metal samples of natural europium, 47.8 atom% 151 Eu, 52.2 atom% 153 Eu, as well as metal samples enriched to 98.77 atom% 153 Eu were measured. The measured neutron capture resonance integral for 153 Eu is (9.9 ± 0.4)% larger than ENDF/B-VII.1. The capture resonance integral for 151 Eu is (7 ± 1)% larger than ENDF/B-VII.1. Another significant finding from these measurements was a significant increase in thermal total cross section for 151 Eu, up (9 ± 3)% from ENDF/B-VII.1

  8. Online detection of radiation produced in Boron-10 neutron capture reaction: preliminary studies

    International Nuclear Information System (INIS)

    Portu, A.; Galván, V.; González, S.J.; Thorp, S.; Santa Cruz, G.; Saint Martin, G.; Blostein, J.J.

    2013-01-01

    Boron microdistribution in both tumor and normal tissue sections can be studied by the autoradiography technique in solid state nuclear track detectors (SSNTD). A measurement of boron concentration in tissue is obtained through the evaluation of the density of tracks produced by alpha and lithium ions generated in the neutron capture reaction 10B(n,α) 7 Li. This knowledge is pivotal when a BNCT (Boron Neutron Capture Therapy) protocol is considered. A new methodology is proposed in order to record alpha and lithium events in real time, as light spots superimposed to the tissue section image. CCD (Charge-Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor) are used as detectors, with the advantage of avoiding the superposition of events. Commercial web cams were employed for the preliminary experiments. They were partially disassembled in order to get the sensor chip uncovered. These devices were exposed to different radiation sources: 6.118 MeV alpha particles (252Cf), 0.662 MeV gamma rays ( 137 Cs) and thermal neutrons (moderated 241 Am-Be source, 103n.cm2.seg-1), to analyze the characteristics of the respective images. Pictures from tissue sections put in contact with the sensor surface were also acquired. A software was developed in Matlab to perform the image capture and processing. Early results show the feasibility of using these devices to study the distribution 10B in tissue samples. (author)

  9. High-precision Measurement of the 238U(n,γ) Cross Section with the Total Absorption Calorimeter (TAC) at n_TOF, CERN

    CERN Document Server

    Wright, T; Billowes, J; Ware, T; Cano-Ott, D; Mendoza, E; Massimi, C; Mingrone, F; Gunsing, F; Berthoumieux, E; Lampoudis, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Giubrone, G; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Meaze, M; Mengoni, A; Milazzo, P M; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Weigand, M; Weiß, C; Žugec, P

    2014-01-01

    The neutron capture cross section of U-238 is fundamental to the design and operation of current reactors and future fast nuclear reactors, and thus must be measured to a high level of accuracy. An experiment has been performed at the CERN n TOF facility using a 4 pi Total Absorption Calorimeter (TAC) to measure the capture cross section in the resolved resonance region between 1 eV and 25 keV. A preliminary analysis of the TAC data is presented with particular emphasis to the experimental background in this energy region of interest.

  10. Novel amino-carboxy-dihydroboranes for neutron capture therapy

    International Nuclear Information System (INIS)

    Boehmel, T.

    1985-01-01

    The thesis discusses the following topics: I. Synthesis of boron compounds for the neutron capture therapy which are to meet the following requirements: 1. Low toxicity; 2. High boron content; 3. High enrichment and long retention time in the neoplastic tissue and simultaneous low concentration in blood and normal tissue; 4. Independent cytostatic effects; 5. Functional groups which allow a connection with polymers. II. Presentation of compounds with increased 10 B content. III. Examination of the distribution of boric substances in living organisms by means of a quantitative analysis of the boron content. (orig./PW) [de

  11. Dose modification factors in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B.J. (Australian Nuclear Science and Technology Organization (ANSTO), Menai (Australia))

    1993-01-01

    The effective treatment depth and therapeutic ratio in boron neutron capture therapy (BNCT) depend on a number of macroscopic dose factors such as boron concentrations in the tumor, normal tissue and blood. However, the role of various microscopic dose modification factors can be of critical importance in the evaluation of normal tissue tolerance levels. An understanding of these factors is valuable in designing BNCT experiments and the selection of appropriate boron compounds. These factors are defined in this paper and applied to the case of brain tumors with particular attention to capillary endothelial cells and oligodendrocytes. (orig.).

  12. Experience of boron neutron capture therapy in Japan

    International Nuclear Information System (INIS)

    Kanda, K.

    2004-01-01

    Four research reactors are currently licensed for medical application in Japan. As of July 1995, approximately 210 clinical irradiations using these research reactors have been done for brain and skin tumors as shown. The number of chief medical doctors certified by the Government is eleven so far. Among them, eight doctors have already treated tumor patients using the Kyoto University Reactor (KUR, 5MW). Recently in USA clinical trials have been restarted using epithermal neutrons at MIT and BNL. In this paper, the experience of clinical trials of boron neutron capture therapy (BNCT) which have been performed in Japan, mainly physics studies, are reviewed, and current studies are also introduced

  13. Medical and biological requirements for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Gahbauer, R.; Goodman, J.H.; Kanellitsas, C.; Clendenon, N.; Blue, J.

    1986-01-01

    In conventional radiation therapy, tumor doses applied to most solid tumors are limited by the tolerance of normal tissues. The promise of Boron Neutron Capture Therapy lies in its potential to deposit high doses of radiation very specifically to tumor tissue. Theoretically ratios of tumor to normal tissue doses can be achieved significantly higher than conventional radiotherapeutic techniques would allow. Effective dose distributions obtainable are a complex function of the neutron beam characteristics and the macro and micro distributions of boron in tumor and normal tissues. Effective RBE doses are calculated in tumors and normal tissue for thermal, epithermal and 2 keV neutrons

  14. Ultrastructural changes in tumor cells following boron neutron capture therapy

    International Nuclear Information System (INIS)

    Barkla, D.H.; Brown, J.K.; Meriaty, H.; Allen, B.J.

    1992-01-01

    In a previous study the authors reported on morphological changes in two human melanoma cell lines treated with 10 B-phenylalanine(BPA) and Boron Neutron Capture Therapy(BNCT). The present study describes morphological changes in melanoma and glioma cell lines treated with boron-tetraphenyl porphyrin(BTPP) and BNCT. Porphyrin compounds are selectively taken up by tumor cells and have been used clinically in phototherapy treatment of cancer patients. Boronated porphyrins show good potential as therapeutic agents in BNCT treatment of human cancer patients

  15. Boron neutron capture therapy: Brain Tumor Treatment Evaluation Program

    International Nuclear Information System (INIS)

    Griebenow, M.L.; Dorn, R.V. III; Gavin, P.R.; Spickard, J.H.

    1988-01-01

    The United States (US) Department of Energy (DOE) recently initiated a focused, multidisciplined program to evaluate Boron Neutron Capture Therapy (BNCT) for the treatment of brain tumors. The program, centered at the DOE/endash/Idaho National Engineering Laboratory (INEL), will develop the analytical, diagnostic and treatment tools, and the database required for BNCT technical assessment. The integrated technology will be evaluated in a spontaneously-occurring canine brain-tumor model. Successful animal studies are expected to lead to human clinical trials within four to five years. 2 refs., 3 figs

  16. Analytical applications of neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Lindstrom, R.M.; Paul, R.L.; Anderson, D.L.; Paul, R.L.

    1997-01-01

    Field and industrial applications of neutron capture gamma-ray spectrometry with isotopic sources or neutron generators are economically important. Geochemical exploration in boreholes is done routinely with neutron probes. Coal and ores are assayed with analyzers adjacent to a conveyor belt in dozens of industrial facilities. The use of capture gamma rays for explosives detection has been described in the literature, both for scanning airline baggage and for characterizing obsolete munitions; a packaged system for the latter is available commercially. Generalizations are drawn from the history of the field, and predictions are made about the future usefulness of capture gamma rays. (author)

  17. Quantitative neutron capture radiography for studying the biodistribution of tumor-seeking boron-containing compounds

    International Nuclear Information System (INIS)

    Gabel, D.; Holstein, H.; Larsson, B.; Gille, L.; Ericson, G.; Sacker, D.; Som, P.; Fairchild, R.G.

    1987-01-01

    Biodistribution of two compounds presently considered for use in neutron capture therapy has been studied in mice carrying a transplantable Harding-Passey melanoma. A method is described by which quantitative assessment can be made of the boron distribution in whole-body sections of such animals. An alpha-particle-sensitive film is placed in close contact with a freeze-dried section of an animal and exposed to neutrons. The tracks visible after etching are analyzed optoelectronically in fields of 0.6 X 0.6 mm2 and compared to standards of boron homogeneously distributed in liver homogenates. The dynamic range of this method is about two orders of magnitude in concentration, with a lower detection limit of 0.1 to 0.01 ppm 10 B, depending on the rate of induction of spurious tracks by fast neutrons present in the neutron beam chosen. In a transplantable Harding-Passey melanoma in mice, it was found that the sulfhydryl boron hydride Na2B12H11SH presently used for therapy of glioblastoma clears blood, muscle, and brain very rapidly. Its accumulation in tumors was persistent for more than three days. A higher tumor accumulation was observed with its disulfide, which has been suggested for neutron capture therapy. For both compounds, a marked heterogeneity of boron distribution within one tumor was found

  18. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  19. Pion-nucleus cross sections

    International Nuclear Information System (INIS)

    Barashenkov, V.S.

    1990-01-01

    The tables of inelastic and total cross sections of π ± mesons interactions with nuclei 4 He- 238 U are presented. The tables are obtained by theoretical analysis of known experimental data for energies higher some tens of MeV. 1 ref.; 1 tab

  20. Neutron capture therapy beams at the MIT Research Reactor

    International Nuclear Information System (INIS)

    Choi, J.R.; Clement, S.D.; Harling, O.K.; Zamenhof, R.G.

    1990-01-01

    Several neutron beams that could be used for neutron capture therapy at MITR-II are dosimetrically characterized and their suitability for the treatment of glioblastoma multiforme and other types of tumors are described. The types of neutron beams studied are: (1) those filtered by various thicknesses of cadmium, D2O, 6Li, and bismuth; and (2) epithermal beams achieved by filtration with aluminum, sulfur, cadmium, 6Li, and bismuth. Measured dose vs. depth data are presented in polyethylene phantom with references to what can be expected in brain. The results indicate that both types of neutron beams are useful for neutron capture therapy. The first type of neutron beams have good therapeutic advantage depths (approximately 5 cm) and excellent in-phantom ratios of therapeutic dose to background dose. Such beams would be useful for treating tumors located at relatively shallow depths in the brain. On the other hand, the second type of neutron beams have superior therapeutic advantage depths (greater than 6 cm) and good in-phantom therapeutic advantage ratios. Such beams, when used along with bilateral irradiation schemes, would be able to treat tumors at any depth in the brain. Numerical examples of what could be achieved with these beams, using RBEs, fractionated-dose delivery, unilateral, and bilateral irradiation are presented in the paper. Finally, additional plans for further neutron beam development at MITR-II are discussed

  1. Research on neutron capture therapy in the USSR

    International Nuclear Information System (INIS)

    Ryabukhin, Y.

    1988-01-01

    Research on neutron capture therapy in the USSR began in 1964. Towards 1975 prime knowledge in physics, pharmacology and radiobiology had been accumulated. It was realized that inherent to NCT is a variety of modalities as to the type and location of the tumor, the energy and source of neutrons, the nature and transportation of the nuclide-carrying agent (NCA), etc. Thus, it became likely that some modalities would turn out to be clinically feasible. At the end of the 70s, studies of boron derivatives began at the All-Union Oncological Research Center, Moscow. These studies were stimulated by the clinical trials in Japan. Still, neutron capturing nuclides (NCN) other than 10 b are regarded as promising. Research was aimed at clinical trials that could ensure sufficient safety, convenience and conclusiveness. Hence, new requirements emerged, such as the pre-clinical modeling of NCT in big animals and the monitoring of tumor response to each fraction of NCT. Usual requirements are also to be met, that is: tailoring neutron beams with an adequate intensity and energy, choosing NCNs and finding suitable NCAs, physical and radiobiological planning including adoption of tentative RBEs and time-fractionation regimen, selecting tumors as candidates for NCT, and developing techniques for monitoring NCNs in vivo

  2. Recombination methods for boron neutron capture therapy dosimetry

    International Nuclear Information System (INIS)

    Golnik, N.; Tulik, P.; Zielczynski, M.

    2003-01-01

    The radiation effects of boron neutron capture therapy (BNCT) are associated with four-dose-compartment radiation field - boron dose (from 10 B(n,α) 7 Li) reaction), proton dose from 14 N(n,p) 14 C reaction, neutron dose (mainly fast and epithermal neutrons) and gamma-ray dose (external and from capture reaction 1 H(n,γ) 2 D). Because of this the relation between the absorbed dose and the biological effects is very complex and all the above mentioned absorbed dose components should be determined. From this point of view, the recombination chambers can be very useful instruments for characterization of the BNCT beams. They can be used for determination of gamma and high-LET dose components for the characterization of radiation quality of mixed radiation fields by recombination microdosimetric method (RMM). In present work, a graphite high-pressure recombination chamber filled with nitrogen, 10 BF 3 and tissue equivalent gas was used for studies on application of RMM for BNCT dosimetry. The use of these gases or their mixtures opens a possibility to design a recombination chamber for determination of the dose fractions due to gamma radiation, fast neutrons, neutron capture on nitrogen and high LET particles from (n, 10 B) reaction in simulated tissue with different content of 10 B. (author)

  3. Killing effect of carboranyl uridine on boron neutron capture reaction

    International Nuclear Information System (INIS)

    Takagaki, M.; Oda, Y.; Zhang, Z.

    1994-01-01

    This paper deals with the killing effect of carboranyl uridine (CU) on thermal neutron capture reaction in cultured glioma cell line (C6). The tumoricidal effect of CU for boron neutron capture therapy in the cultured cell system is presented. To assess the uptake of CU, the number of germ cells was determined by comparing protein concentrations of C6 cells in vitro with that of intracranially transplanted C6 tumor cells in vivo. To assess tumoricidal effects of CU, human glioma cells (T98G), containing 25 ppm natural boron of CU, were irradiated with various doses of thermal neutrons at a constant fluence rate. The uptake and killing effects of mercaptoboron and boric acid were also investigated as controls. Subcellular boron concentrations confirmed the selective affinity to the nucleic acid synthesis. CU was found to have an affinity to nucleic acid synthesis and to be accumulated into nucleus of tumor cells. The irradiation dose which yielded 37% survival rate in the case of CU and control were 3.78+12E nvt and 5.80+12E nvt, respectively. The killing effect of CU was slightly higher than that of B-SH or BA. The effective way of CU injection should be further studied to obtain the uniform CU uptake in tumor cells. (N.K.)

  4. Use of neutron-capture plastic fibers for nondestructive assay

    International Nuclear Information System (INIS)

    Heger, A.S.; Grazioso, R.F.; Mayo, D.R.; Ensslin, N.; Miller, M.C.; Huang, H.Y.; Russo, P.A.

    1998-01-01

    Neutron-capture plastic fibers can be used as a nondestructive assay tool. The detectors consist of an active region assembled from ribbons of boron-( 10 B) loaded optical fibers. The mixture of the moderator and thermal neutron absorber in the fiber yields a detector with high efficiency (var-epsilon) and a short die-away time (τ). The deposited energy of the resultant charged particles is converted to light that is collected by photomultiplier tubes mounted at both ends of the fiber. Thermal neutron coincidence counters (TNCC) made of these fibers can serve to verify fissile materials generated from the nuclear fuel cycle. This type of detector may extend the range of materials now accessible to assay by 3 He detectors. Experiments with single fibers of diameters 0.25, 0.50, and 1.00 mm test their ability to distinguish between the signals generated from neutron interactions and those from gamma rays. These results are compared with those obtained from simulation analyses for the same purpose. Light output and attenuation, neutron detection efficiency, and the signal-to-noise ratios of these fibers have also been investigated. The experimental results for light attenuation and neutron detection efficiency are consistent with the values obtained from simulation studies. A comparison of the performance of various configurations of the plastic scintillating fibers with that of other neutron-capture devices such as 3 He detectors is also discussed

  5. Boron neutron capture therapy for malignant melanoma: An experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, B.S.; Larsson, B.; Roberto, A. (Uppsala Univ. (Sweden))

    1989-07-01

    Previous studies have shown that some thioamides, e.g., thiouracil, are incorporated as false precursors into melanin during its synthesis. If boronated analogs of the thioamides share this property, the melanin of melanotic melanomas offers a possibility for specific tumoural uptake and retention of boron as a basis for neutron capture therapy. We report on the synthesis of boronated 1H-1,2,4-triazole-3-thiol (B-TZT), boronated 5-carboxy-2-thiouracil (B-CTU), and boronated 5-diethylaminomethyl-2-thiouracil (B-DEAMTU) and the localization of these substances in melanotic melanomas transplanted to mice. The distribution in the mice was studied by boron neutron capture radiography. B-TZT and B-CTU showed the highest tumour:normal tissue concentration ratios, with tumour:liver ratios of about 4 and tumour:muscle ratios of about 14; B-DEAMTU showed corresponding ratios of 1.4 and 5, respectively. The absolute concentration of boron in the tumours, however, was more than three times higher in the mice injected with B-TZT, compared with B-CTU. The results suggest that B-TZT may be the most promising compound of the three tested with regard to possible therapy of melanotic melanomas.

  6. Production of Molybdenum-99 using Neutron Capture Methods

    Energy Technology Data Exchange (ETDEWEB)

    Toth, James J; Greenwood, Lawrence R; Soderquist, Chuck Z; Wittman, Richard S; Pierson, Bruce D; Burns, Kimberly A; Lavender, Curt A; Painter, Chad L; Love, Edward F; Wall, Donald E

    2011-01-01

    Pacific Northwest National Laboratory (PNNL), operated by Battelle, has identified a reference process for the production of molybdenum-99 (99Mo) for use in a chromatographic generator to separate the daughter product, technetium-99m (99mTc). The reference process uses the neutron capture reaction of natural or enriched molybdenum oxide via the reaction 98Mo(n,γ)99Mo. The irradiated molybdenum is dissolved in an alkaline solution, whereby the molybdenum, dissolved as the molybdate anion, is loaded on a proprietary ion exchange material in the chromatographic generator. The approach of this investigation is to provide a systematic collection of technologies to make the neutron capture method for Mo-99 production economically viable. This approach would result in the development of a technetium Tc99m generator and a new type of target. The target is comprised of molybdenum, either natural or enriched, and is tailored to the design of currently operating U.S. research reactors. The systematic collection of technologies requires evaluation of new metallurgical methods to produce the target, evaluation of target geometries tailored to research reactors, and chemical methods to dissolve the irradiated target materials for use in a chromatographic generator. A Technical specification for testing the target and neutron capture method in a research reactor is also required. This report includes identification of research and demonstration activities needed to enable deployment of neutron capture production method, including irradiations of prototypic targets, chemical processing of irradiated targets, and loading and extraction tests of Mo99 and Tc99m on the sorbent material in a prototypic generator design. The prototypical generator design is based on the proprietary method and systems for isotope product generation. The proprietary methods and systems described in this report are clearly delineated with footnotes. Ultimately, the Tc-99m generator solution provided by

  7. Micromegas detector for $^{33}$S(n,$\\alpha$) cross section measurement at n_TOF

    CERN Multimedia

    The present proposal is a consequence of the successful tests performed in 2011 related to the Letter of Intent CERN-INTC-2010-023/I-092. The main goal of this proposal is a first (n,$\\alpha$) cross section measurement with the Micromegas detector presently running at n_TOF for monitoring purposes and fission cross section measurements. The $^{33}$S(n,$\\alpha$) cross section is of interest in astrophysics mainly due to the origin of $^{36}$S which is still an open question. $^{33}$S is also of interest in medical physics since it has been proposed as a possible/alternative cooperating target to boron neutron capture therapy. Important discrepancies between previous measurements of $^{33}$S(n,$\\alpha$) cross section and especially between the resonance parameters are found in the literature. We propose to measure the (n,$\\alpha$) cross section of the stable isotope $^{33}$S in the energy range up to 300 keV covering the astrophysical range of interest. The possibility of increasing this energy range will be st...

  8. Database of prompt gamma rays from slow neutron capture for elemental analysis

    International Nuclear Information System (INIS)

    Firestone, R.B.; Choi, H.D.; Lindstrom, R.M.; Molnar, G.L.; Mughabghab, S.F.; Paviotti-Corcuera, R.; Revay, Zs; Trkov, A.; Zhou, C.M.; Zerkin, V.

    2004-01-01

    The increasing importance of Prompt Gamma-ray Activation Analysis (PGAA) in a broad range of applications is evident, and has been emphasized at many meetings related to this topic (e.g., Technical Consultants' Meeting, Use of neutron beams for low- and medium-flux research reactors: radiography and materials characterizations, IAEA Vienna, 4-7 May 1993, IAEA-TECDOC-837, 1993). Furthermore, an Advisory Group Meeting (AGM) for the Coordination of the Nuclear Structure and Decay Data Evaluators Network has stated that there is a need for a complete and consistent library of cold- and thermal neutron capture gamma ray and cross-section data (AGM held at Budapest,14-18 October 1996, INDC(NDS)-363); this AGM also recommended the organization of an IAEA CRP on the subject. The International Nuclear Data Committee (INDC) is the primary advisory body to the IAEA Nuclear Data Section on their nuclear data programs. At a biennial meeting in 1997, the INDC strongly recommended that the Nuclear Data Section support new measurements and update the database on Neutron-induced Prompt Gamma-ray Activation Analysis (21st INDC meeting, INDC/P(97)-20). As a consequence of the various recommendations, a CRP on ''Development of a Database for Prompt Gamma-ray Neutron Activation Analysis (PGAA)'' was initiated in 1999. Prior to this project, several consultants had defined the scope, objectives and tasks, as approved subsequently by the IAEA. Each CRP participant assumed responsibility for the execution of specific tasks. The results of their and other research work were discussed and approved by the participants in research co-ordination meetings (see Summary reports: INDC(NDS)-411, 2000; INDC(NDS)-424, 2001; and INDC(NDS)-443, 200). PGAA is a non-destructive radioanalytical method, capable of rapid or simultaneous ''in-situ'' multi-element analyses across the entire Periodic Table, from hydrogen to uranium. However, inaccurate and incomplete data were a significant hindrance in the

  9. About neutron capture therapy method development at WWR-SM reactor in institute of Nuclear Physics of Uzbekistan Academy of Sciences

    International Nuclear Information System (INIS)

    Abdullaeva, G.A.; Baytelesov, S.A.; Dosimbaev, A.A.; Koblik, Yu.N.; Gritsay, O.O.

