WorldWideScience

Sample records for neutron transmission setup

  1. Characterization of a neutron imaging setup at the INES facility

    Energy Technology Data Exchange (ETDEWEB)

    Durisi, E.A., E-mail: elisabettaalessandra.durisi@unito.it [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Visca, L. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Albertin, F.; Brancaccio, R. [Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Corsi, J. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Dughera, G. [Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Ferrarese, W. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Giovagnoli, A.; Grassi, N. [Fondazione Centro per la Conservazione ed il Restauro dei Beni Culturali “La Venaria Reale”, Piazza della Repubblica, 10078 Venaria Reale, Torino (Italy); Grazzi, F. [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Lo Giudice, A.; Mila, G. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); and others

    2013-10-21

    The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field. -- Highlights: A full characterization of the present INES imaging set-up was carried out. Two CCD cameras and two scintillators (ZnS/{sup 6}LiF) of different thicknesses were tested. Linearity, effective dynamic range and spatial resolution were determined. Radiographies of steep wedges were performed using the highest dynamic range setup. Tomography of a bronze cube was performed using the best spatial resolution setup.

  2. High precision neutron interferometer setup S18b

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Lemmel, H.

    2011-01-01

    The present setup at S18 is a multi purpose instrument. It is used for both interferometry and a Bonse-Hart camera for USANS (Ultra Small Angle Neutron Scattering) spectroscopy with wide range tunability of wavelength. Some recent measurements demand higher stability of the instrument, which made us to propose a new setup dedicated particularly for neutron interferometer experiments requiring high phase stability. To keep both options available, we suggest building the new setup in addition to the old one. By extending the space of the present setup by 1.5 m to the upstream, both setups can be accommodated side by side. (authors)

  3. Novel Experimental Setups for In Situ Neutron Diffraction

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; H. Gjørup, Frederik; Mørch, Mathias

    Modern synchrotron and neutron sources provide the intensities needed for performing never-before-seen experiments. With the imminent launch of the scattering facilities MAX IV & ESS, it is interesting to explore novel setups that enable new experiments at these sites. X-ray and neutron technique...

  4. 'energy plus transmutation' set-up for neutron production and ...

    Indian Academy of Sciences (India)

    Abstract. The set-up 'energy plus transmutation', consisting of a thick lead target and a natural uranium blanket, was irradiated by relativistic proton beams with the energy from 0.7 GeV up to 2 GeV. Neutron field was measured in different places of this set- up using different activation detectors. The possibilities of using the ...

  5. neutron transmission through crystalline materials

    International Nuclear Information System (INIS)

    El Mesiry, M.S.

    2011-01-01

    The aim of the present work is to study the neutron transmission through crystalline materials. Therefore a study of pyrolytic graphite (PG) as a highly efficient selective thermal neutron filter and Iron single crystal as a whole one, as well as the applicability of using their polycrystalline powders as a selective cold neutron filters is given. Moreover, the use of PG and iron single crystal as an efficient neutron monochromator is also investigated. An additive formula is given which allows calculating the contribution of the total neutron cross-section including the Bragg scattering from different )(hkl planes to the neutron transmission through crystalline iron and graphite. The formula takes into account their crystalline form. A computer CFe program was developed in order to provide the required calculations for both poly- and single-crystalline iron. The validity of the CFe program was approved from the comparison of the calculated iron cross-section data with the available experimental ones. The CFe program was also adapted to calculate the reflectivity from iron single crystal when it used as a neutron monochromator The computer package GRAPHITE, developed in Neutron Physics laboratory, Nuclear Research Center, has been used in order to provide the required calculations for crystalline graphite in the neutron energy range from 0.1 meV to 10 eV. A Mono-PG code was added to the computer package GRAPHITE in order to calculate the reflectivity from PG crystal when it used as a neutron monochromator.

  6. The new cold neutron tomography set-up at SINQ

    CERN Document Server

    Baechler, S; Cauwels, P; Dierick, M; Jolie, J; Materna, T; Mondelaers, W

    2002-01-01

    A new cold neutron tomography set-up is operational at the neutron spallation source SINQ of the Paul Scherrer Institute (PSI) in Villigen, Switzerland. The detection system is based on a sup 6 LiF/ZnS:Ag conversion screen and a CCD camera. Several tests have been carried out to characterize the quality of the tomography system, such as homogeneity, reproducibility, L/D-ratio and spatial resolution. The high flux and the good efficiency of the detector lead to very short exposure times. Thus, a typical set of tomography scans can be performed in only 20 min. Then, 3D computed tomography objects were calculated using the filtered back-projection reconstruction method. Initial results of various samples show that cold neutron tomography can be a useful tool for industry, geology and dentistry. Furthermore, suitable applications can be found in the field of archaeology.

