WorldWideScience

Sample records for neutron velocity selector

  1. Multidisk neutron velocity selectors

    International Nuclear Information System (INIS)

    Hammouda, B.

    1992-01-01

    Helical multidisk velocity selectors used for neutron scattering applications have been analyzed and tested experimentally. Design and performance considerations are discussed along with simple explanation of the basic concept. A simple progression is used for the inter-disk spacing in the 'Rosta' design. Ray tracing computer investigations are presented in order to assess the 'coverage' (how many absorbing layers are stacked along the path of 'wrong' wavelength neutrons) and the relative number of neutrons absorbed in each disk (and therefore the relative amount of gamma radiation emitted from each disk). We discuss whether a multidisk velocity selector can be operated in the 'reverse' configuration (i.e. the selector is turned by 180 0 around a vertical axis with the rotor spun in the reverse direction). Experimental tests and calibration of a multidisk selector are reported together with evidence that a multidisk selector can be operated in the 'reverse' configuration. (orig.)

  2. Multidisc neutron velocity selector

    International Nuclear Information System (INIS)

    Rosta, L.; Zsigmond, Gy.; Farago, B.; Mezei, F.; Ban, K.; Perendi, J.

    1987-12-01

    The prototype of a velocity selector for neutron monochromatization in the 4-20 A wavelength range is presented. The theoretical background of the multidisc rotor system is given together with a description of the mechanical construction and electronic driving system. The first tests and neutron measurements prove easy handling and excellent parameters. (author) 6 refs.; 7 figs.; 2 tabs

  3. Mechanical neutron velocity selector for wavelengths over 0.4 nm

    International Nuclear Information System (INIS)

    Tieben, H.; Wendt, W.

    1975-07-01

    A mechanical velocity selector with twisted acrylic glass plates glued to the rotor is described. The selector is designed for use in the neutron wavelength region above 0.4 nanometers. The transmission is 62% and the full width at half maximum of the triangular spectrum of the transmitted neutrons with the wavelength lambda sub(o) is +- 0.06 lambda sub(o). The rotor runs in the vacuum; it is magnetically coupled to the drive motor, its speed is stabilized to maximum deviations of 0.03%. The application of the selector in studies of bloch walls is described. (orig.) [de

  4. A mechanical velocity selector for a small angle scattering instrument on a pulsed neutron source

    International Nuclear Information System (INIS)

    Meardon, B.H.; Stewart, R.J.; Williams, W.G.

    1978-11-01

    Design parameters and performance calculations are given for a straight-slot velocity selector which can be used for discriminating between elastic and inelastic scattering events in small angle scattering experiments on a pulsed neutron source. The selector has a high transmittance over the wavelength range 3 A 5%. (author)

  5. A sextupole-magnet as variable velocity selector for paramagnetic atomic beams in the thermal range

    International Nuclear Information System (INIS)

    Spindler, G.; Ebinghaus, H.; Steffens, E.

    1974-01-01

    The possibility of employing a sextupole-magnet as a velocity selector on account of its velocity dependent focusing properties for paramagnetic atomic beams is investigated. In comparison with a traditional velocity selector with rotating disks, a sextupole-magnet as velocity selector has the advantage of additional focusing and polarizing the atomic beam. Moreover it suppresses polymer molecules without an effective magnetic momentum of the electronic shell

  6. Multichannel time selector

    International Nuclear Information System (INIS)

    Momcilovic, M.; Jovanovic, S.

    1961-01-01

    Selector described is designed for spectrograph y of slow neutrons based on measuring the narration time-of flight along a certain trajectory. The analyser has 10 channels with variable widths from 5 - 640 μsec. detector unit contains a decadron counter for each channel as well as a mechanical counter to enable detection of one pulse per channel. Five channels are reserved for detecting background radiation twice as wide as the measuring channel. Neutron beam from the reactor is released or interrupted by a chopper. The angular speed of the chopper is from 200 - 1200 rotations/min. The instrument was designed in the Electronics Laboratory if the Boris Kidric Institute

  7. A new transmission based monochromator for energy-selective neutron imaging at the ICON beamline

    International Nuclear Information System (INIS)

    Peetermans, S.; Tamaki, M.; Hartmann, S.; Kaestner, A.; Morgano, M.; Lehmann, E.H.

    2014-01-01

    A new type of monochromator has been developed for energy-selective neutron imaging at continuous sources. It combines the use of a mechanical neutron velocity selector with pyrolytic graphite crystals of different mosaicity. The beam can be monochromatized to similar levels as a standard double crystal monochromator. It can flexibly produce different desired spectral shapes, even an asymmetric one. Intrinsically, no higher order contamination of the spectrum is present. Working with the transmitted beam, the beam divergence (and thus the spatial resolution) is uncompromised. The device has been calibrated, characterized and its performance demonstrated with the measurement of Bragg edges for iron and lead, resolving them more sharply than if solely a mechanical velocity selector was used

  8. A new small-angle neutron scattering spectrometer at China Mianyang research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Mei, E-mail: pm740509@163.com; Sun, Liangwei; Chen, Liang; Sun, Guangai; Chen, Bo; Xie, Chaomei; Xia, Qingzhong; Yan, Guanyun; Tian, Qiang; Huang, Chaoqiang; Pang, Beibei; Zhang, Ying; Wang, Yun; Liu, Yaoguang; Kang, Wu; Gong, Jian

    2016-02-21

    A new pinhole small-angle neutron scattering (SANS) spectrometer, installed at the cold neutron source of the 20 MW China Mianyang Research Reactor (CMRR) in the Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, has been put into use since 2014. The spectrometer is equipped with a multi-blade mechanical velocity selector, a multi-beam collimation system, and a two-dimensional He-3 position sensitive neutron detector. The q-range of the spectrometer covers from 0.01 nm{sup −1} to 5.0 nm{sup −1}. In this paper, the design and characteristics of the SANS spectrometer are described. The q-resolution calculations, together with calibration measurements of silver behenate and a dispersion of nearly monodisperse poly-methyl-methacrylate nanoparticles indicate that our SANS spectrometer has a good performance and is now in routine service. - Highlights: • A new SANS spectrometer has been put into use since 2014 in China. • One MBR selector possesses a higher resolution compared with traditional selector is used. • The spectrometer has a good performance and is now in routinely service.

  9. Multichannel time selector; Kanalni vremenski selektor

    Energy Technology Data Exchange (ETDEWEB)

    Momcilovic, M; Jovanovic, S [The Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1961-07-01

    Selector described is designed for spectrograph y of slow neutrons based on measuring the narration time-of flight along a certain trajectory. The analyser has 10 channels with variable widths from 5 - 640 {mu}sec. detector unit contains a decadron counter for each channel as well as a mechanical counter to enable detection of one pulse per channel. Five channels are reserved for detecting background radiation twice as wide as the measuring channel. Neutron beam from the reactor is released or interrupted by a chopper. The angular speed of the chopper is from 200 - 1200 rotations/min. The instrument was designed in the Electronics Laboratory if the Boris Kidric Institute.

  10. Neutron stars velocities and magnetic fields

    Science.gov (United States)

    Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.

    2018-01-01

    We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.

  11. Instant jQuery selectors

    CERN Document Server

    De Rosa, Aurelio

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. Instant jQuery Selectors follows a simple how-to format with recipes aimed at making you well versed with the wide range of selectors that jQuery has to offer through a myriad of examples.Instant jQuery Selectors is for web developers who want to delve into jQuery from its very starting point: selectors. Even if you're already familiar with the framework and its selectors, you could find several tips and tricks that you aren't aware of, especially about performance and how jQuery ac

  12. Velocity-space sensitivity of neutron spectrometry measurements

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko; Eriksson, J.

    2015-01-01

    Neutron emission spectrometry (NES) measures the energies of neutrons produced in fusion reactions. Here we present velocity-space weight functions for NES and neutron yield measurements. Weight functions show the sensitivity as well as the accessible regions in velocity space for a given range...

  13. Development and performance test of small angle neutron spectrometer at HANARO

    International Nuclear Information System (INIS)

    Han, Young Soo; Seong, Baek Seok; Lee, Chang Hee; Lee, Jeong Soo; Hong, Kwang Pyo; Choi, Byung Hoon; Choi, Young Hyun; Shin, Eun Joo; Park, Kook Nam

    2004-12-01

    The construction of Small Angle Neutron Spectrometer(SANS) at the CN beam port in HANARO was completed and has been opened to users in July 2001. the 2-D PSD (two dimensional position sensitive detector), the NVS (neutron velocity selector), the detector chamber rotation system, the detector horizontal moving system, the stepping motors, the beam shutter and the attenuator were fully tested and installed. The performance test of all the components was also completed. Wavelengths and resolutions of the neutron beam monochromatized by the NVS were calibrated using both the time-of-flight method and the diffraction measurement on standard material, the silver behenate. The relationship between the selector speed U[rpm] and the neutron wavelength λ[A] was obtained as λ[A]=0.11077+107171/U[rpm]. The controllers for the sample environments, the beam shutter and the stepping motors were constructed and its control programs for those controllers were also developed. The Beam test for the SANS has been finished and the characteristics of neutron beam was analyzed. The experimental methods of SANS and its data treatment method were established. The performance test of the HANARO SANS compared with that of foreign SANS's. shows that the HANARO SANS is quite well comparable with foreign SANS facilities

  14. Super Nonlinear Electrodeposition-Diffusion-Controlled Thin-Film Selector.

    Science.gov (United States)

    Ji, Xinglong; Song, Li; He, Wei; Huang, Kejie; Yan, Zhiyuan; Zhong, Shuai; Zhang, Yishu; Zhao, Rong

    2018-03-28

    Selector elements with high nonlinearity are an indispensable part in constructing high density, large-scale, 3D stackable emerging nonvolatile memory and neuromorphic network. Although significant efforts have been devoted to developing novel thin-film selectors, it remains a great challenge in achieving good switching performance in the selectors to satisfy the stringent electrical criteria of diverse memory elements. In this work, we utilized high-defect-density chalcogenide glass (Ge 2 Sb 2 Te 5 ) in conjunction with high mobility Ag element (Ag-GST) to achieve a super nonlinear selective switching. A novel electrodeposition-diffusion dynamic selector based on Ag-GST exhibits superior selecting performance including excellent nonlinearity (<5 mV/dev), ultra-low leakage (<10 fA), and bidirectional operation. With the solid microstructure evidence and dynamic analyses, we attributed the selective switching to the competition between the electrodeposition and diffusion of Ag atoms in the glassy GST matrix under electric field. A switching model is proposed, and the in-depth understanding of the selective switching mechanism offers an insight of switching dynamics for the electrodeposition-diffusion-controlled thin-film selector. This work opens a new direction of selector designs by combining high mobility elements and high-defect-density chalcogenide glasses, which can be extended to other materials with similar properties.

  15. Modulation Spectrometry Of Neutrons With Diffractometry Applications

    International Nuclear Information System (INIS)

    Hiismaki, P.

    1997-01-01

    Modulation spectrometry of neutrons refers to a measuring principle, characterized by classification of neutron histories in a probabilistic way, not the usual deterministic way. In order to accomplish this, neutron beams entering the sample are modulated by high-transmission, white-beam selectors of the multislit type, such as Fourier or statistical choppers or high-frequency-modulated spin-flippers. In this scheme it is impossible to decide in a unique way through which particular slit any single neutron passed, but the distribution of histories for a large population of neutrons can nevertheless be correctly obtained, by classifying each conceivable history either as a high-probability or as a low-probability event,based on the actual observed state of the neutron selector. So far the principle has been successfully applied to powder diffraction, but it seems to offer extra degrees of freedom if applied to measuring dispersion curves of coherent excitations, such as phonons in single crystals

  16. Rough Mirror as a Quantum State Selector: Analysis and Design

    International Nuclear Information System (INIS)

    Nesvizhevsky, V. V.; Lamy, F.; Meyerovich, A. E.; Escobar, M.

    2014-01-01

    We report analysis of rough mirrors used as the gravitational state selectors in neutron beam and similar experiments. The key to mirror properties is its roughness correlation function (CF) which is extracted from the precision optical scanning measurements of the surface profile. To identify CF in the presence of fluctuation-driven fat tails, we perform numerical experiments with computer-generated random surfaces with the known CF. These numerical experiments provide a reliable identification procedure which we apply to the actual rough mirror. The extracted CF allows us to make predictions for ongoing GRANIT experiments. We also propose a radically new design for rough mirrors based on Monte Carlo simulations for the 1D Ising model. The implementation of this design provides a controlled environment with predictable scattering properties

  17. Fast measurements of the in-core coolant velocity in a BWR by neutron noise analysis

    International Nuclear Information System (INIS)

    Hagen, T.H.J.J. van der; Hoogenboom, J.E.

    1988-01-01

    A method to determine in-core coolant velocities from neutron noise within short time intervals has been developed. The accuracy of the method was determined by using a simulation set-up and by using signals of a twin self-powered neutron detector installed in the core of the Dodewaard BWR in the Netherlands. In-core coolant velocities can be estimated within 2.5 s with a standard deviation (due to statistics) less than 2.1%. The method is suitable for velocity monitoring as is shown by the application to a stepwise velocity change of the coolant in a model of a coolant channel of a BWR. The presented technique was applied to determine the variations of the coolant velocity in the Dodewaard core during normal operation and during pressure steps. Only minor variations of the coolant velocity were detected during normal reactor conditions. An increase of those variations with pressure lowering - indicating a lower thermal hydraulic stability - could be detected. A clear velocity response to pressure steps could be determined which was also reflected in the cross-spectrum of the velocity with the vessel pressure and with the in-core neutron flux. (author)

  18. Measurements of fission cross-sections and of neutron production rates

    International Nuclear Information System (INIS)

    Billaud, P.; Clair, C.; Gaudin, M.; Genin, R.; Joly, R.; Leroy, J.L.; Michaudon, A.; Ouvry, J.; Signarbieux, C.; Vendryes, G.

    1958-01-01

    a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin 10 B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of 235 U. We intend to measure the variation of the neutron induced fission cross section of 235 U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of 235 U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF 3 proportional counters. c) Mean number ν of neutrons emitted in neutron induced fission. We measured the value of ν for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) α reaction by means of a 300 kV Cockcroft Walton generator. (author) [fr

  19. Small-angle neutron scattering instrument of Institute for Solid State Physics, the Univeristy of Tokyo (SANS-U) and its application to biology

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yuji; Imai, Masayuki; Takahashi, Shiro [Univ. of Tokyo, Tokai Naka Ibaraki (Japan)

    1994-12-31

    A small-angle neutron spectrometer (SANS-U) suitable for the study of mesoscopic structure in the field of polymer chemistry and biology, has been constructed at the guide hall of JRR-3M reactor at the Japan Atomic Energy Research Institute. The instrument is 32m long and utilizes a mechanical velocity selector and pinhole collimation to provide a continuous beam with variable wavelength in the range from 5 to 10{Angstrom}. The neutron detector is a 65 x 65cm{sup 2} 2D position sensitive proportional counter. The practical Q range of SANS-U is 0.0008 to 0.45{Angstrom}{sup -1}. The design, characteristics and performance of SANS-U are described with some biological studies using SANS-U.

  20. Selector genes display tumor cooperation and inhibition in Drosophila epithelium in a developmental context-dependent manner

    OpenAIRE

    Ram Prakash Gupta; Anjali Bajpai; Pradip Sinha

    2017-01-01

    During animal development, selector genes determine identities of body segments and those of individual organs. Selector genes are also misexpressed in cancers, although their contributions to tumor progression per se remain poorly understood. Using a model of cooperative tumorigenesis, we show that gain of selector genes results in tumor cooperation, but in only select developmental domains of the wing, haltere and eye-antennal imaginal discs of Drosophila larva. Thus, the field selector, Ey...

  1. The Reciprocal Principle of Selectand-Selector-Systems in Supramolecular Chromatography †.

    Science.gov (United States)

    Schurig, Volker

    2016-11-15

    In selective chromatography and electromigration methods, supramolecular recognition of selectands and selectors is due to the fast and reversible formation of association complexes governed by thermodynamics. Whereas the selectand molecules to be separated are always present in the mobile phase, the selector employed for the separation of the selectands is either part of the stationary phase or is added to the mobile phase. By the reciprocal principle, the roles of selector and selectand can be reversed. In this contribution in honor of Professor Stig Allenmark, the evolution of the reciprocal principle in chromatography is reviewed and its advantages and limitations are outlined. Various reciprocal scenarios, including library approaches, are discussed in efforts to optimize selectivity in separation science.

  2. Development of two-dimensional velocity field measurement using particle tracking velocimetry on neutron radiography

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Suzuki, T.; Matsubayashi, M.

    2003-01-01

    The structures of liquid metal two-phase flow are investigated for analyzing the core meltdown accident of fast reactor. The experiments of high-density ratio two-phase flow for lead-bismuth molten metal and nitrogen gases are conducted to understand in detail. The liquid phase velocity distributions of lead-bismuth molten metal are measured by neutron radiography using Au-Cd tracer particles. The liquid phase velocity distributions are obtained usually by using particle image velocimetry (PIV) on the neutron radiography. The PIV, however is difficult to get the velocity vector distribution quantitatively. An image of neutron radiography is divided into two images of the bubbles and the tracer particles each in particle tracking velocimetry (PTV), which distinguishes tracer contents in the bubble from them in the liquid phase. The locations of tracer particles in the liquid phase are possible to determine by particle mask correlation method, in which the bubble images are separated from the tracer images by Σ-scaling method. The particle tracking velocimetry give a full detail of the velocity vector distributions of the liquid phase in two-phase flow, in comparison with the PIV method. (M. Suetake)

  3. Measurement of the velocity of sound in crystals by pulsed neutron diffraction

    International Nuclear Information System (INIS)

    Willis, B.T.M.; Carlile, C.J.; Ward, R.C.; David, W.I.F.; Johnson, M.W.

    1986-03-01

    The diffraction method of observing elementary excitations in crystals has been applied to the study of one-phonon thermal diffuse scattering from pyrolytic graphite on a high resolution pulsed neutron diffractometer. The variation of the phase velocity of sound as a function of direction in the crystal and efficient method of determining sound velocities in crystals under extreme conditions. (author)

  4. The upgrade of the cold neutron three-axis spectrometer IN12 at the ILL

    Energy Technology Data Exchange (ETDEWEB)

    Schmalzl, K., E-mail: schmalzl@ill.fr [Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at ILL, BP 156, 38042 Grenoble (France); Schmidt, W. [Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at ILL, BP 156, 38042 Grenoble (France); Raymond, S. [Université Grenoble Alpes and CEA Grenoble, INAC MEM, 38054 Grenoble (France); Feilbach, H. [Forschungszentrum Jülich, Peter Grünberg Institut PGI 6, D-52425 Jülich (Germany); Mounier, C. [Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Vettard, B. [Université Grenoble Alpes and CEA Grenoble, INAC MEM, 38054 Grenoble (France); Brückel, T. [Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)

    2016-05-21

    After nearly 40 years of successful operation the cold three-axis spectrometer IN12 at the Institut Laue-Langevin, Grenoble, France, has been relocated to a new position and the primary spectrometer has been upgraded. Latest modern optical components are employed. A new guide in combination with a virtual source concept and a double focusing monochromator guarantee highest flux. With its high unpolarized and polarized neutron flux IN12 allows for demanding experiments. A velocity selector in the guide ensures a clean beam and a very low background. A gain in flux of about an order of magnitude at the sample position has been achieved compared to the previous instrument and IN12's wavelength range now extends far into the warmish region.

  5. Selector genes display tumor cooperation and inhibition in Drosophila epithelium in a developmental context-dependent manner

    Directory of Open Access Journals (Sweden)

    Ram Prakash Gupta

    2017-11-01

    Full Text Available During animal development, selector genes determine identities of body segments and those of individual organs. Selector genes are also misexpressed in cancers, although their contributions to tumor progression per se remain poorly understood. Using a model of cooperative tumorigenesis, we show that gain of selector genes results in tumor cooperation, but in only select developmental domains of the wing, haltere and eye-antennal imaginal discs of Drosophila larva. Thus, the field selector, Eyeless (Ey, and the segment selector, Ultrabithorax (Ubx, readily cooperate to bring about neoplastic transformation of cells displaying somatic loss of the tumor suppressor, Lgl, but in only those developmental domains that express the homeo-box protein, Homothorax (Hth, and/or the Zinc-finger protein, Teashirt (Tsh. In non-Hth/Tsh-expressing domains of these imaginal discs, however, gain of Ey in lgl− somatic clones induces neoplastic transformation in the distal wing disc and haltere, but not in the eye imaginal disc. Likewise, gain of Ubx in lgl− somatic clones induces transformation in the eye imaginal disc but not in its endogenous domain, namely, the haltere imaginal disc. Our results reveal that selector genes could behave as tumor drivers or inhibitors depending on the tissue contexts of their gains.

  6. Velocity-Autocorrelation Function in Liquids, Deduced from Neutron Incoherent Scattering Results

    DEFF Research Database (Denmark)

    Carneiro, Kim

    1976-01-01

    The Fourier transform p(ω) of the velocity-autocorrelation function is derived from neutron incoherent scattering results, obtained from the two liquids Ar and H2. The quality and significance of the results are discussed with special emphasis on the long-time t-3/2 tail, found in computer simula...

  7. Selector genes display tumor cooperation and inhibition in Drosophila epithelium in a developmental context-dependent manner

    OpenAIRE

    Gupta, Ram Prakash; Bajpai, Anjali; Sinha, Pradip

    2017-01-01

    ABSTRACT During animal development, selector genes determine identities of body segments and those of individual organs. Selector genes are also misexpressed in cancers, although their contributions to tumor progression per se remain poorly understood. Using a model of cooperative tumorigenesis, we show that gain of selector genes results in tumor cooperation, but in only select developmental domains of the wing, haltere and eye-antennal imaginal discs of Drosophila larva. Thus, the field sel...

  8. Neutron Star Population Dynamics. II. Three-dimensional Space Velocities of Young Pulsars

    Science.gov (United States)

    Cordes, J. M.; Chernoff, David F.

    1998-09-01

    We use astrometric, distance, and spindown data on pulsars to (1) estimate three-dimensional velocity components, birth distances from the Galactic plane, and ages of individual objects; (2) determine the distribution of space velocities and the scale height of pulsar progenitors; (3) test spindown laws for pulsars; (4) test for correlations between space velocities and other pulsar parameters; and (5) place empirical requirements on mechanisms than can produce high-velocity neutron stars. Our approach incorporates measurement errors, uncertainties in distances, deceleration in the Galactic potential, and differential Galactic rotation. We focus on a sample of proper motion measurements of young (case-by-case basis assuming that the actual age equals the conventional spindown age for a braking index n = 3, no torque decay, and birth periods much shorter than present-day periods. Every sample member could have originated within 0.3 kpc of the Galactic plane while still having reasonable present-day peculiar radial velocities. For the 49 object sample, the scale height of the progenitors is ~0.13 kpc, and the three-dimensional velocities are distributed in two components with characteristic speeds of 175+19-24 km s-1 and 700+300-132 km s-1, representing ~86% and ~14% of the population, respectively. The sample velocities are inconsistent with a single-component Gaussian model and are well described by a two-component Gaussian model but do not require models of additional complexity. From the best-fit distribution, we estimate that about 20% of the known pulsars will escape the Galaxy, assuming an escape speed of 500 km s-1. The best-fit, dual-component model, if augmented by an additional, low-velocity (The best three-component models do not show a preference for filling in the probability distribution at speeds intermediate to 175 and 700 km s-1 but are nearly degenerate with the best two-component models. We estimate that the high-velocity tail (>1000 km s-1) may

  9. Numerical study of read scheme in one-selector one-resistor crossbar array

    Science.gov (United States)

    Kim, Sungho; Kim, Hee-Dong; Choi, Sung-Jin

    2015-12-01

    A comprehensive numerical circuit analysis of read schemes of a one selector-one resistance change memory (1S1R) crossbar array is carried out. Three schemes-the ground, V/2, and V/3 schemes-are compared with each other in terms of sensing margin and power consumption. Without the aid of a complex analytical approach or SPICE-based simulation, a simple numerical iteration method is developed to simulate entire current flows and node voltages within a crossbar array. Understanding such phenomena is essential in successfully evaluating the electrical specifications of selectors for suppressing intrinsic drawbacks of crossbar arrays, such as sneaky current paths and series line resistance problems. This method provides a quantitative tool for the accurate analysis of crossbar arrays and provides guidelines for developing an optimal read scheme, array configuration, and selector device specifications.

  10. The CBM first-level event selector

    Energy Technology Data Exchange (ETDEWEB)

    Cuveland, Jan de; Lindenstruth, Volker [Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt (Germany)

    2015-07-01

    The CBM experiment currently under construction at GSI/FAIR is designed to study QCD predictions at high baryon densities. The CBM First-Level Event Selector (FLES) is the central event selection system of the experiment. Designed as a high-performance computer cluster, its task is an online analysis of the physics data including full event reconstruction at an incoming data rate exceeding 1 TByte/s. The CBM detector systems are free-running and self-triggered, delivering time-stamped data streams. As there is no inherent event separation, traditional approaches for global event building and event selection are not directly applicable. Instead of event building, the FLES combines the data from approximately 1000 input links to self-contained, overlapping processing intervals and distributes them to compute nodes. It employs a high-bandwidth InfiniBand network as well as dedicated custom FPGA input boards providing time-addressed access to buffered data. Subsequently, specialized event selection algorithms analyze these processing intervals in 4-D, identify events, and select those relevant for storage depending on the chosen CBM setup and selection scenario. This presentation outlines the design of the CBM First-level Event Selector and summarizes the results from first prototype systems.

  11. Time-of-flight spectrometer for slow neutrons in use at the reactor in Saclay. Its application for the study of the inelastic diffusion of cold neutrons; L'appareillage de spectrometrie a temps-de-vol pour neutrons lents en service a la pile de Saclay. Son application a l'etude de la diffusion inelastique des neutrons froids

    Energy Technology Data Exchange (ETDEWEB)

    Jacsot, B; Netter, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Galula, M [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France)

    1955-07-01

    The time-of-flight spectrometers is constituted of a mechanic swivel obturator which absorbs neutrons until energies above 1 KeV, a mechanic filter which allow to retain only high wave length components and a delayed pulses selector with 100 channels. Its main application field is the thermic region where it allowed to measure the inelastic scattering of neutrons using various materials as H{sub 2}O, D{sub 2}O, Be, BeO, etc... (M.P.)

  12. Anoxic selectors with regeneration in activated sludge waste water treatment processes; Selectores anoxicos con regeneracion en procesos de depuracion de aguas residuales por fangos activados

    Energy Technology Data Exchange (ETDEWEB)

    Sancho Seuma, L.; Lopetigue Garnica, J.; Paredes, J.A.; Alonso, E.; Plaza, F.I.; Diaz chozas, M.

    1998-12-01

    The aim of this study is to produce a reduction in the concentration of filamentous bulking or foaming related microorganisms, such as usually appear in connection with nutrient elimination processes, where sludge retention times are high and loads are small. The Research Institute Centa has established, annexed to the sewage treatment plant Norte I. Seville, a pilot plant with the classical DN layout, and an anoxic selector, as well as a regeneration tank . This tank is meant to eliminate the remaining substratum associated with the cells after being settled in a high-concentration environment the selector. We endeavor therefore to select by kinetic and metabolic procedures the flock formers microorganisms to the expense of the filamentous microorganisms. (Author)

  13. Practical guide to the PLUTO small angle scattering spectrometer

    International Nuclear Information System (INIS)

    Page, D.I.

    1980-08-01

    A schematic diagram of the S.A.N.S. instrument is given. Neutrons from a thermal source in the PLUTO reactor pass successively through a cooled beryllium filter, a helical velocity selector and a flight tube with collimating apertures into a specimen chamber. Monitor fission chambers allow measurements of the transmission of the selector and the flux of neutrons incident on the specimen. The neutrons emerging in the forward direction from the specimen enter the detector box where the unscattered ones are stopped by a beam stop and the scattered ones impinge on a 2-dimensional detector which measures their spatial distribution. The output from the detector is fed into a PDP 11/10 computer where the data is collected, manipulated and displayed on a visual display unit. Performance data and practical operating procedure are given. (author)

  14. Differences in Muscle Activation and Kinematics Between Cable-Based and Selectorized Weight Training.

    Science.gov (United States)

    Signorile, Joseph F; Rendos, Nicole K; Heredia Vargas, Hector H; Alipio, Taislaine C; Regis, Rebecca C; Eltoukhy, Moataz M; Nargund, Renu S; Romero, Matthew A

    2017-02-01

    Signorile, JF, Rendos, NK, Heredia Vargas, HH, Alipio, TC, Regis, RC, Eltoukhy, MM, Nargund, RS, and Romero, MA. Differences in muscle activation and kinematics between cable-based and selectorized weight training. J Strength Cond Res 31(2): 313-322, 2017-Cable resistance training machines are showing resurgent popularity and allow greater number of degrees of freedom than typical selectorized equipment. Given that specific kinetic chains are used during distinct activities of daily living (ADL), cable machines may provide more effective interventions for some ADL, whereas others may be best addressed using selectorized equipment. This study examined differences in activity levels (root mean square of the EMG [rmsEMG]) of 6 major muscles (pectoralis major, PM; anterior deltoid, AD; biceps brachii, BB; rectus abdominis, RA; external obliques, EO; and triceps brachii, TB) and kinematics of multiple joints between a cable and standard selectorized machines during the biceps curl, the chest press, and the overhead press performed at 1.5 seconds per contractile stage. Fifteen individuals (9 men, 6 women; mean age ± SD, 24.33 ± 4.88 years) participated. Machine order was randomized. Significant differences favoring cable training were seen for PM and AD during biceps curl; BB, AD, and EO for chest press; and BB and EO during overhead press (p ≤ 0.05). Greater starting and ending angles were seen for the elbow and shoulder joints during selectorized biceps curl, whereas hip and knee starting and ending angles were greater for cable machine during chest and overhead presses (p < 0.0001). Greater range of motion (ROM) favoring the cable machine was also evident (p < 0.0001). These results indicate that utilization patterns of selected muscles, joint angles, and ROMs can be varied because of machine application even when similar exercises are used, and therefore, these machines can be used selectively in training programs requiring specific motor or biomechanical

  15. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.

    Science.gov (United States)

    Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  16. A new bipolar RRAM selector based on anti-parallel connected diodes for crossbar applications

    International Nuclear Information System (INIS)

    Li, Yingtao; Gong, Qingchun; Li, Rongrong; Jiang, Xinyu

    2014-01-01

    Crossbar arrays are the most promising application of a resistive random access memory (RRAM) device for achieving high density memory. However, cross-talk interference in the crossbar array limits the increase in the integration density. In this paper, the combination of two anti-parallel connected diodes and a bipolar RRAM cell is proposed to suppress the sneak current in a crossbar array with anti-parallel connected diodes as the selector for the bipolar RRAM. By using the anti-parallel connected diodes as a selector, the sneak current can be effectively suppressed and the high density crossbar array of more than 1 Mb can be realized as estimated by the 1/2V read voltage scheme. These results indicate that anti-parallel connected diodes can be used as a bipolar selector and have great potential for high density bipolar RRAM crossbar array applications. (papers)

  17. Inpile honing of Sizewell primary selector valve housings

    International Nuclear Information System (INIS)

    Grindrod, A.; Ward, R.G.

    1976-03-01

    Difficulties have been experienced at Sizewell power station with the removal and replacement of several of the primary selector valves fitted in the reactors, during the annual maintenance programme. An inpile honing device is described which was specifically designed and developed to facilitate the restoration of the inner sealing faces of the valve housings. (author)

  18. Simulation and Experimental Studies on Grain Selection and Structure Design of the Spiral Selector for Casting Single Crystal Ni-Based Superalloy.

    Science.gov (United States)

    Zhang, Hang; Xu, Qingyan

    2017-10-27

    Grain selection is an important process in single crystal turbine blades manufacturing. Selector structure is a control factor of grain selection, as well as directional solidification (DS). In this study, the grain selection and structure design of the spiral selector were investigated through experimentation and simulation. A heat transfer model and a 3D microstructure growth model were established based on the Cellular automaton-Finite difference (CA-FD) method for the grain selector. Consequently, the temperature field, the microstructure and the grain orientation distribution were simulated and further verified. The average error of the temperature result was less than 1.5%. The grain selection mechanisms were further analyzed and validated through simulations. The structural design specifications of the selector were suggested based on the two grain selection effects. The structural parameters of the spiral selector, namely, the spiral tunnel diameter ( d w ), the spiral pitch ( h b ) and the spiral diameter ( h s ), were studied and the design criteria of these parameters were proposed. The experimental and simulation results demonstrated that the improved selector could accurately and efficiently produce a single crystal structure.

  19. Larger research programs at the beam holes of the Austrian TRIGA Mark II reactor. Design and construction of a Fourier chopper-selector at the Austrian TRIGA reactor

    International Nuclear Information System (INIS)

    Fleck, C.M.

    1970-01-01

    A neutron chopping system utilizing Fourier analysis has great advantages to alternative systems. For this purpose the chopper consists of a disc, opaque to neutrons, rotating on an axis perpendicular to its centre. Around its outside edge a series of uniformly spaced teeth and spaces are formed with neutron transparent gaps extending towards the centre. By using a stationary section having the same pattern of teeth and gaps it is possible to utilize a beam area considerably larger than the area of one tooth. During the last years at the TRIGA Reactor in Vienna a neutron chopping-and selecting-system is developed and in construction, which will not only chop the beam in that way necessary for Fourier analysis but also select the energy. The selection is done by seven discs of the form described above mounted on an axis. The selector is designed for neutron wave lengths between 3 and 30 A. The resolution is constant over the whole range of energy and depends on the beam divergence. Thus the modulation frequency is 10 4 sec -1 and the half-width of the neutron pulse about 50 μsec

  20. An Orthogonal and pH-Tunable Sensor-Selector for Muconic Acid Biosynthesis in Yeast.

    Science.gov (United States)

    Snoek, Tim; Romero-Suarez, David; Zhang, Jie; Ambri, Francesca; Skjoedt, Mette L; Sudarsan, Suresh; Jensen, Michael K; Keasling, Jay D

    2018-04-20

    Microbes offer enormous potential for production of industrially relevant chemicals and therapeutics, yet the rapid identification of high-producing microbes from large genetic libraries is a major bottleneck in modern cell factory development. Here, we develop and apply a synthetic selection system in Saccharomyces cerevisiae that couples the concentration of muconic acid, a plastic precursor, to cell fitness by using the prokaryotic transcriptional regulator BenM driving an antibiotic resistance gene. We show that the sensor-selector does not affect production nor fitness, and find that tuning pH of the cultivation medium limits the rise of nonproducing cheaters. We apply the sensor-selector to selectively enrich for best-producing variants out of a large library of muconic acid production strains, and identify an isolate that produces more than 2 g/L muconic acid in a bioreactor. We expect that this sensor-selector can aid the development of other synthetic selection systems based on allosteric transcription factors.

  1. Imaging with cold neutrons

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-01-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 A). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects-choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  2. Mixed-mode chromatography with zwitterionic phosphopeptidomimetic selectors from Ugi multicomponent reaction

    NARCIS (Netherlands)

    Gargano, Andrea F G; Leek, Tomas; Lindner, Wolfgang; Lämmerhofer, Michael

    2013-01-01

    In the present contribution a novel Ugi multicomponent reaction (MCR) was used to generate zwitterionic chromatographic selectors with capability for application in mixed-mode chromatography featuring complementary selectivities in reversed-phase (RP) and hydrophilic interaction liquid

  3. Concept evaluation of a novel gear selector for automated manual transmissions

    Science.gov (United States)

    Zhong, Zaimin; Kong, Guoling; Yu, Zhuoping; Chen, Xinbo; Chen, Xueping; Xin, Xiangyan

    2012-08-01

    The existing Automatic Mechanical Transmission (AMT), whether electrically or hydraulically actuated, integrates shift actuators with gearbox shell as one unit by installing actuators on the gearbox. The problem it brings about is that the modification of the gearbox shell would be required, which increases the cost of AMT system. This paper proposes a novel gear selector for AMT, the concept of which enables the automation of shift action remotely realized by DC motors through shifting cable that originally used on manual transmission vehicle. Evidently, the advantage of this concept is that the automation of manual transmission could be easily realized by replacing the shift lever with two motors while the original shifting cable and gearbox could be reserved. Then the cost and development period can be shorten remarkably. Firstly, the concept of the novel gear selector is introduced, then the detailed mathematical model of shifting process is studied, and system design and scheme selection of this concept are performed. Optimal control algorithm based on LQR for actuator position feedback control is introduced. The concept and control algorithm are verified on a sample car, and considering the influence of the long path of transmission mechanism, the validation of the stability of this concept is performed through calibration test on mountain pass, and the obtained results show the concept of the novel gear selector for AMT is feasible technically with strong robust on the shifting stability, and it shows enormous potential for industrialization.

  4. On the importance of effective convergence velocity of synthetic acceleration methods in neutron transport

    International Nuclear Information System (INIS)

    Coppa, G.G.M.; Ravetto, P.; Colombo, V.

    1996-01-01

    The present work concerns some aspects of the optimization of the synthesis acceleration techniques in neutron transport. The importance of non-asymptotic convergence velocity as a theoretical means to characterize and optimize acceleration methods is discussed in detail for isotropic as well as highly anisotropic scattering cases; this shows the innacuracy of results based only on the usual asyptotic analysis. A detailed study of convergence velocity behaviour for space discretized schemes and multidimensional problems is also presented. Finally, various kinds of theoretical-evaluated convergence velocities are reported to study the effective behaviour of some modifications of the classic DSA technique recently proposed to face its loss of effectiveness and optimize performances when dealing with highly anisotropic scattering; comparisons with results of already assessed DSA modification techniques are reported for various scattering cross-section configurations. (Author)

  5. Neutron peak velocity measurements at the National Ignition Facility (NIF) using novel quartz detectors

    Science.gov (United States)

    Grim, Gary; Eckart, Mark; Hartouni, Edward; Hatarik, Robert; Moore, Alastair; Root, Jaben; Sayre, Daniel; Schlossberg, David; Waltz, Cory

    2017-10-01

    In mid-2017 the NIF implemented quartz based neutron time-of-flight (nToF) detectors which have a faster and narrower impulse response function (IRF) relative to traditional scintillator detectors. In this presentation we report on comparisons between fusion neutron first moments as measured by quartz and scintillator based detectors using DT layered implosions at the NIF. We report on the change in precision presaged by the quartz converter and quantify the change in both in shot, line-of-site velocity variability. as well as, shot-to-shot variation. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-ABS-734511-DRAFT.

  6. Triple focussing electron spectrum selector (TESS-II) with a pair of sector magnets

    International Nuclear Information System (INIS)

    Nagai, Y.; Ejiri, H.; Shibata, T.; Okada, K.; Nakayama, S.; Suzuki, H.; Ohsumi, H.; Adachi, Y.; Osaka Univ., Toyonaka; Sakai, H.

    1982-01-01

    An achromatic geminate nuclear electron selector (AGNES) has been constructed for in-beam electron spectroscopy. It is essentially a pair of triple-focussing electron spectrum selectors (TESS). It consists of a pair of sector magnets with a field index n = 0. Conversion electrons emitted at 90 0 and 180 0 with respect to the beam axis are transported achromatically through the pair of sector magnets to two focussing points. Electrons are triply focussed in radial, vertical and momentum axes, and their energies are analyzed by cooled Si(Li) detectors. It has a large solid angle of 50 msr x 2 and a large momentum range of 57%. It is quite useful not only for measuring conversion coefficients and electron anisotropy but also for nuclear electron pairs. (orig.)

  7. Chiral separation of dansyl amino acids in capillary electrophoresis using mono-(3-methyl-imidazolium)-beta-cyclodextrin chloride as selector.

    Science.gov (United States)

    Tang, Weihua; Ong, Teng Teng; Ng, Siu-Choon

    2007-06-01

    Enantioseparations of fourteen dansyl amino acids were achieved by using a positively-charged single-isomer beta-cyclodextrin, mono-(3-methyl-imidazolium)-beta-cyclodextrin chloride, as a chiral selector. Separation parameters such as buffer pH, selector concentration, separation temperature, and organic modifier were investigated for the enantioseparation in order to achieve the maximum possible resolution. Chiral separation of dansyl amino acids was found to be highly dependent on pH since the degree of protonation of these amino acids can alter the strength of electrostatic interaction and/or inclusion complexation between each enantiomer and chiral selector. In general, the chiral resolution of dansyl amino acids was enhanced at higher pH, which indicates that the carboxylate group on the analytes may interact with the imidazolium group of cationic cyclodextrin. For most analytes, a distinct maximum in enantioresolution was obtained at pH 8.0. Moreover, the chiral separation can be further improved by careful tuning of the separation parameters such as higher selector concentration (e.g. 10 mM), lower temperature, and addition of methanol. Enantioseparation of a standard mixture of these dansyl amino acids was further achieved in a single run within 30 min.

  8. Excellent selector performance in engineered Ag/ZrO2:Ag/Pt structure for high-density bipolar RRAM applications

    Science.gov (United States)

    Wang, Chao; Song, Bing; Zeng, Zhongming

    2017-12-01

    A high-performance selector with bidirectional threshold switching (TS) characteristics of Ag/ZrO2/Pt structure was prepared by incorporating metallic Ag into the ZrO2 matrix. The bidirectional TS device exhibited excellent switching uniformity, forming-free behavior, ultra-low off current of selectivity (from 102 to 107). The experiment results confirmed that metallic Ag clusters were penetrated into the ZrO2 matrix during the annealing process, which would function as an effective active source responsible for the bidirectional TS. The volatile behavior could be explained by the self-dissolution of unstable filaments caused by minimization of the interfacial energy and thermal effect. Furthermore, a bipolar-type one selector-one resistor (1S-1R) memory device was successfully fabricated and exhibited significant suppression of the undesired sneak current, indicating the great potential as selector in a cross-point array.

  9. Excellent selector performance in engineered Ag/ZrO2:Ag/Pt structure for high-density bipolar RRAM applications

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2017-12-01

    Full Text Available A high-performance selector with bidirectional threshold switching (TS characteristics of Ag/ZrO2/Pt structure was prepared by incorporating metallic Ag into the ZrO2 matrix. The bidirectional TS device exhibited excellent switching uniformity, forming-free behavior, ultra-low off current of <1 nA and adjustable selectivity (from 102 to 107. The experiment results confirmed that metallic Ag clusters were penetrated into the ZrO2 matrix during the annealing process, which would function as an effective active source responsible for the bidirectional TS. The volatile behavior could be explained by the self-dissolution of unstable filaments caused by minimization of the interfacial energy and thermal effect. Furthermore, a bipolar-type one selector-one resistor (1S-1R memory device was successfully fabricated and exhibited significant suppression of the undesired sneak current, indicating the great potential as selector in a cross-point array.

  10. The synthesis and characterization of novel brush-type chiral stationary phase based on terpenoid selector for resolution of chiral drugs

    Directory of Open Access Journals (Sweden)

    Wang Dao-Cai

    2016-01-01

    Full Text Available In the light of the chiral resolution mechanism and structures of brush-type CSP, a new chiral selector 4′-carboxyl-1′-ursolic methyl ester-3β-yl-benzoate has been prepared. Then the terpenoid chiral selector was covalently linked to 3-aminopropyl silica gel. Its structure identification data are provided by 1H NMR, MS and elementary analysis. The enantiodiscriminating capability of the brush-type CSP was evaluated by static adsorption experiment with methyl mandelate, aniline derivative of mandelic acid, benzoin and ibuprofen. Experimental results demonstrated that the chiral selector has selectivity, and the enantiomers of methyl mandelate and ibuprofen could be separated on the CSP, which indicated that the novel brush-type CSP possess a bright prospects for chiral separation potentially.

  11. The new double energy-velocity spectrometer VERDI

    Science.gov (United States)

    Jansson, Kaj; Frégeau, Marc Olivier; Al-Adili, Ali; Göök, Alf; Gustavsson, Cecilia; Hambsch, Franz-Josef; Oberstedt, Stephan; Pomp, Stephan

    2017-09-01

    VERDI (VElocity foR Direct particle Identification) is a fission-fragment spectrometer recently put into operation at JRC-Geel. It allows measuring the kinetic energy and velocity of both fission fragments simultaneously. The velocity provides information about the pre-neutron mass of each fission fragment when isotropic prompt-neutron emission from the fragments is assumed. The kinetic energy, in combination with the velocity, provides the post-neutron mass. From the difference between pre- and post-neutron masses, the number of neutrons emitted by each fragment can be determined. Multiplicity as a function of fragment mass and total kinetic energy is one important ingredient, essential for understanding the sharing of excitation energy between fission fragments at scission, and may be used to benchmark nuclear de-excitation models. The VERDI spectrometer design is a compromise between geometrical efficiency and mass resolution. The spectrometer consists of an electron detector located close to the target and two arrays of silicon detectors, each located 50 cm away from the target. In the present configuration pre-neutron and post-neutron mass distributions are in good agreement with reference data were obtained. Our latest measurements performed with spontaneously fissioning 252Cf is presented along with the developed calibration procedure to obtain pulse height defect and plasma delay time corrections.

  12. Enantioseparation of pheniramine enantiomers by high-speed countercurrent chromatography using β-cyclodextrin derivatives as a chiral selector.

    Science.gov (United States)

    Xu, Weifeng; Wang, Shichuan; Xie, Xiaojuan; Zhang, Panliang; Tang, Kewen

    2017-10-01

    The enantioselective separation of pheniramine was studied by a high-speed countercurrent chromatography method using β-cyclodextrin derivatives as a chiral selector. Several key variables, for instance, type of organic solvent and chiral selector, concentration of chiral selector, pH value of aqueous phase, and temperature on the enantioselectivity, were investigated systematically by liquid-liquid extraction experiments. Combining the results of extraction experiments and high-speed countercurrent chromatography, the most suitable conditions for separation of pheniramine enantiomers were obtained with the two-phase system that consisted of isobutyl acetate/aqueous phase, containing 0.02 mol/L carboxymethyl-β-cyclodextrin, pH 8.50 at 278.15 K. Under the optimal conditions, pheniramine enantiomer was successfully resolved after four cycles of high-speed countercurrent chromatography. By using high-performance liquid chromatography to analyze the fractions, the purities of both (+)-pheniramine and (-)-pheniramine were over 99% and the recovery of this method was up to 85-90%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Threshold current reduction for the metal–insulator transition in NbO2−x-selector devices: the effect of ReRAM integration

    International Nuclear Information System (INIS)

    Nandi, Sanjoy Kumar; Liu, Xinjun; Venkatachalam, Dinesh Kumar; Elliman, Robert Glen

    2015-01-01

    The threshold current for inducing the metal–insulator transition in a NbO 2−x selector element is shown to be affected by the properties of an adjacent memory element when integrated into a hybrid selector-memory device structure. Experimental results are reported for homogeneous NbO 2−x /Nb 2 O 5−y and heterogeneous NbO 2−x /HfO 2 device structures, and show that the threshold current is lower in both hybrid structures than in the selector element alone, and is lower in the heterogeneous structure than in the homogeneous structure. Finite element modeling of the selector-memory structure shows that this results primarily from current confinement produced by the filamentary conduction path in the resistive-switching memory layer (i.e. Nb 2 O 5−y or HfO 2 ), an observation that further implies a smaller diameter filament in HfO 2 than in Nb 2 O 5−y . The thermal and electrical conductivities of the memory layer are also shown to influence the threshold current, but to a lesser extent. (paper)

  14. Examination of corrosion on primary selector valve bellows

    International Nuclear Information System (INIS)

    Rickards, G.K.

    1975-07-01

    The stainless steel bellows of the primary selector valves from the burst can detection system of the Sizewell 'A' reactor were found to have spots of corrosion. These corrosion spots were thought to be caused by the cleaning process employed during manufacture. Samples subjected to the manufacturing cleaning process were examined in the scanning electron microscope equipped with an X-ray energy dispersive analysis system. The corrosion was shown to be associated with the acid cleaning process employed. Deposits were also left on samples not acid cleaned and it is suggested that these have come from contaminated washing water. (author)

  15. Observation of pulsed neutron Ramsey resonance

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan)]. E-mail: yasuhiro.masuda@kek.jp; Skoy, V. [Joint Institute for Nuclear Reasearch, 141980 Dubna, Moscow Region (Russian Federation); Ino, T. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan); Jeong, S.C. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan); Watanabe, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan)

    2007-07-15

    A Ramsey resonance for pulsed neutrons was observed. The separated oscillatory fields for nuclear magnetic resonance were synchronized with a neutron pulse, and then the Ramsey resonance was observed as a function of the neutron velocity. The phase of one of the oscillatory fields was modulated as a function of the neutron time of flight for a neutron velocity measurement.

  16. Neutron Standards Laboratory of the CIEMAT

    International Nuclear Information System (INIS)

    Guzman G, K. A.; Mendez V, R.; Vega C, H. R.

    2014-08-01

    By means of a calculation series with Monte Carlo methods and the code MCNPX was characterized the neutrons field produced by the existent calibration sources in the Neutron Standards Laboratory of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT). The laboratory has two neutron calibration sources one of 241 AmBe and other 252 Cf that are stored in a water pool. A detailed three-dimensional model of the room was built with the base of stainless steel remarking in the selector to the sources that situates them to 4 m of the floor to be irradiated on the irradiation table and the storage pool. Each one of the sources was defined on the model in its double steel encapsulated. The spectra were calculated with different cases with the purpose of to calculate the contribution of each element that impacts to the neutrons transport. The spectra of the calibration sources were calculated to different distances regarding the source from 0, 15, 35, 50 to 300 cm on the base and in a same way the values of the ambient dose equivalent using the approaches of the ICRP-74. The results show clearly that the great contribution in the modification of the spectrum is attributed to the walls, and floor of the Neutron Standards Laboratory installations. (Author)

  17. An Orthogonal and pH-Tunable Sensor-Selector for Muconic Acid Biosynthesis in Yeast

    DEFF Research Database (Denmark)

    Snoek, Tim; Romero-Suarez, David; Zhang, Jie

    2018-01-01

    system in Saccharomyces cerevisiae that couples the concentration of muconic acid, a plastic precursor, to cell fitness by using the prokaryotic transcriptional regulator BenM driving an antibiotic resistance gene. We show that the sensor-selector does not affect production nor fitness, and find...... that tuning pH of the cultivation medium limits the rise of nonproducing cheaters. We apply the sensor-selector to selectively enrich for best-producing variants out of a large library of muconic acid production strains, and identify an isolate that produces more than 2 g/L muconic acid in a bioreactor. We......Microbes offer enormous potential for production of industrially relevant chemicals and therapeutics, yet the rapid identification of high-producing microbes from large genetic libraries is a major bottleneck in modern cell factory development. Here, we develop and apply a synthetic selection...

  18. Gamma compensated pulsed ionization chamber wide range neutron/reactor power measurement system

    International Nuclear Information System (INIS)

    Ellis, W.H.

    1975-01-01

    An improved method and system of pulsed mode operation of ionization chambers is described in which a single sensor system with gamma compensation is provided by sampling, squaring, automatic gate selector, and differential amplifier circuit means, employed in relation to chambers sensitized to neutron plus gamma and gamma only to subtract out the gamma component, wherein squaring functions circuits, a supplemental high performance pulse rate system, and operational and display mode selection and sampling gate circuits are utilized to provide automatic wide range linear measurement capability for neutron flux and reactor power. Neon is employed as an additive in the ionization chambers to provide independence of ionized gas kinetics temperature effects, and the pulsed mode of operation provide independence of high temperature insulator leakage effects. (auth)

  19. A First-level Event Selector for the CBM Experiment at FAIR

    International Nuclear Information System (INIS)

    Cuveland, J de; Lindenstruth, V

    2011-01-01

    The CBM experiment at the upcoming FAIR accelerator aims to create highest baryon densities in nucleus-nucleus collisions and to explore the properties of super-dense nuclear matter. Event rates of 10 MHz are needed for high-statistics measurements of rare probes, while event selection requires complex global triggers like secondary vertex search. To meet these demands, the CBM experiment uses self-triggered detector front-ends and a data push readout architecture. The First-level Event Selector (FLES) is the central physics selection system in CBM. It receives all hits and performs online event selection on the 1 TByte/s input data stream. The event selection process requires high-throughput event building and full event reconstruction using fast, vectorized track reconstruction algorithms. The current FLES architecture foresees a scalable high-performance computer. To achieve the high throughput and computation efficiency, all available computing devices will have to be used, in particular FPGAs at the first stages of the system and heterogeneous many-core architectures such as CPUs for efficient track reconstruction. A high-throughput network infrastructure and flow control in the system are other key aspects. In this paper, we present the foreseen architecture of the First-level Event Selector.

  20. One bipolar transistor selector - One resistive random access memory device for cross bar memory array

    Science.gov (United States)

    Aluguri, R.; Kumar, D.; Simanjuntak, F. M.; Tseng, T.-Y.

    2017-09-01

    A bipolar transistor selector was connected in series with a resistive switching memory device to study its memory characteristics for its application in cross bar array memory. The metal oxide based p-n-p bipolar transistor selector indicated good selectivity of about 104 with high retention and long endurance showing its usefulness in cross bar RRAM devices. Zener tunneling is found to be the main conduction phenomena for obtaining high selectivity. 1BT-1R device demonstrated good memory characteristics with non-linearity of 2 orders, selectivity of about 2 orders and long retention characteristics of more than 105 sec. One bit-line pull-up scheme shows that a 650 kb cross bar array made with this 1BT1R devices works well with more than 10 % read margin proving its ability in future memory technology application.

  1. Optimizing pulse shaping and zooming for acceleration to high velocities and fusion neutron production on the Nike laser

    Science.gov (United States)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.; Watari, T.

    2010-11-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al., Phys. Plasmas 17, 056317 (2010) ], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is shaping the driving pulse to minimize shock heating of the accelerated target and using the focal zoom capability of Nike to achieve higher densities and velocities. Spectroscopic measurements of electron temperature achieved upon impact will complement the neutron time-of-flight ion temperature measurement. Work is supported by US DOE and Office of Naval Research.

  2. Use of zooming and pulseshaping for acceleration to high velocities and fusion neutron production on the Nike laser

    Science.gov (United States)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Kehne, D. M.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.

    2011-10-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al, Phys. Plasmas 17, 056317(2010)], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce ~ 1 Gbar shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is using the focal zoom capability of Nike and shaping the driving pulse to minimize shock heating of the accelerated target to achieve higher densities and velocities. In-flight target density is inferred from target heating upon collision via DD neutron time-of-flight ion temperature measurement. Work is supported by US DOE (NNSA) and Office of Naval Research. SAIC

  3. Study, realization and operation of a fast amplitude selector for X-ray spectrometry in thermonuclear plasma

    International Nuclear Information System (INIS)

    Allard, P.