    2006-01-01

    Full text: Neutron capture therapy (NCT) is developing method of swellings treatment, on which specialists set one's serious hopes, as at its realization the practical possibilities of the effect on any swellings open. The essence of method is simple and lies in the fact that to the swelling enter preparation containing boron or gadolinium, which one have a large capture cross-section of the thermal and slow neutrons. Then the swelling is irradiated once with the slow (epithermal) neutron beam with fluency about 10 9 neutrons /sm 2 s for a short time and single. As a result of thermal neutrons capture by the boron (or gadolinium) nuclei secondary radiation which affecting swelling cells is emitted. NCT of oncologic diseases makes the specific demands to physical parameters of neutron beams. Now research reactors are often used for NCT. However, research reactor WWR-SM (INP, Uzbekistan AS, Tashkent) doesn't provide with the epithermal neutron beams and to develop this technique the reactor, first of all, needs for obtaining the epithermal neutron beams with energy spectrum in range from 1 eV up to 10 keV and with intensity ∼ 10 9 neutron /sm 2 s. Practically it is connected with upgrade of at least one of existed reactor channels, namely with equipping with the special equipment (filters), forming from the reactor spectrum the beam of necessary energy neutrons. It requires realization of preliminary model calculations, including calculations of capture cross-sections, of filters types and their geometrical parameters on the basis of optimal selected materials. Such calculations, as a rule, are carried out on the basis of Monte-Carlo method and designed software for calculation of nuclear reactor physical and technical characteristics [1]. In this work the calculation results of devices variants and problems discussion, related with possibility of WWR-SM reactor using for NCT are presented. (author)

  10. Atomic Data for Neutron-capture Elements I. Photoionization and Recombination Properties of Low-charge Selenium Ions

    Science.gov (United States)

    Sterling, N. C.; Witthoeft, Michael

    2011-01-01

    We present multi-configuration Breit-Pauli AUTOSTRUCTURE calculations of distorted-wave photoionization (PI) cross sections. and total and partial final-state resolved radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for the first six ions of the trans-iron element Se. These calculations were motivated by the recent detection of Se emission lines in a large number of planetary nebulae. Se is a potentially useful tracer of neutron-capture nucleosynthesis. but accurate determinations of its abundance in photoionized nebulae have been hindered by the lack of atomic data governing its ionization balance. Our calculations were carried out in intermediate coupling with semi re1ativistic radial wavefunctions. PI and recombination data were determined for levels within the ground configuration of each ion, and experimental PI cross-section measurements were used to benchmark our results. For DR, we allowed (Delta)n = 0 core excitations, which are important at photoionized plasma temperatures. We find that DR is the dominant recombination process for each of these Se ions at temperatures representative of photoionized nebulae (approx.10(exp 4) K). In order to estimate the uncertainties of these data, we compared results from three different configuration-interaction expansions for each ion, and also tested the sensitivity of the results to the radial scaling factors in the structure calculations. We find that the internal uncertainties are typically 30-50% for the direct PI cross sections and approx.10% for the computed RR rate coefficients, while those for low-temperature DR can be considerably larger (from 15-30% up to two orders of magnitude) due to the unknown energies of near-threshold autoionization resonances. These data are available at the CDS, and fitting coefficients to the total RR and DR rate coefficients are presented. The results are suitable for incorporation into photoionization codes used to numerically simulate

  11. Neutron cross sections for fusion

    International Nuclear Information System (INIS)

    Haight, R.C.

    1979-10-01

    First generation fusion reactors will most likely be based on the 3 H(d,n) 4 He reaction, which produces 14-MeV neutrons. In these reactors, both the number of neutrons and the average neutron energy will be significantly higher than for fission reactors of the same power. Accurate neutron cross section data are therefore of great importance. They are needed in present conceptual designs to calculate neutron transport, energy deposition, nuclear transmutation including tritium breeding and activation, and radiation damage. They are also needed for the interpretation of radiation damage experiments, some of which use neutrons up to 40 MeV. In addition, certain diagnostic measurements of plasma experiments require nuclear cross sections. The quality of currently available data for these applications will be reviewed and current experimental programs will be outlined. The utility of nuclear models to provide these data also will be discussed. 65 references

  12. Negative ion detachment cross sections

    International Nuclear Information System (INIS)

    Champion, R.L.; Doverspike, L.D.

    1992-10-01

    The authors have measured absolute cross sections for electron detachment and charge exchange for collision of O and S with atomic hydrogen, have investigated the sputtering and photodesorption of negative ions from gas covered surfaces, and have begun an investigation of photon-induced field emission of electrons from exotic structures. Brief descriptions of these activities as well as future plans for these projects are given below

  13. Microscopic cross sections: An utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2010-07-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  14. Microscopic cross sections: An utopia?

    International Nuclear Information System (INIS)

    Hilaire, S.; Koning, A.J.; Goriely, S.

    2010-01-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations.While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  15. The Measurement of Epithermal-to-Thermal U-238 Neutron Capture Rate (ρ28) in Aagesta Power Reactor Fuel

    International Nuclear Information System (INIS)

    Bernander, G.

    1967-09-01

    The epithermal-to-thermal neutron capture rate ratio ρ 28 in U-238 in Aagesta fuel has been measured by the chemical separation method. The method involves the isolation of Np-239 from uranium and fission products by reversed phase partition chromatography. Although somewhat elaborate, and in spite of difficulties with residual fission products, the method has yielded reasonably accurate results. Further development work on chemical procedures may lead to some improvement. A comparison with the coincidence method - electronic separation of activities - has not shown any large systematic differences between the two methods. The separation of the epithermal U-235 activation from the total has been achieved by means of the '1/v subtraction technique' using copper foils as the 1/v monitor. The complementary thermal column irradiations required have been performed in the research reactors TRIGA (Helsinki) and R1 (Stockholm). From the measured ρ 28 values the resonance escape probability (p) and the initial conversion ratio (ICR) may be calculated using cross-section data and other lattice parameters. Comparisons with theoretical values of ρ and ICR as calculated with the BURNUP lattice parameter code are favourable

  16. The Measurement of Epithermal-to-Thermal U-238 Neutron Capture Rate in Aagesta Power Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bernander, G

    1967-09-15

    The epithermal-to-thermal neutron capture rate ratio {rho}{sub 28} in U-238 in Aagesta fuel has been measured by the chemical separation method. The method involves the isolation of Np-239 from uranium and fission products by reversed phase partition chromatography. Although somewhat elaborate, and in spite of difficulties with residual fission products, the method has yielded reasonably accurate results. Further development work on chemical procedures may lead to some improvement. A comparison with the coincidence method - electronic separation of activities - has not shown any large systematic differences between the two methods. The separation of the epithermal U-235 activation from the total has been achieved by means of the '1/v subtraction technique' using copper foils as the 1/v monitor. The complementary thermal column irradiations required have been performed in the research reactors TRIGA (Helsinki) and R1 (Stockholm). From the measured {rho}{sub 28} values the resonance escape probability (p) and the initial conversion ratio (ICR) may be calculated using cross-section data and other lattice parameters. Comparisons with theoretical values of {rho} and ICR as calculated with the BURNUP lattice parameter code are favourable.

  17. Considerations for boron neutron capture therapy studies; Consideracoes sobre o estudo da BNCT (terapia de captura neutronica por boro)

    Energy Technology Data Exchange (ETDEWEB)

    Faria Gaspar, P de

    1994-12-31

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps.

  18. The Swedish facility for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Skoeld, K.; Capala, J. [Studsvik Medical AB (Sweden); Kierkegaard, J.; Haakansson, R. [Studsvik Nuclear AB (Sweden); Gudowska, I. [Karolinska Institute (Sweden)

    2000-10-01

    A BNCT (Boron Neutron Capture Therapy) facility has been constructed at the R2-0 reactor at Studsvik, Sweden. R2-0 is a 1 MW, open core, pool reactor. The reactor core is suspended on a movable tower and can be positioned anywhere in the pool. The BNCT facility includes two adjacent, parallel filter/moderator configurations and the reactor core is positioned in front of any of them as appropriate. One of the resulting neutron beams has been optimized for clinical irradiations with a filter/moderator system that allows easy variation of the neutron spectrum from the thermal to the epithermal energy range and with an extended collimator for convenient patient positioning. The other beam has been designed for radiobiological research and is equipped with a heavy water moderator and a large irradiation cavity with a uniform field of thermal neutrons. (author)

  19. Boron compounds in neutron capture therapy of tumors

    International Nuclear Information System (INIS)

    Strouf, O.; Gregor, V.

    1986-01-01

    In the selective incorporation of a sufficient amount of a compound containing boron isotope 10 B in the tumor tissue for neutron capture therapy, high efficiency is achieved in tumor destruction while sparing the surrounding tissues. In the treatment of brain tumors, 4-carboxy phenylboric acid and the disodium salt of mercaptoundecahydrododecaborate were successfully tested. The use of the compounds minimizes radiation damage to the blood stream of the brain. In case of melanomas the L-DOPA-borate complex, boronophenylalanine and chlorpromazine preparations containing 10 B are used. In the treatment of cancer of the reproductive organs, boron derivatives of estradiol and testosterone have been proven. The immunobiological procedure, i.e., the use of antibodies with bound boron compounds, is being intensively studied. (M.D.)

  20. Physical engineering and medical physics on boron neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori

    2011-01-01

    The contents of physical engineering and medical physics that support boron neutron capture therapy (BNCT) can be roughly classified to the four items, (1) neutron irradiation system, (2) development and improvement of dose assessment techniques, (3) development and improvement of dose planning system, and (4) quality assurance and quality control. This paper introduces the BNCT at Kyoto University Research Reactor Institute, with a focus on the basic physics of BNCT, thermal neutron irradiation and epithermal neutron irradiation, heavy water neutron irradiation facilities of KUR, and medical irradiation system of KUR. It also introduces the world's first BNCT clinical cyclotron irradiation system (C-BENS) of Kyoto University Research Reactor Institute, BNCT dose assessment techniques, dose planning system, and quality assurance and quality control. (A.O.)

  1. A large animal model for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Gavin, P.R.; Kraft, S.L.; DeHaan, C.E.; Moore, M.P.; Griebenow, M.L.

    1992-01-01

    An epithermal neutron beam is needed to treat relatively deep seated tumors. The scattering characteristics of neutrons in this energy range dictate that in vivo experiments be conducted in a large animal to prevent unacceptable total body irradiation. The canine species has proven an excellent model to evaluate the various problems of boron neutron capture utilizing an epithermal neutron beam. This paper discusses three major components of the authors study: (1) the pharmacokinetics of borocaptate sodium (NA 2 B 12 H 11 SH or BSH) in dogs with spontaneously occurring brain tumors, (2) the radiation tolerance of normal tissues in the dog using an epithermal beam alone and in combination with borocaptate sodium, and (3) initial treatment of dogs with spontaneously occurring brain tumors utilizing borocaptate sodium and an epithermal neutron beam

  2. Development of inverse-planning system for neutron capture therapy

    International Nuclear Information System (INIS)

    Kumada, Hiroaki; Yamamoto, Kazuyoshi; Maruo, Takeshi

    2006-01-01

    To lead proper irradiation condition effectively, Japan Atomic Energy Agency (JAEA) is developing an inverse-planning system for neutron capture therapy (NCT-IPS) based on the JAEA computational dosimetry system (JCDS) for BNCT. The leading methodology of an optimum condition in the NCT-IPS has been applied spatial channel theory with adjoint flux solution of Botzman transport. By analyzing the results obtained from the adjoint flux calculations according to the theory, optimum incident point of the beam against the patient can be found, and neutron spectrum of the beam which can generate ideal distribution of neutron flux around tumor region can be determined. The conceptual design of the NCT-IPS was investigated, and prototype of NCT-IPS with JCDS is being developed. (author)

  3. The Swedish facility for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Skoeld, K.; Capala, J.; Kierkegaard, J.; Haakansson, R.; Gudowska, I.

    2000-01-01

    A BNCT (Boron Neutron Capture Therapy) facility has been constructed at the R2-0 reactor at Studsvik, Sweden. R2-0 is a 1 MW, open core, pool reactor. The reactor core is suspended on a movable tower and can be positioned anywhere in the pool. The BNCT facility includes two adjacent, parallel filter/moderator configurations and the reactor core is positioned in front of any of them as appropriate. One of the resulting neutron beams has been optimized for clinical irradiations with a filter/moderator system that allows easy variation of the neutron spectrum from the thermal to the epithermal energy range and with an extended collimator for convenient patient positioning. The other beam has been designed for radiobiological research and is equipped with a heavy water moderator and a large irradiation cavity with a uniform field of thermal neutrons. (author)

  4. Neutron capture measurements and resonance parameters of dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S.G.; Kye, Y.U.; Namkung, W.; Cho, M.H. [Pohang University of Science and Technology, Division of Advanced Nuclear Engineering, Pohang, Gyeongbuk (Korea, Republic of); Kang, Y.R.; Lee, M.W. [Dongnam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of); Kim, G.N. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Ro, T.I. [Dong-A University, Department of Physics, Busan (Korea, Republic of); Danon, Y.; Williams, D. [Rensselaer Polytechnic Institute, Department of Mechanical, Aerospace, and Nuclear Engineering, Troy, NY (United States); Leinweber, G.; Block, R.C.; Barry, D.P.; Rapp, M.J. [Naval Nuclear Laboratory, Knolls Atomic Power Laboratory, Schenectady, NY (United States)

    2017-10-15

    Neutron capture yields of dysprosium isotopes ({sup 161}Dy, {sup 162}Dy, {sup 163}Dy, and {sup 164}Dy) were measured using the time-of-flight method with a 16 segment sodium iodide multiplicity detector. The measurements were made at the 25m flight station at the Gaerttner LINAC Center at Rensselaer Polytechnic Institute. Resonance parameters were obtained using the multilevel R-matrix Bayesian code SAMMY. The neutron capture data for four enriched dysprosium isotopes and one natural dysprosium sample were sequentially fitted. New resonances not listed in ENDF/B-VII.1 were observed. There were 29 and 17 new resonances from {sup 161}Dy and {sup 163}Dy isotopes, respectively. Six resonances from {sup 161}Dy isotope, two resonances from {sup 163}Dy, and four resonances from {sup 164}Dy were not observed. The capture resonance integrals of each isotope were calculated with the resulting resonance parameters and those of ENDF/B-VII.1 in the energy region from 0.5 eV to 20 MeV and were compared to the capture resonance integrals with the resonance parameters from ENDF/B-VII.1. A resonance integral value of the natural dysprosium calculated with present resonance parameters was 1405 ± 3.5 barn. The value is ∝ 0.3% higher than that obtained with the ENDF/B-VII.1 parameters. The distributions of the present and ENDF/B-VII.1 neutron widths were compared to a Porter-Thomas distribution. Neutron strength functions for {sup 161}Dy and {sup 163}Dy were calculated with the present resonance parameters and both values were in between the values of ''Atlas of Neutron Resonances'' and ENDF/B-VII.1. The present radiation width distributions of {sup 161}Dy and {sup 163}Dy were fitted with the χ{sup 2} distribution by varying the degrees of freedom. (orig.)

  5. Physico-technical progress in neutron-capture therapy method

    International Nuclear Information System (INIS)

    Kanda, Keiji; Furubayashi, Toru; Aoki, Kazuhiko

    1985-01-01

    This paper describes mainly development studies on the determination method of in vivo 10 B for the purpose of employment for neutron capture therapy for malignant melanoma and other tumors. To darify the efficacy of the neutron capture therapy, it is necessary to determine 10 B concentration in the diseased part. This study aimed at in vivo 10 B concention determination in living sample to the level of ppm order with 10 % of analytical error within 1 hour, and these determination conditions were satified by prompt γ-ray (478 keV) determination of 10 B (n, αγ) 7 Li reaction. This method required no sample pretreatment. Further, data normalization by γ-ray of H(n, γ)D reaction permitted no disturbance by sample shape or size. Lower limit of detection of the proposed method was estimated in terms of measuring time and statistical error by the equations of 10 B concentration and error analysis derived by the authors. As for the effect of prompt γ-rays of 23 Na(n, γ) 24 Na and 6 Li(n, γ) 7 Li reactions, it was clarified that the former showed no disturbance but some correction was necessary in case of less than 0.1 g of smaple size owing to the latter reaction. In vivo sample determination showed the proposed method was practical. In this paper some results of phantom experiment for in vivo non-destructive 10 B measurement and related simulation calculation, and examination of effect of (γ, n) reaction in heavy water of biomedical irradiation equipment on radiation quality were also described. (Takagi, S.)

  6. Photonuclear reactions of U-233 and Pu-239 near threshold induced by thermal neutron capture gamma rays

    International Nuclear Information System (INIS)

    Moraes, M.A.P. de.

    1990-01-01

    The photonuclear cross sections of U-293 and Pu-239 have been studied by using monochromatic and discrete photons, in the energy interval from 5.49 to 9.72 MeV, produced by thermal neutron capture. The gamma fluxes incident on the samples were measured using a ( 3 x 3 )'' NaI (TI) crystal. The photofission fragments were detected in Makrofol-Kg (SSNTD). A possible structure was observed in the U-233 cross sections, near 7.23 MeV. The relative fissionability of the nuclides was determined at each excitation energy and shown to be energy independent: ( 2.12 ± 0.25) for U-233 and ( 3.32 ± 0.41 ) for Pu-239. The angular distribution of photofission fragments of Pu-239 were measured at two mean excitation energies of 5.43 and 7.35 MeV. An anisotropic distribution of ( 12.2 ± 3.6 ) % was observed at 5.43 MeV. The total neutron cross sections were measured by using a long counter detector. The photoneutron cross sections were calculated by using energy dependent neutron multiplicities values, γ(E), obtained in the literature. The competition Γn/γf was also determined at each excitation energy, and shown to be energy independent: ( 0.54 ± 0.05 ) for U-233 and ( 0.44 ± 0.05 ) for Pu-239, and were correlated to the parameters Z sup(2)/A, ( Ef'-Bn'), A. According to the FUJIMOTO-YAMAGUCHI and CONSTANT NUCLEAR TEMPERATURE models, the nuclear temperatures were calculated. The total photoabsorption cross sections were also calculated as a sum of the photofission and photoneutron cross sections at each energy excitation. From these results the competition Γf/ΓA, called fission probability Pf, were obtained: ( 0.66 ± 0.02) for U-233 and ( 0.70 ± 0.02 ) for Pu-239. (author)

  7. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  8. In vitro and in vivo studies in boron neutron capture therapy of malignant melanoma

    International Nuclear Information System (INIS)

    Allen, B.J.

    1982-01-01

    A multidisciplinary research project in boron neutron capture therapy of malignant melanoma is under consideration by the Australian Atomic Energy Commission. This paper reviews the biochemistry of melanoma and the properties of some melanoma-affined radiopharmaceuticals and their boron analogues. Human cell lines are being used for in vitro tests of uptake and incorporation of some of these compounds, and selected lines will then be implanted in nude mice for in vivo distribution studies. The fidelity of human melanoma xenografts in nude mice has been well studied, and results are reviewed in this paper. Boron concentration will be measured directly by plasma arc emission spectroscopy or liquid scintillation counting with 14 C-labelled boron analogues. Track-etch techniques will be used for the microscopic determination of boron in tumor sections. Neutron irradiation and radiobiology experiments are outlined

  9. [Fast neutron cross section measurements

    International Nuclear Information System (INIS)

    1991-01-01

    In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months

  10. Boron neutron capture synovectomy at SINQ in Switzerland

    International Nuclear Information System (INIS)

    Crompton, N.E.A.; Kuehne, G.; Crawford, J.; Gay, S.; Pap, T.

    2000-01-01

    One percent of the Swiss population suffers from the crippling disease rheumatoid arthritis (RA) of the hand with associated inflammation of various finger joints. Loss of manual dexterity results in a greatly reduced quality of life, especially in the elderly. Current medical treatment of pharmaceutically unresponsive RA involves either surgery or application of the β-emitters: Yttrium or Erbium. However, both procedures have disadvantages. The small size of the finger joints makes surgery impractical and is therefore not practiced in Switzerland. However, application of Yttrium or Erbium presents a radiation protection problem because the arthritic joint has the potential to leak. For this reason application of β-emitters for RA does not have FDA approval in the US. A promising alternative has recently been under investigation at MIT: Neutron Capture Synovectomy (NCS). Treatment of the arthritic human hand, in particular the metacarpopharangeal and proximal interpharangeal finger joints, involves prior injection of an enriched Boron-10 compound and subsequent irradiation with thermal neutrons. This method avoids the drawbacks of the existing treatments. Introduction of NCS to the SINQ will require preclinical studies to establish the treatment conditions necessary and the effectivity of the planned treatment (Phase 0). The studies will include neutron exposures of cell cultures and joint samples at the new neutron capture radiography facility (NCR) on the cold neutron guide 13. Introduction of NCS will also require construction of a suitable treatment facility for human patients at Sektor 80 of SINQ. Prerequisites which ensure comfortable and expedient treatment of the patient and exposure conditions respecting the demands of radiation protection regulations and the complete safety of the patient must be fulfilled in the construction of the NCS treatment facility. A temporary construction is envisaged for the early clinical trials (Phase I). A more permanent

  11. Neutron-capture reactions by stable and unstable neutron-rich nuclei and their relevance for nucleosynthesis in hot and explosive astrophysical scenarios

    International Nuclear Information System (INIS)

    Hofinger, R.

    1997-10-01

    This thesis deals on the one hand with neutron-capture reactions by carbon-, nitrogen-, oxygen- and sulfur-isotopes, and on the other hand with the two-step processes 4 He(2n, γ) 6 He and 9 Li(2n, γ) 11 Li. Some of the involved carbon-, nitrogen- and oxygen-isotopes possess neutron-halos characterized by the unexpected large radial extension of the nuclear matter density distribution. Special attention is paid to the halo properties in the calculation of the direct neutron capture cross section. For the determination of the nuclear structure, models are used, when no experimental information is available. The results for the reaction rates are compared to previously used rates. The rates obtained in this work are partly orders of magnitude higher than the previously used reaction rates. The reaction rates for the two-step processes are on the one hand calculated assuming a two-step process, on the other hand from genuine three-body models for the process of photodisintegration of the nuclei 6 He and 11 Li. It turns out that the calculations assuming a trio-step process underestimate the reaction rates by orders of magnitude. The influence of the reaction rate for the reaction 4 He(2n, γ) 6 He and the formation of 12 C is examined in a nuclear reaction network under conditions which are typical for the α- process in supernovae of type II. It turns out that under these conditions the influence of the reaction 4 He(2n, γ) 6 He is negligible on the formation of 12 C. (author)

  12. K+ nucleus total cross sections

    International Nuclear Information System (INIS)

    Sawafta, R.