  7. Neutron Transmission through Sapphire Crystals

    DEFF Research Database (Denmark)

    Sapphire crystals are excellent filters of fast neutrons, while at the same time exhibit moderate to very little absorption at smaller energies. We have performed an extensive series of measurements in order to quantify the above effect. Alongside our experiments, we have performed a series...... of simulations, in order to reproduce the transmission of cold neutrons through sapphire crystals. Those simulations were part of the effort of validating and improving the newly developed interface between the Monte-Carlo neutron transport code MCNP and the Monte Carlo ray-tracing code McStas....

  8. Energy-selective neutron transmission imaging at a pulsed source

    Science.gov (United States)

    Kockelmann, W.; Frei, G.; Lehmann, E. H.; Vontobel, P.; Santisteban, J. R.

    2007-08-01

    Energy-selective neutron radiography experiments were carried out at the ISIS pulsed spallation source. This neutron transmission imaging technique combines the hardware used for conventional neutron radiography with the Bragg edge transmission features of time-of-flight methods. The main component of the energy-selective radiography set-up was a gated image-intensified CCD camera that viewed a neutron sensitive scintillation screen via a mirror. Energy resolution was obtained via synchronization of the light-intensifier with the pulse structure of the neutron source. It is demonstrated that contrast enhancement of materials can be straightforwardly achieved, and that microstructural features in metal samples can be directly visualized with high spatial resolution by taking advantage of the Bragg edges in the energy dependent neutron cross sections.

  9. Neutron transmission measurements at the IRMM pulsed neutron facility GELINA

    CERN Document Server

    Brusegan, A

    2002-01-01

    Measurements of neutron transmission are performed at the pulsed neutron source GELINA (Geel Linear Accelerator) of the JRC Institute of Reference Materials and Measurements in Belgium. This white neutron possibility is one of the world best as it posses an excellent energy resolution and good intensity, which offer the possibility of obtaining high quality neutron data. In the lecture are given typical characteristics of the time-of-flight (TOF) measurements performed here. The neutron transmission through a sample is connected directly with the total neutron cross section of the isotope. The precision of the experimental data is important for the exact determination of the neutron resonance parameters, which are relevant in applications like astrophysics and nuclear reactor design. The knowledge of the average nuclear properties, like the strength function, is desirable in nuclear reaction theory for comparison with predictions of different optical models. High quality of the transmission data is assured by...

  10. Design of a setup for {sup 252}Cf neutron source for storage and analysis purpose

    Energy Technology Data Exchange (ETDEWEB)

    Hei, Daqian [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Zhuang, Haocheng [Xi’an Middle School of Shanxi Province, Xi’an 710000 (China); Jia, Wenbao, E-mail: jiawenbao@163.com [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000 (China); Cheng, Can; Jiang, Zhou; Wang, Hongtao [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Chen, Da [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000 (China)

    2016-11-01

    {sup 252}Cf is a reliable isotopic neutron source and widely used in the prompt gamma ray neutron activation analysis (PGNAA) technique. A cylindrical barrel made by polymethyl methacrylate contained with the boric acid solution was designed for storage and application of a 5 μg {sup 252}Cf neutron source. The size of the setup was optimized with Monte Carlo code. The experiments were performed and the results showed the doses were reduced with the setup and less than the allowable limit. The intensity and collimating radius of the neutron beam could also be adjusted through different collimator.

  11. Neutron transmission measurements at the IRMM pulsed neutron facility GELINA

    International Nuclear Information System (INIS)

    Brusegan, A.

