WorldWideScience

Sample records for neutron trap khoi

  1. Neutron Lifetime Measurement Using Magnetically Trapped Ultracold Neutrons

    Science.gov (United States)

    Huffer, Craig; Huffman, P. R.; Schelhammer, K. W.; Dewey, M. S.; Huber, M. G.; Hughes, P. P.; Mumm, H. P.; Thompson, A. K.; Coakley, K.; Yue, A. T.; O'Shaughnessy, C. M.

    2017-01-01

    The neutron beta-decay lifetime is important in both nuclear astrophysics and in understanding weak interactions in the framework of the Standard Model. An experiment based at the NIST Center for Neutron Research was designed to address statistical and systematic limitations of former measurements. In our approach, a beam of 0.89 nm neutrons is incident on a superfluid 4He target within the minimum field region of an Ioffe-type magnetic trap. Some of the neutrons are subsequently downscattered by single phonons in the helium to low energies (decays the energetic electron produces a scintillation signal in the helium that is detected in real time using photomultiplier tubes. The current measurement is limited by larger than expected systematic corrections. We will discuss the result of the latest dataset and comment on the potential of future measurements.

  2. Stochastic modeling and survival analysis of marginally trapped neutrons for a magnetic trapping neutron lifetime experiment

    CERN Document Server

    Coakley, K J; M.,; Huber, G; P.,; Huffman, R; C.,; Huffer, R; Marley, D E; Mumm, H P; O'Shaughnessy, M; K.,; Schelhammer, W; Thompson, A K; Yue, A T

    2015-01-01

    In a variety of neutron lifetime experiments, in addition to $\\beta-$decay, neutrons can be lost by other mechanisms including wall losses. Failure to account for these other loss mechanisms produces systematic measurement error and associated systematic uncertainties in neutron lifetime measurements. In this work, we develop a physical model for neutron wall losses and construct a competing risks survival analysis model to account for losses due to the joint effect of $\\beta-$decay losses, wall losses of marginally trapped neutrons, and an additional absorption mechanism. We determine the survival probability function associated with the wall loss mechanism by a Monte Carlo method. Based on a fit of the competing risks model to a subset of the NIST experimental data, we determine the mean lifetime of trapped neutrons to be approximately 700 s -- considerably less than the current best estimate of (880.1 $\\pm$ 1.1) s promulgated by the Particle Data Group [1]. Currently, experimental studies are underway to d...

  3. Chaos in a Gravo-Magneto Neutron Trap

    Science.gov (United States)

    Bowman, J. David; Penttila, Seppo I.

    2014-03-01

    Performance of a neutron trap for cleaning quasi-trapped neutrons depends on what fraction of the neutron orbits are chaotic. In this paper we argue that the Lyapunov characteristic exponent is a good measure the chaos because regular orbits have Lyapunov exponent zero and chaotic orbits of a given energy have a common non-zero Lyapunov exponent. The Lyapunov exponent describes the rate of exponential divergence for infinitesimally perturbed initial conditions [1,2]. We show how to calculate the fraction of chaotic trajectories using Benettin's algorithm [1]. We evaluate the fraction of non-chaotic orbits for a trap that consists of a vertical multipole, gravity, and a current loop at the bottom of the trap.

  4. Electron trap annealing in neutron transmutation doped silicon

    DEFF Research Database (Denmark)

    Guldberg, J.

    1977-01-01

    Silicon doped by neutron transmutation to 1.2×1014 phosphorus atoms/cm3 was investigated with deep level transient spectroscopy using evaporated Au/n-Si diodes. Seven bulk electron traps were identified which appear after 30 min N2 anneal at temperatures between 425 and 725 °C. Five of these anne......Silicon doped by neutron transmutation to 1.2×1014 phosphorus atoms/cm3 was investigated with deep level transient spectroscopy using evaporated Au/n-Si diodes. Seven bulk electron traps were identified which appear after 30 min N2 anneal at temperatures between 425 and 725 °C. Five...

  5. Beta-delayed neutron spectroscopy using ion traps

    Science.gov (United States)

    Wang, Barbara; Czeszumska, A.; Siegl, K.; Caldwell, S.; Aprahamian, A.; Burkey, M.; Clark, J.; Levand, A.; Marley, S.; Morgan, G.; Norman, E.; Nystrom, A.; Orford, R.; Padgett, S.; Perez Galvan, A.; Savard, G.; Scielzo, N.; Sharma, K.; Strauss, S.

    2017-01-01

    Trapped radioactive ions suspended in vacuum allow for a new way to perform beta-delayed neutron spectroscopy. Decay branching ratios and energy spectra of the emitted neutrons are inferred from a measurement of the nuclear recoil, thereby circumventing the many limitations associated with direct neutron detection. Beta-delayed neutron measurements were carried out for 137-138,140I, 134-136Sb, and 144-145Cs at the Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory. The data collected are needed in many fields of basic and applied science such as nuclear energy, nuclear astrophysics, and stockpile stewardship. Results for the isotopes 135-136Sb and 140I will be presented. Supported by NSF under PHY-1419765, and U.S. DOE under NEUP 13-5485, DE-AC02-06CH11357 (ANL), DE-AC52-07NA27344 (LLNL), and DE-NA0000979 (NNSA).

  6. Neutron lifetime measurement on setups with gravitational trap

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Fomin, A. K.; Kharitonov, A. G.; Varlamov, V. E.; Kolomenskiy, E. A.; Krasnoshchekova, I. A.; Chechkin, A. V. [National Research Centre “Kurchatov Institute”, Petersburg Nuclear Physics Institute (Russian Federation)

    2016-01-15

    Currently, the best accuracy of neutron lifetime measurements has been attained in the experiment with a gravitational trap for ultracold neutrons (UCNs), performed at the Petersburg Nuclear Physics Institute (PNPI); the measured lifetime was 878.5 ± 0.8 s. A new setup with a big gravitational trap has been designed to continue the methods and approaches used in the previous experiment. It is planned to reduce the measurement error to 0.2 s, i.e., improve the existing accuracy by a factor of 4. The spectrometer was designed at PNPI and installed on the PF2/MAM beam at the Institute Laue–Langevin. Test experiments have been performed.

  7. Studies of Beta-Delayed Neutron Emission using Trapped Ions

    Science.gov (United States)

    Siegl, Kevin; Aprahamian, A.; Scielzo, N. D.; Savard, G.; Clark, J. A.; Levand, A. F.; Burkey, M.; Caldwell, S.; Czeszumska, A.; Hirsh, T. Y.; Kolos, K.; Marley, S. T.; Morgan, G. E.; Norman, E. B.; Nystrom, A.; Orford, R.; Padgett, S.; Pérez Galván, A.; Sh, K. S.; Strauss, S. Y.; Wang, B. S.

    2017-01-01

    Using a radio-frequency quadrupole ion trap to confine radioactive ions allows indirect measurements of beta-delayed neutron (BDN) emission. By determining the recoil energy of the beta-decay daughter ions it is possible to study BDN emission, as the neutron emission can impart a significantly larger nuclear recoil than from beta-decay alone. This method avoids most of the systematic uncertainties associated with direct neutron detection but introduces dependencies on the specifics of the decay and interactions of the ion with the RF fields. The decays of seven BDN precursors were studied using the Beta-decay Paul Trap (BPT) to confine fission fragments from the Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory. The analysis of these measurements and results for the branching ratios and neutron energy spectra will be presented. Supported by the NSF under grant PHY-1419765, and the U.S. DOE under the NEUP project 13-5485, contracts DE-AC02-06CH11357 (ANL) and DE-AC52-07NA27344 (LLNL), and award DE-NA0000979 (NNSA).

  8. First observation of trapped high-field seeking ultracold neutron spin states

    Energy Technology Data Exchange (ETDEWEB)

    Daum, M., E-mail: manfred.daum@psi.ch [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland); TUM, Physik-Department Technische Universitaet Muenchen, Excellence Cluster Universe, Munich (Germany); Department of Physics, University of Virginia, Charlottesville, VA 22904-4714 (United States); Fierlinger, P. [TUM, Physik-Department Technische Universitaet Muenchen, Excellence Cluster Universe, Munich (Germany); Franke, B. [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland); TUM, Physik-Department Technische Universitaet Muenchen, Excellence Cluster Universe, Munich (Germany); Geltenbort, P. [ILL, Institut Laue-Langevin, Grenoble (France); Goeltl, L. [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland); Gutsmiedl, E. [TUM, Physik-Department Technische Universitaet Muenchen, Excellence Cluster Universe, Munich (Germany); Karch, J. [Institut fuer Physik, Johannes-Gutenberg-Universitaet, Mainz (Germany); Kessler, G. [TUM, Physik-Department Technische Universitaet Muenchen, Excellence Cluster Universe, Munich (Germany); Kirch, K. [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland); IPP, Institut f. Teilchenphysik, ETH Zuerich, CH-8093 Zuerich (Switzerland); Koch, H.-C.; Kraft, A.; Lauer, T. [Institut fuer Physik, Johannes-Gutenberg-Universitaet, Mainz (Germany); Lauss, B. [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland); Pierre, E. [LPC, Laboratoire de Physique Corpusculaire, ENSICAEN-CNRS/IN2P3, Caen (France); Pignol, G. [LPSC, Laboratoire de Physique Subatomique et de Cosmologie, UJF-CNRS/IN2P3-INPG, Grenoble (France); Reggiani, D.; Schmidt-Wellenburg, P. [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland); Sobolev, Yu.; Zechlau, T. [Institut fuer Physik, Johannes-Gutenberg-Universitaet, Mainz (Germany); Zsigmond, G. [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland)

    2011-10-25

    Ultracold neutrons were stored in a volume, using a magnetic dipole field shutter. Radial confinement was provided by material walls. Low-field seeking neutrons were axially confined above the magnetic field. High-field seeking neutrons are trapped inside the magnetic field. They can systematically shift the measured neutron lifetime to lower values in experiments with magnetic confinement.

  9. Hydrogen absorption into neutron-irradiated graphite and estimation of the trapping effect

    Energy Technology Data Exchange (ETDEWEB)

    Atsumi, H [Department of Electric and Electronic Engineering, Kinki University, Kowakae 3-4-1, Higashi-Osaka 577-8502 (Japan); Shibata, N [Molecular and Material Engineering, Graduate School of Kinki University, Kowakae 3-4-1, Higashi-Osaka 577-8502 (Japan); Tanabe, T [Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 812-8581 (Japan); Shikama, T [Institute for Materials Research, Tohoku University, Sendai, 980-8577 (Japan)

    2007-03-15

    Bulk hydrogen retention and the analysis of absorption kinetics have been studied on graphite irradiated with neutrons at various conditions. Two kinds of hydrogen trapping sites may exist and be additionally produced during irradiation: interstitial cluster loop edge sites (trap 1) and carbon dangling bonds at edge surfaces of crystallites (trap 2). Neutron irradiation preferably creates trap 2 sites at lower fluences and trap 1 sites at a higher fluence. Trap 2 tends to be annealed out at high temperatures, although trap 1 is hardly decreased even at 1873 K. The activation energy of hydrogen diffusion is found to be increased from 1.04 to 1.60 eV by neutron irradiation.

  10. A magnetic trap for high-field seeking neutron spin states

    Directory of Open Access Journals (Sweden)

    Th. Brenner

    2015-02-01

    Full Text Available A first experimental demonstration of a new type of magnetic trap for ultra-cold neutrons is presented. High-field seeking spin-states are trapped in a potential formed by the magnetic field of a straight wire and a repulsive coating on the wire surface. Life-times of the trapped neutrons of 60 s could be observed. This configuration can in principle be used to form bound states of the wave function on the surface of the wire to probe new forces at short distances. Further applications include the use as a guide and selector for perfectly polarized neutrons.

  11. A magnetic trap for high-field seeking neutron spin states

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, Th. [Institut Laue-Langevin, 38042 Grenoble Cedex 9 (France); Chesnevskaya, S. [Physik Department, Technische Universität München, D-85748 Garching (Germany); Fierlinger, P., E-mail: peter.fierlinger@tum.de [Physik Department, Technische Universität München, D-85748 Garching (Germany); Geltenbort, P. [Institut Laue-Langevin, 38042 Grenoble Cedex 9 (France); Gutsmiedl, E. [Physik Department, Technische Universität München, D-85748 Garching (Germany); Lauer, T. [Forschungsneutronenquelle Heinz Maier-Leibnitz, Technische Universität München, D-85748 Garching (Germany); Rezai, K. [University of California at Berkeley, CA 94720 (United States); Rothe, J. [Physik Department, Technische Universität München, D-85748 Garching (Germany); Zechlau, T. [Forschungsneutronenquelle Heinz Maier-Leibnitz, Technische Universität München, D-85748 Garching (Germany); Zou, R. [University of California at Berkeley, CA 94720 (United States)

    2015-02-04

    A first experimental demonstration of a new type of magnetic trap for ultra-cold neutrons is presented. High-field seeking spin-states are trapped in a potential formed by the magnetic field of a straight wire and a repulsive coating on the wire surface. Life-times of the trapped neutrons of 60 s could be observed. This configuration can in principle be used to form bound states of the wave function on the surface of the wire to probe new forces at short distances. Further applications include the use as a guide and selector for perfectly polarized neutrons.

  12. Sr isotopic chemostratigraphy of Precambrian carbonate rocks in the Amderma Rise, Pai-Khoi Ridge

    Science.gov (United States)

    Kuznetsov, A. B.; Starikova, E. V.; Maslov, A. V.; Konstantinova, G. V.

    2016-08-01

    The Sr and C isotopic compositions of Precambrian carbonate rocks are determined for Amderma Rise, in the northeastern margin of Pai-Khoi Ridge. Based on the Sr isotopic chemostratigraphy, it is established for the first time that the Amderma Formation is referred to the Early Vendian, while the Morozovsk Formation is Late Riphean in age. This conclusion along with detailed mapping proves that the Precambrian "section" of the Amderma Rise is a series of tectonic plates combined in a nonchronostratigraphic order. Volcanic and sedimentary rocks of the Morozovsk and Sokolninsk formations make up the allochthon proper, while carbonate rocks of the Amderma Formation make up the para-autochthon. The high values of δ13C (up to +9.5‰) identified in limestones of both formations suggest a considerable distance of the Pai-Khoi paleobasin from the passive margin of the Baltic Region upon facies similarity to the Laurentia active margins.

  13. Design and performance of a cryogenic apparatus for magnetically trapping ultracold neutrons

    Science.gov (United States)

    Huffman, P. R.; Coakley, K. J.; Doyle, J. M.; Huffer, C. R.; Mumm, H. P.; O'Shaughnessy, C. M.; Schelhammer, K. W.; Seo, P.-N.; Yang, L.

    2014-11-01

    The cryogenic design and performance of an apparatus used to magnetically confine ultracold neutrons (UCN) is presented. The apparatus is part of an effort to measure the beta-decay lifetime of the free neutron and is comprised of a high-current superconducting magnetic trap that surrounds ∼21 l of isotopically pure 4He cooled to approximately 250 mK. A 0.89 nm neutron beam can enter the apparatus from one end of the magnetic trap and a light collection system allows visible light generated within the helium by decays to be transported to detectors at room temperature. Two cryocoolers are incorporated to reduce liquid helium consumption.

  14. First Ever Storage of Ultracold Neutrons in a Magnetic Trap Made of Permanent Magnets.

    Science.gov (United States)

    Ezhov, V F; Andreev, A Z; Glushkov, A A; Glushkov, A G; Groshev, M N; Knyazkov, V A; Krygin, G B; Ryabov, V L; Serebrov, A P; Bazarov, B A; Geltenbort, P; Hartman, F J; Paul, S; Picker, R; Zimmer, O; Kovrizhnykh, N A

    2005-01-01

    Further improvement in the accuracy of any neutron lifetime experiment by means of ultracold neutrons (UCN) in material bottles is limited due to unavoidable systematic effects when the UCN are reflected from the walls. However, such effects can be excluded in principle if magnetic trapping of UCN is used. The storage of UCN in a small magnetic trap made of permanent magnets was demonstrated for the first time ever. The measured storage time in this feasibility study was (882 ± 16) s. At this level of accuracy no depolarization was observed.

  15. Deuterium trapping at defects created with neutron and ion irradiations in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Y. Hatano; M. Shimada; T. Otsuka; Y. Oya; V.Kh. Alimov; M. Hara; J. Shi; M. Kobayashi; T. Oda; G. Cao; K. Okuno; T. Tanaka; K. Sugiyama; J. Roth; B. Tyburska-Püschel; J. Dorner; N. Yoshida; N. Futagami; H. Watanabe; M. Hatakeyama; H. Kurishita; M. Sokolov; Y. Katoh

    2013-07-01

    The effects of neutron and ion irradiations on deuterium (D) retention in tungsten (W) were investigated. Specimens of pure W were irradiated with neutrons to 0.3 dpa at around 323 K and then exposed to high-flux D plasma at 473 and 773 K. The concentration of D significantly increased by neutron irradiation and reached 0.8 at% at 473 K and 0.4 at% at 773 K. Annealing tests for the specimens irradiated with 20 MeV W ions showed that the defects which play a dominant role in the trapping at high temperature were stable at least up to 973 K, while the density decreased at temperatures equal to or above 1123 K. These observations of the thermal stability of traps and the activation energy for D detrapping examined in a previous study (˜1.8 eV) indicated that the defects which contribute predominantly to trapping at 773 K were small voids. The higher concentration of trapped D at 473 K was explained by additional contributions of weaker traps. The release of trapped D was clearly enhanced by the exposure to atomic hydrogen at 473 K, though higher temperatures are more effective for using this effect for tritium removal in fusion reactors.

  16. C4 polymorphism and extended HLA haplotypes in Namibian San and Khoi and in South African Xhosa.

    Science.gov (United States)

    Creemers, P C; du Toit, E D

    1996-02-01

    We studied C4A and C4B polymorphisms and HLA-B and -DR associations in the San, Khoi and Xhosa. C4A and C4B alleles were determined using conventional protein allotyping methods. The C4A*3, C4B*1 haplotype had a high frequency (30-55%) in all populations. The frequency of C4A*3, C4B*Q0 was 7-19%. The C4A*Q0, C4B*1 haplotype was frequent (15%) in the Khoi but very rare in the San (P < 0.001). C4A*12 A*91, C4B*Q0 was frequent in the Xhosa (15%) but rare in the San and Khoi (P < 0.001). Alleles C4A*5 and C4A*6, and the C4B*2 B*92 duplication were only found in the Xhosa. C4A alleles A*4, A*45, A*58, A*12, A*14, A*19 and the C4A*3 A*91 duplication were only found in the San/Khoi population group. In the San, fourteen extended haplotypes were found in a relatively high frequency (2-7%). In the Xhosa, one extended haplotype (B42, C4A*12 A*91, C4B*Q0, DR18) was found in a very high frequency (13%) and was characteristic for this group; five other extended haplotypes were found with a low frequency (< 3%).

  17. Investigations into properties of charge traps created in CCDs by neutron and electron irradiation

    Indian Academy of Sciences (India)

    James E Brau; Olga Igonkina; Nikolai B Sinev; Jan Strube

    2007-12-01

    Our group has been investigating the effects related to radiation damage of CCDs since 1998. In a series of measurements in 2003 we found the puzzling effect of very slow filling of charge traps created by radiation damage of the silicon device. In 2005 we intended to study this phenomenon in detail. However, while in 2003 we could see all the traps created by neutron irradiation in 1998-1997 unchanged, such traps unexpectedly almost completely disappeared in 2005. We explain this as an effect of annealing induced by electron irradiation, as in 2003 we irradiated with electrons the same device irradiated with neutrons in 1997-1998. Results of the 2005 measurements are presented.

  18. Neutron lifetime measurements and effective spectral cleaning with an ultracold neutron trap using a vertical Halbach octupole permanent magnet array

    CERN Document Server

    Leung, K K H; Ivanov, S; Rosenau, F; Zimmer, O

    2016-01-01

    Ultracold neutron (UCN) storage measurements were made in a trap constructed from a 1.3 T Halbach Octupole PErmanent (HOPE) magnet array aligned vertically, using the TES-port of the PF2 source at the Institut Laue-Langevin. A mechanical UCN valve at the bottom of the trap was used for filling and emptying. This valve was covered with Fomblin grease to induce non-specular reflections and was used in combination with a movable polyethylene UCN remover inserted from the top for cleaning of above-threshold UCNs. Loss due to UCN depolarization was suppressed with a minimum 2 mT bias field. Without using the UCN remover, a total storage time constant of $(712 \\pm 19)$ s was observed; with the remover inserted for 80 s and used at either 80 cm or 65 cm from the bottom of the trap, time constants of $(824 \\pm 32)$ s and $(835 \\pm 36)$ s were observed. Combining the latter two values, a neutron lifetime of $\\tau_{\\rm n} = (887 \\pm 39)$ s is extracted after primarily correcting for losses at the UCN valve. The time co...

  19. Penning trap assisted decay spectroscopy of neutron-rich {sup 115}Ru

    Energy Technology Data Exchange (ETDEWEB)

    Kurpeta, J.; Plochocki, A.; Urban, W. [Warsaw University, Faculty of Physics, Warsaw (Poland); Elomaa, V.V.; Eronen, T.; Hakala, J.; Jokinen, A.; Karvonen, P.; Moore, I.; Penttilae, H.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Ronkainen, J.; Saastamoinen, A.; Sonoda, T.; Weber, C.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics (Finland)

    2007-03-15

    Exotic, neutron-rich {sup 111}Mo and {sup 115}Ru nuclei, produced in proton-induced fission of {sup 238}U target, were separated with the IGISOL mass separator. The separator was coupled to the JYFLTRAP Penning trap to select the ions of a single, desired element out of the isobaric IGISOL beam. Monoisotopic samples of {sup 115}Ru and {sup 111}Mo ions were observed with a microchannel plate detector after the trap or were implanted on a catcher foil for gamma- and beta-ray coincidence spectroscopy. In spite of short data taking time new gamma transitions were identified in the beta decay of very neutron-rich {sup 115}Ru. (orig.)

  20. SELF-TRAPPING OF DISKOSEISMIC CORRUGATION MODES IN NEUTRON STAR SPACETIMES

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, David [Center for Theory and Computation, Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Pappas, George [Department of Physics and Astronomy, The University of Mississippi, University, MS 38677 (United States)

    2016-02-10

    We examine the effects of higher-order multipole contributions of rotating neutron star (NS) spacetimes on the propagation of corrugation (c-)modes within a thin accretion disk. We find that the Lense–Thirring precession frequency, which determines the propagation region of the low-frequency fundamental corrugation modes, can experience a turnover allowing for c-modes to become self-trapped for sufficiently high dimensionless spin j and quadrupole rotational deformability α. If such self-trapping c-modes can be detected, e.g., through phase-resolved spectroscopy of the iron line for a high-spin low-mass accreting neutron star, this could potentially constrain the spin-induced NS quadrupole and the NS equation of state.

  1. A trapped-ion technique for beta-delayed neutron studies

    Science.gov (United States)

    Caldwell, Shane

    The properties of beta-delayed neutron emission (betan) are important in basic and applied nuclear physics. The neutron spectra and branching ratios of betan emitters reflect the evolution of nuclear structure in neutron-rich nuclei. Branching ratios affect the heavy-element abundances resulting from the astrophysical r process. Energy spectra and branching ratios are also important to nuclear stockpile stewardship and the safe design of nuclear reactors. Recently we demonstrated a novel technique for betan spectroscopy using I137+ ions confined to a ˜1 mm 3 volume within a linear RFQ ion trap [61, 77]. By measuring the time-of-flight spectrum of ions recoiling from both beta and betan decays, the betan branching ratio and spectrum can be determined. This recoil-ion technique has several advantages over techniques that rely on neutron detection: the recoil-ions are easily detectable; complications due to scattered neutrons and gamma-rays are avoided; and the betan branching ratio can be extracted in several ways. In this thesis we present new measurements of the delayed-neutron energy spectra and branching ratios of 137I, 135Sb, and 136Sb, which include the first observation of the 136Sb spectrum. These measurements were motivated by the impact that the branching ratios of 135Sb and136Sb can have on the r-process abundances and by the use of 137 I, a well-studied case, as a benchmark for the new technique. Our current understanding of the r process is severely limited by the lack of an exhaustive body of data on neutron-rich nuclei. Relative to the previous demonstration on 137I, the present iteration of the experiment incorporates a 10x improvement in both the detection efficiencies and the beam intensity, as well as a position-sensitive design for the recoil-ion detectors that enables an improvement in energy resolution. An important analytical tool is introduced, which models the evolution of each ion population in the trap and is used to provide a needed

  2. A Technical Review of Penning Trap based Investigations in Neutron Decay

    CERN Document Server

    Byrne, J

    2014-01-01

    This review is concerned with a detailed analysis of some of the technical problems which arise in the application of the Penning trap method to the experimental study of neutron $\\beta $ -decay,a technique which was first successfully tested on the low-flux swimming-pool reactor LIDO (capture flux =3$\\cdot 10^6$cm$^(-2)$s$^(-1)$) at AERE Harwell in the 1970's. It does not discuss the scientific merits or demerits of these studies. Of particular importance are the trapping and release of neutron decay protons, and the influence of magnetic mirror effects and radial drifting on the trapped particles. Since these have energies < 1 keV they must be accelerated to energies of order 20-30 keV following release, at which point they are recorded in a silicon surface barrier detector. However serious difficulties were encountered in the post-release acceleration process with vacuum breakdown in the presence of crossed electric and magnetic fields.

  3. Storage of ultracold neutrons in the UCN$\\tau$ magneto-gravitational trap

    CERN Document Server

    Salvat, D J; Barlow, D; Broussard, L J; Bowman, J D; Callahan, N B; Clayton, S M; Cude-Woods, C; Currie, S; Dees, E B; Fox, W; Hickerson, K P; Holley, A T; Liu, C -Y; Makela, M; Medina, J; Morley, D J; Morris, C L; Penttila, S I; Ramsey, J; Saunders, A; Seestrom, S J; Sjue, S K L; Slaughter, B A; Sharapov, E I; Vanderwerp, J; VornDick, B; Walstrom, P L; Wang, Z; Womack, T L; Young, A R

    2013-01-01

    The UCN$\\tau$ experiment is designed to measure the lifetime $\\tau_{n}$ of the free neutron by trapping ultracold neutrons (UCN) in a magneto-gravitational trap. An asymmetric bowl-shaped NdFeB magnet Halbach array confines low-field-seeking UCN within the apparatus, and a set of electromagnetic coils in a toroidal geometry provide a background "holding" field to eliminate depolarization-induced UCN loss caused by magnetic field nodes. We present a measurement of the storage time $\\tau_{store}$ of the trap by storing UCN for various times, and counting the survivors. The data are consistent with a single exponential decay, and we find $\\tau_{store}=860\\pm19$ s: within $1 \\sigma$ of current global averages for $\\tau_{n}$. The storage time with the holding field deactiveated is found to be $\\tau_{store}=470 \\pm 160$ s; this decreased storage time is due to the loss of UCN which undergo Majorana spin-flips while being stored. We discuss plans to increase the statistical sensitivity of the measurement and investi...

  4. Sinistral strike-slip dominated inclined transpression along the Pai-Khoi fold-and-thrust belt, Russian Arctic

    Science.gov (United States)

    Curtis, Michael

    2014-05-01

    The Arctic Uralides comprise Pai-Khoi, Novaya Zemlya and the Taimyr Peninsula. Together they form a margin controlled salient in the former Baltica margin of Laurussia. This arcuate orogen forms a fundamental tectonic boundary between major hydrocarbon provinces; Timan-Pechora and Barents Sea to the southwest and west, respectively, and the South Kara Sea to the east. To understand the complex regional tectonic relationship between the Arctic Uralides and the South Kara Sea, it is essential to establish the structural and kinematic style of the various sectors of this remote orogen. This contribution focuses on the southern limb of the salient, the NW-SE trending, Pai-Khoi fold-and-thrust belt (PKFB), which links the Polar Urals with Novaya Zemlya approximately 600 km to the northwest. The PKFB comprises a highly deformed, Late Cambrian to Mississippian age, passive margin succession, with allochthonous deep-water and continental slope facies rocks thrust over a shallow-water carbonate platform succession along the Main Pai-Khoi Thrust. Deformation is interpreted to have occurred between the Late Palaeozoic and end Triassic resulting in the formation of an apparent southwesterly verging fold-and-thrust belt with an associated foreland basin. Analysis of regional scale geological maps reveals the presence of large scale en-echelon folds, together with late stage, orogen-parallel faults, indicating that the evolution of PKFB has been influenced by a component of sinistral strike-slip. Detailed field data from a transect across the largest structure in the orogen, the Main Pai-Khoi Thrust, confirms the obliquity of both planar structures and finite stretching lineations to this major allochthon bounding thrust. Subtle but consistent variations in the orientation of finite stretching directions within zones of qualitatively differing finite strain were identified. Comparison of these variations with theoretical models of inclined transpression suggests that deformation

  5. High-precision masses of neutron-deficient rubidium isotopes using a Penning trap mass spectrometer

    CERN Document Server

    Kellerbauer, A G; Beck, D; Blaum, K; Bollen, G; Guénaut, C; Herfurth, F; Herlert, A; Kluge, H J; Lunney, D; Schwarz, S; Schweikhard, L; Weber, C; Yazidjian, C

    2007-01-01

    The atomic masses of the neutron-deficient radioactive rubidium isotopes $^{74-77,79,80,83}$Rb have been measured with the Penning trap mass spectrometer ISOLTRAP. Using the time-of-flight cyclotron resonance technique, relative mass uncertainties ranging from $1.6 \\times 10^{-8}$ to $5.6 \\times 10^{-8}$ were achieved. In all cases, the mass precision was significantly improved as compared with the prior Atomic-Mass Evaluation; no significant deviations from the literature values were observed. The exotic nuclide $^{74}$Rb with a half-life of only 65 ms, is the shortest-lived nuclide on which a high-precision mass measurement in a Penning trap has been carried out. The significance of these measurements for a check of the conserved-vector-current hypothesis of the weak interaction and the unitarity of the Cabibbo-Kobayashi-Maskawa matrix is discussed.

  6. DBP (vitamin D binding protein) and BF (properdin factor B) allele distribution in Namibian San and Khoi and in other South African populations.

    Science.gov (United States)

    Creemers, P C; Du Toit, E D; Kriel, J

    1995-12-01

    The genetic polymorphism of vitamin D binding protein (DBP) and of properdin Factor B (BF) was determined in unrelated Namibian San and Khoi, and in South African Blacks, Caucasoids and Cape Coloureds. Alleles have been confirmed by segregation patterns in family studies. The DBP phenotypes were identified by isoelectric focusing on ultrathin polyacrylamide gels and the BF phenotypes were identified by electrophoresis on 1% agarose gels; both methods were followed by immunofixation. The DBP and BF allele frequencies for all population groups were found to be in accordance with Hardy-Weinberg equilibrium. DBP*1S and BF*S allele frequencies in the San, Khoi and Blacks were similar; their frequency was far lower than in Caucasoids. The frequencies of the DBP*1F and BF*F were also similar in the San, Khoi and Blacks; however, the allele frequency was much higher in these groups than in Caucasoids. These differences were statistically significant (P < 0.001).

  7. Verification of three-dimensional neutron kinetics model of TRAP-KS code regarding reactivity variations

    Energy Technology Data Exchange (ETDEWEB)

    Uvakin, Maxim A.; Alekhin, Grigory V.; Bykov, Mikhail A.; Zaitsev, Sergei I. [EDO ' GIDROPRESS' , Moscow Region, Podolsk (Russian Federation)

    2016-09-15

    This work deals with TRAP-KS code verification. TRAP-KS is used for coupled neutron and thermo-hydraulic process calculations of VVER reactors. The three-dimensional neutron kinetics model enables consideration of space effects, which are produced by energy field and feedback parameters variations. This feature has to be investigated especially for asymmetrical multiplying variations of core properties, power fluctuations and strong local perturbation insertion. The presented work consists of three test definitions. First, an asymmetrical control rod (CR) ejection during power operation is defined. This process leads to fast reactivity insertion with short-time power spike. As second task xenon oscillations are considered. Here, small negative reactivity insertion leads to power decreasing and induces space oscillations of xenon concentration. In the late phase, these oscillations are suppressed by external actions. As last test, an international code comparison for a hypothetical main steam line break (V1000CT-2, task 2) was performed. This scenario is interesting for asymmetrical positive reactivity insertion by decreasing coolant temperature in the affected loop.

  8. A comparison of two magnetic ultra-cold neutron trapping concepts using a Halbach-octupole array

    CERN Document Server

    Leung, K; Martin, F; Rosenau, F; Simson, M; Zimmer, O

    2015-01-01

    This paper describes a new magnetic trap for ultra-cold neutrons (UCNs) made from a 1.2 m long Halbach-octupole array of permanent magnets with an inner bore radius of 47 mm combined with an assembly of superconducting end coils and bias field solenoid. The use of the trap in a vertical, magneto-gravitational and a horizontal setup are compared in terms of the effective volume and ability to control key systematic effects that need to be addressed in high precision neutron lifetime measurements.

  9. Polarized neutron imaging and three-dimensional calculation of magnetic flux trapping in bulk of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Treimer, Wolfgang; Ebrahimi, Omid; Karakas, Nursel; Prozorov, Ruslan

    2012-05-17

    Polarized neutron radiography was used to study the three-dimensional magnetic flux distribution inside of single-crystal and polycrystalline Pb cylinders with large (cm3) volume and virtually zero demagnetization. Experiments with single crystals being in the Meissner phase (Ttrapped field in the sample (Ttrapped flux was nearly constant. The expelled field outside of the samples followed 1/R dependence. These measurements provided a unique and detailed picture of macroscopic superconducting samples, confirming the existence of both uniform bulk Meissner expulsion in single crystals and bulk flux trapping with nearly-Bean-model profiles due to flux pinning in polycrystalline samples.

  10. Precision mass measurements for studies of nucleosynthesis via the rapid neutron-capture process. Penning-trap mass measurements of neutron-rich cadmium and caesium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Dinko

    2016-07-06

    Although the theory for the rapid neutron-capture process (r-process) was developed more than 55 years ago, the astrophysical site is still under a debate. Theoretical studies predict that the r-process path proceeds through very neutron-rich nuclei with very asymmetric proton-to-neutron ratios. Knowledge about the properties of neutron-rich isotopes found in similar regions of the nuclear chart and furthermore suitable for r-process studies is still little or even not existing. The basic nuclear properties such as binding energies, half-lives, neutron-induced or neutron-capture reaction cross-sections, play an important role in theoretical simulations and can vary or even drastically alternate results of these studies. Therefore, a considerable effort was put forward to access neutron-rich isotopes at radioactive ion-beam facilities like ISOLDE at CERN. The goal of this PhD thesis is to describe the experimental work done for the precision mass measurements of neutron-rich cadmium ({sup 129-131}Cd) and caesium ({sup 132,146-148}Cs) isotopes. Measurements were done at the on-line radioactive ion-beam facility ISOLDE by using the four-trap mass spectrometer ISOLTRAP. The cadmium isotopes are key nuclides for the synthesis of stable isotopes around the mass peak A = 130 in the Solar System abundance.

  11. Decay study of neutron-rich zirconium isotopes employing a Penning trap as a spectroscopy tool

    Energy Technology Data Exchange (ETDEWEB)

    Rinta-Antila, S.; Eronen, T.; Elomaa, V.V.; Hager, U.; Hakala, J.; Jokinen, A.; Karvonen, P.; Penttilae, H.; Rissanen, J.; Sonoda, T.; Saastamoinen, A.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics (Finland)

    2007-01-15

    A new technique to produce isobarically pure ion beams for decay spectroscopy by using a gas-filled Penning trap was commissioned at the ion guide isotope separator on-line facility, IGISOL. {beta}-decays of neutron-rich {sup 100}Zr, {sup 102}Zr and {sup 104}Zr isotopes were studied with this technique. In addition, the Q{sub {beta}{sup -}} values of {sup 100,102,104}Zr {beta}-decays were determined from the direct mass measurements of zirconium and niobium isotopes performed with a high-precision Penning trap. The mass of {sup 104}Nb was directly measured for the first time and the obtained mass excess value for the longer-living (1{sup +}) state is -71823{+-}10 keV. For the ground states of {sup 100}Nb and {sup 102}Nb the obtained mass excess values were -79802{+-}20 keV and -76309{+-}10 keV, respectively. The observed distribution of the {beta} strength supports a prolate deformation assignment for {sup 100,102,104}Zr isotopes. (orig.)

  12. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A; Kulcinski, J; Molvik, A; Ryutov, D; Santarius, J; Simonen, T; Wirth, B D; Ying, A

    2009-11-23

    The successful operation (with {beta} {le} 60%, classical ions and electrons with Te = 250 eV) of the Gas Dynamic Trap (GDT) device at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia, extrapolates to a 2 MW/m{sup 2} Dynamic Trap Neutron Source (DTNS), which burns only {approx}100 g of tritium per full power year. The DTNS has no serious physics, engineering, or technology obstacles; the extension of neutral beam lines to steady state can use demonstrated engineering; and it supports near-term tokamaks and volume neutron sources. The DTNS provides a neutron spectrum similar to that of ITER and satisfies the missions specified by the materials community to test fusion materials (listed as one of the top grand challenges for engineering in the 21st century by the U.S. National Academy of Engineering) and subcomponents (including tritium-breeding blankets) needed to construct DEMO. The DTNS could serve as the first Fusion Nuclear Science Facility (FNSF), called for by ReNeW, and could provide the data necessary for licensing subsequent FSNFs.

  13. Trapping induced N{sub eff} and electrical field transformation at different temperatures in neutron irradiated high resistivity silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Eremin, V.; Li, Z.; Iljashenko, I.

    1994-02-01

    The trapping of both non-equilibrium electrons and holes by neutron induced deep levels in high resistivity silicon planar detectors have been observed. In the experiments Transient Current and Charge Techniques, with short laser light pulse excitation have been applied at temperature ranges of 77--300 k. Light pulse illumination of the front (p{sup +}) and back (n{sup +}) contacts of the detectors showed effective trapping and detrapping, especially for electrons. At temperatures lower than 150 k, the detrapping becomes non-efficient, and the additional negative charge of trapped electrons in the space charge region (SCR) of the detectors leads to dramatic transformations of the electric field due to the distortion of the effective space charge concentration N{sub eff}. The current and charge pulses transformation data can be explained in terms of extraction of electric field to the central part of the detector from the regions near both contacts. The initial field distribution may be recovered immediately by dropping reverse bias, which injects both electrons and holes into the space charge region. In the paper, the degree of the N{sub eff} distortions among various detectors irradiated by different neutron fluences are compared.

  14. Nuclear cascades in Saturn's rings - Cosmic ray albedo neutron decay and origins of trapped protons in the inner magnetosphere

    Science.gov (United States)

    Cooper, J. F.

    1983-01-01

    The nearly equatorial trajectory of the Pioneer 11 spacecraft through Saturn's high energy proton radiation belts and under the main A-B-C rings provided a unique opportunity to study the radial dependence of the greater than 30 MeV proton intensities in the belts in terms of models for secondary nucleon production by cosmic ray interactions in the rings, in situ proton injection in the radiation belts by neutron beta decay, magnetospheric diffusion, and absorption by planetary rings and satellites. Maximum trapped proton intensities measured by Pioneer 11 in the radiation belts are compared with calculated intensities and found consistent with trapping times of roughly 40 years and a radial diffusion coefficient of about 10 to the -15th L to the 9th R sub s squared/s. Differential energy spectra proportional to E to the -2 estimated from integral measurements of trapped photons with E greater than 100 MeV are consistent with the beta decay model, but an inferred turndown of the spectra toward lower energies and reported integral proton anisotropies of a specified form both indicate the need for more realistic calculations of the neutron source from the rings and the radiation belt loss processes.

  15. Paleomagnetism of paleozoic sediments from the Kozhim River section: On the problem of palinspastic reconstructions of the Subpolar Urals and Pai-Khoi

    Science.gov (United States)

    Iosifidi, A. G.; Khramov, A. N.

    2013-01-01

    The collections of the Silurian, Devonian, Carboniferous, and Early Permian rocks from the Kozhim River section in the Subpolar Urals are studied. It is established that the pre-Permian Paleozoic deposits from the Kozhim River were remagnetized during the Kiama hyperchron (C2-P2) probably due to magnetoviscous processes that were blocked as these sediments were leaving the zone of increased temperature during the collision between the East European Platform and the Urals. The thrusts that took place at the last stage of this collision rendered the paleomagnetic directions of the studied structures different from those extrapolated from the East European Platform. The estimates of local rotations and displacements are obtained and applied in the combined analysis with the paleomagnetic determinations for the Pai-Khoi Ridge and Subpolar Urals. The amplitudes of the thrusts average 260 km and 180 km for the structures of Pai-Khoi and Subpolar Urals, respectively. The reconstruction of the prethrusting layout of the studied structures is presented.

  16. Effects of magnetization on fusion product trapping and secondary neutron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); and others

    2015-05-15

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/−0.06) MG · cm, a ∼ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  17. Mass measurements of neutron-deficient nuclides close to A=80 with a Penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Kankainen, A.; Elomaa, V.-V.; Eronen, T.; Hager, U.; Hakala, J.; Jokinen, A.; Moore, I.; Penttilae, H.; Peraejaervi, K.; Rahaman, S.; Rinta-Antila, S.; Ronkanen, P.; Saastamoinen, A.; Sonoda, T.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, P.O. Box 35 (Finland); Batist, L.; Novikov, Yu.N.; Popov, A.V.; Seliverstov, D.M. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Eliseev, S.A.; Vorobjev, G.K. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); GSI, Darmstadt (Germany)

    2006-09-15

    The masses of {sup 80,} {sup 81,} {sup 82,} {sup 83}Y, {sup 83,} {sup 84,} {sup 85,} {sup 86,} {sup 88}Zr and {sup 85,} {sup 86,} {sup 87,} {sup 88}Nb have been measured with a typical precision of 7keV by using the Penning trap setup at IGISOL. The mass of {sup 84}Zr has been measured for the first time. These precise mass measurements have improved S{sub p} and Q{sub EC} values for astrophysically important nuclides. (orig.)

  18. Calculation of neutron-decay-proton trapping in the Jovian magnetosphere

    Science.gov (United States)

    Thomas, J. R.; Doherty, W. R.

    1972-01-01

    Investigations on the possible proton fluxes resulting from cosmic ray albedo neutron decay (CRAND) are summarized. It is recalled that experimental data on the earth's belts are reasonably consistent with a CRAND source for most of the protons with energies 50 MeV in the heart of the inner belt. It is assumed that the CRAND and cosmic ray flux and spectrum for Jupiter are the same as for the Earth, with the significant difference that considerably higher energy particles are needed to reach the Jupiter atmosphere at the same magnetic latitude. The ratio of the CRAND source averaged over an L shell on Jupiter to that on Earth at L = 1.3 is derived from a geometrical calculation. The ratio of average loss rate on Jupiter to that for the Earth is also discussed. The flux around Jupiter is obtained by scaling according to the ratio of source to loss from the flux observed in the Earth's inner belt.

  19. Precision mass measurements for studies of nucleosynthesis via the rapid neutron-capture process Penning-trap mass measurements of neutron-rich cadmium and caesium isotopes

    CERN Document Server

    AUTHOR|(CDS)2085660; Litvinov, Yuri A.; Kreim, Susanne

    Although the theory for the rapid neutron-capture process (r-process) was developed more than 55 years ago, the astrophysical site is still under a debate. Theoretical studies predict that the r-process path proceeds through very neutron-rich nuclei with very asymmetric proton- to-neutron ratios. Knowledge about the properties of neutron-rich isotopes found in similar regions of the nuclear chart and furthermore suitable for r-process studies is still little or even not existing. The basic nuclear properties such as binding energies, half-lives, neutron-induced or neutron-capture reaction cross-sections, play an important role in theoretical simulations and can vary or even drastically alternate results of these studies. Therefore, a considerable effort was put forward to access neutron-rich isotopes at radioactive ion-beam facilities like ISOLDE at CERN. The goal of this PhD thesis is to describe the experimental work done for the precision mass measurements of neutron-rich cadmium (129−131 Cd) and caesium...

  20. Penning trap mass measurements and laser spectroscopy on neutron-rich fission products extracted from the research reactor TRIGA-Mainz

    Energy Technology Data Exchange (ETDEWEB)

    Eibach, Martin; Ketelaer, Jens; Ketter, Jochen; Knuth, Konstantin [Institut fuer Physik, Universitaet Mainz (Germany); Blaum, Klaus; Nagy, Szilard [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Eberhardt, Klaus; Noertershaeuser, Wilfried [Institut fuer Kernchemie, Universitaet Mainz (Germany); Herfurth, Frank [GSI, Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Smorra, Christian [Physikalisches Institut, Universitaet Heidelberg (Germany); Institut fuer Kernchemie, Universitaet Mainz (Germany)

    2009-07-01

    TRIGA-SPEC is a setup for Penning trap mass spectrometry and collinear laser spectroscopy on short-lived neutron-rich nuclides located at the research reactor TRIGA-Mainz. It is dedicated to the determination of nuclear ground-state properties like masses and charge-radii. The nuclides are produced by neutron-induced fission of an actinide target located in a target chamber near the reactor core. It is required to extract the nuclides fast and with high efficiency from the target chamber in order to make precision experiments on short-living species with half-lives in the order of 1s. To this end, they are flushed out with a helium gas jet containing carbon aerosols and transported through a skimmer region to an ECR ion source. The characterisation of the carbon aerosol generator and the verification of transported fission products are presented.