    1990-01-01

    The scattering of K + mesons from nuclei has attracted considerable interest in the last few years. The K + holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K + is capable of probing the entire volume of the nucleus. Single scattering of the K + with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K + is used to compare the nucleon in the nucleus with a free nucleon

  13. Terahertz radar cross section measurements.

    Science.gov (United States)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-06

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  14. Boron neutron capture therapy in cancer: past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Pisarev, Mario A.; Dagrosa, Maria Alejandra; Juvenal, Guilermo J. [National Atomic Energy Commission, Buenos Aires (Argentina). Div. of Nuclear Biochemistry; University of Buenos Aires (Argentina). School of Medicine. Dept. of Human Biochemistry

    2007-07-15

    Undifferentiated thyroid cancer (UTC) is a very aggressive tumor with no effective treatment, since it lacks iodine uptake and does not respond to radio or chemotherapy. The prognosis of these patients is bad, due to the rapid growth of the tumor and the early development of metastasis. Boron neutron capture therapy (BNCT) is based on the selective uptake of certain boron non-radioactive compounds by a tumor, and the subsequent irradiation of the area with an appropriate neutron beam. {sup 10}B is then activated to {sup 11}B, which will immediately decay releasing alpha particles and {sup 7}Li, of high linear energy transfer (LET) and limited reach. Clinical trials are being performed in patients with glioblastoma multiform and melanoma. We have explored its possible application to UTC. Our results demonstrated that a cell line of human UTC has a selective uptake of borophenylalanine (BPA) both in vitro and after transplantation to nude mice. Treatment of mice by BNCT led to a complete control of growth and cure of 100% of the animals. Moreover dogs with spontaneous UTC also have a selective uptake of BPA. At the present we are studying the biodistribution of BPA in patients with UTC before its application in humans. (author)

  15. Synovectomy by Neutron capture; Sinovectomia por captura de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Torres M, C. [Centro Regional de Estudios Nucleares, Universidad Autonoma de Zacatecas, C. Cipres 10, Fracc. La Penuela, 98000 Zacatecas (Mexico)

    1998-12-31

    The Synovectomy by Neutron capture has as purpose the treatment of the rheumatoid arthritis, illness which at present does not have a definitive curing. This therapy requires a neutron source for irradiating the articulation affected. The energy spectra and the intensity of these neutrons are fundamental since these neutrons induce nuclear reactions of capture with Boron-10 inside the articulation and the freely energy of these reactions is transferred at the productive tissue of synovial liquid, annihilating it. In this work it is presented the neutron spectra results obtained with moderator packings of spherical geometry which contains in its center a Pu{sup 239} Be source. The calculations were realized through Monte Carlo method. The moderators assayed were light water, heavy water base and the both combination of them. The spectra obtained, the average energy, the neutron total number by neutron emitted by source, the thermal neutron percentage and the dose equivalent allow us to suggest that the moderator packing more adequate is what has a light water thickness 0.5 cm (radius 2 cm) and 24.5 cm heavy water (radius 26.5 cm). (Author)

  16. Hyper-thermal neutron irradiation field for neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kanda, Keiji

    1994-01-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum of a Maxwell distribution higher than the room temperature of 300 K, has been studied in order to improve the thermal neutron flux distribution in a living body for a deep-seated tumor in neutron capture therapy (NCT). Simulation calculations using MCNP-V3 were carried out in order to investigate the characteristics of the hyper-thermal neutron irradiation field. From the results of simulation calculations, the following were confirmed: (i) The irradiation field of the hyper-thermal neutrons is feasible by using some scattering materials with high temperature, such as Be, BeO, C, SiC and ZrH 1.7 . Especially, ZrH 1.7 is thought to be the best material because of good characteristics of up-scattering for thermal neutrons. (ii) The ZrH 1.7 of 1200 K yields the hyper-thermal neutrons of a Maxwell-like distribution at about 2000 K and the treatable depth is about 1.5 cm larger comparing with the irradiation of the thermal neutrons of 300 K. (iii) The contamination by the secondary gamma-rays from the scattering materials can be sufficiently eliminated to the tolerance level for NCT through the bismuth layer, without the larger change of the energy spectrum of hyper-thermal neutrons. ((orig.))

  17. Boron neutron capture therapy for recurrent head and neck malignancies

    International Nuclear Information System (INIS)

    Kato, Itsuro; Ono, Koji; Sakurai, Yoshinori

    2006-01-01

    To avoid severe impairment of oro-facial structures and functions, it is necessary to explore new treatments for recurrent head and neck malignancies (HNM). Boron neutron capture therapy (BNCT) is tumor-cell targeted radiotherapy that has significant superiority over conventional radiotherapies in principle. So far for 4 years and 3 months, we have treated with 37 times of BNCT for 21 patients (14 squamous cell carcinomas (SCC), 4 salivary gland carcinomas and 3 sarcomas) with a recurrent and far advanced HNM since 2001. Results are (1) 10 B concentration of tumor/normal tissue ratio (T/N ratio) of FBPA-PET studies were SCC: 1.8-5.7, sarcoma: 2.5-4.0, parotid tumor: 2.5-3.7. (2) Therapeutic effects were CR: 6cases, PR: 11cases, PD: 3cases NE (not evaluated): 1case. Response rate was 81%. (3) Improvement of QOL such as a relief of severe pain, bleeding, and exudates at the local lesion, improvement of PS, disappearance of ulceration, covered with normal skin and preserved oral and maxillofacial functions and tissues. (4) Survival periods after BNCT were 1-51 months (mean: 9.8 months). 4-year survival rate was 39% by Kaplan-Meier analysis. (5) A few adverse-effects such as transient mucositis, alopecia were recognized. These results indicate that BNCT represents a new and promising treatment approach for advanced HNM. (author)

  18. Carborane derivative development for boron neutron capture therapy. Final report

    International Nuclear Information System (INIS)

    Barnum, Beverly A.; Yan Hao; Moore, Roger; Hawthorne, M. Frederick; Baum, Kurt

    1999-01-01

    Boron Neutron Capture Therapy [BNCT] is a binary method of cancer therapy based on the capture of neutrons by a boron-10 atom [ 10 B]. Cytotoxic 7 Li nuclei and α-particles are emitted, with a range in tissue of 9 and 5 microm, respectively, about one cell diameter. The major obstacle to clinically viable BNCT is the selective localization of 5-30 ppm 10 B in tumor cells required for effective therapy. A promising approach to BNCT is based on hydrophilic boron-rich oligomeric phosphate diesters, or ''trailers'' that have been shown to concentrate selectively in tumor tissue. Examples of these compounds were prepared previously at high cost using an automated DNA synthesizer. Direct synthesis methods are needed for the production of gram-scale quantities for further biological evaluation. The work accomplished as a result of the collaboration between Fluorochem, Inc. and UCLA demonstrates that short oligomers containing at least five carborane units with four phosphodiester linkages can be prepared in substantial quantities. This work was accomplished by the application of standard phosphoramidite coupling chemistry

  19. Current status of accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Kreiner, A. J.; Bergueiro, J.; Di Paolo, H.; Castell, W.; Vento, V. Thatar; Cartelli, D.; Kesque, J.M.; Valda, A.A.; Ilardo, J.C.; Baldo, M.; Erhardt, J.; Debray, M.E.; Somacal, H.R.; Estrada, L.; Sandin, J.C. Suarez; Igarzabal, M.; Huck, H.; Padulo, J.; Minsky, D.M.

    2011-01-01

    The direct use of proton and heavy ion beams for radiotherapy is a well established cancer treatment modality, which is becoming increasingly widespread due to its clear advantages over conventional photon-based treatments. This strategy is suitable when the tumor is spatially well localized. Also the use of neutrons has a long tradition. Here Boron Neutron Capture Therapy (BNCT) stands out, though on a much smaller scale, being a second-generation promising alternative for tumors which are diffuse and infiltrating. On this sector, so far only nuclear reactors have been used as neutron sources. In this paper we describe the current situation worldwide as far as the use of accelerator-based neutron sources for BNCT is concerned (so-called Accelerator-Based (AB)-BNCT). In particular we discuss the present status of an ongoing project to develop a folded Tandem-ElectroStatic-Quadrupole (TESQ) accelerator at the Atomic Energy Commission of Argentina. The project goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams to perform BNCT for deep-seated tumors in less than an hour. (author)

  20. Neutron spectrum for neutron capture therapy in boron

    International Nuclear Information System (INIS)

    Medina C, D.; Soto B, T. G.; Baltazar R, A.; Vega C, H. R.

    2016-10-01

    Glioblastoma multiforme is the most common and aggressive of brain tumors and is difficult to treat by surgery, chemotherapy or conventional radiation therapy. One treatment alternative is the Neutron Capture Therapy in Boron, which requires a beam modulated in neutron energy and a drug with 10 B able to be fixed in the tumor. When the patients head is exposed to the neutron beam, they are captured by the 10 B and produce a nucleus of 7 Li and an alpha particle whose energy is deposited in the cancer cells causing it to be destroyed without damaging the normal tissue. One of the problems associated with this therapy is to have an epithermal neutrons flux of the order of 10 9 n/cm 2 -sec, whereby irradiation channels of a nuclear research reactor are used. In this work using Monte Carlo methods, the neutron spectra obtained in the radial irradiation channel of the TRIGA Mark III reactor are calculated when inserting filters whose position and thickness have been modified. From the arrangements studied, we found that the Fe-Cd-Al-Cd polyethylene filter yielded a ratio between thermal and epithermal neutron fluxes of 0.006 that exceeded the recommended value (<0.05), and the dose due to the capture gamma rays is lower than the dose obtained with the other arrangements studied. (Author)

  1. Development of lithium target for accelerator based neutron capture therapy

    International Nuclear Information System (INIS)

    Taskaev, Sergey; Bayanov, Boris; Belov, Victor; Zhoorov, Eugene

    2006-01-01

    Pilot innovative accelerator based neutron source for neutron capture therapy of cancer is now of the threshold of its operation at the BINP, Russia. One of the main elements of the facility is lithium target producing neutrons via threshold 7 Li(p,n) 7 Be reaction at 25 kW proton beam with energies 1.915 MeV or 2.5 MeV. The main problems of lithium target were determined to be: 7 Be radioactive isotope activation keeping lithium layer solid, presence of photons due to proton inelastic scattering on lithium nuclei, and radiation blistering. The results of thermal test of target prototype were presented as previous NCT Congress. It becomes clear that water is preferable for cooling the target, and that lithium target 10 cm in diameter is able to run before melting. In the present report, the conception of optimal target is proposed: thin metal disk 10 cm in diameter easy for detaching, with evaporated thin layer of pure lithium from the side of proton beam exposure, its back being intensively cooled with turbulent water flow to maintain lithium layer solid. Design of the target for the neutron source constructed at BINP is shown. The results of investigation of radiation blistering and lithium layer are presented. Target unit of facility is under construction now, and obtaining neutrons is expected in nearest future. (author)

  2. Boron-containing thioureas for neutron capture therapy

    International Nuclear Information System (INIS)

    Ketz, H.

    1993-01-01

    Melanin is produced in large amounts in malignant melanotic melanomas. Because thiourea compounds are covalently incorporated into melanin during its biosynthesis, the preparation of boronated thiourea-derivatives is of particular interest for the BNCT (Boron Neutron Capture Therapy). Accumulation of boron in tumors by means of boronated thiourea-derivatives may therefore provide levels of 10 B which are useful for BNCT. In BNCT the tumor containing the boron compound is irradiated with epithermal neutrons to generate He- and Li-nuclei from the 10 B which can then destroy the tumor cells. Because of the short ranges of these particles (approximately one cell diameter) the damage will be almost exclusively confined to the tumor leaving normal tissue unharmed. High accumulation of 2-mercapto-1-methylimidazole (methimazole) in melanotic melanomas has been described in the literature. Boronated derivatives of methimazole were therefore synthesized. Boron was in the form of a boronic acid, a nido-carbonate and a mercaptoundeca hydro-closo-dodecaborate (BSH). The synthesis of the boron cluster derivatives of methimazole (nido-carborate- and BSH-derivatives) with 9 resp. 12 boron atoms in the molecule were expected to achieve higher concentrations of boron in the tumor than in the case of the boronic acid compound with its single boron atom. (orig.) [de

  3. Possible application of boron neutron capture therapy to canine osteosarcoma

    International Nuclear Information System (INIS)

    Takeuchi, Akira

    1985-01-01

    Possibility for successful treatment of canine osteosarcoma by boron neutron capture therapy (BNCT) was demonstrated based upon an uptake study of the boron compound and an experimental treatment by BNCT. In the up take study following intravenous administration of Na 2 B 12 H 11 SH, satisfactorily higher boron concentration with some variation between tumors is likely to be obtained 12 hours after the administration, together with significantly lower boron levels in blood and bone. Based upon these results, osteosarcoma of a mongrel dog was successfully treated by BNCT. The tumor received approximately 3800 rads with single neutron irradiation (approximately 1.4 x 10 13 n./cm 2 ) about 12 hours after intravenous infusion of Na 2 B 12 H 11 SH of 96 % enriched 10 B in the ratio of 50 mg 10 B/kg. Clinical and radiographical improvements were remarkable and no neoplastic cell was found in any part of the original neoplastic lesion and its surrounding tissue at the time of autopsy after 30 days. (author)

  4. Boron neutron capture therapy for children with malignant brain tumor

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Komatsu, Hisao; Kageji, Teruyoshi; Tsuji, Fumio; Matsumoto, Keizo; Kitamura, Katsuji; Hatanaka, Hiroshi; Minobe, Takashi.

    1993-01-01

    Among the 131 cases with brain tumors treated by boron-neutron capture therapy (BNCT), seventeen were children. Eight supratentorial tumors included five astrocytomas(grade 2-4), two primitive neuroectodermal tumors (PNET) and one rhabdomyosarcoma. Seven pontine tumors included one astrocytoma, one PNET and 5 unverified gliomas. Two cerebellar tumors (PNET and astrocytoma) were also treated. All pontine tumors showed remarkable decrease in size after BNCT. However, most of them showed regrowth of the tumors because the neutrons were insufficient due to the depth. Four cases with cerebral tumor died of remote cell dissemination, although they all responded to BNCT. One of them survived 7 years after repeated BNCTs. An 11 years old girl with a large astrocytoma in the right frontal lobe has lived more than 11 years and is now a draftswoman at a civil engineering company after graduating from a technical college. An 8 years old girl with an astrocytoma in the left occipital lobe has no recurrence of the tumor for 2 years and attends on elementary school without mental and physical problems. Two children (one year old girl and four years old boy) with cerebellar tumors have shown showed an excellent growth after BNCT and had no neurological deficits. Mental and physical development in patients treated by BNCT is usually better than that in patients treated by conventional radiotherapy. (author)

  5. The chemical consequences of thermal neutron capture in alkali selenates

    International Nuclear Information System (INIS)

    Duplatre, G.; Vargas, J.I.

    1977-01-01

    The initial retention of the SeO 4 2- ion after thermal neutron capture has been studied in various matrices by chemical analysis. A comparison between the thermal behaviour of the chemically analyzed Sesup(IV) and the disappearance of the E.P.R. species SeO 3 - and SeO 4 3- showed that the retention fraction would include all species with oxidation state higher or equal to VI. The retentions observed in the different matrices show the existence of four families with respective retentions of: 2.6%[K 2 SeO 4 diluted in (NH 4 ) 2 SO 4 ], 9.2% [anhydrous and hydrated Li and Ca selenates; K 2 SeO 4 diluted in NaIO 3 ; Se + implanted in K 2 SeO 4 ; Triglycine selenate], 21.5% [K 2 SeO 4 diluted in KNO 3 , K 2 SO 4 , Na 2 WO 4 and Na 2 WO 4 .2H 2 O] and 32.0% [Na,K and Cs selenates]. Whereas chemical considerations may be invoked for the (NH 4 ) 2 SO 4 matrix, a mechanical model is proposed for the three other groups. (author)

  6. Computational Dosimetry and Treatment Planning Considerations for Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Nigg, David Waler

    2003-01-01

    Specialized treatment planning software systems are generally required for neutron capture therapy (NCT) research and clinical applications. The standard simplifying approximations that work well for treatment planning computations in the case of many other modalities are usually not appropriate for application to neutron transport. One generally must obtain an explicit three-dimensional numerical solution of the governing transport equation, with energy-dependent neutron scattering completely taken into account. Treatment planning systems that have been successfully introduced for NCT applications over the past 15 years rely on the Monte Carlo stochastic simulation method for the necessary computations, primarily because of the geometric complexity of human anatomy. However, historically, there has also been interest in the application of deterministic methods, and there have been some practical developments in this area. Most recently, interest has turned toward the creation of treatment planning software that is not limited to any specific therapy modality, with NCT as only one of several applications. A key issue with NCT treatment planning has to do with boron quantification, and whether improved information concerning the spatial biodistribution of boron can be effectively used to improve the treatment planning process. Validation and benchmarking of computations for NCT are also of current developmental interest. Various institutions have their own procedures, but standard validation models are not yet in wide use

  7. Gadolinium neutron capture therapy for brain tumors. Biological aspects

    International Nuclear Information System (INIS)

    Takagaki, Masao; Oda, Yoshifumi; Matsumoto, Masato; Kikuchi, Haruhiko; Kobayashi, Tooru; Kanda, Keiji; Ujeno, Yowri.

    1994-01-01

    This study investigated the tumoricidal effect of gadolinium neutron capture therapy (Gd-NCT) in in vitro and in vivo systems using Gd-DTPA. In in vitro study, a certain amount of Gd-DTPA, yielding 5000 ppm Gd-n, was added to human glioma cells, T98G, upon which thermal neutrons were exposed. After irradiation, the cells were incubated and the colonies were counted 10 days later. In in vivo study, Fisher-344 rats with experimentally induced gliosarcoma cells (9L) were exposed to thermal neutrons at a fluence rate of 3E+9/s for 1 h immediately after iv injection of Gd-DTPA. Two weeks after irradiation, brain samples were histologically examined. Tumor clearance of Gd-DTPA was also determined. In vitro analysis showed that a 1% survival level was obtained at 3.75E+12 (n/cm 2 ) for the Gd (+) medium and 2.50E+13 (n/cm 2 ) for the Gd (-) medium. In in vivo analysis, the concentration of Gd in 9L-rat brain tumor after iv injection of 0.2 mg/kg Gd-DTPA was found to be less than 100 ppm, but Gd-NCT on 9L-rat brain tumor administered with a ten-fold dose showed a substantial killing effect on tumor without serious injury to the normal brain structure. The killing effect of Gd-NCT was confirmed in in vitro and in vivo systems. (N.K.)

  8. Irradiation system for neutron capture therapy using the small accelerator

    International Nuclear Information System (INIS)

    Kobayashi, Tooru; Hoshi, Masaharu

    2002-01-01

    Neutron capture therapy (NCT) is to kill tumor cells that previously incorporated the stable isotope which generates heavy charged particles with a short range and a high linear energy transfer (LET) on neutron irradiation. Boron-10 is ordinarily used as such an isotope. The tumor tissue is neutron-irradiated at craniotomy after preceding craniotomy for tumor extraction: therefore two surgeries are required for the present NCT in Japan. The reactions 10 B(n, αγ) 7 Li and 7 Li (p, n) 7 Be are thought preferential for patients and doctors if a convenient small accelerator, not the reactor used at present, is available in the hospital because only one craniotomy is sufficient. Authors' examinations of the system for NCT using the small accelerator involve irradiation conditions, desirable energy spectrum of neutron, characterization of thermal and epi-thermal neutrons, social, practical and technical comparison of the reactor and accelerator, and usefulness of the reaction 7 Li (p, n) 7 Be. The system devoted to the NCT is awaited in future. (K.H.)

  9. Gamma spectrum following neutron capture in {sup 167}Er

    Energy Technology Data Exchange (ETDEWEB)

    Visser, D.; Khoo, T.L.; Lister, C.J. [and others

    1995-08-01

    Statistical decay from a highly excited state samples all the lower-lying states and, hence, provides a sensitive measure of the level density. Pairing has a major impact on the level density, e.g. creating a pair gap between the 0- and 2-quasiparticle configurations. Hence the shape of the statistical spectrum contains information on pairing, and can be used to provide information on the reduction of pairing with thermal excitation energy. For this reason, we measured the complete spectrum of {gamma}rays following thermal neutron capture in {sup 167}Er. The experiment was performed at the Brookhaven reactor using Compton-suppressed Ge detectors from TESSA. The spectrum, which was corrected for detector response and efficiency, reveals primary (first-step, high-energy) transitions up to nearly 8 MeV, secondary (last-step, lower-energy) transitions, as we as a continuous statistical component. Effort was expanded to identify all lines from contaminant sources and an upper limit of 5% was tentatively set for their contributions. The spectral shape of the statistical spectrum will be compared with theoretical spectra obtained from a calculation of pairing which accounts for a stepwise reduction of the pair correlations as the number of quasiparticles increases. The primary lines which decay directly to the near-yrast states will also be used to deduce the level densities.

  10. Clinical results of boron neutron capture therapy (BNCT) for glioblastoma

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, H.

    2011-01-01

    The purpose of this study was to evaluate the clinical outcome of BSH-based intra-operative BNCT (IO-BNCT) and BSH and BPA-based non-operative BNCT (NO-BNCT). We have treated 23 glioblastoma patients with BNCT without any additional chemotherapy since 1998. The median survival time (MST) of BNCT was 19.5 months, and 2-year, 3-year and 5-year survival rates were 26.1%, 17.4% and 5.8%, respectively. This clinical result of BNCT in patients with GBM is superior to that of single treatment of conventional radiotherapy compared with historical data of conventional treatment. - Highlights: ► In this study, we evaluate the clinical outcome of boron neutron capture therapy (BNCT) for malignant brain tumors. ► We have treated 23 glioblastoma (GBM) patients with BNCT without any additional chemotherapy. ► Clinical results of BNCT in patients with GBM are superior to that of single treatment of conventional radiotherapy compared with historical data of conventional treatment.

  11. 10B uptake by cells for boron neutron capture synovectomy

    International Nuclear Information System (INIS)

    Binello, E.; Yanch, J.C.; Shortkroff, S.

    2000-01-01

    Boron Neutron Capture Synovectomy (BNCS) proposes to use the 10 B(n,α) 7 Li reaction to ablate inflamed synovium (a tissue lining articular joints) in patients with Rheumatoid Arthritis. Boron uptake is an important parameter for treatment design. In this study, a simple method was developed to determine K 2 B 12 H 12 (KBH) uptake in vitro by non-adhering monocytic cells (representative of synovial cells in inflamed joints). Uptake was quantified as a function of incubation time and boron concentration, as well as following washout: no significant difference was found between incubation times tested; average uptake ranged from 55 to 60% of 10 B incubation concentrations varying from 1000 to 5000 ppm: approximately 15% of the 10 B concentration was measured upon re-incubation in boron-free medium. These results agree well with those obtained ex vivo using human arthritic synovium, a significant finding in light of the difficulty typically associated with obtaining such tissue. The full characterization of 10 B uptake for BNCS (with KBH) is discussed. (author)

  12. Boron neutron capture therapy for malignant brain tumor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yoshinobu [National Kagawa Children`s Hospital, Takamatsu, Kagawa (Japan)

    1998-03-01

    Since 1968, we have treated 149 patients and performed boron-neutron capture therapy (BNCT) on 164 occasions using 5 reactors in Japan. There were 64 patients with glioblastoma, 39 patients with anaplastic astrocytoma and 17 patients with low grade astrocytoma (grade 1 or 2). There were 30 patients with other types of tumor. The overall response rate in the glioma patients was 64%. Seven patients (12%) of glioblastoma, 22 patients (56%) of anaplastic astrocytoma and 8 patients (62%) of low grade astrocytoma lived more than 2 years Median survival time of glioblastoma was 640 days. Median survival times of patients with anaplastic astrocytoma was 1811 days, and 1669 days in low grade astrocytoma. Six patients (5 glioblastoma and one anaplastic astrocytoma) died within 90 days after BNCT. Six patients lived more than 10 years. Histological grading, age of the patients, neutron fluence at the target point and target depth or size of the tumor were proved to be important factors. BNCT is an effective treatment for malignant brain tumors. We are now became able to radiate the tumor more correctly with a high enough dose of neutron beam even if we use thermal neutron beam. (author)

  13. Neutron cross sections: Book of curves

    International Nuclear Information System (INIS)

    McLane, V.; Dunford, C.L.; Rose, P.F.