    2002-01-01

    Measurements of neutron transmission are performed at the pulsed neutron source GELINA (Geel Linear Accelerator) of the JRC Institute of Reference Materials and Measurements in Belgium. This white neutron possibility is one of the world best as it posses an excellent energy resolution and good intensity, which offer the possibility of obtaining high quality neutron data. In the lecture are given typical characteristics of the time-of-flight (TOF) measurements performed here. The neutron transmission through a sample is connected directly with the total neutron cross section of the isotope. The precision of the experimental data is important for the exact determination of the neutron resonance parameters, which are relevant in applications like astrophysics and nuclear reactor design. The knowledge of the average nuclear properties, like the strength function, is desirable in nuclear reaction theory for comparison with predictions of different optical models. High quality of the transmission data is assured by precise measurements and data analysis. The latter is done carefully by using sophisticated computer codes. The resolution function of the neutron source and the resonance Doppler broadening are objects of special attention. In the lecture are presented typical examples of the neutron transmission measurements at CELINA, the main direction of data applications and an overview of the future investigations in the field

  12. Advanced setup for high-pressure and low-temperature neutron diffraction at hydrostatic conditions

    International Nuclear Information System (INIS)

    Lokshin, Konstantin A.; Zhao Yusheng

    2005-01-01

    We describe a design of the experimental setup for neutron diffraction studies at low temperatures and hydrostatic pressure. The significant benefit of the setup, compared to the previous methods, is that it makes possible the simultaneous collection of neutrons diffracted at the 30 deg. -150 deg. range with no contamination by the primary scattering from the sample surroundings and without cutting out the incident and diffracted beams. The suggested design is most useful for third-generation time-of-flight diffractometers and constant wavelength instruments. Application of the setup expands the capabilities of high-pressure neutron diffraction, allowing time-resolved kinetics and structural studies, multihistogram Rietveld, and pair distribution function and texture analyses. The high efficiency of the setup was proven for the HIPPO diffractometer at Los Alamos Neutron Science Center under pressures up to 10 kbar and temperatures from 4 to 300 K

  13. 'energy plus transmutation' set-up for neutron production and ...

    Indian Academy of Sciences (India)

    . Keywords. ... large (hundreds and thousands of barns) and the neutron absorption should be taken into account during the ..... tiparticle and High Energy Applications, LANL, Los Alamos, New Mexico (2002). [4] V S Barashenkov, Comp. Phys.

  14. An experimental setup for measurement of neutron energy spectra in lithium with collimated 14.7 MeV neutrons

    Science.gov (United States)

    Ofek, R.; Tsechanski, A.; Profio, A. E.; Shani, G.

    1989-06-01

    Neutron energy spectra in an 88 cm diameter, 88 cm long lithium tank were measured with the Ben Gurion University experimental setup. In this setup, the lithium tank is separated from the DT neutron generator by a 120 cm thick paraffin wall with a 6 cm diameter collimator through it, along the axis of the neutron generator and the lithium tank. This enables unidirectionality and monoenergeticity of the neutrons penetrating the lithium tank. A neutron energy spectrum is obtained by unfolding with the code FORIST of proton-recoil spectra measured by an NE213 liquid scintillator. The important features of the spectrometry system, comprised of the NE213 scintillator and the attached electronic system, are the high pulse shape discrimination capability of the NE213 scintillator, which enables the separation of neutron and gamma events, relatively high energy resolution, and the system linearity. Also the simultaneous measurement of the low gain and high gain proton-recoil spectra prevents a distortion of the unfolded neutron spectrum. The neutron energy spectra are absolutely normalized and internormalized to each other by an absolutely calibrated, second NE213 scintillator, placed close to the neutron generator. The measured neutron energy spectra inside the lithium tank were compared to some preliminary calculations of the spectra, carried out with the discrete-ordinates transport code DOT4.2. Both spectra are in poor agreement. These discrepancies are assigned mainly to the inadequancy of the transport calculations. Finally, the distribution of the tritium production in the lithium tank, with the same experimental configurations, was calculated with the code DOT4.2 as well. The results indicate that the collimated neutron beam configuration is inappropriate for the purpose of tritium breeding ratio measurements.

  15. In situ membrane bending setup for strain-dependent scanning transmission x-ray microscopy investigations.

    Science.gov (United States)

    Finizio, S; Wintz, S; Kirk, E; Raabe, J

    2016-12-01

    We present a setup that allows for the in situ generation of tensile strains by bending x-ray transparent Si 3 N 4 membranes with the application of a pressure difference between the two sides of the membrane, enabling the possibility to employ high resolution space- and time-resolved scanning transmission x-ray microscopy for the investigation of the magneto-elastic coupling.

  16. GALS – setup for production and study of heavy neutron rich nuclei

    Directory of Open Access Journals (Sweden)

    Zemlyanoy Sergey

    2015-01-01

    Full Text Available The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 below 208Pb is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion–fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of 136Xe with 208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N=126.