  1. Penning-trap mass spectrometry of highly charged, neutron-rich Rb and Sr isotopes in the vicinity of $A\\approx100$

    CERN Document Server

    Simon, V V; Chowdhury, U; Eberhardt, B; Ettenauer, S; Gallant, A T; Mané, E; Simon, M C; Delheij, P; Pearson, M R; Audi, G; Gwinner, G; Lunney, D; Schatz, H; Dilling, J

    2012-01-01

    The neutron-rich mass region around $A\\approx100$ presents challenges for modeling the astrophysical $r$-process because of rapid shape transitions. We report on mass measurements using the TITAN Penning trap at TRIUMF-ISAC to attain more reliable theoretical predictions of $r$-process nucleosynthesis paths in this region. A new approach using highly charged ($q=15+$) ions has been applied which considerably saves measurement time and preserves accuracy. New mass measurements of neutron-rich $^{94,97,98}$Rb and $^{94,97-99}$Sr have uncertainties of less than 4 keV and show deviations of up to 11$\\sigma$ to previous measurements. An analysis using a parameterized $r$-process model is performed and shows that mass uncertainties for the A=90 abundance region are eliminated.

  2. High-precision Penning trap mass measurements of 9,10Be and the one-neutron halo nuclide 11Be

    Science.gov (United States)

    Ringle, R.; Brodeur, M.; Brunner, T.; Ettenauer, S.; Smith, M.; Lapierre, A.; Ryjkov, V. L.; Delheij, P.; Drake, G. W. F.; Lassen, J.; Lunney, D.; Dilling, J.

    2009-05-01

    Penning trap mass measurements of 9Be, 10Be (t1 / 2 = 1.51 My), and the one-neutron halo nuclide 11Be (t1 / 2 = 13.8 s) have been performed using TITAN at TRIUMF. The resulting 11Be mass excess (ME = 20 177.60 (58) keV) is in agreement with the current Atomic Mass Evaluation (AME03) [G. Audi, et al., Nucl. Phys. A 729 (2003) 337] value, but is over an order of magnitude more precise. The precision of the mass values of 9,10Be have been improved by about a factor of four and reveal a ≈ 2 σ deviation from the AME mass values. Results of new atomic physics calculations are presented for the isotope shift of 11Be relative to 9Be, and it is shown that the new mass values essentially remove atomic mass uncertainties as a contributing factor in determining the relative nuclear charge radius from the isotope shift. The new mass values of 10,11Be also allow for a more precise determination of the single-neutron binding energy of the halo neutron in 11Be.

  3. Penning-trap mass spectrometry of neutron-rich copper isotopes for probing the Z = 28 and N = 50 shell closures

    CERN Multimedia

    Manea, V

    We propose to perform a Penning-trap mass measurement of $^{79}$Cu. This exotic N = 50 isotone is the last frontier before the doubly-magic $^{78}$Ni and will greatly improve our knowledge of shell evolution. In the same run, we propose $^{77-78}$Cu mass measurements, as well as the search for a possible isomer in $^{76m}$Cu. The data will help to clarify the structure of the odd proton in the Cu isotopes, the influence on the Z = 28 proton core of the νg$_{9/2}$ orbital filling and the impact of the proton-neutron residual interaction on the strength of the N = 50 shell closure.

  4. Comparison between different flux traps assembled in the core of the nuclear reactor IPEN/MB-01 by measuring of the thermal and epithermal neutron fluxes using activation foils

    Energy Technology Data Exchange (ETDEWEB)

    Mura, Luiz Ernesto Credidio; Bitelli, Ulysses d' Utra; Mura, Luis Felipe Liambos; Carluccio, Thiago; Andrade, Graciete Simoes de, E-mail: ubitelli@ipen.b, E-mail: gsasilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The production of radioisotopes is one of the most important applications of nuclear research reactors. This study investigated a method called Flux Trap, which is used to increase the yield of production of radioisotopes in nuclear reactors. The method consists in the rearrangement of the fuel rods to allow the increase of the thermal neutron flux in the irradiation region inside the reactor core, without changing the standard reactor power level. Various configurations were assembled with the objective of finding the configuration with the highest thermal neutron flux in the region of irradiation. The method of activation analysis was used to measure the thermal neutron flux and determine the most efficient reactor core configuration . It was found that there was an increase in the thermal neutron flux of 337% in the most efficient configuration, which demonstrates the effectiveness of the method. (author)

  5. Formation of He-Rich Layers Observed by Neutron Reflectometry in the He-Ion-Irradiated Cr/W Multilayers: Effects of Cr/W Interfaces on the He-Trapping Behavior.

    Science.gov (United States)

    Chen, Feida; Tang, Xiaobin; Huang, Hai; Li, Xinxi; Wang, Yan; Huang, Chaoqiang; Liu, Jian; Li, Huan; Chen, Da

    2016-09-21

    Cr/W multilayer nanocomposites were presented in the paper as potential candidate materials for the plasma facing components in fusion reactors. We used neutron reflectometry to measure the depth profile of helium in the multienergy He ions irradiated [Cr/W (50 nm)]3 multilayers. Results showed that He-rich layers with low neutron scattering potential energy form at the Cr/W interfaces, which is in great agreement with previous modeling results of other multilayers. This phenomenon provided a strong evidence for the He trapping effects of Cr/W interfaces and implied the possibility of using the Cr/W multilayer nanocomposites as great He-tolerant plasma facing materials.

  6. Penning trap at IGISOL

    Energy Technology Data Exchange (ETDEWEB)

    Szerypo, J. E-mail: jerzy.szerypo@phys.jyu.fi; Jokinen, A.; Kolhinen, V.S.; Nieminen, A.; Rinta-Antila, S.; Aeystoe, J

    2002-04-22

    The IGISOL facility at the Department of Physics of the University of Jyvaeskylae (JYFL) is delivering radioactive beams of short-lived exotic nuclei, in particular the neutron-rich isotopes from the fission reaction. These nuclei are studied with the nuclear spectroscopy methods. In order to substantially increase the quality and sensitivity of such studies, the beam should undergo beam handling: cooling, bunching and isobaric purification. The first two processes are performed with the use of an RFQ cooler/buncher. The isobaric purification will be made by a Penning trap placed after the RF-cooler element. This contribution describes the current status of the Penning trap project and its future prospects. The latter comprise the precise nuclear mass measurements, nuclear spectroscopy in the Penning trap interior as well as the laser spectroscopy on the extracted beams.

  7. Depolarization of UCN stored in material traps

    CERN Document Server

    Serebrov, A; Lasakov, M; Rudnev, Y; Krasnoschekova, I A; Geltenbort, P; Butterworth, J; Bowles, T; Morris, C; Seestrom, S; Smith, D; Young, A R

    2000-01-01

    Depolarization of ultra-cold neutrons (UCN) stored in material traps was first observed. The probability of UCN spin flip per reflection depends on the trap material and varies from 7x10 sup - sup 6 (beryllium) to 10 sup - sup 4 (glass).

  8. Possibility for low temperature fluid-wall neutron bottle with very low neutron upscattering losses

    CERN Document Server

    Pokotilovski, Yu N

    1999-01-01

    The new recently synthesized polymers - perfluorinated polyformaldehydes have long liquid range and low melting point. Due to the expected low upscattering losses of ultracold neutrons, at low temperatures, these fluids may be good candidates for precision measurement of neutron lifetime by the method of storage of ultracold neutrons in traps.

  9. Broad-band FT-ICR detection at the Penning trap mass spectrometer TRIGA-TRAP

    Energy Technology Data Exchange (ETDEWEB)

    Knuth, Konstantin; Eibach, Martin; Ketelaer, Jens; Ketter, Jochen; Sturm, Sven [Institut fuer Physik, Universitaet Mainz (Germany); Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Physikalisches Institut, Universitaet Heidelberg Heidelberg (Germany); Block, Michael; Herfurth, Frank [GSI, Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Eberhardt, Klaus [Institut fuer Kernchemie, Universitaet Mainz (Germany); Nagy, Szilard [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Repp, Julia [Institut fuer Physik, Universitaet Mainz (Germany); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Smorra, Christian [Physikalisches Institut, Universitaet Heidelberg Heidelberg (Germany); Institut fuer Kernchemie, Universitaet Mainz (Germany); Ulmer, Stefan [Institut fuer Physik, Universitaet Mainz (Germany); Physikalisches Institut, Universitaet Heidelberg Heidelberg (Germany)

    2009-07-01

    The double Penning trap mass spectrometer TRIGA-TRAP will perform high-precision mass measurements on exotic neutron-rich nuclides, which are produced via neutron-induced fission of actinide targets at the research reactor TRIGA Mainz. In order to determine which ion species are present in the ion bunch delivered to the Penning trap system, a non-destructive ion detection technique will be implemented in the cylindrical purification trap. This so called broad-band Fourier transform ion cyclotron resonance (FT-ICR) detection technique is based on the detection of image currents, induced by the ions in the trap electrodes. To this end, a new cryogenic low-noise broad-band amplifier is being designed and tested. With this system the identification of contaminations will be possible without the need to eject ions from the trap as usually done at other facilities. The setup as well as its present status are presented.

  10. TRIGA-TRAP: A penning trap mass spectrometer at the research reactor TRIGA Mainz

    Energy Technology Data Exchange (ETDEWEB)

    Smorra, Christian [Physikalisches Institut, Universitaet Heidelberg (Germany); Institut fuer Kernchemie, Universitaet Mainz (Germany); Blaum, Klaus [Physikalisches Institut, Universitaet Heidelberg (Germany); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Block, Michael; Herfurth, Frank [GSI, Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Eberhardt, Klaus [Institut fuer Kernchemie, Universitaet Mainz (Germany); Eibach, Martin; Ketelaer, Jens; Ketter, Jochen; Knuth, Konstantin; Repp, Julia [Institut fuer Physik, Universitaet Mainz (Germany); Nagy, Szilard [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2009-07-01

    Nuclear masses represent the binding energies and, therefore, the sum of all interactions in the nucleus. They provide an important input parameter to nuclear structure models. Presently, a tremendous interest in masses of very exotic neutron-rich nuclides exists to support theoretical models for the nucleosynthesis via the rapid neutron capture process. The research reactor TRIGA Mainz provides access to a large variety of neutron-rich nuclides produced by thermal-neutron induced fission of an actinide target. The double-Penning trap mass spectrometer TRIGA-TRAP will perform high-precision mass measurements in this region of the nuclear chart as well as on actinides from uranium to californium. It also serves as a test facility for the development of new techniques that will be implemented in future facilities like MATS at FAIR (GSI, Darmstadt). The layout of TRIGA-TRAP as well as recent mass measurements are presented.

  11. Trapped antihydrogen

    Science.gov (United States)

    Butler, E.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jenkins, M. J.; Jonsell, S.; Jørgensen, L. V.; Kemp, S. L.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Seif el Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ˜1 T (˜0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be `born' inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been trapped for at least 172 ms and then released—the first instance of a purely antimatter atomic system confined for any length of time (Andresen et al., Nature 468:673, 2010). We present a description of the main components of the ALPHA traps and detectors that were key to realising this result. We discuss how the antihydrogen atoms were identified and how they were discriminated from the background processes. Since the results published in Andresen et al. (Nature 468:673, 2010), refinements in the antihydrogen production technique have allowed many more antihydrogen atoms to be trapped, and held for much longer times. We have identified antihydrogen atoms that have been trapped for at least 1,000 s in the apparatus (Andresen et al., Nature Physics 7:558, 2011). This is more than sufficient time to interrogate the atoms spectroscopically, as well as to ensure that they have relaxed to their ground state.

  12. Trapped antihydrogen

    CERN Document Server

    Butler, E; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kemp, S L; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Seif el Nasr, S; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki,Y

    2012-01-01

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ∼1 T (∼0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be ‘born’ inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been ...

  13. VACUUM TRAP

    Science.gov (United States)

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  14. Trapped phonons

    CERN Document Server

    Mannarelli, Massimo

    2013-01-01

    We analyze the effect of restricted geometries on the contribution of Nambu-Goldstone bosons (phonons) to the shear viscosity, $\\eta$, of a superfluid. For illustrative purpose we examine a simplified system consisting of a circular boundary of radius $R$, confining a two-dimensional rarefied gas of phonons. Considering the Maxwell-type conditions, we show that phonons that are not in equilibrium with the boundary and that are not specularly reflected exert a shear stress on the boundary. In this case it is possible to define an effective (ballistic) shear viscosity coefficient $\\eta \\propto \\rho_{\\rm ph} \\chi R$, where $\\rho_{\\rm ph}$ is the density of phonons and $\\chi$ is a parameter which characterizes the type of scattering at the boundary. For an optically trapped superfluid our results corroborate the findings of Refs. \\cite{Mannarelli:2012su, Mannarelli:2012eg}, which imply that at very low temperature the shear viscosity correlates with the size of the optical trap and decreases with decreasing tempe...

  15. Neutron Repulsion

    OpenAIRE

    Manuel, Oliver K.

    2011-01-01

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch...

  16. Carbon cluster mass calibration at the double Penning trap mass spectrometer TRIGA-TRAP

    Energy Technology Data Exchange (ETDEWEB)

    Smorra, Christian [Physikalisches Institut, Universitaet Heidelberg (Germany); Institut fuer Kernchemie, Universitaet Mainz (Germany); Blaum, Klaus [Physikalisches Institut, Universitaet Heidelberg (Germany); Max-Planck Institut fuer Kernphysik, Heidelberg (Germany); Eberhardt, Klaus [Institut fuer Kernchemie, Universitaet Mainz (Germany); Eibach, Martin; Ketelaer, Jens; Ketter, Jochen; Knuth, Konstantin [Institut fuer Physik, Universitaet Mainz (Germany); Herfurth, Frank [GSI, Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Nagy, Szilard [Max-Planck Institut fuer Kernphysik, Heidelberg (Germany)

    2009-07-01

    TRIGA-TRAP is a facility which aims for mass measurements on neutron-rich short-lived fission products and actinides with relative mass uncertainties of 10{sup -7} and below. To this end the cyclotron frequency of a stored ion in a Penning trap is determined. In high-precision mass spectrometry the investigation of systematic errors is of utmost importance. In order to demonstrate the accuracy of the measured values, various carbon cluster ions have been used in cross reference measurements. The results are presented and the accuracy limit of TRIGA-TRAP is discussed.

  17. A direct experimental limit on neutron -- mirror neutron oscillations

    CERN Document Server

    Ban, G; Naviliat-Cuncic, O; Bodek, K; Kistryn, S; Kuzniak, M; Zejma, J; Khomutov, N; Knowles, P; Rebetez, M; Weis, A; Plonka, C; Rogel, G; Quéméner, G; Rebreyend, D; Roccia, S; Tur, M; Daum, M; Henneck, R; Heule, S; Kasprzak, M; Kirch, K; Knecht, A; Mtchedlishvili, A; Zsigmond, G

    2007-01-01

    In case a mirror world with a copy of our ordinary particle spectrum would exist, the neutron n and its degenerate partner, the mirror neutron ${\\rm n'}$, could potentially mix and undergo ${\\rm nn'}$ oscillations. The interaction of an ordinary magnetic field with the ordinary neutron would lift the degeneracy between the mirror partners, diminish the ${\\rm n'}$-amplitude in the n-wavefunction and, thus, suppress its observability. We report an experimental comparison of ultracold neutron storage in a trap with and without superimposed magnetic field. No influence of the magnetic field is found and a limit on the oscillation time $\\tau_{\\rm nn'} > 103$ s (95% C.L.) is derived.

  18. Modulating the Neutron Flux from a Mirror Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D D

    2011-09-01

    A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronous detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.

  19. Annual Trapping Proposal 1985

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Annual Trapping Plan for the 1984-1985 trapping season at Clarence Cannon NWR outlines rules and regulations for the trapping of beaver and muskrat on the...

  20. Nuclear Masses and Neutron Stars

    CERN Document Server

    Kreim, Susanne; Lunney, David; Schaffner-Bielich, Jürgen

    2013-01-01

    Precision mass spectrometry of neutron-rich nuclei is of great relevance for astrophysics. Masses of exotic nuclides impose constraints on models for the nuclear interaction and thus affect the description of the equation of state of nuclear matter, which can be extended to describe neutron-star matter. With knowledge of the masses of nuclides near shell closures, one can also derive the neutron-star crustal composition. The Penning-trap mass spectrometer ISOLTRAP at CERN-ISOLDE has recently achieved a breakthrough measuring the mass of 82Zn, which allowed constraining neutron-star crust composition to deeper layers (Wolf et al., PRL 110, 2013). We perform a more detailed study on the sequence of nuclei in the outer crust of neutron stars with input from different nuclear models to illustrate the sensitivity to masses and the robustness of neutron-star models. The dominant role of the N=50 and N=82 closed neutron shells for the crustal composition is confirmed.

  1. Neutron Radiography

    Science.gov (United States)

    Heller, A. K.; Brenizer, J. S.

    Neutron radiography and its related two-dimensional (2D) neutron imaging techniques have been established as invaluable nondestructive inspection methods and quantitative measurement tools. They have been used in a wide variety of applications ranging from inspection of aircraft engine turbine blades to study of two-phase fluid flow in operating proton exchange membrane fuel cells. Neutron radiography is similar to X-ray radiography in that the method produces a 2D attenuation map of neutron radiation that has penetrated the object being examined. However, the images produced differ and are often complementary due to the differences between X-ray and neutron interaction mechanisms. The uses and types of 2D neutron imaging have expanded over the past 15 years as a result of advances in imaging technology and improvements in neutron generators/sources and computers. Still, high-intensity sources such as those from reactors and spallation neutron sources, together with conventional film radiography, remain the mainstay of high-resolution, large field-of-view neutron imaging. This chapter presents a summary of the history, methods, and related variations of neutron radiography techniques.

  2. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  3. Shrew trap efficiency

    DEFF Research Database (Denmark)

    Gambalemoke, Mbalitini; Mukinzi, Itoka; Amundala, Drazo

    2008-01-01

    We investigated the efficiency of four trap types (pitfall, Sherman LFA, Victor snap and Museum Special snap traps) to capture shrews. This experiment was conducted in five inter-riverine forest blocks in the region of Kisangani. The total trapping effort was 6,300, 9,240, 5,280 and 5,460 trap-ni...

  4. The neutron lifetime experiment PENeLOPE

    Energy Technology Data Exchange (ETDEWEB)

    Schreyer, Wolfgang [Technische Universitaet Muenchen (Germany); Collaboration: PENeLOPE-Collaboration

    2015-07-01

    The neutron lifetime τ{sub n}=880.3±1.1 s is an important parameter in the Standard Model of particle physics and in Big Bang cosmology. Several systematic corrections of previously published results reduced the PDG world average by several σ in the last years and call for a new experiment with complementary systematics. The experiment PENeLOPE, currently under construction at the Physik-Department of Technische Universitaet Muenchen, aims to determine the neutron lifetime with a precision of 0.1 s. It will trap ultra-cold neutrons in a magneto-gravitational trap using a large superconducting magnet and will measure their lifetime by both neutron counting and online proton detection. This presentation gives an overview over the latest developments of the experiment.

  5. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  6. Equation of State of Protoneutron Star with Trapped Neutrinos

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hua; JIA Huan-Yu

    2006-01-01

    The influence of trapped neutrinos on the proto-neutron star is studied in the framework of relativistic mean-field theory. The results show that trapped neutrinos increase proton fraction and make the equation of state of neutron star matter softer when neglecting hyperonic freedom, while suppress the appearance of hyperons and make the equation of state stiffer when including hyperons in the protoneutron star. The maximum mass, compared with cold neutron star which is in beta equilibrium, decreases by 0.06M☉ for non-strange protoneutron star while increases by 0.21M☉ for protoneutron star with hyperons when the relative number of trapped neutrino is 0.4.

  7. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  8. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    films or films with magnetic properties. The reason is the peculiar property of neutron light since the mass of a neutron is close to the one of a proton, and since it bears a magnetic moment. The optical properties of matter, when interacting with neutrons, are described by a refractive index......Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... to hundreds of nanometers. Thickness resolution for flat surfaces is in the range of few Ǻngstrøm, and as a peculiar benefit, the presence and properties of buried interfaces are accessible. Focus here will be on neutron reflectometry, a technique that is unique in applications involving composite organic...

  9. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    CERN Document Server

    Vaidya, S J; Shaikh, A M; Chandorkar, A N

    2002-01-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co sup 6 sup 0 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radi...

  10. The Dark Side of Neutron Stars

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos

    2013-01-01

    We review severe constraints on asymmetric bosonic dark matter based on observations of old neutron stars. Under certain conditions, dark matter particles in the form of asymmetric bosonic WIMPs can be eectively trapped onto nearby neutron stars, where they can rapidly thermalize and concentrate...... in the core of the star. If some conditions are met, the WIMP population can collapse gravitationally and form a black hole that can eventually destroy the star. Based on the existence of old nearby neutron stars, we can exclude certain classes of dark matter candidates....

  11. The Dark Side of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Chris Kouvaris

    2013-01-01

    Full Text Available We review severe constraints on asymmetric bosonic dark matter based on observations of old neutron stars. Under certain conditions, dark matter particles in the form of asymmetric bosonic WIMPs can be effectively trapped onto nearby neutron stars, where they can rapidly thermalize and concentrate in the core of the star. If some conditions are met, the WIMP population can collapse gravitationally and form a black hole that can eventually destroy the star. Based on the existence of old nearby neutron stars, we can exclude certain classes of dark matter candidates.

  12. Small Mammal Trapping 2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Small mammal traps were placed in the Baring division and in the Edmunds division of Moosehom National Wildlife Refuge. There were a total of 98 traps set for up to...

  13. St. Croix trap study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data set contains detailed information about the catch from 600 trap stations around St. Croix. Data fields include species caught, size data, trap location...

  14. Global Liquidity Trap

    OpenAIRE

    Fujiwara, Ippei; NAKAJIMA Tomoyuki; Sudo, Nao; Teranishi, Yuki

    2011-01-01

    In this paper we consider a two-country New Open Economy Macroeconomics model, and analyze the optimal monetary policy when countries cooperate in the face of a "global liquidity trap" -- i.e., a situation where the two countries are simultaneously caught in liquidity traps. The notable features of the optimal policy in the face of a global liquidity trap are history dependence and international dependence. The optimality of history dependent policy is confirmed as in local liquidity trap. A ...

  15. Ion trap simulation tools.

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Benjamin Roger

    2009-02-01

    Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.

  16. A New Perspective on Trapped Radiation Belts in Planetary Atmospheres

    Science.gov (United States)

    Diaz, A.; Lodhi, M. A. K.; Wilson, T. L.

    2005-01-01

    The charged particle fluxes trapped in the magnetic dipole fields of certain planets in our Solar System are interesting signatures of planetary properties in space physics. They also represent a source of potentially hazardous radiation to spacecraft during planetary and interplanetary exploration. The Earth s trapped radiation belts have been studied for years and the physical mechanisms by which primary radiation from the Sun and Galaxy is captured is well understood. The higher-energy particles collide with molecules in the planetary atmosphere and initiate large cascades of secondary radiation which itself becomes trapped by the magnetic dipole field of the planet. Some of it is even backscattered as albedo neutrons.

  17. Axions and SN 1987A: Axion trapping

    Science.gov (United States)

    Burrows, Adam; Ressell, M. Ted; Turner, Michael S.

    1990-01-01

    If an axion of mass between about 10(exp -3) and 10 eV exists, axion emission would have significantly affected the cooling of the nascent neutron star associated with SN 1987A. For an axion of mass greater than about 10(exp -2) eV axions would, like neutrinos, have a mean-free path that is smaller than the size of a neutron star, and thus would become trapped and radiated from an axion sphere. The trapping regime is treated by using numerical models of the initial cooling of a hot neutron star that incorporate a diffusion approximation for axion-energy transport. The axion opacity due to inverse nucleon-nucleon, axion bremsstrahlung is computed; and then the numerical models are used to calculate the integrated axion luminosity, the temperature of the axion sphere, and the effect of axion emission on the neutrino bursts detected by the Kamiokande II (KII) and Irvine-Michigan-Brookhaven (IMB) water-Cherenkov detectors. The larger the axion mass, the stronger the trapping and the smaller the axion luminosity. The estimate of the axion mass is confirmed above which trapping is so strong that axion emission does not significantly affect the neutrino burst. Based upon the neutrino-burst duration - the most sensitive barometer of axion cooling - it is concluded that for an axion mass greater than about 3 eV axion emission would not have had a significant effect on the neutrino bursts detected by KII and IMB. It is strongly suggested that an axion with mass in the interval 10(exp -3) to 3 eV is excluded by the observation of neutrinos from SN 1987A.

  18. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  19. Rotating proto-neutron stars under strong magnetic fields

    CERN Document Server

    Franzon, B; Schramm, S

    2016-01-01

    In this work, we study the effects of magnetic fields and rotation on the structure and composition of proto-neutron stars (PNSs). A hadronic chiral SU(3) model is applied to cold neutron stars (NS) and proto-neutron stars with trapped neutrinos and at fixed entropy per baryon. We obtain general relativistic solutions for neutron and proto-neutron stars endowed with a poloidal magnetic field by solving Einstein-Maxwell field equations in a self-consistent way. As the neutrino chemical potential decreases in value over time, this alters the chemical equilibrium and the composition inside the star, leading to a change in the structure and in the particle population of these objects. We find that the magnetic field deforms the star and significantly alters the number of trapped neutrinos in the stellar interior, together with strangeness content and temperature in each evolution stage.

  20. Neutron Repulsion

    CERN Document Server

    Manuel, Oliver K

    2011-01-01

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding...

  1. Trap style influences wild pig behavior and trapping success

    Science.gov (United States)

    Williams, B.L.; Holtfreter, R.W.; Ditchkoff, S.S.; Grand, J.B.

    2011-01-01

    Despite the efforts of many natural resource professionals, wild pig (Sus scrofa) populations are expanding in many areas of the world. Although many creative techniques for controlling pig populations are being explored, trapping has been and still is themost commonly usedmethod of population control formany public and private land managers. We conducted an observational study to examine the efficiency of 2 frequently used trap styles: a small, portable box-style trap and a larger, semi-permanent, corral-style trap.We used game cameras to examine patterns of trap entry by wild pigs around each style of trap, and we conducted a trapping session to compare trapping success between trap styles. Adult female and juvenile wild pigs entered both styles of trap more readily than did adult males, and adult males seemed particularly averse to entering box traps. Less than 10% of adult male visits to box traps resulted in entries, easily the least percentage of any class at any style of trap. Adult females entered corral traps approximately 2.2 times more often per visit than box traps and re-entered corral traps >2 times more frequently. Juveniles entered and reentered both box and corral traps at similar rates. Overall (all-class) entry-per-visit rates at corral traps (0.71) were nearly double that of box traps (0.37). Subsequent trapping data supported these preliminary entry data; the capture rate for corral traps was >4 times that of box traps. Our data suggest that corral traps are temporally and economically superior to box traps with respect to efficiency; that is, corral traps effectively trap more pigs per trap night at a lower cost per pig than do box traps. ?? 2011 The Wildlife Society.

  2. Microfabricated ion trap array

    Science.gov (United States)

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  3. Neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Heger, G. [Rheinisch-Westfaelische Technische Hochschule Aachen, Inst. fuer Kristallographie, Aachen (Germany)

    1996-12-31

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs.

  4. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  5. Neutral atom traps.

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  6. Towards trapped antihydrogen

    Science.gov (United States)

    Jørgensen, L. V.; Andresen, G.; Bertsche, W.; Boston, A.; Bowe, P. D.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Fujiwara, M. C.; Funakoshi, R.; Gill, D. R.; Hangst, J. S.; Hayano, R. S.; Hydomako, R.; Jenkins, M. J.; Kurchaninov, L.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Page, R. D.; Povilus, A.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.; Alpha Collaboration

    2008-02-01

    Substantial progress has been made in the last few years in the nascent field of antihydrogen physics. The next big step forward is expected to be the trapping of the formed antihydrogen atoms using a magnetic multipole trap. ALPHA is a new international project that started to take data in 2006 at CERN's Antiproton Decelerator facility. The primary goal of ALPHA is stable trapping of cold antihydrogen atoms to facilitate measurements of its properties. We discuss the status of the ALPHA project and the prospects for antihydrogen trapping.

  7. Towards trapped antihydrogen

    CERN Document Server

    Jorgensen, L V; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page, R D; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Substantial progress has been made in the last few years in the nascent field of antihydrogen physics. The next big step forward is expected to be the trapping of the formed antihydrogen atoms using a magnetic multipole trap. ALPHA is a new international project that started to take data in 2006 at CERN’s Antiproton Decelerator facility. The primary goal of ALPHA is stable trapping of cold antihydrogen atoms to facilitate measurements of its properties. We discuss the status of the ALPHA project and the prospects for antihydrogen trapping.

  8. The Impact of Craters on Neutron Fluxes and Lunar Polar Hydrogen Abundances

    Science.gov (United States)

    Eke, V.; Bower, K.; Diserens, S.; Ryder, M.; Yeomans, P.; Teodoro, L.; Elphic, R.; Feldman, W.; Hermalyn, B.; Lavelle, C.; Lawrence, D.; Maurice, S.

    2015-10-01

    Hydrogen abundances in lunar polar cold traps are investigated using remotely-sensed neutron count rates. The effect of neutron beaming from craters is measured using data from the Lunar Prospector Neutron Spectrometer (LPNS) and understood in the context of a simple model. This enables a reanalysis of data near the lunar poles, accounting for the topographical impact on the neutron count rates, leading to improved estimates of the hydrogen abundance in the various cold traps. For the case of Cabeus, taking into account the topographical effect increases the inferred water- equivalent hydrogen weight percentage from˜1%to˜4%, consistent with that measured using the LCROSS impactor.

  9. Neutron tomography

    Science.gov (United States)

    Crump, James C., III; Richards, Wade J.; Shields, Kevin C.

    1995-07-01

    The McClellan Nuclear Radiation Center's (MNRC) staff in conjunction with a Cooperative Research and Development Agreement (CRDA) with the U.C. Santa Barbara facility has developed a system that can be used for aircraft inspection of jet engine blades. The problem was to develop an inspection system that can detect very low concentrations of hydrogen (i.e., greater than 100 ppm) in metal matricies. Specifically in Titanium alloy jet engine blades. Entrapment and precipitation of hydrogen in metals is an undesirable phenomenon which occurs in many alloys of steel and titanium. In general, metals suffer a loss of mechanical properties after long exposures to hydrogen, especially at high temperatures and pressures, thereby becoming embrittled. Neutron radiography has been used as a nondestructive testing technique for many years. Neutrons, because of their unique interactions with materials, are especially useful in the detection of hydrogen. They have an extremely high interaction cross section for low atomic number nuclei (i.e., hydrogen). Thus hydrogen in a metal matrix can be visualized using neutrons. Traditional radiography is sensitive to the total attenuation integrated over the path of radiation through the material. Increased sensitivity and quantitative cross section resolution can be obtained using three-dimensional volumetric imaging techniques such as tomography. The solution used to solve the problem was to develop a neutron tomography system. The neutron source is the McClellan Nuclear Radiation Center's 1 MW TRIGA reactor. This paper describes the hardware used in the system as well as some of the preliminary results.

  10. Search for trapped antihydrogen

    Science.gov (United States)

    Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Jørgensen, L. V.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Seif El Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wilding, D.; Wurtele, J. S.; Yamazaki, Y.; Alpha Collaboration

    2011-01-01

    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ∼30 ms. After a three-week experimental run in 2009 involving mixing of 10 7 antiprotons with 1.3×10 positrons to produce 6×10 antihydrogen atoms, we have identified six antiproton annihilation events that are consistent with the release of trapped antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts, is incompatible with this observation at a significance of 5.6 sigma. Extensive simulations predict that an alternative source of annihilations, the escape of mirror-trapped antiprotons, is highly unlikely, though this possibility has not yet been ruled out experimentally.

  11. Trapped radiation belts of saturn: first look.

    Science.gov (United States)

    Fillius, W; Ip, W H; McIlwain, C E

    1980-01-25

    Pioneer 11 has made the first exploration of the magnetosphere and trapped radiation belts of Saturn. Saturn's magnetosphere is intermediate in size between Earth's and Jupiter's, with trapped particle intensities comparable to Earth's. The outer region of Saturn's magnetosphere contains lower energy radiation and is variable with time; the inner region contains higher energy particles. The pitch angle distributions show a remarkable variety of field-aligned and locally mirroring configurations. The moons and especially the rings of Saturn are effective absorbers of trapped particles; underneath the rings, the trapped radiation is completely absorbed. We confirm the discovery of a new ring, called the F ring, a new division, the Pioneer division, and a moon, called 1979 S 2. The latter has probably been seen from Earth. There may be evidence for more bodies like 1979 S 2, but at this stage the interpretation of the data is ambiguous. Using particle diffusion rates, we estimate that the cross-sectional area of the F ring is > 7 x 10(13) square centimeters and that the opacity is > 10(-5). Cosmic-ray albedo neutron decay should be looked into as a source of energetic particles in the inner magnetosphere of Saturn.

  12. Trapping radioactive ions

    CERN Document Server

    Kluge, Heinz-Jürgen

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  13. 1985-86 Trapping Proposal

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Annual Trapping Plan for the 1985-1986 trapping season at Clarence Cannon NWR outlines rules and regulations for the trapping of beaver and muskrat on the...

  14. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    to hundreds of nanometers. Thickness resolution for flat surfaces is in the range of few Ǻngstrøm, and as a peculiar benefit, the presence and properties of buried interfaces are accessible. Focus here will be on neutron reflectometry, a technique that is unique in applications involving composite organic...... of desired information. In the course, an introduction into the method and an overview on selected instruments at large scale facilities will be presented. Examples will be given that illustrate the potential of the method, mostly based on organic films. Results from the investigation of layered films...... and the detection on nanoscopic roughnesses will be shown. The potential of neutron reflectometry is not only of academic origin. It may turn out to be useful in the design and development of new functional materials even though it will never develop into a standard method to be applied in the product control...

  15. Nematode-Trapping Fungi.

    Science.gov (United States)

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  16. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  17. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  18. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu

    2017-09-01

    A nano - scale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon - atom interactions . A neutral - atom platf orm based on this microfabrication technology will be pre - aligned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano - waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  19. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  20. Search For Trapped Antihydrogen

    CERN Document Server

    Andresen, Gorm B; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D; Bray, Crystal C; Butler, Eoin; Cesar, Claudio L; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C; Gill, David R; Hangst, Jeffrey S; Hardy, Walter N; Hayano, Ryugo S; Hayden, Michael E; Humphries, Andrew J; Hydomako, Richard; Jonsell, Svante; Jørgensen, Lars V; Kurchaninov, Lenoid; Lambo, Ricardo; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Nasr, Sarah Seif El; Silveira, Daniel M; So, Chukman; Storey, James W; Thompson, Robert I; van der Werf, Dirk P; Wilding, Dean; Wurtele, Jonathan S; Yamazaki, Yasunori

    2011-01-01

    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consist...

  1. Microfabricated cylindrical ion trap

    Science.gov (United States)

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  2. Search for mirror dark matter in a laboratory experiment with ultracold neutrons

    CERN Document Server

    Serebrov, A P; Dovator, N A; Dmitriev, S P; Fomin, A K; Geltenbort, P; Kharitonov, A G; Krasnoschekova, I A; Lasakov, M S; Murashkin, A N; Shmelev, G E; Varlamov, V E; Vassiljev, A V; Zherebtsov, O M; Zimmer, O

    2008-01-01

    Mirror matter is considered as a candidate for dark matter. To investigate this possibility an experimental search for neutron - mirror neutron transitions has been carried out using storage of ultracold neutrons in a trap with different magnetic fields. As a result, a new limit for the neutron - mirror neutron oscillation time tau_osc has been obtained, tau_osc >= 448 s (90% C.L.). As a side result, some restriction of the presence of a mirror magnetic field in the range 0 - 1200 nT has been obtained.

  3. Sensitivity of experiment on search for neutron-antineutron oscillations on the projected ultracold neutron source at the WWR-M reactor

    Science.gov (United States)

    Serebrov, A. P.; Fomin, A. K.; Kamyshkov, Yu. A.

    2016-01-01

    An experiment on search for neutron-antineutron oscillations is proposed based on the storage of ultracold neutrons (UCNs) in a material trap. The main factors influencing sensitivity of the experiment are the trap size and the amount of UCNs trapped. A high-intensity UCN source will be created at the WWR-M reactor of Petersburg Nuclear Physics Institute, which must provide an UCN density two to three orders of magnitude higher than that in the existing sources. The results of simulations of the experiment for detecting neutron-antineutron oscillations with the new source show that the sensitivity can be increased by ~20-80 times compared to existing depending on the model of neutron reflection from walls.

  4. Implementing in vasion neutron capture therapy (INCT) using capillary neutron optical systems (CNOS) assessment

    Science.gov (United States)

    Borisov, G. I.; Kumakhov, M. A.; Kondratenko, R. I.; Spryshkova, R. A.

    2005-07-01

    During LNCT the exposed object represents a practically ideal trap for neutrons In this instance, the number of neutrons that entered the object through the inlet hole is equal to the number of nuclear reactions of their absorption. Using this model and nuclear data about all considered nuclides for a biological tissue, the following INCT characteristics were theoretically calculated with regard to introduction of dosage-forming preparations based on different concentrations of lOB, l57Gd and 235U nuclides: - effective masses irradiated by thermal neutrons, - energies absorbed in the object for one thermal neutron entered, - partial content of basic dosage-forming reactions, - partial content of absorbed dosage of thermal neutrons from basic dosage-forming reactions, - quantity of thermal neutrons needed to create a total absorbed dosage of 5 Gr within the focal spot area of 0,28 cm2, - number of nuclear reactions with dosage-forming nuclides of preparations per one cell based on the cell volume of 7x7x7 m. It follows from the data obtained that dosage-forming nuclide 10B is not only the optimal but also the only one suitable for INCT. Using the obtained outcome, one can assess parameters of capillary neutron optical systems (CNOS) that are pre-requisite to implement INCT at particular experimental channels (EC) of research nuclear reactors.

  5. Trapped radiation belts of Saturn - First look

    Science.gov (United States)

    Fillius, W.; Ip, W. H.; Mcilwain, C. E.

    1980-01-01

    Data on the magnetosphere of Saturn obtained with the trapped radiation detector package on board the Pioneer 11 spacecraft is reported. Radiation belt profiles determined by the trapped radiation detectors on Pioneer 10 and 11 indicate that Saturn's magnetosphere is intermediate in size between those of the earth and Jupiter, with particle intensities similar to those of the earth. The outer region of the Saturn magnetosphere is found to contain particles of lower energy than the outer region, being strongly influenced by the time-varying solar wind. The moons and rings of Saturn are observed to be effective absorbers of trapped particles, confirming the discoveries of the F ring, the Pioneer ring division and the moon 1979 S 2. Particle diffusion rates are used to estimate a cross-sectional area of greater than 7 x 10 to the 13th sq cm and an opacity greater than 0.00001 for the F ring. It is suggested that cosmic-ray albedo neutron decay be studied as a possible source of energetic particles in the inner magnetosphere of Saturn.

  6. Impurity Trapping of Positive Muons in Metals

    CERN Multimedia

    2002-01-01

    Polarized positive muons are implanted into metal samples. In an applied magnetic field the muon spin precession is studied. The line width in the precession frequency spectrum gives information about the static and dynamic properties of muons in a metal lattice. At temperatures where the muon is immobile within its lifetime the line width gives information about the site of location. At temperatures where the muon is mobile, the line width gives information on the diffusion process. It is known from experiments on quasi-elastic neutron scattering on hydrogen in niobium that interstitial impurities like nitrogen tend to act as traps for hydrogen. These trapping effects have now been studied systematically for muons in both f.c.c. metals (aluminium and copper) and b.c.c. metals (mainly niobium). Direct information on the trapping rates and the nature of the diffusion processes can be obtained since the muonic lifetime covers a time range where many of these processes occur.\\\\ \\\\ Mathematical models are set up ...

  7. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  8. Neutron Capture Nucleosynthesis

    CERN Document Server

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these results most of the nuclei can formed at medium neutron capture density environment e.g. in some kind of AGB stars. Besides these observations our model is capable to use educational purpose.

  9. Nuclear reactor neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  10. Trapping molecules on chips

    CERN Document Server

    Santambrogio, Gabriele

    2015-01-01

    In the last years, it was demonstrated that neutral molecules can be loaded on a microchip directly from a supersonic beam. The molecules are confined in microscopic traps that can be moved smoothly over the surface of the chip. Once the molecules are trapped, they can be decelerated to a standstill, for instance, or pumped into selected quantum states by laser light or microwaves. Molecules are detected on the chip by time-resolved spatial imaging, which allows for the study of the distribution in the phase space of the molecular ensemble.

  11. The Reusable Astronomy Portal (TRAP)

    Science.gov (United States)

    Donaldson, T.; Rogers, A.; Wallace, G.

    2012-09-01

    The Reusable Astronomy Portal (TRAP) aims to provide a common platform for rapidly deploying Astronomy Archives to the web. TRAP is currently under development for both the VAO Data Discovery Portal and the MAST Multi-Mission Portal (Figure 1). TRAP consists of 2 major software packages: the TRAP Client and the TRAP Server. The TRAP framework allows developers to deploy the Server, connect to data resources, then focus on building custom tools for the Client. TRAP is built upon proven industry technologies including the Ext/JS JavaScript Component Library, Mono.NET Web Services, and JSON message based APIs. The multi-layered architecture of TRAP decouples each layer: Client, Service and Data Access, enabling each to evolve independently over time. Although currently deployed to provide astronomy science data access, the TRAP architecture is flexible enough to thrive in any distributed data environment.

  12. Weapons Neutron Research Facility (WNR)

    Data.gov (United States)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  13. Non-destructive ion detection at TRIGA-TRAP

    Energy Technology Data Exchange (ETDEWEB)

    Eibach, Martin; Smorra, Christian [Institut fuer Kernchemie, Universitaet Mainz (Germany); Physikalisches Institut, Universitaet Heidelberg (Germany); Beyer, Thomas; Ketter, Jochen; Blaum, Klaus [Physikalisches Institut, Universitaet Heidelberg (Germany); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Block, Michael; Herfurth, Frank [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Eberhardt, Klaus [Institut fuer Kernchemie, Universitaet Mainz (Germany); Ketelaer, Jens; Knuth, Konstantin [Institut fuer Physik, Universitaet Mainz (Germany); Nagy, Szilard [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2010-07-01

    Tests of nuclear mass models, studies of the nuclear structure of heavy elements and calculations of the astrophysical r-process require high precision atomic mass data. For this purpose the double Penning trap mass spectrometer TRIGA-TRAP has recently been set up in order to explore the less-known neutron-rich area of the nuclide chart. Certain nuclides of interest are produced by thermal neutron-induced fission of an actinoide target with low rates, in the order of a few nuclides per second or less. Thus, the implementation of very efficient means of detection are necessary, such as the non-destructive Fourier transform ion cyclotron resonance (FT-ICR) technique where ultimately a single trapped ion, with a half-life of longer than one second is sufficient for the entire mass measurement. The present status of the implementation of the FT-ICR detection at TRIGA-TRAP is presented. The potential benefit for other experiments is discussed.

  14. Redesigning octopus traps

    Directory of Open Access Journals (Sweden)

    Eduarda Gomes

    2014-06-01

    In order to minimise the identified problems in the actual traps, the present work proposes a new design with the aim of reducing the volume and weight during transport, and also during onshore storage. Alternative materials to avoid corrosion and formation of encrustations were also proposed.

  15. Neutrons on a surface of liquid helium

    Science.gov (United States)

    Grigoriev, P. D.; Zimmer, O.; Grigoriev, A. D.; Ziman, T.

    2016-08-01

    We investigate the possibility of ultracold neutron (UCN) storage in quantum states defined by the combined potentials of the Earth's gravity and the neutron optical repulsion by a horizontal surface of liquid helium. We analyze the stability of the lowest quantum state, which is most susceptible to perturbations due to surface excitations, against scattering by helium atoms in the vapor and by excitations of the liquid, comprised of ripplons, phonons, and surfons. This is an unusual scattering problem since the kinetic energy of the neutron parallel to the surface may be much greater than the binding energies perpendicular. The total scattering time of these UCNs at 0.7 K is found to exceed 1 h, and rapidly increases with decreasing temperature. Such low scattering rates should enable high-precision measurements of the sequence of discrete energy levels, thus providing improved tests of short-range gravity. The system might also be useful for neutron β -decay experiments. We also sketch new experimental propositions for level population and trapping of ultracold neutrons above a flat horizontal mirror.

  16. Superheated drop neutron spectrometer

    CERN Document Server

    Das, M; Roy, B; Roy, S C; Das, Mala

    2000-01-01

    Superheated drops are known to detect neutrons through the nucleation caused by the recoil nuclei produced by the interactions of neutrons with the atoms constituting the superheated liquid molecule. A novel method of finding the neutron energy from the temperature dependence response of SDD has been developed. From the equivalence between the dependence of threshold energy for nucleation on temperature of SDD and the dependence of dE/dx of the recoil ions with the energy of the neutron, a new method of finding the neutron energy spectrum of a polychromatic as well as monochromatic neutron source has been developed.