    1988-01-01

    Neuton Cross Sections: Book of Curves represents the fourth edition of what was previously known as BNL-325, Neutron Cross Sections, Volume 2, CURVES. Data is presented only for (i.e., intergrated) reaction cross sections (and related fission parameters) as a function of incident-neutron energy for the energy range 0.01 eV to 200 MeV. For the first time, isometric state production cross sections have been included. 11 refs., 4 figs

  14. Nuclear Forensics and Radiochemistry: Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-08

    The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.

  15. JENDL gas-production cross section file

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Narita, Tsutomu

    1992-05-01

    The JENDL gas-production cross section file was compiled by taking cross-section data from JENDL-3 and by using the ENDF-5 format. The data were given to 23 nuclei or elements in light nuclei and structural materials. Graphs of the cross sections and brief description on their evaluation methods are given in this report. (author)

  16. Integral nucleus-nucleus cross sections

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Kumawat, H.

    2003-01-01

    Expressions approximating the experimental integral cross sections for elastic and inelastic interactions of light and heavy nuclei at the energies up to several GeV/nucleon are presented. The calculated cross sections are inside the corridor of experimental errors or very close to it. Described in detail FORTRAN code and a numerical example of the cross section approximation are also presented

  17. Determination of neutron cross sections and resonance parameters for vanadium, the stable thallium isotopes, and the stable tellurium isotopes. Progress report, October 1, 1976--October 31, 1977

    International Nuclear Information System (INIS)

    Winters, R.R.

    1977-10-01

    The analysis of the neutron capture cross section data for 51 V + n has now been completed up to 215 keV. Using a few neutron widths and spin and parity assignments from the literature, the capture data has yielded estimates of radiative widths for 45 s-wave resonances and capture areas for 139 resonances. Of particular interest is the very large s-wave radiative widths for this reaction and the rather broad distribution of radiative widths. A paper describing these results is included with this report. The analysis of the neutron capture cross sections for the reaction 205 Tl(n,γ) is presently being extended to incident neutron energy 115 keV. The study of the scattered-beam sensitivity of the total energy detectors at the ORELA capture facility continues. This small but troublesome effect has now been parameterized, but the errors to be assigned to the parameterization are not yet well defined. However, in obtaining additional data for the parameterization, a series of 208 Pb(n,γ) cross section measurements were made. The analysis of these data led to results important in understanding stellar nucleosynthesis and are reported in a paper included with this report. the analysis of the Te(n,γ) data proceeds methodically but slowly

  18. [Fast neutron cross section measurements

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1992-01-01

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ''clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ''data production'' phase

  19. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part I: boron neutron capture therapy models.

    Science.gov (United States)

    Culbertson, C N; Wangerin, K; Ghandourah, E; Jevremovic, T

    2005-08-01

    The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for neutron capture therapy related modeling. A boron neutron capture therapy model was analyzed comparing COG calculational results to results from the widely used MCNP4B (Monte Carlo N-Particle) transport code. The approach for computing neutron fluence rate and each dose component relevant in boron neutron capture therapy is described, and calculated values are shown in detail. The differences between the COG and MCNP predictions are qualified and quantified. The differences are generally small and suggest that the COG code can be applied for BNCT research related problems.

  20. Gadolinium as an element for neutron capture therapy

    International Nuclear Information System (INIS)

    Brugger, R.M.; Liu, H.B.; Laster, B.H.; Gordon, C.R.; Greenberg, D.D.; Warkentien, L.S.

    1992-01-01

    At BNL, preparations are being made to test in vitro compounds containing Gd and compare their response to the response of GD-DTPA to determine if one or several compounds can be located that enter the cells and enhance the Auger effect. Two similar rotators with positions for cell vials that have been constructed for these tests. The first rotator is made of only paraffin which simulates healthy tissue and provides control curves. The second rotator has 135 ppM of Gd-157 in the paraffin to simulate a Gd loaded tumor. Cells are irradiated in vials in the paraffin rotator and in the Gd-paraffin rotator at the epithermal beam of the Brookhaven Medical Research Reactor (BMRR). This produces an irradiation similar to what a patient would receive In an actual treatment. A combination of irradiations are made with both rotators; with no Gd compound or IdUrd In the cell media, with only Gd compound in the cell media and with both Gd compound and IdUrd in the cell media. The first set shows the effects of gamma rays from the H(n,gamma) reaction and the prompt gamma rays from capture of neutrons by Gd. The second set shows if there is any effect of Gd being in the cell media or inside the cells, i.e., an Auger effect. The third set shows the effect of enhancement by the IdUrd produced by the gamma rays from neutrons captured by either H or Gd. The fourth set combines all of the reactions and enhancements. Preliminary calculations and physical measurements of the doses that the cells will receive In these rotators have been made

  1. The radiation biology of Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Coderre, J.A.

    2003-01-01

    Boron Neutron Capture Therapy (BNCT) produces a complex mixture of high and low-LET radiations in tissue. Using data on the biological effectiveness of these various dose components, derived primarily in small animals irradiated with thermal neutrons, it has been possible to express clinical BNCT doses in photon-equivalent units. The accuracy of these calculated doses in normal tissue and tumor will be reviewed. Clinical trials are underway at a number of centers. There are differences in the neutron beams at these centers, and differences in the details of the clinical protocols. Ideally, data from all centers using similar boron compounds and treatment protocols should be compared and combined, if appropriate, in a multi-institutional study in order to strengthen statistical analysis. An international dosimetry exchange is underway that will allow the physical doses from the various treatment centers to be quantitatively compared. As a first step towards the comparison of the clinical data, the normal brain tolerance data from the patients treated in the initial Brookhaven National Laboratory and the Harvard/MIT BNCT clinical trials have been compared. The data provide a good estimate of the normal brain tolerance for a somnolence syndrome endpoint, and provide guidance for setting normal brain tolerance limits in ongoing and future clinical trials. Escalation of the dose in BNCT can be accomplished by increasing the amount of the boron compound administered, increasing the duration of the neutron exposure, or both. The dose escalations that have been carried out to date at the various treatment centers will be compared and contrasted. Possible future clinical trials using BNCT in combination with other modalities will be discussed

  2. Large animal normal tissue tolerance with boron neutron capture.

    Science.gov (United States)

    Gavin, P R; Kraft, S L; DeHaan, C E; Swartz, C D; Griebenow, M L

    1994-03-30

    Normal tissue tolerance of boron neutron capture irradiation using borocaptate sodium (NA2B12H11SH) in an epithermal neutron beam was studied. Large retriever-type dogs were used and the irradiations were performed by single dose, 5 x 10 dorsal portal. Fourteen dogs were irradiated with the epithermal neutron beam alone and 35 dogs were irradiated following intravenous administration of borocaptate sodium. Total body irradiation effect could be seen from the decreased leukocytes and platelets following irradiation. Most values returned to normal within 40 days postirradiation. Severe dermal necrosis occurred in animals given 15 Gy epithermal neutrons alone and in animals irradiated to a total peak physical dose greater than 64 Gy in animals following borocaptate sodium infusion. Lethal brain necrosis was seen in animals receiving between 27 and 39 Gy. Lethal brain necrosis occurred at 22-36 weeks postirradiation. A total peak physical dose of approximately 27 Gy and blood-boron concentrations of 25-50 ppm resulted in abnormal magnetic resonance imaging results in 6 months postexamination. Seven of eight of these animals remained normal and the lesions were not detected at the 12-month postirradiation examination. The bimodal therapy presents a complex challenge in attempting to achieve dose response assays. The resultant total radiation dose is a composite of low and high LET components. The short track length of the boron fission fragments and the geometric effect of the vessels causes much of the intravascular dose to miss the presumed critical target of the endothelial cells. The results indicate a large dose-sparing effect from the boron capture reactions within the blood.

  3. New compounds for neutron capture therapy (NCT) and their significance

    International Nuclear Information System (INIS)

    Fairchild, R.G.; Bond, V.P.

    1982-01-01

    Clearly the most effective tumor therapy would be obtained by the selective targeting of cytotoxic agents to tumor cells. Although many biomolecules are known to be taken up in tumors, the targeting of cytotoxic agents to tumors is limited by the fact that other essential cell pools compete with equal or even greater effectiveness. The approach of delivering stable non-toxic isotopes to tumor, with activation by means of an external radiation beam, is advantageous for two reasons: (1) it obviates problems associated with high uptake of isotopes in normal tissues, as these cell pools can be excluded from the radiation field, and (2) the general tumor area can be included in the activating beam field; thus, the possibility exists that all microscopic tumor extensions can be irradiated. As long as range of reaction products is short, dose will be restricted to the tumor, with a resultant high therapeutic ratio. This method can be accomplished with either photon activation therapy (PAT) or Neutron Capture Therapy (NCT), the latter will be emphasized here. The range of the high LET, low OER particles from the 10 B(n,α) 7 Li reaction is approx. 10 μm, or one cell diameter; hence this reaction is optimal for cell killing. A number of biomolecules have been investigated as possible vehicles for transport of boron to tumors, including phenothiazines, thiouracils, porphyrins, nucleosides, and amino acids. Biodistributions of these compounds show selective concentration in tumor adequate for therapy. The biological halflives are in the order of days, allowing the possibility of fractionated or protracted irradiations. The radiobiological and physical implication of these parameters on NCT are discussed. The possibility of using an approximately-monoenergetic, scandium-filtered beam of about 2 keV, to reduce the dose from background radiations by about 85%, is also discussed

  4. Large animal normal tissue tolerance with boron neutron capture

    International Nuclear Information System (INIS)

    Gavin, P.R.; Swartz, C.D.; Kraft, S.L.; Briebenow, M.L.; DeHaan, C.E.

    1994-01-01

    Normal tissue tolerance of boron neutron capture irradiation using borocaptate sodium (NA 2 B 12 H 11 SH) in an epithermal neutron beam was studied. Large retriever-type dogs were used and the irradiations were performed by single dose, 5 x 10 dorsal portal. Fourteen dogs were irradiated with the epithermal neutron beam alone and 35 dogs were irradiated following intravenous administration of borocaptate sodium. Total body irradiation effect could be seen from the decreased leukocytes and platelets following irradiation. Most values returned to normal within 40 days postirradiation. Severe dermal necrosis occurred in animals given 15 Gy epithermal neutrons alone and in animals irradiated to a total peak physical dose greater than 64 Gy in animals following borocaptate sodium infusion. Lethal brain necrosis was seen in animals receiving between 27 and 39 Gy. Lethal brain necrosis occurred at 22-36 weeks postirradiation. A total peak physical dose of approximately 27 Gy and blood-boron concentrations of 25-50 ppm resulted in abnormal magnetic resonance imaging results in 6 months postexamination. Seven of eight of these animals remained normal and the lesions were not detected at the 12-month postirradiation examination. The bimodal therapy presents a complex challenge in attempting to achieve dose response assays. The resultant total radiation dose is a composite of low and high LET components. The short track length of the boron fission fragments and the geometric effect of the vessels causes much of the intravascular dose to miss the presumed critical target of the endothelial cells. The results indicate a large dose-sparing effect from the boron capture reactions within the blood. 23 refs., 6 figs., 2 tabs

  5. A standardized method for beam design in neutron capture therapy

    International Nuclear Information System (INIS)

    Storr, G.J.: Harrington, B.V.

    1993-01-01

    A desirable end point for a given beam design for Neutron Capture Therapy (NCT) should be quantitative description of tumour control probability and normal tissue damage. Achieving this goal will ultimately rely on data from NCT human clinical trials. Traditional descriptions of beam designs have used a variety of assessment methods to quantify proposed or installed beam designs. These methods include measurement and calculation of open-quotes free fieldclose quotes parameters, such as neutron and gamma flux intensities and energy spectra, and figures-of-merit in tissue equivalent phantoms. The authors propose here a standardized method for beam design in NCT. This method would allow all proposed and existing NCT beam facilities to be compared equally. The traditional approach to determining a quantitative description of tumour control probability and normal tissue damage in NCT research may be described by the following path: Beam design → dosimetry → macroscopic effects → microscopic effects. Methods exist that allow neutron and gamma fluxes and energy dependence to be calculated and measured to good accuracy. By using this information and intermediate dosimetric quantities such as kerma factors for neutrons and gammas, macroscopic effect (absorbed dose) in geometries of tissue or tissue-equivalent materials can be calculated. After this stage, for NCT the data begins to become more sparse and in some areas ambiguous. Uncertainties in the Relative Biological Effectiveness (RBE) of some NCT dose components means that beam designs based on assumptions considered valid a few years ago may have to be reassessed. A standard method is therefore useful for comparing different NCT facilities

  6. MCNP speed advances for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Goorley, J.T.; McKinney, G.; Adams, K.; Estes, G.

    1998-04-01

    The Boron Neutron Capture Therapy (BNCT) treatment planning process of the Beth Israel Deaconess Medical Center-M.I.T team relies on MCNP to determine dose rates in the subject's head for various beam orientations. In this time consuming computational process, four or five potential beams are investigated. Of these, one or two final beams are selected and thoroughly evaluated. Recent advances greatly decreased the time needed to do these MCNP calculations. Two modifications to the new MCNP4B source code, lattice tally and tracking enhancements, reduced the wall-clock run times of a typical one million source neutrons run to one hour twenty five minutes on a 200 MHz Pentium Pro computer running Linux and using the GNU FORTRAN compiler. Previously these jobs used a special version of MCNP4AB created by Everett Redmond, which completed in two hours two minutes. In addition to this 30% speedup, the MCNP4B version was adapted for use with Parallel Virtual Machine (PVM) on personal computers running the Linux operating system. MCNP, using PVM, can be run on multiple computers simultaneously, offering a factor of speedup roughly the same as the number of computers used. With two 200 MHz Pentium Pro machines, the run time was reduced to forty five minutes, a 1.9 factor of improvement over the single Linux computer. While the time of a single run was greatly reduced, the advantages associated with PVM derive from using computational power not already used. Four possible beams, currently requiring four separate runs, could be run faster when each is individually run on a single machine under Windows NT, rather than using Linux and PVM to run one after another with each multiprocessed across four computers. It would be advantageous, however, to use PVM to distribute the final two beam orientations over four computers

  7. Are gadolinium contrast agents suitable for gadolinium neutron capture therapy?

    Science.gov (United States)

    De Stasio, Gelsomina; Rajesh, Deepika; Casalbore, Patrizia; Daniels, Matthew J; Erhardt, Robert J; Frazer, Bradley H; Wiese, Lisa M; Richter, Katherine L; Sonderegger, Brandon R; Gilbert, Benjamin; Schaub, Sebastien; Cannara, Rachel J; Crawford, John F; Gilles, Mary K; Tyliszczak, Tolek; Fowler, John F; Larocca, Luigi M; Howard, Steven P; Mercanti, Delio; Mehta, Minesh P; Pallini, Roberto

    2005-06-01

    Gadolinium neutron capture therapy (GdNCT) is a potential treatment for malignant tumors based on two steps: (1) injection of a tumor-specific (157)Gd compound; (2) tumor irradiation with thermal neutrons. The GdNC reaction can induce cell death provided that Gd is proximate to DNA. Here, we studied the nuclear uptake of Gd by glioblastoma (GBM) tumor cells after treatment with two Gd compounds commonly used for magnetic resonance imaging, to evaluate their potential as GdNCT agents. Using synchrotron X-ray spectromicroscopy, we analyzed the Gd distribution at the subcellular level in: (1) human cultured GBM cells exposed to Gd-DTPA or Gd-DOTA for 0-72 hours; (2) intracerebrally implanted C6 glioma tumors in rats injected with one or two doses of Gd-DOTA, and (3) tumor samples from GBM patients injected with Gd-DTPA. In cell cultures, Gd-DTPA and Gd-DOTA were found in 84% and 56% of the cell nuclei, respectively. In rat tumors, Gd penetrated the nuclei of 47% and 85% of the tumor cells, after single and double injection of Gd-DOTA, respectively. In contrast, in human GBM tumors 6.1% of the cell nuclei contained Gd-DTPA. Efficacy of Gd-DTPA and Gd-DOTA as GdNCT agents is predicted to be low, due to the insufficient number of tumor cell nuclei incorporating Gd. Although multiple administration schedules in vivo might induce Gd penetration into more tumor cell nuclei, a search for new Gd compounds with higher nuclear affinity is warranted before planning GdNCT in animal models or clinical trials.

  8. Relativistic photon-Maxwellian electron cross sections

    International Nuclear Information System (INIS)

    Wienke, B.R.; Lathrop, B.L.; Devaney, J.J.

    1986-01-01

    Temperature corrected cross sections, complementing the Klein-Nishina set, are developed for astrophysical, plasma, and transport applications. The set is obtained from a nonlinear least squares fit to the exact photon-Maxwellian electron cross sections, using the static formula as the asymptotic basis. Two parameters are sufficient (two decimal places) to fit the exact cross sections over a range of 0-100 keV in electron temperature, and 0-1 MeV in incident photon energy. The fit is made to the total cross sections, yet the parameters predict both total and differential scattering cross sections well. Corresponding differential energy cross sections are less accurate. An extended fit to (just) the total cross sections, over the temperature and energy range 0-5 MeV, is also described. (author)

  9. NSLINK, Coupling of NJOY Cross-Sections Generator Code to SCALE-3 System

    International Nuclear Information System (INIS)

    De Leege, P.F.A

    1991-01-01

    1 - Description of program or function: NSLINK (NJOY - SCALE - LINK) is a set of computer codes to couple the NJOY cross-section generation code to the SCALE-3 code system (using AMPX-2 master library format) retaining the Nordheim resolved resonance treatment option. 2 - Method of solution: The following module and codes are included in NSLINK: XLACSR: This module is a stripped-down version of the XLACS-2 code. The module passes all l=0 resonance parameters as well as the contribution from all other resonances to the group cross-sections, the contribution from the wings of the l=0 resonances, the background cross-section and possible interference for multilevel Breit-Wigner resonance parameters. The group cross-sections are stored in the appropriate 1-D cross-section arrays. The output file has AMPX-2 master format. The original NJOY code is used to calculate all other data. The XLACSR module is included in the NJOY code. MILER: This code converts NJOY output (GENDF format) to AMPX-2 master format. The code is an extensively revised version of the original MILER code. In addition, the treatment of thermal scattering matrices at different temperatures is included. UNITABR: This code is a revised version of the UNITAB code. It merges the output of XLACSR and MILER in such a way that contributions from the bodies of the l=0 resonances in the resolved energy range, calculated by XLACSR, are subtracted from the 1-D group cross-section arrays for fission (MT=18) and neutron capture (MT=102). The l=0 resonance parameters and the contributions from the bodies of these resonances are added separately (MT=1023, 1022 and 1021). The total cross-section (MT=1), the absorption cross- section (MT=27) and the neutron removal cross-section (MT=101) values are adjusted. In the case of Bondarenko data, infinite dilution values of the cross-sections (MT=1, 18 and 102) are changed in the same way as the 1-D cross-section. The output file of UNITABR is in AMPX-2 master format and

  10. Photofission Cross Sections for 237Np in the Energy Interval from 5.27 to 10.83 MeV

    International Nuclear Information System (INIS)

    Geraldo, L.P.; Semmler, R.; Goncalez, O. L.; Mesa, J.; Arruda-Neto, J.D.T.; Garcia, F.; Rodriguez, O.

    2000-01-01

    Photofission cross sections for 237 Np have been measured as a function of energy, in the interval from 5.27 to 10.83 MeV. The gamma-ray spectra were those produced by thermal neutron capture, in 30 different target materials, at a tangential beam hole of the Instituto de Pesquisas Energeticas e Nucleares IEA-R1 2-MW research reactor. The set of experimental data has been unfolded employing least-squares methods and the covariance matrix methodology. The determined photofission cross sections for 237 Np, together with the complete correlation matrix for the involved errors, are presented and are compared with previous measurements reported in the literature. A statistical calculation for the 237 Np photofission cross sections was performed, and the results are compared with the experimental data

  11. Boron containing compounds and their preparation and use in neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gabel, D.

    1992-09-01

    The present invention pertains to boron containing thiouracil derivatives, their method of preparations, and their use in the therapy of malignant melanoma using boron neutron capture therapy. No Drawings

  12. Thiourea derivatives, methods of their preparation and their use in neutron capture therapy of malignant melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Gabel, D.

    1991-06-04

    The present invention pertains to boron containing thiouracil derivatives, their method of preparations, and their use in the therapy of malignant melanoma using boron neutron capture therapy. No Drawings

  13. Neutron capture resonances in 56Fe and 58Fe in the energy range from 10 to 100 keV

    International Nuclear Information System (INIS)

    Kaeppeler, F.; Wisshak, K.; Hong, L.D.

    1982-11-01

    The neutron capture cross section of 56 Fe and 58 Fe has been measured in the energy range from 10 to 250 keV relative to the gold standard. A pulsed 3 MV Van de Graaff accelerator and the 7 Li(p, n) reaction served as a neutron source. Capture gamma rays were detected by two C 6 D 6 detectors, which were operated in coincidence and anticoincidence mode. Two-dimensional data acquisition allowed to apply the pulse height weighting technique off-line. The samples were located at a flight path of 60 cm. The total time resolution was 1.2 ns thus allowing for an energy resolution of 2 ns/m. The experimental set-up was optimized with respect to low background and low neutron sensitivity. The additional flight path of 4 cm from the sample to the detector was sufficient to discriminate capture of sample scattered neutrons by the additional time of flight. In this way reliable results were obtained even for the strong s-wave resonances of both isotopes. The experimental capture yield was analyzed with the FANAC code. The energy resolution allowed to extract resonance parameters in the energy range from 10 to 100 keV. The individual systematic uncertainties of the experimental method are discussed in detail. They were found to range between 5 and 10% while the statistical uncertainty is 3-5% for most of the resonances. A comparison to the results of other authors exhibits in case of 56 Fe systematic differences of 7-11%. For 58 Fe the present results differ up to 50% from the only other measurement for this isotope. (orig.) [de

  14. The uses of neutron capture γ-rays in environmental pollution measurements

    International Nuclear Information System (INIS)

    Abdel-Haleem, A.S.; Abdel-Samad, M.A.; Zaghloul, R.A.; Hassan, A.M.

    1996-01-01

    A neutron capture γ-ray spectroscopy facility using an isotopic neutron source, 252 Cf, has been installed and used for investigation of some environmental samples. The facility is designed and calibrated for measurement of the prompt γ-ray spectra due to thermal neutron capture. Qualitative analysis studies of some local environmental samples have been carried out using some developed analytical programs. The experimental results of the environmental pollutant analysis are discussed. (author)

  15. Determination Of Natural Boron Concentration In Coffee Leaves, Using de Autobiography by Neutron Capture Technique

    International Nuclear Information System (INIS)

    Loria, L. G.; Jimenez, R.; Thellier, M.