    1986-06-01

    A semiconductor diode detector is here used to measure soft X radiation emitted by a plasma. Energetic resolution, in this case, is enough for electron study to improve time resolution - for use on Petula - a fast amplitude selector has been used with a good channel number. The Si(Li) diode X spectrometry system is detailed. For amplitude coder, ''video coders'' have been chosen which are parallel coders in integrated circuits. The different modules (coder rock memory one, visualization, Camac interface) of the multichannel analyzer are presented. Amplitude, selector characteristics are detailed, they are measured with pulses directly applied to the coder stage. Measurements made with the complete spectrometry system are shown; they are made successively with radioactive sources ( 55 Fe and 93 Nb), with a simulation generator and with the X radiation of Petula plasma [fr

  4. Italy: Overview of activities on Neutron Imaging (NI) and Cultural Heritage (CH) studies

    International Nuclear Information System (INIS)

    Zoppi, Marco

    2012-01-01

    Materials characterization, through non-invasive techniques, represents an important strategic tool in the non-destructive quantitative analysis of artefacts of archaeological and historical interest. In fact, thanks to the high penetration power of thermal neutrons in dense matter, bulk analysis of massive findings, characteristic of archaeological activity, can be nowadays carried out in an almost straightforward way, especially on metal samples. By means of neutron diffraction, it is possible to obtain, without any need of sampling, the average bulk phase composition of the specimen and to reveal the hidden presence of mineralisation phases, which, in turn, gives a deep information on its preservation status. Moreover, a detailed analysis of the peak shape, can shed light on smelting and smithing methods, as well as on the amount of mechanical work that was originally carried out on the sample. Neutron imaging techniques, have developed to such an extent that, today, it is possible to reconstruct tomographic images down to ≅30 μm space resolution. In addition, thanks to the developing techniques of energy selective neutron imaging and tomography the scenario opens over a wealth of futuristic applications, thanks to the enhanced contrast inherent in this technique. At present, these energy selective techniques are only limited by the performances of the device needed to select the energy (and wavelength) of the incident neutron beam: i.e. a rotating disk velocity selector and double monochromator. The possibility of enhancing this technique by fully exploiting the Time of Flight technique could improve dramatically the energy resolution and consequently the range of possible “contrast enhancement” possibilities. What we propose is a research activity using energy selective neutron imaging, applied to cultural heritage metal artefacts, to study the historical evolution of iron production on a world basis, i.e. including European, middle-east, Indian, and

  5. Calculations of neutron spectra after neutron-neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, B E [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Stephenson, S L [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Howell, C R [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G E [North Carolina State University, Raleigh, NC 27695-8202 (United States); Tornow, W [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Furman, W I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lychagin, E V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Muzichka, A Yu [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nekhaev, G V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Strelkov, A V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Sharapov, E I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shvetsov, V N [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2004-09-01

    A direct neutron-neutron scattering length, a{sub nn}, measurement with the goal of 3% accuracy (0.5 fm) is under preparation at the aperiodic pulsed reactor YAGUAR. A direct measurement of a{sub nn} will not only help resolve conflicting results of a{sub nn} by indirect means, but also in comparison to the proton-proton scattering length, a{sub pp}, shed light on the charge-symmetry of the nuclear force. We discuss in detail the analysis of the nn-scattering data in terms of a simple analytical expression. We also discuss calibration measurements using the time-of-flight spectra of neutrons scattered on He and Ar gases and the neutron activation technique. In particular, we calculate the neutron velocity and time-of-flight spectra after scattering neutrons on neutrons and after scattering neutrons on He and Ar atoms for the proposed experimental geometry, using a realistic neutron flux spectrum-Maxwellian plus epithermal tail. The shape of the neutron spectrum after scattering is appreciably different from the initial spectrum, due to collisions between thermal-thermal and thermal-epithermal neutrons. At the same time, the integral over the Maxwellian part of the realistic scattering spectrum differs by only about 6 per cent from that of a pure Maxwellian nn-scattering spectrum.

  6. Internal filament modulation in low-dielectric gap design for built-in selector-less resistive switching memory application

    Science.gov (United States)

    Chen, Ying-Chen; Lin, Chih-Yang; Huang, Hui-Chun; Kim, Sungjun; Fowler, Burt; Chang, Yao-Feng; Wu, Xiaohan; Xu, Gaobo; Chang, Ting-Chang; Lee, Jack C.

    2018-02-01

    Sneak path current is a severe hindrance for the application of high-density resistive random-access memory (RRAM) array designs. In this work, we demonstrate nonlinear (NL) resistive switching characteristics of a HfO x /SiO x -based stacking structure as a realization for selector-less RRAM devices. The NL characteristic was obtained and designed by optimizing the internal filament location with a low effective dielectric constant in the HfO x /SiO x structure. The stacking HfO x /SiO x -based RRAM device as the one-resistor-only memory cell is applicable without needing an additional selector device to solve the sneak path issue with a switching voltage of ~1 V, which is desirable for low-power operating in built-in nonlinearity crossbar array configurations.

  7. Separation of Undersampled Composite Signals Using the Dantzig Selector with Overcomplete Dictionaries

    Science.gov (United States)

    2014-06-02

    may be corrupted by noise, and it is a challenging problem to reliably separate the components from one another without sacrificing significant...several signals that may be corrupted by noise, and it is a challenging problem to reliably separate the components from one another without sacrificing...selector: Statistical estimation when p is much larger than n. The Annals of Statistics 35, 6 (2007), 2370 – 2372. [28] Tropp, J. Greed is good

  8. A CMOS Image Sensor With In-Pixel Buried-Channel Source Follower and Optimized Row Selector

    NARCIS (Netherlands)

    Chen, Y.; Wang, X.; Mierop, A.J.; Theuwissen, A.J.P.

    2009-01-01

    This paper presents a CMOS imager sensor with pinned-photodiode 4T active pixels which use in-pixel buried-channel source followers (SFs) and optimized row selectors. The test sensor has been fabricated in a 0.18-mum CMOS process. The sensor characterization was carried out successfully, and the

  9. Monochromatic neutron beam production at Brazilian nuclear research reactors

    Science.gov (United States)

    Stasiulevicius, Roberto; Rodrigues, Claudio; Parente, Carlos B. R.; Voi, Dante L.; Rogers, John D.

    2000-12-01

    Monochomatic beams of neutrons are obtained form a nuclear reactor polychromatic beam by the diffraction process, suing a single crystal energy selector. In Brazil, two nuclear research reactors, the swimming pool model IEA-R1 and the Argonaut type IEN-R1 have been used to carry out measurements with this technique. Neutron spectra have been measured using crystal spectrometers installed on the main beam lines of each reactor. The performance of conventional- artificial and natural selected crystals has been verified by the multipurpose neutron diffractometers installed at IEA-R1 and simple crystal spectrometer in operator at IEN- R1. A practical figure of merit formula was introduced to evaluate the performance and relative reflectivity of the selected planes of a single crystal. The total of 16 natural crystals were selected for use in the neutron monochromator, including a total of 24 families of planes. Twelve of these natural crystal types and respective best family of planes were measured directly with the multipurpose neutron diffractometers. The neutron spectrometer installed at IEN- R1 was used to confirm test results of the better specimens. The usually conventional-artificial crystal spacing distance range is limited to 3.4 angstrom. The interplane distance range has now been increased to approximately 10 angstrom by use of naturally occurring crystals. The neutron diffraction technique with conventional and natural crystals for energy selection and filtering can be utilized to obtain monochromatic sub and thermal neutrons with energies in the range of 0.001 to 10 eV. The thermal neutron is considered a good tool or probe for general applications in various fields, such as condensed matter, chemistry, biology, industrial applications and others.

  10. Ultracold neutrons

    International Nuclear Information System (INIS)

    Steenstrup, S.

    Briefly surveys recent developments in research work with ultracold neutrons (neutrons of very low velocity, up to 10 m/s at up to 10 -7 eV and 10 -3 K). Slow neutrons can be detected in an ionisation chamber filled with B 10 F 3 . Very slow neutrons can be used for investigations into the dipole moment of neutrons. Neutrons of large wave length have properties similar to those of light. The limit angle for total reflection is governed by the wave length and by the material. Total reflection can be used to filter ultracold neutrons out of the moderator material of a reactor. Total reflection can also be used to store ultracold neutrons but certain problems with storage have not yet been clarified. Slow neutrons can be made to lose speed in a neutron turbine, and come out as ultracold neutrons. A beam of ultracold neutrons could be used in a neutron microscope. (J.S.)

  11. Neutrons moderation theory; Theorie du ralentissement des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Vigier, J P

    1949-07-01

    This report gives a summarized presentation of the theory of fast neutrons diffusion and moderation in a given environment as elaborated by M. Langevin, E. Fermi, R. Marshak and others. This statistical theory is based on three assumptions: there is no inelastic diffusion, the elastic diffusion has a spherical symmetry with respect to the center of gravity of the neutron-nucleus system (s-scattering), and the effects of chemical bonds and thermal agitation of nuclei are neglected. The first chapter analyzes the Boltzmann equation of moderation, its first approximate solution (age-velocity equation) and its domain of validity, the extension of the age-velocity theory (general solution) and the boundary conditions, the upper order approximation (spherical harmonics method and Laplace transformation), the asymptotic solutions, and the theory of spatial momenta. The second chapter analyzes the energy distribution of delayed neutrons (stationary and non-stationary cases). (J.S.)

  12. Superconducting RF for Low-Velocity and Intermediate-Velocity Beams

    CERN Document Server

    Grimm, Terry L

    2005-01-01

    Existing superconducting radio frequency (SRF) linacs are used to accelerate ions (protons through uranium) with velocities less than about 15% the speed of light, or electrons with velocities approximately equal to the speed of light. In the last ten years, prototype SRF cavities have completely covered the remaining range of velocities. They have demonstrated that SRF linacs will be capable of accelerating electrons from rest up to the speed of light, and ions from less than 1% up to the speed of light. When the Spallation Neutron Source is operational, SRF ion linacs will have covered the full range of velocities except for v/c ~ 0.15 to v/c ~ 0.5. A number of proposed projects (RIA, EURISOL) would span the latter range of velocities. Future SRF developments will have to address the trade-offs associated with a number of issues, including high gradient operation, longitudinal and transverse acceptance, microphonics, Lorentz detuning, operating temperature, cryogenic load, number of gaps or cells per cavity...

  13. Intermediate energy neutron fast chopper associated to the pile EL3

    International Nuclear Information System (INIS)

    Julien, J.; Netter, F.; Martin, R.; Rouge, P.

    1958-01-01

    The apparatus is a fast chopper placed on a beam issued from the tank of the pile EL3. It is composed of a steel rotor with a rigid vertical axis and eight pairs of slits in the maximum cross-section plane (diameter 48 cm). The originality of the apparatus consists mainly in the driving system by oil turbine, which allows a more reliable and versatile operation. The spectrometer is running regularly at 15000 r.p.m. In the conditions, the slits (precision of cutting: ± 5 microns) release neutron beams with time half-width equal to 1/4 micro-second. Therefore, with a 20 meter flight-path, the resolution power of the fast chopper is about 10 milli-microsecond/metre. All the safety devices are provided to ensure a steady running, without permanent control. The speed of rotation is stabilized to better than ± 1/1000 in all the rate range between 6 000 and 15 500 r.p.m. A lead device for moving in and out the sample allows to work with radioactive samples. The apparatus is connected to a hundred 1/4 microsecond channel time-of-flight selector. A thousand channel selector with magnetic memory (Argonne type) will be ready in a few months. (author) [fr

  14. Measurements of fission cross-sections and of neutron production rates; Mesures de sections efficaces de fission et du nombre de neutrons prompts emis par fission

    Energy Technology Data Exchange (ETDEWEB)

    Billaud, P; Clair, C; Gaudin, M; Genin, R; Joly, R; Leroy, J L; Michaudon, A; Ouvry, J; Signarbieux, C; Vendryes, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin {sup 10}B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of {sup 235}U. We intend to measure the variation of the neutron induced fission cross section of {sup 235}U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of {sup 235}U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF{sub 3} proportional counters. c) Mean number {nu} of neutrons emitted in neutron induced fission. We measured the value of {nu} for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) {alpha} reaction by means of a 300 kV Cockcroft Walton generator. (author)Fren. [French] a) Mesures de sectionficaces de fission a basse energie. Nous avons mesure et analyse la variation de la section efficace de fission de divers isotopes fissiles pour des neutrons d'energie inferieure a 0,025 eV. Le monochromateur est constitue par un spectrometre a cristal auquel est associe un selecteur mecanique destine a eliminer les diffractions de Bragg d'ordre superieur au premier. Le materiau fissile est contenu dans une chambre a fission sous forme de depots realises par peinture; une chambre d'ionisation a depots minces de B{sub 10

  15. Estimation of water flow velocity in small plants using cold neutron imaging with D 2O tracer

    Science.gov (United States)

    Matsushima, U.; Herppich, W. B.; Kardjilov, N.; Graf, W.; Hilger, A.; Manke, I.

    2009-06-01

    Water flow imaging may help to better understand various problems related to water stress of plants. It may help to fully understand the water relations of plants. The objective of this research was to estimate the velocity of water flow in plant samples. Cut roses ( Rosa hybrida, var. 'Milva') were used as samples. Cold neutron radiography (CNR) was conducted at CONRAD, Helmholtz Center Berlin for Materials and Energy, Berlin, Germany. D 2O and H 2O were interchangeably injected into the water feeding system of the sample. After the uptake of D 2O, the neutron transmission increased due to the smaller attenuation coefficient of D 2O compared to H 2O. Replacement of D 2O in the rose peduncle was clearly observed. Three different optical flow algorithms, Block Matching, Horn-Schunck and Lucas-Kanade, were used to calculate the vector of D 2O tracer flow. The quality of sequential images providing sufficient spatial and temporal resolution allowed to estimate flow vector.

  16. Installation and development of neutron radiography in the nuclear reactor (IEAR-1) of the Instituto de Energia Atomica, Brazil

    International Nuclear Information System (INIS)

    Fuga, R.

    1979-01-01

    Investigations on the field of Neutron Radiography have been performed at the IEAR-1, swimming pool reactor utilizing a collimated neutron beam and the so-called photographic transfer method as a mean of detection. The test object (sample) is placed between the neutron source (reactor core) and the gold foil. The acitivity of its different points is the inverse measure of the neutrons absorbed in the test sample at the corresponding points. The activity distribution on the gold foil is determined again by exposing it to an X-ray film. A multichannel type collimator consisting of an assemblage of stainless steel tubes inside an aluminium mantle (tube) was used as a direction beam selector. Improvements have been introduced in respect to the reduction of angular divergence and neutron scattering. To improve further the quality of the radiographs another collimator type has been developed using boric acid as a neutron absorber and moderator. Flux measurements by means of gold foil activation at reactor positions of interest were necessary to eliminate errors originating of different neutron flux values. The dependence of film darkening upon the neutron flux and other factors have been discussed. Finally neutron-and gama-radiographs of the same objects were evaluated in comparison. (author) [pt

  17. Is the Link Between the Observed Velocities of Neutron Stars and their Progenitors a Simple Mass Relationship?

    Science.gov (United States)

    Bray, J. C.

    2017-11-01

    While the imparting of velocity `kicks' to compact remnants from supernovae is widely accepted, the relationship of the `kick' to the progenitor is not. We propose the `kick' is predominantly a result of conservation of momentum between the ejected and compact remnant masses. We propose the `kick' velocity is given by v kick = α(M ejecta/M remnant)+β, where α and β are constants we wish to determine. To test this we use the BPASS v2 (Binary Population and Spectral Synthesis) code to create stellar populations from both single star and binary star evolutionary pathways. We then use our Remnant Ejecta and Progenitor Explosion Relationship (REAPER) code to apply `kicks' to neutron stars from supernovae in these models using a grid of α and β values, (from 0 to 200 km s-1 in steps of 10 km s-1), in three different `kick' orientations, (isotropic, spin-axis aligned and orthogonal to spin-axis) and weighted by three different Salpeter initial mass functions (IMF's), with slopes of -2.0, -2.35 and -2.70. We compare our synthetic 2D and 3D velocity probability distributions to the distributions provided by Hobbs et al. (1995).

  18. Neutron Standards Laboratory of the CIEMAT; Laboratorio de Patrones Neutronicos del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A. [Universidad Politecnica de Madrid, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Mendez V, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Av. Complutense 40, 28040 Madrid (Spain); Vega C, H. R., E-mail: karen.guzman.garcia@alumnos.upm.es [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    By means of a calculation series with Monte Carlo methods and the code MCNPX was characterized the neutrons field produced by the existent calibration sources in the Neutron Standards Laboratory of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT). The laboratory has two neutron calibration sources one of {sup 241}AmBe and other {sup 252}Cf that are stored in a water pool. A detailed three-dimensional model of the room was built with the base of stainless steel remarking in the selector to the sources that situates them to 4 m of the floor to be irradiated on the irradiation table and the storage pool. Each one of the sources was defined on the model in its double steel encapsulated. The spectra were calculated with different cases with the purpose of to calculate the contribution of each element that impacts to the neutrons transport. The spectra of the calibration sources were calculated to different distances regarding the source from 0, 15, 35, 50 to 300 cm on the base and in a same way the values of the ambient dose equivalent using the approaches of the ICRP-74. The results show clearly that the great contribution in the modification of the spectrum is attributed to the walls, and floor of the Neutron Standards Laboratory installations. (Author)

  19. Evaluating the Stability of Feature Selectors that Optimize Feature Subset Cardinality

    Czech Academy of Sciences Publication Activity Database

    Somol, Petr; Novovičová, Jana

    2008-01-01

    Roč. 2008, č. 5342 (2008), s. 956-966 ISSN 0302-9743. [Joint IAPR International Workshops SSPR 2008 and SPR 2008. Orlando , 04.12.2008-06.12.2008] R&D Projects: GA AV ČR 1ET400750407; GA MŠk 1M0572; GA ČR GA102/07/1594 Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : Feature selection * stability * relative weighted consistency measure * sequential search * floating search Subject RIV: IN - Informatics, Computer Science http://library.utia.cas.cz/separaty/2008/RO/somol-evaluating the stability of feature selectors that optimize feature subset cardinality.pdf

  20. Use of cold neutrons for condensed matter research at the neutron guide laboratory ELLA in Juelich

    International Nuclear Information System (INIS)

    Schaetzler, R.; Monkenbusch, M.

    1998-01-01

    Cold neutrons produced in the FRJ-2 DIDO reactor are guided into the external hall ELLA. It hosts 10 instruments that are red by three major neutron guides. Cold neutrons allow for diffraction and small angle scattering experiments resolving mesoscopic structures (1 to 100 nm). Contrast variation by isotopic substitution in chemically identical species yields information uniquely accessible bi neutrons. Inelastic scattering of cold neutrons allows investigating slow molecular motions because the low neutron velocity results in large relative velocity changes even at small energy transfers. The SANS machines and the HADAS reflectometer serve as structure probes and the backscattering BSS1 and spin-echo spectrometers NSE as main dynamics probes. Besides this the diffuse scattering instrument DNS and the lattice parameter determination instrument LAP deal mainly with crystals and their defects. Finally the beta-NMR and the EKN position allow for methods other than scattering employing nuclear reactions for solid state physics, chemistry and biology/medicine. (author)

  1. The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling

    NARCIS (Netherlands)

    Budry, L.; Balsalobre, A.; Gauthier, Y.; Khetchoumian, K.; L'Honore, A.; Vallette-Kasic, S.; Brue, T; Figarella-Branger, D.; Meij, B.P.; Drouin, J.

    2012-01-01

    Genes Dev. 2012 Oct 15;26(20):2299-310. doi: 10.1101/gad.200436.112. The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling. Budry L, Balsalobre A, Gauthier Y, Khetchoumian K, L'honoré A, Vallette S, Brue T, Figarella-Branger D, Meij B,

  2. Energy corrections in pulsed neutron measurements for cylindrical geometry

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Woznicka, U.

    1982-01-01

    A solution of the thermal neutron diffusion equation for a two-region concentric cylindrical system, with a constant neutron flux in the inner medium assumed, is given. The velocity-averaged dynamic parameters for thermal neutrons are used in the method. The corrections due to the diffusion cooling are introduced into the dynamic material buckling and into the velocity distribution of the thermal neutron flux. Detailed relations obtained for a hydrogenous moderator are given. Results of the measurements of the thermal neutron macroscopic absorption cross-sections for the samples in the two-region cylindrical systems are presented. (author)

  3. Methods of neutron spectrometry

    International Nuclear Information System (INIS)

    Doerschel, B.

    1981-01-01

    The different methods of neutron spectrometry are based on the direct measurement of neutron velocity or on the use of suitable energy-dependent interaction processes. In the latter case the measuring effect of a detector is connected with the searched neutron spectrum by an integral equation. The solution needs suitable unfolding procedures. The most important methods of neutron spectrometry are the time-of-flight method, the crystal spectrometry, the neutron spectrometry by use of elastic collisions with hydrogen nuclei, and neutron spectrometry with the aid of nuclear reactions, especially of the neutron-induced activation. The advantages and disadvantages of these methods are contrasted considering the resolution, the measurable energy range, the sensitivity, and the experimental and computational efforts. (author)

  4. Temperature measurement with neutrons

    International Nuclear Information System (INIS)

    Bizard, G.; Durand, D.; Lecolley, J.F.; Lefebvres, F.; Marques, M.; Peter, J.; Tamain, B.

    1998-01-01

    The results presented in this report were obtained from the information provided by charged products. Another alternative consists in detecting the neutrons abundantly emitted particularly by heavy nuclei. The residue channel was studied in the 40 Ar + 197 Au at 60 MeV/nucleon by means of the neutron multidetector DEMON. The evolution of the multiplicity of neutrons emitted backwards in the framework of the heavy nucleus forwardly detected as a function of the residue velocity by a silicon detector, placed at 8 degrees and at 24.5 cm from target, agrees with the expected results i.e. an increase with the residue velocity hence with the collision violence. For the same detector the first measurements show similarly a linear increase of the apparent temperature of 4.0 to around 6.5 MeV for residue velocities varying from 0.5 to 1.3 cm/ns and masses ranging from 140 to 160 uma. This first results of the analysis show therefore a good behaviour of the assembly and especially of the couple DeMoN-SyReP

  5. Measurements of the ultrasonic attenuation and velocity variation in neutron irradiated quartz for an intermediate dose of 2.6x1019 n/cm2

    International Nuclear Information System (INIS)

    Keppens, V.; Laermans, C.

    1992-01-01

    Ultrasonic measurements in neutron-irradiated quartz are carried out for an intermediate dose of 2.6x10 19 n/cm 2 . The variation of the velocity of sound has been measured and previous attenuation measurements are extended to temperatures below 1.2 K. The TS-parameters anti P and γ 1 are calculated from numerical fittings to the tunneling model. The obtained values continue the tendency of previous measurements for lower neutron doses, where a linear increase of anti P with the dose was found. This behaviour, however, is not followed by a higher dose, situated near the ''threshold regime''. (orig.)

  6. Experiencias acerca de la utilización de un selector de contingencia en la planificación de la operación del SEN

    Directory of Open Access Journals (Sweden)

    Manuel Barroso Baeza

    2011-02-01

    Full Text Available Se muestra la utilidad de un selector de contingencias en tareas de planificación de la operación de lossistemas eléctricos de potencia, especialmente en sistemas longitudinales en los cuales es necesarioprever desde la etapa de planificación la seguridad de la operación con especial interés, dadas lasconsecuencias que pueden acarrear diversas contingencias. El selector forma parte de un paquete deprogramas empleado actualmente en el Despacho Nacional de Carga (DNC, para la planificación de laoperación del Sistema Electroenergético Nacional (SEN, se utiliza diariamente para los estudios de lascontingencias más críticas que pueden suceder en el sistema en diversos regímenes, con ello se logra elanálisis de la factibilidad de otorgar vías libres o garantizar que los operadores se encuentren bajo alertaante la ocurrencia de algunas contingencias que pudieran provocar serias violaciones a la seguridad delsistema.  This work shows the contingencies selector use in order to do the power system operation planning tasks,especially in longitudinal systems where is necessary to prevent from the planning level the security ofthe operation with very special interest because of the contingencies consequences. The selector belongto the programs package that is using to planning the National Electric Power System operation in theNational Control Center actually. The more critical contingencies can be study with this tools and becauseof that the feasibility of the permission over one transmission element of the system is analyzed. Thismethodology permit to refuse the permission or to put the operator in alert front some contingencies thatcould attempt versus the system security.

  7. Application of the associated particle method to the determination of the efficiency of an NE 213 detection assembly with 750 keV neutrons. Utilization of a velocity filter

    International Nuclear Information System (INIS)

    Becret, Claude.

    1979-01-01

    This report presents the calibration of a neutron detection set, fitted with an NE 213 organic scintillator. This calibration uses the associated particle method, by means of the 3 T(p,n) 3 He reaction producing 750 keV neutrons. A separator device, of the velocity filter type, is employed for separating the heliums -emitted during the 3 T(p,n) 3 He neutron generating reaction- from the charged particles emanating from competing or spurious reactions. The calibration of this set enables neutron fluences of between 700 keV and 1 MeV in energy to be determined. The knowledge of such fluences is essential for dosimetry studies and for determining the sensitivity of weapons systems or components to nuclear radiation effects [fr

  8. Implosion anisotropy of neutron kinetic energy distributions as measured with the neutron time-of-flight diagnostics at the National Ignition Facility

    Science.gov (United States)

    Hartouni, Edward; Eckart, Mark; Field, John; Grim, Gary; Hatarik, Robert; Moore, Alastair; Munro, David; Sayer, Daniel; Schlossberg, David

    2017-10-01

    Neutron kinetic energy distributions from fusion reactions are characterized predominantly by the excess energy, Q, of the fusion reaction and the variance of kinetic energy which is related to the thermal temperature of the plasma as shown by e.g. Brysk. High statistics, high quality neutron time-of-flight spectra obtained at the National Ignition Facility provide a means of measuring small changes to the neutron kinetic energy due to the spatial and temporal distribution of plasma temperature, density and velocity. The modifications to the neutron kinetic energy distribution as described by Munro include plasma velocity terms with spatial orientation, suggesting that the neutron kinetic energy distributions could be anisotropic when viewed by multiple lines-of-sight. These anisotropies provide a diagnostic of burn averaged plasma velocity distributions. We present the results of measurements made for a variety of DT implosions and discuss their possible physical interpretations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  9. Use of ultracold neutrons for condensed-matter studies

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1997-05-01

    Ultracold neutrons have such low velocities that they are reflected by most materials at all incident angles and can be stored in material bottles for long periods of time during which their intrinsic properties can be studied in great detail. These features have been mainly used for fundamental-physics studies including the detection of a possible neutron electric dipole moment and the precise determination of neutron-decay properties. Ultracold neutrons can also play a role in condensed-matter studies with the help of high-resolution spectrometers that use gravity as a strongly dispersive medium for low-velocity neutrons. Such studies have so far been limited by the low intensity of existing ultracold-neutron sources but could be reconsidered with more intense sources, which are now envisaged. This report provides a broad survey of the properties of ultracold neutrons (including their reflectivity by different types of samples), of ultracold-neutron spectrometers that are compared with other high-resolution instruments, of results obtained in the field of condensed matter with these instruments, and of neutron microscopes. All these subjects are illustrated by numerous examples.

  10. Use of ultracold neutrons for condensed-matter studies

    International Nuclear Information System (INIS)

    Michaudon, A.

    1997-05-01

    Ultracold neutrons have such low velocities that they are reflected by most materials at all incident angles and can be stored in material bottles for long periods of time during which their intrinsic properties can be studied in great detail. These features have been mainly used for fundamental-physics studies including the detection of a possible neutron electric dipole moment and the precise determination of neutron-decay properties. Ultracold neutrons can also play a role in condensed-matter studies with the help of high-resolution spectrometers that use gravity as a strongly dispersive medium for low-velocity neutrons. Such studies have so far been limited by the low intensity of existing ultracold-neutron sources but could be reconsidered with more intense sources, which are now envisaged. This report provides a broad survey of the properties of ultracold neutrons (including their reflectivity by different types of samples), of ultracold-neutron spectrometers that are compared with other high-resolution instruments, of results obtained in the field of condensed matter with these instruments, and of neutron microscopes. All these subjects are illustrated by numerous examples

  11. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography.

    Science.gov (United States)

    Saito, Y; Mishima, K; Matsubayashi, M

    2004-10-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile.

  12. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Matsubayashi, M.

    2004-01-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile

  13. Pulsed neutron generator for mass flow measurement using the pulsed neutron activation technique

    International Nuclear Information System (INIS)

    Rochau, G.E.; Hornsby, D.R.; Mareda, J.F.; Riggan, W.C.

    1980-01-01

    A high-output, transportable neutron generator has been developed to measure mass flow velocities in reactor safety tests using the Pulsed Neutron Activation (PNA) Technique. The PNA generator produces >10 10 14 MeV D-T neutrons in a 1.2 millisecond pulse. The Millisecond Pulse (MSP) Neutron Tube, developed for this application, has an expected operational life of 1000 pulses, and it limits the generator pulse repetition rate to 12 pulses/minute. A semiconductor neutron detector is included in the generator package to monitor the neutron output. The control unit, which can be operated manually or remotely, also contains a digital display with a BCD output for the neutron monitor information. The digital logic of the unit controls the safety interlocks and rejects transient signals which could accidently fire the generator

  14. Quasi-elastic measurements using neutron spin flippers

    International Nuclear Information System (INIS)

    Bleuel, M.; Fitzsimmons, M.R.; Lal, J.

    2008-01-01

    A method for low-resolution quasi-elastic measurements using commonly available components on a polarized neutron beam reflectometer is demonstrated. By amplitude modulation of the current in a neutron spin flipper placed between the neutron beam polarizer and polarization analyzer, the intensity of the neutron beam illuminating a sample is similarly modulated (or chopped). We show that the intensity contrast between subsequent chopped pulses is dramatically reduced by a sample that changes neutron velocity

  15. Anomalous hydrodynamics kicks neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Matthias, E-mail: mski@ua.edu [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2 (Canada); Uhlemann, Christoph F. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Bleicher, Marcus [Frankfurt Institute for Advanced Studies, Goethe-Universität Frankfurt (Germany); Institut für Theoretische Physik, Goethe Universität Frankfurt (Germany); Schaffner-Bielich, Jürgen [Institut für Theoretische Physik, Goethe Universität Frankfurt (Germany)

    2016-09-10

    Observations show that, at the beginning of their existence, neutron stars are accelerated briskly to velocities of up to a thousand kilometers per second. We argue that this remarkable effect can be explained as a manifestation of quantum anomalies on astrophysical scales. To theoretically describe the early stage in the life of neutron stars we use hydrodynamics as a systematic effective-field-theory framework. Within this framework, anomalies of the Standard Model of particle physics as underlying microscopic theory imply the presence of a particular set of transport terms, whose form is completely fixed by theoretical consistency. The resulting chiral transport effects in proto-neutron stars enhance neutrino emission along the internal magnetic field, and the recoil can explain the order of magnitude of the observed kick velocities.

  16. Linear-logarithmic converter of a multi-channel selector-analyser type SA40 for automatic tracing; Convertisseur lineaire logarithmique pour le trace automatique de spectres d'un selecteur SA40

    Energy Technology Data Exchange (ETDEWEB)

    Desmaretz, M; Espanel, P; Ferlicci, R; Feyt, J

    1967-11-01

    The converter described in this note has been built to give the spectra stored in the memory of a type Sa40 selector in semi logarithmic coordinates. It must answer to several functions from numerical information appearing at the output of the selector - to command the address advance of the selector. - to decode numerical information and to transform it in analog tensions. - to operate the linear - logarithmic transformation for the register. - to send an start order to the table servo-motors. [French] L'appareil decrit dans la presente note a ete construit pour delivrer en coordonnees semi-logarithmiques les spectres stockes dans la memoire d'un selecteur type Sa40. Il doit remplir plusieurs fonctions a partir des informations numeriques apparaissant a la sortie parallele du selecteur - Commander l'avance adresse du selecteur. - decoder les informations numeriques et les transformer en tensions analogiques. - operer la transformation lineaire-logarithmique pour le registre. - envoyer un ordre de depart aux servo-moteurs de la table. (auteurs)

  17. Progress report - Physical and Environmental Sciences - Physics Division, 1996 January 1 to December 31

    International Nuclear Information System (INIS)

    Powell, B.M.

    1997-04-01

    This document is the last Progress Report for the Neutron and Condensed Matter Science Branch, at Chalk River Labs of Atomic Energy of Canada Limited. The materials science program continued to include measurements of stress as a major component, but the determination of phase diagrams for specific alloys was also a prominent activity. Studies were made of two types of unusual magnetic materials. The magnetic properties of several oxide pyrochlore were investigated and spin waves were measured in the magnetic semiconductor, chalcopyrite. The crystal structures of the deuterated anti fluorite were determined and the reorientation of the ammonium ion was refined in detail. Differential scanning calorimetry measurements were used to investigate whether spontaneous phase separation into chiral domains occurs for mixtures of DPPC of opposite chirality. A new Neutron Velocity Selector was commissioned

  18. Progress report - Physical and Environmental Sciences - Physics Division, 1996 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Powell, B.M. (ed.)

    1997-04-01

    This document is the last Progress Report for the Neutron and Condensed Matter Science Branch, at Chalk River Labs of Atomic Energy of Canada Limited. The materials science program continued to include measurements of stress as a major component, but the determination of phase diagrams for specific alloys was also a prominent activity. Studies were made of two types of unusual magnetic materials. The magnetic properties of several oxide pyrochlore were investigated and spin waves were measured in the magnetic semiconductor, chalcopyrite. The crystal structures of the deuterated anti fluorite were determined and the reorientation of the ammonium ion was refined in detail. Differential scanning calorimetry measurements were used to investigate whether spontaneous phase separation into chiral domains occurs for mixtures of DPPC of opposite chirality. A new Neutron Velocity Selector was commissioned.

  19. An improved slow neutron spectrometer at nuclear research reactor et-r r-1. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abu El-Ela, M A [Reactor and Neutron Physics, Nuclear Research Center, AEA, Cairo (Egypt)

    1996-03-01

    An improved slow neutron selector has been aligned at channel number 6 of the nuclear research reactor ET-R R-1 Inshas. The flight path is 4 meter. The collimator-rotor-collimator system has the dimensions 0.3 x 2.5 x 70 cm with the rotor diameter 16 cm and 3 slits of 0.3 x 2.5 cm cross section. The rotor rotation rate varies between 600 r.p.m. the counting system has one of the best modern high electronic advanced technology time analyzer with minimum dwell time 2 sec, 8192 channels and a double detector inputs of TTL and NEG NIM standard pulses. The analyzer external triggering signals are of TTL standard type. A special design {sup 3} He detector for time of flight spectrometry has been used in the SNS. The reactor bare thermal neutron spectrum has been successfully measured, to show good agreement with the previous data. 6 figs.

  20. The measurements of thermal neutron flux distribution in a paraffin

    Indian Academy of Sciences (India)

    The term `thermal flux' implies a Maxwellian distribution of velocity and energy corresponding to the most probable velocity of 2200 ms-1 at 293.4 K. In order to measure the thermal neutron flux density, the foil activation method was used. Thermal neutron flux determination in paraffin phantom by counting the emitted rays of ...

  1. Velocity determination of neutron-rich projectile fragments with a ring-imaging Cherenkov detector

    International Nuclear Information System (INIS)

    Zeitelhack, K.

    1992-11-01

    For the velocity determination of relativistic heavy ions (A>100) in the energy range 300A.MeV ≤ E kin ≤ 2A.GeV a highly resolving, compact ring-imaging Cherenkov counter with large dynamical measurement range was developed. The Cherenkov light cone emitted in the flight of a relativistic heavy ion by a liquid layer (C 6 F 14 ) is focused on the entrance window of a one-dimensional position-resolving VUV-sensitive photon detector. This gas detector is operated at atmospheric pressure with a mixture of 90% methane and 10% isobutane with 0.04% TMAE as photosensitive admixture. For 725A.MeV 129 Xe ions a velocity resolution Δβ/β=1.8.10 -3 and a nuclear charge-number resolution ΔZ/Z=5.1.10 -2 was reached. The over the photon energy range 5.4 eV ≤ E γ ≤ 7.2 eV averaged detection efficiency of the detector system was determined to ε tot =2.8%>. At the 0deg magnet spectrometer Fragmentseparator of the GSI Darmstadt the RICH detector was for the first time applied for the identification of nuclear charge number and mass of heavy relativistic projectile fragments. In the experiment the production cross sections of very neutron-rich nuclei by fragmentation of 136 Xe projectiles in the reaction 76A.MeV 136 Xe on 27 Al were determined. From the measured production erates for the production of the double-magic nucleus 132 Zn in this reaction a cross section of σ=(0.4± 0.3 0.6 ) μbarn can be extrapolated. (orig./HSI) [de

  2. The CBM first-level event selector input interface

    Energy Technology Data Exchange (ETDEWEB)

    Hutter, Dirk; Lindenstruth, Volker [Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt (Germany); Collaboration: CBM-Collaboration

    2015-07-01

    The CBM First-level Event Selector (FLES) is the central event selection system of the upcoming CBM experiment at FAIR. Designed as a high-performance computing cluster, its task is an online analysis of the physics data at a total data rate exceeding 1 TByte/s. To allow efficient event selection, the FLES has to combine the data from all given input links to self-contained, overlapping processing intervals and distribute them to compute nodes. This task can be performed efficiently by partitioning the detector data streams into specialized containers. The FLES Interface Board (FLIB), implemented as a custom FPGA board, receives these containers via optical links, prepares them for subsequent interval building, and transfers the data via DMA to the PC's memory. A prototype of the FLIB has been implemented. The inclusion of features foreseen for other parts of the CBM read-out chain allows the evaluation of the interval building concept. Performance studies demonstrated high read-out bandwidth with low overhead. In addition, the FLIB has been used successfully as a readout device in test-beams and lab setups. An overview of the FLES Interface Board as well as results from latest studies is presented.

  3. Experimental observations on feasibility conditions for neutron production by fractofusion

    International Nuclear Information System (INIS)

    Shyam, A.; Kaushik, T.C.; Kulkarni, L.V.

    1998-01-01

    The feasibility conditions for production of neutrons by fractofusion have been investigated. None of the low energy/velocity experiments, such as deuterium absorption/adsorption in metals, mechanical crushing and thermal cycling of deuterides, chemical reactions with heavy water are observed to produce neutrons. High velocity (till 1 km/s) fractofusion experiments are performed by accelerating projectiles by electro-magnetic (rail) gun. These projectiles are impacted on deuterides of lithium (non-conducting) and titanium/palladium (metallic conductivity). While lithium deuteride samples are observed to produce 10 1 to 10 2 neutrons per impact, no neutrons could be observed when palladium/titanium deuterides are impacted with similar projectiles. (author)

  4. Mechanical approach to the neutrons spectra collimation and detection

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, H.; Roshan, M. V. [Energy Engineering and Physics Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-11-15

    Neutrons spectra from most of known sources require being collimated for numerous applications; among them one is the Neutron Activation Analysis. High energy neutrons are collimated through a mechanical procedure as one of the most promising methods. The output energy of the neutron beam depends on the velocity of the rotating Polyethylene disks. The collimated neutrons are then measured by an innovative detection technique with high accuracy.

  5. Neutron diffusion: connection with the theory of browniam motion

    International Nuclear Information System (INIS)

    Dellagi, Mohamed

    1977-01-01

    The displacement of the neutron projection on an axis Ox and its density of probability are introduced instead of describing the diffusion theory with neutron density, as is usual. If the point source O is isotropic and neutron monoenergetic, the brownian particle described by Langevin's equation and neutron have the same time correlation of velocity [fr

  6. CBM first-level event selector input interface

    Energy Technology Data Exchange (ETDEWEB)

    Hutter, Dirk [Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The CBM First-level Event Selector (FLES) is the central event selection system of the upcoming CBM experiment at FAIR. Designed as a high-performance computing cluster, its task is an online analysis of the physics data at a total data rate exceeding 1 TByte/s. To allow efficient event selection, the FLES performs timeslice building, which combines the data from all given input links to self-contained, overlapping processing intervals and distributes them to compute nodes. Partitioning the input data streams into specialized containers allows to perform this task very efficiently. The FLES Input Interface defines the linkage between FEE and FLES data transport framework. Utilizing a custom FPGA board, it receives data via optical links, prepares them for subsequent timeslice building, and transfers the data via DMA to the PC's memory. An accompanying HDL module implements the front-end logic interface and FLES link protocol in the front-end FPGAs. Prototypes of all Input Interface components have been implemented and integrated into the FLES framework. In contrast to earlier prototypes, which included components to work without a FPGA layer between FLES and FEE, the structure matches the foreseen final setup. This allows the implementation and evaluation of the final CBM read-out chain. An overview of the FLES Input Interface as well as studies on system integration and system start-up are presented.

  7. Characters of neutron noise in full-size molten salt reactor

    International Nuclear Information System (INIS)

    Wang, Jiangmeng; Cao, Xinrong

    2015-01-01

    Highlights: • The larger system size makes full-size MSR deviate from point kinetic behavior. • The increasing velocity has non-monotonic effect on the effective delayed neutron fraction. • The amplitude of Green’s function at low frequencies is inversely proportional to the effective delayed neutron fraction. • The range of plateau region is smaller due to the more prominent point kinetic effect. - Abstract: In the present paper, the frequency-dependent and space-dependent behavior of the neutron noise in a full-size Molten Salt Reactor (MSR) is investigated. The theoretical models considering the fuel circulation are established based on one-group neutron diffusion theory. Green’s function of the neutron noise induced by a propagating perturbation is introduced with linear noise theory, due to the small perturbation. The equations are numerically calculated by developing a code, in which the eigenfunction expansion method is adopted. The static results show that the effective delayed neutron fraction changes non-monotonically with the increasing fuel velocity. In the dynamic case, the results are compared to those obtained in 1D MSR and a traditional reactor, in order to figure out the effects of both the fuel circulation and the system size. It is found that there is no difference in 1D and 3D MSR systems from the view of fuel circulation, i.e., the fuel circulation enhances the spatial neutronic coupling and leads to the stronger point kinetic effect. The more prominent space-dependent effect founded in 3D traditional reactors is also observed in the MSR, due to the looser neutronic coupling and the unique singularity of Green’s function in the location of the perturbation. Another interesting finding is that Green’s function for low frequencies changes non-monotonically with increasing velocity. The largest magnitude of Green’s function is observed at the velocity where the effective delayed neutron fraction reaches its minimum. Finally, the

  8. A pulsed neutron Ramsey's method

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan)]. E-mail: yasuhiro.masuda@kek.jp; Ino, T. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Jeong, S.C. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Muto, S. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Skoy, V. [Joint Institute for Nuclear Reasearch, 141980 Dubna (Russian Federation); Watanabe, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan)

    2005-02-15

    A Ramsey's method with pulsed neutrons is proposed. A Ramsey signal, which is a neutron spin rotation about a static magnetic field for a time interval between two separated oscillatory fields, is observed as a function of a neutron time of flight (TOF) in this method. The neutron spin rotation or the RF oscillation is used as a clock of the neutron velocity measurement which ranges from cold to epithermal neutron energies. This method together with the TOF measurement can be used for neutron inelastic scattering experiments. In addition, this method can be applied to the measurement of magnetic and pseudomagnetic fields in matter, and also to neutron spin manipulation for spin dependent scattering.

  9. Inelastic neutron scattering from glass formers

    International Nuclear Information System (INIS)

    Buchenau, U.

    1997-01-01

    Neutron spectra below and above the glass transition temperature show a pronounced difference between strong and fragile glass formers in Angell's fragility scheme. The strong anharmonic increase of the inelastic scattering with increasing temperature in fragile substances is absent in the strongest glass former SiO 2 . That difference is reflected in the temperature dependence of Brillouin sound velocities above the glass transition. Coherent inelastic neutron scattering data indicate a mixture of sound waves and local modes at the low frequency boson peak. A relation between the fragility and the temperature dependence of the transverse hypersound velocity at the glass temperature is derived. (author)

  10. New portable neutron generator for well logging

    International Nuclear Information System (INIS)

    Chicanov, A.E.; Gromov, E. V.; Gulko, V. M.; Izmailov, A. V.

    1994-01-01

    The information about the design, investigation and testing of new well neutron generator for the pulse neutron logging (PNL) is given in this paper. The main physical characteristics of new PNL apparatus are: Neutron flux 2.10 sup 8 n/s ; Pulse frequency>=400 Hz; Diameter= 90 mm; Logging velocity >200 m/h; Number of probes = 2; Resource > 300 h. The generator were provided by gas-filled neutron accelerative tube named NTF-2. The perspective of application and optimization shown PNL apparatus are considered. (author)

  11. Measuring neutron noise induced by travelling air bubbles in a research reactor

    International Nuclear Information System (INIS)

    Por, G.; Horanyi, S.

    1983-05-01

    Travelling air bubble experiments carried out in a research reactor confirm an earlier proposed model. The sink structure could be found experimentally in APSD of neutron signals and was used to determine the bubble velocity. The measurements show that neutron detectors measure the velocity of the travelling bubbles, the thermocouples that of the water flow. (author)

  12. Thermal diffuse scattering in angular-dispersive neutron diffraction

    International Nuclear Information System (INIS)

    Popa, N.C.; Willis, B.T.M.

    1998-01-01

    The theoretical treatment of one-phonon thermal diffuse scattering (TDS) in single-crystal neutron diffraction at fixed incident wavelength is reanalysed in the light of the analysis given by Popa and Willis [Acta Cryst. (1994), (1997)] for the time-of-flight method. Isotropic propagation of sound with different velocities for the longitudinal and transverse modes is assumed. As in time-of-flight diffraction, there exists, for certain scanning variables, a forbidden range in the one-phonon TDS of slower-than-sound neutrons, and this permits the determination of the sound velocity in the crystal. A fast algorithm is given for the TDS correction of neutron diffraction data collected at a fixed wavelength: this algorithm is similar to that reported earlier for the time-of-flight case. (orig.)

  13. The Solution of a Velocity-Dependent Slowing-Down Problem Using Case's Eigenfunction Expansion

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, A

    1964-11-15

    The slowing-down of neutrons in a hydrogenous moderator is calculated assuming a plane source of monoenergetic neutrons. The scattering is regarded as spherically symmetric, but it is shown that a generalization to anisotropy is possible. The cross-section is assumed to be constant. The virgin neutrons are separated out, and it follows that the distribution of the remaining neutrons can be obtained by using an expansion in the eigenfunctions given by Case for the velocity-independent problem.

  14. High current density and nonlinearity combination of selection device based on TaO(x)/TiO2/TaO(x) structure for one selector-one resistor arrays.

    Science.gov (United States)

    Lee, Wootae; Park, Jubong; Kim, Seonghyun; Woo, Jiyong; Shin, Jungho; Choi, Godeuni; Park, Sangsu; Lee, Daeseok; Cha, Euijun; Lee, Byoung Hun; Hwang, Hyunsang

    2012-09-25

    We demonstrate a high-performance selection device by utilizing the concept of crested oxide barrier to suppress the sneak current in bipolar resistive memory arrays. Using a TaO(x)/TiO(2)/TaO(x) structure, high current density over 10(7) A cm(-2) and excellent nonlinear characteristics up to 10(4) were successfully demonstrated. On the basis of the defect chemistry and SIMS depth profile result, we found that some Ta atoms gradually diffused into TiO(2) film, and consequently, the energy band of the TiO(2) film was symmetrically bent at the top and bottom TaO(x)/TiO(2) interfaces and modified as a crested oxide barrier. Furthermore, the one selector-one resistor device exhibited significant suppression of the leakage current, indicating excellent selector characteristics.

  15. Non-resonant precession of the neutron magnetic moment in antiferromagnets

    International Nuclear Information System (INIS)

    Skoblin, A.A.

    1995-01-01

    It is shown that the magnetic moment of a neutron moving in an antiferromagnet with a spiral-order magnetic field slowly precesses. Precession pitch strongly depends on the value and direction of the neutron velocity. 4 refs

  16. Moderator material for neutrons and use of said material

    International Nuclear Information System (INIS)

    Hiismaeki, P.; Auterinen, I.

    1994-01-01

    The invention concerns a moderator material used for mediation of high-velocity neutrons, in particular of fission neutrons, to epithermal neutrons. The principal components of the moderator material are aluminum fluoride and aluminum metal, which have been formed into a dense composite substantially free of pores, wherein the material contains 20-50 percent-vol. of aluminum metal and 80-50 percent-vol. aluminum fluoride. Further, the use of the moderator material in accordance with the invention in neutron capture therapy of cancer tumours is described, such as in boron neutron capture therapy (BNCT)

  17. Neutron time-of-flight signals from expanding or contracting spherical sources

    International Nuclear Information System (INIS)

    Murphy, T.J.; Chrien, R.E.; Klare, K.A.

    1996-01-01

    The width of the energy distribution of fusion-produced neutrons is often used as an indication of the temperature of the reacting ions. The Doppler broadening of the neutron energy is due to the center-of-mass velocity of reacting ion pairs and is characterized by the ion temperature for a Maxwellian distribution of ions with zero collective velocity. If there is bulk fluid motion or turbulence characterized by a velocity on the order of the ion thermal speed, a significant additional broadening may introduced. Suggestions of this phenomenon have been observed for two classes of laser targets. The first is a ''gas bag'' target, in which a deuterated hydrocarbon gas is contained in a thin spherical membrane and illuminated uniformly. The second target is an ICF capsule with a deuterated plastic inner layer. In both cases, measured neutron energy distributions were wider than expected from theoretical ion temperatures alone would predict, and if interpreted as indicative of the ion temperature, are inconsistent with the neutron yields observed

  18. On the origin of hyperfast neutron stars

    NARCIS (Netherlands)

    Gvaramadze, V.V.; Gualandris, A.; Portegies Zwart, S.

    2007-01-01

    We propose an explanation for the origin of hyperfast neutron stars (e.g. PSR B1508+55, PSR B2224+65, RX J0822-4300) based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star (or its helium core) which attained its peculiar velocity

  19. Binary pulsars as probes of neutron star birth

    NARCIS (Netherlands)

    Wijers, R.A.M.J.; van Paradijs, J.; van den Heuvel, E.P.J.

    1992-01-01

    We discuss two issues in the physics of neutron stars and their progenitors. The first is whether a neutron star receives a velocity kick when it is formed in the supernova-explosion of a massive star, and if it does, what is the characteristic magnitude, v(0), thereof? The second concerns the fate

  20. Neutron measurements as fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Hoek, M.

    1993-01-01

    Neutron measurements play important roles as the diagnostics of many aspects of the plasma in large tokamak devices such as JT-60U and JET. In the d-d discharges of JT-60U, the most important application of the neutron measurement is the investigation of the fusion performance using fission chambers. The ion velocity distribution function, and the triton slowing down are investigated by the neutron spectrometer and the 14 MeV neutron detector, respectively. TANSY is a combined proton-recoil and neutron time-of flight spectrometer for 14 MeV neutrons to be used during the d-t phase at JET. The detection principle is based on the measurements of the flight time of a scattered initial neutron and the energy of a corresponding recoil proton. The scattering medium is a polyethylene foil. The resolution and efficiency, using a thin foil (0.95 mg/cm 2 ), is 155 keV and 1.4x10 -5 cm 2 , respectively. (author)

  1. Experiment for water-flow measurement by pulsed-neutron activation

    International Nuclear Information System (INIS)

    Drozdowicz, K.

    1994-08-01

    An experiment is presented which constitutes a feasibility study for applying the neutron activation method for measurement of the water mass transport in pipings, e.g. in nuclear power stations. The fast neutron generator has been used as a pulsed-neutron activation source for oxygen in water which circulated in a closed system. The γ radiation of the nitrogen product isotope has been measured by the scintillation detectors placed in two positions at the piping. The two time distributions of the pulses have been recorded by a multiscaler (a software design based on CAMAC). The water flow velocity has been estimated from the peak-to-peak time distance. The tests have been performed under different experimental conditions (the neutron pulse duration, the time channel width, the water flow velocity) to define the stability, reproducibility and reliability of the measurement. The detailed results are presented in tables and in time distribution plots. The method has been found useful for the application considered. 4 refs, 17 figs, 5 tabs

  2. High-flux neutron source based on a liquid-lithium target

    Science.gov (United States)

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-01

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  3. VERITAS: Versatile Triple-Axis Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Il

    2006-04-15

    Korea Atomic Energy Research Institute is planning to build a cold neutron triple-axis spectrometer at HANARO, the 30 MW research reactor. The spectrometer is expected to be completed in 2008 with the following configuration from the upstream to the downstream. Guide Supermirror m = 2, In-pile Straight Section, {approx} 5 m Curved Guide, {approx} 26 m w/ R 1500 m Straight Guide before the Instrument, {approx} 40 m Filters PG and Be Neutron Velocity Selector (Future) Monochromators Vertically Focusing Monochromators PG(002) and Heusler(111) Doubly Focusing Monochromators (Future) Monochromator-Sample Distance 2 m Collimation C1 Soller Collimators, 20', 40' 80'Beam Height at the Sample Table 1.5 m Sample-Analyzer Distance 1.0 m Collimation C2 Soller Collimators, 20', 40', 80' Radial Collimator Analyzers Horizontally Focusing Analyzers w/ Fixed Vertical Focusing PG(002) and Heusler(111) Analyzer-Detector Distance 0.5 m Detectors 5 cm Tube Detector 25 cm wide Position Sensitive Detector Once completed, the neutron flux at sample is expected to surpass that of SPINS at NCNR, making this instrument one of the most powerful 2nd generation cold neutron triple-axis spectrometers in the world.

  4. VERITAS: Versatile Triple-Axis Spectrometer

    International Nuclear Information System (INIS)

    Park, Sung Il

    2006-04-01

    Korea Atomic Energy Research Institute is planning to build a cold neutron triple-axis spectrometer at HANARO, the 30 MW research reactor. The spectrometer is expected to be completed in 2008 with the following configuration from the upstream to the downstream. Guide Supermirror m = 2, In-pile Straight Section, ∼ 5 m Curved Guide, ∼ 26 m w/ R 1500 m Straight Guide before the Instrument, ∼ 40 m Filters PG and Be Neutron Velocity Selector (Future) Monochromators Vertically Focusing Monochromators PG(002) and Heusler(111) Doubly Focusing Monochromators (Future) Monochromator-Sample Distance 2 m Collimation C1 Soller Collimators, 20', 40' 80'Beam Height at the Sample Table 1.5 m Sample-Analyzer Distance 1.0 m Collimation C2 Soller Collimators, 20', 40', 80' Radial Collimator Analyzers Horizontally Focusing Analyzers w/ Fixed Vertical Focusing PG(002) and Heusler(111) Analyzer-Detector Distance 0.5 m Detectors 5 cm Tube Detector 25 cm wide Position Sensitive Detector Once completed, the neutron flux at sample is expected to surpass that of SPINS at NCNR, making this instrument one of the most powerful 2nd generation cold neutron triple-axis spectrometers in the world

  5. On the origin of high-velocity runaway stars

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2009-06-01

    We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary 50-100Msolar star or a more massive one, formed through runaway mergers of ordinary stars in the core of a young massive star cluster). In this process, one of the binary components becomes gravitationally bound to the very massive star, while the second one is ejected, sometimes with a high speed. We performed three-body scattering experiments and found that early B-type stars (the progenitors of the majority of neutron stars) can be ejected with velocities of >~200-400kms-1 (typical of pulsars), while 3-4Msolar stars can attain velocities of >~300-400kms-1 (typical of the bound population of halo late B-type stars). We also found that the ejected stars can occasionally attain velocities exceeding the Milky Ways's escape velocity.