  17. Neutron streak camera

    Science.gov (United States)

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  18. Ion trap system for radioactive ions at JYFL

    Energy Technology Data Exchange (ETDEWEB)

    Kolhinen, V.S.; Jokinen, A.; Rinta-Antila, S.; Szerypo, J. [University of Jyvaeskylae, Department of Physics (Finland); Aeystoe, J. [CERN, Geneva (Switzerland)

    2001-07-01

    The goal of the ion trap project in Jyvaeskylae is to improve the quality of radioactive beams at IGISOL (Ion Guide Isotope Separator On-Line), in terms of transverse emittance, energy spread and purity. This improvement is achieved with an aid of an RFQ cooler/buncher and a mass-selective cylindrical Penning trap (mass resolving power up to 10{sup 5}). Their final purpose is to produce cooled isobarically pure beams of exotic radioactivities mainly of exotic neutron-rich isotopes from fission (including refractory elements). In the Penning trap ions are confined in three dimensions in a superposition of static quadrupole electric and homogeneous magnetic fields. The magnetic field confines the ions in two dimensions in a plane perpendicular to the field direction. A confinement in the third, magnetic field direction (parallel to the trap axis) is done by a quadrupole electric field. The Penning trap system in Jyvaeskylae (JYFLTRAP) will contain two cylindrical Penning traps placed inside the same superconducting magnet (B=7 T). The first, purification trap, will accept cooled (continuous or bunched) beams from the RFQ cooler/buncher and perform the isobaric purification. The latter is - done using a combination of a buffer gas cooling and an azimuthal quadrupole RF-field providing mass- dependent centering of ions. This, in turn, allows mass-selective ejection of ions in short pulses. Clean monoisotopic bunched beams will be delivered for the nuclear spectroscopy studies, collinear laser spectroscopy experiments and precise nuclear mass measurements (10{sup -7} precision). The latter will be performed in the second, precision Penning trap (author)

  19. Characterizing optical dipole trap via fluorescence of trapped cesium atoms

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; GENG Tao; YAN Shubin; LI Gang; ZHANG Jing; WANG Junmin; PENG Kunchi; ZHANG Tiancai

    2006-01-01

    Optical dipole trap (ODT) is becoming an important tool of manipulating neutral atoms. In this paper ODT is realized with a far-off resonant laser beam strongly focused in the magneto-optical trap (MOT) of cesium atoms. The light shift is measured by simply monitoring the fluorescence of the atoms in the magneto-optical trap and the optical dipole trap simultaneously. The advantages of our experimental scheme are discussed, and the effect of the beam waist and power on the potential of dipole trap as well as heating rate is analyzed.

  20. Traps for neutral radioactive atoms

    CERN Document Server

    Sprouse, G D; Grossman, J S; Orozco, L A; Pearson, M R

    2002-01-01

    We describe several methods for efficiently injecting a small number of radioactive atoms into a laser trap. The characteristics of laser traps that make them desirable for physics experiments are discussed and several different experimental directions are described. We describe recent experiments with the alkali element Fr and point to future directions of the neutral atom trapping program.

  1. Changes in electrical properties of MOS transistor induced by single 14 MeV neutron

    Energy Technology Data Exchange (ETDEWEB)

    Haider, F. A., E-mail: haider@salam.uitm.edu.my; Chee, F. P., E-mail: fpchee06@ums.edu.my; Abu Hassan, H. [School of Physics and Materials, Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam, Selangor (Malaysia); Saafie, S.; Afishah, A. [Physics with Electronic Department, Faculty of Science and Natural Resources, University of Malaysia Sabah, Kota Kinabalu, Sabah (Malaysia)

    2016-01-22

    Neutron radiation causes significant changes in the characteristics of MOS devices by the creation of oxide-trapped charge and interface traps. The degradation of the current gain of the GF4936 dual n-channel depletion mode MOS transistor, caused by neutron displacement defects, was measured using in-situ method during neutron irradiation. The average degradation of the gain current is 35 mA at maximum fluence of 2.0 × 10{sup 10} n/cm2 while with an average of 25 mA at minimum fluence of 5.0 × 10{sup 8} n/cm{sup 2}. The change in channel current gain increased proportionally with neutron fluence, meanwhile drain saturation current decreased proportionally with the neutron fluence.

  2. Detection of Trapped Antihydrogen

    CERN Document Server

    Hydomako, Richard Allan

    The ALPHA experiment is an international effort to produce, trap, and perform precision spectroscopic measurements on antihydrogen (the bound state of a positron and an antiproton). Based at the Antiproton Decelerator (AD) facility at CERN, the ALPHA experiment has recently magnetically confined antihydrogen atoms for the first time. A crucial element in the observation of trapped antihydrogen is ALPHA’s silicon vertexing detector. This detector contains sixty silicon modules arranged in three concentric layers, and is able to determine the three-dimensional location of the annihilation of an antihydrogen atom by reconstructing the trajectories of the produced annihilation products. This dissertation focuses mainly on the methods used to reconstruct the annihilation location. Specifically, the software algorithms used to identify and extrapolate charged particle tracks are presented along with the routines used to estimate the annihilation location from the convergence of the identified tracks. It is shown...

  3. Trapping ions with lasers

    CERN Document Server

    Cormick, Cecilia; Morigi, Giovanna

    2010-01-01

    This work theoretically addresses the trapping an ionized atom with a single valence electron by means of lasers, analyzing qualitatively and quantitatively the consequences of the net charge of the particle. In our model, the coupling between the ion and the electromagnetic field includes the charge monopole and the internal dipole, within a multipolar expansion of the interaction Hamiltonian. Specifically, we perform a Power-Zienau-Woolley transformation, taking into account the motion of the center of mass. The net charge produces a correction in the atomic dipole which is of order $m_e/M$ with $m_e$ the electron mass and $M$ the total mass of the ion. With respect to neutral atoms, there is also an extra coupling to the laser field which can be approximated by that of the monopole located at the position of the center of mass. These additional effects, however, are shown to be very small compared to the dominant dipolar trapping term.

  4. Coherence in Microchip Traps

    CERN Document Server

    Treutlein, P; Steinmetz, T; Hänsch, T W; Reichel, J; Treutlein, Philipp; Hommelhoff, Peter; Steinmetz, Tilo; H\\"ansch, Theodor W.; Reichel, Jakob

    2003-01-01

    We report the coherent manipulation of internal states of neutral atoms in a magnetic microchip trap. Coherence lifetimes exceeding 1 s are observed with atoms at distances of $4-130 \\mu$m from the microchip surface. The coherence lifetime in the microtrap is independent of atom-surface distance and agrees well with the results of similar measurements in macroscopic magnetic traps. Due to the absence of surface-induced decoherence, a miniaturized atomic clock with a relative stability in the $10^{-13}$ range can be realized. For applications in quantum information processing, we propose to use microwave near-fields in the proximity of chip wires to create potentials that depend on the internal state of the atoms.

  5. Charge-trap correction and radiation damage in orthogonal-strip planar germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, E.L. [PHDS Corporation, 3011 Amherst Road, Knoxville, TN 37921 (United States); Jackson, E.G.; Lister, C.J. [Physics Department, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Pehl, R.H. [PHDS Corporation, 3011 Amherst Road, Knoxville, TN 37921 (United States)

    2014-10-21

    A charge-carrier trap correction technique was developed for orthogonal strip planar germanium gamma-ray detectors. The trap corrector significantly improves the gamma-ray energy resolution of detectors with charge-carrier trapping from crystal-growth defects and radiation damage. Two orthogonal-strip planar germanium detectors were radiation damaged with 2-MeV neutron fluences of ∼8×10{sup 9} n/cm{sup 2}. The radiation-damaged detectors were studied in the 60–80 K temperature range.

  6. Ion Trap Quantum Computing

    Science.gov (United States)

    2011-12-01

    an inspiring speech at the MIT Physics of Computation 1st Conference in 1981, Feynman proposed the development of a computer that would obey the...on ion trap based 36 quantum computing for physics and computer science students would include lecture notes, slides, lesson plans, a syllabus...reading lists, videos, demonstrations, and laboratories. 37 LIST OF REFERENCES [1] R. P. Feynman , “Simulating physics with computers,” Int. J

  7. Neutron anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, G.E. [Univ. of Sheffield (United Kingdom)

    1994-12-31

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone.

  8. Water-Trapped Worlds

    CERN Document Server

    Menou, Kristen

    2013-01-01

    Although tidally-locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO2 as dayside ocean basins dry-up. Water-tr...

  9. Imaging with Scattered Neutrons

    OpenAIRE

    Ballhausen, H.; Abele, H.; Gaehler, R.; Trapp, M.; Van Overberghe, A.

    2006-01-01

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-re...

  10. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  11. Tritium release from neutron irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik

    1998-01-01

    One of the most important open issues related to beryllium for fusion applications refers to the kinetics of the tritium release as a function of neutron fluence and temperature. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating the beryllium response under neutron irradiation. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from the above mentioned irradiation experiments, trying to elucidate the tritium release controlling processes. In agreement with previous studies it has been found that release starts at about 500-550degC and achieves a maximum at about 700-750degC. The observed release at about 500-550degC is probably due to tritium escaping from chemical traps, while the maximum release at about 700-750degC is due to tritium escaping from physical traps. The consequences of a direct contact between beryllium and ceramics during irradiation, causing tritium implanting in a surface layer of beryllium up to a depth of about 40 mm and leading to an additional inventory which is usually several times larger than the neutron-produced one, are also presented and the effects on the tritium release are discussed. (author)

  12. International Neutron Radiography Newsletter

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    At the First World Conference on Neutron Radiography i t was decided to continue the "Neutron Radiography Newsletter", published previously by J.P. Barton, as the "International Neutron Radiography Newsletter" (INRNL), with J.C. Doraanus as editor. The British Journal of Non-Destructive Testing...

  13. Advanced neutron absorber materials

    Science.gov (United States)

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  14. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  15. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  16. Grazing Incidence Neutron Optics

    Science.gov (United States)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  17. Neutron scatter camera

    Science.gov (United States)

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  18. Atomic Coherent Trapping and Properties of Trapped Atom

    Institute of Scientific and Technical Information of China (English)

    YANG Guo-Jian; XIA Li-Xin; XIE Min

    2006-01-01

    Based on the theory of velocity-selective coherent population trapping, we investigate an atom-laser system where a pair of counterpropagating laser fields interact with a three-level atom. The influence of the parametric condition on the properties of the system such as velocity at which the atom is selected to be trapped, time needed for finishing the coherent trapping process, and possible electromagnetically induced transparency of an altrocold atomic medium,etc., is studied.

  19. Cryogenic resonator design for trapped ion experiments in Paul traps

    CERN Document Server

    Brandl, Matthias F; Monz, Thomas; Blatt, Rainer

    2016-01-01

    Trapping ions in Paul traps requires high radio-frequency voltages, which are generated using resonators. When operating traps in a cryogenic environment, an in-vacuum resonator showing low loss is crucial to limit the thermal load to the cryostat. In this study, we present a guide for the design and production of compact, shielded cryogenic resonators. We produced and characterized three different types of resonators and furthermore demonstrate efficient impedance matching of these resonators at cryogenic temperatures.

  20. Nonresonance adiabatic photon trap

    CERN Document Server

    Popov, S S; Burdakov, A V; Ushkova, M Yu

    2016-01-01

    Concept of high efficiency photon storage based on adiabatic confinement between concave mirrors is presented and experimentally investigated. The approach is insensitive to typical for Fabri-Perot cells requirements on quality of accumulated radiation, tolerance of resonator elements and their stability. Experiments have been carried out with the trap, which consists from opposed concave cylindrical mirrors and conjugated with them spherical mirrors. In result, high efficiency for accumulation of radiation with large angular spread and spectrum width has been confirmed. As radiation source a commercial fiber laser has been used.

  1. Atom trap trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O' Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  2. Advances in neutron tomography

    Indian Academy of Sciences (India)

    W Treimer

    2008-11-01

    In the last decade neutron radiography (NR) and tomography (NCT) have experienced a number of improvements, due to the well-known properties of neutrons interacting with matter, i.e. the low attenuation by many materials, the strong attenuation by hydrogenous constituent in samples, the wavelength-dependent attenuation in the neighbourhood of Bragg edges and due to better 2D neutron detectors. So NR and NCT were improved by sophisticated techniques that are based on the attenuation of neutrons or on phase changes of the associated neutron waves if they pass through structured materials. Up to now the interaction of the neutron spin with magnetic fields in samples has not been applied to imaging techniques despite the fact that it was proposed many years ago. About ten years ago neutron depolarization as imaging signal for neutron radiography or tomography was demonstrated and in principle it works. Now one can present much improved test experiments using polarized neutrons for radiographic imaging. For this purpose the CONRAD instrument of the HMI was equipped with polarizing and analysing benders very similar to conventional scattering experiments using polarized neutrons. Magnetic fields in different coils and in samples (superconductors) at low temperatures could be visualized. In this lecture a summary about standard signals (attenuation) and the more `sophisticated' imaging signals as refraction, small angle scattering and polarized neutrons will be given.

  3. Neutronic Reactor Shield

    Science.gov (United States)

    Fermi, Enrico; Zinn, Walter H.

    The argument of the present Patent is a radiation shield suitable for protection of personnel from both gamma rays and neutrons. Such a shield from dangerous radiations is achieved to the best by the combined action of a neutron slowing material (a moderator) and a neutron absorbing material. Hydrogen is particularly effective for this shield since it is a good absorber of slow neutrons and a good moderator of fast neutrons. The neutrons slowed down by hydrogen may, then, be absorbed by other materials such as boron, cadmium, gadolinium, samarium or steel. Steel is particularly convenient for the purpose, given its effectiveness in absorbing also the gamma rays from the reactor (both primary gamma rays and secondary ones produced by the moderation of neutrons). In particular, in the present Patent a shield is described, made of alternate layers of steel and Masonite (an hydrolized ligno-cellulose material). The object of the present Patent is not discussed in any other published paper.

  4. Nanofriction in cold ion traps.

    Science.gov (United States)

    Benassi, A; Vanossi, A; Tosatti, E

    2011-01-01

    Sliding friction between crystal lattices and the physics of cold ion traps are so far non-overlapping fields. Two sliding lattices may either stick and show static friction or slip with dynamic friction; cold ions are known to form static chains, helices or clusters, depending on the trapping conditions. Here we show, based on simulations, that much could be learnt about friction by sliding, through, for example, an electric field, the trapped ion chains over a corrugated potential. Unlike infinite chains, in which the theoretically predicted Aubry transition to free sliding may take place, trapped chains are always pinned. Yet, a properly defined static friction still vanishes Aubry-like at a symmetric-asymmetric structural transition, found for decreasing corrugation in both straight and zig-zag trapped chains. Dynamic friction is also accessible in ringdown oscillations of the ion trap. Long theorized static and dynamic one-dimensional friction phenomena could thus become accessible in future cold ion tribology.

  5. Electron traps in semiconducting polymers: exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H.T.; Mandoc, M.M.; Blom, P.W.M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  6. Electron traps in semiconducting polymers : Exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H. T.; Mandoc, M. M.; Blom, P. W. M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  7. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  8. Mass Measurements with the Canadian Penning Trap at CARIBU

    Science.gov (United States)

    Orford, Rodney

    2017-01-01

    Roughly half of the elements heavier than iron are thought to be produced through the astrophysical r process of nucleosynthesis. Despite its large influence in explaining the observed abundance of heavy elements, much of the r process is still poorly understood. A more thorough library of nuclear data of neutron-rich nuclei is needed to improve the accuracy and progression of r-process calculations. In particular, accurate mass measurements are in demand due to the strong coupling between mass and other nuclear properties such as β-decay and neutron-capture rates. For nearly three decades, direct mass measurements conducted by Penning trap mass spectrometers have proven to be an accurate method of determining masses to a precision suitable for r-process calculations (Δm / m Science User Facility.

  9. The Honey Trap

    DEFF Research Database (Denmark)

    Wagner, Michael

    Michael F. Wagner: The Honey Trap –The democratization of leisure through automobilism The automobile has achieved a central position in modern everyday life as an essential artefact to mobility. This raises the question how automobiles have been mediated for mass consumption? The central thesis...... in the article is that the culture of Danish automobilism was constructed around and appropriated through leisure activities conducted primarily by the automobile consumer’s organisation Touring Club de Danemark (FDM). The general purpose for the consumer organisation has been to create a cultural identity...... and a material reality of democratic participation linking ‘Car and Leisure’, a term that has been a central motto for the organization during many decades. The keyword in this activity was ‘Free’ celebrating the manner in which the privately owned automobile secured a maximum of freedom to the owner. The paper...

  10. Neutron sources and applications

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  11. Prototype Stilbene Neutron Collar

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  12. The DIORAMA Neutron Emitter

    Energy Technology Data Exchange (ETDEWEB)

    Terry, James Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    Emission of neutrons in a given event is modeled by the DioramaEmitterNeutron object, a subclass of the abstract DioramaEmitterModule object. The GenerateEmission method of this object is the entry point for generation of a neutron population for a given event. Shown in table 1, this method requires a number of parameters to be defined in the event definition.

  13. Quantum computing with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.J.

    1998-01-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  14. The ALPHA antihydrogen trapping apparatus

    Science.gov (United States)

    Amole, C.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Butler, E.; Capra, A.; Carpenter, P. T.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Escallier, J.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hurt, J. L.; Hydomako, R.; Isaac, C. A.; Jenkins, M. J.; Jonsell, S.; Jørgensen, L. V.; Kerrigan, S. J.; Kurchaninov, L.; Madsen, N.; Marone, A.; McKenna, J. T. K.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Parker, B.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Seddon, D.; Seif El Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; Thornhill, J.; Wells, D.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2014-01-01

    The ALPHA collaboration, based at CERN, has recently succeeded in confining cold antihydrogen atoms in a magnetic minimum neutral atom trap and has performed the first study of a resonant transition of the anti-atoms. The ALPHA apparatus will be described herein, with emphasis on the structural aspects, diagnostic methods and techniques that have enabled antihydrogen trapping and experimentation to be achieved.

  15. Cryogenic silicon surface ion trap

    CERN Document Server

    Niedermayr, Michael; Kumph, Muir; Partel, Stefan; Edlinger, Johannes; Brownnutt, Michael; Blatt, Rainer

    2014-01-01

    Trapped ions are pre-eminent candidates for building quantum information processors and quantum simulators. They have been used to demonstrate quantum gates and algorithms, quantum error correction, and basic quantum simulations. However, to realise the full potential of such systems and make scalable trapped-ion quantum computing a reality, there exist a number of practical problems which must be solved. These include tackling the observed high ion-heating rates and creating scalable trap structures which can be simply and reliably produced. Here, we report on cryogenically operated silicon ion traps which can be rapidly and easily fabricated using standard semiconductor technologies. Single $^{40}$Ca$^+$ ions have been trapped and used to characterize the trap operation. Long ion lifetimes were observed with the traps exhibiting heating rates as low as $\\dot{\\bar{n}}=$ 0.33 phonons/s at an ion-electrode distance of 230 $\\mu$m. These results open many new avenues to arrays of micro-fabricated ion traps.

  16. Accretion discs trapped near corotation

    NARCIS (Netherlands)

    D'Angelo, C.R.; Spruit, H.C.

    2012-01-01

    We show that discs accreting on to the magnetosphere of a rotating star can end up in a trapped state, in which the inner edge of the disc stays near the corotation radius, even at low and varying accretion rates. The accretion in these trapped states can be steady or cyclic; we explore these states

  17. The ALPHA antihydrogen trapping apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C. [Department of Physics and Astronomy, York University, Toronto ON Canada, M3J 1P3 (Canada); Andresen, G.B. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Ashkezari, M.D. [Department of Physics, Simon Fraser University, Burnaby, BC Canada, V5A 1S6 (Canada); Baquero-Ruiz, M. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Bertsche, W. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); The Cockcroft Institute, Warrington WA4 4AD (United Kingdom); Bowe, P.D. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Butler, E. [Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Capra, A. [Department of Physics and Astronomy, York University, Toronto ON Canada, M3J 1P3 (Canada); Carpenter, P.T. [Department of Physics, Auburn University, Auburn, AL 36849-5311 (United States); Cesar, C.L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Chapman, S. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Charlton, M.; Deller, A.; Eriksson, S. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Escallier, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Fajans, J. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Friesen, T. [Department of Physics and Astronomy, University of Calgary, Calgary AB, Canada, T2N 1N4 (Canada); Fujiwara, M.C.; Gill, D.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver BC, Canada V6T 2A3 (Canada); Gutierrez, A. [Department of Physics and Astronomy, University of British Columbia, Vancouver BC, Canada V6T 1Z4 (Canada); and others

    2014-01-21

    The ALPHA collaboration, based at CERN, has recently succeeded in confining cold antihydrogen atoms in a magnetic minimum neutral atom trap and has performed the first study of a resonant transition of the anti-atoms. The ALPHA apparatus will be described herein, with emphasis on the structural aspects, diagnostic methods and techniques that have enabled antihydrogen trapping and experimentation to be achieved.

  18. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2014-07-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  19. Neutron-emission measurements at a white neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C [Los Alamos National Laboratory

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  20. Laser trapping of radium for an electric dipole moment measurement

    Science.gov (United States)

    Mueller, P.; Sulai, I. A.; Trimble, W.; Ahmad, I.; Bailey, K.; Bishof, M.; Greene, J. P.; Guest, J. R.; Holt, R. J.; Lu, Z.-T.; O'Connor, T. P.; Gould, H. A.

    2008-05-01

    The best limits on time-reversal violation in the nuclear sector are currently set through electric dipole moment (EDM) searches on the neutron and Hg-199. Recent theoretical calculations predict that atomic EDM measurements of certain octupole-deformed nuclei, e.g., in the radium isotopic chain, are two to three orders of magnitude more sensitive to the underlying time-reversal violation than the one in Hg-199. Ra-225, with nuclear spin 1/2 and a radioactive half-life of 15 days, is a particularly attractive candidate for a tabletop EDM measurement based on a laser-cooling and trapping approach. Towards this end, we have successfully cooled and trapped atoms of Ra-225 and Ra-226 in a magneto-optical trap -- a first for this rare element -- and have identified black-body radiation as a beneficial source of optical repumping. We will present our laser cooling scheme and ongoing measurements of atomic level energies, lifetimes, isotope shifts and hyperfine structure in radium and discuss our progress towards an EDM measurement of Ra-225 based on an optical dipole trap. This work is supported by DOE, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357.

  1. Plastic neutron detectors.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Tiffany M.S; King, Michael J.; Doty, F. Patrick

    2008-12-01

    This work demonstrated the feasibility and limitations of semiconducting {pi}-conjugated organic polymers for fast neutron detection via n-p elastic scattering. Charge collection in conjugated polymers in the family of substituted poly(p-phenylene vinylene)s (PPV) was evaluated using band-edge laser and proton beam ionization. These semiconducting materials can have high H/C ratio, wide bandgap, high resistivity and high dielectric strength, allowing high field operation with low leakage current and capacitance noise. The materials can also be solution cast, allowing possible low-cost radiation detector fabrication and scale-up. However, improvements in charge collection efficiency are necessary in order to achieve single particle detection with a reasonable sensitivity. The work examined processing variables, additives and environmental effects. Proton beam exposure was used to verify particle sensitivity and radiation hardness to a total exposure of approximately 1 MRAD. Conductivity exhibited sensitivity to temperature and humidity. The effects of molecular ordering were investigated in stretched films, and FTIR was used to quantify the order in films using the Hermans orientation function. The photoconductive response approximately doubled for stretch-aligned films with the stretch direction parallel to the electric field direction, when compared to as-cast films. The response was decreased when the stretch direction was orthogonal to the electric field. Stretch-aligned films also exhibited a significant sensitivity to the polarization of the laser excitation, whereas drop-cast films showed none, indicating improved mobility along the backbone, but poor {pi}-overlap in the orthogonal direction. Drop-cast composites of PPV with substituted fullerenes showed approximately a two order of magnitude increase in photoresponse, nearly independent of nanoparticle concentration. Interestingly, stretch-aligned composite films showed a substantial decrease in

  2. High uniformity magnetic coil for search of neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Perez Galvan, A., E-mail: apg@caltech.edu [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Plaster, B. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY, 40506 (United States); Boissevain, J.; Carr, R.; Filippone, B.W.; Mendenhall, M.P.; Schmid, R. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Alarcon, R.; Balascuta, S. [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2011-12-21

    We present in this article a prototype magnetic coil that has been developed for a new search for the electric dipole moment of the neutron at the Spallation Neutron Source at Oak Ridge National Laboratory. The gradients of the magnetic field generated by the coil have been optimized to reduce known systematic effects and to yield long polarization lifetimes of the trapped particles sampling the highly uniform magnetic field. Measurements of the field uniformity of this prototype magnetic coil are also presented.

  3. The trapped human experiment.

    Science.gov (United States)

    Huo, R; Agapiou, A; Bocos-Bintintan, V; Brown, L J; Burns, C; Creaser, C S; Devenport, N A; Gao-Lau, B; Guallar-Hoyas, C; Hildebrand, L; Malkar, A; Martin, H J; Moll, V H; Patel, P; Ratiu, A; Reynolds, J C; Sielemann, S; Slodzynski, R; Statheropoulos, M; Turner, M A; Vautz, W; Wright, V E; Thomas, C L P

    2011-12-01

    This experiment observed the evolution of metabolite plumes from a human trapped in a simulation of a collapsed building. Ten participants took it in turns over five days to lie in a simulation of a collapsed building and eight of them completed the 6 h protocol while their breath, sweat and skin metabolites were passed through a simulation of a collapsed glass-clad reinforced-concrete building. Safety, welfare and environmental parameters were monitored continuously, and active adsorbent sampling for thermal desorption GC-MS, on-line and embedded CO, CO(2) and O(2) monitoring, aspirating ion mobility spectrometry with integrated semiconductor gas sensors, direct injection GC-ion mobility spectrometry, active sampling thermal desorption GC-differential mobility spectrometry and a prototype remote early detection system for survivor location were used to monitor the evolution of the metabolite plumes that were generated. Oxygen levels within the void simulator were allowed to fall no lower than 19.1% (v). Concurrent levels of carbon dioxide built up to an average level of 1.6% (v) in the breathing zone of the participants. Temperature, humidity, carbon dioxide levels and the physiological measurements were consistent with a reproducible methodology that enabled the metabolite plumes to be sampled and characterized from the different parts of the experiment. Welfare and safety data were satisfactory with pulse rates, blood pressures and oxygenation, all within levels consistent with healthy adults. Up to 12 in-test welfare assessments per participant and a six-week follow-up Stanford Acute Stress Response Questionnaire indicated that the researchers and participants did not experience any adverse effects from their involvement in the study. Preliminary observations confirmed that CO(2), NH(3) and acetone were effective markers for trapped humans, although interactions with water absorbed in building debris needed further study. An unexpected observation from the NH(3

  4. 1986-87 Annual Trapping Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Annual Trapping Plan for the 1986-87 trapping season at Clarence Cannon NWR outlines rules and regulations for the trapping of beaver, muskrat, raccoon,...

  5. First Attempts at Antihydrogen Trapping in ALPHA

    Science.gov (United States)

    Andresen, G. B.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Fujiwara, M. C.; Funakoshi, R.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jenkins, M. J.; Jørgensen, L. V.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Page, R. D.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; El Nasr, S. Seif; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2008-08-01

    The ALPHA apparatus is designed to produce and trap antihydrogen atoms. The device comprises a multifunction Penning trap and a superconducting, neutral atom trap having a minimum-B configuration. The atom trap features an octupole magnet for transverse confinement and solenoidal mirror coils for longitudinal confinement. The magnetic trap employs a fast shutdown system to maximize the probability of detecting the annihilation of released antihydrogen. In this article we describe the first attempts to observe antihydrogen trapping.

  6. Feedback traps for virtual potentials

    CERN Document Server

    Gavrilov, Momčilo

    2016-01-01

    Feedback traps are tools for trapping and manipulating single charged objects, such as molecules in solution. An alternative to optical tweezers and other single-molecule techniques, they use feedback to counteract the Brownian motion of a molecule of interest. The trap first acquires information about a molecule's position and then applies an electric feedback force to move the molecule. Since electric forces are stronger than optical forces at small scales, feedback traps are the best way to trap single molecules without "touching" them. Feedback traps can do more than trap molecules: They can also subject a target object to forces that are calculated to be the gradient of a desired potential function U(x). If the feedback loop is fast enough, it creates a virtual potential whose dynamics will be very close to those of a particle in an actual potential U(x). But because the dynamics are entirely a result of the feedback loop--absent the feedback, there is only an object diffusing in a fluid--we are free to ...

  7. In-Situ Spectrometry of Neutrons

    Science.gov (United States)

    Maurer, Richard H.

    1999-01-01

    High energy charged particles of extra-galactic, galactic and solar origin collide with spacecraft structures in Earth orbit outside the atmosphere and in interplanetary travel beyond the Earth's magnetosphere. These primaries create a number of secondary particles inside the structures that can produce a significant ionizing radiation environment. This radiation is a threat to long term inhabitants or travelers for space missions and produces an increased risk of cancer and DNA damage. The primary high energy cosmic rays and trapped protons collide with common spacecraft materials such as aluminum and silicon and create secondary particles inside structures that are mostly protons and neutrons. Charged protons are readily detected and instruments are already in existence for this task. Neutrons are electrically neutral and therefore much more difficult to measure and detect. These neutrons are reported to contribute 30-60% of the dose inside space structures and cannot be ignored. Currently there is no compact, portable and real time neutron detector instrumentation available for use inside spacecraft or on planetary surfaces where astronauts will live and work. We propose to design and build a portable, low power and robust neutron spectrometer that will measure the neutron spectrum from 10 KeV to 500 MeV with at least 10% energy resolution in the various energy intervals. This instrument will monitor the existing neutron environment both inside spacecraft structures and on planetary surfaces to determine the safest living areas, warn of high fluxes associated with solar storms and assist the NSBRI Radiation Effects Team in making an accurate assessment of increased cancer risk and DNA damage to astronauts. The instrument uses a highly efficient proportional counter Helium 3 tube at the lowest energy intervals where .equivalent damage factors for tissue are the highest (10 KeV-2 MeV). The Helium 3 tube may be shielded with a cadmium absorber to eliminate the much

  8. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  9. Development of Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Lee, J. S.; Seong, B. S. (and others)

    2007-06-15

    Neutron spectrometers which are used in the basic researches such as physics, chemistry and materials science and applied in the industry were developed at the horizontal beam port of HANARO reactor. In addition, the development of core components for neutron scattering and the upgrade of existing facilities are also performed. The vertical neutron reflectometer was fabricated and installed at ST3 beam port. The performance test of the reflectometer was completed and the reflectometer was opened to users. The several core parts and options were added in the polarized neutron spectrometer. The horizontal neutron reflectometer from Brookhaven National Laboratory was moved to HANARO and installed, and the performance of the reflectometer was examined. The HIPD was developed and the performance test was completed. The base shielding for TAS was fabricated. The soller collimator, Cu mosaic monochromator, Si BPC monochromator and position sensitive detector were developed and applied in the neutron spectrometer as part of core component development activities. In addition, the sputtering machine for mirror device are fabricated and the neutron mirror is made using the sputtering machine. The FCD was upgraded and the performance of the FCD are improved over the factor of 10. The integration and upgrade of the neutron detection system were also performed.

  10. Neutron Star Matter

    CERN Document Server

    Wambach, Jochen

    2013-01-01

    In this presentation I discuss two aspects of the neutron-matter equation of state. One relates to the symmetry energy of nuclear matter and empirical constraints on its slope parameter at saturation density. The second deals with spatially inhomogeneous chiral phases of deconfined quark matter in the inner core of a neutron star.

  11. Neutron Multiplicity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Frame, Katherine Chiyoko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-28

    Neutron multiplicity measurements are widely used for nondestructive assay (NDA) of special nuclear material (SNM). When combined with isotopic composition information, neutron multiplicity analysis can be used to estimate the spontaneous fission rate and leakage multiplication of SNM. When combined with isotopic information, the total mass of fissile material can also be determined. This presentation provides an overview of this technique.

  12. Neutron capture therapies

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  13. Neutron capture therapies

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.

    1999-11-02

    In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  14. Trapping tsetse flies on water

    Directory of Open Access Journals (Sweden)

    Laveissière C.

    2011-05-01

    Full Text Available Riverine tsetse flies such as Glossina palpalis gambiensis and G. tachinoides are the vectors of human and animal trypanosomoses in West Africa. Despite intimate links between tsetse and water, to our knowledge there has never been any attempt to design trapping devices that would catch tsetse on water. In mangrove (Guinea one challenging issue is the tide, because height above the ground for a trap is a key factor affecting tsetse catches. The trap was mounted on the remains of an old wooden dugout, and attached with rope to nearby branches, thereby allowing it to rise and fall with the tide. Catches showed a very high density of 93.9 flies/”water-trap”/day, which was significantly higher (p < 0.05 than all the catches from other habitats where the classical trap had been used. In savannah, on the Comoe river of South Burkina Faso, the biconical trap was mounted on a small wooden raft anchored to a stone, and catches were compared with the classical biconical trap put on the shores. G. p. gambiensis and G. tachinoides densities were not significantly different from those from the classical biconical one. The adaptations described here have allowed to efficiently catch tsetse on the water, which to our knowledge is reported here for the first time. This represents a great progress and opens new opportunities to undertake studies on the vectors of trypanosomoses in mangrove areas of Guinea, which are currently the areas showing the highest prevalences of sleeping sickness in West Africa. It also has huge potential for tsetse control using insecticide impregnated traps in savannah areas where traps become less efficient in rainy season. The Guinean National control programme has already expressed its willingness to use such modified traps in its control campaigns in Guinea, as has the national PATTEC programme in Burkina Faso during rainy season.

  15. A reservoir trap for antiprotons

    CERN Document Server

    Smorra, Christian; Franke, Kurt; Nagahama, Hiroki; Schneider, Georg; Higuchi, Takashi; Van Gorp, Simon; Blaum, Klaus; Matsuda, Yasuyuki; Quint, Wolfgang; Walz, Jochen; Yamazaki, Yasunori; Ulmer, Stefan

    2015-01-01

    We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic particles.

  16. Pattern formation with trapped ions

    CERN Document Server

    Lee, Tony E

    2010-01-01

    We propose an experiment to study collective behavior in a nonlinear medium of trapped ions. Using laser cooling and heating and an anharmonic trap potential, one can turn an ion into a nonlinear van der Pol-Duffing oscillator. A chain of ions interacting electrostatically has stable plane waves for all parameters. The system also behaves like an excitable medium, since a sufficiently large perturbation generates a travelling pulse. Small chains exhibit multistability and limit cycles. We account for noise from spontaneous emission in the amplitude equation and find that the patterns are observable for realistic experimental parameters. The tunability of ion traps makes them an exciting setting to study nonequilibrium statistical physics.

  17. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  18. THERMAL NEUTRON BACKSCATTER IMAGING.

    Energy Technology Data Exchange (ETDEWEB)

    VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

    2004-10-16

    Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

  19. Pocked surface neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  20. Neutron stars - General review

    Science.gov (United States)

    Cameron, A. G. W.; Canuto, V.

    1974-01-01

    A review is presented of those properties of neutron stars upon which there is general agreement and of those areas which currently remain in doubt. Developments in theoretical physics of neutron star interiors are summarized with particular attention devoted to hyperon interactions and the structure of interior layers. Determination of energy states and the composition of matter is described for successive layers, beginning with the surface and proceeding through the central region into the core. Problems encountered in determining the behavior of matter in the ultra-high density regime are discussed, and the effects of the magnetic field of a neutron star are evaluated along with the behavior of atomic structures in the field. The evolution of a neutron star is outlined with discussion centering on carbon detonation, cooling, vibrational damping, rotation, and pulsar glitches. The role of neutron stars in cosmic-ray propagation is considered.

  1. 2012 Next Generation Experiments to Measure the Neutron Lifetime Workshop

    CERN Document Server

    2014-01-01

    There is a great interest in improving the limits on neutron lifetime to the level of a precision of 0.1 s. The neutron lifetime is both an important fundamental quantity as well as a parameter influencing important processes such as nucleosynthesis (Helium production in the early universe) and the rate of energy production in the Sun. Aiming to create a roadmap of R&D for a next generation neutron lifetime experiment that can be endorsed by the North American neutron community, the focus of the workshop was on experiments using traps that utilize ultracold neutrons and confinement by a combination of magnetic and/or gravitational interaction in order to avoid systematic uncertainties introduced by neutron interactions with material walls. The papers in this volume summarize the limitations of present experiments, the discussion of new experiments in planning stage, and the discussion of systematic effects that must be addressed to achieve a lifetime measurement at an accuracy of 0.1 second.

  2. A New Atom Trap The Annular Shell Atom Trap (ASAT)

    CERN Document Server

    Pilloff, H S; Pilloff, Herschel S.; Horbatsch, Marko

    2002-01-01

    In the course of exploring some aspects of atom guiding in a hollow, optical fiber, a small negative potential energy well was found just in front of the repulsive or guiding barrier. This results from the optical dipole and the van der Waals potentials. The ground state for atoms bound in this negative potential well was determined by numerically solving the Schrodinger eq. and it was found that this negative well could serve as an atom trap. This trap is referred to as the Annular Shell Atom Trap or ASAT because of the geometry of the trapped atoms which are located in the locus of points defining a very thin annular shell just in front of the guiding barrier. A unique feature of the ASAT is the compression of the atoms from the entire volume to the volume of the annular shell resulting in a very high density of atoms in this trap. This trap may have applications to very low temperatures using evaporative cooling and possibly the formation of BEC. Finally, a scheme is discussed for taking advantage of the d...

  3. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    Energy Technology Data Exchange (ETDEWEB)

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  4. Optical polarizing neutron devices designed for pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, M.; Kurahashi, K.; Endoh, Y. [Tohoku Univ, Sendai (Japan); Itoh, S. [National Lab. for High Energy Physics, Tsukuba (Japan)

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  5. Innovation: the classic traps.

    Science.gov (United States)

    Kanter, Rosabeth Moss

    2006-11-01

    these traps.

  6. Fail-safe neutron shutter used for thermal neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, R.D.; Morris, R.A.

    1976-11-01

    A fail-safe, reliable, easy-to-use neutron shutter was designed, built, and put into operation at the Omega West Reactor, Los Alamos Scientific Laboratory. The neutron shutter will be used primarily to perform thermal neutron radiography, but is also available for a highly collimated source of thermal neutrons (neutron flux = 3.876 x 10/sup 6/ (neutrons)/(cm/sup 2/.s)). Neutron collimator sizes of either 10.16 by 10.16 cm or 10.16 by 30.48 cm are available.

  7. Trapping Triatominae in Silvatic Habitats

    Directory of Open Access Journals (Sweden)

    Noireau François

    2002-01-01

    Full Text Available Large-scale trials of a trapping system designed to collect silvatic Triatominae are reported. Live-baited adhesive traps were tested in various ecosystems and different triatomine habitats (arboreal and terrestrial. The trials were always successful, with a rate of positive habitats generally over 20% and reaching 48.4% for palm trees of the Amazon basin. Eleven species of Triatominae belonging to the three genera of public health importance (Triatoma, Rhodnius and Panstrongylus were captured. This trapping system provides an effective way to detect the presence of triatomines in terrestrial and arboreal silvatic habitats and represents a promising tool for ecological studies. Various lines of research are contemplated to improve the performance of this trapping system.

  8. Magneto optical trapping of Barium

    CERN Document Server

    De, S; Jungmann, K; Willmann, L

    2008-01-01

    First laser cooling and trapping of the heavy alkaline earth element barium has been achieved based on the strong 6s$^2$ $^1$S$_0$ - 6s6p $^1$P$_1$ transition for the main cooling. Due to the large branching into metastable D-states several additional laser driven transitions are required to provide a closed cooling cycle. A total efficiency of $0.4(1) \\cdot 10^{-2}$ for slowing a thermal atomic beam and capturing atoms into a magneto optical trap was obtained. Trapping lifetimes of more than 1.5 s were observed. This lifetime is shortened at high laser intensities by photo ionization losses. The developed techniques will allow to extend significantly the number of elements that can be optically cooled and trapped.

  9. Seismic fault zone trapped noise

    National Research Council Canada - National Science Library

    Hillers, G; Campillo, M; Ben‐Zion, Y; Roux, P

    2014-01-01

    Systematic velocity contrasts across and within fault zones can lead to head and trapped waves that provide direct information on structural units that are important for many aspects of earthquake and fault mechanics...

  10. Total cross sections for ultracold neutrons scattered from gases

    Science.gov (United States)

    Seestrom, S. J.; Adamek, E. R.; Barlow, D.; Blatnik, M.; Broussard, L. J.; Callahan, N. B.; Clayton, S. M.; Cude-Woods, C.; Currie, S.; Dees, E. B.; Fox, W.; Hoffbauer, M.; Hickerson, K. P.; Holley, A. T.; Liu, C.-Y.; Makela, M.; Medina, J.; Morley, D. J.; Morris, C. L.; Pattie, R. W.; Ramsey, J.; Roberts, A.; Salvat, D. J.; Saunders, A.; Sharapov, E. I.; Sjue, S. K. L.; Slaughter, B. A.; Walstrom, P. L.; Wang, Z.; Wexler, J.; Womack, T. L.; Young, A. R.; Vanderwerp, J.; Zeck, B. A.

    2017-01-01

    We have followed up on our previous measurements of upscattering of ultracold neutrons (UCNs) from a series of gases by making measurements of total cross sections on the following gases hydrogen, ethane, methane, isobutene, n -butane, ethylene, water vapor, propane, neopentane, isopropyl alcohol, and 3He . The values of these cross sections are important for estimating the loss rate of trapped neutrons due to residual gas and are relevant to neutron lifetime measurements using UCNs. The effects of the UCN velocity and path-length distributions were accounted for in the analysis using a Monte Carlo transport code. Results are compared to our previous measurements and with the known absorption cross section for 3He scaled to our UCN energy. We find that the total cross sections for the hydrocarbon gases are reasonably described by a function linear in the number of hydrogen atoms in the molecule.

  11. Neutron scattering in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Barocchi, F. [Florence Univ. (Italy). Ist. di Fisica

    1996-12-31

    Together with X-rays, thermal neutrons are the ideal probe to study the microscopic structure of condensed matter, however the precision attainable usually with neutrons for the measurement of atomic position correlation functions in liquids is, at least, one order of magnitude better than for X-rays. In order to measure properly the microscopic dynamics a wide range of momentum transfer with corresponding energy transfer must be available in the range of liquid state excitations. This again is only attainable, with good resolution, with neutrons. (author) 7 figs., 3 refs.

  12. Neutrons in soft matter

    CERN Document Server

    Imae, Toyoko; Furusaka, Michihiro; Torikai, Naoya

    2011-01-01

    Neutron and synchrotron facilities, which are beyond the scale of the laboratory, and supported on a national level in countries throughout the world.  These tools for probing micro- and nano-structure research and on fast dynamics research of atomic location in materials have been key in the development of new polymer-based materials. Different from several existing professional books on neutron science, this book focuses on theory, instrumentation, an applications. The book is divided into five parts: Part 1 describes the underlying theory of neutron scattering. Part 2 desc

  13. Microinstrument gradient-force optical trap.

    Science.gov (United States)

    Collins, S D; Baskin, R J; Howitt, D G

    1999-10-01

    A micromachined fiber-optic trap is presented. The trap consists of four single-mode, 1064-nm optical intersection. The beam fibers mounted in a micromachined silicon and glass housing. Micromachining provides the necessary precision to align the four optical fibers so that the outputs have a common intersection forms a strong three-dimensional gradient-force trap with trapping forces comparable with that of optical tweezers. Characterization of the multibeam fiber trap is illustrated for capture of polystyrene microspheres, computer simulations of the trap stiffness, and experimental determination of the trapping forces.

  14. Live trapping of hawks and owls

    Science.gov (United States)

    Stewart, R.E.; Cope, J.B.; Robbins, C.S.

    1945-01-01

    1. Hawks of six species (80 individuals) and owls of five species (37 individuals) were trapped for banding from November 1, 1943, to. May 26,1944. 2. In general, pole traps proved better than hand-operated traps or automatic traps using live bait. 3. Verbail pole traps proved very efficient, and were much more humane than padded steel traps because they rarely injured a captured bird. 4: Unbaited Verbail traps took a variety of raptors, in rough proportion to their local abundance, although slightly more of beneficial species were caught than of harmful types. 5. Hawks and owls were retrapped more readily in Verbail traps than in other types tried. 6. The number of song birds caught in Verbail traps was negligible. 7. Crows and vultures were not taken in Verbail traps, but possibly could be caught with bait.

  15. Neutron signal transfer analysis

    CERN Document Server

    Pleinert, H; Lehmann, E

    1999-01-01

    A new method called neutron signal transfer analysis has been developed for quantitative determination of hydrogenous distributions from neutron radiographic measurements. The technique is based on a model which describes the detector signal obtained in the measurement as a result of the action of three different mechanisms expressed by signal transfer functions. The explicit forms of the signal transfer functions are determined by Monte Carlo computer simulations and contain only the distribution as a variable. Therefore an unknown distribution can be determined from the detector signal by recursive iteration. This technique provides a simple and efficient tool for analysis of this type while also taking into account complex effects due to the energy dependency of neutron interaction and single and multiple scattering. Therefore this method provides an efficient tool for precise quantitative analysis using neutron radiography, as for example quantitative determination of moisture distributions in porous buil...