    1999-01-01

    Determination of natural boron concentration in coffee leaves, using the autoradiography, by neutron capture technique. The boron absorption coefficient in young coffee leaves was measured using autoradiography by neutron capture. In two experiments carried out in April and November, 1996, it was found that the coefficient varies between 0.9 and 5.3 nmol/h. the concentration of natural boron in coffee leaves in regard to age, symptoms and treatment received was also studied, using the same technique. (Author) [es

  16. Fast neutron capture in actinide isotopes: recent results from Karlsruhe

    International Nuclear Information System (INIS)

    Wisshak, K.; Kaeppeler, F.; Reffo, G.; Fabbri, F.

    1982-01-01

    Capture gamma-ray spectra of 241 Am, 240 Pu, 242 Pu 238 U and 197 Au were calculated in the framework of the spherical optical model and the statistical model. These spectra were used to correct experimental data for the capture cross sections of 240 242 Pu and 241 Am from relative measurements using a Moxon Rae-detector with graphite converter and 197 Au as well as 238 U as standards. This correction is required to take into account that the detector efficiency is not exactly proportional to gamma-ray energy. The resulting correction factors proved to be negligible for measurements relative to 238 U, whereas they are approx. 3% if gold is used as a standard. The capture cross section of 243 Am has been measured in the energy range 10 to 250 keV using kinematically collimated neutrons from the 7 Li(p,n) and T(p,n) reaction. The samples are positioned at flight paths of 5 to 7 cm and gold was used as a standard. Capture events were detected by two Moxon-Rae detectors with graphite and bismuth-graphite converters shielded by 0.5 to 2 cm of lead. Fission events were detected by a NE213 liquid scintillator. The present status of the experiment and some preliminary results will be presented

  17. Boron neutron capture therapy of intracerebral rat gliosarcomas

    International Nuclear Information System (INIS)

    Joel, D.D.; Fairchild, R.G.; Laissue, J.A.; Saraf, S.K.; Kalef-Ezra, J.A.; Slatkin, D.N.

    1990-01-01

    The efficacy of boron neutron capture therapy (BNCT) for the treatment of intracerebrally implanted rat gliosarcomas was tested. Preferential accumulation of 10B in tumors was achieved by continuous infusion of the sulfhydryl borane dimer, Na4(10)B24H22S2, at a rate of 45-50 micrograms of 10B per g of body weight per day from day 11 to day 14 after tumor initiation (day 0). This infusion schedule resulted in average blood 10B concentrations of 35 micrograms/ml in a group of 12 gliosarcoma-bearing rats and 45 micrograms/ml in a group of 10 similar gliosarcoma-bearing rats treated by BNCT. Estimated tumor 10B levels in these two groups were 26 and 34 micrograms/g, respectively. On day 14, boron-treated and non-boron-treated rats were exposed to 5.0 or 7.5 MW.min of radiation from the Brookhaven Medical Research Reactor that yielded thermal neutron fluences of approximately 2.0 x 10(12) or approximately 3.0 x 10(12) n/cm2, respectively, in the tumors. Untreated rats had a median postinitiation survival time of 21 days. Reactor radiation alone increased median postinitiation survival time to 26 (5.0 MW.min) or 28 (7.5 MW.min) days. The 12 rats that received 5 MW.min of BNCT had a median postinitiation survival time of 60 days. Two of these animals survived greater than 15 months. In the 7.5 MW.min group, the median survival time is not calculable since 6 of the 10 animals remain alive greater than 10 months after BNCT. The estimated radiation doses to tumors in the two BNCT groups were 14.2 and 25.6 Gy equivalents, respectively. Similar gliosarcoma-bearing rats treated with 15.0 or 22.5 Gy of 250-kilovolt peak x-rays had median survival times of only 26 or 31 days, respectively, after tumor initiation

  18. Background-cross-section-dependent subgroup parameters

    International Nuclear Information System (INIS)

    Yamamoto, Toshihisa

    2003-01-01

    A new set of subgroup parameters was derived that can reproduce the self-shielded cross section against a wide range of background cross sections. The subgroup parameters are expressed with a rational equation which numerator and denominator are expressed as the expansion series of background cross section, so that the background cross section dependence is exactly taken into account in the parameters. The advantage of the new subgroup parameters is that they can reproduce the self-shielded effect not only by group basis but also by subgroup basis. Then an adaptive method is also proposed which uses fitting procedure to evaluate the background-cross-section-dependence of the parameters. One of the simple fitting formula was able to reproduce the self-shielded subgroup cross section by less than 1% error from the precise evaluation. (author)

  19. Scattering cross section for various potential systems

    Directory of Open Access Journals (Sweden)

    Myagmarjav Odsuren

    2017-08-01

    Full Text Available We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

  20. Scattering cross section for various potential systems

    Energy Technology Data Exchange (ETDEWEB)

    Odsuren, Myagmarjav; Khuukhenkhuu, Gonchigdorj; Davaa, Suren [Nuclear Research Center, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar (Mongolia); Kato, Kiyoshi [Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo (Japan)

    2017-08-15

    We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

  1. Cross-section methodology in SIMMER

    International Nuclear Information System (INIS)

    Soran, P.D.

    1975-11-01

    The cross-section methodology incorporated in the SIMMER code is described. Data base for all cross sections is the ENDF/B system with various progressing computer codes to group collapse and modify the group constants which are used in SIMMER. Either infinitely dilute cross sections or the Bondarenko formalism can be used in SIMMER. Presently only a microscopic treatment is considered, but preliminary macroscopic algorithms have been investigated

  2. Cross-section methodology in SIMMER

    International Nuclear Information System (INIS)

    Soran, P.D.

    1976-05-01

    The cross-section methodology incorporated in the SIMMER code is described. Data base for all cross sections is the ENDF/B system with various progressing computer codes to group collapse and modify the group constants which are used in SIMMER. Either infinitely dilute cross sections or the Bondarenko formalism can be used in SIMMER. Presently only a microscopic treatment is considered, but preliminary macroscopic algorithms have been investigated

  3. High ET jet cross sections at CDF

    International Nuclear Information System (INIS)

    Flaugher, B.

    1996-08-01

    The inclusive jet cross section for p anti p collisions at √s = 1.8 TeV as measured by the CDF collaboration will be presented. Preliminary CDF measurements of the Σ E T cross section at √s = 1.8 TeV and the central inclusive jet cross section at √s = 0.630 TeV will also be shown

  4. Recommended activation detector cross sections (RNDL-82)

    International Nuclear Information System (INIS)

    Bondars, Kh.Ya.; Lapenas, A.A.

    1984-01-01

    The results of the comparison between measured and calculated average cross sections in 5 benchmark experiments are presented. Calculations have been based on the data from 10 libraries of evaluated cross sections. The recommended library (RNDL-82) of the activation detector cross sections has been created on the basis of the comparison. RNDL-82, including 26 reactions, and the basic characteristics of the detectors are presented. (author)

  5. Measurements of activation cross sections for some long-lived nuclides important in fusion reactor technology

    International Nuclear Information System (INIS)

    Blinov, M.V.; Filatenkov, A.A.; Chuvaev, S.V.

    1992-01-01

    The Ag-109(n,2n)Ag-108m, Eu-151(n,2n)Eu-150 and Eu-153(n,2n)Eu-152 cross sections have been measured in the neutron energy interval of 13.7-14.9 MeV. The measurements were performed at the neutron generator NG-400 of the Radium Institute using (D-T) neutrons. At the same facility the upper limit has been obtained for the W-182(n,n'a)Hf-178m 2 cross section. Neutron capture of the Mo-98 that lead ultimately to the production of the long-lived Tc-99 has been studied at neutron energies 0.7-2.0 MeV. For these purposes, the Van de Graaf accelerator (EG-5) was employed that produced monochromatic neutrons in the (p-T) reaction. Both at EG-5 and NG-400 measurements, special efforts were made to minimize neutron spectrum impurities which unavoidably arise in irradiation environments. (author). 15 refs, 6 figs, 1 tab

  6. Total neutron cross section of lead

    International Nuclear Information System (INIS)

    Kanda, K.; Aizawa, O.

    1976-01-01

    The total thermal-neutron cross section of natural lead under various physical conditions was measured by the transmission method. It became clear that the total cross section at room temperature previously reported is lower than the present data. The total cross section at 400, 500, and 600 0 C, above the melting point of lead, 327 0 C, was also measured, and the changes in the cross section as a function of temperature were examined, especially near and below the melting point. The data obtained for the randomly oriented polycrystalline state at room temperature were in reasonable agreement with the theoretical values calculated by the THRUSH and UNCLE-TOM codes

  7. Curves and tables of neutron cross sections

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Asami, Tetsuo; Yoshida, Tadashi

    1990-07-01

    Neutron cross-section curves from the Japanese Evaluated Nuclear Data Library version 3, JENDL-3, are presented in both graphical and tabular form for users in a wide range of application areas in the nuclear energy field. The contents cover cross sections for all the main reactions induced by neutrons with an energy below 20 MeV including; total, elastic scattering, capture, and fission, (n,n'), (n,2n), (n,3n), (n,α), (n,p) reactions. The 2200 m/s cross-section values, resonance integrals, and Maxwellian- and fission-spectrum averaged cross sections are also tabulated. (author)

  8. Measurements of thermal fission and capture cross sections of minor actinides within the Mini-INCA project

    Energy Technology Data Exchange (ETDEWEB)

    Bringer, O.; Chabod, S.; Dupont, E.; Letourneau, A.; Panebianco, S.; Veyssiere, Ch. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Oriol, L. [CEA Cadarache, Dept. d' Etudes des Reacteurs, 13 - Saint Paul lez Durance (France); Chartier, F. [CEA Saclay, Dept. de Physico-Chimie, 91 - Gif sur Yvette (France); Mutti, P. [Institut Laue Langevin, 38 - Grenoble, (France); AlMahamid, I. [Wadsworth Center, New York State Dept. of Health, Albany, NY (United States)

    2008-07-01

    In the framework of nuclear waste transmutation studies, the Mini-INCA project has been initiated at Cea/DSM to determine optimal conditions for transmutation and incineration of Minor Actinides in high intensity neutron fluxes in the thermal region. Our experimental tool is based on alpha- and gamma-spectroscopy of irradiated samples and microscopic fission-chambers. It can provide both microscopic information on nuclear reactions (total and partial cross sections for neutron capture and/or fission reactions) and macroscopic information on transmutation and incineration potentials. The {sup 232}Th, {sup 237}Np, {sup 241}Am, and {sup 244}Cm transmutation chains have been explored in details, showing some discrepancies in comparison with evaluated data libraries but in overall good agreement with recent experimental data. (authors)

  9. Measurements of thermal fission and capture cross sections of minor actinides within the Mini-INCA project

    International Nuclear Information System (INIS)

    Bringer, O.; Chabod, S.; Dupont, E.; Letourneau, A.; Panebianco, S.; Veyssiere, Ch.; Oriol, L.; Chartier, F.; Mutti, P.; AlMahamid, I.

    2008-01-01

    In the framework of nuclear waste transmutation studies, the Mini-INCA project has been initiated at Cea/DSM to determine optimal conditions for transmutation and incineration of Minor Actinides in high intensity neutron fluxes in the thermal region. Our experimental tool is based on alpha- and gamma-spectroscopy of irradiated samples and microscopic fission-chambers. It can provide both microscopic information on nuclear reactions (total and partial cross sections for neutron capture and/or fission reactions) and macroscopic information on transmutation and incineration potentials. The 232 Th, 237 Np, 241 Am, and 244 Cm transmutation chains have been explored in details, showing some discrepancies in comparison with evaluated data libraries but in overall good agreement with recent experimental data. (authors)

  10. Measurements of the thermal neutron cross-section and resonance integral for the 108Pd(n,γ)109Pd reaction

    Science.gov (United States)

    Hien, Nguyen Thi; Kim, Guinyun; Kim, Kwangsoo; Do, Nguyen Van; Khue, Pham Duc; Thanh, Kim Tien; Shin, Sung-Gyun; Cho, Moo-Hyun

    2018-06-01

    The thermal neutron capture cross-section (σ0) and resonance integral (I0) of the 108Pd(n,γ)109Pd reaction have been measured relative to that of the monitor reaction 197Au(n,γ)198Au. The measurements were carried out using the neutron activation with the cadmium ratio method. Both the samples and monitors were irradiated with and without cadmium cover of 0.5 mm thickness. The induced activities of the reaction products were measured with a well calibrated HPGe γ-ray detector. In order to improve the accuracy of the results, the necessary corrections for the counting losses were made. The thermal neutron capture cross-section and resonance integral of the 108Pd(n,γ)109Pd reaction were determined to be σ0,Pd = 8.68 ± 0.41 barn and I0,Pd = 245.6 ± 24.8 barn, respectively. The obtained results are compared with literature values and discussed.

  11. Electron collision cross sections of mercury

    International Nuclear Information System (INIS)

    Suzuki, Susumu; Kuzuma, Kiyotaka; Itoh, Haruo

    2006-01-01

    In this paper, we propose a new collision cross section set for mercury which revises the original set summarized by Hayashi in 1989. Hanne reported three excitation collision cross sections (6 3 P 0 , 6 3 P 1 , 6 3 P 2 ) determined from an electron beam experiment in 1988. As a matter for regret, no attentive consideration was given to combining these three excitation cross sections with the cross section set of Hayashi. Therefore we propose a new set where these three excitation cross sections are included. In this study, other two excitation cross sections (6 1 P 1 , 6 3 D 3 ) except for the three excitation collision cross sections (6 3 P 0 , 6 3 P 1 , 6 3 P 2 ) are taken from the original set of Hayashi. The momentum transfer cross section and the ionization collision cross section are also taken from Hayashi. A Monte Carlo Simulation (MCS) technique is applied for evaluating our new cross section set. The present results of the electron drift velocity and the ionization coefficient are compared to experimental values. Agreement is secured in relation to the electron drift velocity for 1.5 Td 2 ) is the reduced electric field, E (V/cm) is the electric field, N (1/cm 3 ) is the number density of mercury atoms at 0degC, 1 Torr, E/N is also equal to 2.828 x 10 -17 E/p 0 from the relation of the ideal gas equation, p 0 (Torr) is gas pressure at 0degC, 1 Torr=1.33322 x 10 -2 N/cm -2 and 10 -17 V/cm 2 is called 1 Td. Thus it is ensured that our new cross section set is reasonable enough to be used up to 100 eV when considering with the electron drift velocity and the ionization coefficient. (author)

  12. Reaction Cross Section Calculations in Neutron Induced Reactions and GEANT4 Simulation of Hadronic Interactions for the Reactor Moderator Material BeO

    Directory of Open Access Journals (Sweden)

    Veli ÇAPALI

    2016-05-01

    Full Text Available BeO is one of the most common moderator material for neutron moderation; due to its high density, neutron capture cross section and physical-chemical properties that provides usage at elevated temperatures. As it’s known, for various applications in the field of reactor design and neutron capture, reaction cross–section data are required. The cross–sections of (n,α, (n,2n, (n,t, (n,EL and (n,TOT reactions for 9Be and 16O nuclei have been calculated by using TALYS 1.6 Two Component Exciton model and EMPIRE 3.2 Exciton model in this study. Hadronic interactions of low energetic neutrons and generated isotopes–particles have been investigated for a situation in which BeO was used as a neutron moderator by using GEANT4, which is a powerful simulation software. In addition, energy deposition along BeO material has been obtained. Results from performed calculations were compared with the experimental nuclear reaction data exist in EXFOR.

  13. First measurement of the Rayleigh cross section

    NARCIS (Netherlands)

    Naus, H.; Ubachs, W.

    2000-01-01

    Rayleigh cross section for N2, Ar and SF6 was performed using the technique of cavity ring-down spectroscopy (CRDS). The experiment was based on the assumption that scattering cross section is equal to the extinction in the absence of absorption. The theory explains the molecular origin of

  14. Total cross section of highly excited strings

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, I.

    1990-01-01

    The unpolarized total cross section for the joining of two highly excited strings is calculated. The calculation is performed by taking the average overall states in the given excitation levels of the initial strings. We find that the total cross section grows with the energy and momentum of the initial states. (author). 8 refs, 1 fig

  15. Compilation of cross-sections. Pt. 1

    International Nuclear Information System (INIS)

    Flaminio, V.; Moorhead, W.G.; Morrison, D.R.O.; Rivoire, N.

    1983-01-01

    A compilation of integral cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data have also been included. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)

  16. Total cross section results for deuterium electrodisintegration

    International Nuclear Information System (INIS)

    Skopik, D.M.; Murphy, J.J. II; Shin, Y.M.

    1976-01-01

    Theoretical total cross sections for deuterium electrodisintegration are presented as a function of incident electron energy. The cross section has been calculated using virtual photon theory with Partovi's photodisintegration calculation for E/subx/ > 10 MeV and effective range theory for E/subx/ 2 H(e, n) reaction in Tokamak reactors

  17. Model cross section calculations using LAHET

    International Nuclear Information System (INIS)

    Prael, R.E.

    1992-01-01

    The current status of LAHET is discussed. The effect of a multistage preequilibrium exciton model following the INC is examined for neutron emission benchmark calculations, as is the use of a Fermi breakup model for light nuclei rather than an evaporation model. Comparisons are made also for recent fission cross section experiments, and a discussion of helium production cross sections is presented

  18. Vibrational enhancement of total breakup cross sections

    International Nuclear Information System (INIS)

    Haftel, M.I.; Lim, T.K.

    1984-01-01

    This paper considers the role of multi-two-body bound states, namely vibrational excitations, on total three-body breakup cross-sections. Total cross-sections are usually easy to measure, and they play a fundamental role in chemical kinetics. (orig.)

  19. Interference analysis of fission cross section

    International Nuclear Information System (INIS)

    Toshkov, S.A.; Yaneva, N.B.

    1976-01-01

    The formula for the reaction cross-section based on the R-matrix formalism considering the interference between the two neighbouring resonances, referred to the same value of total momentum was used for the analysis of the cross-section of resonance neutron induced fission of 230Pu. The experimental resolution and thermal motion of the target nuclei were accounted for numerical integration

  20. Compilation of cross-sections. Pt. 4

    International Nuclear Information System (INIS)

    Alekhin, S.I.; Ezhela, V.V.; Lugovsky, S.B.; Tolstenkov, A.N.; Yushchenko, O.P.; Baldini, A.; Cobal, M.; Flaminio, V.; Capiluppi, P.; Giacomelli, G.; Mandrioli, G.; Rossi, A.M.; Serra, P.; Moorhead, W.G.; Morrison, D.R.O.; Rivoire, N.

    1987-01-01

    This is the fourth volume in our series of data compilations on integrated cross-sections for weak, electromagnetic, and strong interaction processes. This volume covers data on reactions induced by photons, neutrinos, hyperons, and K L 0 . It contains all data published up to June 1986. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)

  1. Recommended evaluation procedure for photonuclear cross section

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Chang, Jonghwa; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In order to generate photonuclear cross section library for the necessary applications, data evaluation is combined with theoretical evaluation, since photonuclear cross sections measured cannot provide all necessary data. This report recommends a procedure consisting of four steps: (1) analysis of experimental data, (2) data evaluation, (3) theoretical evaluation and, if necessary, (4) modification of results. In the stage of analysis, data obtained by different measurements are reprocessed through the analysis of their discrepancies to a representative data set. In the data evaluation, photonuclear absorption cross sections are evaluated via giant dipole resonance and quasi-deutron mechanism. With photoabsorption cross sections from the data evaluation, theoretical evaluation is applied to determine various decay channel cross sections and emission spectra using equilibrium and preequilibrium mechanism. After this, the calculated results are compared with measured data, and in some cases the results are modified to better describe measurements. (author)

  2. Comparative analysis among several cross section sets

    International Nuclear Information System (INIS)

    Caldeira, A.D.

    1983-01-01

    Critical parameters were calculated using the one dimensional multigroup transport theory for several cross section sets. Calculations have been performed for water mixtures of uranium metal, plutonium metal and uranium-thorium oxide, and for metallics systems, to determine the critical dimensions of geometries (sphere and cylinder). For this aim, the following cross section sets were employed: 1) multigroup cross section sets obtained from the GAMTEC-II code; 2) the HANSEN-ROACH cross section sets; 3) cross section sets from the ENDF/B-IV, processed by the NJOY code. Finally, we have also calculated the corresponding critical radius using the one dimensional multigroup transport DTF-IV code. The numerical results agree within a few percent with the critical values obtained in the literature (where the greatest discrepancy occured in the critical dimensions of water mixtures calculated with the values generated by the NJOY code), a very good results in comparison with similar works. (Author) [pt

  3. Activation cross section data file, (1)

    International Nuclear Information System (INIS)

    Yamamuro, Nobuhiro; Iijima, Shungo.

    1989-09-01

    To evaluate the radioisotope productions due to the neutron irradiation in fission of fusion reactors, the data for the activation cross sections ought to be provided. It is planning to file more than 2000 activation cross sections at final. In the current year, the neutron cross sections for 14 elements from Ni to W have been calculated and evaluated in the energy range 10 -5 to 20 MeV. The calculations with a simplified-input nuclear cross section calculation system SINCROS were described, and another method of evaluation which is consistent with the JENDL-3 were also mentioned. The results of cross section calculation are in good agreement with experimental data and they were stored in the file 8, 9 and 10 of ENDF/B format. (author)

  4. Cross-sectional anatomy for computed tomography

    International Nuclear Information System (INIS)

    Farkas, M.L.

    1988-01-01

    This self-study guide recognizes that evaluation and interpretation of CT-images demands a firm understanding of both cross-sectional anatomy and the principles of computed tomography. The objectives of this book are: to discuss the basic principles of CT, to stress the importance of cross-sectional anatomy to CT through study of selected cardinal transverse sections of head, neck, and trunk, to explain orientation and interpretation of CT-images with the aid of corresponding cross-sectional preparations

  5. Is the quasielastic pion cross section really bigger than the pion-nucleus reaction cross section

    International Nuclear Information System (INIS)

    Silbar, R.R.

    1979-01-01

    It is shown that soft pion charge exchanges may increase the inclusive (π + ,π 0 ') cross section, relative to the total quasielastic (π + ,π + ') cross section, by as much as a factor of two. 4 references

  6. A compact multi-plate fission chamber for the simultaneous measurement of 233U capture and fission cross-sections

    Directory of Open Access Journals (Sweden)

    Bacak M.

    2017-01-01

    Full Text Available 233U plays the essential role of fissile nucleus in the Th-U fuel cycle. A particularity of 233U is its small neutron capture cross-section which is about one order of magnitude lower than the fission cross-section on average. Therefore, the accuracy in the measurement of the 233U capture cross-section essentially relies on efficient capture-fission discrimination thus a combined setup of fission and γ-detectors is needed. At CERN n_TOF the Total Absorption Calorimeter (TAC coupled with compact fission detectors is used. Previously used MicroMegas (MGAS detectors showed significant γ-background issues above 100 eV coming from the copper mesh. A new measurement campaign of the 233U capture cross-section and alpha ratio is planned at the CERN n_TOF facility. For this measurement, a novel cylindrical multi ionization cell chamber was developed in order to provide a compact solution for 14 active targets read out by 8 anodes. Due to the high specific activity of 233U fast timing properties are required and achieved with the use of customized electronics and the very fast ionizing gas CF4 together with a high electric field strength. This paper describes the new fission chamber and the results of the first tests with neutrons at GELINA proving that it is suitable for the 233U measurement.