  6. Visualization and measurement of liquid velocity field of gas-liquid metal two-phase flow using neutron radiography

    International Nuclear Information System (INIS)

    Saito, Yasushi; Suzuki, Tohru; Matsubayashi, Masahito

    2000-01-01

    In a core melt accident of a fast breeder reactor, a possibility of re-criticality is anticipated in the molten fuel-steel mixture pool. One of the mechanisms to suppress the re-criticality is the boiling of steel in the molten fuel-steel mixture pool because of the negative void reactivity effect. To evaluate the reactivity change due to boiling, it is necessary to know the characteristics of gas-liquid two-phase flow in the molten fuel-steel mixture pool. For this purpose, boiling bubbles in a molten fuel-steel mixture pool were simulated by adiabatic gas bubbles in a liquid metal pool to study the basic characteristics of gas-liquid metal two-phase mixture. Visualization of the two-phase mixture and measurements of liquid phase velocity and void fraction were conducted by using neutron radiography and image processing techniques. From these measurements, the basic characteristics of gas-liquid metal two-phase mixture were clarified. (author)

  7. Velocities of dislocation groups in very thin neutron-irradiated copper single crystals measured by slip line cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Potthoff, H.H. (Technische Univ. Braunschweig (Germany, F.R.). Inst. fuer Metallphysik und Nukleare Festkoerperphysik)

    1983-05-16

    Slip line development on very thin flat single crystals of neutron-irradiated Cu (thickness down to only 15 to 20 ..mu..m, orientation for single glide, yield region, room temperature) is recorded by high-speed cinematography during tensile deformation. In such very thin crystals glide dislocations on the slip plane must be arranged in a rather simple way. Drops in tensile load occuring during initiation of single slip lines at the Lueders band front indicate that in the beginning of a slip line development dislocation groups traverse the whole glide plane in very short times. Evaluating the data measured for the slip line growth v/sub s/ >= 10 cm/s is found for screw dislocations and v/sub e/ >= v/sub s/ for edge dislocations. For later stages on thin crystals and for all stages on thick crystals (>= several 100 ..mu..m) slip line development is much slower and slip line show many cross slip events which then appear to control the mean velocity of the dislocations.

  8. The Velocity Distribution of Isolated Radio Pulsars

    Science.gov (United States)

    Arzoumanian, Z.; Chernoff, D. F.; Cordes, J. M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    spatially bounded surveys; (3) an important low-velocity population exists that increases the fraction of neutron stars retained by globular clusters and is consistent with the number of old objects that accrete from the interstellar medium; (4) under standard assumptions for supernova remnant expansion and pulsar spin-down, approx. 10% of pulsars younger than 20 kyr will appear to lie outside of their host remnants. Finally, we comment on the ramifications of our birth velocity distribution for binary survival and the population of inspiraling binary neutron stars relevant to some GRB models and potential sources for LIGO.

  9. Splitting methods for split feasibility problems with application to Dantzig selectors

    International Nuclear Information System (INIS)

    He, Hongjin; Xu, Hong-Kun

    2017-01-01

    The split feasibility problem (SFP), which refers to the task of finding a point that belongs to a given nonempty, closed and convex set, and whose image under a bounded linear operator belongs to another given nonempty, closed and convex set, has promising applicability in modeling a wide range of inverse problems. Motivated by the increasingly data-driven regularization in the areas of signal/image processing and statistical learning, in this paper, we study the regularized split feasibility problem (RSFP), which provides a unified model for treating many real-world problems. By exploiting the split nature of the RSFP, we shall gainfully employ several efficient splitting methods to solve the model under consideration. A remarkable advantage of our methods lies in their easier subproblems in the sense that the resulting subproblems have closed-form representations or can be efficiently solved up to a high precision. As an interesting application, we apply the proposed algorithms for finding Dantzig selectors, in addition to demonstrating the effectiveness of the splitting methods through some computational results on synthetic and real medical data sets. (paper)

  10. J-NSE: Neutron spin echo spectrometer

    Directory of Open Access Journals (Sweden)

    Olaf Holderer

    2015-08-01

    Full Text Available Neutron Spin-Echo (NSE spectroscopy is well known as the only neutron scattering technique that achieves energy resolution of several neV. By using the spin precession of polarized neutrons in magnetic field one can measure tiny velocity changes of the individual neutron during the scattering process. Contrary to other inelastic neutron scattering techniques, NSE measures the intermediate scattering function S(Q,t in reciprocal space and time directly. The Neutron Spin-Echo spectrometer J-NSE, operated by JCNS, Forschungszentrum Jülich at the Heinz Maier-Leibnitz Zentrum (MLZ in Garching, covers a time range (2 ps to 200 ns on length scales accessible by small angle scattering technique. Along with conventional NSE spectroscopy that allows bulk measurements in transmission mode, J-NSE offers a new possibility - gracing incidence spin echo spectroscopy (GINSENS, developed to be used as "push-button" option in order to resolve the depth dependent near surface dynamics.

  11. Application of antibiotics as chiral selectors for capillary electrophoretic enantioseparation of pharmaceuticals: a review.

    Science.gov (United States)

    Dixit, Shuchi; Park, Jung Hag

    2014-01-01

    Recent years have witnessed several new trends in chiral separation, for example, the enantiorecognition ability of several new antibiotics has been explored using capillary electrophoresis (CE) prior to HPLC; antibiotics have been employed as chiral selectors (CSs) in a nonaqueous CE (NACE) mode; and several new detection techniques (namely, capacitively coupled contactless conductivity detection) have been used in combination with CE for quantification of enantiomers. On account of these emerging trends, this article aims to review the application of various classes of antibiotics for CE enantioseparation of pharmaceuticals. A detailed account of the basic factors affecting enantioseparation, certain limitations of antibiotics as CSs and strategies to mitigate them, and advantages of NACE while using antibiotics as CSs has also been presented. Copyright © 2013 John Wiley & Sons, Ltd.

  12. On the Origin of Hyperfast Neutron Stars

    Science.gov (United States)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2008-05-01

    We propose an explanation for the origin of hyperfast neutron stars (e.g. PSR B1508+55, PSR B2224+65, RX J0822 4300) based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star (or its helium core) which attained its peculiar velocity (similar to that of the neutron star) in the course of a strong three- or four-body dynamical encounter in the core of a young massive star cluster. This hypothesis implies that the dense cores of star clusters (located either in the Galactic disk or near the Galactic centre) could also produce the so-called hypervelocity stars ordinary stars moving with a speed of ~ 1 000 km s-1.

  13. Intermediate-mass Elements in Young Supernova Remnants Reveal Neutron Star Kicks by Asymmetric Explosions

    Science.gov (United States)

    Katsuda, Satoru; Morii, Mikio; Janka, Hans-Thomas; Wongwathanarat, Annop; Nakamura, Ko; Kotake, Kei; Mori, Koji; Müller, Ewald; Takiwaki, Tomoya; Tanaka, Masaomi; Tominaga, Nozomu; Tsunemi, Hiroshi

    2018-03-01

    The birth properties of neutron stars (NSs) yield important information about the still-debated physical processes that trigger the explosion as well as on intrinsic neutron-star physics. These properties include the high space velocities of young neutron stars with average values of several 100 km s‑1, with an underlying “kick” mechanism that is not fully clarified. There are two competing possibilities that could accelerate NSs during their birth: anisotropic ejection of either stellar debris or neutrinos. Here we present new evidence from X-ray measurements that chemical elements between silicon and calcium in six young gaseous supernova remnants are preferentially expelled opposite to the direction of neutron star motion. There is no correlation between the kick velocities and magnetic field strengths of these neutron stars. Our results support a hydrodynamic origin of neutron-star kicks connected to asymmetric explosive mass ejection, and they conflict with neutron-star acceleration scenarios that invoke anisotropic neutrino emission caused by particle and nuclear physics in combination with very strong neutron-star magnetic fields.

  14. Time-dependent coolant velocity measurements in an operating BWR

    International Nuclear Information System (INIS)

    Luebbesmeyer, D.; Crowe, R.D.

    1980-01-01

    A method to measure time-dependent fluid velocities in BWR-bundle elements by noise analysis of the incore-neutron-detector signals is shown. Two application examples of the new method are given. The time behaviour of the fluid velocity in the bundle element during a scheduled power excursion of the plant. The change of power was performed by changing the coolant flow through the core The apparent change of the fluid velocity due to thermal elongation of the helix-drive of the TIP-system. A simplified mathematical model was derived for this elongation to use as a reference to check the validity of the new method. (author)

  15. Low temperature and neutron physics studies. Progress report, September, 1977--April, 1979

    International Nuclear Information System (INIS)

    Shull, C.G.

    1979-04-01

    Experimental research work with the neutron diffraction spectrometers at the MIT Research Reactor concentrated during the past period in two general areas, a study of diamagnetic scattering of neutrons by bismuth and physical effects associated with dynamical diffraction by perfect crystals. The former study showed that the outermost valence (or lattice) electrons contribute dominantly to the field-induced diamagnetism. Fourier transformation of the scattering data provided maps showing the distribution of diamagnetization density throughout the unit cell with pronounced spatial variations. In the latter studies, some of the anomalous effects associated with neutron propagation through diffracting perfect crystals were investigated. These include the very sensitive modification of transport direction within the crystal when the entrance direction is changed slightly or when the neutron energy is changed slightly by applicaton of a modest magnetic field. Additional studies have shown that neutrons propagate through a diffracting crystal with a drift velocity which can be pronouncedly smaller than the usual group velocity

  16. Pulsed neutron measurement of single and two-phase liquid flow

    International Nuclear Information System (INIS)

    Kehler, P.

    1978-01-01

    Use of radioactive tracers for flow velocity measurements is well developed and documented. Measurement techniques involving pulsed sources of fast (14 MeV) neutrons for in-situ production of tracers can be considered as extensions of the old methods. Improvements offered by these Pulsed Neutron Activation (PNA) techniques over conventional radioisotope techniques are (1) non-intrusion into the system, (2) easier introduction and better mixing of the tracer, and (3) no requirement to handle large amounts of relatively long lived radioactive materials. Just as in conventional tracer techniques, flow velocity measurements by PNA methods can be based on the transit-time or the total-count method. A very significant difference of the PNA technique from conventional methods is that the induced activity is proportional to the density of the fluid, and that PNA techniques can be used for density measurements (of two-phase flows) in addition to flow velocity measurement. Original equations were derived that relate experimental data to the mass flow velocity and the average density. The accuracy of these equations is not effected by the flow regime. Experimental results are presented for tests performed on liquid sodium loops, on air--water loops, on the EBR-II reactor and on the LOFT reactor. Current instrumentation development programs (detectors, pulsed neutron sources) are discussed

  17. Combined use of [TBA][L-ASP] and hydroxypropyl-β-cyclodextrin as selectors for separation of Cinchona alkaloids by capillary electrophoresis.

    Science.gov (United States)

    Zhang, Yu; Yu, Haixia; Wu, Yujiao; Zhao, Wenyan; Yang, Min; Jing, Huanwang; Chen, Anjia

    2014-10-01

    In this paper, a new capillary electrophoresis (CE) separation and detection method was developed for the chiral separation of the four major Cinchona alkaloids (quinine/quinidine and cinchonine/cinchonidine) using hydroxypropyl-β-cyclodextrin (HP-β-CD) and chiral ionic liquid ([TBA][L-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, HP-β-CD and chiral ionic liquid concentrations, capillary temperature, and separation voltage were investigated. After optimization of separation conditions, baseline separation of the three analytes (cinchonidine, quinine, cinchonine) was achieved in fewer than 7 min in ammonium acetate background electrolyte (pH 5.0) with the addition of HP-β-CD in a concentration of 40 mM and [TBA][L-ASP] of 14 mM, while the baseline separation of cinchonine and quinidine was not obtained. Therefore, the first-order derivative electropherogram was applied for resolving overlapping peaks. Regression equations revealed a good linear relationship between peak areas in first-order derivative electropherograms and concentrations of the two diastereomer pairs. The results not only indicated that the first-order derivative electropherogram was effective in determination of a low content component and of those not fully separated from adjacent ones, but also showed that the ionic liquid appeared to be a very promising chiral selector in CE. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. A Compact Self-Driven Liquid Lithium Loop for Industrial Neutron Generation

    Science.gov (United States)

    Stemmley, Steven; Szott, Matt; Kalathiparambil, Kishor; Ahn, Chisung; Jurczyk, Brian; Ruzic, David

    2017-10-01

    A compact, closed liquid lithium loop has been developed at the University of Illinois to test and utilize the Li-7(d,n) reaction. The liquid metal loop is housed in a stainless steel trench module with embedded heating and cooling. The system was designed to handle large heat and particle fluxes for use in neutron generators as well as fusion devices, solely operating via thermo-electric MHD. The objectives of this project are two-fold, 1) produce a high energy, MeV-level, neutron source and 2) provide a self-healing, low Z, low recycling plasma facing component. The flowing volume will keep a fresh, clean, lithium surface allowing Li-7(d,n) reactions to occur as well as deuterium adsorption in the fluid, increasing the overall neutron output. Expected yields of this system are 107 n/s for 13.5 MeV neutrons and 108 n/s for 2.45 MeV neutrons. Previous work has shown that using a tapered trench design prevents dry out and allows for an increase in velocity of the fluid at the particle strike point. For heat fluxes on the order of 10's MW/m2, COMSOL models have shown that high enough velocities ( 70 cm/s) are attainable to prevent significant lithium evaporation. Future work will be aimed at addressing wettability issues of lithium in the trenches, experimentally determine the velocities required to prevent dry out, and determine the neutron output of the system. The preliminary results and discussion will be presented. DOE SBIR project DE-SC0013861.

  19. Magnetic field devices for neutron spin transport and manipulation in precise neutron spin rotation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado-Velázquez, M. [Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, 04510 (Mexico); Barrón-Palos, L., E-mail: libertad@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 (Mexico); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Snow, W.M. [Indiana University, Bloomington, IN 47405 (United States)

    2017-05-11

    The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10{sup −7} rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.

  20. Enhanced NIF neutron activation diagnostics.

    Science.gov (United States)

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  1. Neutron moderation theory with thermal motion of the moderator nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rusov, V.D.; Tarasov, V.A.; Chernezhenko, S.A.; Kakaev, A.A.; Smolyar, V.P. [Odessa National Polytechnic University, Department of Theoretical and Experimental Nuclear Physics, Odessa (Ukraine)

    2017-09-15

    In this paper we present the analytical expression for the neutron scattering law for an isotropic source of neutrons, obtained within the framework of the gas model with the temperature of the moderating medium as a parameter. The obtained scattering law is based on the solution of the general kinematic problem of elastic scattering of neutrons on nuclei in the L-system. Both the neutron and the nucleus possess arbitrary velocities in the L-system. For the new scattering law we obtain the flux densities and neutron moderation spectra as functions of temperature for the reactor fissile medium. The expressions for the moderating neutrons spectra allow reinterpreting the physical nature of the underlying processes in the thermal region. (orig.)

  2. Hot nuclei studied with high efficiency neutron detectors

    International Nuclear Information System (INIS)

    Galin, J.

    1990-01-01

    We have shown the invaluable benefit that a high efficiency 4π neutron detector can bring to the study of reaction mechanisms following collisions of heavy nuclei at intermediate energy. Analysis requires Monte-Carlo simulations for comparison between experimental data and any emission model. In systematic measurements with projectiles of velocity corresponding to energies between 27 and 77 MeV/u, where both the influence of beam velocity and mass have been investigated separately, it has been shown that the projectile-target mass asymmetry, much more than velocity, has a decisive influence on energy dissipation. The closer the projectile mass to the target mass, the more energy is dissipated per unit mass of the considered projectile plus target system. The latter presents all the characteristics of a thermalized system, evaporating a copious number of light particles: up to about 40 neutrons (after efficiency correction) and 11 light charged particles in the most dissipative collisions between Kr+Au, and 90 neutrons for Pb+U with a yet unknown number of l.c.p. In the Kr experiment, these particles are isotropically emitted in the frame of a fused system, excited with 1.2 GeV. Moreover, l.c.p. exhibit Maxwellian energy distributions as in any standard evaporation process. We are now eager to better characterize the properties of the Pb+Au (U) systems for which about 1/3 of the neutrons are freed in a rather large fraction of all collisions. The thermalized energy should then approach very closely the total binding energy of the two interacting nuclei

  3. Velocities of dislocation groups in very thin neutron-irradiated copper single crystals measured by slip line cinematography

    International Nuclear Information System (INIS)

    Potthoff, H.H.

    1983-01-01

    Slip line development on very thin flat single crystals of neutron-irradiated Cu (thickness down to only 15 to 20 μm, orientation for single glide, yield region, room temperature) is recorded by high-speed cinematography during tensile deformation. In such very thin crystals glide dislocations on the slip plane must be arranged in a rather simple way. Drops in tensile load occuring during initiation of single slip lines at the Lueders band front indicate that in the beginning of a slip line development dislocation groups traverse the whole glide plane in very short times. Evaluating the data measured for the slip line growth v/sub s/ >= 10 cm/s is found for screw dislocations and v/sub e/ >= v/sub s/ for edge dislocations. For later stages on thin crystals and for all stages on thick crystals (>= several 100 μm) slip line development is much slower and slip line show many cross slip events which then appear to control the mean velocity of the dislocations. (author)

  4. The OZI rule: A unique selector of glueballs and hadron spectroscopy

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.

    1990-01-01

    In the first part of this talk I have reviewed the history of the OZI rule. I then have shown how it is a unique selector glueballs and new quarks in hadron spectroscopy. In particular the only glueball candidates which cannot be explained by other hypotheses within QCD are the I G J PC = 0 + 2 ++ g T (2010), g T ,(2300) and g Tdouble-prime (2340) observed in the OZI suppressed reaction π - p → φφn. The narrowness of the J/ψ and T can only be explained by OZI suppression. I then reminisced about the 1954 Rochester Conference in which our work on π ± p total cross sections and π ± production combined gave convincing evidence for the delta being the first resonance. Described how the 1964 Dubna Conference results on small angle π ± p elastic scattering led to the first critical experimental check of the pion-nucleon forward dispersion relations which showed that the basic axions of modern field theory worked on strong interactions at high energies. I finally reminisced about glueballs in the 1982 and 1988 Rochester Conferences. 52 refs., 17 figs., 3 tabs

  5. Intermediate energy neutron fast chopper associated to the pile EL3; Spectrometre mecanique rapide pour neutrons intermediaires associe a la pile EL3

    Energy Technology Data Exchange (ETDEWEB)

    Julien, J; Netter, F; Martin, R; Rouge, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Arditti, R; Chaffiotte, P [S.E.M. Hispano-Suisa (France)

    1958-07-01

    The apparatus is a fast chopper placed on a beam issued from the tank of the pile EL3. It is composed of a steel rotor with a rigid vertical axis and eight pairs of slits in the maximum cross-section plane (diameter 48 cm). The originality of the apparatus consists mainly in the driving system by oil turbine, whiclows a more reliable and versatile operation. The spectrometer is running regularly at 15000 r.p.m. In the conditions, the slits (precision of cutting: {+-} 5 microns) release neutron beams with time half-width equal to 1/4 micro-second. Therefore, with a 20 meter flight-path, the resolution power of the fast chopper is about 10 milli-microsecond/metre. All the safety devices are provided to ensure a steady running, without permanent control. The speed of rotation is stabilized to better than {+-} 1/1000 in all the rate range between 6 000 and 15 500 r.p.m. A lead device for moving in and out the sample allows to work with radioactive samples. The apparatus is connected to a hundred 1/4 microsecond channel time-of-flight selector. A thousand channel selector with magnetic memory (Argonne type) will be ready in a few months. (author)Fren. [French] L'appareil est un spectrometre mecanique rapide dispose sur un des faisceaux sortant de la cuve de la pile EL3. Il comprend un rotor d'acier a axe vertical rigide avec huit paires de fentes disposees dans le plan de section maximum (diametre 40 cm). L'originalite de l'appareil tient surtout dans le systeme d'entrainement par turbine a huile, qui assure une grande securite et une grande souplesse de fonctionnement. Le spectrometre tourne a 15000 tours/mn de fa n reguliere. Dans ces conditions, les fentes (executees a {+-} 5 microns pres liberent des faisceaux de neutrons avec une largeur a mi-hauteur en temps de 1/4 de microseconde. Avec une base de parcours de 20 m, le pouvoir de resolution du spectrometre mecanique est donc voisin de 10 millimicroseconde/metre. Tous les dispositifs de securite sont prevus pour

  6. Neutron stars at the dark matter direct detection frontier

    Science.gov (United States)

    Raj, Nirmal; Tanedo, Philip; Yu, Hai-Bo

    2018-02-01

    Neutron stars capture dark matter efficiently. The kinetic energy transferred during capture heats old neutron stars in the local galactic halo to temperatures detectable by upcoming infrared telescopes. We derive the sensitivity of this probe in the framework of effective operators. For dark matter heavier than a GeV, we find that neutron star heating can set limits on the effective operator cutoff that are orders of magnitude stronger than possible from terrestrial direct detection experiments in the case of spin-dependent and velocity-suppressed scattering.

  7. Double-energy double-velocity measurement system for fission fragments and its application

    International Nuclear Information System (INIS)

    Kanno, Ikuo

    1987-10-01

    A new system of double-energy double-velocity (DEDV) measurement for fission fragments has been developed. In this system, the energies of fission fragments are measured by silicon surface barrier detectors (SSB) and the velocities by the time-of-flight (TOF) method utilizing thin film detectors (TFD) as start detectors and SSBs as stop detectors of TOF. Theoretical and experimental studies on TFDs and SSBs have been performed before the construction of the DEDV measurement system. The TFD consists of a thin plastic scintillator film and light guide. The author proposes a new model of the luminescence production in a scintillator film. This model takes into account the thickness of the scintillator film and uses only one parameter. The calculated TFD response to charged particles shows good agreement with other experiments. The dependence of the TFD response to the thickness of the scintillator film has been studied experimentally and analyzed by the luminescence production model. The results of this analysis shows the validity of the luminescence production model. The time resolution of the DEDV measurement system using TFDs and SSBs was 133 ps. As an application of this system, the DEDV measurement for the thermal neutron-induced fission of 233 U has been carried out at the super mirror neutron guide tube facility of Kyoto University Reactor (KUR). The energy and velocity of each fission fragment have been stored on magnetic disk event by event in a list mode. The analyzed results of masses, energies and velocities of light and heavy fragments agree well with other authors' works. The value of the total neutron emission number is 2.53 and shows good agreement within experimental error, with the JENDL-2 value, 2.49. The light fragment shows a slightly greater number of neutrons emitted than the other works. This suggests the possibility of larger deformation of light fragments at the scission point. (author)

  8. Neutron visual sensing techniques making good use of computer science

    International Nuclear Information System (INIS)

    Kureta, Masatoshi

    2009-01-01

    Neutron visual sensing technique is one of the nondestructive visualization and image-sensing techniques. In this article, some advanced neutron visual sensing techniques are introduced. The most up-to-date high-speed neutron radiography, neutron 3D CT, high-speed scanning neutron 3D/4D CT and multi-beam neutron 4D CT techniques are included with some fundamental application results. Oil flow in a car engine was visualized by high-speed neutron radiography technique to make clear the unknown phenomena. 4D visualization of pained sand in the sand glass was reported as the demonstration of the high-speed scanning neutron 4D CT technique. The purposes of the development of these techniques are to make clear the unknown phenomena and to measure the void fraction, velocity etc. with high-speed or 3D/4D for many industrial applications. (author)

  9. On the theory of ultracold neutrons scattering by Davydov solitons

    International Nuclear Information System (INIS)

    Brizhik, L.S.

    1984-01-01

    Elastic coherent scattering of ultracold neutrons by Davydov solitons in one-dimensional periodic molecular chains without account of thermal oscillations of chain atoms is studied. It is shown that the expression for the differential cross section of the elastic neutron scattering by Davydov soliton breaks down into two components. One of them corresponds to scattering by a resting soliton, the other is proportional to the soliton velocity and has a sharp maximum in the direction of mirror reflection of neutrons from the chain

  10. BINARY NEUTRON STARS IN QUASI-EQUILIBRIUM

    International Nuclear Information System (INIS)

    Taniguchi, Keisuke; Shibata, Masaru

    2010-01-01

    Quasi-equilibrium sequences of binary neutron stars are constructed for a variety of equations of state in general relativity. Einstein's constraint equations in the Isenberg-Wilson-Mathews approximation are solved together with the relativistic equations of hydrostationary equilibrium under the assumption of irrotational flow. We focus on unequal-mass sequences as well as equal-mass sequences, and compare those results. We investigate the behavior of the binding energy and total angular momentum along a quasi-equilibrium sequence, the endpoint of sequences, and the orbital angular velocity as a function of time, changing the mass ratio, the total mass of the binary system, and the equation of state of a neutron star. It is found that the orbital angular velocity at the mass-shedding limit can be determined by an empirical formula derived from an analytic estimation. We also provide tables for 160 sequences, which will be useful as a guideline of numerical simulations for the inspiral and merger performed in the near future.

  11. Acceleration to high velocities and heating by impact using Nike KrF lasera)

    Science.gov (United States)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Watari, T.; Arikawa, Y.; Sakaiya, T.; Oh, J.; Velikovich, A. L.; Zalesak, S. T.; Bates, J. W.; Obenschain, S. P.; Schmitt, A. J.; Murakami, M.; Azechi, H.

    2010-05-01

    The Nike krypton fluoride laser [S. P. Obenschain, S. E. Bodner, D. Colombant, et al., Phys. Plasmas 3, 2098 (1996)] is used to accelerate planar plastic foils to velocities that for the first time reach 1000 km/s. Collision of the highly accelerated deuterated polystyrene foil with a stationary target produces ˜Gbar shock pressures and results in heating of the foil to thermonuclear temperatures. The impact conditions are diagnosed using DD fusion neutron yield, with ˜106 neutrons produced during the collision. Time-of-flight neutron detectors are used to measure the ion temperature upon impact, which reaches 2-3 keV.

  12. Entrainment coefficient and effective mass for conduction neutrons in neutron star crust: simple microscopic models

    International Nuclear Information System (INIS)

    Carter, Brandon; Chamel, Nicolas; Haensel, Pawel

    2005-01-01

    In the inner crust of a neutron star, at densities above the 'drip' threshold, unbound 'conduction' neutrons can move freely past through the ionic lattice formed by the nuclei. The relative current density ni=nv-bar i of such conduction neutrons will be related to the corresponding mean particle momentum pi by a proportionality relation of the form ni=Kpi in terms of a physically well defined mobility coefficient K whose value in this context has not been calculated before. Using methods from ordinary solid state and nuclear physics, a simple quantum mechanical treatment based on the independent particle approximation, is used here to formulate K as the phase space integral of the relevant group velocity over the neutron Fermi surface. The result can be described as an 'entrainment' that changes the ordinary neutron mass m to a macroscopic effective mass per neutron that will be given-subject to adoption of a convention specifying the precise number density n of the neutrons that are considered to be 'free'-by m-bar =n/K. The numerical evaluation of the mobility coefficient is carried out for nuclear configurations of the 'lasagna' and 'spaghetti' type that may be relevant at the base of the crust. Extrapolation to the middle layers of the inner crust leads to the unexpected prediction that m-bar will become very large compared with m

  13. Some Applications of Fast Neutron Activation Analysis of Oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Owrang, Farshid

    2003-07-01

    In this thesis we focus on applications of neutron activation of oxygen for several purposes: A) measuring the water level in a laboratory tank, B) measuring the water flow in a pipe system set-up, C) analysing the oxygen in combustion products formed in a modern gasoline SI engine, and D) measuring on-line the amount of oxygen in bulk liquids. A) Water level measurements. The purpose of this work was to perform radiation based water level measurements, aimed at nuclear reactor vessels, on a laboratory scale. A laboratory water tank was irradiated by fast neutrons from a neutron generator. The water was activated at different water levels and the water level was decreased. The produced gamma radiation was measured using two detectors at different heights. The results showed that the method is suitable for measurement of water level and that a relatively small experimental set-up can be used for developing methods for water level measurements in real boiling water reactors based on activated oxygen in the water. B) Water flows in pipe. The goal in this work was to investigate the asymmetric distribution of activity in flow measurements with pulsed neutron activation (PNA) in a laboratory piping system. Earlier investigations had shown a discrepancy between the measured velocity of the activated water by PNA and the true mean velocity in the pipe. This discrepancy decreased with larger distances from the activation point. It was speculated that the induced activity in the pipe did not distribute homogeneously. With inhomogeneous radial distribution of activity in combination with a velocity profile in the pipe, the activated water may not have the same velocity as the mean velocity of water in the pipe. To study this phenomenon, a water-soluble colour was injected into a transparent pipe for simulation of the transport of the activated water. The radial concentration of the colour, at different distances from the activation point, was determined. The result

  14. Some Applications of Fast Neutron Activation Analysis of Oxygen

    International Nuclear Information System (INIS)

    Owrang, Farshid

    2003-01-01

    In this thesis we focus on applications of neutron activation of oxygen for several purposes: A) measuring the water level in a laboratory tank, B) measuring the water flow in a pipe system set-up, C) analysing the oxygen in combustion products formed in a modern gasoline SI engine, and D) measuring on-line the amount of oxygen in bulk liquids. A) Water level measurements. The purpose of this work was to perform radiation based water level measurements, aimed at nuclear reactor vessels, on a laboratory scale. A laboratory water tank was irradiated by fast neutrons from a neutron generator. The water was activated at different water levels and the water level was decreased. The produced gamma radiation was measured using two detectors at different heights. The results showed that the method is suitable for measurement of water level and that a relatively small experimental set-up can be used for developing methods for water level measurements in real boiling water reactors based on activated oxygen in the water. B) Water flows in pipe. The goal in this work was to investigate the asymmetric distribution of activity in flow measurements with pulsed neutron activation (PNA) in a laboratory piping system. Earlier investigations had shown a discrepancy between the measured velocity of the activated water by PNA and the true mean velocity in the pipe. This discrepancy decreased with larger distances from the activation point. It was speculated that the induced activity in the pipe did not distribute homogeneously. With inhomogeneous radial distribution of activity in combination with a velocity profile in the pipe, the activated water may not have the same velocity as the mean velocity of water in the pipe. To study this phenomenon, a water-soluble colour was injected into a transparent pipe for simulation of the transport of the activated water. The radial concentration of the colour, at different distances from the activation point, was determined. The result

  15. Thermal and magnetic properties of neutron matter

    International Nuclear Information System (INIS)

    Abd-Alla, M.; Ragab, H.S.; Hassan, M.Y.M.

    1990-01-01

    The Thomas-Fermi model is used to calculate the equation of state of thermal polarized neutron matter applying Seyler-Blanchard interaction. The resulting equation of state is stiff and has a small dependence on both the temperature and the spin excess parameter. We expand the Fermi integrals in powers of temperature up to second order to examine the T 2 approximation for neutron matter. It is found to be reliable up to T = 10 MeV. We also studied the ferromagnetic transition in neutron matter. We found a ferromagnetic transition at density ρ ≅ 2ρ0. This ferromagnetic transition is found to have a small dependence on both the temperature and the spin excess parameter. We also studied the dependence of the effective mass and the sound velocity for polarized neutron matter on temperature. (author). 36 refs, 17 figs

  16. Pulsed neutron activation calibration technique

    International Nuclear Information System (INIS)

    Kehler, P.

    1979-01-01

    A pulsed neutron activation (PNA) for measurement of two-phase flow consists of a pulsed source of fast neutron to activate the oxygen in a steam-water mixture. Flow is measured downstream by an NaI detector. Measured counts are sorted by a multiscaler into different time channels. A counts vs. time distribution typical for two-phase flow with slip between the two phases is obtained. Proper evaluation for the counts/time distribution leads to flow-regime independent equations for the average of the inverse transil time and the average density. After calculation of the average mass flow velocity, the true mass flow is derived

  17. Neutron yield in experiments with Z-pinches in frozen deuterium filaments

    International Nuclear Information System (INIS)

    Meierovich, B.E.; Sukhorukov, S.T.

    1991-01-01

    Experiments on the properties of the neutron yield and stability of dense Z-pinches in frozen deuterium filaments two years ago have still not received a proper explanation. A discharge in a dielectric deuterium filament differs qualitatively in its behavior from one in a metal conductor. The authors assert attempts to interpret the experiment have not taken this fact properly into account. The enhanced stability and substantial neutron yield do not follow from the classical picture of a Bennett equilibrium in the current channel. The most important experimental characteristic of a discharge in frozen deuterium is the dependence of the neutron yield on the current strength at a given stage. The spread in the experimental points is quite large so one naturally prefers t describe the experimental data by means of a physically simple model and not go to a full-scale simulation of all the processes. When the deuterium is fully ionized the electron drift velocity is smaller than the thermal velocity, enabling calculation of the neutron yield by means of a self-similar model of the Z-pinch compression which treats electron degeneracy. To find the neutron yield it suffices to consider only the first half-period of the self-similar oscillations including the state of maximum compression. The subsequent evolution of the current channel, which is associated with radial expansion, does not contribute significantly to the neutron yield

  18. Precise determination of the degree of polarization of a cold neutron beam

    International Nuclear Information System (INIS)

    Nastoll, H.; Schreckenbach, K.; Baglin, C.; Bussiere, A.; Guillaud, J.P.; Kossakowski, R.; Liaud, P.

    1991-01-01

    A cold neutron beam at the ILL High Flux Reactor was used to produce highly polarized neutrons by means of a bent supermirror polarizer. A following current sheet spin flipper allowed the change of the neutron spin direction relative to the guiding magnetic fields. The degree of polarization of the beam was measured as a function of the neutron velocity in the range 300-1500 m/s achieving an accuracy of 0.2% at typically 98% polarization. Two spin flippers and the permutation of three supermirror polarizers as polarizer/analyzer were employed. (orig.)

  19. CBM First-level Event Selector Input Interface Demonstrator

    Science.gov (United States)

    Hutter, Dirk; de Cuveland, Jan; Lindenstruth, Volker

    2017-10-01

    CBM is a heavy-ion experiment at the future FAIR facility in Darmstadt, Germany. Featuring self-triggered front-end electronics and free-streaming read-out, event selection will exclusively be done by the First Level Event Selector (FLES). Designed as an HPC cluster with several hundred nodes its task is an online analysis and selection of the physics data at a total input data rate exceeding 1 TByte/s. To allow efficient event selection, the FLES performs timeslice building, which combines the data from all given input links to self-contained, potentially overlapping processing intervals and distributes them to compute nodes. Partitioning the input data streams into specialized containers allows performing this task very efficiently. The FLES Input Interface defines the linkage between the FEE and the FLES data transport framework. A custom FPGA PCIe board, the FLES Interface Board (FLIB), is used to receive data via optical links and transfer them via DMA to the host’s memory. The current prototype of the FLIB features a Kintex-7 FPGA and provides up to eight 10 GBit/s optical links. A custom FPGA design has been developed for this board. DMA transfers and data structures are optimized for subsequent timeslice building. Index tables generated by the FPGA enable fast random access to the written data containers. In addition the DMA target buffers can directly serve as InfiniBand RDMA source buffers without copying the data. The usage of POSIX shared memory for these buffers allows data access from multiple processes. An accompanying HDL module has been developed to integrate the FLES link into the front-end FPGA designs. It implements the front-end logic interface as well as the link protocol. Prototypes of all Input Interface components have been implemented and integrated into the FLES test framework. This allows the implementation and evaluation of the foreseen CBM read-out chain.

  20. Measurement of LBE flow velocity profile by UDVP

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Takeda, Yasushi; Obayashi, Hiroo; Tezuka, Masao; Sato, Hiroshi

    2006-01-01

    Measurements of liquid metal lead-bismuth eutectic (LBE), flow velocity profile were realized in the spallation neutron source target model by the ultrasonic Doppler velocity profiler (UVDP) technique. So far, it has not been done well, because both of poor wetting property of LBE with stainless steels and poor performance of supersonic probes at high temperatures. The measurement was made for a return flow in the target model, which has coaxially arranged annular and tube channels, in the JAEA Lead Bismuth Loop-2 (JLBL-2). The surface treatment of LBE container was examined. It was found that the solder coating was effective to enhance an intensity of reflected ultrasonic wave. This treatment has been applied to the LBE loop, which was operated up to 150 deg. C. The electro magnetic pump generates LBE flow and the flow rate was measured by the electro magnetic flow meter. By changing the flow rate of LBE, velocity profiles in the target were measured. It was confirmed that the maximum velocity in the time-averaged velocity distribution on the target axis was proportional to the flow rate measured by the electro magnetic flow meter

  1. Technical feasibility study for the D-T neutron monitor using activation of the flowing water

    International Nuclear Information System (INIS)

    Uno, Yoshitomo; Kaneko, Junichi; Nishitani, Takeo; Maekawa, Fujio; Tanaka, Teruya; Ikeda, Yujiro; Takeuchi, Hiroshi

    2001-03-01

    The experimental study of technical feasibility for the D-T neutron monitor using activation of the flowing water was performed at FNS/JAERI as the ITER/EDA R and D Task T499. The temporal resolution for pulsed neutrons was measured and dependence of the temporal resolution on flowing velocity was studied. The temporal resolution of 50 ms that is better than 100 ms of the requirement for ITER was achieved. We found that the temporal resolution is determined by a turbulent dispersion of the flow. The experiment for validation of the method determining the absolute D-T neutron flux was carried out by using the stainless steel (SS 316)/Water assembly to simulate the neutron field in the blanket region of ITER. The neutron emission rate measured with the water activation has a good agreement with that with the neutron yield monitor with associated α detector, and this technique shows the accuracy of the absolute neutron flux better than 10%. At the application on ITER-FEAT, the neutron activation with fluid flow has a dynamic range of 50 kW - 500 MW operation with a temporal resolution of 78 ms at the flow velocity of 10 m/s. (author)

  2. A New Apparatus for Inelastic, Quasi-Elastic and Elastic Cold Neutron Measurements; Un nouveau appareil pour les mesures de diffusion inelastique , quasi-elastique et elastique des neutrons lents; Novyj pribor dlya izmereniya neuprugogo, kvaziuprugogo i uprugogo rasseyaniya kholodnykh nejtrohov; Nuevo aparato para mediciones inelastic as, cuasi elasticas y elasticas de neutrones frios

    Energy Technology Data Exchange (ETDEWEB)

    Otnes, K; Palevsky, H [Brookhaven National Laboratory, Upton, NY (United States)

    1963-01-15

    despersion de la longueur d'onde (largeur totale a mi-hauteur) seront respectivement de 16 {mu}s et 0,16 A pour des neutrons incidents ayant une longueur d'onde de 4 A; l'intensite de la bouffee sur l'echantillon (4 x 1,6 cm) sera de 2 x 10{sup 6} n/s pouf mesures de diffusion quasi-elastique et elastique, la configuration a trois rotors conviendra parfaitement. La duree de la bouffee et la dispersion de longueur d'onde correspondante peuvent atteindre des valeurs aussi faibles que 8 {mu}s et 0, 04 A, ce qui donne une intensite de 10{sup 4} n/s sur un echantillon de 4 x 0, 8 cm. La longueur d'onde et la resolution en temps peuvent etre ajustees entre les; deux limites susmentionnees, de maniere a obtenir l'intensite de flux maximum pour une experience determinee. (author) [Spanish] Se esta construyendo un nuevo selector mecanico destinado al reactor de flujo intenso de Brookhaven. El aparato es del tipo de tres elementos rotores en fase. Los rotores, de 80 cm de diametro, giran a una velo- cidad maxima de 15000 rev/min y se han disenado de modo que emitan tres rafagas de neutrones monocromaticos por revolucion. Dos de los rotores giran alrededor de un eje horizontal, mientras que el tercero lo hace verticalmente. El sistma puede funcionar con uno, dos or tres elementos selectores, segun el tipo de medicion que se quiera efectuar. Para las mediciones inelasticas en que los neutrones ganan energia, lo mas indicado es utilizar un sistema de dos rotores. En este sistema, la duracion de las rafagas sera de 16 {mu}s y el ensanchamiento de longitudes de onda (amplitud plena a la mitad del valor maximo) de 0,16 A para neutrones incidentes de 4 A; la intensidd en la muestra (4 x 1,6 cm) sera de 2 x 10{sup 6} n/s. para las mediciones cuasi elasticas y elasticas resultara mas apropiado el sistema de tres rotores. La duracion de las rafagas y el ensanchamiento de longitudes de onda pueden llegar a un minimo de 8 {mu}s y 0,04 A, respectivamente, lo que representa una intensidad de 10{sup

  3. Corrections in the gold foil activation method for determination of neutron beam density

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1967-01-01

    A finite foil thickness and deviation in the cross section from the 1ν law imply corrections in the determination of neutron beam densities by means of foil activation. These corrections, which depend on the neutron velocity distribution, have been examined in general and are given in a specific...

  4. A Mitigation Technique of High-Power MAI in the Multimedia Optical CDMA System with the Optical Power Selector

    Science.gov (United States)

    Ohba, Kohki; Miyazawa, Takaya; Sasase, Iwao

    In this paper, we propose a mitigation system of high-level multiple access interference (MAI) for multimedia optical Code-Division Multiple-Access (CDMA) systems using the optical power selector (OPS). The proposed system can eliminate high-intensity MAI at the receiver for low-priority users. Moreover, the proposed system can reduce by half the required number of code sequences compared to the conventional scheme. As a result, the proposed system can increase the number of weights at the same code-length and, thus, obtain higher code spreading gain. We analyze performances of the proposed system and show that both high-priority users and low-priority users achieve lower bit error rates in comparison to the conventional scheme.

  5. Acceleration to high velocities and heating by impact using Nike KrF laser

    International Nuclear Information System (INIS)

    Karasik, Max; Weaver, J. L.; Velikovich, A. L.; Zalesak, S. T.; Bates, J. W.; Obenschain, S. P.; Schmitt, A. J.; Aglitskiy, Y.; Watari, T.; Arikawa, Y.; Sakaiya, T.; Murakami, M.; Azechi, H.; Oh, J.

    2010-01-01

    The Nike krypton fluoride laser [S. P. Obenschain, S. E. Bodner, D. Colombant, et al., Phys. Plasmas 3, 2098 (1996)] is used to accelerate planar plastic foils to velocities that for the first time reach 1000 km/s. Collision of the highly accelerated deuterated polystyrene foil with a stationary target produces ∼Gbar shock pressures and results in heating of the foil to thermonuclear temperatures. The impact conditions are diagnosed using DD fusion neutron yield, with ∼10 6 neutrons produced during the collision. Time-of-flight neutron detectors are used to measure the ion temperature upon impact, which reaches 2-3 keV.

  6. Development of new neutron spin echo spectrometer using multi-layer film spin splitter

    International Nuclear Information System (INIS)

    Tasaki, Seiji; Ebisawa, Toru; Hino, Masahiro; Achiwa, Norio

    2001-01-01

    Neutron spin echo spectrometry is a method using neutron Larmor precession motion in magnetic field, for the measurement of velocity change before and after quasi-elastic scattering of neutron by a sample, such as macromolecules, with high accuracy. The neutron spin echo spectrometer is an interferometer in quantum mechanics, which a neutron is arranged with a parallel or an antiparallel state against magnetic field direction. Intensities of neutron interaction with matters are measured by the superposition of the both spin state components. The contrast losses of interference fringes caused from velocity diversion of incident neutrons are protected by spin echo method, in which a phase shift between the parallel and anti-parallel state neutrons is reduced by reversion of the spin state on the way of neutron path. Neutron beam of high intensity can be measured with a high energy resolution. Strong magnetic field is usually needed to introduce the phase shift between the both spin state components. A multi-layer film spin splitter (MSS) is developed for introducing the phase shift instead of the strong magnetic fields. The MSS consists of three layers, non-magnetic mirror of Ni/Ti, gap layer of Ti (∼1 μm), and magnetic mirror of Permalloy/Ge. Surface roughness of the gap layer leads to diversions of the phase shift, because that the fluctuation of thickness of gap layer is proportional to the phase shift. Characteristics of the MSS are tested as follow: (1) reflectivity of polarized neutron, (2) function check of the MSS, (3) uniformity check of the gap layer, (4) evaluation of the gap layer-thickness. (Suetake, M.)

  7. New applications of laser-driven neutron sources in the car industry

    International Nuclear Information System (INIS)

    Kakeno, Mitsutaka

    2015-01-01

    New applications of LDNS (Laser-Driven Neutron Sources) are described. One of them is ib-DATA (in-beam Double Activation Tracer Analysis) with which we can measure mean drift velocity and mass flow rate in a variety of fluid. In ib-DATA, LDNS with very light and compact beam-head will be constructed to shoot pulsed neutrons into the fluid in pinpoint. (author)

  8. VENTURE: a code block for solving multigroup neutronics problems applying the finite-difference diffusion-theory approximation to neutron transport

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.

    1975-10-01

    The computer code block VENTURE, designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P 1 ) in up to three-dimensional geometry is described. A variety of types of problems may be solved: the usual eigenvalue problem, a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations, or an indirect criticality search on nuclide concentrations, or on dimensions. First-order perturbation analysis capability is available at the macroscopic cross section level

  9. Modifications to the pulsar kick velocity due to magnetic interactions in dense plasma

    International Nuclear Information System (INIS)

    Adhya, S P; Roy, P K; Dutt-Mazumder, A K

    2014-01-01

    In this work we calculate the pulsar kick velocity of a magnetized neutron star (NS) composed of a degenerate quark matter core with non-Fermi liquid (NFL) correction. Both the leading order (LO) and next to LO (NLO) corrections to the kick velocity have been incorporated. In addition, the NFL corrections to the specific heat of magnetized quark matter have been presented. This has been taken into account to calculate the kick velocity of the NS. The results show a significant departure from the normal Fermi liquid estimates. The relation between radius and temperature has been shown with a kick velocity of 100 km s −1 with and without NFL corrections. (paper)

  10. Neutron stars, magnetic fields, and gravitational waves

    International Nuclear Information System (INIS)

    Lamb, F.K.

    2001-01-01

    The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the

  11. Nuclear prehistory influence on transfer velocity of 54Mn impurity 'hot' atoms in irradiated metallic iron

    International Nuclear Information System (INIS)

    Alekseev, I.E.

    2007-01-01

    Influence of nuclear prehistory on transfer velocity of 54 Mn impurity 'hot'-atoms - got by different nuclear channels: 56 Fe(d, α), 54 Fe(n,p) in irradiated metallic iron - is studied. Irradiation of targets were carried out in U-120 accelerator (energy range 7.3/5.3 MeV, deuteron beam current makes up 5 μA). Mean density of thermal neutron (WWR-M reactor) makes up 8.6·10 13 neutron·cm -2 ·s -1 . It is shown, that transfer velocity of 54 Mn 'hot' atoms is defining by rate of radiation damage of targets in the irradiation process at that a key importance has a bombarding particles type applied for radioactive label getting

  12. The LIM and POU homeobox genes ttx-3 and unc-86 act as terminal selectors in distinct cholinergic and serotonergic neuron types.

    Science.gov (United States)

    Zhang, Feifan; Bhattacharya, Abhishek; Nelson, Jessica C; Abe, Namiko; Gordon, Patricia; Lloret-Fernandez, Carla; Maicas, Miren; Flames, Nuria; Mann, Richard S; Colón-Ramos, Daniel A; Hobert, Oliver

    2014-01-01

    Transcription factors that drive neuron type-specific terminal differentiation programs in the developing nervous system are often expressed in several distinct neuronal cell types, but to what extent they have similar or distinct activities in individual neuronal cell types is generally not well explored. We investigate this problem using, as a starting point, the C. elegans LIM homeodomain transcription factor ttx-3, which acts as a terminal selector to drive the terminal differentiation program of the cholinergic AIY interneuron class. Using a panel of different terminal differentiation markers, including neurotransmitter synthesizing enzymes, neurotransmitter receptors and neuropeptides, we show that ttx-3 also controls the terminal differentiation program of two additional, distinct neuron types, namely the cholinergic AIA interneurons and the serotonergic NSM neurons. We show that the type of differentiation program that is controlled by ttx-3 in different neuron types is specified by a distinct set of collaborating transcription factors. One of the collaborating transcription factors is the POU homeobox gene unc-86, which collaborates with ttx-3 to determine the identity of the serotonergic NSM neurons. unc-86 in turn operates independently of ttx-3 in the anterior ganglion where it collaborates with the ARID-type transcription factor cfi-1 to determine the cholinergic identity of the IL2 sensory and URA motor neurons. In conclusion, transcription factors operate as terminal selectors in distinct combinations in different neuron types, defining neuron type-specific identity features.

  13. Two-component Superfluid Hydrodynamics of Neutron Star Cores

    Energy Technology Data Exchange (ETDEWEB)

    Kobyakov, D. N. [Institute of Applied Physics of the Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); Pethick, C. J., E-mail: dmitry.kobyakov@appl.sci-nnov.ru, E-mail: pethick@nbi.dk [The Niels Bohr International Academy, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)

    2017-02-20

    We consider the hydrodynamics of the outer core of a neutron star under conditions when both neutrons and protons are superfluid. Starting from the equation of motion for the phases of the wave functions of the condensates of neutron pairs and proton pairs, we derive the generalization of the Euler equation for a one-component fluid. These equations are supplemented by the conditions for conservation of neutron number and proton number. Of particular interest is the effect of entrainment, the fact that the current of one nucleon species depends on the momenta per nucleon of both condensates. We find that the nonlinear terms in the Euler-like equation contain contributions that have not always been taken into account in previous applications of superfluid hydrodynamics. We apply the formalism to determine the frequency of oscillations about a state with stationary condensates and states with a spatially uniform counterflow of neutrons and protons. The velocities of the coupled sound-like modes of neutrons and protons are calculated from properties of uniform neutron star matter evaluated on the basis of chiral effective field theory. We also derive the condition for the two-stream instability to occur.

  14. Neutron transport simulation in high speed moving media using Geant4

    Science.gov (United States)

    Li, G.; Ciungu, B.; Harrisson, G.; Rogge, R. B.; Tun, Z.; van der Ende, B. M.; Zwiers, I.

    2017-12-01

    A method using Geant4 to simulate neutron transport in moving media is described. The method is implanted in the source code of the software since Geant4 does not intrinsically support a moving object. The simulation utilizes the existing physical model and data library in Geant4, combined with frame transformations to account for the effect of relative velocity between neutrons and the moving media. An example is presented involving a high speed rotating cylinder to verify this method and show the effect of moving media on neutron transport.

  15. NSPEC - A neutron spectrum code for beam-heated fusion plasmas

    International Nuclear Information System (INIS)

    Scheffel, J.

    1983-06-01

    A 3-dimensional computer code is described, which computes neutron spectra due to beam heating of fusion plasmas. Three types of interactions are considered; thermonuclear of plasma-plasma, beam-plasma and beam-beam interactions. Beam deposition is modelled by the NFREYA code. The applied steady state beam distribution as a function of pitch angle and velocity contains the effects of energy diffusion, friction, angular scattering, charge exchange, electric field and source pitch angle distribution. The neutron spectra, generated by Monte-Carlo methods, are computed with respect to given lines of sight. This enables the code to be used for neutron diagnostics. (author)

  16. Neutron star pulsations and instabilities

    International Nuclear Information System (INIS)

    Lindblom, L.

    2001-01-01

    Gravitational radiation (GR) drives an instability in certain modes of rotating stars. This instability is strong enough in the case of the r-modes to cause their amplitudes to grow on a timescale of tens of seconds in rapidly rotating neutron stars. GR emitted by these modes removes angular momentum from the star at a rate which would spin it down to a relatively small angular velocity within about one year, if the dimensionless amplitude of the mode grows to order unity. A pedagogical level discussion is given here on the mechanism of GR instability in rotating stars, on the relevant properties of the r-modes, and on our present understanding of the dissipation mechanisms that tend to suppress this instability in neutron stars. The astrophysical implications of this GR driven instability are discussed for young neutron stars, and for older systems such as low mass x-ray binaries. Recent work on the non-linear evolution of the r-modes is also presented. (author)

  17. Neutron star kicks and asymmetric supernovae

    International Nuclear Information System (INIS)

    Lai, D.

    2001-01-01

    Observational advances over the last decade have left little doubt that neutron stars received a large kick velocity (of order a few hundred to a thousand km s -1 ) at birth. The physical origin of the kicks and the related supernova asymmetry is one of the central unsolved mysteries of supernova research. We review the physics of different kick mechanisms, including hydrodynamically driven, neutrino - magnetic field driven, and electromagnetically driven kicks. The viabilities of the different kick mechanisms are directly related to the other key parameters characterizing nascent neutron stars, such as the initial magnetic field and the initial spin. Recent observational constraints on kick mechanisms are also discussed. (orig.)

  18. The CBM first-level event selector, timeslice building and availability studies

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Helvi; Cuveland, Jan de; Lindenstruth, Volker [Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment is a fixed target high energy physics experiment collecting all produced data - no triggers are involved. This causes a very high data rate of 1 TByte/s. The First-level Event Selector (FLES) denotes a high performance computer cluster that will process all data and performs a full online event reconstruction. For this purpose the raw detector data is accessed in time intervals referred to as Timeslices. In the process of Timeslice building data from all input links are distributed via a high-performance Infiniband network to the compute nodes. In order to ensure that the FLES is available the whole time while the detectors are running fault tolerance is inevitable. The questions is how often are incidents going to occur (Mean Time between Failure MTBF) and how long will they pause Timeslice building and hence physics analysis (Mean Time to Repair MTTR). These two factors make up the availability of the FLES. I present a detailed analysis of possible sources of errors and their influence on the availability. Furthermore, I discuss the development of Timeslice building on the basis of MPI with respect to the availability of the FLES. I compare this approach to a low-level native Infiniband Verbs implementation combined with a socket-based error handling system.

  19. Monte Carlo simulation of neutron scattering instruments

    International Nuclear Information System (INIS)

    Seeger, P.A.; Daemen, L.L.; Hjelm, R.P. Jr.

    1998-01-01

    A code package consisting of the Monte Carlo Library MCLIB, the executing code MC RUN, the web application MC Web, and various ancillary codes is proposed as an open standard for simulation of neutron scattering instruments. The architecture of the package includes structures to define surfaces, regions, and optical elements contained in regions. A particle is defined by its vector position and velocity, its time of flight, its mass and charge, and a polarization vector. The MC RUN code handles neutron transport and bookkeeping, while the action on the neutron within any region is computed using algorithms that may be deterministic, probabilistic, or a combination. Complete versatility is possible because the existing library may be supplemented by any procedures a user is able to code. Some examples are shown

  20. Low energy neutron scattering for energy dependent cross sections. General considerations

    Energy Technology Data Exchange (ETDEWEB)

    Rothenstein, W; Dagan, R [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Mechanical Engineering

    1996-12-01

    We consider in this paper some aspects related to neutron scattering at low energies by nuclei which are subject to thermal agitation. The scattering is determined by a temperature dependent joint scattering kernel, or the corresponding joint probability density, which is a function of two variables, the neutron energy after scattering, and the cosine of the angle of scattering, for a specified energy and direction of motion of the neutron, before the interaction takes place. This joint probability density is easy to calculate, when the nucleus which causes the scattering of the neutron is at rest. It can be expressed by a delta function, since there is a one to one correspondence between the neutron energy change, and the cosine of the scattering angle. If the thermal motion of the target nucleus is taken into account, the calculation is rather more complicated. The delta function relation between the cosine of the angle of scattering and the neutron energy change is now averaged over the spectrum of velocities of the target nucleus, and becomes a joint kernel depending on both these variables. This function has a simple form, if the target nucleus behaves as an ideal gas, which has a scattering cross section independent of energy. An energy dependent scattering cross section complicates the treatment further. An analytic expression is no longer obtained for the ideal gas temperature dependent joint scattering kernel as a function of the neutron energy after the interaction and the cosine of the scattering angle. Instead the kernel is expressed by an inverse Fourier Transform of a complex integrand, which is averaged over the velocity spectrum of the target nucleus. (Abstract Truncated)

  1. 3D velocity distribution of P- and S-waves in a biotite gneiss, measured in oil as the pressure medium: Comparison with velocity measurements in a multi-anvil pressure apparatus and with texture-based calculated data

    Czech Academy of Sciences Publication Activity Database

    Lokajíček, Tomáš; Kern, H.; Svitek, Tomáš; Ivankina, T.