  17. GALS – setup for production and study of heavy neutron rich nuclei

    CERN Document Server

    Zemlyanoy, Sergey; Kozulin, Eduard; Kudryavtsev, Yury; Fedosseev, Valentin; Bark, Robert; Janas, Zenon; Othman, Hosam

    2015-01-01

    The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 below ^208Pb is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion-fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of ^136Xe with ^208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N=126.

  18. Transmission of 14 MeV neutrons through concrete, soil, sugar, wood and coal samples - a Monte Carlo Study

    International Nuclear Information System (INIS)

    Abdelmonem, M.S.; Naqvi, A.A.

    2006-01-01

    Full text: Fast neutrons transmission measurements are ideal for the elemental analysis of bulk samples. In particular, they can be used to determine the hydrogen concentration in bulk samples. In the present study, Monte Carlo simulations have been carried to calculate the intensity of 14 MeV neutrons transmitted through concrete, soil, sugar, wood and coal samples. The simulated set-up consists of a cylindrical sample, placed at a distance of 9 cm from the neutron source. Fast neutrons transmitted through the sample are collimated through a double truncated neutron collimator to a fast neutron detector. The collimator contains a mixture of paraffin and lithium carbonate. In this study, transmitted intensity of fast neutron through each sample was calculated as a function of moisture contents of the sample for 14 MeV neutrons. The moisture contents of the samples were varied over 0-7 wt. %. The calculated intensity of 14 MeV neutrons transmitted through the samples, shows effects related to fast neutron thermalization in hydrogen of moisture and energy dependence of neutron transmission through the sample materials. This is clearly shown by different gradients of neutron yield vs moisture content curves of these samples. The gradient of the neutron yield curves for the 14 MeV neutrons has a lower value than those reported for a 241 Am-Be neutron source

  19. Transmission efficiency of neutron guide tube with alignment errors

    International Nuclear Information System (INIS)

    Kawabata, Yuji; Suzuki, Masatoshi; Sakamoto, Masanobu; Harami, Taikan; Takahashi, Hidetake; Onishi, Nobuaki

    1990-01-01

    The experimental studies on the neutron transmission efficiencies of neutron guide tubes were carried out by using thermal neutrons from the JAERI electron linac. The neutron guide tube facility on a large scale have been planned on the reconstructed JRR-3 in JAERI. The neutron efficiencies of the 1/10 scale neutron guide tube, which is 2 mm width and 1.8 m length, with and without appreciable alignment errors were studied to evaluate the efficiencies of the planned ones. Calculated results by the Neutron Guide Tube Analysis Code 'NEUGT' were also assessed by these neutron experiments. The experimental results agree well with the calculated results by 'NEUGT' even with alignment errors. From this experimental study, the efficiency of the planned neutron guide tubes is estimated to be good enough for the neutron beam experiments. (author)

  20. Boron neutron capture therapy design calculation of a 3H(p,n reaction based BSA for brain cancer setup

    Directory of Open Access Journals (Sweden)

    Bassem Elshahat

    2015-09-01

    Full Text Available Purpose: Boron neutron capture therapy (BNCT is a promising technique for the treatment of malignant disease targeting organs of the human body. Monte Carlo simulations were carried out to calculate optimum design parameters of an accelerator based beam shaping assembly (BSA for BNCT of brain cancer setup.Methods: Epithermal beam of neutrons were obtained through moderation of fast neutrons from 3H(p,n reaction in a high density polyethylene moderator and a graphite reflector. The dimensions of the moderator and the reflector were optimized through optimization of epithermal / fast neutron intensity ratio as a function of geometric parameters of the setup. Results: The results of our calculation showed the capability of our setup to treat the tumor within 4 cm of the head surface. The calculated peak therapeutic ratio for the setup was found to be 2.15. Conclusion: With further improvement in the polyethylene moderator design and brain phantom irradiation arrangement, the setup capabilities can be improved to reach further deep-seated tumor.

  1. Two reports: (i) Correlation properties of delayed neutrons from fast neutron induced fission. (ii) Method and set-up for measurements of trace level content of heavy fissionable elements based on delayed neutron counting

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Isaev, S.G.; Goverdovski, A.A.; Pshakin, G.M.