  16. Temperature of neutron stars

    Science.gov (United States)

    Tsuruta, Sachiko

    2016-07-01

    We start with a brief introduction to the historical background in the early pioneering days when the first neutron star thermal evolution calculations predicted the presence of neutron stars hot enough to be observable. We then report on the first detection of neutron star temperatures by ROSAT X-ray satellite, which vindicated the earlier prediction of hot neutron stars. We proceed to present subsequent developments, both in theory and observation, up to today. We then discuss the current status and the future prospect, which will offer useful insight to the understanding of basic properties of ultra-high density matter beyond the nuclear density, such as the possible presence of such exotic particles as pion condensates.

  17. Decoherence Free Neutron Interferometry

    CERN Document Server

    Pushin, Dmitry A; Cory, David G

    2016-01-01

    Perfect single-crystal neutron interferometers are adversely sensitive to environmental disturbances, particularly mechanical vibrations. The sensitivity to vibrations results from the slow velocity of thermal neutrons and the long measurement time that are encountered in a typical experiment. Consequently, to achieve a good interference solutions for reducing vibration other than those normally used in optical experiments must be explored. Here we introduce a geometry for a neutron interferometer that is less sensitive to low-frequency vibrations. This design may be compared with both dynamical decoupling methods and decoherence-free subspaces that are described in quantum information processing. By removing the need for bulky vibration isolation setups, this design will make it easier to adopt neutron interferometry to a wide range of applications and increase its sensitivity.

  18. Neutron Stars Recent Developments

    CERN Document Server

    Heiselberg, H

    1999-01-01

    Recent developments in neutron star theory and observation are discussed. Based on modern nucleon-nucleon potentials more reliable equations of state for dense nuclear matter have been constructed. Furthermore, phase transitions such as pion, kaon and hyperon condensation, superfluidity and quark matter can occur in cores of neutron stars. Specifically, the nuclear to quark matter phase transition and its mixed phases with intriguing structures is treated. Rotating neutron stars with and without phase transitions are discussed and compared to observed masses, radii and glitches. The observations of possible heavy $\\sim 2M_\\odot$ neutron stars in X-ray binaries and QPO's require relatively stiff equation of states and restrict strong phase transitions to occur at very high nuclear densities only.

  19. The intense neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W.B

    1966-07-01

    The presentation discusses both the economic and research contexts that would be served by producing neutrons in gram quantities at high intensities by electrical means without uranium-235. The revenue from producing radioisotopes is attractive. The array of techniques introduced by the multipurpose 65 megawatt Intense Neutron Generator project includes liquid metal cooling, superconducting magnets for beam bending and focussing, super-conductors for low-loss high-power radiofrequency systems, efficient devices for producing radiofrequency power, plasma physics developments for producing and accelerating hydrogen, ions at high intensity that are still far out from established practice, a multimegawatt high voltage D.C. generating machine that could have several applications. The research fields served relate principally to materials science through neutron-phonon and other quantum interactions as well as through neutron diffraction. Nuclear physics is served through {mu}-, {pi}- and K-meson production. Isotope production enters many fields of applied research. (author)

  20. A magnetic particle micro-trap for large trapping surfaces

    KAUST Repository

    Gooneratne, Chinthaka P.

    2012-01-08

    Manipulation of micron-size magnetic particles of the superparamagnetic type contributes significantly in many applications like controlling the antibody/antigen binding process in immunoassays. Specifically, more target biomolecules can be attached/tagged and analyzed since the three dimensional structure of the magnetic particles increases the surface to volume ratio. Additionally, such biomolecular-tagged magnetic particles can be easily manipulated by an external magnetic field due to their superparamagnetic behavior. Therefore, magnetic particle- based immunoassays are extensively applied in micro-flow cytometry. The design of a square-loop micro-trap as a magnetic particle manipulator as well as numerical and experimental analysis is presented. Experimental results showed that the micro-trap could successfully trap and concentrate magnetic particles from a large to a small area with a high spatial range.

  1. Contribution of Neutron Beta Decay to Radiation Belt Pumping from High Altitude Nuclear Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Marrs, R

    2002-11-13

    In 1962, several satellites were lost following high altitude nuclear tests by the United States and the Soviet Union. These satellite failures were caused by energetic electrons injected into the earth's radiation belts from the beta decay of bomb produced fission fragments and neutrons. It has been 40 years since the last high altitude nuclear test; there are now many more satellites in orbit, and it is important to understand their vulnerability to radiation belt pumping from nuclear explosions at high altitude or in space. This report presents the results of a calculation of the contribution of neutron beta decay to artificial belt pumping. For most high altitude nuclear explosions, neutrons are expected to make a smaller contribution than fission products to the total trapped electron inventory, and their contribution is usually neglected. However, the neutron contribution may dominate in cases where the fission product contribution is suppressed due to the altitude or geomagnetic latitude of the nuclear explosion, and for regions of the radiation belts with field lines far from the detonation point. In any case, an accurate model of belt pumping from high altitude nuclear explosions, and a self-consistent explanation of the 1962 data, require inclusion of the neutron contribution. One recent analysis of satellite measurements of electron flux from the 1962 tests found that a better fit to the data is obtained if the neutron contribution to the trapped electron inventory was larger than that of the fission products [l]. Belt pumping from high altitude nuclear explosions is a complicated process. Fission fragments are dispersed as part of the ionized bomb debris, which is constrained and guided by the earth's magnetic field. Those fission products that beta decay before being lost to the earth's atmosphere can contribute trapped energetic electrons to the earth's radiation belts. There has been a large effort to develop computer models for

  2. New precision mass measurements of neutron-rich calcium and potassium isotopes and three-nucleon forces

    CERN Document Server

    Gallant, A T; Brunner, T; Chowdhury, U; Ettenauer, S; Lennarz, A; Robertson, D; Simon, V V; Chaudhuri, A; Holt, J D; Kwiatkowski, A A; Mané, E; Menéndez, J; Schultz, B E; Simon, M C; Andreoiu, C; Delheij, P; Pearson, M R; Savajols, H; Schwenk, A; Dilling, J

    2012-01-01

    We present precision Penning-trap mass measurements of neutron-rich calcium and potassium isotopes in the vicinity of neutron number N=32. Using the TITAN system the mass of $^{51}$K was measured for the first time, and the precision of the $^{51,52}$Ca mass values were improved significantly. The new mass values show a dramatic increase of the binding energy compared to those reported in the atomic mass evaluation. In particular, $^{52}$Ca is more bound by 1.74 MeV, and the behavior with neutron number deviates substantially from the tabulated values. An increased binding was predicted recently based on calculations that include three-nucleon (3N) forces. We present a comparison to improved calculations, which agree remarkably with the evolution of masses with neutron number, making neutron-rich calcium isotopes an exciting region to probe 3N forces at neutron-rich extremes.

  3. Introduction to neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.

  4. Neutron scattering in dimers

    DEFF Research Database (Denmark)

    Gudel, H. U.; Furrer, A.; Kjems, Jørgen

    1986-01-01

    Insulating compounds containing dimers of transition metal and rare earth ions have been studied by inelastic neutron scattering (INS). Energy splittings can be directly determined, and the corresponding parameters are easily extracted from the experimental data. The intensities of dimer excitati......Insulating compounds containing dimers of transition metal and rare earth ions have been studied by inelastic neutron scattering (INS). Energy splittings can be directly determined, and the corresponding parameters are easily extracted from the experimental data. The intensities of dimer...

  5. Pulsed spallation Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.M. [Argonne National Lab., IL (United States)

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  6. Neutron scattering in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Knott, R.B. [Australian Nuclear Science and Technology Organisation, Menai (Australia)

    1994-12-31

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.

  7. Coded source neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Philip R [ORNL; Santos-Villalobos, Hector J [ORNL

    2011-01-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100 m) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100um and 10um aperture hole diameters show resolutions matching the hole diameters.

  8. Coded source neutron imaging

    Science.gov (United States)

    Bingham, Philip; Santos-Villalobos, Hector; Tobin, Ken

    2011-03-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100μm) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100μm and 10μm aperture hole diameters show resolutions matching the hole diameters.

  9. Neutron Nucleic Acid Crystallography.

    Science.gov (United States)

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.

  10. Trap induction and trapping in eight nematode-trapping fungi (Orbiliaceae) as affected by juvenile stage of Caenorhabditis elegans.

    Science.gov (United States)

    Xie, Hongyan; Aminuzzaman, F M; Xu, Lingling; Lai, Yiling; Li, Feng; Liu, Xingzhong

    2010-06-01

    This study measured trap induction and trapping on agar disks as affected by juvenile stages (J1, J2, J3, and J4) of the nematode Caenorhabditis elegans and by species of nematode-trapping fungi. Eight species of nematode-trapping fungi belonging to the family Orbiliaceae and producing four kinds of traps were studied: adhesive network-forming Arthrobotrys oligospora, A. vermicola, and A. eudermata, constricting ring-forming Drechslerella brochopaga, and Dr. stenobrocha, adhesive column-forming Dactylellina cionopaga, and adhesive knob-forming Da. ellipsospora, and Da. drechsleri. The number of traps induced generally increased with increasing juvenile stages of C. elegans. The ability to capture the juveniles tended to be similar among isolates that produced the same kind of trap but differed among species that produced different kinds of traps. Trapping by Dr. stenobrocha and Da. cionopaga was correlated with trap number and with juvenile stage. A. oligospora and A. vermicola respectively captured more than 92 and 88% of the J1, J3, and J4 but captured a lower percentage of J2. The knob-producing isolates captured more younger than elder juveniles. Partial correlation analyses demonstrated that the trap induction of the most fungal species positively correlated with the juvenile size and motility, which was juvenile stage dependent. Overall, trap induction and trapping correlated with C. elegans juvenile stage (size and motility) in six species of trapping fungi.

  11. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  12. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  13. Fundamental neutron physics at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.

    1995-10-01

    Modern neutron sources and science share a common origin in mid-20th-century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for studying condensed matter with modern neutron sources being primarily used (and justified) as tools for neutron scattering and materials science research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities performed at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high-flux neutron facilities. Future sources, particularly high-power spallation sources, offer exciting possibilities for continuing this research.

  14. Optimization of a mirror-based neutron source using differential evolution algorithm

    Science.gov (United States)

    Yurov, D. V.; Prikhodko, V. V.

    2016-12-01

    This study is dedicated to the assessment of capabilities of gas-dynamic trap (GDT) and gas-dynamic multiple-mirror trap (GDMT) as potential neutron sources for subcritical hybrids. In mathematical terms the problem of the study has been formulated as determining the global maximum of fusion gain (Q pl), the latter represented as a function of trap parameters. A differential evolution method has been applied to perform the search. Considered in all calculations has been a configuration of the neutron source with 20 m long distance between the mirrors and 100 MW heating power. It is important to mention that the numerical study has also taken into account a number of constraints on plasma characteristics so as to provide physical credibility of searched-for trap configurations. According to the results obtained the traps considered have demonstrated fusion gain up to 0.2, depending on the constraints applied. This enables them to be used either as neutron sources within subcritical reactors for minor actinides incineration or as material-testing facilities.

  15. The phenomenology of trapped inflation

    CERN Document Server

    Pearce, Lauren; Sorbo, Lorenzo

    2016-01-01

    Trapped inflation is a mechanism in which particle production from the moving inflaton is the main source of friction in the inflaton equation of motion. The produced fields source inflaton perturbations, which dominate over the vacuum ones. We employ the set of equations for the inflaton zero mode and its perturbations which was developed in the original work on trapped inflation, and which we extend to second order in the perturbations. We build on this study by updating the experimental constraints, and by replacing the existing approximate solutions with more accurate ones. We obtain a different numerical value for the amplitude of the scalar power spectrum, and a parametrically different result for the bispectrum. This has implications for the allowed region of parameter space in models of trapped inflation, and for some of the phenomenological results obtained in this region. The main results in the allowed region are the following: monomial inflaton potentials, such as $V \\propto \\varphi,\\, \\varphi^2$ ...

  16. Promoter trapping in Magnaporthe grisea

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-hong; LU Jian-ping; WANG Jiao-yu; MIN Hang; LIN Fu-cheng

    2006-01-01

    Application of promoter trapping based on transformation in Magnaporthe grisea is reported in this paper. Two promoter-trapping vectors, designated as pCBGFP and pEGFPHPH, were constructed and transformed into protoplasts of M.grisea. A library of 1077 transformants resistant to hygromycin B was generated. Of which, 448 transformants were found to express eGFP gene in different structures ofM. grisea. Three transformants grew slowly, 5 transformants decreased in conidiafion and 7 transformants reduced in pathogenicity greatly among these 448 transformants. Eleven transformants were checked by genomic southern blot randomly, and 9 of which were single-copy insertions. The promoter trapping technique has been applied successfully in M. grisea and can be used as a tool for functional genomic analysis.

  17. Radiography with polarised neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael L.

    2010-08-20

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni{sub 3}Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature T{sub C} on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with

  18. New method of a "point-like" neutron source creation based on sharp focusing of high-current deuteron beam onto deuterium-saturated target for neutron tomography

    Science.gov (United States)

    Golubev, S.; Skalyga, V.; Izotov, I.; Sidorov, A.

    2017-02-01

    A possibility of a compact powerful point-like neutron source creation is discussed. Neutron yield of the source based on deuterium-deuterium (D-D) reaction is estimated at the level of 1011 s‑1 (1013 s‑1 for deuterium-tritium reaction). The fusion takes place due to bombardment of deuterium- (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ion beam is formed by means of high-current quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance (ECR) discharge in an open magnetic trap sustained by powerful microwave radiation. The prospects of proposed generator for neutron tomography are discussed. Suggested method is compared to the point-like neutron sources based on a spark produced by powerful femtosecond laser pulses.

  19. Accretion discs trapped near corotation

    OpenAIRE

    D'Angelo, C.R.; Spruit, H.C.

    2012-01-01

    We show that discs accreting on to the magnetosphere of a rotating star can end up in a trapped state, in which the inner edge of the disc stays near the corotation radius, even at low and varying accretion rates. The accretion in these trapped states can be steady or cyclic; we explore these states over a wide range of parameter space. We find two distinct regions of instability: one related to the buildup and release of mass in the disc outside corotation, and the other to mass storage with...

  20. Dysprosium magneto-optical traps

    CERN Document Server

    Youn, Seo Ho; Ray, Ushnish; Lev, Benjamin L

    2010-01-01

    Magneto-optical traps (MOTs) of highly magnetic lanthanides open the door to explorations of novel phases of strongly correlated matter such as lattice supersolids and quantum liquid crystals. We recently reported the first MOTs of the five high abundance isotopes of the most magnetic atom, dysprosium. Described here are details of the experimental technique employed for repumper-free Dy MOTs containing up to half a billion atoms. Extensive characterization of the MOTs' properties---population, temperature, loading, metastable decay dynamics, trap dynamics---is provided.

  1. Feedback traps for virtual potentials

    Science.gov (United States)

    Gavrilov, Momčilo; Bechhoefer, John

    2017-03-01

    Feedback traps are tools for trapping and manipulating single charged objects, such as molecules in solution. An alternative to optical tweezers and other single-molecule techniques, they use feedback to counteract the Brownian motion of a molecule of interest. The trap first acquires information about a molecule's position and then applies an electric feedback force to move the molecule. Since electric forces are stronger than optical forces at small scales, feedback traps are the best way to trap single molecules without `touching' them (e.g. by putting them in a small box or attaching them to a tether). Feedback traps can do more than trap molecules: they can also subject a target object to forces that are calculated to be the gradient of a desired potential function U(x). If the feedback loop is fast enough, it creates a virtual potential whose dynamics will be very close to those of a particle in an actual potential U(x). But because the dynamics are entirely a result of the feedback loop-absent the feedback, there is only an object diffusing in a fluid-we are free to specify and then manipulate in time an arbitrary potential U(x,t). Here, we review recent applications of feedback traps to studies on the fundamental connections between information and thermodynamics, a topic where feedback plays an even more fundamental role. We discuss how recursive maximum-likelihood techniques allow continuous calibration, to compensate for drifts in experiments that last for days. We consider ways to estimate work and heat, using them to measure fluctuating energies to a precision of ±0.03 kT over these long experiments. Finally, we compare work and heat measurements of the costs of information erasure, the Landauer limit of kT ln 2 per bit of information erased. We argue that, when you want to know the average heat transferred to a bath in a long protocol, you should measure instead the average work and then infer the heat using the first law of thermodynamics. This

  2. Rotation sensing with trapped ions

    CERN Document Server

    Campbell, W C

    2016-01-01

    We present a protocol for using trapped ions to measure rotations via matter-wave Sagnac interferometry. The trap allows the interferometer to enclose a large area in a compact apparatus through repeated round-trips in a Sagnac geometry. We show how a uniform magnetic field can be used to close the interferometer over a large dynamic range in rotation speed and measurement bandwidth without losing contrast. Since this technique does not require the ions to be confined in the Lamb-Dicke regime, thermal states with many phonons should be sufficient for operation.

  3. Neutron-Induced Failures in Semiconductor Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This slide presentation explores single event effect, environmental neutron flux, system response, the Los Alamos Neutron Science Center (LANSCE) neutron testing facility, examples of SEE measurements, and recent interest in thermal neutrons.

  4. Neutron drip transition in accreting and nonaccreting neutron star crusts

    CERN Document Server

    Chamel, N; Zdunik, J L; Haensel, P

    2015-01-01

    The neutron-drip transition in the dense matter constituting the interior of neutron stars generally refers to the appearance of unbound neutrons as the matter density reaches some threshold density $\\rho_\\textrm{drip}$. This transition has been mainly studied under the cold catalyzed matter hypothesis. However, this assumption is unrealistic for accreting neutron stars. After examining the physical processes that are thought to be allowed in both accreting and nonaccreting neutron stars, suitable conditions for the onset of neutron drip are derived and general analytical expressions for the neutron drip density and pressure are obtained. Moreover, we show that the neutron-drip transition occurs at lower density and pressure than those predicted within the mean-nucleus approximation. This transition is studied numerically for various initial composition of the ashes from X-ray bursts and superbursts using microscopic nuclear mass models.

  5. Annealing behaviors of vacancy in varied neutron irradiated Czochralski silicon

    Institute of Scientific and Technical Information of China (English)

    CHEN Gui-feng; LI Yang-xian; LIU Li-li; NIU Ping-juan; NIU Sheng-li; CHEN Dong-feng

    2006-01-01

    The difference of annealing behaviors of vacancy-oxygen complex (VO) in varied dose neutron irradiated Czochralski silicon: (S1 5×1017 n/cm3 and S2 1.07×1019 n/cm3) were studied. The results show that the VO is one of the main defects formed in neutron irradiated Czochralski silicon (CZ-Si). In this defect,oxygen atom shares a vacancy,it is bonded to two silicon neighbors. Annealed at 200 ℃,divacancies are trapped by interstitial oxygen(Oi) to form V2O (840 cm-1). With the decrease of the 829 cm-1 (VO) three infrared absorption bands at 825 cm-1 (V2O2),834 cm-1 (V2O3) and 840 cm-1 (V2O) will rise after annealed at temperature range of 200-500 ℃. After annealed at 450-500 ℃ the main absorption bands in S1 sample are 834 cm-1,825 cm-1 and 889 cm-1 (VO2),in S2 is 825 cm-1. Annealing of A-center in varied neutron irradiated CZ-Si is suggested to consist of two processes. The first is due to trapping of VO by Oi in low dose neutron irradiated CZ-Si (S1) and the second is due to capture the wandering vacancy by VO,etc,in high dose neutron irradiated CZ-Si (S2),the VO2 plays an important role in the annealing of A-center. With the increase of the irradiation dose,the annealing behavior of A-center is changed.

  6. Francium sources and traps for fundamental interaction studies

    Science.gov (United States)

    Stancari, G.; Atutov, S. N.; Calabrese, R.; Corradi, L.; Dainelli, A.; de Mauro, C.; Khanbekyan, A.; Mariotti, E.; Minguzzi, P.; Moi, L.; Sanguinetti, S.; Tomassetti, L.; Veronesi, S.

    2007-11-01

    Francium is one of the best candidates for atomic parity nonconservation (APNC) and for the search of permanent electric dipole moments (EDMs). APNC measurements test the weak force between electrons and nucleons at very low momentum transfers. They also represent a unique way to detect weak nucleon-nucleon interactions. EDMs are instead related to the time-reversal symmetry. Preliminary to these fundamental measurements are precision studies in atomic spectroscopy and the development of magneto-optical traps (MOT), which partially compensate for the lack of stable Fr isotopes. At LNL Legnaro, francium is produced by fusion of 100-MeV 18O with 197Au in a thick target, followed by evaporation of neutrons from the compound nucleus. Francium diffuses inside the hot target (1200 K) and is surface ionized for injection at 3 keV in an electrostatic beamline. Typically, we produce 1×106 (210Fr ions)/s for a primary flux of 1.5×1012 particles/s. We have studied Fr yields as a function of primary beam energy, intensity, and target temperature. Information on the efficiency of bulk diffusion, surface desorption and ionization is deduced. The beam then enters a Dryfilm-coated cell, where it is neutralized on a heated yttrium plate. The escape time of neutral Fr (diffusion + desorption) is approximately 20 s at 950 K, as measured with a dedicated setup. In the MOT, we use 6 orthogonal Ti:sapphire laser beams for the main pumping transition and 6 beams from a stabilized diode repumper. Fluorescence from trapped atoms is observed with a cooled CCD camera, in order to reach noise levels from stray light equivalent to approximately 50 atoms. Systematic tests are being done to improve the trapping efficiency. We plan to further develop Fr traps at LNL; in parallel, we will study APNC and EDM techniques and systematics with stable alkalis at Pisa, Siena, and Ferrara.

  7. Microfabricated linear Paul-Straubel ion trap

    Science.gov (United States)

    Mangan, Michael A.; Blain, Matthew G.; Tigges, Chris P.; Linker, Kevin L.

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  8. Influence of the neutron transport tube on neutron resonance densitometry

    Directory of Open Access Journals (Sweden)

    Kitatani Fumito

    2017-01-01

    Full Text Available Neutron Resonance Densitometry (NRD is a non-destructive assay technique of nuclear materials in particle-like debris that contains various materials. An aim of NRD is to quantify nuclear materials in a melting fuel of Fukusima Daiichi plant, spent nuclear fuel and annihilation disposal fuel etc. NRD consists of two techniques of Neutron Resonance Transmission Analysis (NRTA and Neutron Resonance Capture Analysis (NRCA or Prompt Gamma-ray Analysis (PGA. A density of nuclear material isotopes is decided with NRTA. The materials absorbing a neutron in a wide energy range such as boron in a sample are identified by NRCA/PGA. The information of NRCA/PGA is used in NRTA analysis to quantify nuclear material isotopes. A neutron time of flight (TOF method is used in NRD measurements. A facility, consisting of a neutron source, a neutron flight path, and a detector is required. A short flight path and a strong neutron source are needed to downsize such a facility and put NRD into practical use. A neutron transport tube covers a flight path to prevent noises. In order to investigate the effect of neutron transport tube and pulse width of a neutron source, we carried out NRTA experiments with a 2-m short neutron transport tube constructed at Kyoto University Research Reactor Institute - Linear Accelerator (KURRI-LINAC, and impacts of shield of neutron transport tube and influence of pulse width of a neutron source were examined. A shield of the neutron transport tube reduced a background and had a good influence on the measurement. The resonance dips of 183W at 27 eV was successfully observed with a pulse width of a neutron source less than 2 μs.

  9. Hybrid superconducting neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  10. Hybrid Superconducting Neutron Detectors

    CERN Document Server

    Merlo, V; Cirillo, M; Lucci, M; Ottaviani, I; Scherillo, A; Celentano, G; Pietropaolo, A

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the supercond...

  11. Neutron counting with cameras

    Energy Technology Data Exchange (ETDEWEB)

    Van Esch, Patrick; Crisanti, Marta; Mutti, Paolo [Institut Laue Langevin, Grenoble (France)

    2015-07-01

    A research project is presented in which we aim at counting individual neutrons with CCD-like cameras. We explore theoretically a technique that allows us to use imaging detectors as counting detectors at lower counting rates, and transits smoothly to continuous imaging at higher counting rates. As such, the hope is to combine the good background rejection properties of standard neutron counting detectors with the absence of dead time of integrating neutron imaging cameras as well as their very good spatial resolution. Compared to Xray detection, the essence of thermal neutron detection is the nuclear conversion reaction. The released energies involved are of the order of a few MeV, while X-ray detection releases energies of the order of the photon energy, which is in the 10 KeV range. Thanks to advances in camera technology which have resulted in increased quantum efficiency, lower noise, as well as increased frame rate up to 100 fps for CMOS-type cameras, this more than 100-fold higher available detection energy implies that the individual neutron detection light signal can be significantly above the noise level, as such allowing for discrimination and individual counting, which is hard to achieve with X-rays. The time scale of CMOS-type cameras doesn't allow one to consider time-of-flight measurements, but kinetic experiments in the 10 ms range are possible. The theory is next confronted to the first experimental results. (authors)

  12. Neutron whispering gallery

    Science.gov (United States)

    Nesvizhevsky, Valery V.; Voronin, Alexei Yu.; Cubitt, Robert; Protasov, Konstantin V.

    2010-02-01

    The `whispering gallery' effect has been known since ancient times for sound waves in air, later in water and more recently for a broad range of electromagnetic waves: radio, optics, Roentgen and so on. It consists of wave localization near a curved reflecting surface and is expected for waves of various natures, for instance, for atoms and neutrons. For matter waves, it would include a new feature: a massive particle would be settled in quantum states, with parameters depending on its mass. Here, we present for the first time the quantum whispering-gallery effect for cold neutrons. This phenomenon provides an example of an exactly solvable problem analogous to the `quantum bouncer'; it is complementary to the recently discovered gravitationally bound quantum states of neutrons . These two phenomena provide a direct demonstration of the weak equivalence principle for a massive particle in a pure quantum state. Deeply bound whispering-gallery states are long-living and weakly sensitive to surface potential; highly excited states are short-living and very sensitive to the wall potential shape. Therefore, they are a promising tool for studying fundamental neutron-matter interactions, quantum neutron optics and surface physics effects.

  13. Self-Trapping of G-Mode Oscillations in Relativistic Thin Disks, Revisited

    Science.gov (United States)

    kato, Shoji

    2017-01-01

    We examine by a perturbation method how the self-trapping of g-mode oscillations in geometrically thin relativistic disks is affected by uniform vertical magnetic fields. Disks which we consider are isothermal in the vertical direction, but are truncated at a certain height by presence of hot coronae. We find that the characteristics of self-trapping of axisymmetric g-mode oscillations in non-magnetized disks is kept unchanged in magnetized disks at least till a strength of the fields, depending on vertical thickness of disks. These magnetic fields become stronger as the disk becomes thinner. This result suggests that trapped g-mode oscillations still remain as one of possible candidates of quasi-periodic oscillations observed in black-hole and neutron-star X-ray binaries in the cases where vertical magnetic fields in disks are weak.

  14. Mass Trapping for Anastrepha suspensa

    Science.gov (United States)

    ABSTRACT In field tests conducted in south Florida to test grape juice as an alternative inexpensive bait for Anastrepha suspensa Loew, high numbers of Zaprionus indianus Gupta were captured in traps baited with aqueous grape juice. These experiments included comparisons of grape juice with standard...

  15. Evading the joint decision trap

    DEFF Research Database (Denmark)

    Stenbæk, Jørgen; Jensen, Mads Christian Dagnis

    2016-01-01

    is applied, including the concept of the joint-decision trap. The paper finds that the outcome was made possible by compensating the member states that were worst affected by the policy changes. A coalition of net contributors, centered on Germany and the United Kingdom, was influential regarding the overall...

  16. Quantum Games in ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Buluta, Iulia Maria [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: noa@lyman.q.t.u-tokyo.ac.jp; Fujiwara, Shingo [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: fujiwara@lyman.q.t.u-tokyo.ac.jp; Hasegawa, Shuichi [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: hasegawa@q.t.u-tokyo.ac.jp

    2006-10-09

    We propose a general, scalable framework for implementing two-choices-multiplayer Quantum Games in ion traps. In particular, we discuss two famous examples: the Quantum Prisoners' Dilemma and the Quantum Minority Game. An analysis of decoherence due to intensity fluctuations in the applied laser fields is also provided.

  17. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trappe...

  18. Optical trapping of coated microspheres

    NARCIS (Netherlands)

    Bormuth, V.; Jannasch, A.; Ander, M.; van Kats, C.M.; van Blaaderen, A.; Howard, J.; Schäffer, E.

    2008-01-01

    In an optical trap, micron-sized dielectric particles are held by a tightly focused laser beam. The optical force on the particle is composed of an attractive gradient force and a destabilizing scattering force. We hypothesized that using anti-reflection-coated microspheres would reduce scattering a

  19. Optical trapping of coated microspheres.

    Science.gov (United States)

    Bormuth, Volker; Jannasch, Anita; Ander, Marcel; van Kats, Carlos M; van Blaaderen, Alfons; Howard, Jonathon; Schäffer, Erik

    2008-09-01

    In an optical trap, micron-sized dielectric particles are held by a tightly focused laser beam. The optical force on the particle is composed of an attractive gradient force and a destabilizing scattering force. We hypothesized that using anti-reflection-coated microspheres would reduce scattering and lead to stronger trapping. We found that homogeneous silica and polystyrene microspheres had a sharp maximum trap stiffness at a diameter of around 800 nm--the trapping laser wavelength in water--and that a silica coating on a polystyrene microsphere was a substantial improvement for larger diameters. In addition, we noticed that homogeneous spheres of a correct size demonstrated anti-reflective properties. Our results quantitatively agreed with Mie scattering calculations and serve as a proof of principle. We used a DNA stretching experiment to confirm the large linear range in detection and force of the coated microspheres and performed a high-force motor protein assay. These measurements show that the surfaces of the coated microspheres are compatible with biophysical assays.

  20. Positron annihilation in neutron-irradiated germanium

    Energy Technology Data Exchange (ETDEWEB)

    Bartenev, G.M.; Bardyshev, I.I.; Erchak, D.P.; Stel' makh, V.F.; Tsyganov, A.D.

    1979-04-01

    The annealing of radiation defects in a germanium single crystal irradiated with 10/sup 18/ neutrons/cm/sup 2/ was studied by positron annihilation, ESR, and resistivity measurements. It was found that positrons are trapped by radiation defects. The intensity of the narrow component of the angular correlation of the annihilation radiation yielded the concentration of defect clusters in the irradiated sample n/sub d/approx. =3 x 10/sup 14/ cm/sup -3/. Three characteristic annealing stages were identified. At 160--200 /sup 0/C, point defects were annealed within the crystal. At 200--320 /sup 0/C, there was ''loosening'' of the clusters, and the charge state of the defects changed. At 320--550 /sup 0/C, the clusters were annealed.

  1. Funnel traps capture a higher proportion of juvenile Great Tits Parus major than automatic traps

    Science.gov (United States)

    Senar, J.C.; Domenech, J.; Conroy, M.J.

    1999-01-01

    We compared capture rates of Great Tits at funnel traps, where several birds can be captured at once so that some decoy effect may appear, to those obtained at automatic traps, where only one bird can be trapped at a time, at trapping stations in northeastern Spain. Juvenile birds were mainly captured at funnel traps (79% of juvenile captures), whereas adult plumaged birds were captured at both types of traps (51% of captures were at the funnel traps) (test between ages, PTits had lower body condition as measured by ptilochronology (P<0.01). These birds are more easily trapped in funnel traps, which may be acting as decoy traps, and thus are vulnerable to the same kinds of biases (eg age or body condition) that have been previously documented for decoy traps.

  2. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2017-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  3. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2016-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  4. Direction sensitive neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Ahlen, Steven; Fisher, Peter; Dujmic, Denis; Wellenstein, Hermann F.; Inglis, Andrew

    2017-01-31

    A neutron detector includes a pressure vessel, an electrically conductive field cage assembly within the pressure vessel and an imaging subsystem. A pressurized gas mixture of CF.sub.4, .sup.3He and .sup.4He at respective partial pressures is used. The field cage establishes a relatively large drift region of low field strength, in which ionization electrons generated by neutron-He interactions are directed toward a substantially smaller amplification region of substantially higher field strength in which the ionization electrons undergo avalanche multiplication resulting in scintillation of the CF.sub.4 along scintillation tracks. The imaging system generates two-dimensional images of the scintillation patterns and employs track-finding to identify tracks and deduce the rate and direction of incident neutrons. One or more photo-multiplier tubes record the time-profile of the scintillation tracks permitting the determination of the third coordinate.

  5. Neutron absorbing alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masayuki

    1998-12-04

    The neutron absorbing alloy of the present invention comprises Ti or an alloy thereof as a mother material, to which from 2 to 40% by weight of Hf and Gd within a range of from 4 to 50% by weight in total are added respectively. Ti is excellent in specific strength, corrosion resistance and workability, and produces no noxious intermetallic compound with Hf and Gd. In addition, since the alloy can incorporate a great quantity of Hf and Gd, a neutron absorbing material having excellent neutron absorbing performance than usual and excellent in specific strength, corrosion resistance and workability can be manufactured conveniently and economically not by a special manufacturing method. (T.M.)

  6. Carbon neutron star atmospheres

    CERN Document Server

    Suleimanov, V F; Pavlov, G G; Werner, K

    2013-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in chemical composition of their atmospheres. For example, atmospheres of thermally - emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in CasA, a pure carbon atmosphere has recently been suggested by Ho & Heinke (2009). To test such a composition for other similar sources, a publicly available detailed grid of carbon model atmosphere spectra is needed. We have computed such a grid using the standard LTE approximation and assuming that the magnetic field does not exceed 10^8 G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra.

  7. Uniformly rotating neutron stars

    CERN Document Server

    Boshkayev, Kuantay

    2016-01-01

    In this chapter we review the recent results on the equilibrium configurations of static and uniformly rotating neutron stars within the Hartle formalism. We start from the Einstein-Maxwell-Thomas-Fermi equations formulated and extended by Belvedere et al. (2012, 2014). We demonstrate how to conduct numerical integration of these equations for different central densities ${\\it \\rho}_c$ and angular velocities $\\Omega$ and compute the static $M^{stat}$ and rotating $M^{rot}$ masses, polar $R_p$ and equatorial $R_{\\rm eq}$ radii, eccentricity $\\epsilon$, moment of inertia $I$, angular momentum $J$, as well as the quadrupole moment $Q$ of the rotating configurations. In order to fulfill the stability criteria of rotating neutron stars we take into considerations the Keplerian mass-shedding limit and the axisymmetric secular instability. Furthermore, we construct the novel mass-radius relations, calculate the maximum mass and minimum rotation periods (maximum frequencies) of neutron stars. Eventually, we compare a...

  8. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  9. 50 CFR 697.19 - Trap limits and trap tag requirements for vessels fishing with lobster traps.

    Science.gov (United States)

    2010-10-01

    ... vessels fishing with lobster traps. 697.19 Section 697.19 Wildlife and Fisheries FISHERY CONSERVATION AND... requirements for vessels fishing with lobster traps. (a) Trap limits for vessels fishing or authorized to fish... management area designation certificate or valid limited access American lobster permit specifying one...

  10. Atmospheres around Neutron Stars

    Science.gov (United States)

    Fryer, Chris L.; Benz, Willy

    1994-12-01

    Interest in the behavior of atmospheres around neutron stars has grown astronomically in the past few years. Some of this interest arrived in the wake of the explosion of Supernova 1987A and its elusive remnant; spawning renewed interest in a method to insure material ``fall-back'' onto the adolescent neutron star in an effort to transform it into a silent black hole. However, the bulk of the activity with atmospheres around neutron stars is concentrated in stellar models with neutron star, rather than white dwarf, cores; otherwise known as Thorne-Zytkow objects. First a mere seed in the imagination of theorists, Thorne-Zytkow objects have grown into an observational reality with an ever-increasing list of formation scenarios and observational prospects. Unfortunately, the analytic work of Chevalier on supernova fall-back implies that, except for a few cases, the stellar simulations of Thorne-Zytkow objects are missing an important aspect of physics: neutrinos. Neutrino cooling removes the pressure support of these atmospheres, allowing accretion beyond the canonical Eddington rate for these objects. We present here the results of detailed hydrodynamical simulations in one and two dimensions with the additional physical effects of neutrinos, advanced equations of state, and relativity over a range of parameters for our atmosphere including entropy and chemical composition as well as a range in the neutron star size. In agreement with Chevalier, we find, under the current list of formation scenarios, that the creature envisioned by Thorne and Zytkow will not survive the enormous appetite of a neutron star. However, neutrino heating (a physical effect not considered in Chevalier's analysis) can play an important role in creating instabilities in some formation schemes, leading to an expulsion of matter rather than rapid accretion. By placing scrutiny upon the formation methods, we can determine the observational prospects for each.

  11. Pixelated neutron image plates

    Science.gov (United States)

    Schlapp, M.; Conrad, H.; von Seggern, H.

    2004-09-01

    Neutron image plates (NIPs) have found widespread application as neutron detectors for single-crystal and powder diffraction, small-angle scattering and tomography. After neutron exposure, the image plate can be read out by scanning with a laser. Commercially available NIPs consist of a powder mixture of BaFBr : Eu2+ and Gd2O3 dispersed in a polymer matrix and supported by a flexible polymer sheet. Since BaFBr : Eu2+ is an excellent x-ray storage phosphor, these NIPs are particularly sensitive to ggr-radiation, which is always present as a background radiation in neutron experiments. In this work we present results on NIPs consisting of KCl : Eu2+ and LiF that were fabricated into ceramic image plates in which the alkali halides act as a self-supporting matrix without the necessity for using a polymeric binder. An advantage of this type of NIP is the significantly reduced ggr-sensitivity. However, the much lower neutron absorption cross section of LiF compared with Gd2O3 demands a thicker image plate for obtaining comparable neutron absorption. The greater thickness of the NIP inevitably leads to a loss in spatial resolution of the image plate. However, this reduction in resolution can be restricted by a novel image plate concept in which a ceramic structure with square cells (referred to as a 'honeycomb') is embedded in the NIP, resulting in a pixelated image plate. In such a NIP the read-out light is confined to the particular illuminated pixel, decoupling the spatial resolution from the optical properties of the image plate material and morphology. In this work, a comparison of experimentally determined and simulated spatial resolutions of pixelated and unstructured image plates for a fixed read-out laser intensity is presented, as well as simulations of the properties of these NIPs at higher laser powers.

  12. POLARIZED NEUTRONS IN RHIC

    Energy Technology Data Exchange (ETDEWEB)

    COURANT,E.D.

    1998-04-27

    There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. To accelerate polarized particles in a ring, one must make provisions for overcoming the depolarizing resonances that occur at certain energies. These resonances arise when the spin tune (ratio of spin precession frequency to orbit frequency) resonates with a component present in the horizontal field. The horizontal field oscillates with the vertical motion of the particles (due to vertical focusing); its frequency spectrum is dominated by the vertical oscillation frequency and its modulation by the periodic structure of the accelerator ring. In addition, the magnet imperfections that distort the closed orbit vertically contain all integral Fourier harmonics of the orbit frequency.

  13. Scaling ion traps for quantum computing

    CSIR Research Space (South Africa)

    Uys, H

    2010-09-01

    Full Text Available The design, fabrication and preliminary testing of a chipscale, multi-zone, surface electrode ion trap is reported. The modular design and fabrication techniques used are anticipated to advance scalability of ion trap quantum computing architectures...

  14. A Portable Root-door Hog Trap

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Since the early 1960's, over 4,500 wild hogs have been relocated through Florida Game and Fresh Water Fish Commission trapping operations. The trap now used by the...

  15. Trapping Plan: Clarence Cannon National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Clarence Cannon NWR trapping plan outlines trapping areas, species, regulations, equipment, and seasons. This plan will allow harvest of a renewable natural...

  16. Trapping Plan: Necedah National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Necedah NWR trapping plan outlines trapping areas, species, regulations, equipment, and seasons. This plan will allow harvest of a renewable natural resource...

  17. Oxford ion-trap quantum computing project.

    Science.gov (United States)

    Lucas, D M; Donald, C J S; Home, J P; McDonnell, M J; Ramos, A; Stacey, D N; Stacey, J-P; Steane, A M; Webster, S C

    2003-07-15

    We describe recent progress in the development of an ion-trap quantum information processor. We discuss the choice of ion species and describe recent experiments on read-out for a ground-state qubit and photoionization trap loading.

  18. Benton Lake National Wildlife Refuge : Trapping Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Benton Lake NWR trapping plan outlines trapping areas, species, regulations, equipment, and seasons. This plan will allow harvest of a renewable natural resource...

  19. Trap split with Laguerre-Gaussian beams

    CERN Document Server

    Kazemi, Seyedeh Hamideh; Mahmoud, Mohammad

    2016-01-01

    The optical trapping techniques have been extensively used in physics, biophysics, micro-chemistry, and micro-mechanics to allow trapping and manipulation of materials ranging from particles, cells, biological substances, and polymers to DNA and RNA molecules. In this Letter, we present a convenient and effective way to generate a novel phenomenon of trapping, named trap split, in a conventional four-level double-$\\Lambda$ atomic system driven by four femtosecond Laguerre-Gaussian laser pulses. We find that trap split can be always achieved when atoms are trapped by such laser pulses, as compared to Gaussian ones. This work would greatly facilitate the trapping and manipulating the particles and generation of trap split. It may also suggest the possibility of extension into new research fields, such as micro-machining and biophysics.

  20. Optical and Magnetic Trapping of Potassium 39

    Science.gov (United States)

    Ensher, Jason; Cornell, Eric; Cataliotti, Francesco; Fort, Chiara; Marin, Francesco; Prevedelli, Marco; Inguscio, Massimo; Ricci, Leonardo; Tino, Guglielmo

    1998-05-01

    We present measurments of optical trapping and cooling and magnetic trapping of ^39K in a double-MOT apparatus. (Optics Lett. 21, 290(1996)) We have measured light-assisted collisional loss rates from our second MOT over a range of trap light intensities. At an intensity of 10 mW/cm^2 we find a loss rate parameter β of 2 x 10-11 cc/s. β increases with trap light intensity and is consistent with the values measured by Williamson and Walker (JOSA B 12, 1393 (1995)). We also present studies of the temperature of atoms in a MOT of ^39K. Under certain conditions of repump light intensity and trap light detuning we measure temperatures nearly as low as the Doppler Limit. Finally, we report on prelimiary results of magnetic trapping in which we have trapped several 10^7 atoms in a quadrupole magnetic trap.

  1. New compact neutron polarizer

    Science.gov (United States)

    Krist, Th; Kennedy, S. J.; Hicks, T. J.; Mezei, F.

    A new type of a neutron polarizing bender was developed in co-operation with BENSC and ANSTO. It is based upon bent thin silicon wafers coated on one side with SiFeCo polarizing supermirrors and on the other side with Gd. Initial tests at BENSC in a 300 Oe magnetic field yielded a transmission of spin-up neutrons of about 55% over an angle range of 0.75° and flipping ratios > 30. Subsequent tests at ANSTO at 1200 Oe yielded a transmission of 48% with a flipping ratio > 45.

  2. FAST NEUTRONIC REACTOR

    Science.gov (United States)

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  3. Helium 3 neutron precision polarimetry

    Science.gov (United States)

    Menard, Christopher

    2009-10-01

    Measuring neutron polarization to a high degree of precision is critical for the next generation of neutron decay correlation experiments. Polarized neutrons are also used in experiments to probe the hadronic weak interaction which contributes a small portion (˜10-7) of the force between nucleons. Using a beam of cold neutrons at Los Alamos Neutron Science Center (LANSCE), we polarized neutrons and measured their absolute polarization to ˜0.1%. Neutrons were polarized by passing them through a ^3He spin filter, relying on the maximally spin dependent 3He neutron absorption cross section. The neutron polarization can be determined by measuring the wavelength-dependent neutron transmission through the ^3He cell. An independent measurement of the neutron polarization was also obtained by passing the polarized beam through an RF spin flipper and a second polarized ^3He cell, used as an analyzer. To measure the efficiency of the spin flipper, the same measurements were made after reversing the ^3He polarization in the polarizer by using NMR techniques (adiabatic fast passage). We will show the consistency of these two measurements and the resulting precision of neutron polarimetry using these techniques.

  4. Neutron storage time measurement for the neutron EDM experiment

    Science.gov (United States)

    Griffith, W. Clark; Ito, Takeyasu; Ramsey, John; Makela, Mark; Clayton, Steven; Hennings-Yeomans, Raul; Saidur Rahaman, M.; Currie, Scott; Womack, Todd; Sondheim, Walter; Cooper, Martin

    2010-11-01

    A new experiment to search for the neutron electric dipole moment (nEDM) is under development for installation at the Spallation Neutron Source (SNS) at Oakridge National Laboratory. The experiment will use ultra-cold neutrons (UCN) stored in superfluid helium, along with ^3He atoms acting as a neutron spin analyzer and comagnetometer. One crucial factor affecting the ultimate sensitivity of the experiment is the neutron storage time that can be obtained in the acrylic measurement cell. The acrylic cell walls will be coated with deuterated polystyrene (dPS), which is expected to give a wall loss factor of ˜room temperature and below 20 K.