    2014-01-01

    Roč. 231, June (2014), s. 1-15 ISSN 0031-9201 R&D Projects: GA MŠk LH13102; GA ČR(CZ) GAP104/12/0915; GA ČR GA13-13967S Institutional support: RVO:67985831 Keywords : 3D-velocity calculation * measured and calculated elastic properties * neutron diffraction * seismic anisotropy * velocity measurements Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.895, year: 2014

  2. Neutron spin echo and high resolution inelastic spectroscopy

    International Nuclear Information System (INIS)

    Mezei, F.; Hungarian Academy of Sciences, Budapest. Central Research Inst. for Physics)

    1982-01-01

    The principles of neutrons spin echo (NSE) technique are considered. It is shown that the basis of NSE principle is a single step measurement of the change of the neutron velocity in the scattering process. The backscattering soectroscopy and the NSE techniques are compared. The NSF spectrometer is described. It is shown that 0.5 MeV energy resolution achieved in the NSE experiment is about 40 times superior to those achieved by the other techniques. The NSE technique has the unique feature that provides high resolution in neutron energy change independently of the monochromatization of the beam. The NSE instrument not only covers a wider dynamic range on a pulsed source that on a continuous one, but also collects data more efficiently

  3. Neutron Diffusion in a Space Lattice of Fissionable and Absorbing Materials

    Science.gov (United States)

    Feynman, R. P.; Welton, T. A.

    1946-08-27

    Methods are developed for estimating the effect on a critical assembly of fabricating it as a lattice rather than in the more simply interpreted homogeneous manner. An idealized case is discussed supposing an infinite medium in which fission, elastic scattering and absorption can occur, neutrons of only one velocity present, and the neutron m.f.p. independent of position and equal to unity with the unit of length used.

  4. On the thermal properties of neutron matter with spin up excess

    International Nuclear Information System (INIS)

    Ramadan, S.; Montasser, S.S.; Hassan, M.Y.M.

    1986-07-01

    The schematic model of pure hard core neutron matter proposed by Dabrowski et al. is generalized to finite temperature, where the attractive part of nuclear forces is treated as a perturbation. We calculate the potential energy, the energy per neutron, the volume and symmetry pressure, the magnetic susceptibility, the effective mass and the velocity of sound as a function of temperature. Our results are compared with previous calculations. (author)

  5. Time pulse profiles on a new data acquisition system for neutron time of flight diffractometer

    International Nuclear Information System (INIS)

    Venegas, R.; Baeza, L.; Navarro, G.

    1999-01-01

    A new differential acquisition system was built for a neutron diffuse scattering instrument. We analyze the time, space and velocity behavior of neutron pulse profiles, which can be obtained in a neutron diffuse scattering system of this nature, consisting of a black disc slit chopper and a circular detector bank, in order to design accurate scattering data analyzing methods. Computed direct pulse time spectra and measured spectra show satisfactory agreement. (author)

  6. Acceleration to High Velocities and Heating by Impact Using Nike KrF laser

    Science.gov (United States)

    Karasik, Max

    2009-11-01

    Shock ignition, impact ignition, as well as higher intensity conventional hot spot ignition designs reduce driver energy requirement by pushing the envelope in laser intensity and target implosion velocities. This talk will describe experiments that for the first time reach target velocities in the range of 700 -- 1000 km/s. The highly accelerated planar foils of deuterated polystyrene, some with bromine doping, are made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Target acceleration and collision are diagnosed using large field of view monochromatic x-ray imaging with backlighting as well as bremsstrahlung self-emission. The impact conditions are diagnosed using DD fusion neutron yield, with over 10^6 neutrons produced during the collision. Time-of-flight neutron detectors are used to measure the ion temperature upon impact, which reaches 2 -- 3 keV. The experiments are performed on the Nike facility, reconfigured specifically for high intensity operation. The short wavelength and high illumination uniformity of Nike KrF laser uniquely enable access to this new parameter regime. Intensities of (0.4 -- 1.2) x 10^15 W/cm^2 and pulse durations of 0.4 -- 2 ns were utilized. Modeling of the target acceleration, collision, and neutron production is performed using the FAST3D radiation hydrodynamics code with a non-LTE radiation model. Work is supported by US Department of Energy.

  7. Time dependet behaviour of the neutron field in in two interacting cylindrical disks

    International Nuclear Information System (INIS)

    Hedlund, T.

    1979-01-01

    The influence of a void on the neutron flux in a moderating system has been studied mainly by the Monte Carlo method. The calculations simulate the decay of the neutron field in a pulsed neutron source measurement. The neutron flux was studied as a function of space, angle, energy and time for a system of two flat cylindrical polyethylene disks. The slab thickness was varied between 1.1 and 4.4 cm and the radius was 9.0 cm. The gap between the slabs was varied from zero to 18 cm. Some calculations have also been made for absorbers in the gap. The purpose of these absorbers was to eliminate the time delay effect for the low velocity neutrons accumulating in the gap. The calculations showed the usefulness of the absorber method. From the results in the time dependent cases the interaction parameter for the two slabs in the corresponding stationary cases has been calculated. The agreement with measurements made by Grosshoeg is good. In the one velocity cases some other methods have also been used to predict the decay rates. For small gap widths the best agreement with the Monte Carlo results was obtained with the variational method. (author)

  8. Standard Test Method for Measuring Neutron Fluence and Average Energy from 3H(d,n)4He Neutron Generators by Radioactivation Techniques 1

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers a general procedure for the measurement of the fast-neutron fluence rate produced by neutron generators utilizing the 3H(d,n)4He reaction. Neutrons so produced are usually referred to as 14-MeV neutrons, but range in energy depending on a number of factors. This test method does not adequately cover fusion sources where the velocity of the plasma may be an important consideration. 1.2 This test method uses threshold activation reactions to determine the average energy of the neutrons and the neutron fluence at that energy. At least three activities, chosen from an appropriate set of dosimetry reactions, are required to characterize the average energy and fluence. The required activities are typically measured by gamma ray spectroscopy. 1.3 The measurement of reaction products in their metastable states is not covered. If the metastable state decays to the ground state, the ground state reaction may be used. 1.4 The values stated in SI units are to be regarded as standard. No oth...

  9. On the thermal properties of neutron matter with spin up excess

    International Nuclear Information System (INIS)

    Ramadan, S.; Montasser, S.S; Hassan, M.Y.M.

    1988-01-01

    The schematic model of pure hard core neutron matter proposed by Dabrowski et al. is generalized to finite temperature, where the attractive part of nuclear forces is treated as a perturbation. We calculate the potential energy, the energy per neutron, the volume and symmetry pressure, the magnetic susceptibility, the effective mass and the velocity of sound as a function of temperature. Our results are compared with previous calculations. 31 refs., 3 figs. (author)

  10. Challenges and achievements of instrumentation for failed fuel identification in PFBR

    International Nuclear Information System (INIS)

    Upadhyay, Chandra Kant; Sivaramakrishna, M.; Nageswaran, A.; Nagaraj, C.P.; Madhusoodanan, K.; Krishnakumar, B.

    2010-01-01

    Failed fuel identification system is provided to locate and remove the failed fuel sub assembly. It comprises of selector valve mechanism to sample the flow from each assembly and associated instrumentation to detect the activity in the sample, indicating the clad failure of the respective subassembly. The development includes sampling pump, its power supply, motor to rotate the selector valve, encoder, brake, gear box, neutron detectors and Instrumentation and Control for all these with interlocks and related logic. These systems are expected to work under many physical constraints and in harsh environmental conditions, such as high temperature. This paper discusses the various challenges and achievements towards this system design. (author)

  11. Proposal for a new method of reactor neutron flux distribution determination

    Energy Technology Data Exchange (ETDEWEB)

    Popic, V R [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1964-01-15

    A method, based on the measurements of the activity produced in a medium flowing with variable velocity through a reactor, for the determination of the neutron flux distribution inside a reactor is considered theoretically (author)

  12. The evaluated neutron cross sections and resonance integrals of fission products with Z = 57-62

    International Nuclear Information System (INIS)

    Fedorova, A.F.; Pisanko, Zh.I.; Novoselov, G.M.

    1976-01-01

    Neutron cross sections at a neutron velocity of V=2200 m/s, and resonance integrals for fission products with Z=57-71 are estimated. In obtaining the recommended values the results of the neutron cross sections and resonance integrals for elements used as references were normalized in accordance with the latest adjusted values. In the course of estimation, preference was given to the more accurate methods for obtaining the measured values and to the more recent investigations

  13. Study on high speed lithium jet for neutron source of boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Kobayashi, Tooru; Zhang, Mingguang; Mak, Michael; Stefanica, Jiri; Dostal, Vaclav; Zhao Wei

    2012-01-01

    The feasibility study of a liquid lithium type proton beam target was performed for the neutron source of the boron neutron capture therapy (BNCT). As the candidates of the liquid lithium target, a thin sheet jet and a thin film flow on a concave wall were chosen, and a lithium flow experiment was conducted to investigate the hydrodynamic stability of the targets. The surfaces of the jets and film flows with a thickness of 0.5 mm and a width of 50 mm were observed by means of photography. It has been found that a stable sheet jet and a stable film flow on a concave wall can be formed up to certain velocities by using a straight nozzle and a curved nozzle with the concave wall, respectively. (author)

  14. Development of an energy selector system for laser-driven proton beam applications

    Energy Technology Data Exchange (ETDEWEB)

    Scuderi, V., E-mail: scuderiv@lns.infn.it [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Bijan Jia, S. [Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Carpinelli, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Cirrone, G.A.P. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Korn, G. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Licciardello, T. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Maggiore, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell' Universit 2, Legnaro (Pd) (Italy); Margarone, D. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Pisciotta, P.; Romano, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Schillaci, F. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Stancampiano, C. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); and others

    2014-03-11

    Nowadays, laser-driven proton beams generated by the interaction of high power lasers with solid targets represent a fascinating attraction in the field of the new acceleration techniques. These beams can be potentially accelerated up to hundreds of MeV and, therefore, they can represent a promising opportunity for medical applications. Laser-accelerated proton beams typically show high flux (up to 10{sup 11} particles per bunch), very short temporal profile (ps), broad energy spectra and poor reproducibility. In order to overcome these limitations, these beams have be controlled and transported by means of a proper beam handling system. Furthermore, suitable dosimetric diagnostic systems must be developed and tested. In the framework of the ELIMED project, we started to design a dedicated beam transport line and we have developed a first prototype of a beam line key-element: an Energy Selector System (ESS). It is based on permanent dipoles, capable to control and select in energy laser-accelerated proton beams. Monte Carlo simulations and some preliminary experimental tests have been already performed to characterize the device. A calibration of the ESS system with a conventional proton beam will be performed in September at the LNS in Catania. Moreover, an experimental campaign with laser-driven proton beam at the Centre for Plasma Physics, Queens University in Belfast is already scheduled and will be completed within 2014.

  15. Neutron activation diagnostics at the National Ignition Facility (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D. L.; Yeamans, C. B.; Bernstein, L. A.; Bionta, R. M.; Caggiano, J. A.; Drury, O. B.; Hagmann, C. A.; Hatarik, R.; Knittel, K. M.; McNaney, J. M.; Moran, M.; Schneider, D. H. G. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Casey, D. T.; Frenje, J. A.; Johnson, M. Gatu [Massachusetts Institute of Technology Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Cooper, G. W. [University of New Mexico, Albuquerque, New Mexico 87131 (United States); Knauer, J. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Leeper, R. J.; Ruiz, C. L. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States)

    2012-10-15

    Neutron yields are measured at the National Ignition Facility (NIF) by an extensive suite of neutron activation diagnostics. Neutrons interact with materials whose reaction cross sections threshold just below the fusion neutron production energy, providing an accurate measure of primary unscattered neutrons without contribution from lower-energy scattered neutrons. Indium samples are mounted on diagnostic instrument manipulators in the NIF target chamber, 25-50 cm from the source, to measure 2.45 MeV deuterium-deuterium fusion neutrons through the {sup 115}In(n,n'){sup 115m} In reaction. Outside the chamber, zirconium and copper are used to measure 14 MeV deuterium-tritium fusion neutrons via {sup 90}Zr(n,2n), {sup 63}Cu(n,2n), and {sup 65}Cu(n,2n) reactions. An array of 16 zirconium samples are located on port covers around the chamber to measure relative yield anisotropies, providing a global map of fuel areal density variation. Neutron yields are routinely measured with activation to an accuracy of 7% and are in excellent agreement both with each other and with neutron time-of-flight and magnetic recoil spectrometer measurements. Relative areal density anisotropies can be measured to a precision of less than 3%. These measurements reveal apparent bulk fuel velocities as high as 200 km/s in addition to large areal density variations between the pole and equator of the compressed fuel.

  16. Energetic ion diagnostics using neutron flux measurements during pellet injection

    International Nuclear Information System (INIS)

    Heidbrink, W.W.

    1986-01-01

    Neutron measurements during injection of deuterium pellets into deuterium plasmas on the Tokamak Fusion Test Reactor (TFTR) indicate that the fractional increase in neutron emission about 0.5 msec after pellet injection is proportional to the fraction of beam-plasma reactions to total fusion reactions in the unperturbed plasma. These observations suggest three diagnostic applications of neutron measurements during pellet injection: (1) measurement of the beam-plasma reaction rate in deuterium plasmas for use in determining the fusion Q in an equivalent deuterium-tritium plasma, (2) measurement of the radial profile of energetic beam ions by varying the pellet size and velocity, and (3) measurement of the ''temperature'' of ions accelerated during wave heating. 18 refs., 3 figs

  17. Multi-dimensional modeling of two-phase flow in rod bundles and interpretation of velocities measured in BWRs by the cross-correlation technique

    International Nuclear Information System (INIS)

    Analytis, G.Th.; Luebbesmeyer, D.

    1984-04-01

    The authors present an as precise as possible interpretation of velocity measurements in BWRs by the cross-correlation technique, which is based on the radially non-uniform quality and velocity distribution in BWR type bundles, as well as on our knowledge about the spatial 'field of view' of the in-core neutron detectors. After formulating the three-dimensional two-fluid model volume/time averaged equations and pointing out some problems associated with averaging, they expound a little on the turbulence mixing and void drift effects, as well as on the way they are modelled in advanced subchannel analysis codes like THERMIT or COBRA-TF. Subsequently, some comparisons are made between axial velocities measured in a commercial BWR by neutron noise analysis, and the steam velocities of the four subchannels nearest to the instrument tube of one of the four bundles as predicted by COBRA-III and by THERMIT. Although as expected, for well-known reasons, COBRA-III predicts subchannel steam velocities which are close to each other, THERMIT correctly predicts in the upper half of the core three largely different steam velocities in the three different types of BW0 subchannels (corner, edge and interior). (Auth.)

  18. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhangxiaohu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yuan, Y.J.; Yin, X.J.; Qian, C.; Sun, L.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, H.; Li, Z.S.; Qiao, J.; Wang, K.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-11

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  19. Neutron emission from projectile-like and target-like fragments in the 18O+48Ti reaction at E(18O)=116 MeV

    International Nuclear Information System (INIS)

    Chambon, B.; Drain, D.; Pastor, C.; Dauchy, A.; Giorni, A.; Morand, C.

    1982-07-01

    Angular correlations between neutrons and projectile-like fragments detected near the grazing angle were analysed by assuming two incoherent neutrons sources. One source describes slower neutrons evaporated by target-like fragments in equilibrium. The faster, forward-peaked neutrons originate from a second source strongly correlated with the projectile-like fragments with regards to velocity and direction. In some cases neutron emission may even be attributed to known neutron emitter levels in excited ejectiles

  20. Effect of neutron irradiation on single crystal V3Si

    International Nuclear Information System (INIS)

    Viswanathan, R.; Caton, R.; Cox, D.E.; Guha, A.; Sarachik, M.P.; Smith, F.W.; Testardi, L.R.

    1977-01-01

    We We have investigated the effect of successive neutron irradiation up to a fluence of approximately 2 x 10 19 n/cm 2 , by measurements of heat capacity, susceptibility, resistivity, acoustic velocity and neutron diffraction in a single crystal V 3 Si. We find that for low level doses (phi t greater than or equal to 3.5 x 10 18 n/cm 2 ) (a) the structural transformation is very sensitive, whereas the suerconducting transition temperature, T/sub c/, is hardly affected, and (b) except for low temperature heat capacity, most of the other measurements show very little change. For the highest fluence of 2 x 10 19 n/cm 2 used to date, the T/sub c/ dropped to 7.5 K with large changes in the linear heat capacity coefficient, magnetic susceptibility and sound velocity. These results are discussed briefly in this paper

  1. Neutron kinetics of fluid-fuel systems by the quasi-static method

    International Nuclear Information System (INIS)

    Dulla, S.; Ravetto, P.; Rostagno, M.M.

    2004-01-01

    The quasi-static method for the neutron kinetics of nuclear reactors is generalized for application to neutron multiplying systems fueled by a fluid multiplying material, typically a mixture of fissile molten salts. The method is derived by the application of factorization formulae for both the neutron density and the delayed precursor concentrations and the projection of the balance equations upon a weighting function. A physically meaningful weight can be assumed as the solution of the adjoint model, which is constructed for the situation considered, including delayed neutrons. The quasi-static scheme is then applied to calculations of some transients for a typical configuration of a molten-salt reactor, in a multigroup diffusion model with a one-dimensional slug-flow velocity field. The physical features associated to the motion of the fissile material are highlighted

  2. The evaluated neutron cross sections and resonance integrals of fission products with Z=63-71

    International Nuclear Information System (INIS)

    Fedorova, A.F.; Pisanko, Zh.I.; Novoselov, G.M.

    1976-01-01

    Neutron cross sections at a neutron velocity of V=2200 m/s, and the resonance integrals for fission products with Z=63-71 are estimated. In obtaining the recommended values the results were normalized of the neutron cross sections and resonance integrals for elements used as references in accordance with the latest adjusted values. In the course of estimation, preference was given to the more accurate measuring methods and the more recent investigations. Scientific publications up to 1975 have been used

  3. Two-phase flow measurement by pulsed neutron activation techniques

    International Nuclear Information System (INIS)

    Kehler, P.

    1978-01-01

    The Pulsed Neutron Activation (PNA) technique for measuring the mass flow velocity and the average density of two-phase mixtures is described. PNA equipment can be easily installed at different loops, and PNA techniques are non-intrusive and independent of flow regimes. These features of the PNA technique make it suitable for in-situ measurement of two-phase flows, and for calibration of more conventional two-phase flow measurement devices. Analytic relations governing the various PNA methods are derived. The equipment and procedures used in the first air-water flow measurement by PNA techniques are discussed, and recommendations are made for improvement of future tests. In the present test, the mass flow velocity was determined with an accuracy of 2 percent, and average densities were measured down to 0.08 g/cm 3 with an accuracy of 0.04 g/cm 3 . Both the accuracy of the mass flow velocity measurement and the lower limit of the density measurement are functions of the injected activity and of the total number of counts. By using a stronger neutron source and a larger number of detectors, the measurable density can be decreased by a factor of 12 to .007 g/cm 3 for 12.5 cm pipes, and to even lower ranges for larger pipes

  4. Type II critical phenomena of neutron star collapse

    International Nuclear Information System (INIS)

    Noble, Scott C.; Choptuik, Matthew W.

    2008-01-01

    We investigate spherically symmetric, general relativistic systems of collapsing perfect fluid distributions. We consider neutron star models that are driven to collapse by the addition of an initially 'ingoing' velocity profile to the nominally static star solution. The neutron star models we use are Tolman-Oppenheimer-Volkoff solutions with an initially isentropic, gamma law equation of state. The initial values of (1) the amplitude of the velocity profile, and (2) the central density of the star, span a parameter space, and we focus only on that region that gives rise to type II critical behavior, wherein black holes of arbitrarily small mass can be formed. In contrast to previously published work, we find that--for a specific value of the adiabatic index (Γ=2)--the observed type II critical solution has approximately the same scaling exponent as that calculated for an ultrarelativistic fluid of the same index. Further, we find that the critical solution computed using the ideal-gas equations of state asymptotes to the ultrarelativistic critical solution.

  5. One-velocity neutron diffusion calculations based on a two-group reactor model

    Energy Technology Data Exchange (ETDEWEB)

    Bingulac, S; Radanovic, L; Lazarevic, B; Matausek, M; Pop-Jordanov, J [Boris Kidric Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1965-07-01

    Many processes in reactor physics are described by the energy dependent neutron diffusion equations which for many practical purposes can often be reduced to one-dimensional two-group equations. Though such two-group models are satisfactory from the standpoint of accuracy, they require rather extensive computations which are usually iterative and involve the use of digital computers. In many applications, however, and particularly in dynamic analyses, where the studies are performed on analogue computers, it is preferable to avoid iterative calculations. The usual practice in such situations is to resort to one group models, which allow the solution to be expressed analytically. However, the loss in accuracy is rather great particularly when several media of different properties are involved. This paper describes a procedure by which the solution of the two-group neutron diffusion. equations can be expressed analytically in the form which, from the computational standpoint, is as simple as the one-group model, but retains the accuracy of the two-group treatment. In describing the procedure, the case of a multi-region nuclear reactor of cylindrical geometry is treated, but the method applied and the results obtained are of more general application. Another approach in approximate solution of diffusion equations, suggested by Galanin is applicable only in special ideal cases.

  6. On the spherical harmonic expansion of the neutron angular distribution function

    Energy Technology Data Exchange (ETDEWEB)

    Depken, Sven

    1959-03-15

    The neutron (one-velocity) angular distribution function is expanded in terms of spherical harmonic tensors. The solution to the equations of the moments is given explicitly and the result is applied to the plane, spherical and cylinder symmetrical cases.

  7. On the spherical harmonic expansion of the neutron angular distribution function

    International Nuclear Information System (INIS)

    Depken, Sven

    1959-03-01

    The neutron (one-velocity) angular distribution function is expanded in terms of spherical harmonic tensors. The solution to the equations of the moments is given explicitly and the result is applied to the plane, spherical and cylinder symmetrical cases

  8. Energetic ion diagnostics using neutron flux measurements during pellet injection

    Energy Technology Data Exchange (ETDEWEB)

    Heidbrink, W.W.

    1986-01-01

    Neutron measurements during injection of deuterium pellets into deuterium plasmas on the Tokamak Fusion Test Reactor (TFTR) indicate that the fractional increase in neutron emission about 0.5 msec after pellet injection is proportional to the fraction of beam-plasma reactions to total fusion reactions in the unperturbed plasma. These observations suggest three diagnostic applications of neutron measurements during pellet injection: (1) measurement of the beam-plasma reaction rate in deuterium plasmas for use in determining the fusion Q in an equivalent deuterium-tritium plasma, (2) measurement of the radial profile of energetic beam ions by varying the pellet size and velocity, and (3) measurement of the ''temperature'' of ions accelerated during wave heating. 18 refs., 3 figs.

  9. First results from the new double velocity-double energy spectrometer VERDI

    Science.gov (United States)

    Frégeau, M. O.; Oberstedt, S.; Gamboni, Th.; Geerts, W.; Hambsch, F.-J.; Vidali, M.

    2016-05-01

    The VERDI spectrometer (VElocity foR Direct mass Identification) is a two arm time-of-flight spectrometer built at the European Commission Joint Research Centre IRMM. It determines fragment masses and kinetic energy distributions produced in nuclear fission by means of the double velocity and double energy (2v-2E) method. The simultaneous measurement of pre- and post neutron fragment characteristics allows studying the share of excitation energy between the two fragments. In particular, the evolution of fission modes and neutron multiplicity may be studied as a function of the available excitation energy. Both topics are of great importance for the development of models used in the evaluation of nuclear data, and also have important implications for the fundamental understanding of the fission process. The development of VERDI focus on maximum geometrical efficiency while striving for highest possible mass resolution. An innovative transmission start detector, using electrons ejected from the target itself, was developed. Stop signal and kinetic energy of both fragments are provided by two arrays of silicon detectors. The present design provides about 200 times higher geometrical efficiency than that of the famous COSI FAN TUTTE spectrometer [Nuclear Instruments and Methods in Physics Research 219 (1984) 569]. We report about a commissioning experiment of the VERDI spectrometer, present first results from a 2v-2E measurement of 252Cf spontaneous fission and discuss the potential of this instrument to contribute to the investigation prompt fission neutron characteristics as a function of fission fragment properties.

  10. Investigation of a superthermal ultracold neutron source based on a solid deuterium converter for the TRIGA Mainz reactor

    International Nuclear Information System (INIS)

    Lauer, Thorsten

    2010-01-01

    Research in fundamental physics with the free neutron is one of the key tools for testing the Standard Model at low energies. Most prominent goals in this field are the search for a neutron electric dipole moment (EDM) and the measurement of the neutron lifetime. Significant improvements of the experimental performance using ultracold neutrons (UCN) require reduction of both systematic and statistical errors.The development and construction of new UCN sources based on the superthermal concept is therefore an important step for the success of future fundamental physics with ultracold neutrons. Significant enhancement of today available UCN densities strongly correlates with an efficient use of an UCN converter material. The UCN converter here is to be understood as a medium which reduces the velocity of cold neutrons (CN, velocity of about 600 m/s) to the velocity of UCN (velocity of about 6 m/s).Several big research centers around the world are presently planning or constructing new superthermal UCN sources, which are mainly based on the use of either solid deuterium or superfluid helium as UCN converter.Thanks to the idea of Yu.Pokotilovsky, there exists the opportunity to build competitive UCN sources also at small research reactors of the TRIGA type. Of course these smaller facilities don't promise high UCN densities of several 1000 UCN/cm 3 , but they are able to provide densities around 100 UCN/cm 3 for experiments.In the context of this thesis, it was possible to demonstrate succesfully the feasibility of a superthermal UCN source at the tangential beamport C of the research reactor TRIGA Mainz. Based on a prototype for the future UCN source at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII) in Munich, which was planned and built in collaboration with the Technical University of Munich, further investigations and improvements were done and are presented in this thesis. In parallel, a second UCN source for the radial beamport D was designed and

  11. Investigation of a superthermal ultracold neutron source based on a solid deuterium converter for the TRIGA Mainz reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Thorsten

    2010-12-22

    Research in fundamental physics with the free neutron is one of the key tools for testing the Standard Model at low energies. Most prominent goals in this field are the search for a neutron electric dipole moment (EDM) and the measurement of the neutron lifetime. Significant improvements of the experimental performance using ultracold neutrons (UCN) require reduction of both systematic and statistical errors.The development and construction of new UCN sources based on the superthermal concept is therefore an important step for the success of future fundamental physics with ultracold neutrons. Significant enhancement of today available UCN densities strongly correlates with an efficient use of an UCN converter material. The UCN converter here is to be understood as a medium which reduces the velocity of cold neutrons (CN, velocity of about 600 m/s) to the velocity of UCN (velocity of about 6 m/s).Several big research centers around the world are presently planning or constructing new superthermal UCN sources, which are mainly based on the use of either solid deuterium or superfluid helium as UCN converter.Thanks to the idea of Yu.Pokotilovsky, there exists the opportunity to build competitive UCN sources also at small research reactors of the TRIGA type. Of course these smaller facilities don't promise high UCN densities of several 1000 UCN/cm{sup 3}, but they are able to provide densities around 100 UCN/cm{sup 3} for experiments.In the context of this thesis, it was possible to demonstrate succesfully the feasibility of a superthermal UCN source at the tangential beamport C of the research reactor TRIGA Mainz. Based on a prototype for the future UCN source at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII) in Munich, which was planned and built in collaboration with the Technical University of Munich, further investigations and improvements were done and are presented in this thesis. In parallel, a second UCN source for the radial beamport D was

  12. Pulsed neutron well logging apparatus having means for determining background radiation

    International Nuclear Information System (INIS)

    Randall, R.R.

    1979-01-01

    A neutron generator in a well logging instrument is periodically pulsed and has an off period between pulses of 1000 microseconds. A neutron detector is gated on at intervals of 400 to 500, 550 to 650, and 700 to 800 microseconds, respectively, following the termination of each burst of fast neutrons. Circuitry is provided for determining the background radiation by the equation: B = N 1 X N 3 - N 2 2 /N 1 + N 3 - 2N 2 where B is the background, and N 1 , N 2 and N 3 are the counts observed during the three gates, respectively. Circuitry is also provided for determining the macroscopic absorption (Σ) from the equation: Σ = 1/VΔt Log [N 1 - B/N 2 - B] where V is the velocity of thermal neutrons, being a constant and Δt represents an increment of time

  13. Analysis of fluid fuel flow to the neutron kinetics on molten salt reactor FUJI-12

    International Nuclear Information System (INIS)

    Aji, Indarta Kuncoro; Waris, Abdul; Permana, Sidik

    2015-01-01

    Molten Salt Reactor is a reactor are operating with molten salt fuel flowing. This condition interpret that the neutron kinetics of this reactor is affected by the flow rate of the fuel. This research analyze effect by the alteration velocity of the fuel by MSR type Fuji-12, with fuel composition LiF-BeF 2 -ThF 4 - 233 UF 4 respectively 71.78%-16%-11.86%-0.36%. Calculation process in this study is performed numerically by SOR and finite difference method use C programming language. Data of reactivity, neutron flux, and the macroscopic fission cross section for calculation process obtain from SRAC-CITATION (Standard thermal Reactor Analysis Code) and JENDL-4.0 data library. SRAC system designed and developed by JAEA (Japan Atomic Energy Agency). This study aims to observe the effect of the velocity of fuel salt to the power generated from neutron precursors at fourth year of reactor operate (last critical condition) with number of multiplication effective; 1.0155

  14. Slow Neutron Spectrometers at the Swedish Reactors; Spectrometres a Neutrons Lents des Reacteurs Suedois; 0421 041f 0415 041a 0422 0420 041e 041c 0415 0422 0420 042b 041c 0415 0414 041b 0415 041d 041d 042b 0425 041d 0415 0419 0422 0420 041e 041d 041e 0412 041d 0410 0428 0412 0415 0414 0421 041a 0418 0425 0420 0415 0410 041a 0422 041e 0420 0410 0425 ; Espectrometros para Neutrones Lentos en los Reactores de Suecia

    Energy Technology Data Exchange (ETDEWEB)

    Dahlborg, U.; Skoeld, K. [AB Atomenergi, Stockholm (Sweden); Larsson, K. -E. [Royal Institute of Technology, Stockholm (Sweden)

    1965-06-15

    At the two Swedish research reactors, Rl in Stockholm and R2 in Studsvik, there are at present possibilities to use four different neutron spectrometers for neutron inelastic scattering experiments. In Stockholm at the 600-kW heavy-water moderated reactor R1 two slow chopper time-of-flight spectrometers are in simultaneous operation. At one of these we permanently use a beryllium filter as monochromator, while at the other one either a beryllium filter or a crystal monochromator may be used. Angular distribution measurements using the combination of a crystal monochromator and time-of-flight analysis have been found to give very valuable results even though the intensity as well as the resolution is relatively poor. A mechanical velocity selector with 4.2% wavelength resolution has recently been tested. The instrument is, however, not yet used in experiments. The time-of-flight spectrometer in Studsvik at the 30-MW light-water moderated reactor R2 uses,for monochromatizing purposes, the combined action of a beryllium filter and a chopper with a narrow transmission curve. At this spectrometer, as well as at one in Stockholm, the chopper is placed before the sample, thus offering the possibility of simultaneous recording of data at different angles of observation. At R2 a triple-axis crystal spectrometer is also in operation. Different properties of the different instruments, such as intensities, resolutions, as well as their suitability for certain measurements, is given. Thus figures are given showing that a high intensity loss follows from a rather limited improvement in resolution. It is interesting to note in comparing Rl and R2 as neutron sources for beam tube work that one loses about a factor of ten from the hundred-times-larger neutron flux of R2 in taking out the neutrons. The reason for this loss is the narrow beam tubes and the filters necessary to reduce the fast neutron and the gamma flux. Scattering data on H{sub 2}O obtained at different instruments

  15. Constraining neutron guide optimizations with phase-space considerations

    Energy Technology Data Exchange (ETDEWEB)

    Bertelsen, Mads, E-mail: mads.bertelsen@gmail.com; Lefmann, Kim

    2016-09-11

    We introduce a method named the Minimalist Principle that serves to reduce the parameter space for neutron guide optimization when the required beam divergence is limited. The reduced parameter space will restrict the optimization to guides with a minimal neutron intake that are still theoretically able to deliver the maximal possible performance. The geometrical constraints are derived using phase-space propagation from moderator to guide and from guide to sample, while assuming that the optimized guides will achieve perfect transport of the limited neutron intake. Guide systems optimized using these constraints are shown to provide performance close to guides optimized without any constraints, however the divergence received at the sample is limited to the desired interval, even when the neutron transport is not limited by the supermirrors used in the guide. As the constraints strongly limit the parameter space for the optimizer, two control parameters are introduced that can be used to adjust the selected subspace, effectively balancing between maximizing neutron transport and avoiding background from unnecessary neutrons. One parameter is needed to describe the expected focusing abilities of the guide to be optimized, going from perfectly focusing to no correlation between position and velocity. The second parameter controls neutron intake into the guide, so that one can select exactly how aggressively the background should be limited. We show examples of guides optimized using these constraints which demonstrates the higher signal to noise than conventional optimizations. Furthermore the parameter controlling neutron intake is explored which shows that the simulated optimal neutron intake is close to the analytically predicted, when assuming that the guide is dominated by multiple scattering events.

  16. Measurement of vortex motion in a type-II superconductor: A novel use of the neutron spin-echo technique

    Science.gov (United States)

    Forgan; Kealey; Johnson; Pautrat; Simon; Lee; Aegerter; Cubitt; Farago; Schleger

    2000-10-16

    We have used the neutron spin-echo technique to measure the small energy change of neutrons which are diffracted by a moving vortex lattice in a low-pinning Nb-Ta superconducting sample. A transport current was passed in the mixed state to cause flux line movement. In the case of uniform motion, the flux velocity v(L) was given as expected by the values of electric and magnetic fields, via E = -v(L)wedgeB. We show that with a nonuniformly moving vortex lattice, one can measure the dispersion of the velocities, opening up new possibilities for investigating moving vortex lines.

  17. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    International Nuclear Information System (INIS)

    Comer, G.L.; Joynt, R.

    2003-01-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of 'relativistic': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons

  18. Finite element analysis of advanced neutron source fuel plates

    International Nuclear Information System (INIS)

    Luttrell, C.R.

    1995-08-01

    The proposed design for the Advanced Neutron Source reactor core consists of closely spaced involute fuel plates. Coolant flows between the plates at high velocities. It is vital that adjacent plates do not come in contact and that the coolant channels between the plates remain open. Several scenarios that could result in problems with the fuel plates are studied. Finite element analyses are performed on fuel plates under pressure from the coolant flowing between the plates at a high velocity, under pressure because of a partial flow blockage in one of the channels, and with different temperature profiles

  19. The Deflector Selector: A machine learning framework for prioritizing hazardous object deflection technology development

    Science.gov (United States)

    Nesvold, E. R.; Greenberg, A.; Erasmus, N.; van Heerden, E.; Galache, J. L.; Dahlstrom, E.; Marchis, F.

    2018-05-01

    Several technologies have been proposed for deflecting a hazardous Solar System object on a trajectory that would otherwise impact the Earth. The effectiveness of each technology depends on several characteristics of the given object, including its orbit and size. The distribution of these parameters in the likely population of Earth-impacting objects can thus determine which of the technologies are most likely to be useful in preventing a collision with the Earth. None of the proposed deflection technologies has been developed and fully tested in space. Developing every proposed technology is currently prohibitively expensive, so determining now which technologies are most likely to be effective would allow us to prioritize a subset of proposed deflection technologies for funding and development. We present a new model, the Deflector Selector, that takes as its input the characteristics of a hazardous object or population of such objects and predicts which technology would be able to perform a successful deflection. The model consists of a machine-learning algorithm trained on data produced by N-body integrations simulating the deflections. We describe the model and present the results of tests of the effectiveness of nuclear explosives, kinetic impactors, and gravity tractors on three simulated populations of hazardous objects.

  20. The Deflector Selector: A Machine Learning Framework for Prioritizing Hazardous Object Deflection Technology Development

    Science.gov (United States)

    Nesvold, Erika; Greenberg, Adam; Erasmus, Nicolas; Van Heerden, Elmarie; Galache, J. L.; Dahlstrom, Eric; Marchis, Franck

    2018-01-01

    Several technologies have been proposed for deflecting a hazardous Solar System object on a trajectory that would otherwise impact the Earth. The effectiveness of each technology depends on several characteristics of the given object, including its orbit and size. The distribution of these parameters in the likely population of Earth-impacting objects can thus determine which of the technologies are most likely to be useful in preventing a collision with the Earth. None of the proposed deflection technologies has been developed and fully tested in space. Developing every proposed technology is currently prohibitively expensive, so determining now which technologies are most likely to be effective would allow us to prioritize a subset of proposed deflection technologies for funding and development. We will present a new model, the Deflector Selector, that takes as its input the characteristics of a hazardous object or population of such objects and predicts which technology would be able to perform a successful deflection. The model consists of a machine-learning algorithm trained on data produced by N-body integrations simulating the deflections. We will describe the model and present the results of tests of the effectiveness of nuclear explosives, kinetic impactors, and gravity tractors on three simulated populations of hazardous objects.

  1. Thermal neutron group constants in monoatomic-gas approximation

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M V; Bosevski, T [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-12-15

    To solve the problem of space-energy neutron distribution in an elementary reactor cell, a combination of the multigroup procedure and the P{sub 3} approximation of the spherical harmonics method was chosen. The calculation was divided into two independent parts: the first part was to provide multigroup constants which serve as input data for the second part - the determination of the slow neutron spectra. In the present report only the first part of the problem will be discussed. The velocity dependence of cross-sections and scattering function in thermal range was interpreted by the monoatomic-gas model. A digital computer program was developed for the evaluation of the group values for these quantities (author00.

  2. Stochastic spin evolution of neutron stars

    OpenAIRE

    Popov, S. B.; Prokhorov, M. E.; Khoperskov, A. V.; Lipunov, V. M.

    2001-01-01

    In this paper we present calculations of period distribution for old accreting isolated neutron stars (INSs). At the age about a few billions years low velocity INSs come to the stage of accretion. At that stage their period evolution is governed by magnetic breaking and accreted angular momentum. Due to turbulence of the interstellar medium (ISM) accreted momentum can both accelerate and decelerate rotation of an INS and spin evolution has chaotic character. Calculations show that for consta...

  3. Interaction of neutrons with nanoparticles

    International Nuclear Information System (INIS)

    Nesvizhevsky, V.V.

    2002-01-01

    Two hypotheses concerning the interaction of neutrons with nanoparticles and having applications in the physics of ultracold neutrons (UCN) are considered. In 1997, it was found that, upon reflection from the sample surface or spectrometer walls, UCN change their energy by about 10 -7 eV with a probability of 10 -7 -10 -5 per collision. The nature of this phenomenon is not clear at present. Probably, it is due to the inelastic coherent scattering of UCN on nanoparticles or nanostructures weakly attached at the surface, in a state of Brownian thermal motion. An analysis of experimental data on the basis of this model allows one to estimate the mass of such nanoparticles and nanostructures at 10 7 a.u. The proposed hypothesis indicates a method for studying the dynamics of nanoparticles and nanostructures and, accordingly, their interactions with the surface or with one another, this method being selective in their sizes. In all experiments with UCN, the trap-wall temperature was much higher than a temperature of about 1 mK, which corresponds to the UCN energy. Therefore, UCN increased their energy. The surface density of weakly attached nanoparticles was low. If, however, the nanoparticle temperature is lower than the neutron temperature and if the nanoparticle density is high, the problem of interaction of neutrons with nanoparticles is inverted. In this case, the neutrons of initial velocity below 10 2 m/s can cool down, under certain conditions, owing to their scattering on ultracold heavy-water, deuterium, and oxygen nanoparticles to their temperature of about 1 mK, with the result that the UCN density increases by many orders of magnitude

  4. A molecular beam machine for the measurement of the scattering of polar diatomic molecules

    International Nuclear Information System (INIS)

    Everdij, J.J.

    1976-01-01

    This thesis describes an experimental method to determine the long range, angular dependent part of the intermolecular potential between a polar diatomic molecule and a spherical symmetric partner. The method contains the study of the scattering behaviour of the molecules in a crossed beam experiment. The primary beam consisting of polar diatomic molecules at thermal velocities (approximately 0.1 eV), is selected in a specified rotational state by means of an electrostatic, inhomogeneous field before the scattering center, where it crosses the (supersonic) secondary beam under an angle of 90 0 . By means of a second state selector, followed by a velocity selector and a particle detector, the consequences are studied of the scattering process on the primary beam, i.e. the behaviour of the total and differential elastic cross sections plus the transition probability of a collision induced transition to another rotational state. (Auth.)

  5. X-ray and neutron diffraction and molecular dynamics simulation of molten lithium and rubidium nitrates

    International Nuclear Information System (INIS)

    Yamaguchi, Toshio; Okada, Isao; Ohtaki, Hitoshi; Mikami, Masuhiro; Kawamura, Kazutaka

    1986-01-01

    Molecular dynamics simulations have been performed for lithium and rubidium nitrate melts at 550 and 600K, respectively, together with X-ray and neutron diffraction experiments. Simple Coulomb pair potentials with Born-type repulsions have been adopted in the simulations with a rigid body model for the nitrate ion. Structure functions derived from the X-ray and neutron experiments are well reproduced by the simulations, from which the three-dimensional cation distribution around the nitrate ion has been revealed. The self-diffusion coefficients, the velocity autocorrelation functions and the self-exchange velocities of lithium, rubidium and nitrate ions have been calculated. Anisotropic motion of nitrate ions has been found and is discussed on the basis of the structure of the melts. (author)

  6. Studies of accreting and non-accreting neutron stars

    International Nuclear Information System (INIS)

    Stollman, G.M.

    1987-01-01

    This thesis is divided into three parts. Part A is devoted to the statistical study of radio pulsars, in which the observations of nearly all known pulsars are used to study their properties such as magnetic field strengths, rotation periods, space velocities as well as their evolution in time. Part B is devoted to the modelling and understanding of quasi-periodic oscillations (QPO) in low-mass X-ray binaries. But, this study is mainly concerned with the accretion process in these sources, and one may hope to learn more about the neutron stars in these systems when the understanding of QPO is improved. In Part C the problem of 'super-Eddington luminosities' in X-ray burst sources is treated. The idea is that a good understanding of the burst process, which takes place directly at the surface of the neutron star, will eventually improve our understanding of the neutron stars themselves. (Auth.)

  7. On Neutron Star/Supernova Remnant Association

    Science.gov (United States)

    Gvaramadze, V. V.

    It is pointed out that a cavity supernova (SN) explosion of a moving massive star could result in a significant offset of the neutron star (NS) birth-place from the geometrical centre of the supernova remnant (SNR). Therefore: a) the high implied transverse velocities of a number of NSs (e.g. PSR B1610-50, PSR B1706-44, PSR B1757-24, SGR 0526-66) could be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR; c) the circle of possible NS/SNR associations could be enlarged. An observational test is discussed, which could provide a determination of the true birth-places of NSs associated with middle-aged SNRs, and thereby provide more reliable estimates of their transverse velocities.

  8. Measurement of free neutron lifetime by electron decay detection with a migration chamber

    International Nuclear Information System (INIS)

    Grivot, P.

    1988-01-01

    In this study, the different aspects of the realization of the experimental setup are successively described: creation of a pulsed monochromatic neutron beam, design and construction of a detector for neutron decay electrons, development of electronics and of the data acquisition system, measurement of the helium-3 density in a gaseous mixture. A mechanical system called double chopper and a monochromator crystal are used to obtain neutron bursts with a length of about 28 cm and a velocity of 846 m/s. The electron detector is a time projection chamber (TPC) filled at atmospheric pressure with a helium-4 (93%), helium-3 (10 -5 %) and carbon dioxide (7%) mixture. The problems encountered during the data acquisition with the neutron beam and preliminary results from analysis are also presented [fr

  9. Bubbles, Bow Shocks and B Fields: The Interplay Between Neutron Stars and Their Environments

    Science.gov (United States)

    Gaensler, Bryan M.

    2006-12-01

    Young neutron stars embody Nature's extremes: they spin incredibly rapidly, move through space at enormous velocities, and are imbued with unimaginably strong magnetic fields. Since their progenitor stars do not have any of these characteristics, these properties are presumably all imparted to a neutron star during or shortly after the supernova explosion in which it is formed. This raises two fundamental questions: how do neutron stars attain these extreme parameters, and how are their vast reservoirs of energy then dissipated? I will explain how multi-wavelength observations of the environments of neutron stars not only provide vital forensic evidence on the physics of supernova core collapse, but also spectacularly reveal the winds, jets, shocks and outflows through which these remarkable objects couple to their surroundings.

  10. Simulation of pulsed neutron activation for determination of water flow in pipes

    International Nuclear Information System (INIS)

    Mattsson, H.; Owrang, F.; Nordlund, A.

    2002-01-01

    The effect of the asymmetric distribution of activated water in PNA (pulsed neutron activation) measurements has been investigated experimentally by depositing a small amount of colour, simulating the activated water, in a transparent Plexiglas pipe. Based on the colour experiments, a semi-empirical model has been developed that describes the distribution of the activated water at different distances from the activation point. The model shows that the combination of inhomogeneous activation and a radial velocity profile makes the mean velocity of the activity lower than the mean velocity of the water. It can also be seen that the velocity of the activity increases as the distance from the activation point increases. The model has been compared with experimental values from PNA measurements and the measured mean velocity shows a similar dependence on the distance form the activation point. (orig.) [de

  11. Unhappiness and dissatisfaction in doctors cannot be predicted by selectors from medical school application forms: A prospective, longitudinal study

    Directory of Open Access Journals (Sweden)

    Ferguson E

    2005-12-01

    Full Text Available Abstract Background Personal statements and referees' reports are widely used on medical school application forms, particularly in the UK, to assess the suitability of candidates for a career in medicine. However there are few studies which assess the validity of such information for predicting unhappiness or dissatisfaction with a career in medicine. Here we combine data from a long-term prospective study of medical student selection and training, with an experimental approach in which a large number of assessors used a paired comparison technique to predict outcome. Methods Data from a large-scale prospective study of students applying to UK medical schools in 1990 were used to identify 40 pairs of doctors, matched by sex, for whom personal statements and referees' reports were available, and who in a 2002/3 follow-up study, one pair member was very satisfied and the other very dissatisfied with medicine as a career. In 2005, 96 assessors, who were experienced medical school selectors, doctors, medical students or psychology students, used information from the doctors' original applications to judge which member of each pair of doctors was the happier, more satisfied doctor. Results None of the groups of assessors were significantly different from chance expectations in using applicants' personal statements and the referees' reports to predict actual future satisfaction or dissatisfaction, the distribution being similar to binomial expectations. However judgements of pairs of application forms from pairs of doctors showed a non-binomial distribution, indicating consensus among assessors as to which doctor would be the happy doctor (although the consensus was wrong in half the cases. Assessors taking longer to do the task concurred more. Consensus judgements seem mainly to be based on referees' predictions of academic achievement (even though academic achievement is not actually a valid predictor of happiness or satisfaction. Conclusion

  12. Liquid Li based neutron source for BNCT and science application

    International Nuclear Information System (INIS)

    Horiike, H.; Murata, I.; Iida, T.; Yoshihashi, S.; Hoashi, E.; Kato, I.; Hashimoto, N.; Kuri, S.; Oshiro, S.

    2015-01-01

    Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of "7Li(p,n)"7Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. - Highlights: • Liquid lithium (Li) is a candidate material for a target of intense neutron source. • An accelerator based neutron source with p-liquid Li target for boron neutron capture therapy is under development in Osaka University, Japan. • In our system, the harmful radiation dose due to rays and fast neutrons will be suppressed very low. • The system performance are very promising as a state of art cancer treatment system. • The project is planned as a joint undertaking between industries and Osaka University.

  13. Stability of high-speed lithium sheet jets for the neutron source in Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Nakagawa, Masamichi; Takahashi, Minoru; Aritomi, Masanori; Kobayashi, Toru

    2014-01-01

    The stability of high-speed liquid lithium sheet jets was analytically studied for the neutron source in Boron Neutron Capture Therapy (BNCT), which makes cancers and tumors curable with cell-level selections and hence high QOL. The object of our research is to realize the thin and high-speed plane sheet jets of liquid lithium in a high-vacuum as an accelerator target. Linear analysis approach is made to the stability on thin plane sheet jets of liquid lithium in a high-vacuum, and then our analytical results were compared with the previous experimental ones. We proved that the waves of surface tension on thin lithium sheet jets in a high-vacuum are of supercritical flows and neutral stable under about 17.4 m/s in flow velocity and that the fast non-dispersive anti-symmetric waves are more significant than the very slow dispersive symmetric waves. We also formulated the equation of shrinking angle in isosceles-triangularly or isosceles-trapezoidal shrinking sheet jets corresponding to the Mach angle of supersonic gas flows. This formula states universally the physical meaning of Weber number of sheet jets on the wave of surface tension in supercritical flows. We obtained satisfactory prospects (making choice of larger flow velocity U and larger thickness of sheet a) to materialize a liquid target of accelerator in BNCT. (author)

  14. Neutron matter properties using generalized Skyrme force

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Ramadan, Kh.A.

    2002-01-01

    The generalized Skyrme potential is used to calculate the properties of neutron matter in the form of the Thomas–Fermi model. The binding energy per particle, spin symmetry energy, free energy, pressure, entropy, sound velocity and magnetic susceptibility are calculated as a function of density ρ. The results are comparable with those obtained by Friedman and Pandharipande, who used the Urbana v 14 potential plus an effective repulsive three-body force. (author)

  15. Analysis of fluid fuel flow to the neutron kinetics on molten salt reactor FUJI-12

    Energy Technology Data Exchange (ETDEWEB)

    Aji, Indarta Kuncoro, E-mail: indartaaji@s.itb.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40132 (Indonesia); Waris, Abdul, E-mail: awaris@fi.itb.ac.id; Permana, Sidik [Nuclear Physics & Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40132 (Indonesia)

    2015-09-30

    Molten Salt Reactor is a reactor are operating with molten salt fuel flowing. This condition interpret that the neutron kinetics of this reactor is affected by the flow rate of the fuel. This research analyze effect by the alteration velocity of the fuel by MSR type Fuji-12, with fuel composition LiF-BeF{sub 2}-ThF{sub 4}-{sup 233}UF{sub 4} respectively 71.78%-16%-11.86%-0.36%. Calculation process in this study is performed numerically by SOR and finite difference method use C programming language. Data of reactivity, neutron flux, and the macroscopic fission cross section for calculation process obtain from SRAC-CITATION (Standard thermal Reactor Analysis Code) and JENDL-4.0 data library. SRAC system designed and developed by JAEA (Japan Atomic Energy Agency). This study aims to observe the effect of the velocity of fuel salt to the power generated from neutron precursors at fourth year of reactor operate (last critical condition) with number of multiplication effective; 1.0155.

  16. Feasibility of calibration of liquid sodium flowmeters by neutron activation techniques

    International Nuclear Information System (INIS)

    Kehler, P.

    1976-07-01

    Velocities of fluids in pipes can be measured by injecting radioactive tracers into the fluid and recording the activity downstream of the injection point. One convenient method of injecting radioactive tracers is by neutron activation of the fluid itself. The present report describes a FORTRAN program that can be used for the prediction of the counting rates of fluid flow tests performed with a pulsed neutron source and a scintillation detector. The program models the flow profile and the mixing of the fluid, the attenuation of neutrons and gamma rays in the fluid, and the geometric arrangement of the source and the detector. Using this program, an experiment for the measurement of the secondary sodium flow of the EBR-II was optimized. A pulsed D,T neutron source and a 5 in. x 5 in. NaI detector will be used in the EBR-II test. Under optimized conditions, the expected accuracy of the flow measurement is about 2 percent

  17. Neutron--neutron logging

    International Nuclear Information System (INIS)

    Allen, L.S.

    1977-01-01

    A borehole logging tool includes a steady-state source of fast neutrons, two epithermal neutron detectors, and two thermal neutron detectors. A count rate meter is connected to each neutron detector. A first ratio detector provides an indication of the porosity of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two epithermal neutron detectors. A second ratio detector provides an indication of both porosity and macroscopic absorption cross section of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two thermal neutron detectors. By comparing the signals of the two ratio detectors, oil bearing zones and salt water bearing zones within the formation being logged can be distinguished and the amount of oil saturation can be determined. 6 claims, 2 figures

  18. The Neutron, a Tool and an Object for Fundamental and Nuclear Physics Studies

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The Institut Laue-Langevin (ILL) is an international research institute which operates the currently most powerful source of neutrons in the world, a 58 MW reactor. The neutron beams provided by the reactor feed a broad range of instruments which are dedicated to a wide variety of research activities. The majority of instruments are dedicated to the study of solid-state physics, materials science, chemistry, the biosciences, and earth sciences. However, nuclear and low energy particle physics studies are also vigorously pursued with the aid of neutrons. The talk will mainly concentrate on this latter aspect. We make use of hot, thermal, cold, and ultra-cold neutrons with velocities of between a few kilometers and a few meters per second, corresponding to kinetic energies in the electronvolt-to-nanoelectronvolt range. It will be briefly discussed how thermal neutrons can be used to investigate the structure and behavior of nuclei by generating excited nuclear states. The main part of the talk will be dedicated...

  19. Uses of dense magnetized plasmas as neutron sources

    International Nuclear Information System (INIS)

    Gonzalez, Jose Hector

    2004-01-01

    In this work, a lumped parameter model for Plasma Focus is presented.A fast running computer code was developed, specially focused to the calculation of the neutron production in Deuterium-filled devices.This code is suitable to parameters optimization at the conceptual engineering stage.The kinematics of the current sheet is represented by a plane, 2D snowplow model.It is complemented with sensible estimations for the current sheet characteristics (density n and temperature T).After the radial collapse, a one fluid MHD model with velocity profiles for the particles trapped inside the pinch is proposed.Then, assuming thermal equilibrium in the plasma, the neutron production by termofusion can be estimated.The dynamics equations are coupled with the electrical circuit. A computer code in FORTRAN language was programmed to solve this set of equations.A powerful numerical integrator for first order differential equations is used, and the code can perform an estimation of the neutron production very quickly.The resulting neutron yield and dynamics predictions have been compared against experimental results of Plasma Focus devices from all around the world, for different geometric and energetic conditions.The effective parameters of the model were validated using those experimental measurements. The presented model ultimately calculates the neutron production given the geometric and energetic parameters, and the filling pressure

  20. LOFT experimental measurements uncertainty analyses. Volume XX. Fluid-velocity measurement using pulsed-neutron activation

    International Nuclear Information System (INIS)

    Lassahn, G.D.; Taylor, D.J.N.