    1998-10-01

    The document includes the following two reports: 'Correlation properties of delayed neutrons from fast neutron induced fission' and 'Method and set-up for measurements of trace level content of heavy fissionable elements based on delayed neutron counting. A separate abstract was prepared for each report

  2. Neutron transmission measurement for natural W at nELBE

    Directory of Open Access Journals (Sweden)

    Song T.-Y.

    2017-01-01

    Full Text Available Korea has developed a Helium Cooled Ceramic Reflector Test Blanket Module (Ko HCCR TBM related to the ITER project. Tungsten is considered as a prime candidate for the plasma facing materials in fusion reactors, and for the structure material of Ko HCCR TBM. KAERI (Korea Atomic Energy Research Institute has been evaluating neutron cross sections of tungsten isotopes for neutron energy of up to 150 MeV based on nuclear reaction codes and available measurement data. New experimental data were measured at nELBE of HZDR (Helmholtz-Zentrum Dresden-Rossendorf for a comparison with the evaluated and existing measurement data. The neutron source nELBE adopts a 40 MeV superconducting electron linac and a liquid Pb target for time-of-flight measurements. The nELBE neutron source uses no moderator and provides fast neutrons. An electron bunch length of 5 ps and a compact target provide a good neutron energy resolution with a relatively short flight length compared to other time-of-flight neutron sources. Transmission data of a natural tungsten sample were measured with a flight path length of 852.1 cm and a repetition rate of 101.56 kHz. The neutron total cross section of natural tungsten was obtained for an energy range of 100 keV to 10 MeV.

  3. Activation measurements for thermal neutrons. Part J. Evaluation of thermal neutron transmission factors

    International Nuclear Information System (INIS)

    Egbert, Stephen D.

    2005-01-01

    In order to relate thermal neutron activation measurements in samples to the calculated free-in-air thermal neutron activation levels given in Chapter 3, use is made of sample transmission factors. Transmission factors account for the modification of the fluence and activation at each sample's in situ location. For the purposes of this discussion, the transmission factor (TF) is defined as the ratio of the in situ sample activation divided by the free-in-air (FIA) activation at a height of 1 m above ground at the same ground range. The procedures for calculation of TF's and example results are presented in this section. (author)

  4. Activation measurements for fast neutrons. Part E. Evaluation of fast neutron 63Ni transmission factors

    International Nuclear Information System (INIS)

    Egbert, Stephen D.

    2005-01-01

    The 63 Ni measurements for fast neutrons in copper samples are compared to the calculated free-in-air 63 Ni neutron activation given in Chapter 3 by use of transmission factors. Transmission factors were calculated to account for the modification of the fluence and activation at each sample's in situ location. For the purposes of this discussion, the transmission factor (TF) is defined as the ratio of the in situ sample activation divided by the untilted free-in-air (FIA) activation at a height of 1 m above ground at the same ground range. Examples of the application of TF's will be provided in this section. (author)

  5. High spatial resolution fast-neutron imaging detectors for Pulsed Fast-Neutron Transmission Spectroscopy

    Science.gov (United States)

    Mor, I.; Vartsky, D.; Bar, D.; Feldman, G.; Goldberg, M. B.; Katz, D.; Sayag, E.; Shmueli, I.; Cohen, Y.; Tal, A.; Vagish, Z.; Bromberger, B.; Dangendorf, V.; Mugai, D.; Tittelmeier, K.; Weierganz, M.

    2009-05-01

    Two generations of a novel detector for high-resolution transmission imaging and spectrometry of fast-neutrons are presented. These devices are based on a hydrogenous fiber scintillator screen and single- or multiple-gated intensified camera systems (ICCD). This detector is designed for energy-selective neutron radiography with nanosecond-pulsed broad-energy (1-10 MeV) neutron beams. Utilizing the Time-of-Flight (TOF) method, such a detector is capable of simultaneously capturing several images, each at a different neutron energy (TOF). In addition, a gamma-ray image can also be simultaneously registered, allowing combined neutron/gamma inspection of objects. This permits combining the sensitivity of the fast-neutron resonance method to low-Z elements with that of gamma radiography to high-Z materials.