  5. Neutron recognition in LAND detector for large neutron multiplicity

    CERN Document Server

    Pawłowski, P; Leifels, Y; Trautmann, W; Adrich, P; Aumann, T; Bacri, C O; Barczyk, T; Bassini, R; Bianchin, S; Boiano, C; Boretzky, K; Boudard, A; Chbihi, A; Cibor, J; Czech, B; De Napoli, M; Ducret, J -E; Emling, H; Frankland, J D; Gorbinet, T; Hellström, M; Henzlova, D; Hlavac, S; Immè, J; Iori, I; Johansson, H; Kezzar, K; Kupny, S; Lafriakh, A; Fèvre, A Le; Gentil, E Le; Leray, S; Łukasik, J; Lühning, J; Lynch, W G; Lynen, U; Majka, Z; Mocko, M; Müller, W F J; Mykulyak, A; Orth, H; Otte, A N; Palit, R; Panebianco, S; Pullia, A; Raciti, G; Rapisarda, E; Rossi, D; Salsac, M -D; Sann, H; Schwarz, C; Simon, H; Sfienti, C; Sümmerer, K; Tsang, M B; Verde, G; Veselsky, M; Volant, C; Wallace, M; Weick, H; Wiechula, J; Wieloch, A; Zwiegliński, B

    2012-01-01

    The performance of the LAND neutron detector is studied. Using an event-mixing technique based on one-neutron data obtained in the S107 experiment at the GSI laboratory, we test the efficiency of various analytic tools used to determine the multiplicity and kinematic properties of detected neutrons. A new algorithm developed recently for recognizing neutron showers from spectator decays in the ALADIN experiment S254 is described in detail. Its performance is assessed in comparison with other methods. The properties of the observed neutron events are used to estimate the detection efficiency of LAND in this experiment.

  6. Neutron beam imaging at neutron spectrometers at Dhruva

    Science.gov (United States)

    Desai, Shraddha S.; Rao, Mala N.

    2012-06-01

    A low efficiency, 2-Dimensional Position Sensitive Neutron Detector based on delay line position encoding is developed. It is designed to handle beam flux of 106-107 n/cm2/s and for monitoring intensity profiles of neutron beams. The present detector can be mounted in transmission mode, as the hardware allows maximum neutron transmission in sensitive region. Position resolution of 1.2 mm in X and Y directions, is obtained. Online monitoring of beam images and intensity profile of various neutron scattering spectrometers at Dhruva are presented. It shows better dynamic range of intensity over commercial neutron camera and is also time effective over the traditionally used photographic method.

  7. Dynamic array of dark optical traps

    DEFF Research Database (Denmark)

    Daria, V.R.; Rodrigo, P.J.; Glückstad, J.

    2004-01-01

    A dynamic array of dark optical traps is generated for simultaneous trapping and arbitrary manipulation of multiple low-index microstructures. The dynamic intensity patterns forming the dark optical trap arrays are generated using a nearly loss-less phase-to-intensity conversion of a phase-encode...... optical traps for simultaneous manipulation of hollow "air-filled" glass microspheres suspended in an aqueous medium. (C) 2004 American Institute of Physics....

  8. Some Implications of Neutron Mirror Neutron Oscillation

    CERN Document Server

    Mohapatra, Rabindra N; Nussinov, S

    2005-01-01

    We comment on a recently discussed possibility of oscillations between neutrons and degenerate mirror neutrons in the context of mirror models for particles and forces. It has been noted by Bento and Berezhiani that if these oscillations occurred at a rate of $\\tau^{-1}_{NN'}\\sim sec^{-1}$, it would help explain putative super GKZ cosmic ray events provided the temperature of the mirror radiation is $\\sim 0.3-0.4$ times that of familiar cosmic microwave background radiation. We discuss how such oscillation time scales can be realized in mirror models and find that the simplest nonsupersymmetric model for this idea requires the existence of a low mass (30-3000 GeV) color triplet scalar or vector boson. A supersymmetric model, where this constraint can be avoided is severely constrained by the requirement of maintaining a cooler mirror sector. We also find that the reheat temperature after inflation in generic models that give fast $n-n'$ oscillation be less than about 100 GeV in order to maintain the required ...

  9. Neutron Scattering Investigations of Correlated Electron Systems and Neutron Instrumentation

    DEFF Research Database (Denmark)

    Holm, Sonja Lindahl

    are a unique probe for studying the atomic and molecular structure and dynamics of materials. Even though neutrons are very expensive to produce, the advantages neutrons provide overshadow the price. As neutrons interact weakly with materials compared to many other probes, e.g. electrons or photons......, it is possible to make a neutron scattering experiment through sample environment equipment like cryostats or pressure cells. Another advantage of neutron experiments is that the wavelength and energy of the neutron match the inter-atomic distances and basic excitations of solid materials. The scattering cross...... is not taken into account in previous reports on the field effect of magnetic scattering, since usually only L 0 is probed. A paper draft submitted for publication describing the results of elastic and inelastic neutron scattering experiments performed on the oxygen-doped La2CuO4+y HTSC is appended (Tc 40 K...

  10. Neutronic studies of the coupled moderators for spallation neutron sources

    Institute of Scientific and Technical Information of China (English)

    Yin Wen; Liang Jiu-Qing

    2005-01-01

    We investigate the neutronic performance of coupled moderators to be implemented in spallation neutron sources by Monte-Carlo simulation and give the slow neutron spectra for the cold and thermal moderators. CH4 moderator can provide slow neutrons with highly desirable characteristics and will be used in low-power spallation neutron soureces. The slow neutron intensity extracted from different angles has been calculated. The capability of moderation of liquid H2 is lower than H2O and liquid CH4 due to lower atomic number density of hydrogen but we can compensate for this disadvantage by using a premoderator. The H2O premoderator of 2cm thickness can reduce the heat deposition in the cold moderator by about 33% without spoiling the neutron pulse.

  11. The Aarhus Ion Micro-Trap Project

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Nielsen, Otto; Poulsen, Gregers

    and installed in an ultra high vacuum chamber, which includes an ablation oven for all-optical loading of the trap [2]. The next steps on the project are to demonstrate the operation of the micro-trap and the cooling of ions using fiber delivered light. [1] D. Grant, Development of Micro-Scale Ion traps, Master...

  12. The Nanocluster Trap endstation at BESSY II

    Directory of Open Access Journals (Sweden)

    Tobias Lau

    2017-05-01

    Full Text Available The Nanocluster Trap endstation at BESSY II combines a cryogenic linear radio-frequency ion trap with an applied magnetic field for x-ray magnetic circular dichroism studies of cold and size-selected trapped ions. Applications include atomic, molecular, and cluster ions as well as ionic complexes.

  13. Superdense Coding via Hot Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    QIN Tao; FENG Mang; GAO Ke-Lin

    2004-01-01

    Superdense coding plays an important role in quantum information and can be performed with trapped ions. By confining the ions in a linear trap or a trap-cavity setup, we propose schemes to implement a reliable superdense coding by means of bichromatic radiation method. Experimental feasibility and reliability for achieving our schemes is discussed in detail.

  14. Microchip-Based Trapped-Atom Clocks

    CERN Document Server

    Vuletic, Vladan; Schleier-Smith, Monika H

    2011-01-01

    This is a chapter of a recently published book entitled Atom Chips, edited by Jakob Reichel and Vladan Vuletic. The contents of this chapter include: Basic Principles; Atomic-Fountain versus Trapped-Atom Clocks; Optical-Transition Clocks versus Microwave Clocks; Clocks with Magnetically Trapped Atoms--Fundamental Limits and Experimental Demonstrations; Readout in Trapped-Atom Clocks; and Spin Squeezing.

  15. ATRC Neutron Detector Testing Quick Look Report

    Energy Technology Data Exchange (ETDEWEB)

    Troy C. Unruh; Benjamin M. Chase; Joy L. Rempe

    2013-08-01

    As part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program, a joint Idaho State University (ISU) / French Alternative Energies and Atomic Energy Commission (CEA) / Idaho National Laboratory (INL) project was initiated in FY-10 to investigate the feasibility of using neutron sensors to provide online measurements of the neutron flux and fission reaction rate in the ATR Critical Facility (ATRC). A second objective was to provide initial neutron spectrum and flux distribution information for physics modeling and code validation using neutron activation based techniques in ATRC as well as ATR during depressurized operations. Detailed activation spectrometry measurements were made in the flux traps and in selected fuel elements, along with standard fission rate distribution measurements at selected core locations. These measurements provide additional calibration data for the real-time sensors of interest as well as provide benchmark neutronics data that will be useful for the ATR Life Extension Program (LEP) Computational Methods and V&V Upgrade project. As part of this effort, techniques developed by Prof. George Imel will be applied by Idaho State University (ISU) for assessing the performance of various flux detectors to develop detailed procedures for initial and follow-on calibrations of these sensors. In addition to comparing data obtained from each type of detector, calculations will be performed to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. The neutron detectors required for this project were provided to team participants at no cost. Activation detectors (foils and wires) from an existing, well-characterized INL inventory were employed. Furthermore, as part of an on-going ATR NSUF international cooperation, the CEA sent INL three miniature fission chambers (one for detecting fast flux and two for

  16. High-precision mass measurements in the rare-earth region to investigate the proton-neutron interaction

    CERN Multimedia

    Herfurth, F; Blaum, K; Beck, D; Schwarz, S; Audi, G; Rosenbusch, M; Litvinov, Y

    We propose precision mass measurements on a series of short-lived nuclides for the investigation of proton-neutron interactions and two neutron separation energies and their role in nuclear structure, especially concerning deformation and collectivity. The nuclides include neutron-rich Nd, Sm, Dy, Er, and Yb isotopes, as well as $^{186}$Hf. The investigations will require the Penning trap mass-spectrometer ISOLTRAP which routinely reaches the necessary mass precision of about 10 keV. The measurements are planned for a period of two years and include a request for the test of the RILIS scheme of Sm.

  17. A review on neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Soo; Lee, Chang Hee; Shim, Hae Seop; Seong, Baek Seok

    1999-03-01

    This report contains principle and characteristic of neutron reflectometry. Therefore, in case of operating neutron reflectometer at HANARO in future, it will be a reference to the user who wishes to use the instrument effectively. Also, the current situation of neutron reflectometer operating in the world was examined. The detail of neutron reflectometer such as GANS(MURR), ADAM(ILL), POSY II(ANL), ROG(IRI) was described. The recent research situation on neutron reflectometry was also examined and it helps us to determine research field. (author)

  18. Neutron proton crystallography station (PCS)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Zoe [Los Alamos National Laboratory; Kovalevsky, Andrey [Los Alamos National Laboratory; Johnson, Hannah [Los Alamos National Laboratory; Mustyakimov, Marat [Los Alamos National Laboratory

    2009-01-01

    The PCS (Protein Crystallography Station) at Los Alamos Neutron Science Center (LANSCE) is a unique facility in the USA that is designed and optimized for detecting and collecting neutron diffraction data from macromolecular crystals. PCS utilizes the 20 Hz spallation neutron source at LANSCE to enable time-of-flight measurements using 0.6-7.0 {angstrom} neutrons. This increases the neutron flux on the sample by using a wavelength range that is optimal for studying macromolecular crystal structures. The diagram below show a schematic of PCS and photos of the detector and instrument cave.

  19. Neutron detection efficiency determinations for the TUNL neutron-neutron and neutron-proton scattering-length measurements

    Energy Technology Data Exchange (ETDEWEB)

    Trotter, D.E. Gonzalez [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: crowell@tunl.duke.edu; Meneses, F. Salinas [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: tornow@tunl.duke.edu; Crowell, A.S.; Howell, C.R. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Schmidt, D. [Physikalisch-Technische Bundesanstalt, D-38116, Braunschweig (Germany); Walter, R.L. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2009-02-11

    The methods employed and the results obtained from measurements and calculations of the detection efficiency for the neutron detectors used at Triangle Universities Nuclear Laboratory (TUNL) in the simultaneous determination of the {sup 1}S{sub 0} neutron-neutron and neutron-proton scattering lengths a{sub nn} and a{sub np}, respectively, are described. Typical values for the detector efficiency were 0.3. Very good agreement between the different experimental methods and between data and calculation has been obtained in the neutron energy range below E{sub n}=13MeV.

  20. Scalar Trapping and Saxion Cosmology

    CERN Document Server

    Moroi, Takeo; Nakayama, Kazunori; Takimoto, Masahiro

    2013-01-01

    We study in detail the dynamics of a scalar field in thermal bath with symmetry breaking potential. In particular, we focus on the process of trapping of a scalar field at an enhanced symmetry point through the thermal/non-thermal particle production, taking into account the interactions of produced particles with the standard model particles. As an explicit example, we revisit the saxion dynamics with an initial amplitude much larger than the Peccei-Quinn scale and show that the saxion trapping phenomenon happens for the most cases and it often leads to thermal inflation. We also study the saxion dynamics after thermal inflation, and it is shown that thermal dissipation effect on the saxion can relax the axion overproduction problem from the saxion decay.

  1. Fundamental physics in particle traps

    CERN Document Server

    Vogel, Manuel

    2014-01-01

    This volume provides detailed insight into the field of precision spectroscopy and fundamental physics with particles confined in traps. It comprises experiments with electrons and positrons, protons and antiprotons, antimatter and highly charged ions, together with corresponding theoretical background. Such investigations represent stringent tests of quantum electrodynamics and the Standard model, antiparticle and antimatter research, test of fundamental symmetries, constants, and their possible variations with time and space. They are key to various aspects within metrology such as mass measurements and time standards, as well as promising to further developments in quantum information processing. The reader obtains a valuable source of information suited for beginners and experts with an interest in fundamental studies using particle traps.

  2. Tachyon Physics with Trapped Ions

    CERN Document Server

    Lee, Tony E; Cheng, Xiao-Hang; Lamata, Lucas; Solano, Enrique

    2015-01-01

    It has been predicted that particles with imaginary mass, called tachyons, would be able to travel faster than the speed of light. So far, there has not been any experimental evidence for tachyons in either natural or engineered systems. Here, we propose how to experimentally simulate Dirac tachyons with trapped ions. Quantum measurement on a Dirac particle simulated by a trapped ion causes it to have an imaginary mass so that it may travel faster than the effective speed of light. We show that a Dirac tachyon must have spinor-motion entanglement in order to be superluminal. We also show that it exhibits significantly more Klein tunneling than a normal Dirac particle. We provide numerical simulations with realistic ion systems and show that our scheme is feasible with current technology.

  3. Cooling of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Grigorian H.

    2010-10-01

    Full Text Available We introduce the theoretical basis for modeling the cooling evolution of compact stars starting from Boltzmann equations in curved space-time. We open a discussion on observational verification of different neutron star models by consistent statistics. Particular interest has the question of existence of quark matter deep inside of compact object, which has to have a specific influence on the cooling history of the star. Besides of consideration of several constraints and features of cooling evolution, which are susceptible of being critical for internal structure of hot compact stars we have introduced a method of extraction of the mass distribution of the neutron stars from temperature and age data. The resulting mass distribution has been compared with the one suggested by supernove simulations. This method can be considered as an additional checking tool for the consistency of theoretical modeling of neutron stars. We conclude that the cooling data allowed existence of neutron stars with quark cores even with one-flavor quark matter.

  4. New Neutron Dosimeter

    CERN Multimedia

    2001-01-01

    CERN has been operating an Individual Dosimetry Service for neutrons for about 35 years. The service was based on nuclear emulsions in the form of film packages which were developed and scanned in the Service. In 1999, the supplier of theses packages informed CERN that they will discontinue production of this material. TIS-RP decided to look for an external service provider for individual neutron dosimetry. After an extensive market survey and an invitation for tender, a supplier that met the stringent technical requirements set up by CERN's host states for personal dosimeters was identified. The new dosimeter is based on a track-etching technique. Neutrons have the capability of damaging plastic material. The microscopic damage centres are revealed by etching them in a strong acid. The resulting etch pits can be automatically counted and their density is proportional to dose equivalent from neutrons. On the technical side, the new dosimeter provides an improved independence of its response from energy and th...

  5. Neutron protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    X-ray diffraction of single crystal has enriched the knowledge of various biological molecules such as proteins, DNA, t-RNA, viruses, etc. It is difficult to make structural analysis of hydrogen atoms in a protein using X-ray crystallography, whereas neutron diffraction seems usable to directly determine the location of those hydrogen atoms. Here, neutron diffraction method was applied to structural analysis of hen egg-white lysozyme. Since the crystal size of a protein to analyze is generally small (5 mm{sup 3} at most), the neutron beam at the sample position in monochromator system was set to less than 5 x 5 mm{sup 2} and beam divergence to 0.4 degree or less. Neutron imaging plate with {sup 6}Li or Gd mixed with photostimulated luminescence material was used and about 2500 Bragg reflections were recorded in one crystal setting. A total of 38278 reflections for 2.0 A resolution were collected in less than 10 days. Thus, stereo views of Trp-111 omit map around the indol ring of Trp-111 was presented and the three-dimensional arrangement of 696H and 264D atoms in the lysozyme molecules was determined using the omit map. (M.N.)

  6. Lift enhancement by trapped vortex

    Science.gov (United States)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  7. TRAP SYNDROME: A RARE ENTITY

    OpenAIRE

    Varsha; Kanan; Chanda,, Abhra; Qazi,, S.

    2014-01-01

    TRAP (Twin Reversed Arterial Perfusion) sequence is a rare complication of monozygotic twin pregnancy. It is due to defect in early pregnancy where there is defective arterial anastomosis in placenta. This results in a fetus with an absent heart (acardiac twin). This acardiac twin has a poorly developed upper body and head also. The pump twin (with a normal heart) is also at a risk of heart failure and problems related to preterm birth1.

  8. TRAP SYNDROME: A RARE ENTITY

    Directory of Open Access Journals (Sweden)

    Varsha

    2014-04-01

    Full Text Available TRAP (Twin Reversed Arterial Perfusion sequence is a rare complication of monozygotic twin pregnancy. It is due to defect in early pregnancy where there is defective arterial anastomosis in placenta. This results in a fetus with an absent heart (acardiac twin. This acardiac twin has a poorly developed upper body and head also. The pump twin (with a normal heart is also at a risk of heart failure and problems related to preterm birth1.

  9. Trapper readies trap for lizard

    Science.gov (United States)

    2000-01-01

    State-licensed animal trapper James Dean sets the open door of an animal trap on KSC. He hopes to catch a large monitor lizard spotted recently near S.R. 3, a route into the Center, by several area residents. The lizard is not a native of the area, and possibly a released pet. Dean is working with the cooperation of KSC and the Merritt Island National Wildlife Refuge.

  10. Quantification of trapped gas redistribution in dual-porosity media with continuous and discontinuous domains

    Science.gov (United States)

    Snehota, Michal; Sacha, Jan; Jelinkova, Vladimira; Cislerova, Milena; Vontobel, Peter

    2016-04-01

    Nonwetting phase (residual air) is trapped in the porous media at water contents close to the saturation. Trapped gas phase resides in pores in form of bubbles, blobs or cluster forming residual gas saturation. In homogeneous soil media trapped gas is relatively stable until it is released upon porous media drainage. If porous media remain saturated, trapped gas can slowly dissolve in response to changed air solubility of surrounding water. In heterogeneous media, relatively rapid change in the trapped gas distribution can be observed soon after the gas is initially trapped during infiltration. It has been recently shown that the mass transfer of gas is directed from regions of fine porosity to regions of coarse porosity. The mass transfer was quantified by means of neutron tomography for the case of dual porosity sample under steady state flow. However the underlying mechanism of the gas mass transfer is still not clear. Based on the robust experience of visualization of the flow within heterogeneous samples, it seems that due to the huge local (microscopic) pressure gradients between contrasting pore radii the portion of faster flowing water becomes attracted into small pores of high capillary pressure. The process depends on the initial distribution of entrapped air which has to be considered as random in dependence on the history and circumstances of wetting/drying. In this study, the redistribution of trapped gas was quantitatively studied by 3D neutron imaging on samples composed of fine porous ceramic and coarse sand. The redistribution of water was studied under no-flow and steady state flow conditions. Two different inner geometries of the samples were developed. In the first case the low permeability regions (ceramics) were disconnected, while in the second structure, the fine porosity material was continuous from the top to the bottom of the sample. Quantitative 3D neutron tomography imaging revealed similar redistribution process in both cases of

  11. Antiparticle plasmas for antihydrogen trapping

    Science.gov (United States)

    Charlton, M.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Butler, E.; Carpenter, P. T.; Cesar, C. L.; Chapman, S.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hurt, J. L.; Hydomako, R.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2012-05-01

    Over the last decades it has become routine to form beams of positrons and antiprotons and to use them to produce trapped samples of both species for a variety of purposes. Positrons can be captured efficiently, for instance using a buffer-gas system, and in such quantities to form dense, single component plasmas useful for antihydrogen formation. The latter is possible using developments of techniques for dynamically capturing and then cooling antiprotons ejected from the Antiproton Decelerator at CERN. The antiprotons can then be manipulated by cloud compression and evaporative cooling to form tailored plasmas. We will review recent advances that have allowed antihydrogen atoms to be confined for the first time in a shallow magnetic minimum neutral atom trap superimposed upon the region in which the antiparticles are held and mixed. A new mixing technique has been developed to help achieve this using autoresonant excitation of the centreofmass longitudinal motion of an antiproton cloud. This allows efficient antihydrogen formation without imparting excess energy to the antiprotons and helps enhance the probability of trapping the anti-atom.

  12. Neutron capture reactions at DANCE

    Science.gov (United States)

    Bredeweg, T. A.

    2008-05-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4π BaF2 array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (>~100 μg) and/or radioactive (DANCE we have performed neutron capture cross section measurements on a wide array of medium to heavy mass nuclides. Measurements to date include neutron capture cross sections on 241,243Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio (α = σγ/σf) for 235U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data.

  13. Nanostructure Neutron Converter Layer Development

    Science.gov (United States)

    Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Kang, Jin Ho (Inventor); Lowther, Sharon E. (Inventor); Thibeault, Sheila A. (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  14. Hybrid ion, atom and light trap

    CERN Document Server

    Jyothi, S; Ram, N Bhargava; Rangwala, S A

    2013-01-01

    We present an unique experimental arrangement which permits the simultaneous trapping and cooling of ions and neutral atoms, within a Fabry-Perot (FP) cavity. The versatility of this hybrid trap experiment enables a variety of studies with trapped mixtures. The motivations behind the production of such a hybrid trap system are explained, followed by details of how the experiment is put together. Several experiments that have been performed with this system are presented and some opportunities with this system are discussed. However the primary emphasis is focussed on the aspects that pertain to the trapped ions, in this hybrid system.

  15. Collisional blockade in microscopic optical dipole traps.

    Science.gov (United States)

    Schlosser, N; Reymond, G; Grangier, P

    2002-07-08

    We analyze the operating regimes of a very small optical dipole trap, loaded from a magneto-optical trap, as a function of the atom loading rate, i.e., the number of atoms per second entering the dipole trap. We show that, when the dipole trap volume is small enough, a "collisional blockade" mechanism locks the average number of trapped atoms on the value 0.5 over a large range of loading rates. We also discuss the "weak loading" and "strong loading" regimes outside the blockade range, and we demonstrate experimentally the existence of these three regimes.

  16. In-trap conversion electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, L. E-mail: weissman@nscl.msu.edu; Ames, F.; Aeysto, J.; Forstner, O.; Reisinger, K.; Rinta-Antila, S

    2002-10-21

    The Penning trap REXTRAP at ISOLDE was used to test the feasibility of in-trap conversion electron spectroscopy. The results of simulations, experiments with solid conversion electron sources as well as first on-line tests with trapped radioactive ions are presented. In addition to obtaining high-resolution spectroscopic data, the detection of conversion electrons was found to be a useful tool for the diagnostics of the trap operation. The tests proved the feasibility of in-trap spectroscopy but also revealed some potential problems to be addressed in the future.

  17. In-trap conversion electron spectroscopy

    CERN Document Server

    Weissman, L; Äystö, J; Forstner, O; Reisinger, K; Rinta-Antila, S

    2002-01-01

    The Penning trap REXTRAP at ISOLDE was used to test the feasibility of in-trap conversion electron spectroscopy. The results of simulations, experiments with solid conversion electron sources as well as first on-line and tests with trapped radioactive ions are presented. In addition to obtaining high-resolution spectroscopic data, the detection of conversion electrons was found to be a useful tool for the diagnostics of the trap operation. The tests proved the feasibility of in-trap spectroscopy but also revealed some potential problems to be addressed in the future.

  18. Effect of trapped charge accumulation on the retention of charge trapping memory

    Energy Technology Data Exchange (ETDEWEB)

    Jin Rui; Liu Xiaoyan; Du Gang; Kang Jinfeng; Han Ruqi, E-mail: xyliu@ime.pku.edu.cn [Institute of Microelectronics, Peking University, Beijing, 100871 (China)

    2010-12-15

    The accumulation process of trapped charges in a TANOS cell during P/E cycling is investigated via numerical simulation. The recombination process between trapped charges is an important issue on the retention of charge trapping memory. Our results show that accumulated trapped holes during P/E cycling can have an influence on retention, and the recombination mechanism between trapped charges should be taken into account when evaluating the retention capability of TANOS. (semiconductor devices)

  19. Efficacy of commercial traps and food odor attractants for mass trapping of Anastrepha ludens (Diptera: Tephritidae).

    Science.gov (United States)

    Lasa, Rodrigo; Velázquez, Olinda E; Ortega, Rafael; Acosta, Emilio

    2014-02-01

    One of the most important factors for the success of a mass trapping strategy to control a fruit fly involves the selection of an effective trap-lure combination. Because different species of fruit flies respond differently to the physical characteristics of a trap and to bait volatiles, the evaluation of commercial traps and lures that have proved useful against other tephtrids is necessary to determine their efficacy for mass trapping of Anastrepha ludens (Loew) (Diptera: Tephritidae). Under caged conditions, a commercial hemispherical trap with lateral holes (Maxitrap Plus) proved more attractive to A. ludens (both sexes) than five other commercial traps that were all baited with hydrolyzed protein. Among these traps, bottom invaginated traps and traps with invaginated lateral holes constructed with transparent cylinders had the best physical retention properties. When evaluated under field conditions, the lure was critical for the efficacy of the trap, and one of the traps that performed poorly in attraction and retention cage tests (MS2) resulted as one of the most effective traps when baited with CeraTrap lure. Considering the use of different trap models under field conditions, CeraTrap liquid bait was more effective in A. ludens capture than Biolure dry synthetic bait, but both lures were not replaced during the entire course of the experiment. The percentage of captured females was also slightly higher using CeraTrap lure (67.2%) than using Biolure baits (54.5-58.8%). In field tests, 75-81% of females were mated and no significant differences were observed among trap-lure combinations. Trap selectivity against nontarget adult lacewings also differed among trap-lure combinations.

  20. SEMICONDUCTOR DEVICES Effect of trapped charge accumulation on the retention of charge trapping memory

    Science.gov (United States)

    Rui, Jin; Xiaoyan, Liu; Gang, Du; Jinfeng, Kang; Ruqi, Han

    2010-12-01

    The accumulation process of trapped charges in a TANOS cell during P/E cycling is investigated via numerical simulation. The recombination process between trapped charges is an important issue on the retention of charge trapping memory. Our results show that accumulated trapped holes during P/E cycling can have an influence on retention, and the recombination mechanism between trapped charges should be taken into account when evaluating the retention capability of TANOS.

  1. Development of detector technologies for neutron beta decay measurements

    Science.gov (United States)

    Choi, Jin Ha; Cude-Woods, Chris; Young, Albert; Los Alamos UCN Collaboration Collaboration

    2016-09-01

    In the past year we have developed two detector technologies for neutron beta decay measurements. The first is designed specifically to detect the recoil proton from neutron decay. In particular, the PERKEO III experiments planned for the Institut Laue Langevin require detectors with active area greater than about 600 cm2 area to achieve the targeted statistical sensitivity. We have developed an implementation of transmission foil detectors utilizing free standing foils of roughly 100 nm thickness and 700 cm2 area, coated with LiF converting crystal. These foils are placed in an accelerating electric field geometry to first accelerate the protons to 30 kV and then convert them to an electron shower which can be detected with conventional semiconductor or scintillator detectors. We've also begun development of technology that is designed to detect charged particles from neutron-capture reaction on 10B. The UCNtau experiment at the Los Alamos National Laboratories requires non-magnetic neutron sensors that can be used to measure the density of neutrons in a magnetic trap. We are employing a multilayer surface detector recently developed at Los Alamos for the UCN flux monitoring, adapting it for a compact, 1 cm2 detector and ultralow dark rates. The detector consists of 10B on ZnS scintillating sheet that will be adhered to both faces of an acrylic plate with scintillating optical fibers embedded into it. The optical fibers will be coupled to 2, Hamamatsu micro-PMTs for coincident detection of a neutron event.

  2. Algae commensal community in Genlisea traps

    Directory of Open Access Journals (Sweden)

    Konrad Wołowski

    2011-01-01

    Full Text Available The community of algae occurring in Genlisea traps and on the external traps surface in laboratory conditions were studied. A total of 29 taxa were found inside the traps, with abundant diatoms, green algae (Chlamydophyceae and four morphotypes of chrysophytes stomatocysts. One morphotype is described as new for science. There are two ways of algae getting into Genlisea traps. The majority of those recorded inside the traps, are mobile; swimming freely by flagella or moving exuding mucilage like diatoms being ablate to colonize the traps themselves. Another possibility is transport of algae by invertebrates such as mites and crustaceans. In any case algae in the Genlisea traps come from the surrounding environment. Two dominant groups of algae (Chladymonas div. and diatoms in the trap environment, show ability to hydrolyze phosphomonoseters. We suggest that algae in carnivorous plant traps can compete with plant (host for organic phosphate (phosphomonoseters. From the spectrum and ecological requirements of algal species found in the traps, environment inside the traps seems to be acidic. However, further studies are needed to test the relations between algae and carnivorous plants both in laboratory conditions and in the natural environment. All the reported taxa are described briefly and documented with 74 LM and SEM micrographs.

  3. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C. B. [Radiation Science Department, Necsa, PO Box 582, Pretoria 0001 (South Africa)

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  4. Neutron logging tool readings and neutron parameters of formations

    Science.gov (United States)

    Czubek, Jan A.

    1995-03-01

    A case history of the calibration of neutron porosity tools is given in the paper. The calibration of neutron porosity tools is one of the most difficult, complicated, and time consuming tasks in the well logging operations in geophysics. A semi empirical approach to this problem is given in the paper. It is based on the correlation of the tool readings observed in known environments with the apparent neutron parameters sensed by the tools. The apparent neutron parameters are functions of the true neutron parameters of geological formations and of the borehole material, borehole diameter, and the tool position inside the borehole. The true integral neutron transport parameters are obtained by the multigroup diffusion approximation for slowing down of neutrons and by one thermal neutron group for the diffusion. In the latter, the effective neutron temperature is taken into account. The problem of the thermal neutron absorption cross section of rocks is discussed in detail from the point of view of its importance for the well logging results and for the experimental techniques being used.

  5. Multipole Traps as Tools in Environmental Studies

    CERN Document Server

    Mihalcea, Bogdan M; Giurgiu, Liviu C; Groza, Andreea; Surmeian, Agavni; Ganciu, Mihai; Filinov, Vladimir; Lapitsky, Dmitry; Deputatova, Lidiya; Vasilyak, Leonid; Pecherkin, Vladimir; Vladimirov, Vladimir; Syrovatka, Roman

    2015-01-01

    Trapping of microparticles, nanoparticles and aerosols is an issue of major interest for physics and chemistry. We present a setup intended for microparticle trapping in multipole linear Paul trap geometries, operating under Standard Ambient Temperature and Pressure (SATP) conditions. A 16-electrode linear trap geometry has been designed and tested, with an aim to confine a larger number of particles with respect to quadrupole traps and thus enhance the signal to noise ratio, as well as to study microparticle dynamical stability in electrodynamic fields. Experimental tests and numerical simulations suggest that multipole traps are very suited for high precision mass spectrometry measurements in case of different microparticle species or to identify the presence of certain aerosols and polluting agents in the atmosphere. Particle traps represent versatile tools for environment monitoring or for the study of many-body Coulomb systems and dusty plasmas.

  6. The Aarhus Ion Micro-Trap Project

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Nielsen, Otto; Poulsen, Gregers

    As part of our involvement in the EU MICROTRAP project, we have designed, manufactured and assembled a micro-scale ion trap with integrated optical fibers. These prealigned fibers will allow delivering cooling laser light to single ions. Therefore, such a trap will not require any direct optical...... access for laser cooling. All the parts for the trap have been made in our institute [1]. The electrodes and the spacers were laser cut in the collaboration with the group of P.  Balling. In our group we have developed a technique to manufacture lensed optical fibers. The trap is now assembled...... and installed in an ultra high vacuum chamber, which includes an ablation oven for all-optical loading of the trap [2]. The next steps on the project are to demonstrate the operation of the micro-trap and the cooling of ions using fiber delivered light. [1] D. Grant, Development of Micro-Scale Ion traps, Master...

  7. Determining Absolute Polarization of Ultracold Neutrons in the UCNA Experiment

    Science.gov (United States)

    Dees, Eric; UCNA Collaboration

    2016-09-01

    The UCNA experiment uses the decay of trapped ultracold neutrons (UCN) to measure the angular correlation A between the emitted electron's momentum and the direction of the neutron's spin. For a precision measurement of A, a similarly precise determination of the equilibrium neutron polarization is required. By utilizing UCN, transport through a large (7T) B field provides 100 % polarization, and a spin flipper allows state selection during loading phases. This spin flipper also measures the equilibrium polarization of the UCN population present in the spectrometer, after each hour-long beta-counting cycle. By including a neutron reflecting shutter the leading uncertainty in polarimetry measurements prior to 2011, resulting from the residual background population, was reduced to near zero. However, this modification also introduces new systematic corrections, requiring new run types to quantify. Among these corrections are effects from the spin flipper efficiency, spectral velocity conditioning, and depolarization feeding. We will review the analytic underpinning for these contributions, discuss additional measurements required to quantify these parameters, and present a Monte-Carlo analysis to determine the corrected depolarized fraction, and associated uncertainty. Supported by NSF and DOE.

  8. Proton detection in the neutron lifetime experiment PENeLOPE

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, Christian [Technische Universitaet Muenchen, Physik Department E18 (Germany); Collaboration: PENeLOPE-Collaboration

    2015-07-01

    Although neutron lifetime plays an important role in the Standard Model of particle physics, τ{sub n} is not very precisely know and often discussed. The official PDG mean value has been lowered during the last years by more than 6σ to the new value of 880.3 ± 1.1 s. The new precision experiment PENeLOPE, which is currently developed at Technische Universitaet Muenchen, will help to clear this up. Ultra-cold neutrons are lossless stored in a magneto-gravitational trap, formed by superconducting coils. The combined determination of τ{sub n} by counting the surviving neutrons after each storage cycle on one side and in-situ detection of the decay protons on the other side together with a very good handle on systematic errors leads to an unprecedented precision of the neutron lifetime value of 0.1s. This contribution will give an overview of the challenges concerning proton detection under the exceptional requirements of this experiment. The developed concept of using avalanche photodiodes for direct proton detection will be presented as well as results from first measurements with a prototype detector read out by particular developed electronics.

  9. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons; Etude de la production de faisceaux riches en neutrons par fission induite par neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Ch

    2000-09-15

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons.

  10. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  11. Modeling and Optimizing RF Multipole Ion Traps

    Science.gov (United States)

    Fanghaenel, Sven; Asvany, Oskar; Schlemmer, Stephan

    2016-06-01

    Radio frequency (rf) ion traps are very well suited for spectroscopy experiments thanks to the long time storage of the species of interest in a well defined volume. The electrical potential of the ion trap is determined by the geometry of its electrodes and the applied voltages. In order to understand the behavior of trapped ions in realistic multipole traps it is necessary to characterize these trapping potentials. Commercial programs like SIMION or COMSOL, employing the finite difference and/or finite element method, are often used to model the electrical fields of the trap in order to design traps for various purposes, e.g. introducing light from a laser into the trap volume. For a controlled trapping of ions, e.g. for low temperature trapping, the time dependent electrical fields need to be known to high accuracy especially at the minimum of the effective (mechanical) potential. The commercial programs are not optimized for these applications and suffer from a number of limitations. Therefore, in our approach the boundary element method (BEM) has been employed in home-built programs to generate numerical solutions of real trap geometries, e.g. from CAD drawings. In addition the resulting fields are described by appropriate multipole expansions. As a consequence, the quality of a trap can be characterized by a small set of multipole parameters which are used to optimize the trap design. In this presentation a few example calculations will be discussed. In particular the accuracy of the method and the benefits of describing the trapping potentials via multipole expansions will be illustrated. As one important application heating effects of cold ions arising from non-ideal multipole fields can now be understood as a consequence of imperfect field configurations.

  12. The construction of TRIGA-TRAP and direct high-precision Penning trap mass measurements on rare-earth elements and americium

    Energy Technology Data Exchange (ETDEWEB)

    Ketelaer, Jens

    2010-06-14

    The construction of TRIGA-TRAP and direct high-precision Penning trap mass measurements on rare-earth elements and americium: Nuclear masses are an important quantity to study nuclear structure since they reflect the sum of all nucleonic interactions. Many experimental possibilities exist to precisely measure masses, out of which the Penning trap is the tool to reach the highest precision. Moreover, absolute mass measurements can be performed using carbon, the atomic-mass standard, as a reference. The new double-Penning trap mass spectrometer TRIGA-TRAP has been installed and commissioned within this thesis work, which is the very first experimental setup of this kind located at a nuclear reactor. New technical developments have been carried out such as a reliable non-resonant laser ablation ion source for the production of carbon cluster ions and are still continued, like a non-destructive ion detection technique for single-ion measurements. Neutron-rich fission products will be available by the reactor that are important for nuclear astrophysics, especially the r-process. Prior to the on-line coupling to the reactor, TRIGA-TRAP already performed off-line mass measurements on stable and long-lived isotopes and will continue this program. The main focus within this thesis was on certain rare-earth nuclides in the well-established region of deformation around N {proportional_to} 90. Another field of interest are mass measurements on actinoids to test mass models and to provide direct links to the mass standard. Within this thesis, the mass of {sup 241}Am could be measured directly for the first time. (orig.)

  13. Neutron Scattering Investigations of Correlated Electron Systems and Neutron Instrumentation

    DEFF Research Database (Denmark)

    Holm, Sonja Lindahl

    are a unique probe for studying the atomic and molecular structure and dynamics of materials. Even though neutrons are very expensive to produce, the advantages neutrons provide overshadow the price. As neutrons interact weakly with materials compared to many other probes, e.g. electrons or photons......, it is possible to make a neutron scattering experiment through sample environment equipment like cryostats or pressure cells. Another advantage of neutron experiments is that the wavelength and energy of the neutron match the inter-atomic distances and basic excitations of solid materials. The scattering cross...... magnetism. This is in contrast to what is observed as the critical temperature is slightly lower for this system compared to other co-doped systems, suggesting that the magnetic and superconducting phases co-exist. A published manuscript describes the study of magnetic and superconducting properties of Ba...

  14. Neutron-gamma competition for $\\beta$-delayed neutron emission

    CERN Document Server

    Mumpower, Matthew; Moller, Peter

    2016-01-01

    We present a coupled Quasi-particle Random Phase Approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nuclear structure information which starts with Gamow-Teller strength distributions in the daughter nucleus, and then follows the statistical decay until the initial available excitation energy is exhausted. Explicitly included at each particle emission stage is $\\gamma$-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-gamma competition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. A second consequence of this formalism is a prediction of more neutrons on average being emitted after $\\beta$-decay for nuclei near the neutron dripline compared to models that do not consider the statistical decay.

  15. Status and Outlook of CHIP-TRAP: the Central Michigan University High Precision Penning Trap

    CERN Document Server

    Redshaw, Matthew; Hawks, Paul; Gamage, Nadeesha D; Hunt, Curtis; Kandegedara, Rathnayake M E B; Ratnayake, Ishara S; Sharp, Lance

    2015-01-01

    At Central Michigan University we are developing a high-precision Penning trap mass spectrometer (CHIP-TRAP)that will focus on measurements with long-lived radioactive isotopes. CHIP-TRAP will consist of a pair of hyperbolic precision-measurement Penning traps, and a cylindrical capture/?filter trap in a 12 T magnetic field. Ions will be produced by external ion sources, including a laser ablation source, and transported to the capture trap at low energies enabling ions of a given m=q ratio to be selected via their time-of-flight. In the capture trap, contaminant ions will be removed with a mass-selective rf dipole excitation and the ion of interest will be transported to the measurement traps. A phase-sensitive image charge detection technique will be used for simultaneous cyclotron frequency measurements on single ions in the two precision traps, resulting in a reduction in statistical uncertainty due to magnetic field fluctuations.

  16. Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap

    CERN Document Server

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Kurchaninov, L; Jonsell, S; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-01-01

    Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilated. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly-identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antipr...

  17. Fast neutron imaging device and method

    Science.gov (United States)

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  18. Progress of Neutron Bubble Detectors in CIAE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Neutron bubble detector is the only personal neutron dosimeter which has adequate neutronsensitivity to meet the implications of the ICRP 60 recommendations for neutron dosimetry. It canmonitor the wide range of neutron energy, for example 100 eV to 10 MeV And it becomes a significanttool for neutron dose monitoring at the environment of nuclear energy.

  19. Measurement of neutron scattering lengths using neutron interferometry

    Science.gov (United States)

    Shahi, Chandra B.

    This thesis describes the details on building a new Neutron Interferometry and Optics Facility (NIOFa), the measurement of the incoherent neutron scattering length bi of 3He, and the measurement of the coherent neutron scattering length bc of 4He at National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). A new monochromatic beamline and facility has been installed at the NCNR devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. This new facility, NIOFa, is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The measurement of the incoherent neutron scattering length bi of 3He was done using a (220) single silicon crystal skew symmetric interferometer. This experiment requires both a polarized beam and a polarized target. We report bi = -2.35 +/- 0.014 (stat.) +/- 0.014 (syst.). This experiment is a revision of the previous experiment which was done in 2008, and partially explains the non-zero phase shift seen in 2008 experiment even if target cell was completely unpolarized. The measurement of the coherent neutron scattering length b c of the 4He was done using a (111) single silicon crystal interferometer. The neutron interferometry and optics facility at NIST had been used previously to determine the coherent scattering lengths for n- 1H, n-2H, and n-3He to less than 1% relative uncertainty. We report bc of the 4He

  20. Neutron electric polarizability

    CERN Document Server

    Alexandru, Andrei

    2009-01-01

    We use the background field method to extract the "connected" piece of the neutron electric polarizability. We present results for quenched simulations using both clover and Wilson fermions and discuss our experience in extracting the mass shifts and the challenges we encountered when we lowered the quark mass. For the neutron we find that as the pion mass is lowered below $500\\MeV$, the polarizability starts rising in agreement with predictions from chiral perturbation theory. For our lowest pion mass, $m_\\pi=320\\MeV$, we find that $\\alpha_n = 3.8(1.3)\\times 10^{-4}\\fm^3$, which is still only one third of the experimental value. We also present results for the neutral pion; we find that its polarizability turns negative for pion masses smaller than $500\\MeV$ which is puzzling.

  1. Neutron beam measurement dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  2. Neutron Scattering Stiudies

    Energy Technology Data Exchange (ETDEWEB)

    Kegel, Gunter H.R.; Egan, James J

    2007-04-18

    This project covers four principal areas of research: Elastic and inelastic neutron scattering studies in odd-A terbium, thulium and other highly deformed nuclei near A=160 with special regard to interband transitions and to the investigation of the direct-interaction versus the compound-nucleus excitation process in these nuclei. Examination of new, fast photomultiplier tubes suitable for use in a miniaturized neutron-time-of-flight spectrometer. Measurement of certain inelastic cross sections of 238U. Determination of the multiplicity of prompt fission gamma rays in even-A fissile actinides. Energies and mean lives of fission isomers produced by fast fission of even-Z, even-A actinides. Study of the mean life of 7Be in different host matrices and its possible astro-physical significance.

  3. Neutrons from Antiproton Irradiation

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael; Petersen, Jørgen B.B.

    Background: Radiotherapy with Antiprotons is currently investigated by the AD-4/ACE collaboration. The hypothesis is that the additional energy released from the antiprotons annihilating at the target nuclei can enable a reduced dose in the entry channel of the primary beam. Furthermore an enhanced...... relative biological effect (RBE) has already been beam measured in spread out Bragg peaks of antiprotons, relative to that found in the plateau region. However, the antiproton annihilation process is associated with a substantial release of secondary particles which contribute to the dose outside...... the neutron spectrum. Additionally, we used a cylindrical polystyrene loaded with several pairs of thermoluminescent detectors containing Lithium-6 and Lithium-7, which effectively detects thermalized neutrons. The obtained results are compared with FLUKA imulations. Results: The results obtained...

  4. High-accuracy mass measurements of neutron-rich Kr isotopes

    CERN Document Server

    Delahaye, P; Blaum, K; Carrel, F; George, S; Herfurth, F; Herlert, A; Kellerbauer, A G; Kluge, H J; Lunney, D; Schweikhard, L; Yazidjian, C

    2006-01-01

    The atomic masses of the neutron-rich krypton isotopes 84,86-95Kr have been determined with the tandem Penning trap mass spectrometer ISOLTRAP with uncertainties ranging from 20 to 220 ppb. The masses of the short-lived isotopes 94Kr and 95Kr were measured for the first time. The masses of the radioactive nuclides 89Kr and 91Kr disagree by 4 and 6 standard deviations, respectively, from the present Atomic-Mass Evaluation database. The resulting modification of the mass surface with respect to the two-neutron separation energies as well as implications for mass models and stellar nucleosynthesis are discussed.