    1982-08-01

    Analyses of uncertainty components inherent in pulsed-neutron-activation (PNA) measurements in general and the Loss-of-Fluid-Test (LOFT) system in particular are given. Due to the LOFT system's unique conditions, previously-used techniques were modified to make the volocity measurement. These methods render a useful, cost-effective measurement with an estimated uncertainty of 11% of reading

  1. Two-dimensional selector type 2X3; Selecteur bidimensionnel type 2X3; Dvukhmernyj selektor tipa 2X3; Selector bidimensional tipo 2X3

    Energy Technology Data Exchange (ETDEWEB)

    Amram, Y [Centre d' Etudes Nucleaires de Saclay (France)

    1962-04-15

    This selector is intended for study of (n, {gamma}) reactions and has 2{sup 16} channels (1024 time channels and 64 amplitude channels). The characteristics (arrival time and amplitude) of each significant event are recorded, after coding, on a sixteen-track magnetic tape. The examination of the information on the tape is carried out in sections on a results analysis unit consisting of ae memory with 1024 channels which totals events having the same characteristics within an amplitude-time range set by the operator. The instrument has the following general characteristics: time selection, 1024 channels of width between 0.1 and 6.4 {mu}S divided into eight zones of interest of 128 channels; amplitude selection, 64 channels 0.25 to 1 V wide; average dead time, 7 {mu}s; resolution time of the complete apparatus is less than 20 {mu}s; conditioning for reading: it is possible to read a spectrum of times of flight in an amplitude band contained within any two limits. A similar operation can be carried out simultaneously for four amplitude spectra. (author) [French] Ce selecteur, destine a l'etude de reactions (n, {gamma}), comporte 2{sup 16} canaux (1024 canaux de temps x 64 canaux d'amplitude). Les caracteristiques (temps d'arrivee et amplitude) de chaque evenement interessant sont enregistrees, apres codage, sur une bande magnetique a seize pistes. Le depouillement du contenu de la bande magnetique s'effectue par parties sur un bloc d'exploitation de resultats comportant une memoire a 1024 canaux qui totalise les evenements presentant les memes caracteristiques a l'interieur d'un domaine amplitude-temps delimite par l'utilisateur. L'appareil possede les caracteristiques generales suivantes. Selection de temps, 1024 canaux de largeurs comprises entre 0,1 et 6,4 {mu}s groupes en huit zones d'interet de 128 canaux; selection d'amplitude, 64 canaux de 0,25 a 1 V de largeur; temps mort moyen, 7 {mu}s; temps de resolution de l'appareil complet, < 20 {mu}s; conditionnement a

  2. Searching plutonium from a travelling vehicle by neutron measurements

    International Nuclear Information System (INIS)

    Rosenstock, W.; Koeble, T.; Hilger, P.; Engelen, J.

    2001-01-01

    less for higher burn up. In case of weapon grade plutonium this neutron intensity corresponds to a quantity of 3.5 kg. When driving slowly (velocity approx. 10 km/h) past the house in a distance of about 5 m a significant rise in count rate of up to 130 cps was monitored in the module row faced toward the house. Passing on the street in a distance of 10 m still a rise in count rate was monitored for velocities up to 10 km/h: we measured 25 - 30 cps. For strong sources neutron coincidences may be measured in addition. If coincidences are recorded this is a clear evidence for fissionable material. The measurements show that such fissionable material can be detected clearly and easily from a car. This system may be used to discover illicit trafficking of nuclear material and to prohibit nuclear proliferation

  3. Neutron scattering studies of crude oil viscosity reduction with electric field

    Science.gov (United States)

    Du, Enpeng

    Small-angle neutron scattering (SANS) is a very powerful laboratory technique for micro structure research which is similar to the small angle X-ray scattering (SAXS) and light scattering for microstructure investigations in various materials. In small-angle neutron scattering (SANS) technique, the neutrons are elastically scattered by changes of refractive index on a nanometer scale inside the sample through the interaction with the nuclei of the atoms present in the sample. Because the nuclei of all atoms are compact and of comparable size, neutrons are capable of interacting strongly with all atoms. This is in contrast to X-ray techniques where the X-rays interact weakly with hydrogen, the most abundant element in most samples. The SANS refractive index is directly related to the scattering length density and is a measure of the strength of the interaction of a neutron wave with a given nucleus. It can probe inhomogeneities in the nanometer scale from 1nm to 1000nm. Since the SANS technique probes the length scale in a very useful range, this technique provides valuable information over a wide variety of scientific and technological applications, including chemical aggregation, defects in materials, surfactants, colloids, ferromagnetic correlations in magnetism, alloy segregation, polymers, proteins, biological membranes, viruses, ribosome and macromolecules. Quoting the Nobel committee, when awarding the prize to C. Shull and B. Brockhouse in 1994: "Neutrons tell you where the atoms are and what the atoms do". At NIST, there is a single beam of neutrons generated from either reactor or pulsed neutron source and selected by velocity selector. The beam passes through a neutron guide then scattered by the sample. After the sample chamber, there are 2D gas detectors to collect the elastic scattering information. SANS usually uses collimation of the neutron beam to determine the scattering angle of a neutron, which results in an even lower signal-to-noise ratio for

  4. Methods of neutron spectrum calculation from measured reaction velocities in SAIPS

    International Nuclear Information System (INIS)

    Berzonis, M.A.; Bondars, Kh.Ya.

    1981-01-01

    When a user (physicist) needs to perform calculations, he faces a number of problems: obtaining or generating calculation programs, comparing these programs, generating a library of reference spectra, study of calculated spectra and so on. This means routine work which is duplicated in many laboratories. To help solve these problems a computerized information system called SAIPS has been developed, some aspects of which are dealt with in references. The present paper gives a short description of data input into SAIPS and the basic principles of its utilization. SAIPS is based on the ES 1022 computer controlled by the operational system OS ES version 4.1. It contains the programs needed for unfolding spectra, neutron cross-section and reference spectrum libraries and the software for the main system and for computerized calculations

  5. Measurement of two-phase flow variables in a BWR by analysis of in-core neutron detector noise signals

    International Nuclear Information System (INIS)

    Stekelenburg, A.J.C.; Hagen, T.H.J.J. van der

    1996-01-01

    In this paper, the state of the art of the measurement of two-phase flow variables in a boiling water reactor (BWR) by analysis of in-core neutron detector noise signals is given. It is concluded that the neutronic processes involved in neutron noise are quite well understood, but that little is known about the density fluctuations in two-phase flow which are the main cause of the neutron noise. For this reason, the neutron noise measurements, like the well known two-detector velocity measurements, are still difficult to interpret. By analyzing neutron noise measurements in a natural circulation cooled BWR, it is illustrated that, once a theory on the density fluctuations is developed, two-phase flow can be monitored with a single in-core detector. (author). 70 refs, 4 figs

  6. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  7. Liquid Li based neutron source for BNCT and science application.

    Science.gov (United States)

    Horiike, H; Murata, I; Iida, T; Yoshihashi, S; Hoashi, E; Kato, I; Hashimoto, N; Kuri, S; Oshiro, S

    2015-12-01

    Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of (7)Li(p,n)(7)Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Neutronics of pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, poisoning, etc are discussed, aiming at a high performance pulsed spallation source

  9. MCNP simulation to optimise in-pile and shielding parts of the Portuguese SANS instrument.

    Science.gov (United States)

    Gonçalves, I F; Salgado, J; Falcão, A; Margaça, F M A; Carvalho, F G

    2005-01-01

    A Small Angle Neutron Scattering instrument is being installed at one end of the tangential beam tube of the Portuguese Research Reactor. The instrument is fed using a neutron scatterer positioned in the middle of the beam tube. The scatterer consists of circulating H2O contained in a hollow disc of Al. The in-pile shielding components and the shielding installed around the neutron selector have been the object of an MCNP simulation study. The quantities calculated were the neutron and gamma-ray fluxes in different positions, the energy deposited in the material by the neutron and gamma-ray fields, the material activation resulting from the neutron field and radiation doses at the exit wall of the shutter and around the shielding. The MCNP results are presented and compared with results of an analytical approach and with experimental data collected after installation.

  10. CFD simulation of the pulsed neutron activation technique for water flow measurements

    International Nuclear Information System (INIS)

    Mattsson, H.; Nordlund, A.

    2005-01-01

    A pulse neutron activation (PNA) flowmeter uses a radioactive substance to measure water flow in pipes. The water in the pipe is bombarded with neutron pulses, thus introducing activity into the pipe. The activity is then transported and mixed with the flow. Gamma radiation emitted from the activity is measured with one or two detectors downstream from the activation point. The average velocity of the water is calculated using the time-resolved signal from the detector. The CFD program FLUENT was used to simulate the transport and mixing of the activity induced in the pipe. The turbulence of the flow is described with the k-ε model. Some parameters affecting a PNA measurement have been investigated. From the calculations it was possible to quantify how much the average initial velocity of the activity differs from the average velocity of the water. Results also show that activity initially produced far away from the wall has a substantial effect on the detector signal. To accurately simulate the detector signal it is necessary to include activity produced in a large part of the pipe. The results also indicate that the collimation of the detectors have a significant impact on the data and should be included when evaluating simulated data. Three different response functions were also tested. (authors)

  11. Neutron-capture nucleosynthesis in the first stars

    International Nuclear Information System (INIS)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-01-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars.

  12. Neutron radiography with ultracold neutrons

    International Nuclear Information System (INIS)

    Bates, J.C.

    1981-01-01

    The neutron transmission factor of very thin films may be low if the neutron energy is comparable to the pseudo-potential of the film material. Surprisingly, perhaps, it is relatively easy to obtain neutrons with such low energies in sufficient numbers to produce neutron radiographs. (orig.)

  13. Basic physical phenomena, neutron production and scaling of the dense plasma focus

    International Nuclear Information System (INIS)

    Kaeppeler, H.J.

    This paper presents an attempt at establishing a model theory for the dense plasma focus in order to present a consistent interpretation of the basic physical phenomena leading to neutron production from both acceleration and thermal processes. To achieve this, the temporal history of the focus is divided into the compression of the plasma sheath, a qiescent and very dense phase with ensuing expansion, and an instable phase where the focus plasma is disrupted by instabilities. Finally, the decay of density, velocity and thermal fields is considered. Under the assumption that Io 2 /sigmaoRo 2 = const and to/Tc = const, scaling laws for plasma focus devices are derived. It is shown that while generally the neutron yield scales with the fourth power of maximum current, neutron production from thermal processes becomes increasingly important for large devices, while in the small devices neutron production from acceleration processes is by far predominant. (orig.) [de

  14. Application of the fractional neutron point kinetic equation: Start-up of a nuclear reactor

    International Nuclear Information System (INIS)

    Polo-Labarrios, M.-A.; Espinosa-Paredes, G.

    2012-01-01

    Highlights: ► Neutron density behavior at reactor start up with fractional neutron point kinetics. ► There is a relaxation time associated with a rapid variation in the neutron flux. ► Physical interpretation of the fractional order is related with non-Fickian effects. ► Effect of the anomalous diffusion coefficient and the relaxation time is analyzed. ► Neutron density is related with speed and duration of the control rods lifting. - Abstract: In this paper we present the behavior of the variation of neutron density when the nuclear reactor power is increased using the fractional neutron point kinetic (FNPK) equation with a single-group of delayed neutron precursor. It is considered that there is a relaxation time associated with a rapid variation in the neutron flux and its physical interpretation of the fractional order is related with non-Fickian effects from the neutron diffusion equation point of view. We analyzed the case of increase the nuclear reactor power when reactor is cold start-up which is a process of inserting reactivity by lifting control rods discontinuously. The results show that for short time scales of the start-up the neutronic density behavior with FNPK shows sub-diffusive effects whose absorption are government by control rods velocity. For large times scale, the results shows that the classical equation of the neutron point kinetics over predicted the neutron density regarding to FNPK.

  15. Neutron Skins and Neutron Stars

    OpenAIRE

    Piekarewicz, J.

    2013-01-01

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ("PREX") at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in 208Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron be...

  16. On neutron star/supernova remnant associations

    OpenAIRE

    Gvaramadze, V. V.

    2000-01-01

    It is pointed out that a cavity supernova (SN) explosion of a moving massive star could result in a significant offset of the neutron star (NS) birth-place from the geometrical centre of the supernova remnant (SNR). Therefore: a) the high implied transverse velocities of a number of NSs (e.g. PSR B1610-50, PSR B1757-24, SGR0525-66) could be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR; c) the circle of possibl...

  17. Role of magnetic interactions in neutron stars

    Directory of Open Access Journals (Sweden)

    Adhya Souvik Priyam

    2015-01-01

    Full Text Available In this work, we present a calculation of the non-Fermi liquid correction to the specific heat of magnetized degenerate quark matter present at the core of the neutron star. The role of non-Fermi liquid corrections to the neutrino emissivity has been calculated beyond leading order. We extend our result to the evaluation of the pulsar kick velocity and cooling of the star due to such anomalous corrections and present a comparison with the simple Fermi liquid case.

  18. Fast neutron dosimetry: [Progress report, 1986-1987

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.; Gould, M.N.; Meisner, L.F.; Pearson, D.W.

    1987-01-01

    A new research area was initiated in ultrasoft x-rays with the University of Wisconsin 1-GeV electron storage ring used as a radiation source. A new beam line and irradiation apparatus was designed and constructed. Amongst the distinguishing features are an irradiation vessel of considerable generality allowing many types of radiological/biological experiments to be performed; the ability to maintain low-pressure, high humidity environments with good control; and a computer controlled sample slide for [X,Y,Z] motions of high precision that allows fully controlled velocities and accelerations for complex sample irradiations. Work in the area of chromosomal aberration studies has continued after the completion of the investigation into the possible synergistic effects of mixed beams of neutrons and photons. Of special interest is the damage dependence on absorbed dose and dose rate for low-dose and low-dose rate exposures to high LET radiation. A unique microdosimetric instrument was employed in the continuing effort to measure dose distribution in LET from fast neutron irradiation of metal-metal oxide walls. Our purpose is to determine this distribution for oxygen, an element of critical importance to fast neutron dosimetry. 31 refs., 7 figs., 2 tabs

  19. Neutron scattering on liquid He4 at high momentum transfers

    International Nuclear Information System (INIS)

    Parlinski, K.

    1975-01-01

    Using the Sears method of expansion of the dynamic structure factor into a series over the inverse powers of the wave vector and five moments of the velocity correlation function, the distribution of neutrons scattered on liquid helium at T=0 K and at the momentum transfer k=14.33 A -1 is calculated. The calculated distribution takes into account the interaction among helium atoms. The distributions are compared with the experimental data. The results show that proper information of the occupation fraction of the zero-momentum state - the condensate - can be obtained by the neutron scatterng method at high-momentum transfers only when the interaction among helium atoms is taken into account. (author)

  20. Neutron-neutron probe for uranium exploration

    International Nuclear Information System (INIS)

    Smith, R.C.

    1979-01-01

    A neutron activation probe for assaying the amount of fissionable isotopes in an ore body is described which comprises a casing which is movable through a borehole in the ore body, a neutron source and a number of delayed neutron detectors arranged colinearly in the casing below the neutron source for detecting delayed neutrons

  1. Measurement of the temperature of the neutrons in reactor G1; Mesure de la temperature des neutrons dans la pile G1

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, V; Sautiez, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    A precise experimental method has been adapted to the analysis of the spectrum of neutrons in the thermal region. This method uses the technique of modulation applied to a beam of neutrons issuing from a characteristic point in the pile. The analysis of the spectrum is made by adjusting, by the method of least squares, an analytical form to the experimental results. In this report are given the results obtained with a beam from the centre of the moderator of G1. The spectrum of this beam essentially represents the spectrum of the neutrons in the moderator. The most probable velocity was determined by means of Maxwell's functions. The measurements were made of different moderator temperatures between 304 deg. K and 435 deg. K. (author) [French] Une methode experimentale precise a ete mise au point pour l'analyse du spectre des neutrons dans le domaine thermique. Cette methode utilise la technique de la modulation appliquee a un faisceau de neutrons issu d'un point caracteristique de la pile. L'analyse du spectre est faite en ajustant par la methode des moindres carres une forme analytique aux resultats experimentaux. Dans ce rapport, on donne les resultats obtenus sur un faisceau du centre du moderateur de G1. Le spectre de ce faisceau represente convenablement le spectre des neutrons dans le moderateur. On s'est limite ici a une fonction de Maxwell dont on a recherche la vitesse la plus probable. Les mesures ont ete faites avec une temperature du moderateur variant entre 304 deg. K et 435 deg. K. (auteur)

  2. Quantitative neutron radiography using neutron absorbing honeycomb

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.

    1993-01-01

    This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)

  3. Dynamic theory of neutron diffraction from a moving grating

    Energy Technology Data Exchange (ETDEWEB)

    Bushuev, V. A., E-mail: vabushuev@yandex.ru [Moscow State University (Russian Federation); Frank, A. I.; Kulin, G. V. [Joint Institute for Nuclear Research (Russian Federation)

    2016-01-15

    A multiwave dynamic theory of diffraction of ultracold neutrons from a moving phase grating has been developed in the approximation of coupled slowly varying amplitudes of wavefunctions. The effect of the velocity, period, and height of grooves of the grating, as well as the spectral angular distribution of the intensity of incident neurons, on the discrete energy spectrum and the intensity of diffraction reflections of various orders has been analyzed.

  4. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  5. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1994-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  6. A combined system for the generation of an intense cold neutron beam with a medium power research reactor

    International Nuclear Information System (INIS)

    Utsuro, M.; Okumura, K.

    1989-01-01

    A system consisting of a very cold moderator and a neutron-accelerating high speed turbine is proposed for the intensification of a cold neutron beam in a medium power research reactor up to the level applicable to inelastic neutron scattering spectrometers. A numerical result for 5 cm thick solid ortho-deuterium at a temperature of about 4 K and a turbine with a blade velocity of about 350 m/s gives an output intensity of monochromatic neutrons of about 10 7 n/cm 2 at an energy of about 3.5 meV with an energy width of about 0.2 meV for a typical case of a 5 MW reactor. (orig.)

  7. Thin shell, high velocity inertial confinement fusion implosions on the national ignition facility.

    Science.gov (United States)

    Ma, T; Hurricane, O A; Callahan, D A; Barrios, M A; Casey, D T; Dewald, E L; Dittrich, T R; Döppner, T; Haan, S W; Hinkel, D E; Berzak Hopkins, L F; Le Pape, S; MacPhee, A G; Pak, A; Park, H-S; Patel, P K; Remington, B A; Robey, H F; Salmonson, J D; Springer, P T; Tommasini, R; Benedetti, L R; Bionta, R; Bond, E; Bradley, D K; Caggiano, J; Celliers, P; Cerjan, C J; Church, J A; Dixit, S; Dylla-Spears, R; Edgell, D; Edwards, M J; Field, J; Fittinghoff, D N; Frenje, J A; Gatu Johnson, M; Grim, G; Guler, N; Hatarik, R; Herrmann, H W; Hsing, W W; Izumi, N; Jones, O S; Khan, S F; Kilkenny, J D; Knauer, J; Kohut, T; Kozioziemski, B; Kritcher, A; Kyrala, G; Landen, O L; MacGowan, B J; Mackinnon, A J; Meezan, N B; Merrill, F E; Moody, J D; Nagel, S R; Nikroo, A; Parham, T; Ralph, J E; Rosen, M D; Rygg, J R; Sater, J; Sayre, D; Schneider, M B; Shaughnessy, D; Spears, B K; Town, R P J; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-04-10

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165  μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

  8. Neutron detection efficiency determinations for the TUNL neutron-neutron and neutron-proton scattering-length measurements

    International Nuclear Information System (INIS)

    Trotter, D.E. Gonzalez; Meneses, F. Salinas; Tornow, W.; Crowell, A.S.; Howell, C.R.; Schmidt, D.; Walter, R.L.

    2009-01-01

    The methods employed and the results obtained from measurements and calculations of the detection efficiency for the neutron detectors used at Triangle Universities Nuclear Laboratory (TUNL) in the simultaneous determination of the 1 S 0 neutron-neutron and neutron-proton scattering lengths a nn and a np , respectively, are described. Typical values for the detector efficiency were 0.3. Very good agreement between the different experimental methods and between data and calculation has been obtained in the neutron energy range below E n =13MeV.

  9. Deuteron beam interaction with Li jet for a neutron source test facility

    International Nuclear Information System (INIS)

    Hassanein, A.

    1995-09-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium-lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (>14 MeV) neutrons required to simulate a fusion environment via the Li (d,n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities

  10. Deuteron beam interaction with lithium jet in a neutron source test facility

    International Nuclear Information System (INIS)

    Hassanein, A.

    1996-01-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium-lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (≥14 MeV) neutrons required to simulate a fusion environment via the Li (d,n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities. (orig.)

  11. Instantaneous axial velocity of a radioactive tracer determined with radioactive particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Fraguio, Maria Sol; Cassanello, Miryan C., E-mail: miryan@di.fcen.uba.a [Universidad de Buenos Aires (Argentina). Facultad de Ciencias Exactas y Naturales. Programa de Investigacion y Desarrollo de Fuentes Alternativas de Materias Primas y Energia (PINMATE); Cardona, Maria Angelica; Hojman, Daniel, E-mail: cardona@tandar.cnea.gov.a [CONICET, Buenos Aires (Argentina); Somacal, Hector [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina). Centro Atomico Constituyentes. Dept. de Fisica

    2009-07-01

    Radioactive Particle Tracking (RPT) is a technique that has been successfully used to get features of the liquid and/or the solid motion in multiphase contactors. It is one of the rare techniques able to provide experimental data in dense and strongly turbulent multiphase media. Validation of the technique has always been based on comparing the estimated mean velocity to an imposed mean velocity although the extracted features are frequently related to the instantaneous velocities. The present work pursues the analysis, through calibration experiments, of the ability of RPT to get the actual tracer instantaneous velocities. With this purpose, the motion of a radioactive tracer attached to a moving rod driven by a pneumatic system is reconstructed from the combined response of an array of 10 NaI(Tl) scintillation detectors. Simultaneously, the tracer motion is registered through an encoder able to establish the axial tracer coordinate with high precision and high time resolution. The tracer is a gold particle, activated by neutron bombardment. The rod is moved at different velocities and it travels upwards and downwards close to the column centre. A mini-pilot scale bubble column is used as the test facility. The model liquid is tap water in batch mode and the gas is air, flowing at different gas velocities, spanning the homogeneous and the heterogeneous flow regimes. Time series of the entirety response of all the detectors, while the rod is moving at different imposed velocities within the two phase emulsion, are measured with a sampling period of 0.03 s during about 2 minutes. The instantaneous tracer positions and velocities reconstructed from RPT and the one obtained from the encoder response are compared under different operating conditions and for different tracer velocities. (author)

  12. Neutron detection efficiency determinations for the TUNL neutron-neutron and neutron-proton scattering-length measurements

    Energy Technology Data Exchange (ETDEWEB)

    Trotter, D.E. Gonzalez [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: crowell@tunl.duke.edu; Meneses, F. Salinas [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: tornow@tunl.duke.edu; Crowell, A.S.; Howell, C.R. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Schmidt, D. [Physikalisch-Technische Bundesanstalt, D-38116, Braunschweig (Germany); Walter, R.L. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2009-02-11

    The methods employed and the results obtained from measurements and calculations of the detection efficiency for the neutron detectors used at Triangle Universities Nuclear Laboratory (TUNL) in the simultaneous determination of the {sup 1}S{sub 0} neutron-neutron and neutron-proton scattering lengths a{sub nn} and a{sub np}, respectively, are described. Typical values for the detector efficiency were 0.3. Very good agreement between the different experimental methods and between data and calculation has been obtained in the neutron energy range below E{sub n}=13MeV.

  13. THE UNREASONABLE WEAKNESS OF R -PROCESS COSMIC RAYS IN THE NEUTRON-STAR-MERGER NUCLEOSYNTHESIS SCENARIO

    Energy Technology Data Exchange (ETDEWEB)

    Kyutoku, Koutarou [Interdisciplinary Theoretical Science (iTHES) Research Group, RIKEN, Wako, Saitama 351-0198 (Japan); Ioka, Kunihito, E-mail: koutarou.kyutoku@riken.jp [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502 (Japan)

    2016-08-10

    We reach the robust conclusion that, by combining the observed cosmic rays of r -process elements with the fact that the velocity of the neutron-star-merger ejecta is much higher than that of the supernova ejecta, either (1) the reverse shock in the neutron-star-merger ejecta is a very inefficient accelerator that converts less than 0.003% of the ejecta kinetic energy to the cosmic-ray energy or (2) the neutron star merger is not the origin of the Galactic r -process elements. We also find that the acceleration efficiency should be less than 0.1% for the reverse shock of the supernova ejecta with observed cosmic rays lighter than the iron.

  14. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF.

    Science.gov (United States)

    Zylstra, A B; Gatu Johnson, M; Frenje, J A; Séguin, F H; Rinderknecht, H G; Rosenberg, M J; Sio, H W; Li, C K; Petrasso, R D; McCluskey, M; Mastrosimone, D; Glebov, V Yu; Forrest, C; Stoeckl, C; Sangster, T C

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  15. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  16. Practical adjoint Monte Carlo technique for fixed-source and eigenfunction neutron transport problems

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1981-01-01

    An adjoint Monte Carlo technique is described for the solution of neutron transport problems. The optimum biasing function for a zero-variance collision estimator is derived. The optimum treatment of an analog of a non-velocity thermal group has also been derived. The method is extended to multiplying systems, especially for eigenfunction problems to enable the estimate of averages over the unknown fundamental neutron flux distribution. A versatile computer code, FOCUS, has been written, based on the described theory. Numerical examples are given for a shielding problem and a critical assembly, illustrating the performance of the FOCUS code. 19 refs

  17. High-energy two-neutron removal from Be{sup 10}

    Energy Technology Data Exchange (ETDEWEB)

    Ashwood, N.I.; Freer, M.; Ahmed, S.; Clarke, N.M.; Curtis, N.; Soic, N.; Ziman, V.A. [Birmingham Univ., School of Physics and Astronomy, (United Kingdom); Millener, D.J. [Brookhaven National Lab., Upton, NY (United States); Orr, N.A.; Carstoiu, F.; Angelique, J.C.; Catford, W.N.; Lecouey, J.L.; Marques, F.M.; Normand, G.; Timis, C. [Caen Univ., Lab. de Physique Corpusculaire, ISMRA, IN2P3-CNRS, 14 (France); Carsoiu, F. [Horia Hulubei National institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest-Magurele (Romania); Bouchat, V.; Hanappe, F.; Kerckx, Y.; Materna, T. [Universite Libre de Bruxelles (Belgium); Catford, W.N.; Pain, S.; Timis, C. [Surrey Univ., School of Electronics and Physical Sciences, Guildford (United Kingdom); Horoi, M. [Central Michigan Univ., Physics Dept., Mount Pleasant, MI (United States); Unshakova, A. [Joint Institute for Nuclear Research Dubna (Russian Federation)

    2005-09-15

    A kinetically complete measurement of the {sup 12}C({sup 10}Be, {alpha}+{alpha}+n) and ({sup 10}Be, {alpha}+{alpha}) reactions has been performed at a beam energy of 30 MeV/nucleon. The charged beam velocity particles were detected in an array of Si-CsI detectors placed at zero degrees, and the neutrons in an 81-element neutron array. The coincident detection of the final-state particles, produced in the breakup of {sup 10}Be, allowed the reconstruction of the excitation energy in the {sup 8}Be and {sup 9}Be systems. States in {sup 8}Be were identified, in particular the ground and first-excited states; and in {sup 9}Be, states at 1.68, 2.43, and (2.78, 3.05) MeV were observed. The population of these levels, in particular the 2.43 MeV 5/2- level, suggests that collective excitations play an important role in the neutron removal process. Distorted wave Born approximation and Glauber-type calculations have been used to model the direct neutron removal from the {sup 10}Be ground state and the two-step removal via inelastic excitations of the {sup 10}Be(2{sup +}) and {sup 9}Be(5/2{sup -}) excited states. (authors)

  18. CH2 molecular beam source

    International Nuclear Information System (INIS)

    Porter, R.A.R.; Grosser, A.E.

    1980-01-01

    A molecular beam source of CH 2 is described. Coaxial beams of methylene halide and alkali metal react and the mixture is formed into a molecular beam. Passage through a mechanical velocity selector rotating at a suitably high speed purifies the beam, separating light, fast CH 2 from heavier, slower contaminating species

  19. On the properties of nuclear matter with an excess of neutrons, spin-up neutrons and spin-up protons using effective nucleon-nucleon potential

    International Nuclear Information System (INIS)

    Hassan, M.Y.; Ramadan, S.

    1978-01-01

    The binding energy of nuclear matter with an excess of neutrons, with spin-up neutrons and spin-up protons (characterized by the corresponding parameters αsub(tau)=(N-Z)/A, αsub(n)=(N(up)-N(down))/A, and αsub(p)=(Z(up)-Z(down))/A) contains three symmetry energies: the isospin symmetry energy epsilon sub(tau), the spin symmetry energy epsilon sub(sigma) and the spin-isospin symmetry energy epsilon sub(sigma tau). These energies are calculated using velocity-dependent effective potential of s-wave interaction, which was developed by Dzhibuti and Mamasakhlisov. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the same effective nucleon-nucleon potentials. The spin-spin part of the optical model potential is estimated. (author)

  20. High energy neutron source for materials research and development

    International Nuclear Information System (INIS)

    Odera, M.

    1989-01-01

    Requirements for neutron source for nuclear materials research are reviewed and ESNIT, Energy Selective Neutron Irradiation Test facility proposed by JAERI is discussed. Its principal aims of a wide neutron energy tunability and spectra peaking at each energy to enable characterization of material damage process are demanding but attractive goals which deserve detailed study. It is also to be noted that the requirements make a difference in facility design from those of FMIT, IFMIF and other high energy intense neutron sources built or planned to date. Areas of technologies to be addressed to realize the ESNIT facility are defined and discussed. In order to get neutron source having desired spectral characteristics keeping moderate intensity, projectile and target combinations must be examined including experimentation if necessary. It is also desired to minimize change of flux density and energy spectrum according to location inside irradiation chamber. Extended target or multiple targets configuration might be a solution as well as specimen rotation and choice of combination of projectile and target which has minimum velocity of the center of mass. Though relevant accelerator technology exists, it is to be stressed that considerable efforts must be paid, especially in the area of target and irradiation devices to get ESNIT goal. Design considerations to allow hands-on maintenance and future upgrading possibility are important either, in order to exploit the facility fully for nuclear materials research and development. (author)

  1. Fuel plate stability experiments and analysis for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Swinson, W.F.; Battiste, R.L.; Luttrell, C.R.; Yahr, G.T.

    1992-01-01

    The planned Advanced Neutron Source (ANS) and several existing reactors use closely spaced arrays of involute shaped fuel-plates which are cooled by water flowing through the channels between the plates. There is concern that at certain coolant flow velocities adjacent plates may deflect and touch, with resulting failure of the plates. Experiments have been conducted at the Oak Ridge National Laboratory to examine this potential phenomenon. Results of the experiments and comparison with analytical predictions are reported in this paper. The tests were conducted using full scale epoxy plate models of the aluminum/uranium silicide ANS involute shaped fuel plates. Use of epoxy plates and model theory allowed lower flow velocities and pressures to explore the potential failure mechanism. Plate deflections and channel pressures as function of the flow velocity are examined. Comparisons with mathematical models are noted. 12 refs

  2. Fuel plate stability experiments and analysis for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Swinson, W.F.; Battiste, R.L.; Luttrell, C.R.; Yahr, G.T.

    1993-05-01

    The planned reactor for the Advanced Neutron Source (ANS) will use closely spaced arrays of involute-shaped fuel plates that will be cooled by water flowing through the channels between the plates. There is concern that at certain coolant flow velocities, adjacent plates may deflect and touch, with resulting failure of the plates. Experiments have been conducted at the Oak Ridge National Laboratory to examine this potential phenomenon. Results of the experiments and comparison with analytical predictions are reported. The tests were conducted using full-scale epoxy plate models of the aluminum/uranium silicide ANS involute-shaped fuel plates. Use of epoxy plates and model theory allowed lower flow velocities and pressures to explore the potential failure mechanism. Plate deflections and channel pressures as functions of the flow velocity are examined. Comparisons with mathematical models are noted

  3. Neutron emission from impacted solid LiD samples

    International Nuclear Information System (INIS)

    Kaushik, T.C.; Shyam, A.; Kulkarni, L.V.; Srinivasan, M.

    1993-01-01

    Nylon projectiles with 0.1 g to 0.3 g mass, accelerated to velocities of 0.2-1 km/s using a 60 cm long electromagnetic accelerator (railgun), have been impacted upon solid lithium deuteride (LiD) samples of 3 proportional counters. The output from the BF 3 set-up is monitored in several ways to characterize the possible neutron emission from the target. This includes a simple technique of counting the single channel analyser (SCA) output through a dead-time unit to identify bursts of < 100 μs duration. Counting is started after a delay of ∼ 1 ms to avoid the initial interference from the capacitor bank discharge. The signal is also recorded in a storage oscilloscope from the start of projectile acceleration along with a time marker just before the impact. From a number of shots taken with and without the samples, a significant evidence of neutron emission from the LiD samples appears to emerge. The experiments suggest that approximately 100 neutrons might be generated during every such impact in a duration of < 4 ms. (author). 7 refs., 3 figs

  4. Spin ordered phase transitions in neutron matter under the presence of a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2011-01-01

    In dense neutron matter under the presence of a strong magnetic field, considered in the model with the Skyrme effective interaction, there are possible two types of spin ordered states. In one of them the majority of neutron spins are aligned opposite to magnetic field (thermodynamically preferable state), and in other one the majority of spins are aligned along the field (metastable state). The equation of state, incompressibility modulus and velocity of sound are determined in each case with the aim to find the peculiarities allowing to distinguish between two spin ordered phases.

  5. Pulsed neutron sources for epithermal neutrons

    International Nuclear Information System (INIS)

    Windsor, C.G.

    1978-01-01

    It is shown how accelerator based neutron sources, giving a fast neutron pulse of short duration compared to the neutron moderation time, promise to open up a new field of epithermal neutron scattering. The three principal methods of fast neutron production: electrons, protons and fission boosters will be compared. Pulsed reactors are less suitable for epithermal neutrons and will only be briefly mentioned. The design principle of the target producing fast neutrons, the moderator and reflector to slow them down to epithermal energies, and the cell with its beam tubes and shielding will all be described with examples taken from the new Harwell electron linac to be commissioned in 1978. A general comparison of pulsed neutron performance with reactors is fraught with difficulties but has been attempted. Calculation of the new pulsed source fluxes and pulse widths is now being performed but we have taken the practical course of basing all comparisons on extrapolations from measurements on the old 1958 Harwell electron linac. Comparisons for time-of-flight and crystal monochromator experiments show reactors to be at their best at long wavelengths, at coarse resolution, and for experiments needing a specific incident wavelength. Even existing pulsed sources are shown to compete with the high flux reactors in experiments where the hot neutron flux and the time-of-flight methods can be best exploited. The sources under construction can open a new field of inelastic neutron scattering based on energy transfer up to an electron volt and beyond

  6. Analysis of phase velocity designing on superconducting section of proton Linac for spallation neutron source

    International Nuclear Information System (INIS)

    Ouyang Huafu; Xu Taoguang; Yu Qingchang; Guan Xialing; Luo Zihua

    2001-01-01

    A preliminary design of superconducting section of proton linac for spallation neutron source is made, which includes the design and optimization of the cavity shape and the architecture design of the superconducting section. In addition, the choice of the cell number of the superconducting cavity, the value of the geometric β G , the optimization principles of cavity and the beam dynamic properties are discussed

  7. Neutron radiography using neutron imaging plate

    International Nuclear Information System (INIS)

    Chankow, Nares; Wonglee, Sarinrat

    2008-01-01

    Full text: The aims of this research are to study properties of neutron imaging plate, to obtain a suitable condition for neutron radiography and to use the neutron imaging plate for testing of materials nondestructively. The experiments were carried out by using a neutron beam from the Thai Research Reactor TRR-1/M1 at a power of 1.2 MW. A BAS-ND 2040 FUJI neutron imaging plate and a MX125 Kodak X-ray film/Gadolinium neutron converter screen combination were tested for comparison. It was found that the photostimulated light (PSL) read out of the imaging plate was directly proportional to the exposure time. It was also found that radiography with neutron using the imaging plate was approximately 40 times faster than the conventional neutron radiography using x-ray film/Gd converter screen combination. The sensitivity of the imaging plate to gamma-rays was investigated by using gamma-rays from an 192 Ir and a 60 Co radiographic sources. The imaging plate was found to be 5-6 times less sensitive to gamma-rays than a FUJI BAS-MS 2040 gamma-ray imaging plate. Finally, some specimens were selected to be radiographed with neutrons using the imaging plate and the x-ray film/Gd converter screen combination in comparison to x-rays. Parts containing light elements could be clearly observed by the two neutron radiographic techniques. It could be concluded that the image quality from the neutron imaging plate was comparable to the conventional x-ray film/Gd converter screen combination but the exposure time could be approximately reduced by a factor of 40

  8. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-06-15

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ∼±10% accuracy, and mean neutron energy to ∼±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15−20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ∼±25−40 km/s.

  9. Self-similar Hot Accretion Flow onto a Neutron Star

    Science.gov (United States)

    Medvedev, Mikhail V.; Narayan, Ramesh

    2001-06-01

    We consider hot, two-temperature, viscous accretion onto a rotating, unmagnetized neutron star. We assume Coulomb coupling between the protons and electrons, as well as free-free cooling from the electrons. We show that the accretion flow has an extended settling region that can be described by means of two analytical self-similar solutions: a two-temperature solution that is valid in an inner zone, r~102.5. In both zones the density varies as ρ~r-2 and the angular velocity as Ω~r-3/2. We solve the flow equations numerically and confirm that the analytical solutions are accurate. Except for the radial velocity, all gas properties in the self-similar settling zone, such as density, angular velocity, temperature, luminosity, and angular momentum flux, are independent of the mass accretion rate; these quantities do depend sensitively on the spin of the neutron star. The angular momentum flux is outward under most conditions; therefore, the central star is nearly always spun down. The luminosity of the settling zone arises from the rotational energy that is released as the star is braked by viscosity, and the contribution from gravity is small; hence, the radiative efficiency, η=Lacc/Mc2, is arbitrarily large at low M. For reasonable values of the gas adiabatic index γ, the Bernoulli parameter is negative; therefore, in the absence of dynamically important magnetic fields, a strong outflow or wind is not expected. The flow is also convectively stable but may be thermally unstable. The described solution is not advection dominated; however, when the spin of the star is small enough, the flow transforms smoothly to an advection-dominated branch of solution.

  10. Basic research of neutron radiography using cold neutron beam

    International Nuclear Information System (INIS)

    Oda, Masahiro; Tamaki, Masayoshi; Tasaka, Kanji

    1995-01-01

    As the result of demanding high quality images, now the nuclear reactors which can supply stably intense neutron beam have become the most general neutron source for radiography. For the purpose, mostly thermal neutrons have been used, but it is indispensable to use other neutrons than thermal neutrons for advancing neutron radiography technology and expanding the application fields. The radiography using cold neutrons is most behind in the development because the suitable neutron source was not available in Japan. The neutron sources for exclusively obtaining intense cold neutron beam were installed in the Kyoto University reactor in 1986 and in the JRR-3M of Japan Atomic Energy Research Institute in 1991. Basically as neutron energy lowers, the cross section of substances increases. In certain crystalline substances, the Bragg cutoff arises. The removal of scattered neutrons, the measurement of parallelism of beam and the relation of the thickness of objects with the transmissivity of cold neutrons are described. The imaging by TV method and the cold neutron CT in the CNRF and the simplified neutron CT by film method are reported. (K.I.)

  11. Evaluation of dynamic elasticity module in samples of Portland (type 1) cement paste exposed to neutronic irradiation

    International Nuclear Information System (INIS)

    Rosa Junior, A.A.; Lucki, G.

    1986-01-01

    The fast neutron radiation effects and temperature on Portland cement are studied. The Dynamic Elasticity Module (Ed) in samples of Portland cement paste was evaluated. Ultrassonic technics were applied (resonance frequency and pulse velocity). The samples were irradiated with fast neutrons to fluence of 7,2 x 10 18 n/cm 2 (E approx. 1 MeV), at temperature of 120 + - 5 0 C, due to gamma heating. This temperature was simulated in laboratory in a microwave oven. (Author) [pt

  12. Neutron stars as cosmic neutron matter laboratories

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    Recent developments which have radically changed our understanding of the dynamics of neutron star superfluids and the free precession of neutron stars are summarized, and the extent to which neutron stars are cosmic neutron matter laboratories is discussed. 17 refs., 1 tab

  13. Neutron Star/supernova Remnant Associations

    Science.gov (United States)

    Gvaramadze, V. V.

    We propose a new approach for studying the neutron star/supernova remnant associations, based on the idea that the (diffuse) supernova remnants (SNRs) can be products of an off-centred supernova (SN) explosion in a preexisting bubble created by the wind of a moving massive star. A cavity SN explosion of a moving star results in a considerable offset of the neutron star (NS) birth-place from the geometrical centre of the SNR. Therefore: a) the high transverse velocities inferred for a number of NSs (e.g. PSR B 1610-50, PSR B 1757-24, SGR 0525-66) through their association with SNRs can be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR. Taking into account of these two facts allow us to enlarge the circle of possible NS/SNR associations, and could significantly affect the results of previous studies of NS/SNR associations. The possibilities of our approach are illustrated with the example of the association between PSR B 1706-44 and SNR G 343.1-2.3. We show that this association could be real if both objects are the remnants of a SN exploded within a mushroom-like cavity (created by the SN progenitor wind breaking out of the parent molecular cloud and expanding into an intercloud medium of a much less density). We also show that the SN explosion sites in some middle-aged (shell-like) SNRs could be marked by (compact) nebulae of thermal X-ray emission. The possible detection of such nebulae within middle-aged SNRs could be used for the re-estimation of implied transverse velocities of known NSs or for the search of new stellar remnants possibly associated with these SNRs.

  14. Asymptotic neutron scattering laws for anomalously diffusing quantum particles

    Energy Technology Data Exchange (ETDEWEB)

    Kneller, Gerald R. [Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans (France); Université d’Orléans, Chateau de la Source-Ave. du Parc Floral, 45067 Orléans (France); Synchrotron-SOLEIL, L’Orme de Merisiers, 91192 Gif-sur-Yvette (France)

    2016-07-28

    The paper deals with a model-free approach to the analysis of quasielastic neutron scattering intensities from anomalously diffusing quantum particles. All quantities are inferred from the asymptotic form of their time-dependent mean square displacements which grow ∝t{sup α}, with 0 ≤ α < 2. Confined diffusion (α = 0) is here explicitly included. We discuss in particular the intermediate scattering function for long times and the Fourier spectrum of the velocity autocorrelation function for small frequencies. Quantum effects enter in both cases through the general symmetry properties of quantum time correlation functions. It is shown that the fractional diffusion constant can be expressed by a Green-Kubo type relation involving the real part of the velocity autocorrelation function. The theory is exact in the diffusive regime and at moderate momentum transfers.

  15. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  16. Neutron-capture Nucleosynthesis in the First Stars

    Science.gov (United States)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-04-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and The McDonald Observatory of The University of Texas at Austin.

  17. Quantum mechanical aspects of dynamical neutron polarization

    International Nuclear Information System (INIS)

    Betz, T.; Badurek, G.; Jericha, E.

    2007-01-01

    Dynamic Neutron Polarization (DNP) is a concept which allows to achieve complete polarization of slow neutrons, virtually without any loss of intensity. There the neutrons pass through a combination of a static and a rotating magnetic field in resonance, like in a standard NMR apparatus. Depending on their initial spin state, they end up with different kinetic energies and therefore different velocity. In a succeeding magnetic precession field this distinction causes a different total precession angle. Tuning the field strength can lead to a final state where two original anti-parallel spin states are aligned parallel and hence to polarization. The goal of this work is to describe the quantum mechanical aspects of DNP and to work out the differences to the semi-classical treatment. We show by quantum mechanical means, that the concept works and DNP is feasible, indeed. Therefore, we have to take a closer look to the behavior of neutron wave functions in magnetic fields. In the first Section we consider a monochromatic continuous beam. The more realistic case of a pulsed, polychromatic beam requires a time-dependent field configuration and will be treated in the second Section. In particular the spatial separation of the spin up- and down-states is considered, because it causes an effect of polarization damping so that one cannot achieve a fully polarized final state. This effect is not predicted by the semi-classical treatment of DNP. However, this reduction of polarization is very small and can be neglected in realistic DNP-setups

  18. Study of irradiation damage by fast neutrons in samples of Portland cement

    International Nuclear Information System (INIS)

    Lucki, G.; Rosa Junior, A.A.

    1984-01-01

    The effect of neutron irradiation in samples of Portland cement was evaluated, using the resonance frequency method and pulse velocity of ultra-sound techniques. The samples were divided in three groups: 1) monitoring samples; 2) samples submitted to gamma heating; 3) Irradiated samples. In the sample preparation, it was used the Portland Santa Rita CP 320 cement, and water-cement rate of 0.40 l/Kg. The irradiation was done in the research reactor IEA-R1, at IPEN - CNEN/SP, with an integrated flux of 7.2 x 10 18 n/cm 2 (E approx. 1 MeV). Some damage were detected, due to the neutron flux, and by the thermal effect of gamma heating. (E.G.) [pt

  19. Neutron spectra produced by moderating an isotopic neutron source

    International Nuclear Information System (INIS)

    Carrillo Nunnez, Aureliano; Vega Carrillo, Hector Rene

    2001-01-01

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2 . From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  20. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  1. Neutron cooling and cold-neutron sources (1962); Refroidissement des neutrons et sources de neutrons froids (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Jacrot, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Intense cold-neutron sources are useful in studying solids by the inelastic scattering of neutrons. The paper presents a general survey covering the following aspects: a) theoretical considerations put forward by various authors regarding thermalization processes at very low temperatures; b) the experiments that have been carried out in numerous laboratories with a view to comparing the different moderators that can be used; c) the cold neutron sources that have actually been produced in reactors up to the present time, and the results obtained with them. (author) [French] Des sources intenses de neutrons froids sont utiles pour l'etude des solides par diffusion inelastique des neutrons. On presente une revue d'ensemble: a) des considerations theoriques faites par divers auteurs sur les processus de thermalisation a tres basse temperature; b) des experiences faites dans de nombreux laboratoires pour comparer les divers moderateurs possibles; c) des sources de neutrons froids effectivement realisees dans des piles a ce jour, et des resultats obtenus avec ces sources. (auteur)

  2. High-frame rate imaging of two-phase flow in a thin rectangular channel using fast neutrons.

    Science.gov (United States)

    Zboray, R; Mor, I; Dangendorf, V; Stark, M; Tittelmeier, K; Cortesi, M; Adams, R

    2014-08-01

    We have demonstrated the feasibility of performing high-frame-rate, fast neutron radiography of air-water two-phase flows in a thin channel with rectangular cross section. The experiments have been carried out at the accelerator facility of the Physikalisch-Technische Bundesanstalt. A polychromatic, high-intensity fast neutron beam with average energy of 6 MeV was produced by 11.5 MeV deuterons hitting a thick Be target. Image sequences down to 10 ms exposure times were obtained using a fast-neutron imaging detector developed in the context of fast-neutron resonance imaging. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two phase flow parameters like the volumetric gas fraction, bubble size and mean bubble velocities have been measured. The first results are promising, improvements for future experiments are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Identification of neutron noise sources in a boiling water reactor

    International Nuclear Information System (INIS)

    Sides, W.H. Jr.; Mathis, M.V.; Smith, C.M.

    1977-01-01

    Measurements were made at units 2 and 3 of the Browns Ferry Nuclear Power Plant in order to characterize the noise signatures of the neutron and process signals and to determine the usefulness of such signatures for anomaly detection in BWR-4s. Previous measurements and theoretical analyses of BWR noise by others were concerned with the determination of steam velocity and void fraction (using the local component of neutron noise) and with the sources of global noise. The work described is under a five-part program to develop a complete and systematic analysis and representation of BWR neutron and process noise through complementary measurements and stochastic model developments. The parts are: (1) recording as many neutron detector and process noise signals as are available in a BWR-4; (2) reducing these data to noise signatures in order to perform an empirical analysis of these signatures, and documenting the relationships between the signals from spatially separated neutron detectors and between neutron and process variables; (3) developing spatially dependent neutronic models coupled with thermal-hydraulic models to aid in interpreting the observed relationships among the measured noise signatures, (4) comparing measured noise signatures with model predictions to obtain additional insight into BWR-4 dynamic behavior and to validate the models; and (5) using these models to predict the sensitivity of noise monitoring for detection, surveillance, and diagnosis of postulated in-core anomalies in BWRs. The paper describes the procedures used to obtain the noise recordings and presents initial empirical analysis and observations pertaining to the noise signatures and the relationships between several noise variables in the 0.01- to 1-Hz range. The mathematical models have not been developed sufficiently to report theoretical results or to compare measured spectra with model predictions at this time

  4. Developments in Pulsed Neutron Activation for Determination of Water Flow in Pipes

    CERN Document Server

    Mattsson, H

    2003-01-01

    In PNA (pulsed neutron activation) it is important that the measured data can be related to the total mass flow. In this thesis two fundamental problems of the measurement technique and data treatment have been investigated: transport/mixing and background radiation. The principle of PNA is to introduce a radioactive substance into a pipe by bombarding fluid in the pipe with neutron pulses. The fluid in the pipe is activated and subsequently transported and mixed with the flow. Gamma radiation emitted from the activity is measured with one or two detectors downstream from the activation point. The time-resolved signal from the detectors is used to calculate the average velocity of the water flow. Due to the short distance between the neutron generator and the pipe the activity in the pipe becomes highly inhomogeneous. The transport and mixing of the activity were simulated using colour which was injected into the flow. It was found that the inhomogeneous activity distribution must be taken into account if the...

  5. Neutron radiography

    International Nuclear Information System (INIS)

    Hrdlicka, Z.

    1977-01-01

    Neutron radiography is a radiographic method using a neutron beam of a defined geometry. The neutron source usually consists of a research reactor, a specialized neutron radiography reactor or the 252 Cf radioisotope source. There are two types of the neutron radiography display system, viz., a system producing neutron radiography images by a photographic process or a system allowing a visual display, eg., using a television monitor. The method can be used wherever X-ray radiography is used except applications in the radiography of humans. The neutron radiography unit at UJV uses the WWR-S reactor as the neutron source and both types of the above mentioned display system. (J.P.)

  6. Remote determination of the velocity index and mean streamwise velocity profiles

    Science.gov (United States)

    Johnson, E. D.; Cowen, E. A.

    2017-09-01

    When determining volumetric discharge from surface measurements of currents in a river or open channel, the velocity index is typically used to convert surface velocities to depth-averaged velocities. The velocity index is given by, k=Ub/Usurf, where Ub is the depth-averaged velocity and Usurf is the local surface velocity. The USGS (United States Geological Survey) standard value for this coefficient, k = 0.85, was determined from a series of laboratory experiments and has been widely used in the field and in laboratory measurements of volumetric discharge despite evidence that the velocity index is site-specific. Numerous studies have documented that the velocity index varies with Reynolds number, flow depth, and relative bed roughness and with the presence of secondary flows. A remote method of determining depth-averaged velocity and hence the velocity index is developed here. The technique leverages the findings of Johnson and Cowen (2017) and permits remote determination of the velocity power-law exponent thereby, enabling remote prediction of the vertical structure of the mean streamwise velocity, the depth-averaged velocity, and the velocity index.

  7. Study irradiation damage by fast neutrons in Portland cement by means of ultra-sound

    International Nuclear Information System (INIS)

    Rosa Junior, A.A.

    1988-01-01

    The effect of neutron irradiation in samples of Portland cement paste was evaluated, using the resonance frequency method and pulse velocity of ultra-sound technique. The samples were divide in three groups: 1) Monitoring samples; 2) Samples to gamma heating simulation; 3) Fast neutron irradiated samples in reactor core. Santa Rita Portland cement was utilized for samples preparation with water-cement rate of 0,40 l/kg. The irradiation was performed in the research reactor IEA-R1, at IPEN-CNEN/SP, with an integrated flux of 7,2 X 10 sup(18) n/cm sup(2) (E approx. 1 Mev). The samples of group 2 were submitted to special micro-waves heat treatment-with the same number of cycles of the reactor-which allowed the detection of fast neutron radiation effects within the predominant thermal effects. (author)

  8. Neutron matter, neutron pairing, and neutron drops based on chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Thomas

    2016-10-19

    The physics of neutron-rich systems is of great interest in nuclear and astrophysics. Precise knowledge of the properties of neutron-rich nuclei is crucial for understanding the synthesis of heavy elements. Infinite neutron matter determines properties of neutron stars, a final stage of heavy stars after a core-collapse supernova. It also provides a unique theoretical laboratory for nuclear forces. Strong interactions are determined by quantum chromodynamics (QCD). However, QCD is non-perturbative at low energies and one presently cannot directly calculate nuclear forces from it. Chiral effective field theory circumvents these problems and connects the symmetries of QCD to nuclear interactions. It naturally and systematically includes many-nucleon forces and gives access to uncertainty estimates. We use chiral interactions throughout all calculation in this thesis. Neutron stars are very extreme objects. The densities in their interior greatly exceed those in nuclei. The exact composition and properties of neutron stars is still unclear but they consist mainly of neutrons. One can explore neutron stars theoretically with calculations of neutron matter. In the inner core of neutron stars exist very high densities and thus maybe exotic phases of matter. To investigate whether there exists a phase transition to such phases even at moderate densities we study the chiral condensate in neutron matter, the order parameter of chiral symmetry breaking, and find no evidence for a phase transition at nuclear densities. We also calculate the more extreme system of spin-polarised neutron matter. With this we address the question whether there exists such a polarised phase in neutron stars and also provide a benchmark system for lattice QCD. We find spin-polarised neutron matter to be an almost non-interacting Fermi gas. To understand the cooling of neutron stars neutron pairing is of great importance. Due to the high densities especially triplet pairing is of interest. We

  9. The Los Alamos Neutron Science Center Spallation Neutron Sources

    International Nuclear Information System (INIS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-01-01

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  10. The Los Alamos Neutron Science Center Spallation Neutron Sources

    Science.gov (United States)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  11. Workshop on polarized neutron filters and polarized pulsed neutron experiments

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2004-07-01

    The workshop was held in KEK by thirty-three participants on April 26, 2004. The polarized neutron filter method was only discussed. It consists of three parts; the first part was discussed on the polarized neutron methods, the second part on the polarized neutron experiments and the third on the pulse neutron spectrometer and polarized neutron experiments. The six papers were presented such as the polarized 3 He neutron spin filter, neutron polarization by proton polarized filter, soft master and neutron scattering, polarized neutron in solid physics, polarization experiments by chopper spectroscope and neutron polarization system in superHRPD. (S.Y.)

  12. Neutron matter, symmetry energy and neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, Gandolfi [Los Alamos National Laboratory (LANL); Steiner, Andrew W [ORNL

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  13. Fail-safe neutron shutter used for thermal neutron radiography

    International Nuclear Information System (INIS)

    Sachs, R.D.; Morris, R.A.