  7. Neutron capture studies with a short flight path

    Science.gov (United States)

    Walter, Stephan; Heil, Michael; Käppeler, Franz; Plag, Ralf; Reifarth, René

    The time of flight (TOF) method is an important tool for the experimental determination of neu- tron capture cross sections which are needed for s-process nucleosynthesis in general, and for analyses of branchings in the s-process reaction path in particular. So far, sample masses of at least several milligrams are required to compensate limitations in the currently available neutron fluxes. This constraint leads to unacceptable backgrounds for most of the relevant unstable branch point nuclei, due to the decay activity of the sample. A possible solution has been proposed by the NCAP project at the University of Frankfurt. A first step in this direction is reported here, which aims at enhancing the sensitivity of the Karlsruhe TOF array by reducing the neutron flight path to only a few centimeters. Though sample masses in the microgram regime can be used by this approach, the increase in neutron flux has to be paid by a higher background from the prompt flash related to neutron production. Test measurements with Au samples are reported.

  8. Partial cross sections near the higher resonances

    International Nuclear Information System (INIS)

    Falk-Vairant, P.; Valladas, G.

    1961-07-01

    As a continuation of the report given at the 10. Rochester Conference, recent measurements of charge-exchange cross section and π 0 production in π - -p interactions are presented here. Section 1 gives a summary of the known results for the elastic, inelastic, and charge-exchange cross sections. Section 2 presents the behavior of the cross sections in the T=1/2 state, in order to discuss the resonances at 600 and 890 MeV. Section 3 discusses the charge-exchange scattering and the interference term between the T=1/2 and T=3/2 states. Section 4 presents some comments on inelastic processes. This report is reprinted from 'Reviews of Modern Physics', Vol. 33, No. 3, 362-367, July, 1961

  9. Electron-impact cross sections of Ne

    International Nuclear Information System (INIS)

    Tsurubuchi, S.; Arakawa, K.; Kinokuni, S.; Motohashi, K.

    2000-01-01

    Electron-impact absolute emission cross sections were measured for the 3p→3s transitions of Ne. Excitation functions of the 3s→2p first resonance lines were measured in the energy range from the threshold to 1000 eV by a polarization-free optical method and relative cross sections were normalized to the absolute values, (41.0±5.4)x10 -19 cm 2 for the 73.6 nm line and (7.1±1.0)x10 -19 cm 2 for the 74.4 nm line, which were determined at 500 eV. The integrated level-excitation cross sections of Suzuki et al for the 1s 2 and 1s 4 levels were combined with the corresponding 3p→3s cascade cross sections obtained in this paper to give absolute emission cross sections for the resonance lines. The level-excitation cross sections of the 1s 2 and 1s 4 states in Paschen notation were determined from the threshold to 1000 eV by subtracting 3p→3s cascade cross sections from the corresponding 3s→2p emission cross sections of the resonance lines. A large cascade contribution is found in the emission cross section of the resonance lines. It is 28.5% for the 73.6 nm line and 49.6% for the 74.4 nm line at 40 eV, and 17.0 and 61.8%, respectively, at 300 eV. (author)

  10. NNLO jet cross sections by subtraction

    International Nuclear Information System (INIS)

    Somogyi, G.; Bolzoni, P.; Trocsanyi, Z.

    2010-06-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of an earlier NNLO subtraction scheme over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state. (orig.)

  11. Differential Top Cross-section Measurements

    CERN Document Server

    Fenton, Michael James; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. The measurement of the differential top-quark pair production cross-section provides a stringent test of advanced perturbative QCD calculations. The ATLAS collaboration has performed detailed measurements of those differential cross sections at a centre-of-mass energy of 13 TeV. This talk focuses on differential cross-section measurements in the lepton+jets final state, including using boosted top quarks to probe our understanding of top quark production in the TeV regime.

  12. Hardon cross sections at ultra high energies

    International Nuclear Information System (INIS)

    Yodh, G.B.

    1987-01-01

    A review of results on total hadronic cross sections at ultra high energies obtained from a study of longitudinal development of cosmic ray air showers is given. The experimental observations show that proton-air inelastic cross section increases from 275 mb to over 500 mb as the collision energy in the center of mass increases from 20 GeV to 20 TeV. The proton-air inelastic cross section, obtained from cosmic ray data at √s = 30 TeV, is compared with calculations using various different models for the energy variation of the parameters of the elementary proton-proton interaction. Three conclusions are derived

  13. NNLO jet cross sections by subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Bolzoni, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Trocsanyi, Z. [CERN, Geneva (Switzerland)

    2010-06-15

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of an earlier NNLO subtraction scheme over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state. (orig.)

  14. NNLO jet cross sections by subtraction

    CERN Document Server

    Somogyi, Gabor; Trocsanyi, Zoltan

    2010-01-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of [1-4], over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  15. Measurements of the 40Ar(n, γ)41Ar radiative-capture cross section between 0.4 and 14.8 MeV

    Science.gov (United States)

    Bhike, Megha; Fallin, B.; Tornow, W.

    2014-09-01

    The 40Ar(n, γ)41Ar neutron capture cross section has been measured between 0.4 and 14.8 MeV neutron energy using the activation technique. The data are important for estimating backgrounds in argon-based neutrino and dark-matter detectors and in the neutrino-less double-beta decay search GERDA, which uses liquid argon as cooling and shielding medium. For the first time the 40Ar(n, γ)41Ar cross section has been measured for neutron energies above 1 MeV. Our results are compared to the evaluation ENDF/B-VII.1 and the calculated prediction TENDL-2013. The latter agrees very well with the present results.

  16. Experimental cross section for the {sup 152}Sm(n, γ){sup 153}Sm reaction at 0.0334 eV

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, M. Shuza; Datta, Tapash Kumar; Hossain, Syed Mohammod; Zakaria, A.K.M.; Islam, Mohammad Amirul; Naher, Kamrun; Shariff, M. Asad; Yunus, S.M. [Atomic Energy Research Establishment, Dhaka (Bangladesh). Inst. of Nuclear Science and Technology; Afroze, Nasmin [Atomic Energy Research Establishment, Dhaka (Bangladesh). Inst. of Nuclear Science and Technology; Jahangirnagar Univ., Dhaka (Bangladesh). Dept. of Physics; Islam, S.M. Ajharul [Jahangirnagar Univ., Dhaka (Bangladesh). Dept. of Physics

    2014-10-01

    The neutron capture cross section for the {sup 152}Sm(n, γ){sup 153}Sm reaction at an energy of 0.0334 eV was measured for the first time using monochromatic neutrons of a powder diffractometer at the TRIGA Mark II nuclear reactor at Dhaka, Bangladesh. The {sup 197}Au(n, γ){sup 198}Au reaction was used to monitor the neutron beam intensity. The radioactivity of the products was determined via high resolution γ-ray spectrometry. The obtained cross section value is 184 ± 22b, which is consistent with both the ENDF/B-VII and TENDL-2012 data libraries. The measured value at 0.0334 eV and the previous data at 0.0536 eV confirm the reliability of the data in the above libraries. (orig.)

  17. Measurements of the 40Ar(n, γ41Ar radiative-capture cross section between 0.4 and 14.8 MeV

    Directory of Open Access Journals (Sweden)

    Megha Bhike

    2014-09-01

    Full Text Available The 40Ar(n, γ41Ar neutron capture cross section has been measured between 0.4 and 14.8 MeV neutron energy using the activation technique. The data are important for estimating backgrounds in argon-based neutrino and dark-matter detectors and in the neutrino-less double-beta decay search GERDA, which uses liquid argon as cooling and shielding medium. For the first time the 40Ar(n, γ41Ar cross section has been measured for neutron energies above 1 MeV. Our results are compared to the evaluation ENDF/B-VII.1 and the calculated prediction TENDL-2013. The latter agrees very well with the present results.

  18. Calculation of the resonance cross section functions

    International Nuclear Information System (INIS)

    Slipicevic, K.F.

    1967-11-01

    This paper includes the procedure for calculating the Doppler broadened line shape functions ψ and χ which are needed for calculation of resonance cross section functions. The obtained values are given in tables

  19. Fission cross section measurements at intermediate energies

    International Nuclear Information System (INIS)

    Laptev, Alexander

    2005-01-01

    The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)

  20. Measurement of multinucleon transfer cross-sections

    Indian Academy of Sciences (India)

    Keywords. Ni(C, ), Fe(C, ), =C, C, B, B, Be, Be, Be, Be, Li, Li; = 60 MeV; measured reaction cross-section; elastic scattering angular distribution; deduced transfer probabilities and enhancement factors.

  1. Calculation of the resonance cross section functions

    Energy Technology Data Exchange (ETDEWEB)

    Slipicevic, K F [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1967-11-15

    This paper includes the procedure for calculating the Doppler broadened line shape functions {psi} and {chi} which are needed for calculation of resonance cross section functions. The obtained values are given in tables.

  2. Pion-nucleus cross sections approximation

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Polanski, A.; Sosnin, A.N.

    1990-01-01

    Analytical approximation of pion-nucleus elastic and inelastic interaction cross-section is suggested, with could be applied in the energy range exceeding several dozens of MeV for nuclei heavier than beryllium. 3 refs.; 4 tabs

  3. Status of neutron dosimetry cross sections

    International Nuclear Information System (INIS)

    Griffin, P.J.; Kelly, J.G.

    1992-01-01

    Several new cross section libraries, such as ENDF/B-VI(release 2), IRDF-90,JEF-2.2, and JENDL-3 Dosimetry, have recently been made available to the dosimetry community. the Sandia National Laboratories (SNL) Radiation Metrology Laboratory (RML) has worked with these libraries since pre-release versions were available. this paper summarizes the results of the intercomparison and testing of dosimetry cross sections. As a result of this analysis, a compendium of the best dosimetry cross sections was assembled from the available libraries for use within the SNL RML. this library, referred to as the SNLRML Library, contains 66 general dosimetry sensors and 3 special dosimeters unique to the RML sensor inventory. The SNLRML cross sections have been put into a format compatible with commonly used spectrum determination codes

  4. Tachyonic ionization cross sections of hydrogenic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschitz, Roman [Department of Physics, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima 739-8526 (Japan)

    2005-03-11

    Transition rates for induced and spontaneous tachyon radiation in hydrogenic systems as well as the transversal and longitudinal ionization cross sections are derived. We investigate the interaction of the superluminal radiation field with matter in atomic bound-bound and bound-free transitions. Estimates are given for Ly-{alpha} transitions effected by superluminal quanta in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, in the Born approximation and at the ionization threshold. The angular maxima occur at different scattering angles in the transversal and longitudinal cross sections, which can be used to sift out longitudinal tachyonic quanta in a photon flux. We calculate the tachyonic ionization and recombination cross sections for Rydberg states and study their asymptotic scaling with respect to the principal quantum number. At the ionization threshold of highly excited states of order n {approx} 10{sup 4}, the longitudinal cross section starts to compete with photoionization, in recombination even at lower levels.

  5. a cross-sectional analytic study 2014

    African Journals Online (AJOL)

    Assessment of HIV/AIDS comprehensive correct knowledge among Sudanese university: a cross-sectional analytic study 2014. ... There are limited studies on this topic in Sudan. In this study we investigated the Comprehensive correct ...

  6. Isomeric ratio measurements for the radiative neutron capture 176Lu(n,γ at DANCE

    Directory of Open Access Journals (Sweden)

    Denis-Petit D.

    2017-01-01

    Full Text Available The isomeric ratios for the neutron capture reaction 176Lu(n,γ to the Jπ = 5/2−, 761.7 keV, T1/2 = 32.8 ns and the Jπ = 15/2+, 1356.9 keV, T1/2 = 11.1 ns levels of 177Lu, have been measured for the first time with the Detector for Advanced Neutron Capture Experiments (DANCE at the Los Alamos National Laboratory. These measured isomeric ratios are compared with TALYS calculations.

  7. Methods for calculating anisotropic transfer cross sections

    International Nuclear Information System (INIS)

    Cai, Shaohui; Zhang, Yixin.

    1985-01-01

    The Legendre moments of the group transfer cross section, which are widely used in the numerical solution of the transport calculation can be efficiently and accurately constructed from low-order (K = 1--2) successive partial range moments. This is convenient for the generation of group constants. In addition, a technique to obtain group-angle correlation transfer cross section without Legendre expansion is presented. (author)

  8. Heisenberg rise of total cross sections

    International Nuclear Information System (INIS)

    Ezhela, V.V.; Yushchenko, O.P.

    1988-01-01

    It is shown that on the basis of the original idea of Heisenberg on the quasiclassical picture of extended particle interactions one can construct a satisfactory description of the total cross sections, elastic cross sections, elastic diffractive slopes and mean charged multiplicities in the cm energy range from 5 to 900 GeV, and produce reasonable extrapolations up to several tens of TeV. 14 refs.; 7 figs.; 2 tabs

  9. Evaluation methods for neutron cross section standards

    International Nuclear Information System (INIS)

    Bhat, M.R.

    1980-01-01

    Methods used to evaluate the neutron cross section standards are reviewed and their relative merits, assessed. These include phase-shift analysis, R-matrix fit, and a number of other methods by Poenitz, Bhat, Kon'shin and the Bayesian or generalized least-squares procedures. The problems involved in adopting these methods for future cross section standards evaluations are considered, and the prospects for their use, discussed. 115 references, 5 figures, 3 tables

  10. Absolute measurement of the cross sections of neutron radiative capture for 23Na, Cr, 55Mn, Fe, Ni, 103Rh, Ta, 197Au and 238U in the 10-600keV energy range

    International Nuclear Information System (INIS)

    Le Rigoleur, Claude; Arnaud, Andre; Taste, Jean.

    1976-10-01

    The total energy weighting technique has been applied to measuring absolute neutron capture cross sections for 23 Na, Cr, 55 Mn, Fe, Ni, 103 Rh, Ta, 197 Au, 238 U in the 10-600keV energy range. A non hydrogeneous liquid scintillator was used to detect the gamma from the cascade. The neutron flux was measured with a 10 B INa(Tl) detector or a 6 Li glass scintillator of well known efficiency. The fast time-of-flight technique was used with on line digital computer data processing [fr

  11. Status report and measurement of total cross-sections at the Pohang Neutron Facility

    International Nuclear Information System (INIS)

    Kim, G.N.; Meaze, A.K.M.M.H.; Ahmed, H.

    2004-01-01

    We report the status of the Pohang Neutron Facility which consists of an electron linear accelerator, a water-cooled Ta target, and an 11-m time-of-flight path. It has been equipped with a four-position sample changer controlled remotely by a CAMAC data acquisition system, which allows simultaneous accumulation of the neutron time of flight spectra from 4 different detectors. It is possible to measure the neutron total cross-sections in the neutron energy range from 0.1 eV to 100 eV by using the neutron time of flight method. A 6 LiZnS(Ag) glass scintillator was used as a neutron detector. The neutron flight path from the water-cooled Ta target to the neutron detector was 10.81±0.02 m. The background level was determined by using notch-filters of Co, In, Ta, and Cd sheets. In order to reduce the gamma rays from Bremsstrahlung and those from neutron capture, we employed a neutron-gamma separation system based on their different pulse shapes. The present measurements are in general agreement with the evaluated data in ENDF/B-VI. The resonance parameters were extracted from the transmission data from the SAMMY fitting and compared with the previous ones. (author)

  12. Level Densities in the actinide region and indirect n,y cross section measurements using the surrogate method

    Directory of Open Access Journals (Sweden)

    Wiedeking M.

    2012-02-01

    Full Text Available Results from a program of measurements of level densities and gamma ray strength functions in the actinide region are presented. Experiments at the Oslo cyclotron involving the Cactus/Siri detectors and 232Th(d,x and 232Th(3He,x reactions were carried out to help answer the question of which level density model is the most appropriate for actinide nuclei, since it will have an impact on cross section calculations important for reactor physics simulations. A new technique for extracting level densities and gamma ray strength functions from particle-gamma coincidence data is proposed and results from the development of this technique are presented. In addition, simultaneous measurements of compound nuclear gamma decay probabilities have been performed for the key thorium cycle nuclei 233Th, 231Th and 232Pa up to around 1MeV above the neutron binding energy and have enabled extraction of indirect neutron induced capture cross sections for the 232Th, 231Pa and 230Th nuclei using the surrogate reaction method. Since the neutron capture cross section for 232Th is already well known from direct measurements a comparison provides a stringent test of the applicability of the surrogate technique in the actinide region.

  13. A Pebble Bed Reactor cross section methodology

    International Nuclear Information System (INIS)

    Hudson, Nathanael H.; Ougouag, Abderrafi M.; Rahnema, Farzad; Gougar, Hans

    2009-01-01

    A method is presented for the evaluation of microscopic cross sections for the Pebble Bed Reactor (PBR) neutron diffusion computational models during convergence to an equilibrium (asymptotic) fuel cycle. This method considers the isotopics within a core spectral zone and the leakages from such a zone as they arise during reactor operation. The randomness of the spatial distribution of fuel grains within the fuel pebbles and that of the fuel and moderator pebbles within the core, the double heterogeneity of the fuel, and the indeterminate burnup of the spectral zones all pose a unique challenge for the computation of the local microscopic cross sections. As prior knowledge of the equilibrium composition and leakage is not available, it is necessary to repeatedly re-compute the group constants with updated zone information. A method is presented to account for local spectral zone composition and leakage effects without resorting to frequent spectrum code calls. Fine group data are pre-computed for a range of isotopic states. Microscopic cross sections and zone nuclide number densities are used to construct fine group macroscopic cross sections, which, together with fission spectra, flux modulation factors, and zone buckling, are used in the solution of the slowing down balance to generate a new or updated spectrum. The microscopic cross-sections are then re-collapsed with the new spectrum for the local spectral zone. This technique is named the Spectral History Correction (SHC) method. It is found that this method accurately recalculates local broad group microscopic cross sections. Significant improvement in the core eigenvalue, flux, and power peaking factor is observed when the local cross sections are corrected for the effects of the spectral zone composition and leakage in two-dimensional PBR test problems.

  14. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors

    International Nuclear Information System (INIS)

    Zamenhof, R.G.; Brenner, J.F.; Wazer, D.E.; Madoc-Jones, H.; Clement, S.D.; Harling, O.K.; Yanch, J.C.

    1990-01-01

    Monte Carlo based dosimetry and computer-aided treatment planning for neutron capture therapy have been developed to provide the necessary link between physical dosimetric measurements performed on the MITR-II epithermal-neutron beams and the need of the radiation oncologist to synthesize large amounts of dosimetric data into a clinically meaningful treatment plan for each individual patient. Monte Carlo simulation has been employed to characterize the spatial dose distributions within a skull/brain model irradiated by an epithermal-neutron beam designed for neutron capture therapy applications. The geometry and elemental composition employed for the mathematical skull/brain model and the neutron and photon fluence-to-dose conversion formalism are presented. A treatment planning program, NCTPLAN, developed specifically for neutron capture therapy, is described. Examples are presented illustrating both one and two-dimensional dose distributions obtainable within the brain with an experimental epithermal-neutron beam, together with beam quality and treatment plan efficacy criteria which have been formulated for neutron capture therapy. The incorporation of three-dimensional computed tomographic image data into the treatment planning procedure is illustrated

  15. Further development of thermal neutron capture therapy for metastatic and deeply-invasive human malignant melanoma

    International Nuclear Information System (INIS)

    Mishima, Yutaka

    1995-03-01

    This issue is the collection of the papers presented thermal neutron capture therapy for metastatic and deeply-invasive human malignant melanoma. Separate abstracts were prepared for 2 of the papers in this report. The remaining 32 papers were considered outside the subject scope of INIS. (J.P.N.)

  16. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  17. Proposal of a research and development program for cerebral tumor treatment by neutron capture

    International Nuclear Information System (INIS)

    Silva, M.M. da

    1992-01-01

    The researches related to the Boron Neutron Capture Therapy, that were developed at Nuclear Energetic Institute (IPEN/CNEN-SP) and the Coordination for Special Projects (COPESP) are described. A coordinate development program is presented for constructing of an installation, with the purpose of routine utilization of this technique. (C.G.C.)

  18. Study of the GDR in 15N using fast neutron capture

    International Nuclear Information System (INIS)

    Wender, S.A.; Jensen, M.; Potokar, M.; Roberson, N.R.; Tilley, D.R.; Weller, H.R.

    1978-01-01

    The excitation function for 15 N(γ,n) from 16 to 23 MeV was obtained by use of the detailed balance priinciple from neutron capture. As coefficients from the 14 N(n,γ) data are also shown. Similar data are shown for 14 C(p,γ) and 14 N(p,γ) studies. 2 figures

  19. New carbon-carbon linked amphiphilic carboranyl-porphyrins as boron neutron capture agents

    International Nuclear Information System (INIS)

    Vicente, M.G.H.; Wickramasinghe, A.; Shetty, S.J.; Smith, K.M.

    2000-01-01

    Novel amphiphilic carboranyl-porphyrins have been synthesized for Boron Neutron Capture Therapy (BNCT). These compounds have carbon-carbon bonds between the carborane residues and the porphyrin meso-phenyl groups, and contain 28-31% boron by weight . (author)

  20. The Boron Neutron Capture Therapy (BNCT) Project at the TRIGA Reactor in Mainz, Germany

    DEFF Research Database (Denmark)

    Hampel, G.; Grunewald, C.; Schütz, C.

    2011-01-01

    The thermal column of the TRIGA reactor in Mainz is being used very effectively for medical and biological applications. The BNCT (boron neutron capture therapy) project at the University of Mainz is focussed on the treatment of liver tumours, similar to the work performed at Pavia (Italy) a few ...

  1. Boron neutron capture therapy (BNCT) using fast neutrons: Effects in two human tumor cell lines

    International Nuclear Information System (INIS)

    Sauerwein, W.; Ziegler, W.; Szypniewski, H.; Streffer, C.

    1990-01-01

    The results demonstrate that the effect of fast neutrons on cell survival in cell culture can be enhanced by boron neutron capture reaction. Even with lower enhancement ratios, the concept of NCT assisted fast neutron therapy may successfully be applied for tumor treatment with the Essen cyclotron. (orig.)

  2. Prompt γ-ray data evaluation of thermal-neutron capture for A = 1-25

    International Nuclear Information System (INIS)

    Zhou Chunmei

    1999-01-01

    The method of prompt γ-ray data evaluation for thermal-neutron capture has been briefly presented. The prompt capture γ-ray data of stable nuclei for A = 1 - 25 are evaluated. The evaluated data have been changed into the ENSDF format and the checks of physics and format have been made

  3. Top quark production cross-section measurements

    CERN Document Server

    Chen, Ye; The ATLAS collaboration

    2017-01-01

    Measurements of the inclusive and differential cross-sections for top-quark pair and single top production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at center-of-mass energies of 8 TeV and 13 TeV. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. These measurements, including results using boosted tops, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers and NLO QCD calculations. For the t-channel single top measurement, the single top-quark and anti-top-quark total production cross-sections, their ratio, as well as differential cross sections are also presented. A measurement of the production cross-section of a single top quark in association with a W boson, the second largest single-top production mode, is also presented. Finally, measurements of ...