  5. Neutron Transport Simulations for NIST Neutron Lifetime Experiment

    Science.gov (United States)

    Li, Fangchen; BL2 Collaboration Collaboration

    2016-09-01

    Neutrons in stable nuclei can exist forever; a free neutron lasts for about 15 minutes on average before it beta decays to a proton, an electron, and an antineutrino. Precision measurements of the neutron lifetime test the validity of weak interaction theory and provide input into the theory of the evolution of light elements in the early universe. There are two predominant ways of measuring the neutron lifetime: the bottle method and the beam method. The bottle method measures decays of ultracold neutrons that are stored in a bottle. The beam method measures decay protons in a beam of cold neutrons of known flux. An improved beam experiment is being prepared at the National Institute of Science and Technology (Gaithersburg, MD) with the goal of reducing statistical and systematic uncertainties to the level of 1 s. The purpose of my studies was to develop computer simulations of neutron transport to determine the beam collimation and study the neutron distribution's effect on systematic effects for the experiment, such as the solid angle of the neutron flux monitor. The motivation for the experiment and the results of this work will be presented. This work was supported, in part, by a Grant to Gettysburg College from the Howard Hughes Medical Institute through the Precollege and Undergraduate Science Education Program.

  6. High-resolution neutron microtomography with noiseless neutron counting detector

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Feller, W.B. [Nova Scientific Inc., 10 Picker Road, Sturbridge, MA 01566 (United States); Lehmann, E. [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Butler, L.G. [Louisiana State University, Baton Rouge, LA 70803 (United States); Dawson, M. [Helmholtz Centre Berlin for Materials and Energy (Germany)

    2011-10-01

    The improved collimation and intensity of thermal and cold neutron beamlines combined with recent advances in neutron imaging devices enable high-resolution neutron radiography and microtomography, which can provide information on the internal structure of objects not achievable with conventional X-ray imaging techniques. Neutron detection efficiency, spatial and temporal resolution (important for the studies of dynamic processes) and low background count rate are among the crucial parameters defining the quality of radiographic images and tomographic reconstructions. The unique capabilities of neutron counting detectors with neutron-sensitive microchannel plates (MCPs) and with Timepix CMOS readouts providing high neutron detection efficiency ({approx}70% for cold neutrons), spatial resolutions ranging from 15 to 55 {mu}m and a temporal resolution of {approx}1 {mu}s-combined with the virtual absence of readout noise-make these devices very attractive for high-resolution microtomography. In this paper we demonstrate the capabilities of an MCP-Timepix detection system applied to microtomographic imaging, performed at the ICON cold neutron facility of the Paul Scherrer Institute. The high resolution and the absence of readout noise enable accurate reconstruction of texture in a relatively opaque wood sample, differentiation of internal tissues of a fly and imaging of individual {approx}400 {mu}m grains in an organic powder encapsulated in a {approx}700 {mu}m thick metal casing.

  7. Neutrons in the moon. [neutron flux and production rate calculations

    Science.gov (United States)

    Kornblum, J. J.; Fireman, E. L.; Levine, M.; Aronson, A.

    1973-01-01

    Neutron fluxes for energies between 15 MeV and thermal at depths of 0 to 300 g/sq cm in the moon are calculated by the discrete ordinate mathod with the ANISN code. With the energy spectrum of Lingenfelter et al. (1972). A total neutron-production rate for the moon of 26 plus or minus neutrons/sq cm sec is determined from the Ar-37 activity measurements in the Apollo 16 drill string, which are found to have a depth dependence in accordance with a neutron source function that decreases exponentially with an attenuation length of 155 g/sq cm.

  8. Are there good probes for the di-neutron correlation in light neutron-rich nuclei?

    CERN Document Server

    Hagino, K

    2015-01-01

    The di-neutron correlation is a spatial correlation with which two valence neutrons are located at a similar position inside a nucleus. We discuss possible experimental probes for the di-neutron correlation. This includes the Coulomb breakup and the pair transfer reactions of neutron-rich nuclei, and the direct two-neutron decays of nuclei beyond the neutron drip-line.

  9. Bose condensation in (random traps

    Directory of Open Access Journals (Sweden)

    V.A. Zagrebnov

    2009-01-01

    Full Text Available We study a non-interacting (perfect Bose-gas in random external potentials (traps. It is shown that a generalized Bose-Einstein condensation in the random eigenstates manifests if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose-gas. Moreover, we prove that the amounts of both condensate densities are equal. This statement is relevant for justification of the Bogoliubov approximation} in the theory of disordered boson systems.

  10. Neutrons are flying

    CERN Multimedia

    2000-01-01

    View of the n_TOF tube with members of the design and construction team of the facility(from left to right: R. Magnin/LHC, E. Radermacher/EP, P. Cennini/EP and R. Cappi/PS). A new experimental facility was inaugurated at CERN on Wednesday 8 November. The neutron Time Of Flight (n_TOF) facility received its first protons from the PS at 10:55. With an intensity of 1 x 1011 protons per cycle on the n_TOF target, an intense neutron beam has been produced at CERN for the first time, opening the door to many new avenues of research including, for example, neutron induced cross-section measurements. The facility is an offspring of the work by Carlo Rubbia and his group on the novel idea of an Energy Amplifier. The basic idea was successfully tested at the PS with the FEAT experiment and later with the TARC experiment, where the feasibility of transmutation of long-lived products by Adiabatic Resonance Crossing (ARC) was confirmed. This led to the possibility of radio-isotope production for medical applications, fo...

  11. Neutron instrumentation for biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, S.A. [Institut Laue-Langevin, Grenoble (France)

    1994-12-31

    In the October 1994 round of proposals at the ILL, the external biology review sub- committee was asked to allocate neutron beam time to a wide range of experiments, on almost half the total number of scheduled neutron instruments: on 3 diffractometers, on 3 small angle scattering instruments, and on some 6 inelastic scattering spectrometers. In the 3.5 years since the temporary reactor shutdown, the ILL`s management structure has been optimized, budgets and staff have been trimmed, the ILL reactor has been re-built, and many of the instruments up-graded, many powerful (mainly Unix) workstations have been introduced, and the neighboring European Synchrotron Radiation Facility has established itself as the leading synchrotron radiation source and has started its official user program. The ILL reactor remains the world`s most intense dedicated neutron source. In this challenging context, it is of interest to review briefly the park of ILL instruments used to study the structure and energetics of small and large biological systems. A brief summary will be made of each class of experiments actually proposed in the latest ILL proposal round.

  12. Correction for hole trapping in AGATA detectors using pulse shape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [CEA Saclay, DSM/IRFU/SPhN, Gif-sur-Yvette Cedex (France); Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Birkenbach, B.; Eberth, J.; Hess, H.; Pascovici, Gh.; Reiter, P.; Wiens, A. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Bazzacco, D.; Farnea, E.; Michelagnoli, C.; Recchia, F. [INFN, Sezione di Padova, Padova (Italy); Collaboration: for the AGATA Collaboration

    2013-05-15

    Data from the highly segmented High-Purity Germanium (HPGe) detectors of the AGATA spectrometer show that segments are more sensitive to neutron damage than the central core contact. Calculations on the collection efficiency of charge carriers inside the HPGe detector were performed in order to understand this phenomenon. The trapping sensitivity, an expression based on the collection efficiencies for electrons and holes, is put forward to quantify the effect of charge carrier trapping. The sensitivity is evaluated for each position in the detector volume with respect to the different electrodes and the collected charge carrier type. Using the position information obtained by pulse shape analysis from the position-sensitive AGATA detectors, it is possible to correct for the energy deficit employing detector specific sensitivity values. We report on the successful correction of the energy peaks from heavily neutron-damaged AGATA detectors for core and segment electrode signals. The original energy resolution can optimally be recovered up to a certain quantifiable limit of degradation due to statistical fluctuations caused by trapping effects. (orig.)

  13. Tritium trapping states induced by lithium-depletion in Li2TiO3

    Science.gov (United States)

    Kobayashi, Makoto; Oya, Yasuhisa; Okuno, Kenji

    2017-04-01

    Identifications of tritium trapping states in neutron-irradiated Li1.8TiO2.9 (lithium-depleted Li2TiO3) were carried out by the out-of-pile tritium release behavior. Tritium release behaviors for neutron-irradiated Li2TiO3 and tritium gas-exposed TiO2 were also measured for comparison. Among the tritium release spectra for these samples, three tritium release peaks were appeared. By the kinetic analyses of tritium release behaviors, the Arrhenius parameters for three peaks were evaluated. Especially for Li1.8TiO2.9, there were two tritium release peaks, and the peak in lower temperature region was assigned to the tritium release controlled by the diffusion process in Li2TiO3 structure. The other tritium release peak, which was hardly appeared for Li2TiO3, was assigned to the release of tritium trapped as hydroxyl groups in Li1.8TiO2.9, indicating that lithium-depletion would result in the formation of hydroxyl groups in Li2TiO3. Lithium vacancies existed in Li2TiO3 crystal structure would promote the tritium trapping as hydroxyl groups due to the decreased charge repulsion between lithium ions and tritium ion, resulting in the difficulty of recovering tritium from Li2TiO3 effectively.

  14. Euratom Neutron Radiography Working Group

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    In 1979 a Neutron Radiography Working Group (NRWG) was constituted within Buratom with the participation of all centers within the European Community at which neutron facilities were available. The main purpose of NRWG was to standardize methods and procedures used in neutron radiography of nuclear...... reactor fuel as well as establish standards for radiographic image quality of neutron radiographs. The NRWG meets once a year in each of the neutron radiography centers to review the progress made and draw plans for the future. Besides, ad-hoc sub-groups or. different topics within the field of neutron...... radiography are constituted. This paper reviews the activities and achievements of the NRWG and its sub-groups....

  15. Neutron background estimates in GESA

    Directory of Open Access Journals (Sweden)

    Fernandes A.C.

    2014-01-01

    Full Text Available The SIMPLE project looks for nuclear recoil events generated by rare dark matter scattering interactions. Nuclear recoils are also produced by more prevalent cosmogenic neutron interactions. While the rock overburden shields against (μ,n neutrons to below 10−8 cm−2 s−1, it itself contributes via radio-impurities. Additional shielding of these is similar, both suppressing and contributing neutrons. We report on the Monte Carlo (MCNP estimation of the on-detector neutron backgrounds for the SIMPLE experiment located in the GESA facility of the Laboratoire Souterrain à Bas Bruit, and its use in defining additional shielding for measurements which have led to a reduction in the extrinsic neutron background to ∼ 5 × 10−3 evts/kgd. The calculated event rate induced by the neutron background is ∼ 0,3 evts/kgd, with a dominant contribution from the detector container.

  16. An introduction to the trapping of clusters with ion traps and electrostatic storage devices

    Energy Technology Data Exchange (ETDEWEB)

    Bredy, R; Bernard, J; Chen, L; Montagne, G; Li, B; Martin, S [Universite de Lyon, F-69622, Lyon (France); Universite Lyon 1, Villeurbanne (France); CNRS, UMR 5579, LASIM (France)

    2009-08-14

    This paper presents an introduction to the application of ion traps and storage devices for cluster physics. Some experiments involving cluster ions in trapping devices such as Penning traps, Paul traps, quadrupole or multipole linear traps are briefly discussed. Electrostatic ion storage rings and traps which allow for the storage of fast ion beams without mass limitation are presented as well. We also report on the recently developed mini-ring, a compact electrostatic ion storage ring for cluster, molecular and biomolecular ion studies. (review)

  17. Neutron Imaging by Boric Acid

    CERN Document Server

    Cardone, Fabio; Perconti, Walter; Petrucci, Andrea; Rosada, Alberto

    2013-01-01

    In this paper a new type of passive neutron detector based on the already existing one, CR39, is described. Its operation was verified by three different neutron sources: an Americium-Beryllium (Am241-Be) source; a TRIGA type nuclear reactor; and a fast neutron reactor called TAPIRO. The obtained results, reported here, positively confirm its operation and the accountability of the new developed detecting technique.

  18. Polaronic trapping in magnetic semiconductors

    Science.gov (United States)

    Raebiger, Hannes

    2012-02-01

    GaN doped with iron is an interesting candidate material for magnetic semiconductors, as p-d coupling between the localized Fe-d and extended N-p hole states is expected to facilitate long-range ferromagnetic alignment of the Fe spins [1]. This picture of extended states in GaN:Fe, however, falls apart due to a polaronic localization of the hole carriers nearby the Fe impurities. To elucidate the carrier localization in GaN:Fe and related iron doped III-V semiconductors, I present a systematic study using self-interaction corrected density-functional calculations [2]. These calculations predict three distinct scenarios. (i) Some systems do sustain extended host-like hole states, (ii) some exhibit polaronic trapping, (iii) and some exhibit carrier trapping at Fe-d orbitals. These behaviors are described in detail to give an insight as to how to distinguish them experimentally. I thank T. Fujita, C. Echeverria-Arrondo, and A. Ayuela for their collaboration.[4pt] [1] T. Dietl et al, Science, 287, 1019 (2000).[0pt] [2] S. Lany and A. Zunger, Phys. Rev. B, 80, 085202 (2009).

  19. NEUTRON IMAGING, RADIOGRAPHY AND TOMOGRAPHY.

    Energy Technology Data Exchange (ETDEWEB)

    SMITH,G.C.

    2002-03-01

    Neutrons are an invaluable probe in a wide range of scientific, medical and commercial endeavors. Many of these applications require the recording of an image of the neutron signal, either in one-dimension or in two-dimensions. We summarize the reactions of neutrons with the most important elements that are used for their detection. A description is then given of the major techniques used in neutron imaging, with emphasis on the detection media and position readout principle. Important characteristics such as position resolution, linearity, counting rate capability and sensitivity to gamma-background are discussed. Finally, the application of a subset of these instruments in radiology and tomography is described.

  20. Centrifugal quantum states of neutrons

    Science.gov (United States)

    Nesvizhevsky, V. V.; Petukhov, A. K.; Protasov, K. V.; Voronin, A. Yu.

    2008-09-01

    We propose a method for observation of the quasistationary states of neutrons localized near a curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror Fermi potential. This phenomenon is an example of an exactly solvable “quantum bouncer” problem that can be studied experimentally. It could provide a promising tool for studying fundamental neutron-matter interactions, as well as quantum neutron optics and surface physics effects. We develop a formalism that describes quantitatively the neutron motion near the mirror surface. The effects of mirror roughness are taken into account.

  1. Ukraine experimental neutron source facility.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Bolshinsky, I.; Nekludov, I.; Karnaukhov, I. (Nuclear Engineering Division); (INL); (Kharkov Institute of Physics and Technology)

    2008-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an experimental neutron source facility. The facility has been developed for producing medical isotopes, training young nuclear professionals, supporting the Ukraine nuclear industry, providing capability for performing reactor physics, material research, and basic science experiments. Argonne National Laboratory (ANL) of USA is collaborating with KIPT on developing this facility. A driven subcritical assembly utilizing the KIPT electron accelerator with a target assembly is used to generate the neutron source. The target assembly utilizes tungsten or uranium for neutron production through photonuclear reactions with 100-KW of electron beam power. The neutron source intensity, spectrum, and spatial distribution have been studied to maximize the neutron yield and satisfy different engineering requirements. The subcritical assembly is designed to obtain the highest possible neutron flux intensity with a subcriticality of 0.98. Low enrichment uranium is used for the fuel material because it enhances the neutron source performance. Safety, reliability, and environmental considerations are included in the facility conceptual design. Horizontal neutron channels are incorporated for performing basic research including cold neutron source. This paper describes the conceptual design and summarizes some of the related analyses.

  2. Ultra-Cold Neutrons (UCN)

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers working at the Los Alamos Neutron Science Center and eight other member institutions of an international collaboration are constructing the most intense...

  3. Reactor neutrons in nuclear astrophysics

    Science.gov (United States)

    Reifarth, René; Glorius, Jan; Göbel, Kathrin; Heftrich, Tanja; Jentschel, Michael; Jurado, Beatriz; Käppeler, Franz; Köster, Ulli; Langer, Christoph; Litvinov, Yuri A.; Weigand, Mario

    2017-09-01

    The huge neutron fluxes offer the possibility to use research reactors to produce isotopes of interest, which can be investigated afterwards. An example is the half-lives of long-lived isotopes like 129I. A direct usage of reactor neutrons in the astrophysical energy regime is only possible, if the corresponding ions are not at rest in the laboratory frame. The combination of an ion storage ring with a reactor and a neutron guide could open the path to direct measurements of neutron-induced cross sections on short-lived radioactive isotopes in the astrophysically interesting energy regime.

  4. Measurement of neutron diffraction with compact neutron source RANS

    Science.gov (United States)

    Ikeda, Y.; Takamura, M.; Taketani, A.; Sunaga, H.; Otake, Y.; Suzuki, H.; Kumagai, M.; Oba, Y.; Hama, T.

    2016-11-01

    Diffraction is used as a measurement technique for crystal structure. X-rays or electron beam with wavelength that is close to the lattice constant of the crystal is often used for the measurement. They have sensitivity in surface (0.01mm) of heavy metals due to the mean free path for heavy ions. Neutron diffraction has the probe of the internal structure of the heavy metals because it has a longer mean free path than that of the X-rays or the electrons. However, the neutron diffraction measurement is not widely used because large facilities are required in the many neutron sources. RANS (Riken Accelerator-driven Compact Neutron Source) is developed as a neutron source which is usable easily in laboratories and factories. In RANS, fast neutrons are generated by 7MeV protons colliding on a Be target. Some fast neutrons are moderated with polyethylene to thermal neutrons. The thermal neutrons of 10meV which have wavelength of 10nm can be used for the diffraction measurement. In this study, the texture evolution in steels was measured with RANS and the validity of the compact neutron source was proved. The texture of IF steel sheets with the thickness of 1.0mm was measured with 10minutes run. The resolution is 2% and is enough to analyze a evolution in texture due to compression/tensile deformation or a volume fraction of two phases in the steel sample. These results have proven the possibility to use compact neutron source for the analysis of mesoscopic structure of metallic materials.

  5. Case Study: Trap Crop with Pheromone Traps for Suppressing Euschistus servus (Heteroptera: Pentatomidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available The brown stink bug, Euschistus servus (Say, can disperse from source habitats, including corn, Zea mays L., and peanut, Arachis hypogaea L., into cotton, Gossypium hirsutum L. Therefore, a 2-year on-farm experiment was conducted to determine the effectiveness of a sorghum (Sorghum bicolor (L. Moench spp. bicolor trap crop, with or without Euschistus spp. pheromone traps, to suppress dispersal of this pest to cotton. In 2004, density of E. servus was lower in cotton fields with sorghum trap crops (with or without pheromone traps compared to control cotton fields. Similarly, in 2006, density of E. servus was lower in cotton fields with sorghum trap crops and pheromone traps compared to control cotton fields. Thus, the combination of the sorghum trap crop and pheromone traps effectively suppressed dispersal of E. servus into cotton. Inclusion of pheromone traps with trap crops potentially offers additional benefits, including: (1 reducing the density of E. servus adults in a trap crop, especially females, to possibly decrease the local population over time and reduce the overwintering population, (2 reducing dispersal of E. servus adults from the trap crop into cotton, and (3 potentially attracting more dispersing E. servus adults into a trap crop during a period of time when preferred food is not prevalent in the landscape.

  6. Orientation of Culex mosquitoes to carbon dioxide-baited traps: flight manoeuvres and trapping efficiency.

    Science.gov (United States)

    Cooperband, M F; Cardé, R T

    2006-03-01

    Females of Culex quinquefasciatus Say and Culex tarsalis Coquillet (Diptera: Culicidae) in the host-seeking stage were released and video recorded in three dimensions in a large field wind tunnel as they flew to four kinds of CO2-baited mosquito traps. The trapping efficiency (number of mosquitoes approaching compared to the number caught) was determined for each trap type. The Encephalitis Virus Surveillance (EVS), Mosquito Magnet Freedom (MMF) and Mosquito Magnet Liberty (MML) traps captured only 13-16% of approaching Cx. quinquefasciatus females, whereas the Mosquito Magnet-X (MMX) trap captured 58%. Similar results were obtained for Cx. tarsalis. Orientation behaviour and flight parameters of mosquitoes approaching the four traps were compared. Mosquitoes spent the most time orienting to the EVS trap. Flight speed decreased as mosquitoes entered the vicinity of each trap and a large portion of their time was spent within 30 cm downwind of the traps. Flights became highly tortuous downwind of the poorly performing traps and just upwind of the MMX trap. Differences between traps and possible explanations for the superior performance of the MMX trap are considered.

  7. T-violation in neutron optics

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Y. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    Experimental method to detect a T-odd correlation term in neutron propagation through a nuclear target is discussed. The correlation term is between the neutron spin, neutron momentum and nuclear spin. (author)

  8. Fundamental physics research and neutron interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, A. [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1996-08-01

    The possibility of the use of an extremely sensitive neutron interferometry technique for the study of electromagnetic structure of the neutron and the parity non-conservative effects in neutron spin rotation is discussed. (author)

  9. The MSL-110 small sediment trap

    Science.gov (United States)

    Lukashin, V. N.; Klyuvitkin, A. A.; Lisitzin, A. P.; Novigatsky, A. N.

    2011-08-01

    A simple construction of the MSL-110 sediment trap developed at the Laboratory of Physical-Geological Research of the Shirshov Institute of Oceanology, Russian Academy of Sciences, is presented. The trap is easily assembled from standard parts available at stores. The trap is easy to use, reliable, and inexpensive. It is applied for determination of sedimentary matter fluxes and their components in water columns of seas, lakes, and other water reservoirs.

  10. Magneto-optical trap for polar molecules.

    Science.gov (United States)

    Stuhl, Benjamin K; Sawyer, Brian C; Wang, Dajun; Ye, Jun

    2008-12-12

    We propose a method for laser cooling and trapping a substantial class of polar molecules and, in particular, titanium (II) oxide (TiO). This method uses pulsed electric fields to nonadiabatically remix the ground-state magnetic sublevels of the molecule, allowing one to build a magneto-optical trap based on a quasicycling J' = J'' -1 transition. Monte Carlo simulations of this electrostatically remixed magneto-optical trap demonstrate the feasibility of cooling TiO to a temperature of 10 micrpK and trapping it with a radiation-pumping-limited lifetime on the order of 80 ms.

  11. Exploration of Subtle Trap in Jiyang Depression

    Institute of Scientific and Technical Information of China (English)

    LiPilong; ZhangShanwen; XiaoHuanqin; WangYongshi; QiuGuiqiang

    2004-01-01

    This article analyses the procedure of exploration of the Tertiary subtle trap in Jiyang depression and divides the Tertiary subtle trap into 3 types (lithologic reservoir, stratigraphic reservoir and fractured reservoir) and 8 groups, then summarizes the common feature and founding discipline of the subtle trap and finds 4 accumulating modes including steep slope mode, depression mode, center anticline mode and gentle slope mode. Its main exploration methods are explicated from the viewpoint of reservoir geological modeling, description of recognizing traps and comprehensive evaluation of reservoir and so on.

  12. Ion trapping for quantum information processing

    Institute of Scientific and Technical Information of China (English)

    WAN Jin-yin; WANG Yu-zhu; LIU Liang

    2007-01-01

    In this paper we have reviewed the recent pro-gresses on the ion trapping for quantum information process-ing and quantum computation. We have first discussed the basic principle of quantum information theory and then fo-cused on ion trapping for quantum information processing.Many variations, especially the techniques of ion chips, have been investigated since the original ion trap quantum compu-tation scheme was proposed. Full two-dimensional control of multiple ions on an ion chip is promising for the realization of scalable ion trap quantum computation and the implemen-tation of quantum networks.

  13. Enhanced Magnetic Trap Loading for Atomic Strontium

    OpenAIRE

    Barker, D.S.; Reschovsky, B. J.; Pisenti, N. C.; Campbell, G. K.

    2015-01-01

    We report on a technique to improve the continuous loading of atomic strontium into a magnetic trap from a Magneto-Optical Trap (MOT). This is achieved by adding a depumping laser tuned to the 3P1 to 3S1 (688-nm) transition. The depumping laser increases atom number in the magnetic trap and subsequent cooling stages by up to 65 % for the bosonic isotopes and up to 30 % for the fermionic isotope of strontium. We optimize this trap loading strategy with respect to the 688-nm laser detuning, int...

  14. Laser spectroscopy of trapped Th^3+ ions

    Science.gov (United States)

    Steele, Adam; Campbell, Corey; Churchill, Layne; Depalatis, Michael; Naylor, David; Kuzmich, Alex; Chapman, Michael

    2008-05-01

    We are applying the techniques of laser cooling and ion trapping to investigate the low lying nuclear isomeric state in ^229Th. We will confine Th^3+ atoms in an RF trap [1] and sympathetically cool them with barium ions. The ions are produced by laser ablation from a thorium metal target by the third harmonic of a Q-switched YAG laser. Using mass-spectroscopic techniques we separate out the Th^3+ ions from the plume of ablation products. We once trapped we will observe fluorescence from the trapped ions using transitions at 984 nm and 690 nm. [1] Peik E. and Tamm Chr., Europhysics Letters, 61 (2) (2003)

  15. Some aspects of impurity trapping of muons

    CERN Document Server

    Karlsson, E

    1981-01-01

    Several aspects of muon trapping in metals have been studied during the last two years, but the situation is still far from clear. The precise nature of the traps as well as the mechanisms leading to trapping seem to require more detailed investigations than those carried out so far. This review contains therefore a certain number of ideas which should be regarded as working hypotheses rather than established facts or descriptions of positive muon behaviour. The author considers muons in FCC metals (Al:Mn and Cu), and impurity trapping in BCC metals (V, Nb, Ta, Fe). (21 refs).

  16. High Optical Access Trap 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-26

    The High Optical Access (HOA) trap was designed in collaboration with the Modular Universal Scalable Ion-trap Quantum Computer (MUSIQC) team, funded along with Sandia National Laboratories through IARPA's Multi Qubit Coherent Operations (MQCO) program. The design of version 1 of the HOA trap was completed in September 2012 and initial devices were completed and packaged in February 2013. The second version of the High Optical Access Trap (HOA-2) was completed in September 2014 and is available at IARPA's disposal.

  17. Active Stabilization of Ion Trap Radiofrequency Potentials

    CERN Document Server

    Johnson, K G; Neyenhuis, B; Mizrahi, J; Monroe, C

    2016-01-01

    We actively stabilize the harmonic oscillation frequency of a laser-cooled atomic ion confined in a rf Paul trap by sampling and rectifying the high voltage rf applied to the trap electrodes. We are able to stabilize the 1 MHz atomic oscillation frequency to better than 10 Hz, or 10 ppm. This represents a suppression of ambient noise on the rf circuit by 34 dB. This technique could impact the sensitivity of ion trap mass spectrometry and the fidelity of quantum operations in ion trap quantum information applications.

  18. Calculating and measuring thermal neutrons exiting from neutron diffractometers collimators

    CERN Document Server

    Tafazolee, K

    2000-01-01

    process, effectiveness of them are studied for the enhancement of the available system. Final conclusion from the simulation process, indicates that the heavy water with the thickness of 50 to 60 cm. is the best moderator for gaining the better thermal neutrons flux for enhancement of P.N.D. in the T.R.R. Powder Neutron Diffractometer y (P.N.D.) is relatively good and practical way for identification of the 3 dimensional construction of materials. In order to exploit the capabilities of this method, in one of the neutron beam of the Tehran Research Reactor (T.R.R.), a collimator embedded inside the concrete wall, direct the neutrons produced in the core reactor towards a monochromator e. Neutrons having been monochromated by 2 nd collimator are then directed towards the sample. Then the pattern of diffracted neutrons from the sample are studied. In order to make the best out of it, neutrons coming to sit on the sample must be of the thermal type. That means the number/amount of thermal neutrons flux in compar...

  19. Probing neutron star physics using accreting neutron stars

    Directory of Open Access Journals (Sweden)

    Patruno A.

    2010-10-01

    Full Text Available We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars during quiescence. In the first part of this overview we show that the X-ray pulses are contaminated by a large amount of noise of uncertain origin, and that all these neutron stars do not show evidence of spin variations during the outburst. We present also some recent developments on the presence of intermittency in three accreting millisecond X-ray pulsars and investigate the reason why only a small number of accreting neutron stars show X-ray pulsations and why none of these pulsars shows sub-millisecond spin periods. In the second part of the overview we introduce the observational technique that allows the study of neutron star cooling in accreting systems as probes of neutron star internal composition and equation of state. We explain the phenomenon of the deep crustal heating and present some recent developments on several quasi persistent X-ray sources where a cooling neutron star has been observed.

  20. Sequential measurements of environmental neutron energy spectrum and neutron dose

    Energy Technology Data Exchange (ETDEWEB)

    Nunomiya, Tomoya; Nakamura, Takashi; Suzuki, Hiroyuki; Terunuma, Kazutaka; Hirabayashi, Naoya; Sato, Youichi; Abe, Sigeru; Rasolonjatovo A.H, Danielle [Tohoku Univ., Dept. of Quantum Science and Energy Engineering, Sendai, Miyagi (Japan)

    2003-03-01

    From April 2001, neutron energy spectra and neutron dose were sequentially measured using 5'' -rem counter and {sup 3}He multi-moderator spectrometer (Boner boll) at Kawauchi-campus of Tohoku University. These data were collected about the relation between the dose level and the solar activities. (author)

  1. Magnetic correlations in oxides: Neutron diffraction and neutron depolarization study

    Indian Academy of Sciences (India)

    S M Yusuf

    2008-10-01

    We have studied magnetic correlations in several oxide materials that belong to colossal magnetoresistive, naturally occurring layered oxide showing low-dimensional magnetic ordering, solid oxide fuel cell interconnect materials, and magnetic nanoparticles using neutron diffraction and neutron depolarization techniques. In this paper, an overview of some of these results is given.

  2. Synovectomy by Neutron capture; Sinovectomia por captura de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Torres M, C. [Centro Regional de Estudios Nucleares, Universidad Autonoma de Zacatecas, C. Cipres 10, Fracc. La Penuela, 98000 Zacatecas (Mexico)

    1998-12-31

    The Synovectomy by Neutron capture has as purpose the treatment of the rheumatoid arthritis, illness which at present does not have a definitive curing. This therapy requires a neutron source for irradiating the articulation affected. The energy spectra and the intensity of these neutrons are fundamental since these neutrons induce nuclear reactions of capture with Boron-10 inside the articulation and the freely energy of these reactions is transferred at the productive tissue of synovial liquid, annihilating it. In this work it is presented the neutron spectra results obtained with moderator packings of spherical geometry which contains in its center a Pu{sup 239} Be source. The calculations were realized through Monte Carlo method. The moderators assayed were light water, heavy water base and the both combination of them. The spectra obtained, the average energy, the neutron total number by neutron emitted by source, the thermal neutron percentage and the dose equivalent allow us to suggest that the moderator packing more adequate is what has a light water thickness 0.5 cm (radius 2 cm) and 24.5 cm heavy water (radius 26.5 cm). (Author)

  3. Time-resolved neutron imaging at ANTARES cold neutron beamline

    CERN Document Server

    Tremsin, A S; Tittelmeier, K; Schillinger, B; Schulz, M; Lerche, M; Feller, W B

    2015-01-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and...

  4. Application of imaging plate neutron detector to neutron radiography

    CERN Document Server

    Fujine, S; Kamata, M; Etoh, M

    1999-01-01

    As an imaging plate neutron detector (IP-ND) has been available for thermal neutron radiography (TNR) which has high resolution, high sensitivity and wide range, some basic characteristics of the IP-ND system were measured at the E-2 facility of the KUR. After basic performances of the IP were studied, images with high quality were obtained at a neutron fluence of 2 to 7x10 sup 8 n cm sup - sup 2. It was found that the IP-ND system with Gd sub 2 O sub 3 as a neutron converter material has a higher sensitivity to gamma-ray than that of a conventional film method. As a successful example, clear radiographs of the flat view for the fuel side plates with boron burnable poison were obtained. An application of the IP-ND system to neutron radiography (NR) is presented in this paper.

  5. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  6. A Single Laser Cooled Trapped 40Ca+ Ion in a Miniature Paul Trap

    Institute of Scientific and Technical Information of China (English)

    SHU Hua-Lin; GUAN Hua; HUANG Xue-Ren; LI Jiao-Mei; GAO Ke-Lin

    2005-01-01

    @@ We have observed the phenomenon of phase transition of a few trapped ions in a miniature Paul trap. Judging from the quantum jump signals, a single laser-cooled trapped Ca+ ion has been realized. The ion temperature is estimated to be 22mK. The result shows that the amplitude of ion micromotion is strongly dependent on the rf voltage.

  7. A toroidal trap for the cold $^{87}Rb$ atoms using a rf-dressed quadrupole trap

    CERN Document Server

    Chakraborty, A; Ram, S P; Tiwari, S K; Rawat, H S

    2015-01-01

    We demonstrate the trapping of cold $^{87}Rb$ atoms in a toroidal geometry using a rf-dressed quadrupole magnetic trap formed by superposing a strong radio frequency (rf) field on a quadrupole trap. This rf-dressed quadrupole trap has minimum of the potential away from the quadrupole trap centre on a circular path which facilitates the trapping in the toroidal geometry. In the experiments, the laser cooled atoms were first trapped in the quadrupole trap, then cooled evaporatively using a weak rf-field, and finally trapped in the rf-dressed quadrupole trap. The radius of the toroid could be varied by varying the frequency of the dressing rf-field. It has also been demonstrated that a single rf source and an antenna can be used for the rf-evaporative cooling as well as for rf-dressing of atoms. The atoms trapped in the toroidal trap may have applications in realization of an atom gyroscope as well as in studying the quantum gases in low dimensions.

  8. Nonlinear ion trap stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, Bogdan M; Visan, Gina G, E-mail: bmihal@infim.r [Institute for Laser, Plasma and Radiation Physics (INFLPR), Atomistilor Str. Nr. 409, 077125 Magurele-Bucharest, Jud. Ilfov (Romania)

    2010-09-01

    This paper investigates the dynamics of an ion confined in a nonlinear Paul trap. The equation of motion for the ion is shown to be consistent with the equation describing a damped, forced Duffing oscillator. All perturbing factors are taken into consideration in the approach. Moreover, the ion is considered to undergo interaction with an external electromagnetic field. The method is based on numerical integration of the equation of motion, as the system under investigation is highly nonlinear. Phase portraits and Poincare sections show that chaos is present in the associated dynamics. The system of interest exhibits fractal properties and strange attractors. The bifurcation diagrams emphasize qualitative changes of the dynamics and the onset of chaos.

  9. Neutrophil Extracellular Traps and Microcrystals

    Science.gov (United States)

    2017-01-01

    Neutrophil extracellular traps represent a fascinating mechanism by which PMNs entrap extracellular microbes. The primary purpose of this innate immune mechanism is thought to localize the infection at an early stage. Interestingly, the ability of different microcrystals to induce NET formation has been recently described. Microcrystals are insoluble crystals with a size of 1–100 micrometers that have different composition and shape. Microcrystals have it in common that they irritate phagocytes including PMNs and typically trigger an inflammatory response. This review is the first to summarize observations with regard to PMN activation and NET release induced by microcrystals. Gout-causing monosodium urate crystals, pseudogout-causing calcium pyrophosphate dehydrate crystals, cholesterol crystals associated with atherosclerosis, silicosis-causing silica crystals, and adjuvant alum crystals are discussed. PMID:28373994

  10. Neutrophil Extracellular Traps and Microcrystals.

    Science.gov (United States)

    Rada, Balázs

    2017-01-01

    Neutrophil extracellular traps represent a fascinating mechanism by which PMNs entrap extracellular microbes. The primary purpose of this innate immune mechanism is thought to localize the infection at an early stage. Interestingly, the ability of different microcrystals to induce NET formation has been recently described. Microcrystals are insoluble crystals with a size of 1-100 micrometers that have different composition and shape. Microcrystals have it in common that they irritate phagocytes including PMNs and typically trigger an inflammatory response. This review is the first to summarize observations with regard to PMN activation and NET release induced by microcrystals. Gout-causing monosodium urate crystals, pseudogout-causing calcium pyrophosphate dehydrate crystals, cholesterol crystals associated with atherosclerosis, silicosis-causing silica crystals, and adjuvant alum crystals are discussed.

  11. Neutrophil Extracellular Traps and Microcrystals

    Directory of Open Access Journals (Sweden)

    Balázs Rada

    2017-01-01

    Full Text Available Neutrophil extracellular traps represent a fascinating mechanism by which PMNs entrap extracellular microbes. The primary purpose of this innate immune mechanism is thought to localize the infection at an early stage. Interestingly, the ability of different microcrystals to induce NET formation has been recently described. Microcrystals are insoluble crystals with a size of 1–100 micrometers that have different composition and shape. Microcrystals have it in common that they irritate phagocytes including PMNs and typically trigger an inflammatory response. This review is the first to summarize observations with regard to PMN activation and NET release induced by microcrystals. Gout-causing monosodium urate crystals, pseudogout-causing calcium pyrophosphate dehydrate crystals, cholesterol crystals associated with atherosclerosis, silicosis-causing silica crystals, and adjuvant alum crystals are discussed.

  12. Handbook of neutron optics

    CERN Document Server

    Utsuro, Masahiko

    2010-01-01

    Written by authors with an international reputation, acknowledged expertise and teaching experience, this is the most up-to-date resource on the field. The text is clearly structured throughout so as to be readily accessible, and begins by looking at scattering of a scalar particle by one-dimensional systems. The second section deals with the scattering of neutrons with spin in one-dimensional potentials, while the third treats dynamical diffraction in three-dimensional periodic media. The final two sections conclude with incoherent and small angle scattering, and some problems of quantum mech

  13. Advanced Neutron Spectrometer

    Science.gov (United States)

    Christl, Mark; Dobson, Chris; Norwood, Joseph; Kayatin, Matthew; Apple, Jeff; Gibson, Brian; Dietz, Kurt; Benson, Carl; Smith, Dennis; Howard, David; hide

    2013-01-01

    Energetic neutron measurements remain a challenge for space science investigations and radiation monitoring for human exploration beyond LEO. We are investigating a new composite scintillator design that uses Li6 glass scintillator embedded in a PVT block. A comparison between Li6 and Boron 10 loaded scintillators are being studied to assess the advantages and shortcomings of these two techniques. We present the details of the new Li6 design and results from the comparison of the B10 and Li6 techniques during exposures in a mixed radiation field produced by high energy protons interacting in a target material.

  14. On Magnetized Neutron Stars

    CERN Document Server

    Lopes, Luiz L

    2014-01-01

    In this work we review the formalism normally used in the literature about the effects of density-dependent magnetic fields on the properties of neutron stars, expose some ambiguities that arise and propose a way to solve the related problem. Our approach uses a different prescription for the calculation of the pressure based on the chaotic field formalism for the stress tensor and also a different way of introducing a variable magnetic field, which depends on the energy density rather than on the baryonic density.

  15. High power neutron production targets

    Energy Technology Data Exchange (ETDEWEB)

    Wender, S. [Los Alamos National Lab., NM (United States)

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  16. Neutron imaging of radioactive sources

    Science.gov (United States)

    Hameed, F.; Karimzadeh, S.; Zawisky, M.

    2008-08-01

    Isotopic neutron sources have been available for more than six decades. At the Atomic Institute in Vienna, operating a 250 kW TRIGA reactor, different neutron sources are in use for instrument calibration and fast neutron applications but we have only little information about their construction and densities. The knowledge of source design is essential for a complete MCNP5 modeling of the experiments. Neutron radiography (NR) and neutron tomography (NT) are the best choices for the non-destructive inspection of the source geometry and homogeneity. From the transmission analysis we gain information about the shielding components and the densities of the radio-isotopes in the cores. Three neutron sources, based on (alpha, n) reaction, have been investigated, two 239PuBe sources and one 241AmBe source. In the NR images the internal structure was clearly revealed using high-resolving scintillation and imaging plate detectors. In one source tablet a crack was detected which causes asymmetric neutron emission. The tomography inspection of strong absorbing materials is more challenging due to the low beam intensity of 1.3x105 n/cm2s at our NT instrument, and due to the beam hardening effect which requires an extension of reconstruction software. The tomographic inspection of a PuBe neutron source and appropriate measures for background and beam hardening correction are presented.

  17. Physics of Neutron Star Crusts

    Directory of Open Access Journals (Sweden)

    Chamel Nicolas

    2008-12-01

    Full Text Available The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  18. Axion emission from neutron stars

    Science.gov (United States)

    Iwamoto, N.

    1984-01-01

    It is shown that axion emission from neutron stars is the dominant energy-loss mechanism for a range of values of the Peccei-Quinn symmetry-breaking scale (F) not excluded by previous constraints. This gives the possibility of obtaining a better bound on F from measurements of surface temperature of neutron stars.

  19. Neutrons for technology and science

    Energy Technology Data Exchange (ETDEWEB)

    Aeppli, G.

    1995-10-01

    We reviewed recent work using neutrons generated at nuclear reactors an accelerator-based spallation sources. Provided that large new sources become available, neutron beams will continue to have as great an impact on technology and science as in the past.

  20. Neutron and P, T symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Y. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-05-01

    New ideas for experiments to improve the T-violation limit by a factor of 10 to 100 is discussed for a intensive spallation neutron source. The methods to improve the limit of the right-handed current and the neutron lifetime are also discussed. (author)

  1. Neutron Absorption in Geological Material

    Science.gov (United States)

    Løvhøiden, G.; Andersen, E.

    1990-01-01

    Thermal neutron absorption cross section of geological samples is determined with the steady state neutron source method. Cross section measurements of North Sea sediments demonstrate that also materials with high contents of clay minerals may be investigated with the steady state method.

  2. Magnetic Fields of Neutron Stars

    Indian Academy of Sciences (India)

    Sushan Konar

    2017-09-01

    This article briefly reviews our current understanding of the evolution of magnetic fields in neutron stars, which basically defines the evolutionary pathways between different observational classes of neutron stars. The emphasis here is on the evolution in binary systems and the newly emergent classes of millisecond pulsars.

  3. Measurement of natural background neutron

    CERN Document Server

    Li Jain, Ping; Tang Jin Hua; Tang, E S; Xie Yan Fong

    1982-01-01

    A high sensitive neutron monitor is described. It has an approximate counting rate of 20 cpm for natural background neutrons. The pulse amplitude resolution, sensitivity and direction dependence of the monitor were determined. This monitor has been used for natural background measurement in Beijing area. The yearly average dose is given and compared with the results of KEK and CERN.

  4. Investigation of Isfahan miniature neutron source reactor (MNSR) for boron neutron capture therapy by MCNP simulation

    OpenAIRE

    S. Z. Kalantari; H Tavakoli; Nami, M.

    2015-01-01

    One of the important neutron sources for Boron Neutron Capture Therapy (BNCT) is a nuclear reactor. It needs a high flux of epithermal neutrons. The optimum conditions of the neutron spectra for BNCT are provided by the International Atomic Energy Agency (IAEA). In this paper, Miniature Neutron Source Reactor (MNSR) as a neutron source for BNCT was investigated. For this purpose, we designed a Beam Shaping Assembly (BSA) for the reactor and the neutron transport from the core of the reactor t...

  5. First results of micro-neutron tomography by use of a focussing neutron lens

    CERN Document Server

    Masschaele, B; Cauwels, P; Dierick, M; Jolie, J; Mondelaers, W

    2001-01-01

    Since the appearance of high flux neutron beams, scientists experimented with neutron radiography. This high beam flux combined with modern neutron to visible light converters leads to the possibility of performing fast neutron micro-tomography. The first results of cold neutron tomography with a neutron lens are presented in this article. Samples are rotated in the beam and the projections are recorded with a neutron camera. The 3D reconstruction is performed with cone beam reconstruction software.

  6. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Maglieri, Robert, E-mail: robert.maglieri@mail.mcgill.ca; Evans, Michael; Seuntjens, Jan; Kildea, John [Medical Physics Unit, McGill University, Montreal, Quebec H4A 3J1 (Canada); Licea, Angel [Canadian Nuclear Safety Commission, Ottawa, Ontario K1P 5S9 (Canada)

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  7. Trapping of Oxygen Vacancies at Crystallographic Shear Planes in Acceptor-Doped Pb-Based Ferroelectrics.

    Science.gov (United States)

    Batuk, Dmitry; Batuk, Maria; Tsirlin, Alexander A; Hadermann, Joke; Abakumov, Artem M

    2015-12-01

    The defect chemistry of the ferroelectric material PbTiO3 after doping with Fe(III) acceptor ions is reported. Using advanced transmission electron microscopy and powder X-ray and neutron diffraction, we demonstrate that even at concentrations as low as circa 1.7% (material composition approximately ABO2.95), the oxygen vacancies are trapped into extended planar defects, specifically crystallographic shear planes. We investigate the evolution of these defects upon doping and unravel their detailed atomic structure using the formalism of superspace crystallography, thus unveiling their role in nonstoichiometry in the Pb-based perovskites.