    1976-11-01

    A fail-safe, reliable, easy-to-use neutron shutter was designed, built, and put into operation at the Omega West Reactor, Los Alamos Scientific Laboratory. The neutron shutter will be used primarily to perform thermal neutron radiography, but is also available for a highly collimated source of thermal neutrons [neutron flux = 3.876 x 10 6 (neutrons)/(cm 2 .s)]. Neutron collimator sizes of either 10.16 by 10.16 cm or 10.16 by 30.48 cm are available

  14. Scattering of Neutrons on Fluctuations of the Density of the Thin Films

    Directory of Open Access Journals (Sweden)

    S. G. ABDULVAHABOVA

    2016-11-01

    Full Text Available Abstract. The cross section for scattering neutron  on the density of  fluctuations of the  thin films is obtained in the framework of the quantum theory of multiple scattering  in the quasielastic approximation. Inhomogeneity can be caused by dynamic density fluctuations, and be statistical in nature. Fluctuations in the density of the scattering material cause neutron scattering wave. The probability of a collision between a neutron and an atomic nucleus depends on the number of neutrons and on their velocity. The formulas have been obtained under the assumption that the imaginary part of the optical potential is a local operator. It was determined that the scattering in density fluctuations does not contribute to the attenuation of the coherent neutron wave. In the approximation of a thin target the solution of the equation for the total scattering amplitude is identical to the expression obtained in the usual eikonal approximation and differs significantly, at least functionally, from the solution for the case of a thick target. There have been detailed investigations of the reflection and refraction of neutron waves in matter, and the details of their dispersion law have been studied. The results are  hown  also, that  the total cross section for scattering by the complete target becomes universal and does not depend on cross section for scattering by one nucleus.Keywords: 25.40-Ep

  15. Properties of general relativistic irrotational binary neutron stars at the innermost orbit

    International Nuclear Information System (INIS)

    Uryu, K.; Shibata, M.

    2001-01-01

    We investigate properties of binary neutron stars around innermost orbits, assuming that the binary is equal mass and in quasiequilibrium. The quasiequilibrium configurations are numerically computed assuming the existence of a helicoidal Killing vector, conformal flatness for spatial components of the metric, and irrotational velocity field for the neutron stars. The computation is performed for the polytropic equation of state with a wide range of the polytropic index n (= 0.5, 0.66667, 0.8, 1, 1.25), and compactness of neutron stars (M/R) ∞ (= 0.03-0.3). Quasiequilibrium sequences of constant rest mass are appropriate models for the final evolution phase of binary neutron stars. It is found that these sequences are always terminated at the innermost orbit where a cusp (inner Lagrange point) appears at the inner edges of the stellar surface. We apply a turning point method to determine the stability of the innermost orbits and found that the innermost stable circular orbit (ISCO) exists for stiff equations of state (n = 0.5 with any (M/R) ∞ and n = 0.66667 with (M/R) ∞ > or ∼ 0.17). The ISCO for n = 0.5 is carefully analyzed. It is clarified that the ISCO are mainly determined by a hydrodynamic instability for realistic compactness of the neutron stars as 0.14 ∞ < or ∼ 0.2. These configurations at the innermost orbits can be used as initial conditions for fully general relativistic simulation for the binary neutron star merger. (author)

  16. Extraction of the neutron-neutron scattering length ann from kinematically complete neutron-deuteron breakup experiments

    International Nuclear Information System (INIS)

    Witala, H.; Hueber, D.; Gloeckle, W.; Tornow, W.; Gonzalez Trotter, D.E.

    1996-01-01

    Data for the neutron-neutron final-state-interaction cross section obtained recently in a kinematically complete neutron-deuteron breakup experiment have been reanalyzed using rigorous solutions of the three-nucleon Faddeev equations with realistic nucleon-nucleon interactions. A discrepancy was found with respect to a recent analysis based on the W-matrix approximation to the Paris potential. We also estimate theoretical uncertainties in extracting the neutron-neutron scattering length resulting from the use of different nucleon-nucleon interactions and the possible action of the two pion-exchange three-nucleon force. We find that there exists a certain production angle for the interacting neutron-neutron pair where the uncertainties become minimal. (author)

  17. Simulation of complete neutron scattering experiments: from model systems to liquid germanium; Simulation complete d'une experience de diffusion de neutrons: des systemes modeles au germanium liquide

    Energy Technology Data Exchange (ETDEWEB)

    Hugouvieux, V

    2004-11-15

    In this thesis, both theoretical and experimental studies of liquids are done. Neutron scattering enables structural and dynamical properties of liquids to be investigated. On the theoretical side, molecular dynamics simulations are of great interest since they give positions and velocities of the atoms and the forces acting on each of them. They also enable spatial and temporal correlations to be computed and these quantities are also available from neutron scattering experiments. Consequently, the comparison can be made between results from molecular dynamics simulations and from neutron scattering experiments, in order to improve our understanding of the structure and dynamics of liquids. However, since extracting reliable data from a neutron scattering experiment is difficult, we propose to simulate the experiment as a whole, including both instrument and sample, in order to gain understanding and to evaluate the impact of the different parasitic contributions (absorption, multiple scattering associated with elastic and inelastic scattering, instrument resolution). This approach, in which the sample is described by its structure and dynamics as computed from molecular dynamics simulations, is presented and tested on isotropic model systems. Then liquid germanium is investigated by inelastic neutron scattering and both classical and ab initio molecular dynamics simulations. This enables us to simulate the experiment we performed and to evaluate the influence of the contributions from the instrument and from the sample on the detected signal. (author)

  18. Neutron Absorbing Ability Variation in Neutron Absorbing Material Caused by the Neutron Irradiation in Spent Fuel Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hee Dong; Han, Seul Gi; Lee, Sang Dong; Kim, Ki Hong; Ryu, Eag Hyang; Park, Hwa Gyu [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2014-10-15

    In spent fuel storage facility like high density spent fuel storage racks and dry storage casks, spent fuels are stored with neutron absorbing materials installed as a part of those facilities, and they are used for absorbing neutrons emitted from spent fuels. Usually structural material with neutron absorbing material of racks and casks are located around spent fuels, so it is irradiated by neutrons for long time. Neutron absorbing ability could be changed by the variation of nuclide composition in neutron absorbing material caused by the irradiation of neutrons. So, neutron absorbing materials are continuously faced with spent fuels with boric acid solution or inert gas environment. Major nuclides in neutron absorbing material are Al{sup 27}, C{sup 12}, B{sup 11}, B{sup 10} and they are changed to numerous other ones as radioactive decay or neutron absorption reaction. The B{sup 10} content in neutron absorbing material dominates the neutron absorbing ability, so, the variation of nuclide composition including the decrease of B{sup 10} content is the critical factor on neutron absorbing ability. In this study, neutron flux in spent fuel, the activation of neutron absorbing material and the variation of nuclide composition are calculated. And, the minimum neutron flux causing the decrease of B{sup 10} content is calculated in spent fuel storage facility. Finally, the variation of neutron multiplication factor is identified according to the one of B{sup 10} content in neutron absorbing material. The minimum neutron flux to impact the neutron absorbing ability is 10{sup 10} order, however, usual neutron flux from spent fuel is 10{sup 8} order. Therefore, even though neutron absorbing material is irradiated for over 40 years, B{sup 10} content is little decreased, so, initial neutron absorbing ability could be kept continuously.

  19. Neutron optics using transverse field neutron spin echo method

    International Nuclear Information System (INIS)

    Achiwa, Norio; Hino, Masahiro; Yamauchi, Yoshihiro; Takakura, Hiroyuki; Tasaki, Seiji; Akiyoshi, Tsunekazu; Ebisawa, Toru.

    1993-01-01

    A neutron spin echo (NSE) spectrometer with perpendicular magnetic field to the neutron scattering plane, using an iron yoke type electro-magnet has been developed. A combination of cold neutron guider, supermirror neutron polarizer of double reflection type and supermirror neutron analyser was adopted for the spectrometer. The first application of the NSE spectrometer to neutron optics by passing Larmor precessing neutrons through gas, solid and liquid materials of several different lengths which are inserted in one of the precession field have been examined. Preliminary NSE spectra of this sample geometry are discussed. (author)

  20. Neutron radiography

    International Nuclear Information System (INIS)

    Hiraoka, Eiichi

    1988-01-01

    The thermal neutron absorption coefficient is essentially different from the X-ray absorption coefficient. Each substance has a characteristic absorption coefficient regardless of its density. Neutron deams have the following features: (1) neutrons are not transmitted efficiently by low molecular weight substances, (2) they are transmitted efficiently by heavy metals, and (3) the transmittance differs among isotopes. Thus, neutron beams are suitable for cheking for foreign matters in heavy metals and testing of composites consisting of both heavy and light materials. A neutron source generates fast neutrons, which should be converted into thermal neutrons by reducing their energy. Major neutron souces include nuclear reactors, radioisotopes and particle accelerators. Photographic films and television systems are mainly used to observe neutron transmission images. Computers are employed for image processing, computerized tomography and three-dimensional analysis. The major applications of neutron radiography include inspection of neclear fuel; evaluation of material for airplane; observation of fuel in the engine and oil in the hydraulic systems in airplanes; testing of composite materials; etc. (Nogami, K.)

  1. Neutron Dosimetry

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2001-01-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding

  2. Gamma-ray bursts from fast, galactic neutron stars

    International Nuclear Information System (INIS)

    Colgate, S.A.; Leonard, P.J.

    1996-01-01

    What makes a Galactic model of gamma-ray bursts (GBs) feasible is the observation of a new population of objects, fast neutron stars, that are isotropic with respect to the galaxy following a finite period, ∼30 My, after their formation (1). Our Galactic model for the isotropic component of GBs is based upon high-velocity neutron stars (NSs) that have accretion disks. These fast NSs are formed in tidally locked binaries, producing a unique population of high velocity (approx-gt 10 3 kms -1 ) and slowly rotating (8 s) NSs. Tidal locking occurs due to the meridional circulation caused by the conservation of angular momentum of the tidal lobes. Following the collapse to a NS and the explosion, these lobes initially perturb the NS in the direction of the companion. Subsequent accretion (1 to 2 s) occurs on the rear side of the initial motion, resulting in a runaway acceleration of the NS by neutrino emission from the hot accreted matter. The recoil momentum of the relativistic neutrino emission from the localized, down flowing matter far exceeds the momentum drag of the accreted matter. The recoil of the NS is oriented towards the companion, but the NS misses because of the pre-explosion orbital motion. The near miss captures matter from the companion and forms a disk around the NS. Accretion onto the NS from this initially gaseous disk due to the ''alpha'' viscosity results in a soft gamma-ray repeater phase, which lasts ∼10 4 yr. Later, after the neutron star has moved ∼30 kpc from its birthplace, solid bodies form in the disk, and accrete to planetoid size bodies after ∼3x10 7 years. Some of these planetoid bodies, with a mass of ∼10 21 endash 10 22 g, are perturbed into an orbit inside the tidal distortion radius of approx-gt 10 5 km. Of these ∼1% are captured by the magnetic field of the NS at R 3 km to create GBs

  3. Performance of the prototype LANL solid deuterium ultra-cold neutron source

    CERN Document Server

    Hill, R E; Bowles, T J; Greene, G L; Hogan, G; Lamoreaux, S; Marek, L; Mortenson, R; Morris, C L; Saunders, A; Seestrom, S J; Teasdale, W A; Hoedl, S; Liu, C Y; Smith, D A; Young, A; Filippone, B W; Hua, J; Ito, T; Pasyuk, E A; Geltenbort, P; García, A; Fujikawa, B; Baessler, S; Serebrov, A

    2000-01-01

    A prototype of a solid deuterium (SD sub 2) source of Ultra-Cold Neutrons (UCN) is currently being tested at LANSCE. The source is contained within an assembly consisting of a 4 K polyethylene moderator surrounded by a 77 K beryllium flux trap in which is embedded a spallation target. Time-of-flight measurements have been made of the cold neutron spectrum emerging directly from the flux trap assembly. A comparison is presented of these measurements with results of Monte Carlo (LAHET/MCNP) calculations of the cold neutron fluxes produced in the prototype assembly by a beam of 800 MeV protons incident on the tungsten target. A UCN detector was coupled to the assembly through a guide system with a critical velocity of 8 m/s ( sup 5 sup 8 Ni). The rates and time-of-flight data from this detector are compared with calculated values. Measurements of UCN production as a function of SD sub 2 volume (thickness) are compared with predicted values. The dependence of UCN production on SD sub 2 temperature and proton beam...

  4. Simulation of complete neutron scattering experiments: from model systems to liquid germanium

    International Nuclear Information System (INIS)

    Hugouvieux, V.

    2004-11-01

    In this thesis, both theoretical and experimental studies of liquids are done. Neutron scattering enables structural and dynamical properties of liquids to be investigated. On the theoretical side, molecular dynamics simulations are of great interest since they give positions and velocities of the atoms and the forces acting on each of them. They also enable spatial and temporal correlations to be computed and these quantities are also available from neutron scattering experiments. Consequently, the comparison can be made between results from molecular dynamics simulations and from neutron scattering experiments, in order to improve our understanding of the structure and dynamics of liquids. However, since extracting reliable data from a neutron scattering experiment is difficult, we propose to simulate the experiment as a whole, including both instrument and sample, in order to gain understanding and to evaluate the impact of the different parasitic contributions (absorption, multiple scattering associated with elastic and inelastic scattering, instrument resolution). This approach, in which the sample is described by its structure and dynamics as computed from molecular dynamics simulations, is presented and tested on isotropic model systems. Then liquid germanium is investigated by inelastic neutron scattering and both classical and ab initio molecular dynamics simulations. This enables us to simulate the experiment we performed and to evaluate the influence of the contributions from the instrument and from the sample on the detected signal. (author)

  5. NEUTRON STAR MASS–RADIUS CONSTRAINTS USING EVOLUTIONARY OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A. L.; Morsink, S. M. [Department of Physics, University of Alberta, 4-183 CCIS, Edmonton, AB, T6G 2E1 (Canada); Fiege, J. D. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada); Leahy, D. A. [Department of Physics, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4 (Canada)

    2016-12-20

    The equation of state of cold supra-nuclear-density matter, such as in neutron stars, is an open question in astrophysics. A promising method for constraining the neutron star equation of state is modeling pulse profiles of thermonuclear X-ray burst oscillations from hot spots on accreting neutron stars. The pulse profiles, constructed using spherical and oblate neutron star models, are comparable to what would be observed by a next-generation X-ray timing instrument like ASTROSAT , NICER , or a mission similar to LOFT . In this paper, we showcase the use of an evolutionary optimization algorithm to fit pulse profiles to determine the best-fit masses and radii. By fitting synthetic data, we assess how well the optimization algorithm can recover the input parameters. Multiple Poisson realizations of the synthetic pulse profiles, constructed with 1.6 million counts and no background, were fitted with the Ferret algorithm to analyze both statistical and degeneracy-related uncertainty and to explore how the goodness of fit depends on the input parameters. For the regions of parameter space sampled by our tests, the best-determined parameter is the projected velocity of the spot along the observer’s line of sight, with an accuracy of ≤3% compared to the true value and with ≤5% statistical uncertainty. The next best determined are the mass and radius; for a neutron star with a spin frequency of 600 Hz, the best-fit mass and radius are accurate to ≤5%, with respective uncertainties of ≤7% and ≤10%. The accuracy and precision depend on the observer inclination and spot colatitude, with values of ∼1% achievable in mass and radius if both the inclination and colatitude are ≳60°.

  6. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  7. Neutron Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vanhavere, F

    2001-04-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding.

  8. Measurement of electron drift velocities in the mixture of Xe and He for a new high-pressure Xe gamma-ray detector

    CERN Document Server

    Kobayashi, S; Dmitrenko, V V

    2003-01-01

    Drift velocities of electrons in a mixture of Xe (20 atm)-He (3 atm) were measured using a cylindrical high-pressure xenon chamber. The drift velocities were found to be greater than 3x10 sup 5 cm/s above the reduced electric field of 2.0x10 sup - sup 1 sup 8 V centre dot cm sup 2 at room temperature, which are close to those in Xe-H sub 2 (0.3%). The mixture of He gas into high-pressure xenon improved the resolving time of detectors because it increased the electron drift velocities. This implies that a high-pressure xenon chamber mixed with sup 3 He instead of He gas operates as a gamma-ray detector sensitive to thermal neutrons. (author)

  9. The Dynamics of M15: Observations of the Velocity Dispersion Profile and Fokker-Planck Models

    Science.gov (United States)

    Dull, J. D.; Cohn, H. N.; Lugger, P. M.; Murphy, B. W.; Seitzer, P. O.; Callanan, P. J.; Rutten, R. G. M.; Charles, P. A.

    1997-05-01

    We report a new measurement of the velocity dispersion profile within 1' (3 pc) of the center of the globular cluster M15 (NGC 7078), using long-slit spectra from the 4.2 m William Herschel Telescope at La Palma Observatory. We obtained spatially resolved spectra for a total of 23 slit positions during two observing runs. During each run, a set of parallel slit positions was used to map out the central region of the cluster; the position angle used during the second run was orthogonal to that used for the first. The spectra are centered in wavelength near the Ca II infrared triplet at 8650 Å, with a spectral range of about 450 Å. We determined radial velocities by cross-correlation techniques for 131 cluster members. A total of 32 stars were observed more than once. Internal and external comparisons indicate a velocity accuracy of about 4 km s-1. The velocity dispersion profile rises from about σ = 7.2 +/- 1.4 km s-1 near 1' from the center of the cluster to σ = 13.9 +/- 1.8 km s-1 at 20". Inside of 20", the dispersion remains approximately constant at about 10.2 +/- 1.4 km s-1 with no evidence for a sharp rise near the center. This last result stands in contrast with that of Peterson, Seitzer, & Cudworth who found a central velocity dispersion of 25 +/- 7 km s-1, based on a line-broadening measurement. Our velocity dispersion profile is in good agreement with those determined in the recent studies of Gebhardt et al. and Dubath & Meylan. We have developed a new set of Fokker-Planck models and have fitted these to the surface brightness and velocity dispersion profiles of M15. We also use the two measured millisecond pulsar accelerations as constraints. The best-fitting model has a mass function slope of x = 0.9 (where 1.35 is the slope of the Salpeter mass function) and a total mass of 4.9 × 105 M⊙. This model contains approximately 104 neutron stars (3% of the total mass), the majority of which lie within 6" (0.2 pc) of the cluster center. Since the

  10. Neutronic analysis of JET external neutron monitor response

    Energy Technology Data Exchange (ETDEWEB)

    Snoj, Luka, E-mail: luka.snoj@ijs.si [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Lengar, Igor; Čufar, Aljaž [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Syme, Brian; Popovichev, Sergey [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom (United Kingdom); Batistoni, Paola [ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Conroy, Sean [VR Association, Uppsala University, Department of Physics and Astronomy, PO Box 516, SE-75120 Uppsala (Sweden)

    2016-11-01

    Highlights: • We model JET tokamak containing JET remote handling system. • We investigate effect of remote handling system on external neutron monitor response. • Remote handling system correction factors are calculated. • Integral correction factors are relatively small, i.e up to 8%. - Abstract: The power output of fusion devices is measured in terms of the neutron yield which relates directly to the fusion yield. JET made a transition from Carbon wall to ITER-Like Wall (Beryllium/Tungsten/Carbon) during 2010–11. Absolutely calibrated measurement of the neutron yield by JET neutron monitors was ensured by direct measurements using a calibrated {sup 252}Cf neutron source (NS) deployed by the in-vessel remote handling system (RHS) inside the JET vacuum vessel. Neutronic calculations were required in order to understand the neutron transport from the source in the vacuum vessel to the fission chamber detectors mounted outside the vessel on the transformer limbs of the tokamak. We developed a simplified computational model of JET and the JET RHS in Monte Carlo neutron transport code MCNP and analyzed the paths and structures through which neutrons reach the detectors and the effect of the JET RHS on the neutron monitor response. In addition we performed several sensitivity studies of the effect of substantial massive structures blocking the ports on the external neutron monitor response. As the simplified model provided a qualitative picture of the process only, some calculations were repeated using a more detailed full 3D model of the JET tokamak.

  11. ORF-selector ESPRIT: a second generation library screen for soluble protein expression employing precise open reading frame selection.

    Science.gov (United States)

    An, Yingfeng; Yumerefendi, Hayretin; Mas, Philippe J; Chesneau, Alban; Hart, Darren J

    2011-08-01

    Here we present ORF-selector ESPRIT, a 9-fold enhanced version of our technology for screening incremental truncation libraries to identify soluble high yielding constructs of challenging proteins. Gene fragments are truncated at both termini to access internal domains and the resulting reading frame problem is addressed by an unbiased, intein-based open reading frame selection yielding only in-frame DNA inserts. This enriched library is then subcloned into a standard high-level expression plasmid where tens of thousands of constructs can be assayed in a two-step process using colony- and liquid-handling robots to isolate rare highly expressing clones useful for production of multi milligram quantities of purifiable proteins. The p85α protein was used to benchmark the system resulting in isolation of all known domains, either alone or in tandem. The human kinase IKK1 was then screened resulting in purification of a predicted internal domain. This strategy provides an integrated, facile route to produce soluble proteins from challenging and poorly understood target genes at quantities compatible with structural biology, screening applications and immunisation studies. The high genetic diversity that can be sampled opens the way to study more diverse systems including multisubunit complexes. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. High-power liquid-lithium jet target for neutron production

    Science.gov (United States)

    Halfon, S.; Arenshtam, A.; Kijel, D.; Paul, M.; Berkovits, D.; Eliyahu, I.; Feinberg, G.; Friedman, M.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Tessler, M.; Silverman, I.

    2013-12-01

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ˜200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm2 and volume power density of ˜2 MW/cm3 at a lithium flow of ˜4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91-2.5 MeV, 1-2 mA) at SARAF.

  13. Investigation of Response of Several Neutron Surveymeters by a DT Neutron Generator

    International Nuclear Information System (INIS)

    Kim, Sang In; Jang, In Su; Kim, Jang Lyul; Lee, Jung IL; Kim, Bong Hwan

    2012-01-01

    Several neutron measuring devices were tested under the neutron fields characterized with two distinct kinds of thermal and fast neutron spectrum. These neutron fields were constructed by the mixing of both thermal neutron fields and fast neutron fields. The thermal neutron field was constructed using by a graphite pile with eight AmBe neutron sources. The fast neutron field of 14 MeV was made by a DT neutron generator. In order to change the fraction of fast neutron fluence rate in each neutron fields, a neutron generator was placed in the thermal neutron field at 50 cm and 150 cm from the reference position. The polyethylene neutron collimator was used to make moderated 14 MeV neutron field. These neutron spectra were measured by using a Bonner sphere system with an LiI scintillator, and dosimetric quantities delivered to neutron surveymeters were determined from these measurement results.

  14. Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan

    Directory of Open Access Journals (Sweden)

    Yoshiaki Kiyanagi

    2018-03-01

    Full Text Available Neutron imaging has been recognized to be very useful to investigate inside of materials and products that cannot be seen by X-ray. New imaging methods using the pulsed structure of neutron sources based on accelerators has been developed also at compact accelerator-driven neutron sources and opened new application fields in neutron imaging. The world’s first dedicated imaging instrument at pulsed neutron sources was constructed at J-PARC in Japan owing to the development of such new methods. Then, usefulness of the compact accelerator-driven neutron sources in neutron science was recognized and such facilities were newly constructed in Japan. Now, existing and new sources have been used for neutron imaging. Traditional imaging and newly developed pulsed neutron imaging such as Bragg edge transmission have been applied to various fields by using compact and large neutron facilities. Here, compact accelerator-driven neutron sources used for imaging in Japan are introduced and some of their activities are presented.

  15. Aggressive time step selection for the time asymptotic velocity diffusion problem

    International Nuclear Information System (INIS)

    Hewett, D.W.; Krapchev, V.B.; Hizanidis, K.; Bers, A.

    1984-12-01

    An aggressive time step selector for an ADI algorithm is preseneted that is applied to the linearized 2-D Fokker-Planck equation including an externally imposed quasilinear diffusion term. This method provides a reduction in CPU requirements by factors of two or three compared to standard ADI. More important, the robustness of the procedure greatly reduces the work load of the user. The procedure selects a nearly optimal Δt with a minimum of intervention by the user thus relieving the need to supervise the algorithm. In effect, the algorithm does its own supervision by discarding time steps made with Δt too large

  16. Accelerator based neutron source for neutron capture therapy

    International Nuclear Information System (INIS)

    Salimov, R.; Bayanov, B.; Belchenko, Yu.; Belov, V.; Davydenko, V.; Donin, A.; Dranichnikov, A.; Ivanov, A.; Kandaurov, I; Kraynov, G.; Krivenko, A.; Kudryavtsev, A.; Kursanov, N.; Savkin, V.; Shirokov, V.; Sorokin, I.; Taskaev, S.; Tiunov, M.

    2004-01-01

    Full text: The Budker Institute of Nuclear Physics (Novosibirsk) and the Institute of Physics and Power Engineering (Obninsk) have proposed an accelerator based neutron source for neutron capture and fast neutron therapy for hospital. Innovative approach is based upon vacuum insulation tandem accelerator (VITA) and near threshold 7 Li(p,n) 7 Be neutron generation. Pilot accelerator based neutron source for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, Novosibirsk, Russia. In the present report, the pilot facility design is presented and discussed. Design features of facility components are discussed. Results of experiments and simulations are presented. Complete experimental tests are planned by the end of the year 2005

  17. Design of hyper-thermal neutron irradiation fields for neutron capture therapy in KUR-heavy water neutron irradiation facility. Mounting of hyper-thermal neutron converter in therapeutic collimator

    International Nuclear Information System (INIS)

    Sakurai, Y.; Kobayashi, T.

    2001-01-01

    Neutron capture therapy (NCP) using thermal neutron needs to improve of depth dose distribution in a living body. Epi-thermal neutron following moderation of fast neutron is usually used for improving of the depth dose distribution. The moderation method of fast neutron, however, gets mixed some of high energy neutron which give some of serious effects to a living body, and involves the difficulty for collimation of thermal neutron to the diseased part. Hyper-thermal neutrons, which are in an energy range of 0.1-3 eV at high temperature side of thermal neutron, are under consideration for application to the NCP. The hyper-thermal neutrons can be produced by up-scattering of thermal neutron in a high temperature material. Fast neutron components in collimator for the NCP reduce on application of the up-scattering method. Graphite at high temperature (>1000k) is used as a hyper-thermal neutron converter. The hyper-thermal neutron converter is planted to mount on therapeutic collimator which is located at the nearest side of patient for the NCP. Total neutron flux, ratio of hyper-thermal neutron to total neutron, and ratio of gamma-ray dose to neutron flux are calculated as a function of thickness of the graphite converter using monte carlo code MCNP-V4B. (M. Suetake)

  18. The secondary neutron sources for generation of particular neutron fluxes

    International Nuclear Information System (INIS)

    Tracz, G.

    2007-07-01

    The foregoing paper presents the doctor's thesis entitled '' The secondary neutron sources for generation of particular neutron fluxes ''. Two secondary neutron sources have been designed, which exploit already existing primary sources emitting neutrons of energies different from the desired ones. The first source is devoted to boron-neutron capture therapy (BNCT). The research reactor MARIA at the Institute of Atomic Energy in Swierk (Poland) is the primary source of the reactor thermal neutrons, while the secondary source should supply epithermal neutrons. The other secondary source is the pulsed source of thermal neutrons that uses fast 14 MeV neutrons from a pulsed generator at the Institute of Nuclear Physics PAN in Krakow (Poland). The physical problems to be solved in the two mentioned cases are different. Namely, in order to devise the BNCT source the initial energy of particles ought to be increased, whilst in the other case the fast neutrons have to be moderated. Slowing down of neutrons is relatively easy since these particles lose energy when they scatter in media; the most effective moderators are the materials which contain light elements (mostly hydrogen). In order to increase the energy of neutrons from thermal to epithermal (the BNCT case) the so-called neutron converter should be exploited. It contains a fissile material, 235 U. The thermal neutrons from the reactor cause fission of uranium and fast neutrons are emitted from the converter. Then fissile neutrons of energy of a few MeV are slowed down to the required epithermal energy range. The design of both secondary sources have been conducted by means of Monte Carlo simulations, which have been carried out using the MCNP code. In the case of the secondary pulsed thermal neutron source, some of the calculated results have been verified experimentally. (author)

  19. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    Science.gov (United States)

    Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka; JET Contributors

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  20. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Čufar, Aljaž, E-mail: aljaz.cufar@ijs.si [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Batistoni, Paola [ENEA, Department of Fusion and Nuclear Safety Technology, I-00044 Frascati, Rome (Italy); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Conroy, Sean [Uppsala University, Department of Physics and Astronomy, PO Box 516, SE-75120 Uppsala (Sweden); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Ghani, Zamir [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Lengar, Igor [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Milocco, Alberto; Packer, Lee [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Pillon, Mario [ENEA, Department of Fusion and Nuclear Safety Technology, I-00044 Frascati, Rome (Italy); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Popovichev, Sergey [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Snoj, Luka [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium–tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle–energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  1. First experiments with a liquid-lithium based high-intensity 25-keV neutron source

    International Nuclear Information System (INIS)

    Paul, M.

    2014-01-01

    A high-intensity neutron source based on a Liquid-Lithium Target (LiLiT) and the 7 Li(p,n) reaction was developed at SARAF (Soreq Applied Research Accelerator Facility, Israel) and is used for nuclear astrophysics experiments. The setup was commissioned with a 1.3 mA proton beam at 1.91 MeV, producing a neutron yield of ~ 2 ×10 10 n/s, more than one order of magnitude larger than conventional 7 Li(p,n)-based neutron sources and peaked at ~25 keV. The LiLiT device consists of a high-velocity (> 4 m/s) vertical jet of liquid lithium (~200 °C) whose free surface is bombarded by the proton beam. The lithium jet acts both as the neutron-producing target and as a power beam dump. The target dissipates a peak power areal density of 2.5 kW/cm 2 and peak volume density of 0.5 MW/cm 3 with no change of temperature or vacuum regime in the vacuum chamber. Preliminary results of Maxwellian-averaged cross section measurements for stable isotopes of Zr and Ce, performed by activation in the neutron flux of LiLiT, and nuclear-astrophysics experiments in planning will be described. (author)

  2. Liquid structure and temperature invariance of sound velocity in supercooled Bi melt

    International Nuclear Information System (INIS)

    Emuna, M.; Mayo, M.; Makov, G.; Greenberg, Y.; Caspi, E. N.; Yahel, E.; Beuneu, B.

    2014-01-01

    Structural rearrangement of liquid Bi in the vicinity of the melting point has been proposed due to the unique temperature invariant sound velocity observed above the melting temperature, the low symmetry of Bi in the solid phase and the necessity of overheating to achieve supercooling. The existence of this structural rearrangement is examined by measurements on supercooled Bi. The sound velocity of liquid Bi was measured into the supercooled region to high accuracy and it was found to be invariant over a temperature range of ∼60°, from 35° above the melting point to ∼25° into the supercooled region. The structural origin of this phenomenon was explored by neutron diffraction structural measurements in the supercooled temperature range. These measurements indicate a continuous modification of the short range order in the melt. The structure of the liquid is analyzed within a quasi-crystalline model and is found to evolve continuously, similar to other known liquid pnictide systems. The results are discussed in the context of two competing hypotheses proposed to explain properties of liquid Bi near the melting: (i) liquid bismuth undergoes a structural rearrangement slightly above melting and (ii) liquid Bi exhibits a broad maximum in the sound velocity located incidentally at the melting temperature

  3. Influence of media size on energy distribution of pulsed thermal neutrons

    International Nuclear Information System (INIS)

    Dabrowska, J.

    2007-01-01

    The work is devoted to the investigation of the diffusion cooling phenomenon of pulsed thermalized neutron fields in bounded media. It is aimed at the examination of the validity of the neutron temperature model that involves the assumption that an asymptotic energy distribution of neutrons in bounded media can be described by the Maxwell distribution but with a shifted temperature, lower than a temperature of medium. The research carried out entirely by means of Monte Carlo simulation of the neutron transport was preceded by a measurement of the time decay constants obtained in all variants of Monte Carlo simulations of the experiment and the measured one was stated. The form of asymptotic energy distribution of neutrons and its dependence on the size of medium was investigated in three kinds of materials of different thermal neutron transport properties: energy independent scatterer with negligible absorption (silica), energy dependent scatterer with 1/v absorption (borated silica) and energy dependent scatterer with 1/v absorption (water). As it was expected, in the case of large media, which can be treated as infinite, neutrons attained the Maxwell energy distribution at the temperature of the medium. For all materials under investigation the average and the most probable values of the energy distribution steadily decreased with decreasing geometric dimensions of the media. At the same time a growing distortion from the pure Maxwellian energy distribution was observed, which means that the concept of the neutron temperature fails in the case of small media. Although the spectra under investigation in general did not have the Maxwellian shape, the most probable velocity in a neutron density distribution decreased linearly with the increasing geometric buckling of the medium. This dependence manifested a stronger cooling than the one predicted by a certain approximate formula. The neutron spectrum in a small medium of pure silica was cooler than the spectrum in

  4. Study of neutron fields around an intense neutron generator.

    Science.gov (United States)

    Kicka, L; Machrafi, R; Miller, A

    2017-12-01

    Neutron fields in the vicinity of the newly built neutron facility, at the University of Ontario Institute of Technology (UOIT), have been investigated in a series of Monte Carlo simulations and measurements. The facility hosts a P-385 neutron generator based on a deuterium-deuterium fusion reaction. The neutron fluence at different locations around the neutron generator facility has been simulated using MCNPX 2.7E Monte Carlo particle transport program. To characterize neutron fields, three neutron sources were modeled with distributions corresponding to different incident deuteron energies of 90kV, 110kV, and 130kV. Measurements have been carried out to determine the dose rate at locations adjacent to the generator using bubble detectors (BDs). The neutron intensity was evaluated and the total dose rates corresponding to different applied acceleration potentials were estimated at various locations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Miscellaneous neutron techniques

    International Nuclear Information System (INIS)

    Iddings, F.A.

    1976-01-01

    Attention is brought to the less often uses of neutrons in the areas of neutron radiography, well logging, and neutron gaging. Emphasis on neutron radiography points toward the isotopic sensitivity of the method versus the classical bulk applications. Also recognized is the ability of neutron radiography to produce image changes that correspond to thickness and density changes obtained in photon radiography. Similarly, neutron gaging applications center on the measurement of radiography. Similarly, neutron gaging applications center on the measurement of water, oil, or plastics in industrial samples. Well logging extends the neutron gaging to encompass many neutron properties and reactions besides thermalization and capture. Neutron gaging also gives information on organic structure and concentrations of a variety of elements or specific compounds in selected matrices

  6. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    Energy Technology Data Exchange (ETDEWEB)

    Auluck, S. K. H., E-mail: skhauluck@gmail.com, E-mail: skauluck@barc.gov.in [Physics Group, Bhabha Atomic Research Center, Mumbai (India)

    2014-09-15

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and “wind pressure” resisting its motion. The resulting sheath velocity, or the numerically proportional “drive parameter,” is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.

  7. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    International Nuclear Information System (INIS)

    Auluck, S. K. H.

    2014-01-01

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and “wind pressure” resisting its motion. The resulting sheath velocity, or the numerically proportional “drive parameter,” is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance

  8. Discovery of the neutron (to the fiftieth anniversary of neutron discovery)

    International Nuclear Information System (INIS)

    Pasechnik, M.V.

    1984-01-01

    Development of neutron physics in the USSR for the recent 50 years from the moment of neutron discovery is considered. History of neutron discovery is presented in brief. Neutron properties and fundamental problems of physics: electric dipole neutron moment, neutron β-decay, neutron interaction with nuclei and potential of nucleon interaction not conserving spatial parity are discussed. Main aspects of neutron physics application in power engineering, nuclear technology and other branches of science and technique are set forth

  9. Development of the STEFF detector for the neutron Time Of Flight facility (n_TOF), CERN

    CERN Document Server

    AUTHOR|(CDS)2092031

    Signicant work has been performed on the development of STEFF (SpecTrometer for Exotic Fission Fragments), a 2E2V (2-Energy 2-Velocity) spectrometer built by the University of Manchester Fission Group. The majority of this work was in the development of the time-of-flight systems, in particular the stop detector; with the main goals of improving the timing resolution and the detection eciency of the ssion fragments. Further development of the STEFF spectrometer was done to enable 2E2V measurements of the $^{235}$U(n,f) reaction with coincident measurements using a white neutron spectra of energies ranging from 10 meV to 200 MeV provided by the n_TOF (neutron Time Of Flight) facility, CERN. The STEFF spectrometer was successfully operated twice on the Experimental Area-2 high flux pulsed neutron beam line resulting in 2E2V measurements for ssion events with neutron energies ranging from 20 meV to 10 MeV. The first experiment received 1.36 X 10$^{18}$ POT (Protons On Target) with stable conditions and the seco...

  10. Neutron rich matter, neutron stars, and their crusts

    International Nuclear Information System (INIS)

    Horowitz, C J

    2011-01-01

    Neutron rich matter is at the heart of many fundamental questions in Nuclear Physics and Astrophysics. What are the high density phases of QCD? Where did the chemical elements come from? What is the structure of many compact and energetic objects in the heavens, and what determines their electromagnetic, neutrino, and gravitational-wave radiations? Moreover, neutron rich matter is being studied with an extraordinary variety of new tools such as Facility for Rare Isotope Beams (FRIB) and the Laser Interferometer Gravitational Wave Observatory (LIGO). We describe the Lead Radius Experiment (PREX) that is using parity violation to measure the neutron radius in 208Pb. This has important implications for neutron stars and their crusts. Using large scale molecular dynamics, we model the formation of solids in both white dwarfs and neutron stars. We find neutron star crust to be the strongest material known, some 10 billion times stronger than steel. It can support mountains on rotating neutron stars large enough to generate detectable gravitational waves. Finally, we describe a new equation of state for supernova and neutron star merger simulations based on the Virial expansion at low densities, and large scale relativistic mean field calculations.

  11. Investigation of sheared liquids by neutron backscattering and reflectivity

    CERN Document Server

    Wolff, M; Hock, R; Frick, B; Zabel, H

    2002-01-01

    We have investigated by neutron scattering structural and dynamical properties of water solutions of the triblock copolymer P85 under shear. To this end a shear cell that suits the requirements for neutron backscattering and another for reflectivity experiments have been built. In reflectivity measurements we find the polymer concentration (nominal concentration of 33% by weight) to vary right at the surface between 12% and 52% for hydrophilic or hydrophobic coated silicon wavers, for temperatures between 18 C and 73 C and for shear rates up to 2500 s sup - sup 1. Additional structural changes deeper in the bulk are also observed. On the backscattering instrument (IN10 at ILL) we find that the liquid appears to stick to the plates of the shear cell, implying an unusual macroscopic velocity distribution that differs from that found earlier for lubrication oils. We report further on changes of the quasielastic line width in the direction of the shear gradient for different temperatures and shear rates. (orig.)

  12. Study of tunneling time with Larmor clock and neutron absorption

    International Nuclear Information System (INIS)

    Hino, M.; Tasaki, S.; Ebisawa, T.; Kawai, T.; Utsuro, M.; Achiwa, N.

    2001-01-01

    Tunnel effect is one of the most typical quantum mechanical phenomena which cannot be understood in the classical physics. Though the tunnel phenomenon itself is precisely defined on the basis of quantum mechanics, tunneling time, the time for a particle to pass a tunnel barrier, has been a controversial issue because time is a parameter to show the rate of change of physical phenomena in quantum mechanics but has no corresponding quantum operator. In the present study, Larmor precession of the neutrons passing a Permalloy45 (PA) thin film was measured as a function of neutron incident angle to the film by using neutron spin-echo instrument at KUR and neutron interferometer at JRR-3. Results are compared with a calculation based on one-dimensional Schroedinger equation. The agreement between the experiment and the plane-wave simulation is very good which means that the neutrons are not described in particle picture here, and the Larmor time defined as number of spin precession divided by angular velocity no more represents the time for a particle to pass the barrier although it is a kind of the phase time. In order to emphasize the particle picture, effects of neutron absorption were considered theoretically. Larmor precession passing through a Fabry-Perot magnetic thin film which has two potential barriers (quantum well) for up-spin neutrons were measured for two cases that the film is hot neutron absorptive (PA-Ge-PA) and strongly absorptive (Se-Ge/Gd-Se). Here Ge, Gd and Se represent germanium, gadolinium and Supersendust, respectively. While down-spin neutrons feel only a small potential barrier. Spin-dependent reflectivity and transmission of the Fabry-Perot magnetic films were also measured as functions of the neutron incident angle to the film. Experimental results of the non-absorptive film show that the neutron spin precession cannot be treated as the classical motion of a magnetic moment feeling torque under applied magnetic field like the Larmor

  13. Neutron Beam Filters

    International Nuclear Information System (INIS)

    Adib, M.

    2011-01-01

    The purpose of filters is to transmit neutrons with selected energy, while remove unwanted ones from the incident neutron beam. This reduces the background, and the number of spurious. The types of commonly used now-a-day neutron filters and their properties are discussed in the present work. There are three major types of neutron filters. The first type is filter of selective thermal neutron. It transmits the main reflected neutrons from a crystal monochromate, while reject the higher order contaminations accompanying the main one. Beams coming from the moderator always contain unwanted radiation like fast neutrons and gamma-rays which contribute to experimental background and to the biological hazard potential. Such filter type is called filter of whole thermal neutron spectrum. The third filter type is it transmits neutrons with energies in the resonance energy range (En . 1 KeV). The main idea of such neutron filter technique is the use of large quantities of a certain material which have the deep interference minima in its total neutron cross-section. By transmitting reactor neutrons through bulk layer of such material, one can obtain the quasimonochromatic neutron lines instead of white reactor spectrum.

  14. Hydraulic experiments on the failed fuel location module of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Rajesh, K.; Kumar, S.; Padmakumar, G.; Prakash, V.; Vijayashree, R.; Rajan Babu, V.; Govinda Rajan, S.; Vaidyanathan, G.; Prabhaker, R.

    2003-01-01

    The design of Prototype Fast Breeder Reactor (PFBR) is based on sound design concepts with emphasis on intrinsic safety. The uncertainties involved in the design of various components, which are difficult to assess theoretically, are experimentally verified before design is validated. In PFBR core, the coolant (liquid sodium) enters the bottom of the fuel subassembly, passes over the fuel pins picking up the fission heat and issues in to a hot pool. If there is any breach in the fuel pins, the fission products come in direct contact with the coolant. This is undesirable and it is necessary to locate the subassembly with the failed fuel pin and to isolate it. A component called Failed Fuel Location Module (FFLM) is employed for locating the failed SA by monitoring the coolant samples coming out of each Subassembly. The coolant sample from each Subassembly is drawn by FFLM using an EM pump through sampling tube and selector valve and is monitored for the presence of delayed neutrons which is an indication of failure of the Subassembly. The pressure drop across the selector valve determines the rating of the EM Pump. The dilution of the coolant sample across the selector valve determines the effectiveness of monitoring for contamination. It is not possible to predict pressure drop across the selector valve and dilution of the coolant sample theoretically. These two parameters are determined using a hydraulic experiment on the FFLM. The experiment was carried out in conditions that simulate the reactor conditions following appropriate similarity laws. The paper discusses the details of the model, techniques of experiments and the results from the studies

  15. Neutron stochastic transport theory with delayed neutrons

    International Nuclear Information System (INIS)

    Munoz-Cobo, J.L.; Verdu, G.

    1987-01-01

    From the stochastic transport theory with delayed neutrons, the Boltzmann transport equation with delayed neutrons for the average flux emerges in a natural way without recourse to any approximation. From this theory a general expression is obtained for the Feynman Y-function when delayed neutrons are included. The single mode approximation for the particular case of a subcritical assembly is developed, and it is shown that Y-function reduces to the familiar expression quoted in many books, when delayed neutrons are not considered, and spatial and source effects are not included. (author)

  16. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Fundamental of neutron radiography and the present of neutron radiography in Japan

    International Nuclear Information System (INIS)

    Sekita, Junichiro

    1988-01-01

    Neutron radiography refers to the application of transmitted neutrons to analysis. In general, thermal neutron is used for neutron radiography. Thermal neutron is easily absorbed by light atoms, including hydrogen, boron and lithium, while it is not easily absorbed by such heavy atoms as tungsten, lead and uranium, permitting detection of impurities in heavy metals. Other neutrons than thermal neutron can also be applied. Cold neutron is produced from fast neutron using a moderator to reduce its energy down to below that of thermal neutron. Cold neutron is usefull for analysis of thick material. Epithermal neutron can induce resonance characteristic of each substance. With a relatively small reaction area, fast neutron permits observation of thick samples. Being electrically neutral, neutrons are difficult to detect by direct means. Thus a substance that releases charged particles is put in the path of neutrons for indirect measurement. X-ray film combined with converter screen for conversion of neutrons to charge particles is placed behind the sample. Photographing is carried out by a procedure similar to X-ray photography. Major institues and laboratories in Japan provided with neutron radiography facilities are listed. (Nogami, K.)

  18. Review of Non-Neutron and Neutron Nuclear Data, 2004

    International Nuclear Information System (INIS)

    Holden, Norman E.

    2005-01-01

    Review articles are in preparation for the 2004 edition of the CRC Handbook of Chemistry and Physics dealing with the evaluation of both non-neutron and neutron nuclear data. Data on the discovery of element 110, Darmstadtium, and element 111 have been officially accepted, while data on element 118 have been withdrawn. Data to be presented include revised values for very short-lived nuclides, long-lived nuclides, and beta-beta decay measurements. There has been a reassessment of the spontaneous fission (sf) half-lives, which distinguishes between sf decay half-lives and cluster decay half-lives, and with cluster-fission decay. New measurements of isotopic abundance values for many elements will be discussed with an emphasis on the minor isotopes of interest for use in neutron activation analysis measurements. Neutron resonance integrals will be discussed emphasizing the differences between the calculated values obtained from the analytical integration over neutron resonances and the measured values in a neutron reactor-spectrum, which does not quite conform to the assumed 1/E neutron energy spectrum. The method used to determine the neutron resonance integral from measurement, using neutron activation analysis, will be discussed

  19. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C. B. [Radiation Science Department, Necsa, PO Box 582, Pretoria 0001 (South Africa)

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  20. Pulsed neutron uranium borehole logging with prompt fission neutrons

    International Nuclear Information System (INIS)

    Bivens, H.M.; Smith, G.W.; Jensen, D.H.

    1976-01-01

    The gross count natural gamma log normally used for uranium borehole logging is seriously affected by disequilibrium. Methods for the direct measurement of uranium, such as neutron logging, which are not affected by disequilibrium have been the object of considerable effort in recent years. This paper describes a logging system for uranium which uses a small accelerator to generate pulses of 14 MeV neutrons to detect and assay uranium by the measurement of prompt fission neutrons in the epithermal energy range. After an initial feasibility study, a prototype logging probe was built for field evaluation which began in January 1976. Physical and operational characteristics of the prototype probe, the neutron tube-transformer assembly, and the neutron tube are described. In logging operations, only the epithermal prompt fission neutrons detected between 250 microseconds to 2500 microseconds following the excitation neutron pulse are counted. Comparison of corrected neutron logs with the conventional gross count natural gamma logs and the chemical assays of cores from boreholes are shown. The results obtained with this neutron probe clearly demonstrate its advantages over the gross count natural gamma log, although at this time the accuracy of the neutron log assay is not satisfactory under some conditions. The necessary correction factors for various borehole and formation parameters are being determined and, when applied, should improve the assay accuracy

  1. Neutron reflectometry

    International Nuclear Information System (INIS)

    Van Well, A.A.

    1999-01-01

    Neutron research where reflection, refraction, and interference play an essential role is generally referred to as 'neutron optics'. The neutron wavelength, the scattering length density and the magnetic properties of the material determine the critical angle for total reflection. The theoretical background of neutron reflection, experimental methods and the interpretation of reflection data are presented. (K.A.)

  2. Pulsed neutron generator for use with pulsed neutron activation techniques

    International Nuclear Information System (INIS)

    Rochau, G.E.

    1980-01-01

    A high-output, transportable, pulsed neutron generator has been developed by Sandia National Laboratories for use with Pulsed Neutron Activation (PNA) techniques. The PNA neutron generator generates > 10 10 14 MeV D-T neutrons in a 1.2 millisecond pulse. Each operation of the unit will produce a nominal total neutron output of 1.2 x 10 10 neutrons. The generator has been designed to be easily repaired and modified. The unit requires no additional equipment for operation or measurement of output

  3. Neutron nuclear physics under the neutron science project

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    The concept of fast neutron physics facility in the Neutron Science Research project is described. This facility makes use of an ultra-short proton pulse (width < 1 ns) for fast neutron time-of-flight works. The current design is based on an assumption of the maximum proton current of 100 {mu}A. Available neutron fluence and energy resolution are explained. Some of the research subjects to be performed at this facility are discussed. (author)

  4. Development of highly effective neutron shields and neutron absorbing materials

    International Nuclear Information System (INIS)

    Tsuda, K.; Matsuda, F.; Taniuchi, H.; Yuhara, T.; Iida, T.

    1993-01-01

    A wide range of materials, including polymers and hydrogen-occluded alloys that might be usable as the neutron shielding material were examined. And a wide range of materials, including aluminum alloys that might be usable as the neutron-absorbing material were examined. After screening, the candidate material was determined on the basis of evaluation regarding its adaptabilities as a high-performance neutron-shielding and neutron-absorbing material. This candidate material was manufactured for trial, after which material properties tests, neutron-shielding tests and neutron-absorbing tests were carried out on it. The specifications of this material were thus determined. This research has resulted in materials of good performance; a neutron-shielding material based on ethylene propylene rubber and titanium hydride, and a neutron-absorbing material based on aluminum and titanium hydride. (author)

  5. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  6. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2013-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)

  7. Development of Cold Neutron Activation Station at HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Sun, G. M.; Hoang, S. M. T.; Moon, J. H.; Chung, Y. S.; Cho, S. J.; Lee, K. H.; Park, B. G.; Choi, H. D.

    2012-01-01

    A new cold neutron source at the HANARO Research Reactor had been constructed in the framework of a five-year project, and ended in 2009. It has seven neutron guides, among which five guides were already allocated for a number of neutron scattering instruments. A new two-year project to develop a Cold Neutron Activation Station (CONAS) was carried out at the two neutron guides since May 2010, which was supported by the program of the Ministry of Education, Science and Technology, Korea. Fig. 1 shows the location of CONAS. CONAS is a complex facility including several radioanalytical instruments utilizing neutron capture reaction to analyze elements in a sample. It was designed to include three instruments like a CN-PGAA (Cold Neutron - Prompt Gamma Activation Analysis), a CN-NIPS (Cold Neutron - Neutron Induced Pair Spectrometer), and a CN-NDP (Cold Neutron - Neutron-induced prompt charged particle Depth Profiling). Fig. 2 shows the conceptual configuration of the CONAS concrete bioshield and the instruments. CN-PGAA and CN-NIPS measure the gamma-rays promptly emitted from the sample after neutron capture, whereas CN-NDP is a probe to measure the charged particles emitted from the sample surface after neutron capture. For this, we constructed two cold neutron guides called CG1 and CG2B guides from the CNS

  8. Application of high-frame-rate neutron radiography to fluid measurement

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Hibiki, Takashi

    1997-01-01

    To apply Neutron radiography (NR) technique to multiphase flow research, high frame-rate NR was developed by assembling up-to-date technologies for neutron source, scintillator, high-speed video and image intensifier. This imaging system has several advantages such as a long recording time (up to 21 minutes), high-frame-rate (up to 1000 frames/s) imaging and no need for triggering signal. Visualization studies of air-water two-phase flow in a metallic duct and molten metal-water interaction were performed at the recording speeds of 250, 500 and 1000 frames/s. The qualities of those consecutive images were good enough to observe the flow pattern and behavior. It was demonstrated also that some characteristics of two-phase flow could be measured from those images in collaboration with image processing techniques. By utilizing geometrical information extracted from NR images, data on flow regime, rising velocity of bubbles, and wave height and interfacial area in annular flow could be obtained. By utilizing attenuation characteristics of neutrons in materials, measurements of void profile and average void fraction could be performed. For this purpose, a quantification method, i.e. Σ-scaling method, was proposed based upon the consideration on the effect of scattered neutrons. This method was tested against known void profiles and compared with existing measurement methods and a correlation for void fraction. It was confirmed that this new technique has significant advantages both in visualizing and measuring high-speed fluid phenomena. (J.P.N.)

  9. The magnetic diffusion of neutrons; La diffusion magnetique des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, W C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The purpose of this report is to examine briefly the diffusion of neutrons by substances, particularly by crystals containing permanent atomic or ionic magnetic moments. In other words we shall deal with ferromagnetic, antiferromagnetic, ferrimagnetic or paramagnetic crystals, but first it is necessary to touch on nuclear diffusion of neutrons. We shall start with the interaction of the neutron with a single diffusion centre; the results will then be applied to the magnetic interactions of the neutron with the satellite electrons of the atom; finally we shall discuss the diffusion of neutrons by crystals. (author) [French] Le but de ce rapport est d'examiner, brievement, la diffusion des neutrons par les substances, et surtout, par des cristaux qui contiennent des moments magnetiques atomiques ou ioniques permanents. C'est-a-dire que nous nous interesserons aux cristaux ferromagnetiques, antiferromagnetiques, ferrimagnetiques ou paramagnetiques; il nous faut cependant rappeler d'abord la diffusion nucleaire des neutrons. Nous commencerons par l'interaction du neutron avec un seul centre diffuseur; puis les resultats seront appliques aux interactions magnetiques du neutron avec les electrons satellites de l'atome; enfin nous discuterons la diffusion des neutrons par les cristaux. (auteur)

  10. THE PUZZLING EARLY DETECTION OF LOW VELOCITY 56Ni DECAY LINES IN SN 2014J: HINTS OF A COMPACT REMNANT

    International Nuclear Information System (INIS)

    Ouyed, Rachid; Leahy, Denis; Koning, Nico; Staff, Jan

    2015-01-01

    We show that the low-velocity 56 Ni decay lines detected earlier than expected in the type Ia SN 2014J find an explanation in the quark-nova Ia model, which involves the thermonuclear explosion of a tidally disrupted sub-Chandrasekhar white dwarf (WD) in a tight neutron-star-WD binary system. The explosion is triggered by impact from the quark-nova (QN) ejecta on the WD material; the QN is the explosive transition of the neutron star to a quark star (QS) triggered by accretion from a CO torus (the circularized WD material). The presence of a compact remnant (the QS) provides: (1) an additional energy source (spin-down power) which allows us to fit the observed light-curve including the steep early rise; (2) a central gravitational potential which slows down some of the 56 Ni produced to velocities of a few 10 3 km s –1 . In our model, the 56 Ni decay lines become optically visible at ∼20 days from explosion time in agreement with observations. We list predictions that can provide important tests for our model

  11. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  12. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  13. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  14. Auditory velocity discrimination in the horizontal plane at very high velocities.

    Science.gov (United States)

    Frissen, Ilja; Féron, François-Xavier; Guastavino, Catherine

    2014-10-01

    We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288°/s and 720°/s in an acoustically treated room and Experiment 2 used velocities between 288°/s and 576°/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Neutron imaging integrated circuit and method for detecting neutrons

    Science.gov (United States)

    Nagarkar, Vivek V.; More, Mitali J.

    2017-12-05

    The present disclosure provides a neutron imaging detector and a method for detecting neutrons. In one example, a method includes providing a neutron imaging detector including plurality of memory cells and a conversion layer on the memory cells, setting one or more of the memory cells to a first charge state, positioning the neutron imaging detector in a neutron environment for a predetermined time period, and reading a state change at one of the memory cells, and measuring a charge state change at one of the plurality of memory cells from the first charge state to a second charge state less than the first charge state, where the charge state change indicates detection of neutrons at said one of the memory cells.