  6. TANGRA - an experimental setup for basic and applied nuclear research by means of 14.1 MeV neutrons

    Science.gov (United States)

    Ruskov, Ivan; Kopatch, Yury; Bystritsky, Vyacheslav; Skoy, Vadim; Shvetsov, Valery; Hambsch, Franz-Josef; Oberstedt, Stephan; Noy, Roberto Capote; Grozdanov, Dimitar; Zontikov, Artem; Rogov, Yury; Zamyatin, Nikolay; Sapozhnikov, Mikhail; Slepnev, Vyacheslav; Bogolyubov, Evgeny; Sadovsky, Andrey; Barmakov, Yury; Ryzhkov, Valentin; Yurkov, Dimitry; Valković, Vladivoj; Obhođaš, Jasmina; Aliyev, Fuad

    2017-09-01

    For investigation of the basic characteristics of 14.1 MeV neutron induced nuclear reactions on a number of important isotopes for nuclear science and engineering, a new experimental setup TANGRA has been constructed at the Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research in Dubna. For testing its performance, the angular distribution of γ-rays (and neutrons) from the inelastic scattering of 14.1 MeV neutrons on high-purity carbon was measured and the angular anisotropy of γ-rays from the reaction 12C(n, n'γ)12C was determined. This reaction is important from fundamental (differential cross-sections) and practical (non-destructive elemental analysis of materials containing carbon) point of view. The preliminary results for the anisotropy of the γ-ray emission from the inelastic scattering of 14.1- MeV neutrons on carbon are compared with already published literature data. A detailed data analysis for determining the correlations between inelastic scattered neutron and γ-ray emission will be published elsewhere.

  7. Quantitative boron detection by neutron transmission method

    International Nuclear Information System (INIS)

    Okka, M.; Genceli, M.; Eren, E.; Bayulken, A.

    2008-01-01

    //Quantitative boron detection is mainly performed by chemical methods like colorimetric titration. High neutron absorption cross section of natural boron makes attractive its detection by absorption measurements. This work is an extension of earlier investigations where neutron radiography technique was used for boron detection. In the present investigation, the neutron absorption rate of boron containing solutions is the way to measure quantitatively the boron content of the solutions. The investigation was carried out in Istanbul TRIGA Mark-II reactor. In the end of the experiments, it was observed that even |ppw| grade boron in aqueous solution can be easily detected. The use of this method is certainly very useful for boron utilizing industries like glass and steel industries.The major disadvantage of the method is the obligation to use always aqueous solutions to be able to detect homogeneously the boron content. Then, steel or glass samples have to be put first in an appropriate solution form. The irradiation of steel samples can give the distribution of boron by the help of a imaging and this suggested method will give its quantitative measurement. The superiority of this method are its quick response time and its accuracy. To test this accuracy, a supposed unknown , solution of boric acid is irradiated and then calculated by the help of the calibration curve. The measured value of boric acid was 0.89 mg and the calculated value was found to be 0.98 mg which gives an accuracy of 10 %. It was also seen that the method is more accurate for low concentration. (authors)

  8. Shape analysis of neutron transmission resonances - a computer code

    International Nuclear Information System (INIS)

    Giacobbe, P.; Magnani, M.

    1979-01-01

    A computer programme for shape-analysis of time-of-flight neutron transmission spectra of non-fissile nuclei in the resonance region is described. The main features are: partial independence of the structure of the programme for the formalism used, accurate description of the resolution function, use of ''a priori'' information on the fitted parameters and simultaneous analysis of many spectra

  9. Characterization of weak, fair and strong neutron absorbing materials by means of neutron transmission: Beam hardening effect

    International Nuclear Information System (INIS)

    Kharfi, F.; Bastuerk, M.; Boucenna, A.

    2006-01-01

    The characterization of neutron absorbing materials as well as quantification of neutron attenuation through matter is very essential in various fields, namely in shielding calculation. The objective of this work is to describe an experimental procedure to be used for the determination of neutron transmission through different materials. The proposed method is based on the relation between the gray value measured on neutron radiography image and the corresponding inducing neutron beam. For such a purpose, three kinds of materials (in shape of plate) were investigated using thermal neutrons: (1) boron-alloyed stainless steel as strong absorber; (2) copper and steel as fair absorbers and (3) aluminum as weak absorber. This work is not limited to the determination of neutron transmission through matters; it is also spread out to the measure of the surface density of the neutron absorbing elements (ρ s ) as a function of thickness of neutron absorbing material such as boron-alloyed stainless steel. The beam hardening effect depending on material thickness was also studied using the neutron transmission measurements. A theoretical approach was used to interpret the experimental results. The neutron transmission measurements were performed at the Neutron Radiography and Tomography facility of the Atomic Institute of the Austrian Universities in Vienna. Finally, a Maxwellian neutron distribution of incident neutron beam was used in the theoretical calculations of neutron energy shift in order to compare with experiments results. The obtained experimental results are in a good agreement with the developed theoretical approach

  10. Characterization of weak, fair and strong neutron absorbing materials by means of neutron transmission: Beam hardening effect

    Science.gov (United States)

    Kharfi, F.; Bastuerk, M.; Boucenna, A.