  4. Homogenized group cross sections by Monte Carlo

    International Nuclear Information System (INIS)

    Van Der Marck, S. C.; Kuijper, J. C.; Oppe, J.

    2006-01-01

    Homogenized group cross sections play a large role in making reactor calculations efficient. Because of this significance, many codes exist that can calculate these cross sections based on certain assumptions. However, the application to the High Flux Reactor (HFR) in Petten, the Netherlands, the limitations of such codes imply that the core calculations would become less accurate when using homogenized group cross sections (HGCS). Therefore we developed a method to calculate HGCS based on a Monte Carlo program, for which we chose MCNP. The implementation involves an addition to MCNP, and a set of small executables to perform suitable averaging after the MCNP run(s) have completed. Here we briefly describe the details of the method, and we report on two tests we performed to show the accuracy of the method and its implementation. By now, this method is routinely used in preparation of the cycle to cycle core calculations for HFR. (authors)

  5. Photoproton cross section for /sup 19/F

    Energy Technology Data Exchange (ETDEWEB)

    Tsubota, H [Tohoku Univ., Sendai (Japan). Coll. of General Education; Kawamura, N; Oikawa, S; Uegaki, J I

    1975-02-01

    Proton energy spectra have been measured at 90/sup 0/ for the /sup 19/F(e,e'p)/sup 18/O reaction in the giant resonance region. The (..gamma..,p/sub 0/) and (..gamma..,p/sub 1/) differential cross sections are extracted from the proton energy spectra by using virtual-photon spectra. The integrated differential cross section of the (..gamma..,p/sub 0/) and (..gamma..,p/sub 1/) reactions are 1.80+-0.27 and 0.50+-0.45 MeV-mb/sr, respectively. The results are discussed with the shell model theory by comparing with the (..gamma..,p/sub 0/) cross section of the neighboring 4n-nucleus /sup 20/Ne. A significant increase of the proton yield leaving the non-ground states is found at 25 MeV of the incident electron energy. This is discussed in terms of the core excitation effect.

  6. Prospects for Precision Neutrino Cross Section Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A. [Fermilab

    2016-01-28

    The need for precision cross section measurements is more urgent now than ever before, given the central role neutrino oscillation measurements play in the field of particle physics. The definition of precision is something worth considering, however. In order to build the best model for an oscillation experiment, cross section measurements should span a broad range of energies, neutrino interaction channels, and target nuclei. Precision might better be defined not in the final uncertainty associated with any one measurement but rather with the breadth of measurements that are available to constrain models. Current experience shows that models are better constrained by 10 measurements across different processes and energies with 10% uncertainties than by one measurement of one process on one nucleus with a 1% uncertainty. This article describes the current status of and future prospects for the field of precision cross section measurements considering the metric of how many processes, energies, and nuclei have been studied.

  7. NNLO jet cross sections by subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Bolzoni, P. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Trocsanyi, Z. [CERN PH-TH, on leave from University of Debrecen and Institute of Nuclear Research of HAS, H-4001 P.O.Box 51 (Hungary)

    2010-08-15

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 06, 024 (2005), (arXiv:hep-ph/0502226); G. Somogyi and Z. Trocsanyi, (2006), (arXiv:hep-ph/0609041); G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 01, 070 (2007), (arXiv:hep-ph/0609042); G. Somogyi and Z. Trocsanyi, JHEP 01, 052 (2007), (arXiv:hep-ph/0609043)] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  8. NNLO jet cross sections by subtraction

    International Nuclear Information System (INIS)

    Somogyi, G.; Bolzoni, P.; Trocsanyi, Z.

    2010-01-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 06, 024 (2005), (arXiv:hep-ph/0502226); G. Somogyi and Z. Trocsanyi, (2006), (arXiv:hep-ph/0609041); G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 01, 070 (2007), (arXiv:hep-ph/0609042); G. Somogyi and Z. Trocsanyi, JHEP 01, 052 (2007), (arXiv:hep-ph/0609043)] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  9. IMPROVED COMPUTATIONAL CHARACTERIZATION OF THE THERMAL NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY RESEARCH AT THE UNIVERSITY OF MISSOURI

    Energy Technology Data Exchange (ETDEWEB)

    Stuart R. Slattery; David W. Nigg; John D. Brockman; M. Frederick Hawthorne

    2010-05-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. This is essential for detailed dosimetric studies required for the anticipated research program.

  10. Optical Model and Cross Section Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  11. Cross sections for charm production by neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ushida, N [Aichi Univ. of Education, Kariya (Japan). Dept. of Physics; Kondo, T [Fermi National Accelerator Lab., Batavia, IL (USA); Fujioka, G; Fukushima, J; Takahashi, Y; Tatsumi, S; Yokoyama, C [Kobe Univ. (Japan). Dept. of Physics; Homma, Y; Tsuzuki, Y [Kobe Univ. (Japan). Coll. of Liberal Arts; Bahk, S

    1983-02-03

    The production of charmed particles has been measured using a hybrid emulsion spectrometer in the Fermilab wide-band neutrino beam. The relative cross section for charged current charmed particle production is sigma(v -> ..mu../sup -/c)/sigma(v -> ..mu../sup -/) = 6.5 +- 1.9/1.8%, and the energy dependence of the cross section is presented. One event with charm pair production was observed. A limit of sigma(v -> ..mu..canti c)/sigma(v -> ..mu..c) < 6% (90% CL) is found for the ratio of charged current pair and single charm production.

  12. Covariance Evaluation Methodology for Neutron Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  13. Ecological Panel Inference from Repeated Cross Sections

    NARCIS (Netherlands)

    Pelzer, Ben; Eisinga, Rob; Franses, Philip Hans

    2004-01-01

    This chapter presents a Markov chain model for the estimation of individual-level binary transitions from a time series of independent repeated cross-sectional (RCS) samples. Although RCS samples lack direct information on individual turnover, it is demonstrated here that it is possible with these

  14. Validation of evaluated neutron standard cross sections

    International Nuclear Information System (INIS)

    Badikov, S.; Golashvili, T.

    2008-01-01

    Some steps of the validation and verification of the new version of the evaluated neutron standard cross sections were carried out. In particular: -) the evaluated covariance data was checked for physical consistency, -) energy-dependent evaluated cross-sections were tested in most important neutron benchmark field - 252 Cf spontaneous fission neutron field, -) a procedure of folding differential standard neutron data in group representation for preparation of specialized libraries of the neutron standards was verified. The results of the validation and verification of the neutron standards can be summarized as follows: a) the covariance data of the evaluated neutron standards is physically consistent since all the covariance matrices of the evaluated cross sections are positive definite, b) the 252 Cf spectrum averaged standard cross-sections are in agreement with the evaluated integral data (except for 197 Au(n,γ) reaction), c) a procedure of folding differential standard neutron data in group representation was tested, as a result a specialized library of neutron standards in the ABBN 28-group structure was prepared for use in reactor applications. (authors)

  15. Stability of tokamaks with elongated cross section

    International Nuclear Information System (INIS)

    An, C.H.; Bateman, G.

    1978-08-01

    Fixed boundary n = 1 MHD instabilities are studied computationally as a function of diamagnetism (β/sub pol/) and current profile in elongated toroidal equilibria (1 2) or a diamagnetic plasma (β/sub pol/ > 1) with only a mildly elongated cross section

  16. Modelisation of the fission cross section

    International Nuclear Information System (INIS)

    Morariu, Claudia

    2013-03-01

    The neutron cross sections of four nuclear systems (n+ 235 U, n+ 233 U, n+ 241 Am and n+ 237 Np) are studied in the present document. The target nuclei of the first case, like 235 U and 239 Pu, have a large fission cross section after the absorption of thermal neutrons. These nuclei are called 'fissile' nuclei. The other type of nuclei, like 237 Np and 241 Am, fission mostly with fast neutrons, which exceed the fission threshold energy. These types of nuclei are called 'fertile'. The compound nuclei of the fertile nuclei have a binding energy higher than the fission barrier, while for the fissile nuclei the binding energy is lower than the fission barrier. In this work, the neutron induced cross sections for both types of nuclei are evaluated in the fast energy range. The total, reaction and shape-elastic cross sections are calculated by the coupled channel method of the optical model code ECIS, while the compound nucleus mechanism are treated by the statistical models implemented in the codes STATIS, GNASH and TALYS. The STATIS code includes a refined model of the fission process. Results from the theoretical calculations are compared with data retrieved from the experimental data base EXFOR. (author) [fr

  17. Photoelectric absorption cross sections with variable abundances

    Science.gov (United States)

    Balucinska-Church, Monika; Mccammon, Dan

    1992-01-01

    Polynomial fit coefficients have been obtained for the energy dependences of the photoelectric absorption cross sections of 17 astrophysically important elements. These results allow the calculation of X-ray absorption in the energy range 0.03-10 keV in material with noncosmic abundances.

  18. (, 3) Differential cross section of He

    Indian Academy of Sciences (India)

    The angular distribution of the five-fold differential cross section for the electron impact double ionization of He (21 ) and He (23 ) has been studied. The kinematical conditions for maxima/minima in the angular distribution for the two cases have been compared. The two-step process for the double ionization is found to ...

  19. Precise relative cross sections for np scattering

    International Nuclear Information System (INIS)

    Goetz, J.; Brogli-Gysin, C.; Hammans, M.; Haffter, P.; Henneck, R.; Jourdan, J.; Masson, G.; Qin, L.M.; Robinson, S.; Sick, I.; Tuccillo, M.

    1994-01-01

    We present data on the differential cross section for neutron-proton scattering for an incident neutron energy of 67 MeV. These data allow a precise determination of the 1 P 1 phase which, in phase-shift analyses, is strongly correlated with the S-D amplitude which we are measuring via different observables. ((orig.))

  20. Symmetric charge transfer cross section of uranium

    International Nuclear Information System (INIS)

    Shibata, Takemasa; Ogura, Koichi

    1995-03-01

    Symmetric charge transfer cross section of uranium was calculated under consideration of reaction paths. In the charge transfer reaction a d 3/2 electron in the U atom transfers into the d-electron site of U + ( 4 I 9/2 ) ion. The J value of the U atom produced after the reaction is 6, 5, 4 or 3, at impact energy below several tens eV, only resonant charge transfer in which the product atom is ground state (J=6) takes place. Therefore, the cross section is very small (4-5 x 10 -15 cm 2 ) compared with that considered so far. In the energy range of 100-1000eV the cross section increases with the impact energy because near resonant charge transfer in which an s-electron in the U atom transfers into the d-electron site of U + ion. Charge transfer cross section between U + in the first excited state (289 cm -1 ) and U in the ground state was also obtained. (author)

  1. LAMBDA p total cross-section measurement

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    A view of the apparatus used for the LAMBDA p total cross-section measurement at the time of its installation. The hyperons decaying into a proton and a pion in the conical tank in front were detected in the magnet spectrometer in the upper half of the picture. A novel detection technique using exclusively multiwire proportional chambers was employed.

  2. Measurement of the 33S(n,α) cross-section at n_TOF(CERN): Applications to BNCT

    Science.gov (United States)

    Sabaté-Gilarte, Marta; Praena, Javier; Porras, Ignacio; Quesada, José Manuel; Mastinu, Pierfrancesco

    2016-01-01

    Aim The main purpose of this work is to present a new (n,α) cross-section measurement for a stable isotope of sulfur, 33S, in order to solve existing discrepancies. Background 33S has been studied as a cooperating target for Boron Neutron Capture Therapy (BNCT) because of its large (n,α) cross-section in the epithermal neutron energy range, the most suitable one for BNCT. Although the most important evaluated databases, such as ENDF, do not show any resonances in the cross-section, experimental measurements which provided data from 10 keV to 1 MeV showed that the lowest-lying and strongest resonance of 33S(n,α) cross-section occurs at 13.5 keV. Nevertheless, the set of resonance parameters that describe such resonance shows important discrepancies (more than a factor of 2) between them. Materials and methods A new measurement of the 33S(n,α)30Si reaction cross-section was proposed to the ISOLDE and Neutron Time-of-Flight Experiments Committee of CERN. It was performed at n_TOF(CERN) in 2012 using MicroMegas detectors. Results In this work, we will present a brief overview of the experiment as well as preliminary results of the data analysis in the neutron energy range from thermal to 100 keV. These results will be taken into account to calculate the kerma-fluence factors corresponding to 33S in addition to 10B and those of a standard four-component ICRU tissue. Conclusions MCNP simulations of the deposited dose, including our experimental data, shows an important kerma rate enhancement at the surface of the tissue, mainly due to the presence of 33S. PMID:26933393

  3. Measurement of the (33)S(n,α) cross-section at n_TOF(CERN): Applications to BNCT.

    Science.gov (United States)

    Sabaté-Gilarte, Marta; Praena, Javier; Porras, Ignacio; Quesada, José Manuel; Mastinu, Pierfrancesco

    2016-01-01

    The main purpose of this work is to present a new (n,α) cross-section measurement for a stable isotope of sulfur, (33)S, in order to solve existing discrepancies. (33)S has been studied as a cooperating target for Boron Neutron Capture Therapy (BNCT) because of its large (n,α) cross-section in the epithermal neutron energy range, the most suitable one for BNCT. Although the most important evaluated databases, such as ENDF, do not show any resonances in the cross-section, experimental measurements which provided data from 10 keV to 1 MeV showed that the lowest-lying and strongest resonance of (33)S(n,α) cross-section occurs at 13.5 keV. Nevertheless, the set of resonance parameters that describe such resonance shows important discrepancies (more than a factor of 2) between them. A new measurement of the (33)S(n,α)(30)Si reaction cross-section was proposed to the ISOLDE and Neutron Time-of-Flight Experiments Committee of CERN. It was performed at n_TOF(CERN) in 2012 using MicroMegas detectors. In this work, we will present a brief overview of the experiment as well as preliminary results of the data analysis in the neutron energy range from thermal to 100 keV. These results will be taken into account to calculate the kerma-fluence factors corresponding to (33)S in addition to (10)B and those of a standard four-component ICRU tissue. MCNP simulations of the deposited dose, including our experimental data, shows an important kerma rate enhancement at the surface of the tissue, mainly due to the presence of (33)S.

  4. Measurement cross sections for radioisotopes production

    International Nuclear Information System (INIS)

    Garrido, E.

    2011-01-01

    New radioactive isotopes for nuclear medicine can be produced using particle accelerators. This is one goal of Arronax, a high energy - 70 MeV - high intensity - 2*350 μA - cyclotron set up in Nantes. A priority list was established containing β - - 47 Sc, 67 Cu - β + - 44 Sc, 64 Cu, 82 Sr/ 82 Rb, 68 Ge/ 68 Ga - and α emitters - 211 At. Among these radioisotopes, the Scandium 47 and the Copper 67 have a strong interest in targeted therapy. The optimization of their productions required a good knowledge of their cross-sections but also of all the contaminants created during irradiation. We launched on Arronax a program to measure these production cross-sections using the Stacked-Foils' technique. It consists in irradiating several groups of foils - target, monitor and degrader foils - and in measuring the produced isotopes by γ-spectrometry. The monitor - nat Cu or nat Ni - is used to correct beam loss whereas degrader foils are used to lower beam energy. We chose to study the nat Ti(p,X) 47 Sc and 68 Zn(p,2p) 67 Cu reactions. Targets are respectively natural Titanium foil - bought from Goodfellow - and enriched Zinc 68 deposited on Silver. In the latter case, Zn targets were prepared in-house - electroplating of 68 Zn - and a chemical separation between Copper and Gallium isotopes has to be made before γ counting. Cross-section values for more than 40 different reactions cross-sections have been obtained from 18 MeV to 68 MeV. A comparison with the Talys code is systematically done. Several parameters of theoretical models have been studied and we found that is not possible to reproduce faithfully all the cross-sections with a given set of parameters. (author)

  5. Neutron-induced fission cross sections

    International Nuclear Information System (INIS)

    Weigmann, H.

    1991-01-01

    In the history of fission research, neutron-induced fission has always played the most important role. The practical importance of neutron-induced fission rests upon the fact that additional neutrons are produced in the fission process, and thus a chain reaction becomes possible. The practical applications of neutron-induced fission will not be discussed in this chapter, but only the physical properties of one of its characteristics, namely (n,f) cross sections. The most important early summaries on the subject are the monograph edited by Michaudon which also deals with the practical applications, the earlier review article on fission by Michaudon, and the review by Bjornholm and Lynn, in which neutron-induced fission receives major attention. This chapter will attempt to go an intermediate way between the very detailed theoretical treatment in the latter review and the cited monograph which emphasizes the applied aspects and the techniques of fission cross-section measurements. The more recent investigations in the field will be included. Section II will survey the properties of cross sections for neutron-induced fission and also address some special aspects of the experimental methods applied in their measurement. Section Ill will deal with the formal theory of neutron-induced nuclear reactions for the resolved resonance region and the region of statistical nuclear reactions. In Section IV, the fission width, or fission transmission coefficient, will be discussed in detail. Section V will deal with the broader structures due to incompletely damped vibrational resonances, and in particular will address the special case of thorium and neighboring isotopes. Finally, Section VI will briefly discuss parity violation effects in neutron-induced fission. 74 refs., 14 figs., 3 tabs

  6. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Optical Extension for Neutron Capture Elements

    Science.gov (United States)

    Melendez, Matthew; O'Connell, Julia; Frinchaboy, Peter M.; Donor, John; Cunha, Katia M. L.; Shetrone, Matthew D.; Majewski, Steven R.; Zasowski, Gail; Pinsonneault, Marc H.; Roman-Lopes, Alexandre; Stassun, Keivan G.; APOGEE Team

    2017-01-01

    The Open Cluster Chemical Abundance & Mapping (OCCAM) survey is a systematic survey of Galactic open clusters using data primarily from the SDSS-III/APOGEE-1 survey. However, neutron capture elements are very limited in the IR region covered by APOGEE. In an effort to fully study detailed Galactic chemical evolution, we are conducting a high resolution (R~60,000) spectroscopic abundance analysis of neutron capture elements for OCCAM clusters in the optical regime to complement the APOGEE results. As part of this effort, we present Ba II, La II, Ce II and Eu II results for a few open clusters without previous abundance measurements using data obtained at McDonald Observatory with the 2.1m Otto Struve telescope and Sandiford Echelle Spectrograph.This work is supported by an NSF AAG grant AST-1311835.

  7. Validating (d,pγ) as a surrogate for neutron capture

    International Nuclear Information System (INIS)

    Ratkiewicz, A.; Cizewski, J. A.; Pain, S. D.; Adekola, A. S.; Burke, J. T.; Casperson, R. J.; Fotiadis, Nikolaos; McCleskey, M.; Burcher, S.; Shand, C. M; Austin, R. A. E.; Baugher, T.; Carpenter, M. P.; Devlin, Matthew James; Escher, J. E.; Hardy, S.; Hatarik, R.; Howard, M. E.; Hughes, R. O.; Jones, K. L.; Kozub, R. L.; Lister, C. J.; Manning, B.; O'Donnell, John M.; Peters, W. A.; Ross, T. J.; Scielzo, N. D.; Seweryniak, D.; Zhu, S.

    2015-01-01

    The r-process is responsible for creating roughly half of the elements heavier than iron. It has recently become understood that the rates at which neutron capture reactions proceed at late times in the r-process may dramatically affect the final abundance pattern. However, direct measurements of neutron capture reaction rates on exotic nuclei are exceptionally difficult, necessitating the development of indirect approaches such as the surrogate technique. The (d,pγ) reaction at low energies was identified as a promising surrogate for the (n,γ) reaction, as both reactions share many characteristics. We report on a program to validate (d,pγ) as a surrogate for (n,γ) using 95Mo as a target. The experimental campaign includes direct measurements of the γ-ray intensities from the decay of excited states populated in the 95Mo(n,γ) and 95Mo(d,pγ) reactions.

  8. Possible alternation of the blood-brain barrier by boron-neutron capture therapy

    International Nuclear Information System (INIS)

    Hatanaka, H.; Moritani, M.; Camillo, M.

    1991-01-01

    In the course of re-assessment of boron-neutron capture therapy (BNCT) for malignant brain tumors, fractionation of neutron irradiation has been proposed. The authors have used BNCT with a single fraction technique during the past 21 years and now decided to study some effects of fractionation. Twenty-two healthy mouse brains were irradiated with thermal neutrons after boron-10 injection (mercaptoundecahydrododecaborate). A second dose of boron-10 was administered and its uptake in the boron-neutron-capture-irradiated brains was determined. A tendency towards increased boron uptake in the moderately BNCT-treated brains was noticed, which may result in increased brain damage if fractionated neutron irradiation is used. (orig.)

  9. Development of advanced sensing system for antipersonnel mines with neutron capture gamma-ray analysis

    International Nuclear Information System (INIS)

    Iguchi, Tetsuo

    2006-01-01

    Neutron induced prompt gamma-ray analysis (NPGA) for survey of antipersonnel landmines is developed. A concept of sensor system with compact strong accelerator neutron source, simulation of detection and simulation results by trial examinations are stated. The measurement principles, objects, system construction, development of compact accelerator neutron source and high performance neutron capture gamma-ray detector, simulation of detection of landmine are reported. It can detect 10.8 MeV gamma-rays and estimate the incident angle of gamma-ray. Schematic layouts of the compact accelerator neutron resource, the compact Compton gamma camera and sensor unit, the estimation principle of incident angle of gamma-ray, experiments and comparison between the experimental results and the estimation results, a preliminary trial experiment system for sensing antipersonnel mines with neutron capture gamma-ray analysis are illustrated. (S.Y.)

  10. Validating (d,p gamma) as a Surrogate for Neutron Capture

    Energy Technology Data Exchange (ETDEWEB)

    Ratkiewicz, A. [Rutgers University; Cizewski, J. A. [Rutgers University; Pain, S. [Oak Ridge National Laboratory (ORNL); Adekola, A. S. [Rutgers University; Burke, J. T. [Lawrence Livermore National Laboratory (LLNL); Casperson, R.J. [Lawrence Livermore National Laboratory (LLNL); Fotiades, N. [Los Alamos National Laboratory (LANL); McCleskey, M. [Texas A& M University; Burcher, S. [Rutgers University; Shand, C. M. [Rutgers Univ./Univ. of Surrey, UK; Austin, R. A. E. [Saint Mary’s University, Halifa, Canada; Baugher, T. [Rutgers University; Carpenter, M. P. [Argonne National Laboratory (ANL); Devlin, M. [Los Alamos National Laboratory (LANL); Escher, J. E. [Lawrence Livermore National Laboratory (LLNL); Hardy, S. [Rutgers Univ./Univ. of Surrey, UK; Hatarik, R. [Lawrence Livermore National Laboratory (LLNL); Howard, M. [Rutgers University; Hughes, R. [University of Richmond, VA; Jones, K. L. [University of Tennessee, Knoxville (UTK); Kozub, R. L. [Tennessee Technological University (TTU); Lister, C. J. [University of Massachusetts, Lowell; Manning, B. [Rutgers University; O' Donnell, J. M. [Los Alamos National Laboratory (LANL); Peters, W. A. [Oak Ridge Associated Universities (ORAU); Ross, T.J. [University of Richmond, VA; Scielzo, N.D. [Lawrence Livermore National Laboratory (LLNL); Seweryniak, D. [Argonne National Laboratory (ANL); Zhu, S. [Argonne National Laboratory (ANL)

    2015-01-01

    The r-process is responsible for creating roughly half of the elements heavier than iron. It has recently become understood that the rates at which neutron capture reactions proceed at late times in the rprocess may dramatically affect the final abundance pattern. However, direct measurements of neutron capture reaction rates on exotic nuclei are exceptionally difficult, necessitating the development of indirect approaches such as the surrogate technique. The (d,py) reaction at low energies was identified as a promising surrogate for the (n,y) reaction, as both reactions share many characteristics. We report on a program to validate (d,py) as a surrogate for (n,y) using 95Mo as a target. The experimental campaign includes direct measurements of the y-ray intensities from the decay of excited states populated in the 95Mo(n,y) and 95Mo(d,py) reactions.