  16. Neutron reflector design with Californium 252 neutron for Boron neutron chapter therapy facility using MCNP5 simulation method

    International Nuclear Information System (INIS)

    Muhammad Fakhrurreza; Kusminanto; Y Sardjono

    2014-01-01

    In this research has made a reflector design to provide beams of Neutron for BNCT with Californium-252 radioactive source. This collimator is useful to obtain optimum epithermal neutron flux with the smallest impurity radiation (thermal neutron, fast neutron, and gamma). The design process is done using Monte Carlo N-Particle simulation version 5 (MCNP5) code to calculate the neutron flux tally form. The chosen reflector design is the reflectors which use material such as BeO ceramic with 13 cm thick. Moderator use sulfur material with the slope angle of the cone is 30°. From the calculation result, it is obtained that Reflector with 1 gram Californium-252 source can produce a neutron output thermal which has thermal neutron specification 2.23189 x 10 9 n/s.cm 2 , epithermal neutron 3.51548 x 10 9 n/s.cm 2 , and fast neutron 4.82241 x 10 9 n/s.cm 2 From the result, it needs additional collimator because the BNCT requirement. (author)

  17. Neutron spectometers

    International Nuclear Information System (INIS)

    Poortmans, F.

    1977-01-01

    Experimental work in the field of low-energy neutron physics can be subdivided into two classes: 1)Study of the decay process of the compound-nucleus state as for example the study of the capture gamma rays and of the neutron induced fission process; 2)Study of the reaction mechanism, mainly by measuring the reaction cross-sections and resonance parameters. These neutron cross-sections and resonance parameters are also important data required for many technological applications especially for reactor development programmes. In general, the second class of experiments impose other requirements on the neutron spectrometer than the first class. In most cases, a better neutron energy resolution and a broader neutron energy range are required for the study of the reaction mechanism than for the study of various aspects of the decay process. (author)

  18. Optimization of thermal neutron shield concrete mixture using artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Yadollahi, A. [Engineering Department, Shahid Beheshti University, G.C., P.O. Box: 1983963113, Tehran (Iran, Islamic Republic of); Nazemi, E., E-mail: nazemi.ehsan@yahoo.com [Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Zolfaghari, A. [Engineering Department, Shahid Beheshti University, G.C., P.O. Box: 1983963113, Tehran (Iran, Islamic Republic of); Ajorloo, A.M. [Water and Environmental Engineering Department, Shahid Beheshti University, P.O. Box: 167651719, Tehran (Iran, Islamic Republic of)

    2016-08-15

    Highlights: • Colemanite was used in fabricating of thermal neutron shield concrete. • The Taguchi method was implemented to obtain the data set required for training the ANN. • Trained ANN predicted quality characteristics of thermal neutron shield. - Abstract: Colemanite is the most convenient boron mineral which has been widely used in construction of radiation shielding concrete in order to improve the capture of thermal neutrons. But utilization of Colemanite in radiation shielding concrete has a deleterious effect on both physical and mechanical properties. In the present work, Taguchi method and artificial neural network (ANN) were employed to find an optimal mixture of Colemanite based concrete in order to improve the boron content of concrete and increase thermal neutron absorption without violating the standards for physical and mechanical properties. Using Taguchi method for experimental design, 27 concrete samples with different mixtures were fabricated and tested. Water/cement ratio, cement quantity, volume fraction of Colemanite aggregate and silica fume quantity were selected as control factors, and compressive strength, ultrasonic pulse velocity and thermal neutron transmission ratio were considered as the quality responses. Obtained data from 27 experiments were used to train 3 ANNs. Four control factors were utilized as the inputs of 3 ANNs and 3 quality responses were used as the outputs, separately (each ANN for one quality response). After training the ANNs, 1024 different mixtures with different quality responses were predicted. At the final, optimum mixture was obtained among the predicted different mixtures. Results demonstrated that the optimal mixture of thermal neutron shielding concrete has a water–cement ratio of 0.38, cement content of 400 kg/m{sup 3}, a volume fraction Colemanite aggregate of 50% and silica fume–cement ratio of 0.15.

  19. Optimization of thermal neutron shield concrete mixture using artificial neural network

    International Nuclear Information System (INIS)

    Yadollahi, A.; Nazemi, E.; Zolfaghari, A.; Ajorloo, A.M.

    2016-01-01

    Highlights: • Colemanite was used in fabricating of thermal neutron shield concrete. • The Taguchi method was implemented to obtain the data set required for training the ANN. • Trained ANN predicted quality characteristics of thermal neutron shield. - Abstract: Colemanite is the most convenient boron mineral which has been widely used in construction of radiation shielding concrete in order to improve the capture of thermal neutrons. But utilization of Colemanite in radiation shielding concrete has a deleterious effect on both physical and mechanical properties. In the present work, Taguchi method and artificial neural network (ANN) were employed to find an optimal mixture of Colemanite based concrete in order to improve the boron content of concrete and increase thermal neutron absorption without violating the standards for physical and mechanical properties. Using Taguchi method for experimental design, 27 concrete samples with different mixtures were fabricated and tested. Water/cement ratio, cement quantity, volume fraction of Colemanite aggregate and silica fume quantity were selected as control factors, and compressive strength, ultrasonic pulse velocity and thermal neutron transmission ratio were considered as the quality responses. Obtained data from 27 experiments were used to train 3 ANNs. Four control factors were utilized as the inputs of 3 ANNs and 3 quality responses were used as the outputs, separately (each ANN for one quality response). After training the ANNs, 1024 different mixtures with different quality responses were predicted. At the final, optimum mixture was obtained among the predicted different mixtures. Results demonstrated that the optimal mixture of thermal neutron shielding concrete has a water–cement ratio of 0.38, cement content of 400 kg/m 3 , a volume fraction Colemanite aggregate of 50% and silica fume–cement ratio of 0.15.

  20. Signatures of asymmetry in neutron spectra and images predicted by three-dimensional radiation hydrodynamics simulations of indirect drive implosions

    Energy Technology Data Exchange (ETDEWEB)

    Chittenden, J. P., E-mail: j.chittenden@imperial.ac.uk; Appelbe, B. D.; Manke, F.; McGlinchey, K.; Niasse, N. P. L. [Centre for Inertial Fusion Studies, The Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)

    2016-05-15

    We present the results of 3D simulations of indirect drive inertial confinement fusion capsules driven by the “high-foot” radiation pulse on the National Ignition Facility. The results are post-processed using a semi-deterministic ray tracing model to generate synthetic deuterium-tritium (DT) and deuterium-deuterium (DD) neutron spectra as well as primary and down scattered neutron images. Results with low-mode asymmetries are used to estimate the magnitude of anisotropy in the neutron spectra shift, width, and shape. Comparisons of primary and down scattered images highlight the lack of alignment between the neutron sources, scatter sites, and detector plane, which limits the ability to infer the ρr of the fuel from a down scattered ratio. Further calculations use high bandwidth multi-mode perturbations to induce multiple short scale length flows in the hotspot. The results indicate that the effect of fluid velocity is to produce a DT neutron spectrum with an apparently higher temperature than that inferred from the DD spectrum and which is also higher than the temperature implied by the DT to DD yield ratio.

  1. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2012-01-01

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  2. Aerial Neutron Detection: Neutron Signatures for Nonproliferation and Emergency Response Applications

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Richard J.; Stampahar, Thomas G.; Smith, Ethan X.; Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Rourke, Timothy J.; LeDonne, Jeffrey P.; Avaro, Emanuele; Butler, D. Andre; Borders, Kevin L.; Stampahar, Jezabel; Schuck, William H.; Selfridge, Thomas L.; McKissack, Thomas M.; Duncan, William W.; Hendricks, Thane J.

    2012-10-17

    From 2007 to the present, the Remote Sensing Laboratory has been conducting a series of studies designed to expand our fundamental understanding of aerial neutron detection with the goal of designing an enhanced sensitivity detection system for long range neutron detection. Over 35 hours of aerial measurements in a helicopter were conducted for a variety of neutron emitters such as neutron point sources, a commercial nuclear power reactor, nuclear reactor spent fuel in dry cask storage, depleted uranium hexafluoride and depleted uranium metal. The goals of the project were to increase the detection sensitivity of our instruments such that a 5.4 × 104 neutron/second source could be detected at 100 feet above ground level at a speed of 70 knots and to enhance the long-range detection sensitivity for larger neutron sources, i.e., detection ranges above 1000 feet. In order to increase the sensitivity of aerial neutron detection instruments, it is important to understand the dynamics of the neutron background as a function of altitude. For aerial neutron detection, studies have shown that the neutron background primarily originates from above the aircraft, being produced in the upper atmosphere by galactic cosmic-ray interactions with air molecules. These interactions produce energetic neutrons and charged particles that cascade to the earth’s surface, producing additional neutrons in secondary collisions. Hence, the neutron background increases as a function of altitude which is an impediment to long-range neutron detection. In order to increase the sensitivity for long range detection, it is necessary to maintain a low neutron background as a function of altitude. Initial investigations show the variation in the neutron background can be decreased with the application of a cosmic-ray shield. The results of the studies along with a representative data set are presented.

  3. Synovectomy by Neutron capture; Sinovectomia por captura de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Torres M, C. [Centro Regional de Estudios Nucleares, Universidad Autonoma de Zacatecas, C. Cipres 10, Fracc. La Penuela, 98000 Zacatecas (Mexico)

    1998-12-31

    The Synovectomy by Neutron capture has as purpose the treatment of the rheumatoid arthritis, illness which at present does not have a definitive curing. This therapy requires a neutron source for irradiating the articulation affected. The energy spectra and the intensity of these neutrons are fundamental since these neutrons induce nuclear reactions of capture with Boron-10 inside the articulation and the freely energy of these reactions is transferred at the productive tissue of synovial liquid, annihilating it. In this work it is presented the neutron spectra results obtained with moderator packings of spherical geometry which contains in its center a Pu{sup 239} Be source. The calculations were realized through Monte Carlo method. The moderators assayed were light water, heavy water base and the both combination of them. The spectra obtained, the average energy, the neutron total number by neutron emitted by source, the thermal neutron percentage and the dose equivalent allow us to suggest that the moderator packing more adequate is what has a light water thickness 0.5 cm (radius 2 cm) and 24.5 cm heavy water (radius 26.5 cm). (Author)

  4. Assessing neutron generator output using neutron activation of silicon

    International Nuclear Information System (INIS)

    Kehayias, Pauli M.; Kehayias, Joseph J.

    2007-01-01

    D-T neutron generators are used for elemental composition analysis and medical applications. Often composition is determined by examining elemental ratios in which the knowledge of the neutron flux is unnecessary. However, the absolute value of the neutron flux is required when the generator is used for neutron activation analysis, to study radiation damage to materials, to monitor the operation of the generator, and to measure radiation exposure. We describe a method for absolute neutron output and flux measurements of low output D-T neutron generators using delayed activation of silicon. We irradiated a series of silicon oxide samples with 14.1 MeV neutrons and counted the resulting gamma rays of the 28 Al nucleus with an efficiency-calibrated detector. To minimize the photon self-absorption effects within the samples, we used a zero-thickness extrapolation technique by repeating the measurement with samples of different thicknesses. The neutron flux measured 26 cm away from the tritium target of a Thermo Electron A-325 D-T generator (Thermo Electron Corporation, Colorado Springs, CO) was 6.2 x 10 3 n/s/cm 2 ± 5%, which is consistent with the manufacturer's specifications

  5. Assessing neutron generator output using neutron activation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kehayias, Pauli M. [Body Composition Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111 (United States); Kehayias, Joseph J. [Body Composition Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111 (United States)]. E-mail: joseph.kehayias@tufts.edu

    2007-08-15

    D-T neutron generators are used for elemental composition analysis and medical applications. Often composition is determined by examining elemental ratios in which the knowledge of the neutron flux is unnecessary. However, the absolute value of the neutron flux is required when the generator is used for neutron activation analysis, to study radiation damage to materials, to monitor the operation of the generator, and to measure radiation exposure. We describe a method for absolute neutron output and flux measurements of low output D-T neutron generators using delayed activation of silicon. We irradiated a series of silicon oxide samples with 14.1 MeV neutrons and counted the resulting gamma rays of the {sup 28}Al nucleus with an efficiency-calibrated detector. To minimize the photon self-absorption effects within the samples, we used a zero-thickness extrapolation technique by repeating the measurement with samples of different thicknesses. The neutron flux measured 26 cm away from the tritium target of a Thermo Electron A-325 D-T generator (Thermo Electron Corporation, Colorado Springs, CO) was 6.2 x 10{sup 3} n/s/cm{sup 2} {+-} 5%, which is consistent with the manufacturer's specifications.

  6. Slip-band formation and dislocation kinetics in the stage I deformation of neutron-irradiated copper single crystals

    International Nuclear Information System (INIS)

    Kitajima, Sadakichi; Shinohara, Kazutoshi; Kutsuwada, Masanori

    1995-01-01

    The velocity of edge and screw dislocations moving in primary slip bands and the formation rate of primary slip bands were measured in stage I deformation of neutron-irradiated copper single crystals at different strain rates at room temperature using micro-cinematography and optical micrography. The average velocity of edge dislocations was larger at least by one order than that of screw ones, and that of screw dislocations did not depend so strongly on strain rate. The formation rate of primary slip bands was proportional to strain rate. From these results, it is concluded that (1) jogs produced on moving dislocations by cutting dislocation loops result in the difference in velocity between edge and screw dislocations and (2) the change in the density of mobile dislocations as well as velocity of dislocations is responsible for the change of plastic strain rate of a crystal. (author)

  7. Hyper-thermal neutron irradiation field for neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kanda, Keiji

    1994-01-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum of a Maxwell distribution higher than the room temperature of 300 K, has been studied in order to improve the thermal neutron flux distribution in a living body for a deep-seated tumor in neutron capture therapy (NCT). Simulation calculations using MCNP-V3 were carried out in order to investigate the characteristics of the hyper-thermal neutron irradiation field. From the results of simulation calculations, the following were confirmed: (i) The irradiation field of the hyper-thermal neutrons is feasible by using some scattering materials with high temperature, such as Be, BeO, C, SiC and ZrH 1.7 . Especially, ZrH 1.7 is thought to be the best material because of good characteristics of up-scattering for thermal neutrons. (ii) The ZrH 1.7 of 1200 K yields the hyper-thermal neutrons of a Maxwell-like distribution at about 2000 K and the treatable depth is about 1.5 cm larger comparing with the irradiation of the thermal neutrons of 300 K. (iii) The contamination by the secondary gamma-rays from the scattering materials can be sufficiently eliminated to the tolerance level for NCT through the bismuth layer, without the larger change of the energy spectrum of hyper-thermal neutrons. ((orig.))

  8. Gravitational Effects on Plasma Waves in Environment of Sun and Neutron Star

    International Nuclear Information System (INIS)

    Lu Quankang; Hsiao-Ling Zhou

    2014-01-01

    Local plasma phenomena in environment of Sun are observed closely by spacecrafts in recent years. We provide a new method to apply general relativity to astro-plasma physics in small local area. The relativistic dispersion relations of Langmuir, electromagnetic and cyclotron waves are obtained. The red shifts of Langmuir and cyclotron frequencies are given analytically. A new equilibrium velocity distribution of particles soaked in local gravitational field is suggested. The gravitational effect of a neutron star is also estimated

  9. Effects of neutron spectrum and external neutron source on neutron multiplication parameters in accelerator-driven system

    International Nuclear Information System (INIS)

    Shahbunder, Hesham; Pyeon, Cheol Ho; Misawa, Tsuyoshi; Lim, Jae-Yong; Shiroya, Seiji

    2010-01-01

    The neutron multiplication parameters: neutron multiplication M, subcritical multiplication factor k s , external source efficiency φ*, play an important role for numerical assessment and reactor power evaluation of an accelerator-driven system (ADS). Those parameters can be evaluated by using the measured reaction rate distribution in the subcritical system. In this study, the experimental verification of this methodology is performed in various ADS cores; with high-energy (100 MeV) proton-tungsten source in hard and soft neutron spectra cores and 14 MeV D-T neutron source in soft spectrum core. The comparison between measured and calculated multiplication parameters reveals a maximum relative difference in the range of 6.6-13.7% that is attributed to the calculation nuclear libraries uncertainty and accuracy for energies higher than 20 MeV and also dependent on the reaction rate distribution position and count rates. The effects of different core neutron spectra and external neutron sources on the neutron multiplication parameters are discussed.

  10. Neutron dosimetry at SLAC: Neutron sources and instrumentation

    International Nuclear Information System (INIS)

    Liu, J.C.; Jenkins, T.M.; McCall, R.C.; Ipe, N.E.

    1991-10-01

    This report summarizes in detail the dosimetric characteristics of the five radioisotopic type neutron sources ( 238 PuBe, 252 Cf, 238 PuB, 238 PuF 4 , and 238 PuLi) and the neutron instrumentation (moderated BF 3 detector, Anderson-Braun (AB) detector, AB remmeter, Victoreen 488 Neutron Survey Meter, Beam Shut-Off Ionization Chamber, 12 C plastic scintillator detector, moderated indium foil detector, and moderated and bare TLDs) that are commonly used for neutron dosimetry at the Stanford Linear Accelerator Center (SLAC). 36 refs,. 19 figs

  11. Production of 14 MeV neutrons from D-D neutron generators

    International Nuclear Information System (INIS)

    Cecil, F.E.; Nieschmidt, E.B.

    1986-01-01

    The production of 14 MeV neutrons from a D-D neutron generator resulting from tritium buildup from the d(d,p)t reaction in the target is discussed. The effect of the 14 MeV neutrons on fast neutron activation analysis with D-D neutron generators is evaluated. (orig.)

  12. Pulsed neutron generator

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Bykovskii, Yu.A.; Vergun, I.I.; Kozlovskii, K.I.; Kozyrev, Yu.P.; Leonov, R.K.; Simagin, B.I.; Tsybin, A.S.; Shikanov, A.Ie.

    1986-03-01

    The paper describes a new device for generating pulsed neutron fields, utilized in nuclear geophysics for carrying out pulsed neutron logging and activation analysis under field conditions. The invention employs a sealed-off neutron tube with a laser ion source which increases neutron yield to the level of 10 neutrons per second or higher. 2 refs., 1 fig

  13. Neutron PSDs for the next generation of spallation neutron sources

    CERN Document Server

    Eijk, C W

    2002-01-01

    A review of R and D for neutron PSDs to be used at anticipated new spallation neutron sources: the Time-of-Flight system facility, European Spallation Source, Spallation Neutron Source and Neutron Arena, is presented. The gas-filled detectors, scintillation detectors and hybrid systems are emphasized.

  14. New neutron imaging using pulsed sources. Characteristics of a pulsed neutron source and principle of pulsed neutron imaging

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki

    2012-01-01

    Neutron beam is one of important tools to obtain the transmission image of an object. Until now, steady state neutron sources such as reactors are mainly used for this imaging purpose. Recently, it has been demonstrated that pulsed neutron imaging based on accelerator neutron sources can provide a real-space distribution of physical information of materials such as crystallographic structure, element, temperature, hydrogen bound state, magnetic field and so on, by analyzing wavelength dependent transmission spectrum, which information cannot be observed or difficult to obtain with a traditional imaging method using steady state neutrons. Here, characteristics of the pulsed neutron source and principle of the pulsed neutron imaging are explained as a basic concept of the new method. (author)

  15. Neutron guides and scientific neutron equipment at CILAS/GMI

    International Nuclear Information System (INIS)

    Gautier-Picard, P.

    2003-01-01

    CILAS company is the world's leading supplier of complete neutron guides systems. The neutron optics with multilayer coatings produced by CILAS have become an international standard for neutron beam transportation in the modern research institutes. During the last 30 years, CILAS designed, produced and installed more than 5000 meters of guides in many European, American and Asian countries. To reinforce its leadership and presence in neutron research, CILAS acquired the company Grenoble Modular Instruments (GMI), a leading company in high precision mechanics, engineering and manufacturing of spectrometers and scientific equipment for neutron and synchrotron research. (author)

  16. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  17. Development of fast neutron radiography system based on portable neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Chia Jia, E-mail: gei-i-kani@hotmail.com; Nilsuwankosit, Sunchai, E-mail: sunchai.n@chula.ac.th [Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Rd., Patumwan, Bangkok, THAILAND 10330 (Thailand)

    2016-01-22

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.

  18. Neutron dosimetry at SLAC: Neutron sources and instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.C.; Jenkins, T.M.; McCall, R.C.; Ipe, N.E.

    1991-10-01

    This report summarizes in detail the dosimetric characteristics of the five radioisotopic type neutron sources ({sup 238}PuBe, {sup 252}Cf, {sup 238}PuB, {sup 238}PuF{sub 4}, and {sup 238}PuLi) and the neutron instrumentation (moderated BF{sub 3} detector, Anderson-Braun (AB) detector, AB remmeter, Victoreen 488 Neutron Survey Meter, Beam Shut-Off Ionization Chamber, {sup 12}C plastic scintillator detector, moderated indium foil detector, and moderated and bare TLDs) that are commonly used for neutron dosimetry at the Stanford Linear Accelerator Center (SLAC). 36 refs,. 19 figs.

  19. Critical velocities in He II for independently varied superfluid and normal fluid velocities

    International Nuclear Information System (INIS)

    Baehr, M.L.

    1984-01-01

    Experiments were performed to measure the critical velocity in pure superflow and compare to the theoretical prediction; to measure the first critical velocity for independently varied superfluid and normal fluid velocities; and to investigate the propagation of the second critical velocity from the thermal counterflow line through the V/sub n/,-V/sub s/ quadrant. The experimental apparatus employed a thermal counterflow heater to adjust the normal fluid velocity, a fountain pump to vary the superfluid velocity, and a level sensing capacitor to measure the superfluid velocity. The results of the pure superfluid critical velocity measurements indicate that this velocity is temperature independent contrary to Schwarz's theory. It was found that the first critical velocity for independently varied V/sub n/ and V/sub s/ could be described by a linear function of V/sub n/ and was otherwise temperature independent. It was found that the second critical velocity could only be distinguished near the thermal counterflow line

  20. Production and use of Li(d,n) neutrons for simulation of radiation effects in fusion reactors

    International Nuclear Information System (INIS)

    Goland, A.N.; Gurinsky, D.H.; Hendrie, J.; Kukkonen, J.; Sheehan, T.; Snead, C.L. Jr.

    1975-01-01

    In the Brookhaven Accelerator-Based Neutron Generator 1.5-cm thick x 12-cm wide films of lithium flowing at the velocity of approximately 10 m sec -1 will be the targets for 30-MeV D + and D - beams 1-cm high and 10-cm wide. At this energy a beam of energetic neutrons is emitted mainly in the forward direction (theta less than or equal to 20 0 ) as a result of the Li(d,n) breakup reaction. Measurements of the neutron flux and spectrum as a function of incident deuteron energy and emission angle theta(theta less than or equal to 20 0 ) indicate that the yield increases approximately linearly with increasing deuteron energy from 25 MeV to at least 35 MeV, and that the mean energy of the neutrons (theta = 0 0 ) is about 0.4 of the incident deuteron energies between 25 and 35 MeV. The most probable neutron energy in the forward-directed (theta = 0 0 ) spectrum is also about 0.4 of the deuteron energy over this range. For a 30-MeV beam, the full width at half maximum of the neutron spectrum is 11.8 MeV (theta = 0 0 ), and the mean neutron energy is 13 MeV. Pertinent radiation-damage parameters were calculated for various materials exposed to this neutron spectrum. In Nb, for example, the helium production rate and the displacement rate simulate the values anticipated in a D-T fusion reactor spectrum of comparable flux. Furthermore, the primary-recoil-atom energy distributions produced by Li(d,n) neutrons in Al, Nb, and Au are similar to those produced by 14-MeV neutrons. (U.S.)

  1. Growth of black holes in the interior of rotating neutron stars

    DEFF Research Database (Denmark)

    Kouvaris, C.; Tinyakov, P.

    2014-01-01

    Mini-black holes made of dark matter that can potentially form in the interior of neutron stars always have been thought to grow by accreting the matter of the core of the star via a spherical Bondi accretion. However, neutron stars have sometimes significant angular velocities that can...... in principle stall the spherical accretion and potentially change the conclusions derived about the time it takes for black holes to destroy a star. We study the effect of the star rotation on the growth of such black holes and the evolution of the black hole spin. Assuming no mechanisms of angular momentum...... evacuation, we find that even moderate rotation rates can in fact destroy spherical accretion at the early stages of the black hole growth. However, we demonstrate that the viscosity of nuclear matter can alleviate the effect of rotation, making it possible for the black hole to maintain spherical accretion...

  2. Electromagnetic and Radiative Properties of Neutron Star Magnetospheres

    Science.gov (United States)

    Li, Jason G.

    2014-05-01

    Magnetospheres of neutron stars are commonly modeled as either devoid of plasma in "vacuum'' models or filled with perfectly conducting plasma with negligible inertia in "force-free'' models. While numerically tractable, neither of these idealized limits can simultaneously account for both the plasma currents and the accelerating electric fields that are needed to explain the morphology and spectra of high-energy emission from pulsars. In this work we improve upon these models by considering the structure of magnetospheres filled with resistive plasma. We formulate Ohm's Law in the minimal velocity fluid frame and implement a time-dependent numerical code to construct a family of resistive solutions that smoothly bridges the gap between the vacuum and force-free magnetosphere solutions. We further apply our method to create a self-consistent model for the recently discovered intermittent pulsars that switch between two distinct states: an "on'', radio-loud state, and an "off'', radio-quiet state with lower spin-down luminosity. Essentially, we allow plasma to leak off open field lines in the absence of pair production in the "off'' state, reproducing observed differences in spin-down rates. Next, we examine models in which the high-energy emission from gamma-ray pulsars comes from reconnecting current sheets and layers near and beyond the light cylinder. The reconnected magnetic field provides a reservoir of energy that heats particles and can power high-energy synchrotron radiation. Emitting particles confined to the sheet naturally result in a strong caustic on the skymap and double peaked light curves for a broad range of observer angles. Interpulse bridge emission likely arises from interior to the light cylinder, along last open field lines that traverse the space between the polar caps and the current sheet. Finally, we apply our code to solve for the magnetospheric structure of merging neutron star binaries. We find that the scaling of electromagnetic

  3. Neutron star natal kicks and the long-term survival of star clusters

    Science.gov (United States)

    Contenta, Filippo; Varri, Anna Lisa; Heggie, Douglas C.

    2015-04-01

    We investigate the dynamical evolution of a star cluster in an external tidal field by using N-body simulations, with focus on the effects of the presence or absence of neutron star natal velocity kicks. We show that, even if neutron stars typically represent less than 2 per cent of the total bound mass of a star cluster, their primordial kinematic properties may affect the lifetime of the system by up to almost a factor of 4. We interpret this result in the light of two known modes of star cluster dissolution, dominated by either early stellar evolution mass-loss or two-body relaxation. The competition between these effects shapes the mass-loss profile of star clusters, which may either dissolve abruptly (`jumping'), in the pre-core-collapse phase, or gradually (`skiing'), after having reached core collapse.

  4. Directional epithermal neutron detector

    International Nuclear Information System (INIS)

    Givens, W.W.; Mills, W.R. Jr.

    1986-01-01

    A borehole tool for epithermal neutron die-away logging of subterranean formations surrounding a borehole is described which consists of: (a) a pulsed source of fast neutrons for irradiating the formations surrounding a borehole, (b) at least one neutron counter for counting epithermal neutrons returning to the borehole from the irradiated formations, (c) a neutron moderating material, (d) an outer thermal neutron shield providing a housing for the counter and the moderating material, (e) an inner thermal neutron shield dividing the housing so as to provide a first compartment bounded by the inner thermal neutron shield and a first portion of the outer thermal neutron shield and a second compartment bounded by the inner thermal neutron shield and a second portion of the outer thermal neutron shield, the counter being positioned within the first compartment and the moderating material being positioned within the second compartment, and (f) means for positioning the borehole tool against one side of the borehole wall and azimuthally orienting the borehole tool such that the first chamber is in juxtaposition with the borehole wall, the formation epithermal neutrons penetrating into the first chamber through the first portion of the outer thermal neutron shield are detected by the neutron counter for die-away measurement, thereby maximizing the directional sensitivty of the neutron counter to formation epithermal neutrons, the borehole fluid epithermal neutrons penetrating into the second chamber through the second chamber through the second portion of the outer thermal neutron shield are largely slowed down and lowered in energy by the moderating material and absorbed by the inner thermal neutron shield before penetrating into the first chamber, thereby minimizing the directional sensitivity of the neutron counter to borehole fluid epithermal neutrons

  5. Dynamical ejecta from precessing neutron star-black hole mergers with a hot, nuclear-theory based equation of state

    International Nuclear Information System (INIS)

    Foucart, F; Kasen, D; Desai, D; Brege, W; Duez, M D; Hemberger, D A; Scheel, M A; Kidder, L E; Pfeiffer, H P

    2017-01-01

    Neutron star-black hole binaries are among the strongest sources of gravitational waves detectable by current observatories. They can also power bright electromagnetic signals (gamma-ray bursts, kilonovae), and may be a significant source of production of r-process nuclei. A misalignment of the black hole spin with respect to the orbital angular momentum leads to precession of that spin and of the orbital plane, and has a significant effect on the properties of the post-merger remnant and of the material ejected by the merger. We present a first set of simulations of precessing neutron star-black hole mergers using a hot, composition dependent, nuclear-theory based equation of state (DD2). We show that the mass of the remnant and of the dynamical ejecta are broadly consistent with the result of simulations using simpler equations of state, while differences arise when considering the dynamics of the merger and the velocity of the ejecta. We show that the latter can easily be understood from assumptions about the composition of low-density, cold material in the different equations of state, and propose an updated estimate for the ejecta velocity which takes those effects into account. We also present an updated mesh-refinement algorithm which allows us to improve the numerical resolution used to evolve neutron star-black hole mergers. (paper)

  6. Neutron Optics: Towards Applications for Hot Neutrons

    International Nuclear Information System (INIS)

    Schanzer, C; Schneider, M; Böni, P

    2016-01-01

    Supermirrors with large critical angles of reflection, i.e. large index m are an essential ingredient to transport, focus and polarise neutrons over a wide range of energy. Here we summarise the recent developments of supermirror with very large critical angles of reflection and high reflectivity that were conducted at SwissNeutronics as well as their implementation in devices. Approaching critical angles m = 8 times the critical angle of natural nickel makes new applications possible and extends the use of reflection optics towards the regime of hot and epithermal neutrons. Based on comparisons of simulations with experiment we demonstrate future possibilities of applications of large-m supermirrors towards devices for neutrons with short wavelength. (paper)

  7. Neutron transportation simulator

    International Nuclear Information System (INIS)

    Uenohara, Yuzo.

    1995-01-01

    In the present invention, problems in an existent parallelized monte carlo method is solved, and behaviors of neutrons in a large scaled system are accurately simulated at a high speed. Namely, a neutron transportation simulator according to the monte carlo method simulates movement of each of neutrons by using a parallel computer. In this case, the system to be processed is divided based on a space region and an energy region to which neutrons belong. Simulation of neutrons in the divided regions is allotted to each of performing devices of the parallel computer. Tarry data and nuclear data of the neutrons in each of the regions are memorized dispersedly to memories of each of the performing devices. A transmission means for simulating the behaviors of the neutrons in the region by each of the performing devices, as well as transmitting the information of the neutrons, when the neutrons are moved to other region, to the performing device in a transported portion are disposed to each of the performing devices. With such procedures, simulation for the neutrons in the allotted region can be conducted with small capacity of memories. (I.S.)

  8. PERIGEE computer codes for reactor simulation in 3 dimensions, using 1 or 2 neutron velocity groups

    International Nuclear Information System (INIS)

    Olson, A.P.

    1964-02-01

    PERIGEE is a code written in SNAP for the G-20 computer. It solves the one- or two-group neutron diffusion equations by finite-difference methods on a three-dimensional, uniform mesh having a common spacing in the two directions normal to the fuel channels. The positions of mesh points along a fuel channel, relative to points in adjacent channels, may correspond to either NPD or CANDU fuel bundle positions. The extrapolated flux boundary may be specified in sufficient detail to represent a tapered or stepped circumferential reflector, a variable axial length and, for a reactor with axis horizontal, a variable moderator level and a variable plane bottom surface equivalent to the CANDU dump structure. The neutron flux may be normalized to give a specified power output from the hottest fuel bundle or hottest channel, or to give a total thermal power limited by the turbine and generator. Reactor operation may be simulated in finite time steps, taking into account any fuel shifts, any changes in moderator level and the change in nuclear properties of the fuel with increasing irradiation. The appropriate properties are obtained by interpolation from tables supplied for as many as 8 types of fuel bundle. The mean fuel exit burnup can be calculated at equilibrium for a reactor in which the exit burnups for two zones may be adjusted to give radial power flattening and the fuelling schedules may be designed to give axial power flattening in one or both zones. (author)

  9. Neutronics of the IFMIF neutron source: development and analysis

    International Nuclear Information System (INIS)

    Wilson, P.P.H.

    1999-01-01

    The accurate analysis of this system required the development of a code system and methodology capable of modelling the various physical processes. A generic code system for the neutronics analysis of neutron sources has been created by loosely integrating existing components with new developments: the data processing code NJOY, the Monte Carlo neutron transport code MCNP, and the activation code ALARA were supplemented by a damage data processing program, damChar, and integrated with a number of flexible and extensible modules for the Perl scripting language. Specific advances were required to apply this code system to IFMIF. Based on the ENDF-6 data format requirements of this system, new data evaluations have been implemented for neutron transport and activation. Extensive analysis of the Li(d, xn) reaction has led to a new MCNP source function module, M c DeLi, based on physical reaction models and capable of accurate and flexible modelling of the IFMIF neutron source term. In depth analyses of the neutron flux spectra and spatial distribution throughout the high flux test region permitted a basic validation of the tools and data. The understanding of the features of the neutron flux provided a foundation for the analyses of the other neutron responses. (orig./DGE) [de

  10. Neutron spectra and dosimetric features of isotopic neutron sources: a review

    International Nuclear Information System (INIS)

    Vega C, H. R.; Martinez O, S. A.

    2015-10-01

    A convenient way to produce neutrons is the isotopic neutron source, where the production is through (α, n), (γ, n), and spontaneous fission reactions. Isotopic neutron sources are small, easy to handle, and have a relative low cost. On the other hand the neutron yield is small and mostly of them produces neutrons with a wide energy distribution. In this work, a review is carried out about the the main features of 24 NaBe, 24 NaD 2 O, 116 InBe, 140 LaBe, 238 PuLi, 239 PuBe, 241 AmB, 241 AmBe, 241 AmF, 241 AmLi, 242 CmBe, 210 PoBe, 226 RaBe, 252 Cf and 252 Cf/D 2 O isotopic neutron source. Also, using Monte Carlo methods, the neutron spectra in 31 energy groups, the neutron mean energy; the Ambient dose equivalent, the Personal dose equivalent and the Effective dose were calculated for these isotopic neutron sources. (Author)

  11. A neutron detector for measurement of total neutron production cross sections

    International Nuclear Information System (INIS)

    Sekharan, K.K.; Laumer, H.; Kern, B.D.; Gabbard, F.

    1976-01-01

    A neutron detector has been constructed and calibrated for the accurate measurement of total neutron production cross sections. The detector consists of a polyethylene sphere of 60 cm diameter in which eight 10 BF 3 counters have been installed radially. The relative efficiency of this detector has been determined for average neutron energies from 30 keV to 1.5 MeV by counting neutrons from 7 Li(p, n) 7 Be. By adjusting the radial positions of the BF 3 counters in the polyethylene sphere the efficiency for neutron detection was made nearly constant for this energy range. Measurement of absolute efficiency for the same neutron energy range has been done by counting the neutrons from 51 V(p, n) 51 Cr and 57 Fe(p, n) 57 Co reactions and determining the absolute number of residual nuclei produced during the measurement of neutron yield. Details of absolute efficiency measurements and the use of the detector for determination of neutron production cross sections are given. (Auth.)

  12. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  13. Neutron-induced peaks in Ge detectors from evaporation neutrons

    International Nuclear Information System (INIS)

    Gete, E.; Measday, D.F.; Moftah, B.A.; Saliba, M.A.; Stocki, T.J.

    1997-01-01

    We have studied the peak shapes at 596 and 691 keV resulting from fast neutron interactions inside germanium detectors. We have used neutrons from a 252 Cf source, as well as from the 28 Si(μ - , nν), and 209 Bi(π - , xn) reactions to compare the peaks and to check for a dependence of peak shape on the incoming neutron energy. In our investigation, no difference between these three measurements has been observed. In a comparison of these peak shapes with other studies, we found similar results to ours except for those measurements using monoenergetic neutrons in which a significant variation with neutron energy has been observed. (orig.)

  14. Development of high flux thermal neutron generator for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vainionpaa, Jaakko H., E-mail: hannes@adelphitech.com [Adelphi Technology, 2003 E Bayshore Rd, Redwood City, CA 94063 (United States); Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K. [Adelphi Technology, 2003 E Bayshore Rd, Redwood City, CA 94063 (United States); Jones, Glenn [G& J Jones Enterprice, 7486 Brighton Ct, Dublin, CA 94568 (United States); Pantell, Richard H. [Department of Electrical Engineering, Stanford University, Stanford, CA (United States)

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3–5 · 10{sup 7} n/cm{sup 2}/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 10{sup 10} n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  15. Fast neutron activation analysis by means of low voltage neutron generator

    Directory of Open Access Journals (Sweden)

    M.E. Medhat

    Full Text Available A description of D-T neutron generator (NG is presented. This machine can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. Procedure of neutron flux determination and efficiency calculation is described. Examples of testing some Egyptian natural cosmetics are given. Keywords: Neutron generator, Fast neutron activation analysis, Elemental analysis

  16. Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability?

    Science.gov (United States)

    García-Ramos, Amador; Pestaña-Melero, Francisco L; Pérez-Castilla, Alejandro; Rojas, Francisco J; Gregory Haff, G

    2018-05-01

    García-Ramos, A, Pestaña-Melero, FL, Pérez-Castilla, A, Rojas, FJ, and Haff, GG. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res 32(5): 1273-1279, 2018-This study aimed to compare between 3 velocity variables (mean velocity [MV], mean propulsive velocity [MPV], and peak velocity [PV]): (a) the linearity of the load-velocity relationship, (b) the accuracy of general regression equations to predict relative load (%1RM), and (c) the between-session reliability of the velocity attained at each percentage of the 1-repetition maximum (%1RM). The full load-velocity relationship of 30 men was evaluated by means of linear regression models in the concentric-only and eccentric-concentric bench press throw (BPT) variants performed with a Smith machine. The 2 sessions of each BPT variant were performed within the same week separated by 48-72 hours. The main findings were as follows: (a) the MV showed the strongest linearity of the load-velocity relationship (median r = 0.989 for concentric-only BPT and 0.993 for eccentric-concentric BPT), followed by MPV (median r = 0.983 for concentric-only BPT and 0.980 for eccentric-concentric BPT), and finally PV (median r = 0.974 for concentric-only BPT and 0.969 for eccentric-concentric BPT); (b) the accuracy of the general regression equations to predict relative load (%1RM) from movement velocity was higher for MV (SEE = 3.80-4.76%1RM) than for MPV (SEE = 4.91-5.56%1RM) and PV (SEE = 5.36-5.77%1RM); and (c) the PV showed the lowest within-subjects coefficient of variation (3.50%-3.87%), followed by MV (4.05%-4.93%), and finally MPV (5.11%-6.03%). Taken together, these results suggest that the MV could be the most appropriate variable for monitoring the relative load (%1RM) in the BPT exercise performed in a Smith machine.

  17. Research of accelerator-based neutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Li Changkai; Ma Yingjie; Tang Xiaobin; Xie Qin; Geng Changran; Chen Da

    2013-01-01

    Background: 7 Li (p, n) reaction of high neutron yield and low threshold energy has become one of the most important neutron generating reactions for Accelerator-based Boron Neutron Capture Therapy (BNCT). Purpose Focuses on neutron yield and spectrum characteristics of this kind of neutron generating reaction which serves as an accelerator-based neutron source and moderates the high energy neutron beams to meet BNCT requirements. Methods: The yield and energy spectrum of neutrons generated by accelerator-based 7 Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are researched using the Monte Carlo code-MCNPX2.5.0. And the energy and angular distribution of differential neutron yield by 2.5-MeV incident proton are also given in this part. In the following part, the character of epithermal neutron beam generated by 2.5-MeV incident protons is moderated by a new-designed moderator. Results: Energy spectra of neutrons generated by accelerator-based 7 Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are got through the simulation and calculation. The best moderator thickness is got through comparison. Conclusions: Neutron beam produced by accelerator-based 7 Li(p, n) reaction, with the bombarding beam of 10 mA and the energy of 2.5 MeV, can meet the requirement of BNCT well after being moderated. (authors)

  18. A polarizing neutron periscope for neutron imaging

    International Nuclear Information System (INIS)

    Schulz, Michael; Boeni, Peter; Calzada, Elbio; Muehlbauer, Martin; Neubauer, Andreas; Schillinger, Burkhard

    2009-01-01

    Optical neutron polarizers like guides or benders destroy the collimation of a neutron beam due to multiple reflections or scattering. This makes them unsuitable for their use in polarized neutron radiography, because the beam collimation is essential to obtain high spatial resolution. We have developed a neutron polarizer based on the principle of an optical periscope with a zigzag double reflection on two parallel high-m supermirror polarizers. If the supermirrors are perfectly parallel and flat, the beam collimation is left unchanged by such a device. A first proof of concept version of this type of polarizer was built and tested. We expect to achieve a beam polarization of up to 99% with an improved version yet to be built.

  19. Neutron detector

    International Nuclear Information System (INIS)

    Endo, Hiroshi.

    1993-01-01

    The device of the present invention detects neutrons in a reactor container under a high temperature and reduces the noise level in an FBR type reactor. That is, the detection section comprises a high heat resistant vessel containing a scintillator therein for detecting neutrons. Neutron signals sent from the detection section are inputted to a neutron measuring section by way of a signal transmission section. The detection section is disposed at the inside of the reactor container. Further, the signal transmission section is connected optically to the detection section. With such a constitution, since the detection section comprising the high temperature resistant vessel is disposed at the inside of the reactor container, neutron fluxes can be detected and measured at high sensitivity even under a high temperature circumstance. Since the signal transmission section is optically connected to the detection section, influence of radiation rays upon transmission of the neutron detection signals can be reduced. Accordingly, the noise level can be kept low. (I.S.)

  20. Very slow neutrons

    International Nuclear Information System (INIS)

    Frank, A.

    1983-01-01

    The history is briefly presented of the research so far of very slow neutrons and their basic properties are explained. The methods are described of obtaining very slow neutrons and the problems of their preservation are discussed. The existence of very slow neutrons makes it possible to perform experiments which may deepen the knowledge of the fundamental properties of neutrons. Their wavelength approximates that of visible radiation. The possibilities and use are discussed of neutron optical systems (neutron microscope) which could be an effective instrument for the study of the detailed arrangement, especially of organic substances. (B.S.)

  1. Neutron in biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1997-01-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10 2 to 10 3 times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  2. Experiment of Neutron Generation by Using Prototype D-D Neutron Generator

    International Nuclear Information System (INIS)

    Kim, In Jung; Kim, Suk Kwon; Park, Chang Su; Jung, Nam Suk; Jung, Hwa Dong; Park, Ji Young; Hwang, Yong Seok; Choi, H.D.

    2005-01-01

    Experiment of neutron generation was performed by using a prototype D-D neutron generator. The characteristics of D-D neutron generation in drive-in target was studied. The increment of neutron yield by increasing ion beam energy was investigated, too

  3. Analysis of the neutron generation from a D-Li neutron source

    International Nuclear Information System (INIS)

    Gomes, I.

    1994-02-01

    The study of the neutron generation from the D-Li reaction is an important issue to define the optimum combination of the intervening parameters during the design phase of a D-Li neutron source irradiation facility. The major players in defining the neutron yield from the D-Li reaction are the deuteron incident energy and the beam current, provided that the lithium target is thick enough to stop all incident deuterons. The incident deuteron energy also plays a role on the angular distribution of the generated neutrons, on the energy distribution of the generated neutrons, and on the maximum possible energy of the neutrons. The D-Li reaction produces neutrons with energies ranging from eV's to several MeV's. The angular distribution of these neutrons is dependent on the energy of both, incident deuterons and generated neutrons. The deuterons lose energy interacting with the lithium target material in such a way that the energy of the deuterons inside the lithium target varies from the incident deuteron energy to essentially zero. The first part of this study focuses in analyzing the neutron generation rate from the D-Li reaction as a function of the intervening parameters, in defining the source term, in terms of the energy and angular distributions of the generated neutrons, and finally in providing some insights of the impact of varying input parameters on the generation rate and correlated distributions. In the second part an analytical description of the Monte Carlo sampling procedure of the neutron from the D-Li reaction is provided with the aim at further Monte Carlo transport of the D-Li neutrons

  4. Gamma-irradiation and neutron effect on DNA-membrane complexes of mammalian cells

    International Nuclear Information System (INIS)

    Lapidus, I.L.; Nazarov, V.M.; Ehrtsgreber, G.

    1984-01-01

    The first results of radiobiological investigations in the biophysical channel of the JINR reactor IBR-2 are presented. Sedimentation behaviour of DNA-membrane complexes has been studied at irradiation of the Chinese hamster cells (VT9-4) in a wide dose range of 137 Cs γ-irradiation and neutrons. An earlier assumption of the authors on the role of DNA double-strand breaks in changing the relative sedimentation velocity of complexes at irradiation of cells with doses over 50 Gy has been confirmed

  5. Modelling Pulsar Glitches: The Hydrodynamics of Superfluid Vortex Avalanches in Neutron Stars

    Science.gov (United States)

    Khomenko, V.; Haskell, B.

    2018-05-01

    The dynamics of quantised vorticity in neutron star interiors is at the heart of most pulsar glitch models. However, the large number of vortices (up to ≈1013) involved in a glitch and the huge disparity in scales between the femtometre scale of vortex cores and the kilometre scale of the star makes quantum dynamical simulations of the problem computationally intractable. In this paper, we take a first step towards developing a mean field prescription to include the dynamics of vortices in large-scale hydrodynamical simulations of superfluid neutron stars. We consider a one-dimensional setup and show that vortex accumulation and differential rotation in the neutron superfluid lead to propagating waves, or `avalanches', as solutions for the equations of motion for the superfluid velocities. We introduce an additional variable, the fraction of free vortices, and test different prescriptions for its advection with the superfluid flow. We find that the new terms lead to solutions with a linear component in the rise of a glitch, and that, in specific setups, they can give rise to glitch precursors and even to decreases in frequency, or `anti-glitches'.

  6. Neutron techniques

    International Nuclear Information System (INIS)

    Charlton, J.S.

    1986-01-01

    The way in which neutrons interact with matter such as slowing-down, diffusion, neutron absorption and moderation are described. The use of neutron techniques in industry, in moisture gages, level and interface measurements, the detection of blockages, boron analysis in ore feedstock and industrial radiography are discussed. (author)

  7. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner [eds.

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  8. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  9. Neutron spectra and dosimetric features of isotopic neutron sources: a review

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico); Martinez O, S. A., E-mail: fermineutron@yahoo.com [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, Av. Central del Norte 39-115, 150003 Tunja, Boyaca (Colombia)

    2015-10-15

    A convenient way to produce neutrons is the isotopic neutron source, where the production is through (α, n), (γ, n), and spontaneous fission reactions. Isotopic neutron sources are small, easy to handle, and have a relative low cost. On the other hand the neutron yield is small and mostly of them produces neutrons with a wide energy distribution. In this work, a review is carried out about the the main features of {sup 24}NaBe, {sup 24}NaD{sub 2}O, {sup 116}InBe, {sup 140}LaBe, {sup 238}PuLi, {sup 239}PuBe, {sup 241}AmB, {sup 241}AmBe, {sup 241}AmF, {sup 241}AmLi, {sup 242}CmBe, {sup 210}PoBe, {sup 226}RaBe, {sup 252}Cf and {sup 252}Cf/D{sub 2}O isotopic neutron source. Also, using Monte Carlo methods, the neutron spectra in 31 energy groups, the neutron mean energy; the Ambient dose equivalent, the Personal dose equivalent and the Effective dose were calculated for these isotopic neutron sources. (Author)

  10. A neutron detector for measurement of total neutron production cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Sekharan, K K; Laumer, H; Kern, B D; Gabbard, F [Kentucky Univ., Lexington (USA). Dept. of Physics and Astronomy

    1976-03-01

    A neutron detector has been constructed and calibrated for the accurate measurement of total neutron production cross sections. The detector consists of a polyethylene sphere of 60 cm diameter in which eight /sup 10/BF/sub 3/ counters have been installed radially. The relative efficiency of this detector has been determined for average neutron energies from 30 keV to 1.5 MeV by counting neutrons from /sup 7/Li(p, n)/sup 7/Be. By adjusting the radial positions of the BF/sub 3/ counters in the polyethylene sphere the efficiency for neutron detection was made nearly constant for this energy range. Measurement of absolute efficiency for the same neutron energy range has been done by counting the neutrons from /sup 51/V(p, n)/sup 51/Cr and /sup 57/Fe(p, n)/sup 57/Co reactions and determining the absolute number of residual nuclei produced during the measurement of neutron yield. Details of absolute efficiency measurements and the use of the detector for determination of neutron production cross sections are given.

  11. Neutron radiography

    International Nuclear Information System (INIS)

    Alaa eldin, M.T.

    2011-01-01

    The digital processing of the neutron radiography images gives the possibility for data quantification. In this case an exact relation between the measured neutron attenuation and the real macroscopic attenuation coefficient for every point of the sample is required. The assumption that the attenuation of the neutron beam through the sample is exponential is valid only in an ideal case where a monochromatic beam, non scattering sample and non background contribution are assumed. In the real case these conditions are not fulfilled and in dependence on the sample material we have more or less deviation from the exponential attenuation law. Because of the high scattering cross-sections of hydrogen (σs=80.26 barn) for thermal neutrons, the problem with the scattered neutrons at quantitative radiography investigations of hydrogenous materials (as PE, Oil, H 2 O, etc) is not trivial. For these strong scattering materials the neutron beam attenuation is no longer exponential and a dependence of the macroscopic attenuation coefficient on the material thickness and on the distance between the sample and the detector appears. When quantitative radiography (2 D) or tomography investigations (3 D) are performed, some image correction procedures for a description of the scattering effect are required. This thesis presents a method that can be used to enhance the neutron radiography image for objects with high scattering materials like hydrogen, carbon and other light materials. This method uses the Monte Carlo code, MCNP5, to simulate the neutron radiography process and get the flux distribution for each pixel of the image and determine the scattered neutrons distribution that causes the image blur and then subtract it from the initial image to improve its quality.

  12. Mass dependence of spectral and angular distributions of Cherenkov radiation from relativistic isotopes in solid radiators and its possible application as mass selector

    Science.gov (United States)

    Bogdanov, O. V.; Rozhkova, E. I.; Pivovarov, Yu. L.; Kuzminchuk-Feuerstein, N.

    2018-02-01

    The first proof of principle experiment with a prototype of a Time-of-Flight (TOF) - Cherenkov detector of relativistic heavy ions (RHI) exploiting a liquid Iodine Naphthalene radiator has been performed at Cave C at GSI (Darmstadt, Germany). A conceptual design for a liquid Cherenkov detector was proposed as a prototype for the future TOF measurements at the Super-FRS by detection of total number of Cherenkov photons. The ionization energy loss of RHI in a liquid radiator decreases only slightly this number, while in a solid radiator changes sufficiently not the total number of ChR photons, but ChR angular and spectral distributions. By means of computer simulations, we showed that these distributions are very sensitive to the isotope mass, due to different stopping powers of isotopes with initial equal relativistic factors. The results of simulations for light (Li, Be) and heavy (Xe) isotopes at 500-1000 MeV/u are presented indicating the possibility to use the isotopic effect in ChR of RHI as the mass selector.

  13. Diffraction imaging and velocity analysis using oriented velocity continuation

    KAUST Repository

    Decker, Luke

    2014-08-05

    We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.

  14. On discontinuous Galerkin and discrete ordinates approximations for neutron transport equation and the critical eigenvalue

    International Nuclear Information System (INIS)

    Asadzadeh, M.; Thevenot, L.

    2010-01-01

    The objective of this paper is to give a mathematical framework for a fully discrete numerical approach for the study of the neutron transport equation in a cylindrical domain (container model,). More specifically, we consider the discontinuous Galerkin (D G) finite element method for spatial approximation of the mono-energetic, critical neutron transport equation in an infinite cylindrical domain ??in R3 with a polygonal convex cross-section ? The velocity discretization relies on a special quadrature rule developed to give optimal estimates in discrete ordinate parameters compatible with the quasi-uniform spatial mesh. We use interpolation spaces and derive optimal error estimates, up to maximal available regularity, for the fully discrete scalar flux. Finally we employ a duality argument and prove superconvergence estimates for the critical eigenvalue.

  15. A search for solar neutron response in neutron monitor data

    International Nuclear Information System (INIS)

    Kudela, K.

    1990-01-01

    The search for an impulsive increase corresponding to a solar neutron response on high-mountain neutron monitors requires control of the stability of the measurement and elimination of other sources of short-time increases of different kinds which are involved in fluctuations of cosmic-ray intensity. For the solar flare of June 3, 1982 the excess of counting rate on the Lomnicky stit neutron monitor is, within a factor or 1.8, equal to that expected from solar neutrons. Superposed epoch analysis of 17 flares with gamma-ray or hard X-ray production gives a slight tendency of an occurring signal in cases of high heliocentric angles, indicating anisotropic production of neutrons on the sun. The low statistical significance of the result indicates that higher temporal resolution, better evaluation of multiplicity, better knowledge of the power spectra of short-term intensity fluctuations on neutron monitors, as well as coordinated measurements of solar gamma-rays and neutrons on satellites, are required. 21 refs

  16. Delayed neutron yield from fast neutron induced fission of 238U

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Roshchenko, V.A.; Goverdovski, A.A.; Tertytchnyi, R.G.

    2002-01-01

    The measurements of the total delayed neutron yield from fast neutron induced fission of 238 U were made. The experimental method based on the periodic irradiation of the fissionable sample by neutrons from a suitable nuclear reaction had been employed. The preliminary results on the energy dependence of the total delayed neutron yield from fission of 238 U are obtained. According to the comparison of experimental data with our prediction based on correlation properties of delayed neutron characteristics, it is concluded that the value of the total delayed neutron yield near the threshold of (n,f) reaction is not a constant. (author)

  17. Neutron flux stabilization in the NG-150 neutron generators

    International Nuclear Information System (INIS)

    Kuz'min, L.E.; Makarov, S.A.; Pronman, I.M.

    1986-01-01

    Problem of metal tritium target lifetime increase and neutron flux stabilization in the NG-150 neutron generators is studied. Possibility on neutron flux stabilization using the mass analyzer for low-angle (4 deg and 41 deg) mass separation of a beam in thre components, which fall on a target simultaneously, is confirmed experimentally. Basic generator parameters are: accelerating voltage of 150 kV, total beam current on a target of 1.5 mA, beam current density of 0.3-1.6 mA/cm 2 , beam diameter of 8 mm. The initial neutron flux on the targets of 0.73 mg/cm 2 thick constituted 1.1x10 11 ssup(-1). The neutron flux monitoring was accomplished from recoil proton recording by a plastic scintillator. Flux decrease by more than 5% served as a signel for measuring mass analyzer magnetic field providing beam displacement on a target and restoration of the given flux. The NG-150 generator neutron flux stabilization was attained during 2h

  18. Neutron detection technique

    International Nuclear Information System (INIS)

    Oblath, N.S.; Poon, A.W.P.