  8. High-accuracy mass determination of unstable nuclei with a Penning trap mass spectrometer

    CERN Multimedia

    2002-01-01

    The mass of a nucleus is its most fundamental property. A systematic study of nuclear masses as a function of neutron and proton number allows the observation of collective and single-particle effects in nuclear structure. Accurate mass data are the most basic test of nuclear models and are essential for their improvement. This is especially important for the astrophysical study of nuclear synthesis. In order to achieve the required high accuracy, the mass of ions captured in a Penning trap is determined via their cyclotron frequency $ \

  9. Grand Unification in Neutron Stars

    CERN Document Server

    Kaspi, Victoria M

    2010-01-01

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to `isolated neutron stars,' from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-ray Observatory, in celebration of its tenth anniversary. Finally, I describe the current status of efforts at physical `grand unification' of this wealth of observational phenomena, and comment on possibilities for Chandra's next decade in this field.

  10. Grand unification of neutron stars.

    Science.gov (United States)

    Kaspi, Victoria M

    2010-04-20

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical "grand unification" of this wealth of observational phenomena, and comment on possibilities for Chandra's next decade in this field.

  11. Grand unification of neutron stars

    Science.gov (United States)

    Kaspi, Victoria M.

    2010-01-01

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical “grand unification” of this wealth of observational phenomena, and comment on possibilities for Chandra’s next decade in this field. PMID:20404205

  12. Neutron protein crystallography in JAERI

    Indian Academy of Sciences (India)

    I Tanaka

    2004-07-01

    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in proteins. After developing an original neutron detector (neutron imaging plate) and a novel practical neutron monochromator (elastically bent perfect Si monochromator), BIX-type diffractometers which were equipped with these tools were e±ciently constructed at JRR-3 in Japan Atomic Energy Research Institute (JAERI), Japan and they have finished many protein crystallographic measurements and interesting results have come one after another. At the same time a method of growing large protein single crystals and a database of hydrogen and hydration have also been developed. In the near future, a pulsed neutron diffractometer for biological macromolecules has been proposed at J-PARC in JAERI.

  13. Cryptography, quantum computation and trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Richard J.

    1998-03-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  14. Compression of Antiproton Clouds for Antihydrogen Trapping

    Science.gov (United States)

    Andresen, G. B.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Fujiwara, M. C.; Funakoshi, R.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Hydomako, R.; Jenkins, M. J.; Jørgensen, L. V.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Seif El Nasr, S.; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2008-05-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

  15. Variable geometry two mode levitation trap

    Science.gov (United States)

    Babič, D.; Čadež, A.

    1999-11-01

    Construction and operation of the electrodynamic levitation trap which can be operated in a passive and an active mode is described. This combination together with variable electrode geometry simplifies the trap's design and simultaneously gives more flexibility with respect to different kinds of measurements. Sample measurements of mechanocaloric effect caused by nonuniform heating of a single levitated particle are presented and discussed.

  16. Collective excitations of harmonically trapped ideal gases

    NARCIS (Netherlands)

    Van Schaeybroeck, B.; Lazarides, A.

    2009-01-01

    We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integer multiples of the trapping frequency. We show

  17. Lobster trap detection at the Saba Bank

    NARCIS (Netherlands)

    Beek, van I.J.M.

    2012-01-01

    According to previous studies and anecdotal evidence there are a lot of lost lobster traps at the Saba Bank. One study estimated the loss to be between 210 and 795 lobster traps per year. The Saba Bank is an approximately 2,200 km2 submerged area and spiny lobster (Panulirus argus) is one of the mai

  18. Compression of Antiproton Clouds for Antihydrogen Trapping

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

  19. An Experimental Analysis of Social Traps

    Science.gov (United States)

    Brechner, Kevin C.

    1977-01-01

    Social traps, such as the overgrazing of pasturelands, overpopulation, and the extinction of species, are situations where individuals in a group respond for their own advantage in a manner damaging to the group. Alaboratory analog was devised to simulate conditions that produce social traps. The intent was to cause an immediate positive…

  20. An Experimental Analysis of Social Traps

    Science.gov (United States)

    Brechner, Kevin C.

    1977-01-01

    Social traps, such as the overgrazing of pasturelands, overpopulation, and the extinction of species, are situations where individuals in a group respond for their own advantage in a manner damaging to the group. Alaboratory analog was devised to simulate conditions that produce social traps. The intent was to cause an immediate positive…

  1. Optical trapping with Super-Gaussian beams

    CSIR Research Space (South Africa)

    McLaren, M

    2013-04-01

    Full Text Available We outline the possibility of optical trapping and tweezing with Super-Gaussian beam profiles. We show that the trapping strength can be tuned continuously by adjusting the order of a Super-Gaussian beam, approaching that of a perfect Gaussian...

  2. Trap split with Laguerre-Gaussian beams

    Science.gov (United States)

    Hamideh Kazemi, Seyedeh; Ghanbari, Saeed; Mahmoudi, Mohammad

    2017-08-01

    We present a convenient and effective way to generate a novel phenomenon of trapping, named ‘trap split’, in a conventional four-level double-Λ atomic system, driven by four femtosecond Laguerre-Gaussian laser pulses. We find that trap split can always be achieved when atoms are trapped by such laser pulses, as compared to Gaussian ones. This feature is enabled by the interaction of the atomic system and the Laguerre-Gaussian laser pulses with zero intensity in the center. A further advantage of using Laguerre-Gaussian laser pulses is the insensitivity to fluctuation in the intensity of the lasers in such a way that the separation between the traps remains constant. Moreover, it is demonstrated that the suggested scheme with Laguerre-Gaussian laser pulses can form optical traps with spatial sizes that are not limited by the wavelength of the laser, and can, in principle, become smaller than the wavelength of light. This work would greatly facilitate the trapping and manipulating of particles and the generation of trap split. It may also suggest the possibility of extension into new research fields, such as micro-machining and biophysics.

  3. Optimization of RF multipole ion trap geometries

    Science.gov (United States)

    Fanghänel, Sven; Asvany, Oskar; Schlemmer, Stephan

    2017-02-01

    Radio-frequency (rf) traps are ideal places to store cold ions for spectroscopic experiments. Specific multipole configurations are suited best for different applications but have to be modified to allow e.g. for a proper overlap of a laser beam waist with the ion cloud. Therefore the corresponding trapping fields should be shaped accordingly. To achieve this goal highly accurate electrical potentials of rf multipole traps and the resulting effective trapping potentials are calculated using the boundary element method (BEM). These calculations are used to evaluate imperfections and to optimize the field geometry. For that purpose the complex fields are reduced to a small set of multipole expansion coefficients. Desirable values for these coefficients are met by systematic changes of real trap dimensions from CAD designs. The effect of misalignment of a linear quadrupole, the optimization of an optically open Paul trap, the influence of steering electrodes (end electrode and ring electrode) on a 22-pole ion trap and the effect of the micro motion on the lowest reachable temperatures in such a trap are discussed.

  4. First Use of High Charge States for Mass Measurements of Short-lived Nuclides in a Penning Trap

    CERN Document Server

    Ettenauer, S; Gallant, A T; Brunner, T; Chowdhury, U; Simon, V V; Brodeur, M; Chaudhuri, A; Mané, E; Andreoiu, C; Audi, G; López-Urrutia, J R Crespo; Delheij, P; Gwinner, G; Lapierre, A; Lunney, D; Pearson, M R; Ringle, R; Ullrich, J; Dilling, J

    2011-01-01

    Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly-charged ions (HCI), using the TITAN facility at TRIUMF. Compared to singly-charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb-isotopes have been charge bred in an electron beam ion trap to q = 8 - 12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly-charged ions at a radioactive beam facility opens the door to unrivalled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed {\\beta} emitter 74Rb (T1/2 = 65 ms). The determination of its atomic mass and an improved QEC-value are presented.

  5. Neutron matter, neutron pairing, and neutron drops based on chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Thomas

    2016-10-19

    The physics of neutron-rich systems is of great interest in nuclear and astrophysics. Precise knowledge of the properties of neutron-rich nuclei is crucial for understanding the synthesis of heavy elements. Infinite neutron matter determines properties of neutron stars, a final stage of heavy stars after a core-collapse supernova. It also provides a unique theoretical laboratory for nuclear forces. Strong interactions are determined by quantum chromodynamics (QCD). However, QCD is non-perturbative at low energies and one presently cannot directly calculate nuclear forces from it. Chiral effective field theory circumvents these problems and connects the symmetries of QCD to nuclear interactions. It naturally and systematically includes many-nucleon forces and gives access to uncertainty estimates. We use chiral interactions throughout all calculation in this thesis. Neutron stars are very extreme objects. The densities in their interior greatly exceed those in nuclei. The exact composition and properties of neutron stars is still unclear but they consist mainly of neutrons. One can explore neutron stars theoretically with calculations of neutron matter. In the inner core of neutron stars exist very high densities and thus maybe exotic phases of matter. To investigate whether there exists a phase transition to such phases even at moderate densities we study the chiral condensate in neutron matter, the order parameter of chiral symmetry breaking, and find no evidence for a phase transition at nuclear densities. We also calculate the more extreme system of spin-polarised neutron matter. With this we address the question whether there exists such a polarised phase in neutron stars and also provide a benchmark system for lattice QCD. We find spin-polarised neutron matter to be an almost non-interacting Fermi gas. To understand the cooling of neutron stars neutron pairing is of great importance. Due to the high densities especially triplet pairing is of interest. We

  6. Methods for Neutron Spectrometry

    Science.gov (United States)

    Brockhouse, Bertram N.

    1961-01-09

    The appropriate theories and the general philosophy of methods of measurement and treatment of data neutron spectrometry are discussed. Methods of analysis of results for liquids using the Van Hove formulation, and for crystals using the Born-von Karman theory, are reviewed. The most useful of the available methods of measurement are considered to be the crystal spectrometer methods and the pulsed monoenergetic beam/time-of-flight method. Pulsed-beam spectrometers have the advantage of higher counting rates than crystal spectrometers, especially in view of the fact that simultaneous measurements in several counters at different angles of scattering are possible in pulsed-beam spectrometers. The crystal spectrometer permits several valuable new types of specialized experiments to be performed, especially energy distribution measurements at constant momentum transfer. The Chalk River triple-axis crystal-spectrometer is discussed, with reference to its use in making the specialized experiments. The Chalk River rotating crystal (pulsed-beam) spectrometer is described, and a comparison of this type instrument with other pulsed-beam spectrometers is made. A partial outline of the theory of operation of rotating-crystal spectrometers is presented. The use of quartz-crystal filters for fast neutron elimination and for order elimination is discussed. (auth)

  7. Fast neutron environments.

    Energy Technology Data Exchange (ETDEWEB)

    Buchheit, Thomas Edward; Kotula, Paul Gabriel; Lu, Ping; Brewer, Luke N. (Naval Postgraduate School, Monterey, CA); Goods, Steven Howard (Sandia National Laboratories, Livermore, CA); Foiles, Stephen Martin; Puskar, Joseph David; Hattar, Khalid Mikhiel; Doyle, Barney Lee; Boyce, Brad Lee; Clark, Blythe G.

    2011-10-01

    The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.

  8. Biased trapping issue on weighted hierarchical networks

    Indian Academy of Sciences (India)

    Meifeng Dai; Jie Liu; Feng Zhu

    2014-10-01

    In this paper, we present trapping issues of weight-dependent walks on weighted hierarchical networks which are based on the classic scale-free hierarchical networks. Assuming that edge’s weight is used as local information by a random walker, we introduce a biased walk. The biased walk is that a walker, at each step, chooses one of its neighbours with a probability proportional to the weight of the edge. We focus on a particular case with the immobile trap positioned at the hub node which has the largest degree in the weighted hierarchical networks. Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping issue. Let parameter (0 < < 1) be the weight factor. We show that the efficiency of the trapping process depends on the parameter a; the smaller the value of a, the more efficient is the trapping process.

  9. A dynamical model for the Utricularia trap

    Science.gov (United States)

    Llorens, Coraline; Argentina, Médéric; Bouret, Yann; Marmottant, Philippe; Vincent, Olivier

    2012-01-01

    We propose a model that captures the dynamics of a carnivorous plant, Utricularia inflata. This plant possesses tiny traps for capturing small aquatic animals. Glands pump water out of the trap, yielding a negative pressure difference between the plant and its surroundings. The trap door is set into a meta-stable state and opens quickly as an extra pressure is generated by the displacement of a potential prey. As the door opens, the pressure difference sucks the animal into the trap. We write an ODE model that captures all the physics at play. We show that the dynamics of the plant is quite similar to neuronal dynamics and we analyse the effect of a white noise on the dynamics of the trap. PMID:22859569

  10. Trapping in dendrimers and regular hyperbranched polymers

    CERN Document Server

    Wu, Bin; Zhang, Zhongzhi; Chen, Guanrong

    2012-01-01

    Dendrimers and regular hyperbranched polymers are two classic families of macromolecules, which can be modeled by Cayley trees and Vicsek fractals, respectively. In this paper, we study the trapping problem in Cayley trees and Vicsek fractals with different underlying geometries, focusing on a particular case with a perfect trap located at the central node. For both networks, we derive the exact analytic formulas in terms of the network size for the average trapping time (ATT)---the average of node-to-trap mean first-passage time over the whole networks. The obtained closed-form solutions show that for both Cayley trees and Vicsek fractals, the ATT display quite different scalings with various system sizes, which implies that the underlying structure plays a key role on the efficiency of trapping in polymer networks. Moreover, the dissimilar scalings of ATT may allow to differentiate readily between dendrimers and hyperbranched polymers.

  11. Truly trapped rainbow by utilizing nonreciprocal waveguides

    Science.gov (United States)

    Liu, Kexin; He, Sailing

    2016-07-01

    The concept of a “trapped rainbow” has generated considerable interest for optical data storage and processing. It aims to trap different frequency components of the wave packet at different positions permanently. However, all the previously proposed structures cannot truly achieve this effect, due to the difficulties in suppressing the reflection caused by strong intermodal coupling and distinguishing different frequency components simultaneously. In this article, we found a physical mechanism to achieve a truly “trapped rainbow” storage of electromagnetic wave. We utilize nonreciprocal waveguides under a tapered magnetic field to achieve this and such a trapping effect is stable even under fabrication disorders. We also observe hot spots and relatively long duration time of the trapped wave around critical positions through frequency domain and time domain simulations. The physical mechanism we found has a variety of potential applications ranging from wave harvesting and storage to nonlinearity enhancement.

  12. Truly trapped rainbow by utilizing nonreciprocal waveguides

    CERN Document Server

    Liu, Kexin

    2016-01-01

    The concept of a "trapped rainbow" has generated considerable interest for optical data storage and processing. It aims to trap different frequency components of the wave packet at different positions permanently. However, all the previously proposed structures cannot truly achieve this effect, due to the difficulties in suppressing the reflection caused by strong intermodal coupling and distinguishing different frequency components simultaneously. In this article, we found a physical mechanism to achieve a truly "trapped rainbow" storage of electromagnetic wave. We utilize nonreciprocal waveguides under a tapered magnetic field to achieve this and such a trapping effect is stable even under fabrication disorders. We also observe hot spots and relatively long duration time of the trapped wave around critical positions through frequency domain and time domain simulations. The physical mechanism we found has a variety of potential applications ranging from wave harvesting and storage to nonlinearity enhancement...

  13. Magnetic Trapping of Cold Bromine Atoms

    CERN Document Server

    Rennick, C J; Doherty, W G; Softley, T P

    2014-01-01

    Magnetic trapping of bromine atoms at temperatures in the milliKelvin regime is demonstrated for the first time. The atoms are produced by photodissociation of Br$_2$ molecules in a molecular beam. The lab-frame velocity of Br atoms is controlled by the wavelength and polarization of the photodissociation laser. Careful selection of the wavelength results in one of the pair of atoms having sufficient velocity to exactly cancel that of the parent molecule, and it remains stationary in the lab frame. A trap is formed at the null point between two opposing neodymium permanent magnets. Dissociation of molecules at the field minimum results in the slowest fraction of photofragments remaining trapped. After the ballistic escape of the fastest atoms, the trapped slow atoms are only lost by elastic collisions with the chamber background gas. The measured loss rate is consistent with estimates of the total cross section for only those collisions transferring sufficient kinetic energy to overcome the trapping potential...

  14. Modes of oscillation in radiofrequency Paul traps

    DEFF Research Database (Denmark)

    Landa, H.; Reznik, B.; Drewsen, M.;

    2012-01-01

    We examine the time-dependent dynamics of ion crystals in radiofrequency traps. The problem of stable trapping of general threedimensional crystals is considered and the validity of the pseudopotential approximation is discussed. We analytically derive the micromotion amplitude of the ions......, rigorously proving well-known experimental observations. We use a recently proposed method to find the modes that diagonalize the linearized time-dependent dynamical problem. This allows one to obtain explicitly the ('Floquet-Lyapunov') transformation to coordinates of decoupled linear oscillators. We...... demonstrate the utility of the method by analyzing the modes of a small 'peculiar' crystal in a linear Paul trap. The calculations can be readily generalized to multispecies ion crystals in general multipole traps, and time-dependent quantum wavefunctions of ion oscillations in such traps can be obtained....

  15. Enhanced Magnetic Trap Loading for Atomic Strontium

    CERN Document Server

    Barker, D S; Pisenti, N C; Campbell, G K

    2015-01-01

    We report on a technique to improve the continuous loading of atomic strontium into a magnetic trap from a Magneto-Optical Trap (MOT). This is achieved by adding a depumping laser tuned to the 3P1 to 3S1 (688-nm) transition. The depumping laser increases atom number in the magnetic trap and subsequent cooling stages by up to 65 % for the bosonic isotopes and up to 30 % for the fermionic isotope of strontium. We optimize this trap loading strategy with respect to the 688-nm laser detuning, intensity, and beam size. To understand the results, we develop a one-dimensional rate equation model of the system, which is in good agreement with the data. We discuss the use of other transitions in strontium for accelerated trap loading and the application of the technique to other alkaline-earth-like atoms.

  16. Enhanced magnetic trap loading for atomic strontium

    Science.gov (United States)

    Barker, D. S.; Reschovsky, B. J.; Pisenti, N. C.; Campbell, G. K.

    2015-10-01

    We report on a technique to improve the continuous loading of atomic strontium into a magnetic trap from a magneto-optical trap. This is achieved by adding a depumping laser tuned to the P31→S31 (688-nm) transition. The depumping laser increases atom number in the magnetic trap and subsequent cooling stages by up to 65% for the bosonic isotopes and up to 30% for the fermionic isotope of strontium. We optimize this trap loading strategy with respect to the 688-nm laser detuning, intensity, and beam size. To understand the results, we develop a one-dimensional rate equation model of the system, which is in good agreement with the data. We discuss the use of other transitions in strontium for accelerated trap loading and the application of the technique to other alkaline-earth-like atoms.

  17. Magnetic trapping of cold bromine atoms.

    Science.gov (United States)

    Rennick, C J; Lam, J; Doherty, W G; Softley, T P

    2014-01-17

    Magnetic trapping of bromine atoms at temperatures in the millikelvin regime is demonstrated for the first time. The atoms are produced by photodissociation of Br2 molecules in a molecular beam. The lab-frame velocity of Br atoms is controlled by the wavelength and polarization of the photodissociation laser. Careful selection of the wavelength results in one of the pair of atoms having sufficient velocity to exactly cancel that of the parent molecule, and it remains stationary in the lab frame. A trap is formed at the null point between two opposing neodymium permanent magnets. Dissociation of molecules at the field minimum results in the slowest fraction of photofragments remaining trapped. After the ballistic escape of the fastest atoms, the trapped slow atoms are lost only by elastic collisions with the chamber background gas. The measured loss rate is consistent with estimates of the total cross section for only those collisions transferring sufficient kinetic energy to overcome the trapping potential.

  18. Computer model for analyzing sodium cold traps

    Energy Technology Data Exchange (ETDEWEB)

    McPheeters, C C; Raue, D J

    1983-05-01

    A computer model was developed to simulate the processes that occur in sodium cold traps. The Model for Analyzing Sodium Cold Traps (MASCOT) simulates any desired configuration of mesh arrangements and dimensions and calculates pressure drops and flow distributions, temperature profiles, impurity concentration profiles, and impurity mass distributions. The calculated pressure drop as a function of impurity mass content determines the capacity of the cold trap. The accuracy of the model was checked by comparing calculated mass distributions with experimentally determined mass distributions from literature publications and with results from our own cold trap experiments. The comparisons were excellent in all cases. A parametric study was performed to determine which design variables are most important in maximizing cold trap capacity.

  19. Trapping of ultracold polar molecules with a Thin Wire Electrostatic Trap

    CERN Document Server

    Kleinert, J; Zabawa, P J; Bigelow, N P

    2007-01-01

    We describe the realization of a DC electric field trap for ultracold polar molecules, the Thin WIre electroStatic Trap (TWIST). The thin wires that form the electrodes of the TWIST allow us to superimpose the trap onto a magneto-optical trap (MOT). In our experiment, ultracold polar NaCs molecules in their electronic ground state are created in the MOT via photoassociation, achieving a continuous accumulation in the TWIST of molecules in low-field seeking states. Initial measurements show that the TWIST trap lifetime is limited only by the background pressure in the chamber.

  20. Neutron-Mirror Neutron Oscillations in a Residual Gas Environment

    Science.gov (United States)

    Varriano, Louis; Kamyshkov, Yuri

    2017-01-01

    A precise measurement of the neutron lifetime is important for calculating the rate at which nucleosynthesis occurred after the Big Bang. The history of neutron lifetime measurements has demonstrated impressive continuous improvement in experimental technique and in accuracy. However, two most precise recent measurements performed by different techniques differ by about 3 standard deviations. This difference of 9.2 seconds can possibly be resolved by future experiments, but it may also be evidence of a mirror matter effect present in these experiments. Both mirror matter, a candidate for dark matter, and ordinary matter can have similar properties and self-interactions but will interact only gravitationally with each other, in accordance with observational evidence of dark matter. Three separate experiments have been performed in the last decade to detect the possibility of neutron-mirror neutron oscillations. This work provides a formalism for understanding the interaction of the residual gas in an experiment with ultra-cold neutrons. This residual gas effect was previously considered negligible but can have a significant impact on the probability of neutron-mirror neutron transition.

  1. Multiple-wavelength neutron holography with pulsed neutrons.

    Science.gov (United States)

    Hayashi, Kouichi; Ohoyama, Kenji; Happo, Naohisa; Matsushita, Tomohiro; Hosokawa, Shinya; Harada, Masahide; Inamura, Yasuhiro; Nitani, Hiroaki; Shishido, Toetsu; Yubuta, Kunio

    2017-08-01

    Local structures around impurities in solids provide important information for understanding the mechanisms of material functions, because most of them are controlled by dopants. For this purpose, the x-ray absorption fine structure method, which provides radial distribution functions around specific elements, is most widely used. However, a similar method using neutron techniques has not yet been developed. If one can establish a method of local structural analysis with neutrons, then a new frontier of materials science can be explored owing to the specific nature of neutron scattering-that is, its high sensitivity to light elements and magnetic moments. Multiple-wavelength neutron holography using the time-of-flight technique with pulsed neutrons has great potential to realize this. We demonstrated multiple-wavelength neutron holography using a Eu-doped CaF2 single crystal and obtained a clear three-dimensional atomic image around trivalent Eu substituted for divalent Ca, revealing an interesting feature of the local structure that allows it to maintain charge neutrality. The new holography technique is expected to provide new information on local structures using the neutron technique.

  2. The accelerator neutron source for boron neutron capture therapy

    Science.gov (United States)

    Kasatov, D.; Koshkarev, A.; Kuznetsov, A.; Makarov, A.; Ostreinov, Yu; Shchudlo, I.; Sorokin, I.; Sycheva, T.; Taskaev, S.; Zaidi, L.

    2016-11-01

    The accelerator based epithermal neutron source for Boron Neutron Capture Therapy (BNCT) is proposed, created and used in the Budker Institute of Nuclear Physics. In 2014, with the support of the Russian Science Foundation created the BNCT laboratory for the purpose to the end of 2016 get the neutron flux, suitable for BNCT. For getting 3 mA 2.3 MeV proton beam, was created a new type accelerator - tandem accelerator with vacuum isolation. On this moment, we have a stationary proton beam with 2.3 MeV and current 1.75 mA. Generation of neutrons is carried out by dropping proton beam on to lithium target as a result of threshold reaction 7Li(p,n)7Be. Established facility is a unique scientific installation. It provides a generating of neutron flux, including a monochromatic energy neutrons, gamma radiation, alpha-particles and positrons, and may be used by other research groups for carrying out scientific researches. The article describes an accelerator neutron source, presents and discusses the result of experiments and declares future plans.

  3. A CF4 based positron trap

    Science.gov (United States)

    Marjanović, Srdjan; Banković, Ana; Cassidy, David; Cooper, Ben; Deller, Adam; Dujko, Saša; Petrović, Zoran Lj

    2016-11-01

    All buffer-gas positron traps in use today rely on N2 as the primary trapping gas due to its conveniently placed {{{a}}}1{{\\Pi }} electronic excitation cross-section. The energy loss per excitation in this process is 8.5 eV, which is sufficient to capture positrons from low-energy moderated beams into a Penning-trap configuration of electric and magnetic fields. However, the energy range over which this cross-section is accessible overlaps with that for positronium (Ps) formation, resulting in inevitable losses and setting an intrinsic upper limit on the overall trapping efficiency of ∼25%. In this paper we present a numerical simulation of a device that uses CF4 as the primary trapping gas, exploiting vibrational excitation as the main inelastic capture process. The threshold for such excitations is far below that for Ps formation and hence, in principle, a CF4 trap can be highly efficient; our simulations indicate that it may be possible to achieve trapping efficiencies as high as 90%. We also report the results of an attempt to re-purpose an existing two-stage N2-based buffer-gas positron trap. Operating the device using CF4 proved unsuccessful, which we attribute to back scattering and expansion of the positron beam following interactions with the CF4 gas, and an unfavourably broad longitudinal beam energy spread arising from the magnetic field differential between the source and trap regions. The observed performance was broadly consistent with subsequent simulations that included parameters specific to the test system, and we outline the modifications that would be required to realise efficient positron trapping with CF4. However, additional losses appear to be present which require further investigation through both simulation and experiment.

  4. The hidden traps in decision making.

    Science.gov (United States)

    Hammond, J S; Keeney, R L; Raiffa, H

    1998-01-01

    Bad decisions can often be traced back to the way the decisions were made--the alternatives were not clearly defined, the right information was not collected, the costs and benefits were not accurately weighted. But sometimes the fault lies not in the decision-making process but rather in the mind of the decision maker. The way the human brain works can sabotage the choices we make. John Hammond, Ralph Keeney, and Howard Raiffa examine eight psychological traps that are particularly likely to affect the way we make business decisions: The anchoring trap leads us to give disproportionate weight to the first information we receive. The statusquo trap biases us toward maintaining the current situation--even when better alternatives exist. The sunk-cost trap inclines us to perpetuate the mistakes of the past. The confirming-evidence trap leads us to seek out information supporting an existing predilection and to discount opposing information. The framing trap occurs when we misstate a problem, undermining the entire decision-making process. The overconfidence trap makes us overestimate the accuracy of our forecasts. The prudence trap leads us to be overcautious when we make estimates about uncertain events. And the recallability trap leads us to give undue weight to recent, dramatic events. The best way to avoid all the traps is awareness--forewarned is forearmed. But executives can also take other simple steps to protect themselves and their organizations from the various kinds of mental lapses. The authors show how to take action to ensure that important business decisions are sound and reliable.

  5. The habitats exploited and the species trapped in a Caribbean island trap fishery

    Science.gov (United States)

    Garrison, V.H.; Rogers, C.S.; Beets, J.; Friedlander, A.M.

    2004-01-01

    We visually observed fish traps in situ to identify the habitats exploited by the U.S. Virgin Islands fishery and to document species composition and abundance in traps by habitat. Fishers set more traps in algal plains than in any other habitat around St. John. Coral reefs, traditionally targeted by fishers, accounted for only 16% of traps. Traps in algal plain contained the highest number of fishes per trap and the greatest numbers of preferred food species. Traps on coral reefs contained the most species, 41 of the 59 taxa observed in the study. Acanthurus coeruleus was the most abundant species and Acanthuridae the most abundant family observed in traps. Piscivore numbers were low and few serranids were observed. Traps in algal plain contained the most fishes as a result of: ecological changes such as shifts in habitat use, mobility of species and degradation of nearshore habitat (fishery independent); and, catchability of fishes and long-term heavy fishing pressure (fishery dependent). The low number of serranids per trap, dominance of the piscivore guild by a small benthic predator, Epinephelus guttatus, and dominance of trap contents overall by a small, fast-growing species of a lower trophic guild, Acanthurus coeruleus, all point to years of intense fishing pressure.

  6. Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance

    Directory of Open Access Journals (Sweden)

    Carolin Marlen Degener

    2015-06-01

    Full Text Available The objective of this study was to evaluate the effectiveness of Aedes aegypti mass trapping using the sticky trap MosquiTRAP (MQT by performing a cluster randomised controlled trial in Manaus, state of Amazonas, Brazil. After an initial questionnaire and baseline monitoring of adult Ae. aegypti abundance with BG-Sentinel (BGS traps in six clusters, three clusters were randomly assigned to the intervention arm where each participating household received three MQTs for mass trapping during 17 months. The remaining three clusters (control arm did not receive traps. The effect of mass trapping on adult Ae. aegypti abundance was monitored fortnightly with BGS traps. During the last two months of the study, a serological survey was conducted. After the study, a second questionnaire was applied in the intervention arm. Entomological monitoring indicated that MQT mass trapping did not reduce adult Ae. aegypti abundance. The serological survey indicated that recent dengue infections were equally frequent in the intervention and the control arm. Most participants responded positively to questions concerning user satisfaction. According to the results, there is no evidence that mass trapping with MQTs can be used as a part of dengue control programs. The use of this sticky trap is only recommendable for dengue vector monitoring.

  7. Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance.

    Science.gov (United States)

    Degener, Carolin Marlen; de Ázara, Tatiana Mingote Ferreira; Roque, Rosemary Aparecida; Rösner, Susanne; Rocha, Eliseu Soares Oliveira; Kroon, Erna Geessien; Codeço, Cláudia Torres; Nobre, Aline Araújo; Ohly, Jörg Johannes; Geier, Martin; Eiras, Álvaro Eduardo

    2015-06-01

    The objective of this study was to evaluate the effectiveness of Aedes aegypti mass trapping using the sticky trap MosquiTRAP (MQT) by performing a cluster randomised controlled trial in Manaus, state of Amazonas, Brazil. After an initial questionnaire and baseline monitoring of adult Ae. aegypti abundance with BG-Sentinel (BGS) traps in six clusters, three clusters were randomly assigned to the intervention arm where each participating household received three MQTs for mass trapping during 17 months. The remaining three clusters (control arm) did not receive traps. The effect of mass trapping on adult Ae. aegypti abundance was monitored fortnightly with BGS traps. During the last two months of the study, a serological survey was conducted. After the study, a second questionnaire was applied in the intervention arm. Entomological monitoring indicated that MQT mass trapping did not reduce adult Ae. aegypti abundance. The serological survey indicated that recent dengue infections were equally frequent in the intervention and the control arm. Most participants responded positively to questions concerning user satisfaction. According to the results, there is no evidence that mass trapping with MQTs can be used as a part of dengue control programs. The use of this sticky trap is only recommendable for dengue vector monitoring.

  8. An in situ trap capacitance measurement and ion-trapping detection scheme for a Penning ion trap facility

    Science.gov (United States)

    Reza, Ashif; Banerjee, Kumardeb; Das, Parnika; Ray, Kalyankumar; Bandyopadhyay, Subhankar; Dam, Bivas

    2017-03-01

    This paper presents the design and implementation of an in situ measurement setup for the capacitance of a five electrode Penning ion trap (PIT) facility at room temperature. For implementing a high Q resonant circuit for the detection of trapped electrons/ions in a PIT, the value of the capacitance of the trap assembly is of prime importance. A tunable Colpitts oscillator followed by a unity gain buffer and a low pass filter is designed and successfully implemented for a two-fold purpose: in situ measurement of the trap capacitance when the electric and magnetic fields are turned off and also providing RF power at the desired frequency to the PIT for exciting the trapped ions and subsequent detection. The setup is tested for the in situ measurement of trap capacitance at room temperature and the results are found to comply with those obtained from measurements using a high Q parallel resonant circuit setup driven by a standard RF signal generator. The Colpitts oscillator is also tested successfully for supplying RF power to the high Q resonant circuit, which is required for the detection of trapped electrons/ions.

  9. Hard X-ray bursts and DD microfusion neutrons from complex plasmas of vacuum discharge

    Indian Academy of Sciences (India)

    Yu K Kurilenkov; M Skowronek

    2003-12-01

    We create the random complex media of high-power density in low-energy nanosecond vacuum discharges. Hard X-ray emission efficiency, generation of energetic ions (∼ 1 MeV) and neutrons, trapping and releasing of fast ions and/or X-rays from interelectrode aerosol ensembles are the subject of our study. The neutrons from DD microfusion, as well as the modelling of some interstellar nuclear burning due to microexplosive nucleosynthesis are discussed. The value of neutron yield from DD fusion in interelectrode space varies and amounts to ∼ 105-107/4 per shot under ≈ 1 J of total energy deposited to create all discharge processes.

  10. Neutronic analysis of absorbing materials for the control rod system in reactor ALLEGRO

    Energy Technology Data Exchange (ETDEWEB)

    Cajko, Frantisek; Secansky, Michal; Chrebet, Tomas; Zajac, Radoslav; Darilek, Petr [VUJE, a.s., Trnava (Slovakia)

    2016-09-15

    Experimental reactor ALLEGRO is a gas cooled fast reactor in the design stage. The current design of its reactivity control system is based on control rods filled with boron carbide as the absorber. Because of disadvantages connected to high boron enrichment a possibility of using other absorbent materials was explored to lower the boron enrichment and increase the worth of the control rods. The results of neutronic Monte-Carlo analyses in a computational supercell are presented in this paper. Three absorbent materials most suitable for a use in reactor ALLEGRO (B{sub 4}C, EuB{sub 6} and ReB{sub 2}) have been analysed also in a full core model. A possible benefit of a neutron trap concept is explored as well but materials with satisfactory neutronic properties proved to be not suitable for expected high temperatures in the reactor.

  11. Influence of neutron irradiation on the tritium retention in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Rolli, R.; Ruebel, S.; Werle, H. [Forschungszentrum Karlsruhe, Inst. fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany); Wu, C.H.

    1998-01-01

    Carbon-based materials and beryllium are the candidates for protective layers on the components of fusion reactors facing plasma. In contact with D-T plasma, these materials absorb tritium, and it is anticipated that tritium retention increases with the neutron damage due to neutron-induced traps. Because of the poor data base for beryllium, the work was concentrated on it. Tritium was loaded into the samples from stagnant T{sub 2}/H{sub 2} atmosphere, and afterwards, the quantity of the loaded tritium was determined by purged thermal annealing. The specification of the samples is shown. The samples were analyzed by SEM before and after irradiation. The loading and the annealing equipments are contained in two different glove boxes with N{sub 2} inert atmosphere. The methods of loading and annealing are explained. The separation of neutron-produced and loaded tritium and the determination of loaded tritium in irradiated samples are reported. Also the determination of loaded tritium in unirradiated samples is reported. It is evident that irradiated samples contained much more loaded tritium than unirradiated samples. The main results of this investigation are summarized in the table. (K.I.)

  12. Neutron/muon correlation functions to improve neutron detection capabilities outside nuclear facilities

    Science.gov (United States)

    Ordinario, Donald Thomas

    The natural neutron background rate is largely due to cosmic ray interactions in the atmosphere and the subsequent neutron emission from the interaction products. The neutron background is part of a larger cosmic radiation shower that also includes electrons, gamma rays, and muons. Since neutrons interact much differently than muons in building materials, the muon and neutron fluence rates in the natural background can be compared to the measured muon and neutron fluence rate when shielded by common building materials. The simultaneous measurement of muon and neutron fluence rates might allow for an earlier identification of man-made neutron sources, such as hidden nuclear materials. This study compares natural background neutron rates to computer simulated neutron rates shielded by common structural and building materials. The characteristic differences between neutrons and muons resulted in different attenuation properties under the same shielded conditions. Correlation functions between cosmic ray generated neutrons and muons are then used to predict neutron fluence rates in different urban environments.

  13. Measurement of neutron excitation functions using wide energy neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Loevestam, Goeran [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium)], E-mail: goeran.loevestam@ec.europa.eu; Hult, Mikael; Fessler, Andreas; Gamboni, Thierry; Gasparro, Joel; Geerts, Wouter; Jaime, Ricardo; Lindahl, Patric; Oberstedt, Stephan [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Tagziria, Hamid [EC-JRC-Institute for the Protection and the Security of the Citizen (IPSC), Via E. Fermi 1, I-21020 Ispra (Italy)

    2007-10-11

    A technique for measuring neutron excitation functions using wide energy neutron beams is explored. Samples are activated with a set of neutron fields, each covering a relatively wide energy interval and created using an ion accelerator and conventional nuclear reactions. Measured activities are determined using gamma-ray spectrometry and reduced to excitation curves using spectrum unfolding. The technique is demonstrated on the measurement of the excitation function curve up to 5.6 MeV for {sup 113}In(n,n'){sup 113}In{sup m} using the {sup 115}In(n,n'){sup 115}In{sup m} reaction as an internal standard.

  14. Neutron scattering instruments for the Spallation Neutron Source (SNS)

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, R.K.; Fornek, T. [Argonne National Lab., IL (United States); Herwig, K.W. [Oak Ridge National Lab., TN (United States)

    1998-07-01

    The Spallation Neutron Source (SNS) is a 1 MW pulsed spallation source for neutron scattering planned for construction at Oak Ridge National Laboratory. This facility is being designed as a 5-laboratory collaboration project. This paper addresses the proposed facility layout, the process for selection and construction of neutron scattering instruments at the SNS, the initial planning done on the basis of a reference set of ten instruments, and the plans for research and development (R and D) to support construction of the first ten instruments and to establish the infrastructure to support later development and construction of additional instruments.

  15. Design of multidirectional neutron beams for boron neutron capture synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Gierga, D.P.; Yanch, J.C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Shefer, R.E. [Newton Scientific, Inc., Cambridge, MA (United States)

    1997-12-01

    Boron neutron capture synovectomy (BNCS) is a potential application of the {sup 10}B(n, a) {sup 7}Li reaction for the treatment of rheumatoid arthritis. The target of therapy is the synovial membrane. Rheumatoid synovium is greatly inflamed and is the source of the discomfort and disability associated with the disease. The BNCS proposes to destroy the synovium by first injecting a boron-labeled compound into the joint space and then irradiating the joint with a neutron beam. This study discusses the design of a multidirectional neutron beam for BNCS.

  16. Neutron generator for the array borehole logging

    Institute of Scientific and Technical Information of China (English)

    LuHong-Bo; ZhongZhen-Qian; 等

    1998-01-01

    The performance mechanism of the array neutron generator to be used to porosity logging is presented.The neutron generator utilizes a drive-in target ceramic neutron tube,which cursts nerutron with fast-slow period selectively pressure.Regulation of the neutron tube is accomplished by pulse width modulation.The high voltage power supply is poerated at optimum frequency.

  17. Neutron detector and fabrication method thereof

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Harish B.; Nagarkar, Vivek V.; Ovechkina, Olena E.

    2016-08-16

    A neutron detector and a method for fabricating a neutron detector. The neutron detector includes a photodetector, and a solid-state scintillator operatively coupled to the photodetector. In one aspect, the method for fabricating a neutron detector includes providing a photodetector, and depositing a solid-state scintillator on the photodetector to form a detector structure.

  18. NERO-The Neutron Emission Ratio Observer

    Science.gov (United States)

    Lorusso, Giuseppe; Pereira, Jorque; Hosmer, Paul; Kratz, Karl Ludvig; Montes, Fernando; Reeder, Paul; Santi, Peter; Schatz, Hendrik

    2007-10-01

    The Neutron Emission Ratio Observer (NERO), has been constructed for the use at the National Superconducting Cyclotron Laboratory to work in conjunction with the NSCL Beta Counting System in order to detect β-delayed neutrons. The design of the detector provides high and flat efficiency for a wide range of neutron energies, as well as a low neutron background.

  19. Trap-related injuries to gray wolves in Minnesota

    Science.gov (United States)

    Kuehn, D.W.; Fuller, T.K.; Mech, L.D.; Paul, W.J.; Fritts, S.H.; Berg, W.E.

    1986-01-01

    Gray wolves (Canis lupus) captured in traps with toothed jaws offset 1.8 cm incurred fewer injuries than those captured in 3 other types of steel traps. Few wolves seriously damaged canine or carnassial teeth while in traps.

  20. 1987-88 Trapping Plan: Clarence Cannon National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Annual Trapping Plan for the 1987-1988 trapping season at Clarence Cannon NWR outlines rules and regulations for the trapping of beaver, muskrat, and raccoon,...

  1. Iodine neutron capture therapy

    Science.gov (United States)

    Ahmed, Kazi Fariduddin

    A new technique, Iodine Neutron Capture Therapy (INCT) is proposed to treat hyperthyroidism in people. Present thyroid therapies, surgical removal and 131I treatment, result in hypothyroidism and, for 131I, involve protracted treatment times and excessive whole-body radiation doses. The new technique involves using a low energy neutron beam to convert a fraction of the natural iodine stored in the thyroid to radioactive 128I, which has a 24-minute half-life and decays by emitting 2.12-MeV beta particles. The beta particles are absorbed in and damage some thyroid tissue cells and consequently reduce the production and release of thyroid hormones to the blood stream. Treatment times and whole-body radiation doses are thus reduced substantially. This dissertation addresses the first of the several steps needed to obtain medical profession acceptance and regulatory approval to implement this therapy. As with other such programs, initial feasibility is established by performing experiments on suitable small mammals. Laboratory rats were used and their thyroids were exposed to the beta particles coming from small encapsulated amounts of 128I. Masses of 89.0 mg reagent-grade elemental iodine crystals have been activated in the ISU AGN-201 reactor to provide 0.033 mBq of 128I. This activity delivers 0.2 Gy to the thyroid gland of 300-g male rats having fresh thyroid tissue masses of ˜20 mg. Larger iodine masses are used to provide greater doses. The activated iodine is encapsulated to form a thin (0.16 cm 2/mg) patch that is then applied directly to the surgically exposed thyroid of an anesthetized rat. Direct neutron irradiation of a rat's thyroid was not possible due to its small size. Direct in-vivo exposure of the thyroid of the rat to the emitted radiation from 128I is allowed to continue for 2.5 hours (6 half-lives). Pre- and post-exposure blood samples are taken to quantify thyroid hormone levels. The serum T4 concentration is measured by radioimmunoassay at

  2. Carriers recombination processes in charge trapping memory cell by simulation

    Institute of Scientific and Technical Information of China (English)

    Song Yun-Cheng; Liu Xiao-Yan; Du Gang; Kang Jin-Feng; Han Ru-Qi

    2008-01-01

    We have evaluated the effects of recombination processes in a charge storage layer, either between trapped electrons and trapped holes or between trapped carriers and free carriers, on charge trapping memory cell's performances by numerical simulation. Recombination is an indispensable mechanism in charge trapping memory. It helps charge convert process between negative and positive charges in the charge storage layer during charge trapping memory programming/erasing operation. It can affect the speed of programming and erasing operations.

  3. Fluorescent prey traps in carnivorous plants.

    Science.gov (United States)

    Kurup, R; Johnson, A J; Sankar, S; Hussain, A A; Sathish Kumar, C; Sabulal, B

    2013-05-01

    Carnivorous plants acquire most of their nutrients by capturing ants, insects and other arthropods through their leaf-evolved biological traps. So far, the best-known attractants in carnivorous prey traps are nectar, colour and olfactory cues. Here, fresh prey traps of 14 Nepenthes, five Sarracenia, five Drosera, two Pinguicula species/hybrids, Dionaea muscipula and Utricularia stellaris were scanned at UV 366 nm. Fluorescence emissions of major isolates of fresh Nepenthes khasiana pitcher peristomes were recorded at an excitation wavelength of 366 nm. N. khasiana field pitcher peristomes were masked by its slippery zone extract, and prey capture rates were compared with control pitchers. We found the existence of distinct blue fluorescence emissions at the capture spots of Nepenthes, Sarracenia and Dionaea prey traps at UV 366 nm. These alluring blue emissions gradually developed with the growth of the prey traps and diminished towards their death. On excitation at 366 nm, N. khasiana peristome 3:1 CHCl3–MeOH extract and its two major blue bands showed strong fluorescence emissions at 430–480 nm. Masking of blue emissions on peristomes drastically reduced prey capture in N. khasiana pitchers. We propose these molecular emissions as a critical factor attracting arthropods and other visitors to these carnivorous traps. Drosera, Pinguicula and Utricularia prey traps showed only red chlorophyll emissions at 366 nm.