  11. Neutron-Capture Element Abundances in the Globular Cluster M15.

    Science.gov (United States)

    Sneden; Johnson; Kraft; Smith; Cowan; Bolte

    2000-06-20

    High-resolution, high signal-to-noise ratio, blue-violet spectra of three red giant branch tip stars in M15 have been obtained with the Keck I High-Resolution Echelle Spectrograph. These spectra have been analyzed to determine the abundances of several neutron-capture elements, including the radioactive chronometer element thorium. There are two principal results of this study. First, the abundances of the heavier (Z>/=56) elements for each of the three stars is well matched by a scaled solar system r-process abundance distribution. Second, a weighted mean-observed Th/Eu ratio for the stars implies an age for the neutron-capture material in M15 stars of 14+/-3 Gyr, in reasonable agreement with other recent age estimates for Galactic globular clusters.

  12. Antitumor potential induction and free radicals production in melanoma cells by Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Faiao-Flores, F. [Biochemical and Biophysical Laboratory, Butantan Institute, 1500 Vital Brasil Avenue, Sao Paulo (Brazil)] [Faculty of Medicine, University of Sao Paulo, 455 Doutor Arnaldo Avenue, Sao Paulo (Brazil); Coelho, P.R.P.; Muniz, R.O.R.; Souza, G.S. [Institute for Nuclear and Energy Research, 2242 Lineu Prestes Avenue, Sao Paulo (Brazil); Arruda-Neto, J. [Physics Institute, University of Sao Paulo, 187 Matao Street, Sao Paulo (Brazil)] [FESP, Sao Paulo Engineering School, 5520 Nove de Julho Avenue, Sao Paulo (Brazil); Maria, Durvanei A., E-mail: durvaneiaugusto@yahoo.com.br [Biochemical and Biophysical Laboratory, Butantan Institute, 1500 Vital Brasil Avenue, Sao Paulo (Brazil)

    2011-12-15

    Antiproliferative and oxidative damage effects occurring in Boron Neutron Capture Therapy (BNCT) in normal fibroblasts and melanoma cell lines were analyzed. Melanoma cells and normal fibroblasts were treated with different concentrations of Boronophenylalanine and irradiated with thermal neutron flux. The cellular viability and the oxidative stress were determined. BNCT induced free radicals production and proliferative potential inhibition in melanoma cells. Therefore, this therapeutic technique could be considered efficient to inhibit growth of melanoma with minimal effects on normal tissues. - Highlights: Black-Right-Pointing-Pointer Boron Neutron Capture Therapy (BNCT) induces melanoma cell death. Black-Right-Pointing-Pointer BNCT stimulates free radicals production and proliferative inhibition in melanoma cells. Black-Right-Pointing-Pointer It produces tumor membrane degeneration and destruction with apoptotic bodies formation. Black-Right-Pointing-Pointer This therapy damages tumor cells selectively, with minimum effects on normal adjacent tissue.

  13. Synthesis and biological evaluation of boronated polyglycerol dendrimers as potential agent for neutron capture therapy

    International Nuclear Information System (INIS)

    Silva, Gerald S.; Camillo, Maria A.P.; Higa, Olga Z.; Pugliesi, Reynaldo; Fermamdes, Edson G.R.; Queiroz, Alvaro A.A. de

    2005-01-01

    In this work, the polyglycerol dendrimer (PGLD) generation 5 was used to obtain a boronated macromolecule for boron neutron capture therapy. The PGLD dendrimer was synthesized by the ring opening polymerization of deprotonated glycidol using polyglycerol as core functionality in a step-growth processes denominated divergent synthesis. The PGLD dendritic structure was confirmed by gel permeation chromatography, nuclear magnetic resonance ( 1 H-NMR, 13 C-NMR) and matrix assisted laser desorption/ionization techniques. The synthesized dendrimer presented low dispersion in molecular weights (M w /M n = 1.05) and a degree of branching of 0.82, which characterize the polymer dendritic structure. Quantitative neutron capture radiography was used to investigate the boron-10 enrichment of the polyglycerol dendrimer. The in vitro cytotoxicity to Chinese hamster ovary cells of 10 B-PGLD dendrimer indicate lower cytotoxicity, suggesting that the macromolecule is a biocompatible material. (author)

  14. (n,{alpha}) cross section measurement of gaseous sample using gridded ionization chamber. Cross section determination

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)

  15. A fast Monte Carlo program for pulsed-neutron capture-gamma tools

    International Nuclear Information System (INIS)

    Hovgaard, J.

    1992-02-01

    A fast model for the pulsed-neutron capture-gamma tool has been developed. It is believed that the program produce valid results even though some approximation have been introduced. A correct γ photon transport simulation, which is under preparation, has for instance not yet been included. Simulations performed so far has shown that the model, with respect to computing time and accuracy, fully lives up to expectations with respect to computing time and accuracy. (au)

  16. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors

    International Nuclear Information System (INIS)

    Zamenhof, R.G.; Clement, S.D.; Harling, O.K.; Brenner, J.F.; Wazer, D.E.; Madoc-Jones, H.; Yanch, J.C.

    1990-01-01

    Monte Carlo based dosimetry and computer-aided treatment planning for neutron capture therapy have been developed to provide the necessary link between physical dosimetric measurements performed on the MITR-II epithermal-neutron beams and the need of the radiation oncologist to synthesize large amounts of dosimetric data into a clinically meaningful treatment plan for each individual patient. Monte Carlo simulation has been employed to characterize the spatial dose distributions within a skull/brain model irradiated by an epithermal-neutron beam designed for neutron capture therapy applications. The geometry and elemental composition employed for the mathematical skull/brain model and the neutron and photon fluence-to-dose conversion formalism are presented. A treatment planning program, NCTPLAN, developed specifically for neutron capture therapy, is described. Examples are presented illustrating both one and two-dimensional dose distributions obtainable within the brain with an experimental epithermal-neutron beam, together with beam quality and treatment plan efficacy criteria which have been formulated for neutron capture therapy. The incorporation of three-dimensional computed tomographic image data into the treatment planning procedure is illustrated. The experimental epithermal-neutron beam has a maximum usable circular diameter of 20 cm, and with 30 ppm of B-10 in tumor and 3 ppm of B-10 in blood, it produces a beam-axis advantage depth of 7.4 cm, a beam-axis advantage ratio of 1.83, a global advantage ratio of 1.70, and an advantage depth RBE-dose rate to tumor of 20.6 RBE-cGy/min (cJ/kg-min). These characteristics make this beam well suited for clinical applications, enabling an RBE-dose of 2,000 RBE-cGy/min (cJ/kg-min) to be delivered to tumor at brain midline in six fractions with a treatment time of approximately 16 minutes per fraction

  17. Boron neutron capture therapy for oral precancer: proof of principle in an experimental animal model

    Energy Technology Data Exchange (ETDEWEB)

    A. Monti Hughes; ECC Pozzi; S. Thorp; M. A. Garabalino; R. O. Farias; S. J. Gonzalez; E. M. Heber; M. E. Itoiz; R. F. Aromando; A. J. Molinari; M. Miller; D. W. Nigg; P. Curotto; V. A. Trivillin; A. E. Schwint

    2013-11-01

    Field-cancerized tissue can give rise to second primary tumours, causing therapeutic failure. Boron neutron capture therapy (BNCT) is based on biological targeting and would serve to treat undetectable foci of malignant transformation. The aim of this study was to optimize BNCT for the integral treatment for oral cancer, with particular emphasis on the inhibitory effect on tumour development originating in precancerous conditions, and radiotoxicity of different BNCT protocols in a hamster cheek pouch oral precancer model.

  18. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Camillo, M.A.P.; Tomac Junior, U.

    1990-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na 2 10 B 12 H 11 SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author) [pt

  19. A colorimetric determination of boron in biological sample for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Camilo, M.A.P.; Tomac Junior, U.

    1989-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of gliomas and glioblastomas grade III and IV than other therapies. During the treatment of levels of Na 2 10 B 12 H 11 S H must be known in several compartments of the organism and with this purpose the method of colorimetric determination of boron using curcumin was established. This method is simples, reproducible and has adequate sensitivity for this control. (author). 7 refs, 3 figs, 1 tab

  20. Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT).

    Science.gov (United States)

    Seki, Ryoichi; Wakisaka, Yushi; Morimoto, Nami; Takashina, Masaaki; Koizumi, Masahiko; Toki, Hiroshi; Fukuda, Mitsuhiro

    2017-12-01

    The physics of epi-thermal neutrons in the human body is discussed in the effort to clarify the nature of the unique radiologic properties of boron neutron capture therapy (BNCT). This discussion leads to the computational method of Monte Carlo simulation in BNCT. The method is discussed through two examples based on model phantoms. The physics is kept at an introductory level in the discussion in this tutorial review.

  1. Long-survivors of glioblatoma treated with boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, H.

    2011-01-01

    The purpose of this study was to compare the radiation dose between long-survivors and non-long-survivors in patients with glioblatoma (GBM) treated with boron neutron capture therapy (BNCT). Among 23 GBM patients treated with BNCT, there were five patients who survived more than three years after diagnosis. The physical and weighted dose of the minimum gross tumor volume (GTV) of long-survivors was much higher than that of non-long survivors with significant statistical differences.

  2. Rotational averaging of multiphoton absorption cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Friese, Daniel H., E-mail: daniel.h.friese@uit.no; Beerepoot, Maarten T. P.; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, University of Tromsø — The Arctic University of Norway, N-9037 Tromsø (Norway)

    2014-11-28

    Rotational averaging of tensors is a crucial step in the calculation of molecular properties in isotropic media. We present a scheme for the rotational averaging of multiphoton absorption cross sections. We extend existing literature on rotational averaging to even-rank tensors of arbitrary order and derive equations that require only the number of photons as input. In particular, we derive the first explicit expressions for the rotational average of five-, six-, and seven-photon absorption cross sections. This work is one of the required steps in making the calculation of these higher-order absorption properties possible. The results can be applied to any even-rank tensor provided linearly polarized light is used.

  3. Measurements of neutron spallation cross section. 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Imamura, M.; Nakao, N.; Shibata, S.; Uwamino, Y.; Nakanishi, N.; Tanaka, Su.

    1997-03-01

    Neutron spallation cross section of {sup 59}Co(n,xn){sup 60-x}Co, {sup nat}Cu(n,sp){sup 56}Mn, {sup nat}Cu(n,sp){sup 58}Co, {sup nat}Cu(n,xn){sup 60}Cu, {sup nat}Cu(n,xn){sup 61}Cu and {sup nat}Cu(n,sp){sup 65}Ni was measured in the quasi-monoenergetic p-Li neutron fields in the energy range above 40 MeV which have been established at three AVF cyclotron facilities of (1) INS of Univ. of Tokyo, (2) TIARA of JAERI and (3) RIKEN. Our experimental data were compared with the ENDF/B-VI high energy file data by Fukahori and the calculated cross section data by Odano. (author)

  4. Structured ion impact: Doubly differential cross sections

    International Nuclear Information System (INIS)

    DuBois, R.D.

    1987-01-01

    The electron emission in coincidence with a projectile that has been ionized has been measured, thus making it possible to separate and identify electrons resulting from these various mechanisms. In 1985, coincidence doubly differential cross sections were measured for 400 to 750 keV/atomic mass unit (amu) He + impact on He, Ne, Ar, Kr, and H 2 O. Cross sections were measured for selected angles and for electron energies ranging from 10 to 1000 eV. Because of the coincidence mode of measurement, the total electron emission was subdivided into its target emission and its projectile emission components. The most interesting findings were that target ionization does not account for the electron emission spectrum at lower electron energies. A sizable percentage of these low-energy electrons were shown to originate as a result of simultaneous projectile/target ionizations. Similar features were observed for all targets and impact energies that were studied

  5. Electron-collision cross sections for iodine

    International Nuclear Information System (INIS)

    Zatsarinny, O.; Bartschat, K.; Garcia, G.; Blanco, F.; Hargreaves, L.R.; Jones, D.B.; Murrie, R.; Brunton, J.R.; Brunger, M.J.; Hoshino, M.; Buckman, S.J.

    2011-01-01

    We present results from a joint experimental and theoretical study of elastic electron scattering from atomic iodine. The experimental results were obtained by subtracting known cross sections from the measured data obtained with a pyrolyzed mixed beam containing a variety of atomic and molecular species. The calculations were performed using both a fully relativistic Dirac B-spline R-matrix (close-coupling) method and an optical model potential approach. Given the difficulty of the problem, the agreement between the two sets of theoretical predictions and the experimental data for the angle-differential and the angle-integrated elastic cross sections at 40 eV and 50 eV is satisfactory.

  6. Absolute partial photoionization cross sections of ethylene

    Science.gov (United States)

    Grimm, F. A.; Whitley, T. A.; Keller, P. R.; Taylor, J. W.

    1991-07-01

    Absolute partial photoionization cross sections for ionization out of the first four valence orbitals to the X 2B 3u, A 2B 3g, B 2A g and C 2B 2u states of the C 2H 4+ ion are presented as a function of photon energy over the energy range from 12 to 26 eV. The experimental results have been compared to previously published relative partial cross sections for the first two bands at 18, 21 and 24 eV. Comparison of the experimental data with continuum multiple scattering Xα calculations provides evidence for extensive autoionization to the X 2B 3u state and confirms the predicted shape resonances in ionization to the A 2B 3g and B 2A g states. Identification of possible transitions for the autoionizing resonances have been made using multiple scattering transition state calculations on Rydberg excited states.

  7. Radar cross section measurements using terahertz waves

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification...... in order to measure realistic radar cross sections. RCS polar and azimuthal angle plots of F-16 and F-35 are presented....... in a lithium niobate crystal with application of the tilted wave front method, resulting in high electric field THz pulses with a broad band spectrum from 100 GHz up to 4 THz. The corresponding wave lengths are two orders of magnitude smaller than normal radars and we therefore use scale models of size 5-10 cm...

  8. Electron Capture Cross Sections for Stellar Nucleosynthesis

    Directory of Open Access Journals (Sweden)

    P. G. Giannaka

    2015-01-01

    Full Text Available In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasiparticle random-phase approximation (pn-QRPA and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the abovementioned e--capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the 66Zn isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.

  9. Double differential cross sections of ethane molecule

    Science.gov (United States)

    Kumar, Rajeev

    2018-05-01

    Partial and total double differential cross sections corresponding to various cations C2H6+, C2H4+, C2H5+, C2H3+, C2H2+, CH3+, H+, CH2+, C2H+, H2+, CH+, H3+, C2+ and C+ produced during the direct and dissociative electron ionization of Ethane (C2H6) molecule have been calculated at fixed impinging electron energies 200 and 500eV by using modified Jain-Khare semi empirical approach. The calculation for double differential cross sections is made as a function of energy loss suffered by primary electron and angle of incident. To the best of my knowledge no other data is available for the comparison.

  10. Cross sections required for FMIT dosimetry

    International Nuclear Information System (INIS)

    Gold, R.; McElroy, W.N.; Lippincott, E.P.; Mann, F.M.; Oberg, D.L.; Roberts, J.H.; Ruddy, F.H.

    1980-01-01

    The Fusion Materials Irradiation Test (FMIT) facility, currently under construction, is designed to produce a high flux of high energy neutrons for irradiation effects experiments on fusion reactor materials. Characterization of the flux-fluence-spectrum in this rapidly varying neutron field requires adaptation and extension of currently available dosimetry techniques. This characterization will be carried out by a combination of active, passive, and calculational dosimetry. The goal is to provide the experimenter with accurate neutron flux-fluence-spectra at all positions in the test cell. Plans have been completed for a number of experimental dosimetry stations and provision for these facilities has been incorporated into the FMIT design. Overall needs of the FMIT irradiation damage program delineate goal accuracies for dosimetry that, in turn, create new requirements for high energy neutron cross section data. Recommendations based on these needs have been derived for required cross section data and accuracies

  11. Elliptical cross section fuel rod study II

    International Nuclear Information System (INIS)

    Taboada, H.; Marajofsky, A.

    1996-01-01

    In this paper it is continued the behavior analysis and comparison between cylindrical fuel rods of circular and elliptical cross sections. Taking into account the accepted models in the literature, the fission gas swelling and release were studied. An analytical comparison between both kinds of rod reveals a sensible gas release reduction in the elliptical case, a 50% swelling reduction due to intragranular bubble coalescence mechanism and an important swelling increase due to migration bubble mechanism. From the safety operation point of view, for the same linear power, an elliptical cross section rod is favored by lower central temperatures, lower gas release rates, greater gas store in ceramic matrix and lower stored energy rates. (author). 6 refs., 8 figs., 1 tab

  12. SBNCT plan: A 3-dimensional treatment planning system for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Reinstein, L.E.; Ramsay, E.B.; Gajewski, J.; Ramamoorthy, S.; Meek, A.G.

    1993-01-01

    The need for accurate and comprehensive 3-dimensional treatment planning for boron neutron capture therapy (BNCT) has been debated for the past several years. Although many argue against the need for elaborate and expensive treatment planning programs which mimic conventional radiotherapy planning systems, it is clear that in order to realize significant gains over conventional fractionated radiation therapy, patients must be treated to the edge of normal tissue tolerance. Just how close to this edge is dictated by the uncertainties in dosimetry. Hence the focus of BNCT planning is the determination of dose distribution throughout normal tissue volumes. Although precise geometric manipulation of the epithermal neutron beam is not achievable, the following variables play an important role in BNCT optimization: patient orientation, dose fractionation, number of fields, megawatt-minutes per fraction, use of surface bolus, and use of collimation. Other variables which are not as easily adjustable and would not, therefore, be part of treatment planning optimization, include external patient contour, internal patient heterogeneities, boron compound distributions, and RBE's. The boron neutron capture therapy planning system developed at SUNY Stony Brook (SBNCT-Plan) was designed as an interactive graphic tool to assist the radiation oncologist in generating the optimum plan for a neutron capture treatment

  13. Electron collision cross sections and radiation chemistry

    International Nuclear Information System (INIS)

    Hatano, Y.

    1983-01-01

    A survey is given of the cross section data needs in radiation chemistry, and of the recent progress in electron impact studies on dissociative excitation of molecules. In the former some of the important target species, processes, and collision energies are presented, while in the latter it is demonstrated that radiation chemistry is a source of new ideas and information in atomic collision research. 37 references, 4 figures

  14. Absolute photoionization cross sections of atomic oxygen

    Science.gov (United States)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  15. Total dissociation cross section of halo nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Formanek, J. [Karlova Univ., Prague (Czech Republic). Fakulta Matematicko-Fyzikalni; Lombard, R.J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1996-10-01

    Calculations of the total dissociation cross section is performed in the impact parameter representation. The case of {sup 11}Be and {sup 11}Li loosing one and two neutron(s), respectively, by collision on a {sup 12}C target, which remains in its ground state are discussed. The results are found to depend essentially on the rms radius of the halo wave function. (author). 12 refs.

  16. Measurements of Fission Cross Sections of Actinides

    CERN Multimedia

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  17. Cross section of the CMS solenoid

    CERN Multimedia

    Tejinder S. Virdee, CERN

    2005-01-01

    The pictures show a cross section of the CMS solenoid. One can see four layers of the superconducting coil, each of which contains the superconductor (central part, copper coloured - niobium-titanium strands in a copper coating, made into a "Rutherford cable"), surrounded by an ultra-pure aluminium as a magnetic stabilizer, then an aluminium alloy as a mechanical stabilizer. Besides the four layers there is an aluminium mechanical piece that includes pipes that transport the liquid helium.

  18. Cross sections for multistep direct reactions

    International Nuclear Information System (INIS)

    Demetriou, Paraskevi; Marcinkowski, Andrzej; Marianski, Bohdan

    2002-01-01

    Inelastic scattering and charge-exchange reactions have been analysed at energies ranging from 14 to 27 MeV using the modified multistep direct reaction theory (MSD) of Feshbach, Kerman and Koonin. The modified theory considers the non-DWBA matrix elements in the MSD cross section formulae and includes both incoherent particle-hole excitations and coherent collective excitations in the continuum, according to the prescriptions. The results show important contributions from multistep processes at all energies considered. (author)

  19. Capture cross sections for very heavy systems

    International Nuclear Information System (INIS)

    Rowley, N.; Grar, N.; Ntshangase, S.S.

    2006-01-01

    In intermediate-mass systems, collective excitations of the target and projectile can greatly enhance the sub-barrier capture cross section σ cap by giving rise to a distribution of Coulomb barriers. For such systems, capture essentially leads directly to fusion (formation of a compound nucleus (CN)), which then decays through the emission of light particles (neutrons, protons, and alpha particles). Thus the evaporation-residue (ER) cross section is essentially equal to σ cap . For heavier systems the experimental situation is significantly more complicated due to the presence of quasifission (QF) (rapid separation into two fragments before the CN is formed) and by fusion-fission (FF) of the CN itself. Thus three cross sections need to be measured in order to evaluate σ cap . Although the ER essentially recoil along the beam direction. QF and FF fragments are scattered to all angles and require the measurement of angular distribution in order to obtain the excitation function and barrier distribution for capture. Two other approaches to this problem exist. If QF is not important, one can still measure just the ER cross section and try to reconstruct the corresponding σ cap through use of an evaporation-model code that takes account of the FF degree of freedom. Some earlier results on σ cap obtained in this way will be re-analyzed with detail coupled-channels calculations, and the extra-push phenomenon discussed. One may also try to obtain σ cap by exploiting unitarity, that is, by measuring instead the flux of particles corresponding to quasielastic (QE) scattering from the Coulomb barrier. Some new QE results obtained for the 86 Kr + 208 Pb system at iThemba LABS in South Africa will be presented [ru

  20. Inclusive jet cross section at D0

    International Nuclear Information System (INIS)

    Bhattacharjee, M.

    1996-09-01

    Preliminary measurement of the central (|η| ≤ 0.5) inclusive jet cross sections for jet cone sizes of 1.0, 0.7, and 0.5 at D null based on the 1992-1993 (13.7 pb -1 ) and 1994-1995 (90 pb -1 ) data samples are presented. Comparisons to Next-to-Leading Order (NLO) Quantum Chromodynamics (QCD) calculations are made