    2000-01-01

    The Sudbury Neutrino Observatory (SNO) has the ability to measure the total flux of all active flavors of neutrinos using the neutral current reaction, whose signature is a neutron. By comparing the rates of the neutral current reaction to the charged current reaction, which only detects electron neutrinos, one can test the neutrino oscillation hypothesis independent of solar models. It is necessary to understand the neutron detection efficiency of the detector to make use of the neutral current reaction. This report demonstrates a coincidence technique to identify neutrons emitted from the 252 Cf neutron calibration source. The source releases on average four neutrons when a 252 Cf nucleus spontaneously fissions. Each neutron is detected as a separate event when the neutron is captured by a deuteron, releasing a gamma ray of approximately 6.25 MeV. This gamma ray is in turn detected by the photomultiplier tube (PMT) array. By investigating the time and spatial separation between neutron-like events, it is possible to obtain a pure sample of neutrons for calibration study. Preliminary results of the technique applied to two calibration runs are presented

  19. Activation method for measuring the reaction rates and studying the neutron spectra parameters, based on using the unified composition detectors

    International Nuclear Information System (INIS)

    Demidov, A.M.; Dikarev, V.S.; Efimov, B.V.; Ionov, V.S.; Marin, S.V.

    2005-01-01

    The method proposed for estimation of parameters thermal and epithermal parts of energy distribution of neutrons is described. The method based on application of activation measuring with use of unified composition detectors (UCD) and samples of fuel. The method is applicable for definition of neutron spectrum parameters and velocities of division in fuel of nuclear installations. Theoretical bases and the description of a method, expedients of manufacturing and calibration for the detectors, the experimental data, carried out in RRC KI are given and processing of experimental data, and also. The parametric model of a spectrum constructed on the basis of Westcott's formalism is described. The parameter of stiffness is entered and its role for temperature of neutron gas, spectral coefficients of isotopes of detectors, the transition area thermal and epithermal parts of neutron spectra is observationally appreciated. It is offered to confirm the found results by calculations with use of MCU Monte Carlo code [ru

  20. Neutron in biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10{sup 2} to 10{sup 3} times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  1. Reactor neutron dosimetry

    International Nuclear Information System (INIS)

    Najzer, M.; Pauko, M.; Glumac, B.; Acquah, I.N.; Moskon, F.

    1977-01-01

    An analysis of requirements and possibilities for experimental neutron spectrum determination during the reactor pressure vessel surveil lance programme is given. Fast neutron spectrum and neutron dose rate were measured in the Fast neutron irradiation facility of our TRIGA reactor. It was shown that the facility can be used for calibration of neutron dosimeters and for irradiation of samples sensitive to neutron radiation. The investigation of the unfolding algorithm ITER was continued. Based on this investigations are two specialized unfolding program packages ITERAD and ITERGS written this year. They are able to unfold data from activation detectors and NaI(T1) gamma spectrometer respectively

  2. Neutron spectrum for neutron capture therapy in boron; Espectro de neutrones para terapia por captura de neutrones en boro

    Energy Technology Data Exchange (ETDEWEB)

    Medina C, D.; Soto B, T. G. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Programa de Doctorado en Ciencias Basicas, 98068 Zacatecas, Zac. (Mexico); Baltazar R, A. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Programa de Doctorado en Ingenieria y Tecnologia Aplicada, 98068 Zacatecas, Zac. (Mexico); Vega C, H. R., E-mail: dmedina_c@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2016-10-15

    Glioblastoma multiforme is the most common and aggressive of brain tumors and is difficult to treat by surgery, chemotherapy or conventional radiation therapy. One treatment alternative is the Neutron Capture Therapy in Boron, which requires a beam modulated in neutron energy and a drug with {sup 10}B able to be fixed in the tumor. When the patients head is exposed to the neutron beam, they are captured by the {sup 10}B and produce a nucleus of {sup 7}Li and an alpha particle whose energy is deposited in the cancer cells causing it to be destroyed without damaging the normal tissue. One of the problems associated with this therapy is to have an epithermal neutrons flux of the order of 10{sup 9} n/cm{sup 2}-sec, whereby irradiation channels of a nuclear research reactor are used. In this work using Monte Carlo methods, the neutron spectra obtained in the radial irradiation channel of the TRIGA Mark III reactor are calculated when inserting filters whose position and thickness have been modified. From the arrangements studied, we found that the Fe-Cd-Al-Cd polyethylene filter yielded a ratio between thermal and epithermal neutron fluxes of 0.006 that exceeded the recommended value (<0.05), and the dose due to the capture gamma rays is lower than the dose obtained with the other arrangements studied. (Author)

  3. Characteristics of Fabricated SiC Neutron Detectors for Neutron Flux Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Soo; Ha, Jang Ho; Park, Se Hwan; Lee, Kyu Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Cheol Ho [Hanyang University, Seoul (Korea, Republic of)

    2011-05-15

    An SPND (Self-powered Neutron Detector) is commonly used for neutron detection in NPP (Nuclear Power Plant) by virtue of un-reactivity for gamma-rays. But it has a drawback, which is that it cannot detect neutrons in real time due to beta emissions (about > 48 s) after reactions between neutrons and {sup 103}Rh in an SPND. And Generation IV reactors such as MSR (Molten-salt reactor), SFR (Sodium-cooled fast reactor), and GFR (Gas-cooled fast reactor) are designed to compact size and integration type. For GEN IV reactor, neutron monitor also must be compact-sized to apply such reactor easily and much more reliable. The wide band-gap semiconductors such as SiC, AlN, and diamond make them an attractive alternative in applications in harsh environments by virtue of the lower operating voltage, faster charge-collection times compared with gas-filled detectors, and compact size.1) In this study, two PIN-type SiC semiconductor neutron detectors, which are for fast neutron detection by elastic and inelastic scattering SiC atoms and for thermal neutron detection by charged particle emissions of 6LiF reaction, were designed and fabricated for NPP-related applications. Preliminary tests such as I-V and alpha response were performed and neutron responses at ENF in HANARO research reactor were also addressed. The application feasibility of the fabricated SiC neutron detector as an in-core neutron monitor was discussed

  4. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Maglieri, Robert, E-mail: robert.maglieri@mail.mcgill.ca; Evans, Michael; Seuntjens, Jan; Kildea, John [Medical Physics Unit, McGill University, Montreal, Quebec H4A 3J1 (Canada); Licea, Angel [Canadian Nuclear Safety Commission, Ottawa, Ontario K1P 5S9 (Canada)

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  5. Neutron recognition in the LAND detector for large neutron multiplicity

    Energy Technology Data Exchange (ETDEWEB)

    Pawlowski, P., E-mail: piotr.pawlowski@ifj.edu.pl [Institute of Nuclear Physics, PAN, Radzikowskiego 152, 31-342 Krakow (Poland); Brzychczyk, J. [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Leifels, Y.; Trautmann, W. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Adrich, P. [National Centre for Nuclear Research, PL-00681 Warsaw (Poland); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Aumann, T. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Bacri, C.O. [Institut de Physique Nucleaire, IN2P3-CNRS et Universite, F-91406 Orsay (France); Barczyk, T. [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Bassini, R. [Istituto di Scienze Fisiche, Universita degli Studi and INFN, I-20133 Milano (Italy); Bianchin, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Boiano, C. [Istituto di Scienze Fisiche, Universita degli Studi and INFN, I-20133 Milano (Italy); Boretzky, K. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Boudard, A. [IRFU/SPhN, CEA/Saclay, F-91191 Gif-sur-Yvette (France); Chbihi, A. [GANIL, CEA et IN2P3-CNRS, F-14076 Caen (France); Cibor, J.; Czech, B. [Institute of Nuclear Physics, PAN, Radzikowskiego 152, 31-342 Krakow (Poland); De Napoli, M. [Dipartimento di Fisica e Astronomia-Universita and INFN-CT and LNS, I-95123 Catania (Italy); and others

    2012-12-01

    The performance of the LAND neutron detector is studied. Using an event-mixing technique based on one-neutron data obtained in the S107 experiment at the GSI laboratory, we test the efficiency of various analytic tools used to determine the multiplicity and kinematic properties of detected neutrons. A new algorithm developed recently for recognizing neutron showers from spectator decays in the ALADIN experiment S254 is described in detail. Its performance is assessed in comparison with other methods. The properties of the observed neutron events are used to estimate the detection efficiency of LAND in this experiment.

  6. Nanosecond neutron generator

    International Nuclear Information System (INIS)

    Lobov, S.I.; Pavlovskaya, N.G.; Pukhov, S.P.

    1991-01-01

    High-voltage nanosecond neutron generator for obtaining neutrons in D-T reaction is described. Yield of 6x10 6 neutron/pulse was generated in a sealed gas-filled diode with a target on the cathode by accelerating pulse voltage of approximately 0.5 MV and length at half-height of 0.5 ns and deuterium pressure of 6x10 -2 Torr. Ways of increasing neutron yield and possibilities of creating generators of nanosecond neutron pulses with great service life are considered

  7. Neutron transport

    International Nuclear Information System (INIS)

    Berthoud, Georges; Ducros, Gerard; Feron, Damien; Guerin, Yannick; Latge, Christian; Limoge, Yves; Santarini, Gerard; Seiler, Jean-Marie; Vernaz, Etienne; Coste-Delclaux, Mireille; M'Backe Diop, Cheikh; Nicolas, Anne; Andrieux, Catherine; Archier, Pascal; Baudron, Anne-Marie; Bernard, David; Biaise, Patrick; Blanc-Tranchant, Patrick; Bonin, Bernard; Bouland, Olivier; Bourganel, Stephane; Calvin, Christophe; Chiron, Maurice; Damian, Frederic; Dumonteil, Eric; Fausser, Clement; Fougeras, Philippe; Gabriel, Franck; Gagnier, Emmanuel; Gallo, Daniele; Hudelot, Jean-Pascal; Hugot, Francois-Xavier; Dat Huynh, Tan; Jouanne, Cedric; Lautard, Jean-Jacques; Laye, Frederic; Lee, Yi-Kang; Lenain, Richard; Leray, Sylvie; Litaize, Olivier; Magnaud, Christine; Malvagi, Fausto; Mijuin, Dominique; Mounier, Claude; Naury, Sylvie; Nicolas, Anne; Noguere, Gilles; Palau, Jean-Marc; Le Pallec, Jean-Charles; Peneliau, Yannick; Petit, Odile; Poinot-Salanon, Christine; Raepsaet, Xavier; Reuss, Paul; Richebois, Edwige; Roque, Benedicte; Royer, Eric; Saint-Jean, Cyrille de; Santamarina, Alain; Serot, Olivier; Soldevila, Michel; Tommasi, Jean; Trama, Jean-Christophe; Tsilanizara, Aime; Behar, Christophe; Provitina, Olivier; Lecomte, Michael; Forestier, Alain; Bender, Alexandra; Parisot, Jean-Francois; Finot, Pierre

    2013-10-01

    This bibliographical note presents a reference book which addresses the study of neutron transport in matter, the study of conditions for a chain reaction and the study of modifications of matter composition due to nuclear reactions. This book presents the main nuclear data, their measurement, assessment and processing, and the spallation. It proposes an overview of methods applied for the study of neutron transport: basic equations and their derived forms, deterministic methods and Monte Carlo method of resolution of the Boltzmann equation, methods of resolution of generalized Bateman equations, methods of time resolution of space kinetics coupled equations. It presents the main calculation codes, discusses the qualification and experimental aspects, and gives an overview of neutron transport applications: neutron transport calculation of reactors, neutron transport coupled with other disciplines, physics of fuel cycle, criticality

  8. Dynamically Polarized Sample for Neutron Scattering At the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Pierce, Josh; Zhao, J. K.; Crabb, Don

    2009-01-01

    The recently constructed Spallation Neutron Source at the Oak Ridge National Laboratory is quickly becoming the world's leader in neutron scattering sciences. In addition to the world's most intense pulsed neutron source, we are continuously constructing state of the art neutron scattering instruments as well as sample environments to address today and tomorrow's challenges in materials research. The Dynamically Polarized Sample project at the SNS is aimed at taking maximum advantage of polarized neutron scattering from polarized samples, especially biological samples that are abundant in hydrogen. Polarized neutron scattering will allow us drastically increase the signal to noise ratio in experiments such as neutron protein crystallography. The DPS project is near completion and all key components have been tested. Here we report the current status of the project.

  9. Neutron response study

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Fix, J.J.; Thorson, M.R.; Nichols, L.L.

    1981-01-01

    Neutron response of the albedo type dosimeter is strongly dependent on the energy of the incident neutrons as well as the moderating material on the backside of the dosimeter. This study characterizes the response of the Hanford dosimeter for a variety of neutron energies for both a water and Rando phantom (a simulated human body consisting of an actual human skeleton with plastic for body muscles and certain organs). The Hanford dosimeter response to neutrons of different energies is typical of albedo type dosimeters. An approximate two orders of magnitude difference in response is observed between neutron energies of 100 keV and 10 MeV. Methods were described to compensate for the difference in dosimeter response between a laboratory neutron spectrum and the different spectra encountered at various facilities in the field. Generally, substantial field support is necessary for accurate neutron dosimetry

  10. Basic of Neutron NDA

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    The objectives of this presentation are to introduce the basic physics of neutron production, interactions and detection; identify the processes that generate neutrons; explain the most common neutron mechanism, spontaneous and induced fission and (a,n) reactions; describe the properties of neutron from different sources; recognize advantages of neutron measurements techniques; recognize common neutrons interactions; explain neutron cross section measurements; describe the fundamental of 3He detector function and designs; and differentiate between passive and active assay techniques.

  11. A study on the utilization of hyper-thermal neutrons for neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kanda, Keiji

    1993-01-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum of a Maxwellian distribution of a higher temperature than the room temperature of 300 K, was studied in order to improve the thermal neutron flux distribution at the deeper part in a living body for neutron capture therapy. Simulation calculations were carried out using MCNP-V3 in order to confirm the characteristics of hyper-thermal neutrons, i.e., (1) depth dependence of neutron energy spectrum, and (2) depth distribution of the reaction rate in a water phantom for materials with 1/v neutron absorption. It is confirmed that the hyper-thermal neutron irradiation can improve the thermal neutron flux distribution in the deeper and wider area in a living body compared with the thermal neutron irradiation. Practically, by the incidence of the hyper-thermal neutrons with a 3000 K Maxwellian distribution, the thermal neutron flux at 5 cm depth can be given about four times larger than by the incidence of the thermal neutrons of 300 K. (author)

  12. Preliminary neutronic study on Pu-based OTTO cycle pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Setiadipura, Topan; Zuhair [National Nuclear Energy Agency of Indonesia (BATAN), Selatan (Indonesia). Center for Nuclear Reactor Technology and Safety; Irwanto, Dwi [Bandung Institute of Technology (ITB), Bandung (Indonesia). Nuclear Physics and Biophysics Research Group

    2017-12-15

    The neutron physics characteristic of Pebble Bed Reactor (PBR) allows a better incineration of plutonium (Pu). An optimized design of simple PBR might give a symbiotic solution of providing a safe energy source, effective fuel utilization shown by a higher burnup value, and incineration of Pu stockpiles. This study perform a preliminary neutronic design study of a 200 MWt Once Through Then Out (OTTO) cycle PBR with Pu-based fuel. The safety criteria of the design were represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. In this preliminary phase, the parametric survey is limited to the heavy metal (HM) loading per pebble and the average axial speed of the fuel. An optimum high burnup of 419.7 MWd/kg-HM was achieved in this study. This optimum design uses a HM loading of 2.5 g/pebble with average axial fuel velocity 0.5 cm/day.

  13. Neutron capture cross section standards for BNL-325

    International Nuclear Information System (INIS)

    Holden, N.E.

    1980-01-01

    The most common cross section standards for capture reactions in the thermal neutron energy region are gold, cobalt, and manganese. In preparation for the fourth edition of BNL-325, data on the thermal cross section and resonance integral were evaluated for these three standards. For gold, only measurements below the Bragg scattering cutoff were used and extrapolated to a neutron velocity of 2200 meters/second. A non 1/v correction due to the 4.9 eV resonance was made. The resonance integral is based on Jirlow's integral measurement and Tellier's parameters. The resonance integrals for cobalt and manganese are based solely on integral measurements because the capture widths of the first major resonance either vary by 20% in various measurements (cobalt), or have never been measured (manganese). Recommended thermal cross sections and resonance integrals are respectively gold: 98.65/plus or minus/0.9 barns, 1550/plus or minus/28 barns; cobalt: 37.18/plus or minus/0.06 barns, 74.2/plus or minus/2.0 barns and manganese: 13.3/plus or minus/0.2 barns, and 14.0/plus or minus/0.3 barns. 72 refs

  14. Steel research using neutron beam techniques. In-situ neutron diffraction, small-angle neutron scattering and residual stress analysis

    International Nuclear Information System (INIS)

    Sueyoshi, Hitoshi; Ishikawa, Nobuyuki; Yamada, Katsumi; Sato, Kaoru; Nakagaito, Tatsuya; Matsuda, Hiroshi; Arakaki, Yu; Tomota, Yo

    2014-01-01

    Recently, the neutron beam techniques have been applied for steel researches and industrial applications. In particular, the neutron diffraction is a powerful non-destructive method that can analyze phase transformation and residual stress inside the steel. The small-angle neutron scattering is also an effective method for the quantitative evaluation of microstructures inside the steel. In this study, in-situ neutron diffraction measurements during tensile test and heat treatment were conducted in order to investigate the deformation and transformation behaviors of TRIP steels. The small-angle neutron scattering measurements of TRIP steels were also conducted. Then, the neutron diffraction analysis was conducted on the high strength steel weld joint in order to investigate the effect of the residual stress distribution on the weld cracking. (author)

  15. First results of micro-neutron tomography by use of a focussing neutron lens

    CERN Document Server

    Masschaele, B; Cauwels, P; Dierick, M; Jolie, J; Mondelaers, W

    2001-01-01

    Since the appearance of high flux neutron beams, scientists experimented with neutron radiography. This high beam flux combined with modern neutron to visible light converters leads to the possibility of performing fast neutron micro-tomography. The first results of cold neutron tomography with a neutron lens are presented in this article. Samples are rotated in the beam and the projections are recorded with a neutron camera. The 3D reconstruction is performed with cone beam reconstruction software.

  16. Gamma/neutron competition above the neutron separation energy in delayed neutron emitters

    Directory of Open Access Journals (Sweden)

    Valencia E.

    2014-03-01

    Full Text Available To study the β-decay properties of some well known delayed neutron emitters an experiment was performed in 2009 at the IGISOL facility (University of Jyväskylä in Finland using Total Absorption γ-ray Spectroscopy (TAGS technique. The aim of these measurements is to obtain the full β-strength distribution below the neutron separation energy (Sn and the γ/neutron competition above. This information is a key parameter in nuclear technology applications as well as in nuclear astrophysics and nuclear structure. Preliminary results of the analysis show a significant γ-branching ratio above Sn.

  17. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  18. Development of neutron detectors for neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Myungkook; Kim, Jongyul; Kim, Jeong ho; Lee, Suhyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Changhwy [Korea Research Institute of Ships and Ocean Engineering, Daejeon (Korea, Republic of)

    2015-10-15

    Various kinds of detectors are used in accordance with the experimental purpose, such as zero dimensional detector, 1-D or 2-D position-sensitive detectors. Most of neutron detectors use He-3 gas because of its high neutron sensitivity. Since the He-3 supply shortage took place in early 2010, various He-3 alternative detectors have been developed even for the other neutron application. We have developed a new type alternative detector on the basis of He-3 detector technology. Although B- 10 has less neutron detection efficiency compared with He-3, it can be covered by the use of multiple B-10 layers. In this presentation, we would like to introduce the neutron detectors under development and developed detectors. Various types of detector were successfully developed and result of the technical test performance is promising. Even though the detection efficiency of the B-10 detector lower than He-3 one, the continuous research and development is needed for currently not available He-3.

  19. Referencing geostrophic velocities using ADCP data Referencing geostrophic velocities using ADCP data

    Directory of Open Access Journals (Sweden)

    Isis Comas-Rodríguez

    2010-06-01

    Full Text Available Acoustic Doppler Current Profilers (ADCPs have proven to be a useful oceanographic tool in the study of ocean dynamics. Data from D279, a transatlantic hydrographic cruise carried out in spring 2004 along 24.5°N, were processed, and lowered ADCP (LADCP bottom track data were used to assess the choice of reference velocity for geostrophic calculations. The reference velocities from different combinations of ADCP data were compared to one another and a reference velocity was chosen based on the LADCP data. The barotropic tidal component was subtracted to provide a final reference velocity estimated by LADCP data. The results of the velocity fields are also shown. Further studies involving inverse solutions will include the reference velocity calculated here.

  20. Fundamental neutron physics at a 1 MW long pulse spallation neutron source

    International Nuclear Information System (INIS)

    Greene, G.L.

    1995-01-01

    Modern neutron sources and modern neutron science share a common origin in mid twentieth century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for the study of condensed matter with modern neutron sources being primarily used (and primarily justified) as tools for condensed matter research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities carried out at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high flux neutron facilities. Future sources, particularly high power spallation sources, offer exciting possibilities for the continuation of this program of research

  1. Powder neutron diffractometers

    International Nuclear Information System (INIS)

    Adib, M.

    2002-01-01

    Basic properties and applications of powder neutron Diffractometers are described for optimum use of the continuous neutron beams. These instruments are equipped with position sensitive detectors, neutron guide tubes, and both high intensity and high resolution modes of operation are possible .The principles of both direct and Fourier reverse time-of-flight neutron Diffractometers are also given

  2. Polycapillary neutron lenses

    International Nuclear Information System (INIS)

    Mildner, D.F.R.

    1997-01-01

    The principle of multiple mirror reflection from smooth surfaces at small grazing angles enables the transport and guiding of high intensity slow neutron beams to locations of low background for neutron scattering and absorption experiments and to provide facilities for multiple instruments. Curved guides have been widely used at cold neutron facilities to remove the unwanted radiation (fast neutrons and gamma rays) from the beam without the use of filters. A typical guide has transverse dimensions of 50 mm and, with a radius of curvature of 1 km, transmits wavelengths longer than 5 A. Much tighter curves requires narrower transverse dimensions, otherwise there is little transmission. Typical neutron benders have a number of slots with transverse dimensions of ∼5 mm. Based on the same principle but using a different technology, recent developments in glass polycapillary fibers have produced miniature versions of neutron guides. Fibers with many thousands of channels having sizes of ∼ 10 μm enable beams of long wavelength neutrons (λ > 4 A) to be transmitted efficiently in a radius of curvature as small as a fraction of 1 m. A large collection of these miniature versions of neutron guides can be used to bend the neutron trajectories such that the incident beam can be focused. (author)

  3. Free-surface velocity measurements using an optically recording velocity interferometer

    International Nuclear Information System (INIS)

    Lu Jianxin; Wang Zhao; Liang Jing; Shan Yusheng; Zhou Chuangzhi; Xiang Yihuai; Lu Ze; Tang Xiuzhang

    2006-01-01

    An optically recording velocity interferometer system (ORVIS) was developed for the free-surface velocity measurements in the equation of state experiments. The time history of free-surface velocity could be recorded by the electronic streak camera. In the experiments, ORVIS got a 179 ps time resolution, and a higher time resolution could be got by minimizing the delay time. The equation of state experiments were carried out on the high power excimer laser system called 'Heaven I' with laser wavelength of 248.4 nm, pulse duration of 25 ns and maximum energy 158 J. Free-surface velocity of 20 μm thick iron got 3.86 km/s with laser intensity of 6.24 x 10 11 W·cm -2 , and free-surface velocity of 100 μm thick aluminum with 100 μm CH foil at the front got 2.87 km/s with laser intensity 7.28 x 10 11 W·cm -2 . (authors)

  4. Chiral recognition with enantioselective ion exchangers based on carbamoylated cinchonan derivatives as chiral selectors for the HPLC enantioseparation

    International Nuclear Information System (INIS)

    Laemmerhofer, M.

    1996-11-01

    The high-performance liquid chromatographic (HPLC) separation of enantiomers is preferentially performed using chiral stationary phases (CSPs). If the chiral auxiliary (selector, SO) contains charged or ionizable groups one gets ion exchanger type CSPs which may bind and retain oppositely charged analytes (selectands, SAs). We prepared anion exchanger type CSPs with various quinine and quinidine carbarnates as chiral SOs immobilized either on porous or non-porous silica. These CSPs are able to resolve the enantiomers of a wide spectrum of chiral carboxylic, sulfonic, phosphonic, phosphoric acids and of many other chiral acidic solutes (e.g. N-derivatized alpha-, beta- , gamma-amino acids as 2,4-dinitrophenyl, 3,5-dinitrobenzoyl, benzoyl, acetyl, formyl, t.-butoxycarbonyl, benzyloxycarbonyl, 9-fluorenylmethoxycarbonyl, dansyl amino acids and peptides, alpha-arylalkylcarboxylic acids as profens, alpha-aryloxyalkylcarboxylic acids, alpha-arylthioalkylcarboxylic acids and acidic drugs like etodolac, proglumide, acenocournarol, leucovorin, omeprazole, pantoprazole) employing buffered aqueous mobile phases or non-aqueous mobile phases with buffer dissolved in the organic solvent. The influence of mobile phase parameters and other experimental conditions on retention and enantioselectivity has been evaluated for isocratic and gradient elution techniques, aided by the commercial method development computer software DryLab. Several 'Quantitative Structure-Retention Relationships' (QSRR) have been derived, which allowed prediction of enantioselectivity of new analytes and moreover the optimization of the SO-structure. Spectroscopic investigations as H-NMR, FTIR of certain SO-SA-complexes have been exerted to unveil the mechanism of chiral recognition. (author)

  5. Neutron structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in protein which play important roles in physiological functions. However, there are relatively few examples of neutron crystallography in biology since it takes a lot of time to collect a sufficient number of Bragg reflections due to the low flux of neutrons illuminating the sample. In order to overcome the flux problem, we have successfully developed the neutron IP, where the neutron converter, {sup 6}Li or Gd, was mixed with a photostimulated luminescence material on flexible plastic support. Neutron Laue diffraction 2A data from tetragonal lysozyme were collected for 10 days with neutron imaging plates, and 960 hydrogen atoms in the molecule and 157 bound water molecules were identified. These results explain the proposed hydrolysis mechanism of the sugar by the lysozyme molecule and that lysozyme is less active at pH7.0. (author)

  6. On linear relationship between shock velocity and particle velocity

    International Nuclear Information System (INIS)

    Dandache, H.

    1986-11-01

    We attempt to derive the linear relationship between shock velocity U s and particle velocity U p from thermodynamic considerations, taking into account an ideal gas equation of state and a Mie-Grueneisen equation of state for solids. 23 refs

  7. Neutron exposure

    International Nuclear Information System (INIS)

    Prillinger, G.; Konynenburg, R.A. van

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 6, LWR-PV neutron transport calculations and dosimetry methods and how they are combined to evaluate the neutron exposure of the steel of pressure vessels are discussed. An effort to correlate neutron exposure parameters with damage is made

  8. Atmospheric neutrons

    International Nuclear Information System (INIS)

    Preszler, A.M.; Moon, S.; White, R.S.

    1976-01-01

    Additional calibrations of the University of California double-scatter neutron and additional analysis corrections lead to the slightly changed neutron fluxes reported here. The theoretical angular distributions of Merker (1975) are in general agreement with our experimental fluxes but do not give the peaks for vertical upward and downward moving neutrons. The theoretical neutron escape current J 2 /sub pi/ (Merker, 1972; Armstrong et al., 1973) is in agreement with the experimental values from 10 to 100 MeV. Our experimental fluxes agree with those of the Kanbach et al. (1974) in the overlap region from 70 to 100 MeV

  9. Study on neutron irradiation behavior of beryllium as neutron multiplier

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    More than 300 tons beryllium is expected to be used as a neutron multiplier in ITER, and study on the neutron irradiation behavior of beryllium as the neutron multiplier with Japan Materials Testing Reactor (JMTR) were performed to get the engineering data for fusion blanket design. This study started as the study on the tritium behavior in beryllium neutron reflector in order to make clear the generation mechanism on tritium of JMTR primary coolant since 1985. These experiences were handed over to beryllium studies for fusion study, and overall studies such as production technology of beryllium pebbles, irradiation behavior evaluation and reprocessing technology have been started since 1990. In this presentation, study on the neutron irradiation behavior of beryllium as the neutron multiplier with JMTR was reviewed from the point of tritium release, thermal properties, mechanical properties and reprocessing technology. (author)

  10. Lead-Bismuth-Eutectic Spallation Neutron Source for Nuclear Transmuter

    International Nuclear Information System (INIS)

    Gohar, Y.; Herceg, J.; Krajtl, L.; Micklich, B.; Pointer, D.; Saiveau, J.; Sofu, T.; Finck, P.

    2002-01-01

    A lead-bismuth eutectic (LBE) spallation target design concept has been developed for the subcritical multiplier (SCM) design of the accelerator-driven test facility (ADTF). The design is based on a coaxial geometrical configuration, which has been carefully analyzed and designed to achieve an optimum performance. The target design description, the results from the parametric studies, and the design analyses including neutronics, heat transfer, and hydraulics analyses are given in this paper. A detailed MCNPX geometrical model for the target has been developed to generate heating rates and nuclear responses in the structural material for the design process. The beam has a uniform distribution of 600 MeV protons and 5-MW total power. A small LBE buffer is optimized to reduce the irradiation damage in the SCM fuel elements from the scatter protons and the high-energy neutrons, to maximize the neutron yield to the SCM operation, and to provide inlet and outlet manifolds for the LBE coolant. A special attention has been given to the target window design to enhance its lifetime. The window volumetric heating is 766 W/cm 3 relative to 750 W/cm 3 in LBE for a 40-μA/cm 2 current density. The results show that the nuclear heating from the proton beam diminishes at about 32 cm along the beam axis in the LBE target material. The neutron contribution to the atomic displacement is in the range of 94 to ∼100% for the structure material outside the proton beam path. In the beam window, the neutron contribution is ∼74% and the proton beam is responsible for more than 95% of the total gas production. The proton contribution to the gas production vanishes outside the beam path. The LBE average velocity is ∼2 m/s. The heat transfer and the hydraulics analyses have been iterated to reduce the maximum temperature and the thermal stress level in the target window to enhance its operating life. (authors)

  11. Neutron source

    International Nuclear Information System (INIS)

    Cason, J.L. Jr.; Shaw, C.B.

    1975-01-01

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap

  12. Neutron cooling and cold-neutron sources (1962)

    International Nuclear Information System (INIS)

    Jacrot, B.

    1962-01-01

    Intense cold-neutron sources are useful in studying solids by the inelastic scattering of neutrons. The paper presents a general survey covering the following aspects: a) theoretical considerations put forward by various authors regarding thermalization processes at very low temperatures; b) the experiments that have been carried out in numerous laboratories with a view to comparing the different moderators that can be used; c) the cold neutron sources that have actually been produced in reactors up to the present time, and the results obtained with them. (author) [fr

  13. PALM: a paralleled and integrated framework for phylogenetic inference with automatic likelihood model selectors.

    Directory of Open Access Journals (Sweden)

    Shu-Hwa Chen

    Full Text Available BACKGROUND: Selecting an appropriate substitution model and deriving a tree topology for a given sequence set are essential in phylogenetic analysis. However, such time consuming, computationally intensive tasks rely on knowledge of substitution model theories and related expertise to run through all possible combinations of several separate programs. To ensure a thorough and efficient analysis and avert tedious manipulations of various programs, this work presents an intuitive framework, the phylogenetic reconstruction with automatic likelihood model selectors (PALM, with convincing, updated algorithms and a best-fit model selection mechanism for seamless phylogenetic analysis. METHODOLOGY: As an integrated framework of ClustalW, PhyML, MODELTEST, ProtTest, and several in-house programs, PALM evaluates the fitness of 56 substitution models for nucleotide sequences and 112 substitution models for protein sequences with scores in various criteria. The input for PALM can be either sequences in FASTA format or a sequence alignment file in PHYLIP format. To accelerate the computing of maximum likelihood and bootstrapping, this work integrates MPICH2/PhyML, PalmMonitor and Palm job controller across several machines with multiple processors and adopts the task parallelism approach. Moreover, an intuitive and interactive web component, PalmTree, is developed for displaying and operating the output tree with options of tree rooting, branches swapping, viewing the branch length values, and viewing bootstrapping score, as well as removing nodes to restart analysis iteratively. SIGNIFICANCE: The workflow of PALM is straightforward and coherent. Via a succinct, user-friendly interface, researchers unfamiliar with phylogenetic analysis can easily use this server to submit sequences, retrieve the output, and re-submit a job based on a previous result if some sequences are to be deleted or added for phylogenetic reconstruction. PALM results in an inference of

  14. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  15. Intense fusion neutron sources

    International Nuclear Information System (INIS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-01-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10 15 -10 21 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10 20 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  16. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  17. Analysis of two-phase flow velocity measurements by cross-correlation techniques and the applicability of the drift flux model for their interpretation

    International Nuclear Information System (INIS)

    Analytis, G.Th.; Luebbesmeyer, D.

    1982-11-01

    An extensive and detailed investigation of two-phase flow velocity measurements by cross-correlating noise signals of information carriers (neutrons, gammas, visible light) modulated by the two-phase flow and registered by two axially placed detectors outside the flow is pursued. To this end, a detailed analysis of velocity measurements in experimental loops and a large number of velocity measurements in a commercial BWR is undertaken, and the applicability and limitations of the drift flux model for their interpretation is investigated. On the basis of this extensive analysis, the authors propose a physically plausible explanation for the deviations in the upper part of the core, expound on why the drift flux model is, to a great extent, not suitable for interpreting two-phase flow velocity measurements by cross-correlation techniques reported in the present work, and conclude that due to the large number of uncertainties and the lack of detailed knowledge about the kind of microstructures of the flow which the detectors prefer to ''sample'', one can safely assume that at least in the lower half of the core the velocity measured can be well approximated by the velocity of the centre of volume, from which the mass fluxes can readily be computed. (Auth.)

  18. Thermal neutron flux measurements using neutron-electron converters; Mesure de flux de neutrons thermiques avec des convertisseurs neutrons electrons

    Energy Technology Data Exchange (ETDEWEB)

    Le Meur, R; Lecomte, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    The operation of neutron-electron converters designed for measuring thermal neutron fluxes is examined. The principle is to produce short lived isotopes emitting beta particles, by activation, and to measure their activity not by extracting them from the reactor, but directly in the reactor using the emitted electrons to deflect the needle of a galvanometer placed outside the flux. After a theoretical study, the results of the measurements are presented; particular attention is paid to a new type of converter characterized by a layer structure. The converters are very useful for obtaining flux distributions with more than 10{sup 7} neutrons cm{sup -2}*sec{sup -1}. They work satisfactorily in pressurized carbon dioxide at 400 Celsius degrees. Some points still have to be cleared up however concerning interfering currents in the detectors and the behaviour of the dielectrics under irradiation. (authors) [French] On examine le fonctionnement de convertisseurs neutrons electrons destines a des mesures de flux de neutrons thermiques. Le principe est de former par activation des isotopes a periodes courtes et a emission beta et de mesurer leur activite non pas en les sortant du reacteur, mais directement en pile, utilisant les electrons emis pour faire devier l'aiguille d'un galvanometre place hors flux. Apres une etude theorique, on indique des resultats de mesures obtenus, en insistant particulierement sur un nouveau type de convertisseur, caracterise par sa structure stratifiee. Les convertisseurs sont tres interessants pour tracer, des cartes de flux a partir de 10{sup 7} neutrons cm{sup -2}*s{sup -1}. Ils sont utilisables pour des flux de 10{sup 14} neutrons cm{sup -2}*s{sup -1}. Ils fonctionnent correctement dans du gaz carbonique sous pression a 400 C. Des points restent cependant a eclaircir concernant les courants parasites dans les detecteurs et le comportement des dielectriques pendant leur irradiation. (auteur)

  19. Determination of the filtration velocities and mean velocity in ground waters using radiotracers

    International Nuclear Information System (INIS)

    Duran P, Oscar; Diaz V, Francisco; Heresi M, Nelida

    1994-01-01

    An experimental method to determine filtration, or, Darcy velocity and mean velocity in underground waters using radiotracers, is described. After selecting the most appropriate tracers, from 6 chemical compounds, to measure water velocity, a method to measure filtration velocity was developed. By fully labelling the water column with 2 radioisotopes, Br and tritium, almost identical values were obtained for the aquifer filtration velocity in the sounding S1. This value was 0.04 m/d. Field porosity was calculated at 11% and mean velocity at 0.37 m.d. With the filtration velocity value and knowing the hydraulic variation between the soundings S1 and S2 placed at 10 meters, field permeability was estimated at 2.4 x 10 m/s. (author)

  20. Application of MSS-neutron spin echo spectrometer to pulsed neutron sources

    International Nuclear Information System (INIS)

    Tasaki, S.; Ebisawa, T.; Hino, M.; Kawai, T.

    2001-01-01

    A multilayer spin splitter (MSS) is a neutron device that gives phase difference between field-parallel and -antiparallel spin component of a superposing state. Since the phase difference is equivalent to the Larmor precession angle, MSS enables us to construct a new type of neutron spin echo (NSE) spectrometer. The new NSE spectrometer has its properties that 1. since the phase shift is neutron flight path length, the spectrometer can be drastically small, 2. the neutron spin echo time is proportional to the neutron wavelength. (author)

  1. Radial velocity asymmetries from jets with variable velocity profiles

    International Nuclear Information System (INIS)

    Cerqueira, A. H.; Vasconcelos, M. J.; Velazquez, P. F.; Raga, A. C.; De Colle, F.

    2006-01-01

    We have computed a set of 3-D numerical simulations of radiatively cooling jets including variabilities in both the ejection direction (precession) and the jet velocity (intermittence), using the Yguazu-a code. In order to investigate the effects of jet rotation on the shape of the line profiles, we also introduce an initial toroidal rotation velocity profile. Since the Yguazu-a code includes an atomic/ionic network, we are able to compute the emission coefficients for several emission lines, and we generate line profiles for the Hα, [O I]λ6300, [S II]λ6716 and [N II]λ6548 lines. Using initial parameters that are suitable for the DG Tau microjet, we show that the computed radial velocity shift for the medium-velocity component of the line profile as a function of distance from the jet axis is strikingly similar for rotating and non-rotating jet models

  2. Neutron Research in HANARO

    International Nuclear Information System (INIS)

    Kim, Hark Rho

    2005-01-01

    HANARO (High-flux Advanced Neutron Application Reactor), which was designed and constructed by indigenous technology, is a world-class multi-purpose research reactor with a design thermal power of 30 MW, providing high neutron flux for various applications in Korea. HANARO has been operated since its first criticality in February 1995, and is now successfully utilized in such areas as neutron beam research, fuel and materials tests, radioisotopes and radiopharmaceuticals production, neutron activation analysis, and neutron transmutation doping, etc. A number of experimental facilities have been developed and installed since the beginning of reactor operation, and R and D activities for installing more facilities are actively under progress. Three flux traps in the core (CT, IR1, IR2), providing a high fast neutron flux, can be used for materials and fuel irradiation tests. They are also proper for production of high specific activity radioisotopes. Four vertical holes in the outer core region, abundant in epithermal neutrons, are used for fuel or material tests and radioisotope production. In the heavy water reflector region, 25 vertical holes with high quality thermal neutrons are located for radioisotope production, neutron activation analysis, neutron transmutation doping and cold neutron source installation. The two largest holes named NTD1 and NTD2 are for neutron transmutation doping, CNS for the cold neutron source installation, and LH for the irradiation of large targets. The high resolution powder diffractometer (HRPD) became operational in 1998, followed by the four circle diffractometer (FCD) in 1999, the residual stress instrument (RSI) in 2000, and the small angle neutron spectrometer (SANS) in 2001, respectively. HRPD and SANS became the most popular instruments these days, attracting wide range of users from academia, institutes and industries. We have made a lot of efforts during the last 10 years to develop some key components such as

  3. Correlated Radial Velocity and X-Ray Variations in HD 154791/4U 1700+24

    Science.gov (United States)

    Galloway, Duncan K.; Sokoloski, J. L.; Kenyon, Scott J.

    2002-12-01

    We present evidence for approximately 400 day variations in the radial velocity of HD 154791 (V934 Her), the suggested optical counterpart of 4U 1700+24. The variations are correlated with the previously reported ~400 day variations in the X-ray flux of 4U 1700+24, which supports the association of these two objects, as well as the identification of this system as the second known X-ray binary in which a neutron star accretes from the wind of a red giant. The HD 154791 radial velocity variations can be fitted with an eccentric orbit with period 404+/-3 days, amplitude K=0.75+/-0.12kms-1, and eccentricity e=0.26+/-0.15. There are also indications of variations on longer timescales >~2000 days. We have reexamined all available All-Sky Monitor (ASM) data following an unusually large X-ray outburst in 1997-1998 and confirm that the 1 day averaged 2-10 keV X-ray flux from 4U 1700+24 is modulated with a period of 400+/-20 days. The mean profile of the persistent X-ray variations was approximately sinusoidal, with an amplitude of 0.108+/-0.012 ASM counts s-1 (corresponding to 31% rms). The epoch of X-ray maximum was approximately 40 days after the time of periastron, according to the eccentric orbital fit. If the 400 day oscillations from HD 154791/4U 1700+24 are due to orbital motion, then the system parameters are probably close to those of the only other neutron star symbiotic-like binary, GX 1+4. We discuss the similarities and differences between these two systems.

  4. Neutron capture therapy with thermal neutrons at IRT MIFI

    International Nuclear Information System (INIS)

    Zajtsev, K.N.; Portnov, A.A.; Savkin, V.A.; Kulakov, V.N.; Khokhlov, V.F.; Shejno, I.N.; Vajnson, A.A.; Kozlovskaya, N.G.; Meshcherikova, V.V.; Mitin, V.N.; Yarmonenko, S.P.

    2001-01-01

    Combined preclinical investigations into neutron capture therapy are conducted. Malignant melanoma was adopted as the line of investigation; boron-containing and gadolinium-containing preparations were used during the neutron capture therapy working off. Preparations produce secondary varying radiations when used in tumor. Dogs with spontaneous melanoma were used for the experiments. Procedures for the irradiation of dogs by neutron beam as the stage before use for the treatment of oncology patients were finished off; efficiency of neutron beam influence on normal tissues during the irradiation of dogs with melanoma (and without it) in antitumor and side effect sense was estimated [ru

  5. Compact neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  6. Thermal neutron moderating device

    International Nuclear Information System (INIS)

    Takigami, Hiroyuki.

    1995-01-01

    In a thermal neutron moderating device, superconductive coils for generating magnetic fields capable of applying magnetic fields vertical to the longitudinal direction of a thermal neutron passing tube, and superconductive coils for magnetic field gradient for causing magnetic field gradient in the longitudinal direction of the thermal neutron passing tube are disposed being stacked at the outside of the thermal neutron passing tube. When magnetic field gradient is present vertically to the direction of a magnetic moment, thermal neutrons undergo forces in the direction of the magnetic field gradient in proportion to the magnetic moment. Then, the magnetic moment of the thermal neutrons is aligned with the direction vertical to the passing direction of the thermal neutrons, to cause the magnetic field gradient in the passing direction of the thermal neutrons. The speed of the thermal neutrons can be optionally selected and the wavelength can freely be changed by applying forces to the thermal neutrons and changing the extent and direction of the magnetic field gradient. Superconductive coils are used as the coils for generating magnetic fields and the magnetic field gradient in order to change extremely high energy of the thermal neutrons. (N.H.)

  7. Velocity-mass correlation of the O-type stars: model results

    International Nuclear Information System (INIS)

    Stone, R.C.

    1982-01-01

    This paper presents new model results describing the evolution of massive close binaries from their initial ZAMS to post-supernova stages. Unlike the previous conservative study by Stone [Astrophys. J. 232, 520 (1979) (Paper II)], these results allow explicitly for mass loss from the binary system occurring during the core hydrogen- and helium-burning stages of the primary binary star as well as during the Roche lobe overflow. Because of uncertainties in these rates, model results are given for several reasonable choices for these rates. All of the models consistently predict an increasing relation between the peculiar space velocities and masses for runaway OB stars which agrees well with the observed correlations discussed in Stone [Astron. J. 86, 544 (1981) (Paper III)] and also predict a lower limit at Mroughly-equal11M/sub sun/ for the masses of runaway stars, in agreement with the observational limit found by A. Blaauw (Bull. Astron. Inst. Neth. 15, 265, 1961), both of which support the binary-supernova scenario described by van den Heuvel and Heise for the origin of runaway stars. These models also predict that the more massive O stars will produce correspondingly more massive compact remnants, and that most binaries experiencing supernova-induced kick velocities of magnitude V/sub k/> or approx. =300 km s -1 will disrupt following the explosions. The best estimate for this velocity as established from pulsar observations is V/sub k/roughly-equal150 km s -1 , in which case probably only 15% if these binaries will be disrupted by the supernova explosions, and therefore, almost all runaway stars should have either neutron star or black hole companions

  8. Single-neutron knockout from 20C and the structure of 19C

    Directory of Open Access Journals (Sweden)

    J.W. Hwang

    2017-06-01

    Full Text Available The low-lying unbound level structure of the halo nucleus 19C has been investigated using single-neutron knockout from 20C on a carbon target at 280 MeV/nucleon. The invariant mass spectrum, derived from the momenta of the forward going beam velocity 18C fragment and neutrons, was found to be dominated by a very narrow near threshold (Erel=0.036(1 MeV peak. Two less strongly populated resonance-like features were also observed at Erel=0.84(4 and 2.31(3 MeV, both of which exhibit characteristics consistent with neutron p-shell hole states. Comparisons of the energies, measured cross sections and parallel momentum distributions to the results of shell-model and eikonal reaction calculations lead to spin-parity assignments of 5/21+ and 1/21− for the levels at Ex=0.62(9 and 2.89(10 MeV with Sn=0.58(9 MeV. Spectroscopic factors were also deduced and found to be in reasonable accord with shell-model calculations. The valence neutron configuration of the 20C ground state is thus seen to include, in addition to the known 1s1/22 component, a significant 0d5/22 contribution. The level scheme of 19C, including significantly the 1/21− cross-shell state, is well accounted for by the YSOX shell-model interaction developed from the monopole-based universal interaction.

  9. Neutronics code VALE for two-dimensional triagonal (hexagonal) and three-dimensional geometries

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1981-08-01

    This report documents the computer code VALE designed to solve multigroup neutronics problems with the diffusion theory approximation to neutron transport for a triagonal arrangement of mesh points on planes in two- and three-dimensional geometry. This code parallels the VENTURE neutronics code in the local computation system, making exposure and fuel management capabilities available. It uses and generates interface data files adopted in the cooperative effort sponsored by Reactor Physics RRT Division of the US DOE. The programming in FORTRAN is straightforward, although data is transferred in blocks between auxiliary storage devices and main core, and direct access schemes are used. The size of problems which can be handled is essentially limited only by cost of calculation since the arrays are variably dimensioned. The memory requirement is held down while data transfer during iteration is increased only as necessary with problem size. There is provision for the more common boundary conditions including the repeating boundary, 180 0 rotational symmetry, and the rotational symmetry conditions for the 30 0 , 60 0 , and 120 0 triangular grids on planes. A variety of types of problems may be solved: the usual neutron flux eignevalue problem, or a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations. The adjoint problem and fixed source problem may be solved, as well as the dominating higher harmonic, or the importance problem for an arbitrary fixed source

  10. Developments in Pulsed Neutron Activation for Determination of Water Flow in Pipes

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Haakan

    2003-06-01

    In PNA (pulsed neutron activation) it is important that the measured data can be related to the total mass flow. In this thesis two fundamental problems of the measurement technique and data treatment have been investigated: transport/mixing and background radiation. The principle of PNA is to introduce a radioactive substance into a pipe by bombarding fluid in the pipe with neutron pulses. The fluid in the pipe is activated and subsequently transported and mixed with the flow. Gamma radiation emitted from the activity is measured with one or two detectors downstream from the activation point. The time-resolved signal from the detectors is used to calculate the average velocity of the water flow. Due to the short distance between the neutron generator and the pipe the activity in the pipe becomes highly inhomogeneous. The transport and mixing of the activity were simulated using colour which was injected into the flow. It was found that the inhomogeneous activity distribution must be taken into account if the precision of the measurements is to be improved. The shape of the background in PNA affects the shape and position of the time spectrum. The nature of the background has been determined using one detector upstream and one downstream of the neutron generator. The background was shown to be caused by {sup 16}N. A method that subtracts the background from the PNA time spectrum was also developed.

  11. Developments in Pulsed Neutron Activation for Determination of Water Flow in Pipes

    International Nuclear Information System (INIS)

    Mattsson, Haakan

    2003-06-01

    In PNA (pulsed neutron activation) it is important that the measured data can be related to the total mass flow. In this thesis two fundamental problems of the measurement technique and data treatment have been investigated: transport/mixing and background radiation. The principle of PNA is to introduce a radioactive substance into a pipe by bombarding fluid in the pipe with neutron pulses. The fluid in the pipe is activated and subsequently transported and mixed with the flow. Gamma radiation emitted from the activity is measured with one or two detectors downstream from the activation point. The time-resolved signal from the detectors is used to calculate the average velocity of the water flow. Due to the short distance between the neutron generator and the pipe the activity in the pipe becomes highly inhomogeneous. The transport and mixing of the activity were simulated using colour which was injected into the flow. It was found that the inhomogeneous activity distribution must be taken into account if the precision of the measurements is to be improved. The shape of the background in PNA affects the shape and position of the time spectrum. The nature of the background has been determined using one detector upstream and one downstream of the neutron generator. The background was shown to be caused by 16 N. A method that subtracts the background from the PNA time spectrum was also developed

  12. Reactor Neutron Sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.

    1994-01-01

    The present status and the prospects for development of reactor neutron sources for neutron scattering research in the world are considered. The fields of application of neutron scattering relative to synchrotron radiation, the creation stages of reactors (steady state and pulsed) and their position in comparison with spallation neutron sources at present and in the foreseen future are discussed. (author). 15 refs.; 8 figs.; 3 tabs

  13. Fragment properties in the fission of 237Np with fast neutrons - an experimental investigation of fission dynamics

    International Nuclear Information System (INIS)

    Naqvi, A.A.

    1980-03-01

    Fission fragment properties such as mass distribution, kinetic energy distribution or number of prompt emitted neutrons as a function of fragment mass can be used to characterize the scission point configuration. The present experiment allows for the first time to investigate these quantities for neutron induced fission in the MeV range. In this way the influence of excitation energy of the saddle point deformation of the fissioning system ( 237 Np + n) can be studied. Neutrons with energies of 0.8 and 5.5 MeV were produced by the Karlsruhe pulsed 3MV Van de Graaff accelerator. Kinetic energies and velocities of correlated fragments were determined by solid state detectors using the time-of-flight technique. The experimentally determined distributions of fragment properties were compared to a recent model suggested by Wilkins et al. which assumes only relatively weak coupling between internal and collective degrees of freedom. At least qualitative agreement is found for most of the results. (orig.) [de

  14. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  15. Progress report: determinations of the neutron-neutron scattering length ann from kinematically incomplete neutron-deuteron breakup data revisited

    International Nuclear Information System (INIS)

    Tornow, W.; Braun, R.T.; Witala, H.

    1996-01-01

    We review published analyses of the final-state-interaction enhancement observed in proton energy distributions obtained from kinematically incomplete neutron-deuteron breakup experiments. We compare the results derived from these analyses for the neutron-neutron scattering length, a nn with our results based on a rigorous treatment of the three-nucleon Faddeev equations in conjunction with the use of realistic nucleon-nucleon potentials. Our values for a nn deviate outside the quoted uncertainties from the ones obtained in the previous analyses where simplified nucleon-nucleon interaction models were employed. In contrast to the previous determinations, the present results for a nn are in clear disagreement with the values for a nn based on π - -deuteron capture experiments. Unless inconsistencies in the experimental neutron-deuteron breakup data at low energies can be resolved and the influence of possible three-nucleon-force effects can be reliably determined, we recommend that one not resort to the kinematically incomplete neutron-deuteron breakup reaction as a tool for determining a quantity as important for nuclear and particle physics as is the neutron-neutron scattering length a nn . (author)

  16. Neutron Flux Distribution on Neutron Radiography Facility After Fixing the Collimator

    International Nuclear Information System (INIS)

    Supandi; Parikin; Mohtar; Sunardi; Roestam, S

    1996-01-01

    The Radiography Neutron Facility consists of an inner collimator, outer collimator, main shutter, second shutter and the sample chamber with 300 mm in diameter. Neutron beam quality depends on the neutron flux intensities distribution, L/D ratio Cd ratio, neutron/gamma ratio. The results show that the neutron flux intensity was 2.83 x 107 n cm-2.s-1, with deviation of + 7.8 % and it was distributed homogeneously at the sample position of 200 mm diameter. The beam characteristics were L/D ratio 98 and Rod 8, and neutron gamma ratio 3.08 x 105n.cm-2.mR-1 and Reactor Power was 20 MW. This technique can be used to examine sample with diameter of < 200 mm

  17. Refractive neutron lens

    International Nuclear Information System (INIS)

    Petrov, P.V.; Kolchevsky, N.N.

    2013-01-01

    Model of the refractive neutron lens is proposed. System of N lenses acts as one thin lens with a complex refraction index n*. The maximum number N max of individual lenses for 'thick' neutron lens is calculated. Refractive neutron lens properties (resolution, focal depth) as function of resolution factor F 0 =ρbc/μ and depth of field factor dF 0 =λF 0 =λρbc/μ are calculated. It is shown that micro resolution of the refractive neutron optics is far from the wavelength in size and its open possibilities for progress in refractive neutron optics. (authors)

  18. Investigation of Mixed Chiral Selectors of Different Metal Ion-L-Alanine Complex and β-Cyclodextrin on the Chiral Separation of Dansyl Amino Acids with Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    郑志侠; 屈锋; 林金明

    2003-01-01

    Chiral separation of dausyl amino acids by capillary electrophoresis using mixed selectors of Mn(ll)-L-alanine complex and β-cyclodextrin (β-CD) was studied. Resolution was considerably superior to that obtained by using either Mn (Ⅱ)-L-alanine complex or β-CD alone. The effects of separation parameters, such as pH value of buffer solution, capillary temperature, the concentration of Mn (Ⅱ)-L-alanine complex, the types of CD and ligand on the migration times and resolutions were investigated. Six different transition metal complexes,Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Hg(Ⅱ) and Cd(Ⅱ)-L-alanine complexes have been employed and compared with Mn(Ⅱ)complex. Differences in retention and selectivity were found.The substitution of Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ) and Ni(Ⅱ) for Mn(Ⅱ) resulted in a better chiral resolution while Hg(Ⅱ) and Cd(Ⅱ) showed poorer resolution abilities. The chiral separation mechanism was also discussed briefly.

  19. The neutron

    International Nuclear Information System (INIS)

    Kredov, B.M.

    1979-01-01

    The history of the neutron is displayed on the basis of contributions by scientists who produced outstanding results in neutron research (part 1), of summarizing discoveries and theories which led to the discovery of the neutron and the resulting development of nuclear physics (part 2), and of fundamental papers written by Rutherford, Chadwick, Iwanenko, and others (appendix). Of interest to physicists, historians, and students

  20. Prototype Neutron Energy Spectrometer

    International Nuclear Information System (INIS)

    Mitchell, Stephen; Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald

    2010-01-01

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production (ship effect), (a, n) reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.