  4. Managing resonant trapped orbits in our Galaxy

    CERN Document Server

    Binney, James

    2016-01-01

    Galaxy modelling is greatly simplified by assuming the existence of a global system of angle-action coordinates. Unfortunately, global angle-action coordinates do not exist because some orbits become trapped by resonances, especially where the radial and vertical frequencies coincide. We show that in a realistic Galactic potential such trapping occurs only on thick-disc and halo orbits (speed relative to the guiding centre >~80 km/s). We explain how the Torus Mapper code (TM) behaves in regions of phase space in which orbits are resonantly trapped, and we extend TM so trapped orbits can be manipulated as easily as untrapped ones. The impact that the resonance has on the structure of velocity space depends on the weights assigned to trapped orbits. The impact is everywhere small if each trapped orbit is assigned the phase space density equal to the time average along the orbit of the DF for untrapped orbits. The impact could be significant with a different assignment of weights to trapped orbits.

  5. Micromotion in trapped atom-ion systems

    CERN Document Server

    Nguyen, Le Huy; Barrett, Murray; Englert, Berthold-Georg

    2012-01-01

    We examine the validity of the harmonic approximation, where the radio-frequency ion trap is treated as a harmonic trap, in the problem regarding the controlled collision of a trapped atom and a single trapped ion. This is equivalent to studying the effect of the micromotion since this motion must be neglected for the trapped ion to be considered as a harmonic oscillator. By applying the transformation of Cook and Shankland we find that the micromotion can be represented by two periodically oscillating operators. In order to investigate the effect of the micromotion on the dynamics of a trapped atom-ion system, we calculate (i) the coupling strengths of the micromotion operators by numerical integration and (ii) the quasienergies of the system by applying the Floquet formalism --- a useful framework for studying periodic systems. It turns out that the micromotion is not negligible when the distance between the atom and the ion traps is shorter than a characteristic distance. Within this range the energy diagr...

  6. Attractiveness of black Shannon trap for phlebotomines.

    Science.gov (United States)

    Galati, E A; Nunes, V L; Dorval, M E; Cristaldo, G; Rocha, H C; Gonçalves-Andrade, R M; Naufel, G

    2001-07-01

    A white Shannon-type trap was used for captures of female sand flies in the search for natural infection with flagellates, however, due to its low productivity and as a large number of phlebotomines settled on the researchers' black clothes, we decided to compare the relative attractiveness of black and white Shannon-type traps for sand flies. Several pairs of black and white traps were placed side by side in front of caves in four areas in the Serra da Bodoquena, Bonito county, State of Mato Grosso do Sul, Brazil, for a total of 12 observations and 44 h of capture. The experiment resulted in 889 phlebotomines captured, 801 on the black and 88 on the white trap, representing 13 species. The hourly Williams' means were 8.67 and 1.24, respectively, and the black/white ratio was 7.0:1.0. Lutzomyia almerioi, an anthropophilic species closely associated with caves, was predominant (89%). Only two other species, Nyssomyia whitmani and Psathyromyia punctigeniculata, also anthropophilic, were significantly attracted to the black rather than to the white trap (chi(2) test; p < or = 0.01). The difference between the diversity index of the two traps was not significant at level 0.05. The black trap in these circumstances was much more productive than the white, especially for anthropophilic species.

  7. Attractiveness of black Shannon trap for phlebotomines

    Directory of Open Access Journals (Sweden)

    Galati EAB

    2001-01-01

    Full Text Available A white Shannon-type trap was used for captures of female sand flies in the search for natural infection with flagellates, however, due to its low productivity and as a large number of phlebotomines settled on the researchers' black clothes, we decided to compare the relative attractiveness of black and white Shannon-type traps for sand flies. Several pairs of black and white traps were placed side by side in front of caves in four areas in the Serra da Bodoquena, Bonito county, State of Mato Grosso do Sul, Brazil, for a total of 12 observations and 44 h of capture. The experiment resulted in 889 phlebotomines captured, 801 on the black and 88 on the white trap, representing 13 species. The hourly Williams' means were 8.67 and 1.24, respectively, and the black/white ratio was 7.0:1.0. Lutzomyia almerioi, an anthropophilic species closely associated with caves, was predominant (89%. Only two other species, Nyssomyia whitmani and Psathyromyia punctigeniculata, also anthropophilic, were significantly attracted to the black rather than to the white trap (chi2 test; p <= 0.01. The difference between the diversity index of the two traps was not significant at level 0.05. The black trap in these circumstances was much more productive than the white, especially for anthropophilic species.

  8. Residual CO2 trapping in Indiana limestone.

    Science.gov (United States)

    El-Maghraby, Rehab M; Blunt, Martin J

    2013-01-01

    We performed core flooding experiments on Indiana limestone using the porous plate method to measure the amount of trapped CO(2) at a temperature of 50 °C and two pressures: 4.2 and 9 MPa. Brine was mixed with CO(2) for equilibration, then the mixture was circulated through a sacrificial core. Porosity and permeability tests conducted before and after 884 h of continuous core flooding confirmed negligible dissolution. A trapping curve for supercritical (sc)CO(2) in Indiana showing the relationship between the initial and residual CO(2) saturations was measured and compared with that of gaseous CO(2). The results were also compared with scCO(2) trapping in Berea sandstone at the same conditions. A scCO(2) residual trapping end point of 23.7% was observed, indicating slightly less trapping of scCO(2) in Indiana carbonates than in Berea sandstone. There is less trapping for gaseous CO(2) (end point of 18.8%). The system appears to be more water-wet under scCO(2) conditions, which is different from the trend observed in Berea; we hypothesize that this is due to the greater concentration of Ca(2+) in brine at higher pressure. Our work indicates that capillary trapping could contribute to the immobilization of CO(2) in carbonate aquifers.

  9. Gel trapping of dense colloids.

    Science.gov (United States)

    Laxton, Peter B; Berg, John C

    2005-05-01

    Phase density differences in sols, foams, or emulsions often lead to sedimentation or creaming, causing problems for materials where spatial uniformity over extended periods of time is essential. The problem may be addressed through the use of rheology modifiers in the continuous phase. Weak polymer gels have found use for this purpose in the food industry where they appear to be capable of trapping dispersoid particles in a three-dimensional matrix while displaying water-like viscosities at low shear. Attempts to predict sedimentation stability in terms of particle properties (size, shape, density difference) and gel yield stress have led to qualitative success for suspensions of large particles. The effect of particle size, however, in particular the case in which colloidal dimensions are approached, has not been investigated. The present work seeks to determine useful stability criteria for colloidal dispersions in terms of readily accessible viscoelastic descriptors. Results are reported for systems consisting of 12 microm poly(methyl methacrylate) (PMMA) spheres dispersed in aqueous gellan gum. Monovalent salt concentration is varied to control rheological properties, and sedimentation/centrifugation experiments are performed to determine dispersion stability. Necessary conditions for stability consist of a minimum yield stress together with a value of tan delta less than unity.

  10. Deuterium Depth Profile in Neutron-Irradiated Tungsten Exposed to Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Masashi Shimada; G. Cao; Y. Hatano; T. Oda; Y. Oya; M. Hara; P. Calderoni

    2011-05-01

    The effect of radiation damage has been mainly simulated using high-energy ion bombardment. The ions, however, are limited in range to only a few microns into the surface. Hence, some uncertainty remains about the increase of trapping at radiation damage produced by 14 MeV fusion neutrons, which penetrate much farther into the bulk material. With the Japan-US joint research project: Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), the tungsten samples (99.99 % pure from A.L.M.T., 6mm in diameter, 0.2mm in thickness) were irradiated to high flux neutrons at 50 C and to 0.025 dpa in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). Subsequently, the neutron-irradiated tungsten samples were exposed to a high-flux deuterium plasma (ion flux: 1021-1022 m-2s-1, ion fluence: 1025-1026 m-2) in the Tritium Plasma Experiment (TPE) at the Idaho National Laboratory (INL). First results of deuterium retention in neutron-irradiated tungsten exposed in TPE have been reported previously. This paper presents the latest results in our on-going work of deuterium depth profiling in neutron-irradiated tungsten via nuclear reaction analysis. The experimental data is compared with the result from non neutron-irradiated tungsten, and is analyzed with the Tritium Migration Analysis Program (TMAP) to elucidate the hydrogen isotope behavior such as retention and depth distribution in neutron-irradiated and non neutron-irradiated tungsten.

  11. Neutron star structure from QCD

    Science.gov (United States)

    Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi

    2016-03-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  12. Neutron star structure from QCD

    CERN Document Server

    Fraga, Eduardo S; Vuorinen, Aleksi

    2016-01-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  13. Neutron Transmission through Sapphire Crystals

    DEFF Research Database (Denmark)

    Sapphire crystals are excellent filters of fast neutrons, while at the same time exhibit moderate to very little absorption at smaller energies. We have performed an extensive series of measurements in order to quantify the above effect. Alongside our experiments, we have performed a series...... of simulations, in order to reproduce the transmission of cold neutrons through sapphire crystals. Those simulations were part of the effort of validating and improving the newly developed interface between the Monte-Carlo neutron transport code MCNP and the Monte Carlo ray-tracing code McStas....

  14. Neutron Imaging Developments at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Hunter, James F. [Los Alamos National Laboratory; Schirato, Richard C. [Los Alamos National Laboratory; Vogel, Sven C. [Los Alamos National Laboratory; Swift, Alicia L. [Los Alamos National Laboratory; Ickes, Timothy Lee [Los Alamos National Laboratory; Ward, William Carl [Los Alamos National Laboratory; Losko, Adrian Simon [University of California at Berkeley; Tremsin, Anton [University of California at Berkeley; Sevanto, Sanna Annika [Los Alamos National Laboratory; Espy, Michelle A. [Los Alamos National Laboratory; Dickman, Lee Thoresen [Los Alamos National Laboratory; Malone, Michael [Los Alamos National Laboratory

    2015-10-29

    Thermal, epithermal, and high-energy neutrons are available from two spallation sources at the 800 MeV proton accelerator. Improvements in detectors and computing have enabled new capabilities that use the pulsed beam properties at LANSCE; these include amorphous Si (aSi) detectors, intensified charge-coupled device cameras, and micro-channel plates. Applications include water flow in living specimens, inclusions and fission products in uranium oxide, and high-energy neutron imaging using an aSi flat panel with ZnS(Ag) scintillator screen. images of a metal/plastic cylinder from photons, low-energy and high-energy neutrons are compared.

  15. Neutron flux measurements around PLT

    Energy Technology Data Exchange (ETDEWEB)

    Zankl, G.; Strachan, J.D.; Lewis, R.; Pettus, W.; Schmotzer, J.

    1980-09-01

    Using Indium activation foils, the toroidal and poloidal neutron emission patterns were determined for PLT plasmas which include ICRF and neutral beam heating. The activities produced the /sup 115/In (n,n') /sup 115m/In reaction were determined by counting the 336 keV ..gamma.. line of the /sup 115m/In decay. This activation cross section falls just below 2.5 MeV so that the influence of scattered neutrons of degraded energies is reduced. From the magnitude of the activity, the absolute calibration of the PLT fusion neutron emission is obtained with less than or equal to 40% accuracy.

  16. Superconductivity, antiferromagnetism, and neutron scattering

    Science.gov (United States)

    Tranquada, John M.; Xu, Guangyong; Zaliznyak, Igor A.

    2014-01-01

    High-temperature superconductivity in both the copper-oxide and the iron-pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements of magnetic excitations over broad ranges of energy and momentum transfers provide important constraints on the theoretical options. We present an overview of the neutron scattering work on high-temperature superconductors and discuss some of the outstanding issues.

  17. Neutron Star Physics and EOS

    Directory of Open Access Journals (Sweden)

    Lattimer James M.

    2016-01-01

    Full Text Available Neutron stars are important because measurement of their masses and radii will determine the dense matter equation of state. They will constrain the nuclear matter symmetry energy, which controls the neutron star matter pressure and the interior composition, and will influence the interpretation of nuclear experiments. Astrophysical observations include pulsar timing, X-ray bursts, quiescent low-mass X-ray binaries, pulse profiles from millisecond pulsars, neutrino observations from gravitational collapse supernovae,and gravitational radiation from compact object mergers. These observations will also constrain the neutron star interior, including the properties of superfluidity there, and determine the existence of a possible QCD phase transition.

  18. New Techniques in Neutron Scattering

    DEFF Research Database (Denmark)

    Birk, Jonas Okkels

    Neutron scattering is an important experimental technique in amongst others solid state physics, biophysics, and engineering. This year construction of European Spallation Source (ESS) was commenced in Lund, Sweeden. The facility will use a new long pulsed source principle to obtain higher...... potential performance than any existing facility, however in order to use this pulse structure optimally many existing neutron scattering instruments will need to be redesigned. This defense will concentrate on the design and optimization of the inverse time-of-flight cold neutron spectrometer CAMEA...

  19. Neutron scattering and hydrogen storage

    Directory of Open Access Journals (Sweden)

    A.J. Ramirez-Cuesta

    2009-11-01

    Full Text Available Hydrogen has been identified as a fuel of choice for providing clean energy for transport and other applications across the world and the development of materials to store hydrogen efficiently and safely is crucial to this endeavour. Hydrogen has the largest scattering interaction with neutrons of all the elements in the periodic table making neutron scattering ideal for studying hydrogen storage materials. Simultaneous characterisation of the structure and dynamics of these materials during hydrogen uptake is straightforward using neutron scattering techniques. These studies will help us to understand the fundamental properties of hydrogen storage in realistic conditions and hence design new hydrogen storage materials.

  20. Neutron star structure from QCD

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil); Kurkela, Aleksi [PH-TH, Case C01600, CERN, Theory Division, Geneva (Switzerland); University of Stavanger, Faculty of Science Technology, Stavanger (Norway); Vuorinen, Aleksi [University of Helsinki, Helsinki Institute of Physics and Department of Physics (Finland)

    2016-03-15

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities. (orig.)

  1. Research on Prompt Neutron Multiplicity Distribution at Thermal Neutrons

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The prompt neutron multiplicity distribution as a function of mass of fission fragments ν(A) was studied using the semi-empirical method of excitation energy distributions between the two fission

  2. Neutronic design of the ITER radial neutron camera

    Energy Technology Data Exchange (ETDEWEB)

    Petrizzi, L. [Associazione EURATOM-ENEA sulla Fusione, ENEA Centro Ricerche, C.P. 65, 00044 Frascati, Rome (Italy)], E-mail: petrizzi@frascati.enea.it; Barnsley, R. [EFDA CSU-Garching (Germany); Bertalot, L.; Esposito, B. [Associazione EURATOM-ENEA sulla Fusione, ENEA Centro Ricerche, C.P. 65, 00044 Frascati, Rome (Italy); Haskell, H. [ITER International Team, Garching (Germany); Mainardi, E.; Marocco, D.; Podda, S. [Associazione EURATOM-ENEA sulla Fusione, ENEA Centro Ricerche, C.P. 65, 00044 Frascati, Rome (Italy); Walker, C. [ITER International Team, Garching (Germany); Villari, S. [Associazione EURATOM-ENEA sulla Fusione, ENEA Centro Ricerche, C.P. 65, 00044 Frascati, Rome (Italy)

    2007-10-15

    This paper summarizes the work, performed in the frame of various EFDA contracts during 2004-2005, on the design review and upgrade of the ITER radial neutron camera (RNC). The RNC, which should provide information on the spatial distribution and energy spectrum of the neutron emission, consists of an ex-vessel system (fan-like collimator with 12 x 3 lines of sights) and an in-vessel system with further 9 lines for a full coverage of the plasma. A Monte Carlo code (MCNP) has been used for the neutronic calculations. The basic ITER model has been developed from the CATIA drawings to include the RNC with all details relevant for the neutronic analysis. In the model the collimator diameters have been set to 2 and 4 cm, respectively, for the ex-vessel and in-vessel systems. A detailed space dependent fusion neutron source (DD and DT phases in various plasma scenarios) has been used with a consistent ion temperature radial profile. A special variance reduction treatment has been developed so that neutrons reach the far regions in the high collimated neutron beam and score with a satisfying statistical error. Neutron and photon fluxes and spectra have been calculated. Approximately, one neutron out of 10{sup 11} emitted in all the plasma reaches a single ex-vessel detector. Therefore, for an emission rate of 1.8 x 10{sup 20} n/s (corresponding to 500 MW fusion power) the flux on the detectors is in the range (1-5) x 10{sup 8} n/(cm{sup 2} s) depending on the poloidal orientation. The fraction of scattered neutrons (>1 MeV) is lower than few % of the total. A measurement simulation software tool (MSST) performing asymmetric Abel inversion of simulated measured neutron signals has also been developed for line of sight and design optimization. Combining information from MCNP calculations and MSST, it has been possible to evaluate the performance of the RNC, check whether the present design of the RNC meets the measurement requirements and optimize the RNC design.

  3. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  4. INFLUENCE OF SCATTERED NEUTRON RADIATION ON METROLOGICAL CHARACTERISTICS OF АТ140 NEUTRON CALIBRATION FACILITY

    Directory of Open Access Journals (Sweden)

    D. I. Komar

    2017-01-01

    Full Text Available Today facilities with collimated radiation field are widely used as reference in metrological support of devices for neutron radiation measurement. Neutron fields formed by radionuclide neutron sources. The aim of this research was to study characteristics of experimentally realized neutron fields geometries on АТ140 Neutron Calibration Facility using Monte Carlo method.For calibration, we put a device into neutron field with known flux density or ambient equivalent dose rate. We can form neutron beam from radionuclide fast-neutron source in different geometries. In containercollimator of АТ140 Neutron Calibration Facility we can install special inserts to gather fast-neutron geometry or thermal-neutron geometry. We need to consider neutron scattering from air and room’s walls. We can conduct measurements of neutron field characteristics in several points and get the other using Monte Carlo method.Thermal neutron collimator forms a beam from radionuclide source with a significant amount of neutrons with thermal energies. From found relationship between full neutron flux and distance to neutron source we see that inverse square law is violated. Scattered radiation contribution into total flux increases when we are moving away from neutron source and significantly influences neutron fields characteristics. While source is exposed in shadow-cone geometry neutron specter has pronounced thermal component from wall scattering.In this work, we examined main geometry types used to acquire reference neutron radiation using radionuclide sources. We developed Monte Carlo model for 238Pu-Be neutron source and АТ140 Neutron Calibration Facility’s container-collimator. We have shown the most significant neutron energy distribution factor to be scattered radiation from room’s walls. It leads to significant changes of neutron radiation specter at a distance from the source. When planning location, and installing the facility we should consider

  5. The Nuclear Physics of Neutron Stars

    CERN Document Server

    Piekarewicz, J

    2013-01-01

    We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

  6. Damping and Decoherence in Neutron Oscillations

    CERN Document Server

    Kerbikov, B O; Kamyshkov, Y A; Varriano, L J

    2015-01-01

    An analysis is made of the role played by the gas environment in neutron-mirror-neutron and neutron-antineutron oscillations. In the first process the interaction with the ambient medium induces a refraction energy shift which plays the role of an extra magnetic field. In the second process antineutron annihilation in practice might lead to strong decoherence, which should be taken into account in experiments with free neutrons looking for the neutron to antineutron transformation.

  7. Planar Ion Trap Geometry for Microfabrication

    CERN Document Server

    Madsen, M J; Stick, D; Rabchuk, J A; Monroe, C

    2004-01-01

    We describe a novel high aspect ratio radiofrequency linear ion trap geometry that is amenable to modern microfabrication techniques. The ion trap electrode structure consists of a pair of stacked conducting cantilevers resulting in confining fields that take the form of fringe fields from parallel plate capacitors. The confining potentials are modeled both analytically and numerically. This ion trap geometry may form the basis for large scale quantum computers or parallel quadrupole mass spectrometers. PACS: 39.25.+k, 03.67.Lx, 07.75.+h, 07.10+Cm

  8. Doughnut shape atom traps with arbitrary inclination

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez y Masegosa, R.; Moya C, H.; Chavez C, S. [INAOE, A.P. 51 y 216, 72000 Puebla (Mexico)

    2006-07-01

    Since the invention of magneto-optical trap (MOT), there have been several experimental and theoretical studies of the density distribution in these devices. To the best of our knowledge, only horizontal orbital traps have been observed, perpendicular to the coil axis. In this work we report the observation of distributions of trapped atoms in pure circular orbits without a nucleus whose orbital plane is tilted up to 90diam. with respect to the horizontal plane. We have used a stabilized time phase optical array in our experiments and conventional equipment used for MOT. (Author)

  9. An Atom Trap Relying on Optical Pumping

    CERN Document Server

    Bouyer, P; Dahan, M B; Michaud, A; Salomon, C; Dalibard, J

    1994-01-01

    We have investigated a new radiation pressure trap which relies on optical pumping and does not require any magnetic field. It employs six circularly polarized divergent beams and works on the red of a $J_{g} \\longrightarrow J_{e} = J_{g} + 1$ atomic transition with $J_{g} \\geq 1/2$. We have demonstrated this trap with cesium atoms from a vapour cell using the 852 nm $J_{g} = 4 \\longrightarrow J_{e} = 5$ resonance transition. The trap contained up to $3 \\cdot 10^{7}$ atoms in a cloud of $1/\\sqrt{e}$ radius of 330 $\\mu$m.

  10. Trapped Antihydrogen in Its Ground State

    CERN Document Server

    Gabrielse, G; Kolthammer, W S; McConnell, R; Richerme, P; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D W; George, M C; Hessels, E A; Storry, C H; Weel, M; Mullers, A; Walz, J

    2012-01-01

    Antihydrogen atoms are confined in an Ioffe trap for 15 to 1000 seconds -- long enough to ensure that they reach their ground state. Though reproducibility challenges remain in making large numbers of cold antiprotons and positrons interact, 5 +/- 1 simultaneously-confined ground state atoms are produced and observed on average, substantially more than previously reported. Increases in the number of simultaneously trapped antithydrogen atoms H are critical if laser-cooling of trapped antihydrogen is to be demonstrated, and spectroscopic studies at interesting levels of precision are to be carried out.

  11. Attractiveness of black Shannon trap for phlebotomines

    OpenAIRE

    Galati EAB; VLB Nunes; MEC Dorval; Cristaldo,G; HC Rocha; RM Gonçalves-Andrade; Naufel,G

    2001-01-01

    A white Shannon-type trap was used for captures of female sand flies in the search for natural infection with flagellates, however, due to its low productivity and as a large number of phlebotomines settled on the researchers' black clothes, we decided to compare the relative attractiveness of black and white Shannon-type traps for sand flies. Several pairs of black and white traps were placed side by side in front of caves in four areas in the Serra da Bodoquena, Bonito county, State of Mato...

  12. Neutron radioactivity-Lifetime measurements of neutron-unbound states

    Science.gov (United States)

    Kahlbow, J.; Caesar, C.; Aumann, T.; Panin, V.; Paschalis, S.; Scheit, H.; Simon, H.

    2017-09-01

    A new technique to measure the lifetime τ of a neutron-radioactive nucleus that decays in-flight via neutron emission is presented and demonstrated utilizing MonteCarlo simulations. The method is based on the production of the neutron-unbound nucleus in a target, which at the same time slows down the produced nucleus and the residual nucleus after (multi-) neutron emission. The spectrum of the velocity difference of neutron(s) and the residual nucleus has a characteristic shape, that allows to extract the lifetime. If the decay happens outside the target there will be a peak in the spectrum, while events where the decay is in the target show a broad flat distribution due to the continuous slowing down of the residual nucleus. The method itself and the analysis procedure are discussed in detail for the specific candidate 26O. A stack of targets with decreasing target thicknesses can expand the measurable lifetime range and improve the sensitivity by increasing the ratio between decays outside and inside the target. The simulations indicate a lower limit of measurable lifetime τ ∼ 0 . 2 ps for the given conditions.

  13. Neutron resonance parameters of dysprosium isotopes using neutron capture yields

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. G.; Kye, Y. U.; Cho, M. H. [POSTECH, Pohang (Korea, Republic of); Namkung, W. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Kim, G. N. [Kyungpook National University, Daegu (Korea, Republic of); Lee, M. W.; Kang, Y. R. [Dongnam Inst. Of Radiological and Medical Science, Busan (Korea, Republic of)

    2015-10-15

    Dysprosium is used in the field of nuclear reactor system because it has a very large thermal neutron absorption cross-section. The dysprosium alloyed with special stainless steels is attractive for control in nuclear reactor because of the ability to absorb neutrons readily without swelling or contracting over time and its high melting point. Dysprosium is also one of fission products from the thermal fission of {sup 234}U, {sup 233}U, and {sup 239}Pu. The fission products are accumulated in the reactor core by the burn-up of the nuclear fuel and the poison effect is increased. Therefore, it is required to understand how Dysprosium as both a poison and an absorbing material in the control rod has an effect on the neutron population in a nuclear reactor system over all energy regions. Neutron Capture experiments on Dy isotopes were performed at the electron linear accelerator (LINAC) facility of the Rensselear Polytechnic Institute (RPI) in the neutron energy region from 10 eV to 1 keV. Resonance parameters were extracted by fitting the neutron capture data using the SAMMY multilevel R-matrix Bayesian code.

  14. ^3He neutron spin filters for polarized neutron scattering.

    Science.gov (United States)

    Chen, Wangchun; Borchers, Julie; Chen, Ying; O'Donovan, Kevin; Erwin, Ross; Lynn, Jeffrey; Majkrzak, Charles; McKenney, Sarah; Gentile, Thomas

    2006-03-01

    Polarized neutron scattering (PNS) is a powerful tool that probes the magnetic structures in a wide variety of magnetic materials. Polarized ^3He gas, produced by optical pumping, can be used to polarize or analyze neutron beams because of the strong spin dependence of the neutron absorption cross section for ^3He. Polarized ^3He neutron spin filters (NSF) have been of great interest in PNS community due to recent significant improvement of their performance. Here I will discuss successful applications using ^3He NSFs in polarized neutron reflectometry (PNR) and triple-axis spectrometry (TAS). In PNR, a ^3He NSF in conjunction with a position-sensitive detector allows for efficient polarization analysis of off-specular scattering over a broad range of reciprocal space. In TAS, a ^3He NSF in combination with a double focusing pyrolytic graphite monochromator provides greater versatility and higher intensity compared to a Heusler polarizer. Finally I will present the results from patterned magnetically-coupled thin films in PNR and our first ``proof-of-principle'' experiment in TAS, both of which were performed using ^3He NSF(s) at the NIST Center for Neutron Research.

  15. Applications of Neutron Bubble Dosimeters for Neutron Dose Monitoring in Mixed n-γ Fields

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Bubble dosimeter is a promising technology in the field of neutron dosimetry. It provides real-time monitoring of neutron dose, stable energy response over wide range of neutron energy, and a very low

  16. Gamma/neutron competition above the neutron separation energy in delayed neutron emitters

    Directory of Open Access Journals (Sweden)

    Valencia E.

    2014-03-01

    Full Text Available To study the β-decay properties of some well known delayed neutron emitters an experiment was performed in 2009 at the IGISOL facility (University of Jyväskylä in Finland using Total Absorption γ-ray Spectroscopy (TAGS technique. The aim of these measurements is to obtain the full β-strength distribution below the neutron separation energy (Sn and the γ/neutron competition above. This information is a key parameter in nuclear technology applications as well as in nuclear astrophysics and nuclear structure. Preliminary results of the analysis show a significant γ-branching ratio above Sn.

  17. Proton Fraction in Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    张丰收; 陈列文

    2001-01-01

    The proton fraction in β-stable neutron stars is investigated within the framework of the Skyrme-Hartree-Fock theory using the extended Skyrme effective interaction for the first time. The calculated results show that the proton fraction disappears at high density, which implies that the pure neutron matter may exist in the interior of neutron stars. The incompressibility of the nuclear equation-of-state is shown to be more important to determine the proton fraction. Meanwhile, it is indicated that the addition of muons in neutron stars will change the proton fraction. It is also found that the higher-order terms of the nuclear symmetry energy have obvious effects on the proton fraction and the parabolic law of the nuclear symmetry energy is not enough to determine the proton fraction.

  18. Theory of neutron star magnetospheres

    CERN Document Server

    Curtis Michel, F

    1990-01-01

    An incomparable reference for astrophysicists studying pulsars and other kinds of neutron stars, "Theory of Neutron Star Magnetospheres" sums up two decades of astrophysical research. It provides in one volume the most important findings to date on this topic, essential to astrophysicists faced with a huge and widely scattered literature. F. Curtis Michel, who was among the first theorists to propose a neutron star model for radio pulsars, analyzes competing models of pulsars, radio emission models, winds and jets from pulsars, pulsating X-ray sources, gamma-ray burst sources, and other neutron-star driven phenomena. Although the book places primary emphasis on theoretical essentials, it also provides a considerable introduction to the observational data and its organization. Michel emphasizes the problems and uncertainties that have arisen in the research as well as the considerable progress that has been made to date.

  19. Materials for spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, W.F.; Daemen, L.L. [comps.

    1996-03-01

    The Workshop on Materials for Spallation Neutron Sources at the Los Alamos Neutron Science Center, February 6 to 10, 1995, gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss areas in which work is needed, successful designs and use of materials, and opportunities for further studies. During the first day of the workshop, speakers presented overviews of current spallation neutron sources. During the next 3 days, seven panels allowed speakers to present information on a variety of topics ranging from experimental and theoretical considerations on radiation damage to materials safety issues. An attempt was made to identify specific problems that require attention within the context of spallation neutron sources. This proceedings is a collection of summaries from the overview sessions and the panel presentations.

  20. Superconductivity, antiferromagnetism, and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, John M., E-mail: jtran@bnl.gov; Xu, Guangyong; Zaliznyak, Igor A.

    2014-01-15

    High-temperature superconductivity in both the copper-oxide and the iron–pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements of magnetic excitations over broad ranges of energy and momentum transfers provide important constraints on the theoretical options. We present an overview of the neutron scattering work on high-temperature superconductors and discuss some of the outstanding issues. - Highlights: • High-temperature superconductivity is closely associated with antiferromagnetism. • Antiferromagnetic spin fluctuations coexist with the superconductivity. • Neutron scattering is essential for characterising the full spectrum of spin excitations.

  1. Radiation shielding for neutron guides

    Science.gov (United States)

    Ersez, T.; Braoudakis, G.; Osborn, J. C.

    2006-11-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions.

  2. BPS Skyrmions as neutron stars

    CERN Document Server

    Adam, C; Sanchez-Guillen, J; Vazquez, R; Wereszczynski, A

    2014-01-01

    The BPS Skyrme model has been demonstrated already to provide a physically intriguing and quantitatively reliable description of nuclear matter. Indeed, the model has both the symmetries and the energy-momentum tensor of a perfect fluid, and thus represents a field theoretic realization of the "liquid droplet" model of nuclear matter. In addition, the classical soliton solutions together with some obvious corrections (spin-isospin quantization, Coulomb energy, proton-neutron mass difference) led to an accurate modeling of nuclear binding energies for heavier nuclei. These results lead to the rather obvious proposal to try to describe also neutron stars by the BPS Skyrme model coupled to gravity. We find that the resulting self-gravitating BPS Skyrmions provide an excellent description of neutron stars when the parameter values of the model are extracted from nuclear physics. Specifically, the maximum possible mass of a neutron star before black-hole formation sets in is several solar masses, the precise value...

  3. Ion chamber based neutron detectors

    Science.gov (United States)

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  4. Diffusion, trapping, and isotope exchange of plasma implanted deuterium in ion beam damaged tungsten

    Science.gov (United States)

    Barton, Joseph Lincoln

    Tritium accumulation in nuclear fusion reactor materials is a major concern for practical and safe fusion energy. This work examines hydrogen isotope exchange as a tritium removal technique, analyzes the effects of neutron damage using high energy copper ion beams, and introduces a diffusion coefficient that is a function of the concentration of trapped atoms. Tungsten samples were irradiated with high energy (0.5 - 5 MeV) copper ions for controlled levels of damage - 10-3 to 10-1 displacements per atom (dpa) - at room temperature. Samples were then exposed to deuterium plasma at constant temperature (˜ 380 K) to a high fluence of 1024 ions/m2, where retention is at is maximized (i.e. saturated). By then subsequently exposing these samples to fractions of this fluence with hydrogen plasma, isotope exchange rates were observed. The resulting deuterium still trapped in the tungsten is then measured post mortem. Nuclear reaction analysis (NRA) gives the depth resolved deuterium retention profile with the 3He(D,p) 4He reaction, and thermal desorption spectroscopy (TDS) gives the total amount of deuterium trapped in the tungsten by heating a sample in vacuum up to 1200 K and measuring the evaporated gas molecules with a residual gas analyzer. Isotope exchange data show that hydrogen atoms can displace trapped deuterium atoms efficiently only up to the first few microns, but does not affect the atoms trapped at greater depths. In ion damaged tungsten, measurements showed a significant increase in retention in the damage region proportional to dpa 0.66, which results in a significant spike in total retention, and isotope exchange in damaged samples is still ineffective at depths greater than a few microns. Thus, isotope exchange is not an affective tritium removal technique; however, these experiments have shown that trapping in material defects greatly affects diffusion. These experiments lead to a simplified diffusion model with defect densities as the only free

  5. Tritium Retention and Permeation in Ion- and Neutron-Irradiated Tungsten under US-Japan PHENIX Collaboration

    Science.gov (United States)

    Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.; Chikada, Takumi; Oya, Yasuhisa; Hatano, Yuji

    2015-11-01

    A critical challenge for long-term operation of ITER and beyond to a FNSF, a DEMO and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to intense heat and neutral/ion particle fluxes under the extreme fusion nuclear environment, while minimizing in-vessel inventories and ex-vessel permeation of tritium. Recent work at Tritium Plasma Experiment demonstrated that tritium diffuses in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. US-Japan PHENIX collaboration (2013-2019) investigates irradiation response on tritium behavior in tungsten, and performs one-of-a-kind neutron-irradiation with Gd thermal neutron shield at High Flux Isotope Reactor, ORNL. This presentation describes the challenge in elucidating tritium behavior in neutron-irradiated PFCs, the PHENIX plans for neutron-irradiation and post irradiation examination, and the recent findings on tritium retention and permeation in 14MeV neutron-irradiated and Fe ion irradiated tungsten. This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  6. The smart-talk trap.

    Science.gov (United States)

    Pfeffer, J; Sutton, R I

    1999-01-01

    In today's business world, there's no shortage of know-how. When companies get into trouble, their executives have vast resources at their disposal: their own experiences, colleagues' ideas, reams of computer-generated data, thousands of publications, and consultants armed with the latest managerial concepts and tools. But all too often, even with all that knowledge floating around, companies are plagued with an inertia that comes from knowing too much and doing too little--a phenomenon the authors call the knowing-doing gap. The gap often can be traced to a basic human propensity: the willingness to let talk substitute for action. When confronted with a problem, people act as though discussing it, formulating decisions, and hashing out plans for action are the same as actually fixing it. And after researching organizations of all shapes and sizes, the authors concluded that a particular kind of talk is an especially insidious inhibitor of action: "smart talk." People who can engage in such talk generally sound confident and articulate; they can spout facts and may even have interesting ideas. But such people often exhibit the less benign aspects of smart talk as well: They focus on the negative, and they favor unnecessarily complex or abstract language. The former lapses into criticism for criticism's sake; the latter confuses people. Both tendencies can stop action in its tracks. How can you shut the smart-talk trap and close the knowing-doing gap? The authors lay out five methods that successful companies employ in order to translate the right kind of talk into intelligent action.

  7. Non-destructive magneto-strain analysis of YB2Cu3Oy superconducting magnets using neutron diffraction in the time-of-flight mode

    Science.gov (United States)

    Tomita, M.; Muralidhar, M.; Suzuki, K.; Ishihara, A.; Fukumoto, Y.; Osamura, K.; Machiya, S.; Harjo, S.

    2012-09-01

    In general, neutron diffraction allows a non-destructive investigation of bulk samples. In this study, a magneto-strain analysis of the trapped field in YB2Cu3Oy "YBCO" superconducting bulks was carried out at 45 K using neutron diffraction time-of-flight (TOF) method. The TAKUMI TOF neutron diffractometer offers unique advantages, including accommodation of large objectives, control of the experimental set-up using a 4-axial goniometer (XYZθ), and a positional resolution of 0.01 mm allowing an accurate sample positioning. As a result, the lattice strain in the YB2Cu3Oy material could be estimated in both radial and hoop directions by estimating the difference of plane spacing with/without the trapped magnetic field. The results indicate that the samples with a low trapped field values have smaller magnetic strain than those with a high trapped field. Further, the strain in the hoop direction is higher than that in the radial direction. The present results indicate that neutron diffraction measurements are an effective method for evaluating the bulk residual strains in a non-destructive manner.

  8. Neutron metrology in the HFR

    Energy Technology Data Exchange (ETDEWEB)

    Voorbraak, W.P.; Freudenreich, W.E.; Stecher-Rasmussen, F.; Verhagen, H.W.

    1991-10-01

    Neutron fluence rate and gamma dose data are presented for the first series of experiments at the filtered HFR beam HB11 at full reactor power. Measurements were performed on two beagle dogs and one cylindrical phantom. The main results for thermal and epithermal fluence rates, physical neutron dose and gamma dose are presented in the tables 1 and 2. (author). 10 refs.; 9 figs.; 8 tabs.

  9. Neutron metrology in the HFR

    Energy Technology Data Exchange (ETDEWEB)

    Voorbraak, W.P.; Freudenreich, W.E.; Paardekooper, A.; Stecher-Rasmussen, F.; Verhagen, H.W.

    1991-11-01

    Results are presented of the ECN measurements at the filtered HFR beam HB11. The neutron measurements took place in the free beam at full power. Several gamma measurements were performed at full power under different conditions. The neutron spectrum was obtained by adjusting a calculated spectrum with experimental results from activation foils. The gamma data were obtained with thermoluminescent dosimeters. (author). 5 refs.; 4 figs.; 4 tabs.

  10. Systematics in delayed neutron yields

    Energy Technology Data Exchange (ETDEWEB)

    Ohsawa, Takaaki [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.

    1998-03-01

    An attempt was made to reproduce the systematic trend observed in the delayed neutron yields for actinides on the basis of the five-Gaussian representation of the fission yield together with available data sets for delayed neutron emission probability. It was found that systematic decrease in DNY for heavier actinides is mainly due to decrease of fission yields of precursors in the lighter side of the light fragment region. (author)

  11. Neutron Star News and Puzzles

    CERN Document Server

    Prakash, Madappa

    2014-01-01

    Gerry Brown has had the most influence on my career in Physics, and my life after graduate studies. In this article, I give a brief account of some of the many ways in which Gerry shaped my research. Recent and on-going research on neutron stars in which the group built from scratch by Gerry at Stony Brook has made significant strides are reviewed. Selected puzzles about neutron stars that remain to be solved are noted.

  12. Neutron star news and puzzles

    Science.gov (United States)

    Prakash, Madappa

    2014-08-01

    Gerry Brown has had the most influence on my career in Physics, and my life after graduate studies. This article gives a brief account of some of the many ways in which Gerry shaped my research. Focus is placed on the significant strides on neutron star research made by the group at Stony Brook, which Gerry built from scratch. Selected puzzles about neutron stars that remain to be solved are noted.

  13. Advanced Neutron Source (ANS) Project

    Science.gov (United States)

    Campbell, J. H.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  14. Interfering with the neutron spin

    Indian Academy of Sciences (India)

    Apoorva G Wagh; Veer Chand Rakhecha

    2004-07-01

    Charge neutrality, a spin $\\dfrac{1}{2}$ and an associated magnetic moment of the neutron make it an ideal probe of quantal spinor evolutions. Polarized neutron interferometry in magnetic field Hamiltonians has thus scored several firsts such as direct verification of Pauli anticommutation, experimental separation of geometric and dynamical phases and observation of non-cyclic amplitudes and phases. This paper provides a flavour of the physics learnt from such experiments.

  15. Neutron transport simulation (selected topics)

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, P. [Instituto Tecnologico e Nuclear, Estrada Nacional 10, P-2686-953 Sacavem (Portugal)], E-mail: pedrovaz@itn.pt

    2009-10-15

    Neutron transport simulation is usually performed for criticality, power distribution, activation, scattering, dosimetry and shielding problems, among others. During the last fifteen years, innovative technological applications have been proposed (Accelerator Driven Systems, Energy Amplifiers, Spallation Neutron Sources, etc.), involving the utilization of intermediate energies (hundreds of MeV) and high-intensity (tens of mA) proton accelerators impinging in targets of high Z elements. Additionally, the use of protons, neutrons and light ions for medical applications (hadrontherapy) impose requirements on neutron dosimetry-related quantities (such as kerma factors) for biologically relevant materials, in the energy range starting at several tens of MeV. Shielding and activation related problems associated to the operation of high-energy proton accelerators, emerging space-related applications and aircrew dosimetry-related topics are also fields of intense activity requiring as accurate as possible medium- and high-energy neutron (and other hadrons) transport simulation. These applications impose specific requirements on cross-section data for structural materials, targets, actinides and biologically relevant materials. Emerging nuclear energy systems and next generation nuclear reactors also impose requirements on accurate neutron transport calculations and on cross-section data needs for structural materials, coolants and nuclear fuel materials, aiming at improved safety and detailed thermal-hydraulics and radiation damage studies. In this review paper, the state-of-the-art in the computational tools and methodologies available to perform neutron transport simulation is presented. Proton- and neutron-induced cross-section data needs and requirements are discussed. Hot topics are pinpointed, prospective views are provided and future trends identified.

  16. Effects of the neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Alcober, V. (Junta de Energia Nuclear, Madrid (Spain)); Martinez Ruis, F.; Manuzi, M.A. (Dpto. de Traumatologia Centro Ramon y Cajal, Madrid (Spain))

    1984-01-01

    An introduction to the cortical bone neutron irradiation subject and to the effect of the irradiation on the mechanical properties of bone considered as a composite material is presented. Only the special case of the simple flexion has been treated. The evolution of the load-deflection curve as a function of the epithermal neutron dose has been studied. Some hypotheses on the role performed by the organic and mineral phases are introduced.

  17. Neutron transport simulation (selected topics)

    Science.gov (United States)

    Vaz, P.

    2009-10-01

    Neutron transport simulation is usually performed for criticality, power distribution, activation, scattering, dosimetry and shielding problems, among others. During the last fifteen years, innovative technological applications have been proposed (Accelerator Driven Systems, Energy Amplifiers, Spallation Neutron Sources, etc.), involving the utilization of intermediate energies (hundreds of MeV) and high-intensity (tens of mA) proton accelerators impinging in targets of high Z elements. Additionally, the use of protons, neutrons and light ions for medical applications (hadrontherapy) impose requirements on neutron dosimetry-related quantities (such as kerma factors) for biologically relevant materials, in the energy range starting at several tens of MeV. Shielding and activation related problems associated to the operation of high-energy proton accelerators, emerging space-related applications and aircrew dosimetry-related topics are also fields of intense activity requiring as accurate as possible medium- and high-energy neutron (and other hadrons) transport simulation. These applications impose specific requirements on cross-section data for structural materials, targets, actinides and biologically relevant materials. Emerging nuclear energy systems and next generation nuclear reactors also impose requirements on accurate neutron transport calculations and on cross-section data needs for structural materials, coolants and nuclear fuel materials, aiming at improved safety and detailed thermal-hydraulics and radiation damage studies. In this review paper, the state-of-the-art in the computational tools and methodologies available to perform neutron transport simulation is presented. Proton- and neutron-induced cross-section data needs and requirements are discussed. Hot topics are pinpointed, prospective views are provided and future trends identified.

  18. Properties of Rotating Neutron Star

    Directory of Open Access Journals (Sweden)

    Shailesh K. Singh

    2015-08-01

    Full Text Available Using the nuclear equation of states for a large variety of relativistic and non-relativistic force parameters, we calculate the static and rotating masses and radii of neutron stars. From these equation of states, we evaluate the properties of rotating neutron stars, such as rotational frequencies, moment of inertia, quadrupole deformation parameter, rotational ellipticity and gravitational wave strain amplitude. The estimated gravitational wave strain amplitude of the star is found to be~sim 10-23.

  19. Long lifetimes in optical ion traps

    CERN Document Server

    Lambrecht, Alexander; Weckesser, Pascal; Debatin, Markus; Karpa, Leon; Schaetz, Tobias

    2016-01-01

    We report on single Barium ions confined in a near-infrared optical dipole trap for up to three seconds in absence of any radio-frequency fields. Additionally, the lifetime in a visible optical dipole trap is increased by two orders of magnitude as compared to the state-of-the-art using an efficient repumping method. We characterize the state-dependent potentials and measure an upper bound for the heating rate in the near-infrared trap. These findings are beneficial for entering the regime of ultracold interaction in atom-ion ensembles exploiting bichromatic optical dipole traps. Long lifetimes and low scattering rates are essential to reach long coherence times for quantum simulations in optical lattices employing many ions, or ions and atoms.

  20. Magneto-Optical Trap for Thulium Atoms

    CERN Document Server

    Sukachev, D; Chebakov, K; Akimov, A; Kanorsky, S; Kolachevsky, N; Sorokin, V

    2010-01-01

    Thulium atoms are trapped in a magneto-optical trap using a strong transition at 410 nm with a small branching ratio. We trap up to $7\\times10^{4}$ atoms at a temperature of 0.8(2) mK after deceleration in a 40 cm long Zeeman slower. Optical leaks from the cooling cycle influence the lifetime of atoms in the MOT which varies between 0.3 -1.5 s in our experiments. The lower limit for the leaking rate from the upper cooling level is measured to be 22(6) s$^{-1}$. The repumping laser transferring the atomic population out of the F=3 hyperfine ground-state sublevel gives a 30% increase for the lifetime and the number of atoms in the trap.