    2006-09-01

    The characterization of neutron absorbing materials as well as quantification of neutron attenuation through matter is very essential in various fields, namely in shielding calculation. The objective of this work is to describe an experimental procedure to be used for the determination of neutron transmission through different materials. The proposed method is based on the relation between the gray value measured on neutron radiography image and the corresponding inducing neutron beam. For such a purpose, three kinds of materials (in shape of plate) were investigated using thermal neutrons: (1) boron-alloyed stainless steel as strong absorber; (2) copper and steel as fair absorbers and (3) aluminum as weak absorber. This work is not limited to the determination of neutron transmission through matters; it is also spread out to the measure of the surface density of the neutron absorbing elements (ρs) as a function of thickness of neutron absorbing material such as boron-alloyed stainless steel. The beam hardening effect depending on material thickness was also studied using the neutron transmission measurements. A theoretical approach was used to interpret the experimental results. The neutron transmission measurements were performed at the Neutron Radiography and Tomography facility of the Atomic Institute of the Austrian Universities in Vienna. Finally, a Maxwellian neutron distribution of incident neutron beam was used in the theoretical calculations of neutron energy shift in order to compare with experiments results. The obtained experimental results are in a good agreement with the developed theoretical approach.

  11. Two-dimensional void reconstruction by neutron transmission

    International Nuclear Information System (INIS)

    Zakaib, G.D.; Harms, A.A.; Vlachopoulos, J.

    1978-01-01

    Contemporary algebraic reconstruction methods are utilized in investigating the two-dimensional void distribution in a water analog from neutron transmission measurements. It is sought to ultimately apply these techniques to the determination of time-averaged void distribution in two-phase flow systems as well as for potential usage in neutron radiography. Initially, projection data were obtained from a digitized model of a hypothetical two-phase representation and later from neutron beam traverses across a voided methacrylate plastic model. From 10 to 15 views were incorporated, and decoupling of overlapped measurements was utilized to afford greater resolution. In general, the additive Algebraic Reconstruction Technique yielded the best reconstructions, with others showing promise for noisy data. Results indicate the need for some further development of the method in interpreting real data

  12. Edge Detection and Shape Recognition in Neutron Transmission Images

    International Nuclear Information System (INIS)

    Sword, Eric D.; McConchie, Seth M.

    2012-01-01

    Neutron transmission measurements are a valuable tool for nondestructively imaging special nuclear materials. Analysis of these images, however, tends to require significant user interaction to determine the sizes, shapes, and likely compositions of measured objects. Computer vision (CV) techniques can be a useful approach to automatically extracting important information from either neutron transmission images or fission-site-mapping images. An automatable approach has been developed that processes an input image and, through recursive application of CV techniques, produces a set of basic shapes that define surfaces observed in the image. These shapes can then be compared to a library of known shape configurations to determine if the measured object matches its expected configuration, as could be done behind an information barrier for arms control treaty verification inspections.

  13. Spectroscopic fast neutron transmission imaging in a treaty verification setting

    Directory of Open Access Journals (Sweden)

    K. Ogren

    2018-01-01

    Full Text Available Measurements of the geometric configuration of objects and their material composition are needed for nuclear treaty verification purposes. We experimentally demonstrate a simple method based on monoenergetic fast neutron transmission to realize crude imaging of the geometric configuration of special nuclear material, confirm its fissionable content, and obtain information on its approximate fissile mass. In the experiment, we used monoenergetic neutrons from D(d, n3He and T(d, n4He reactions and a linear array of liquid scintillation detectors to perform spectroscopic neutron imaging of up to 13.7 kg of highly enriched uranium in a spherical geometry. We also show an example of detection of material diversion and confirm the presence of fissionable material based on the measurement of high-energy prompt fission neutrons, including estimating the quantity of material from the comparison of measured and predicted fission neutron emission rate. The combination of crude imaging and fissionable material detection and quantification in a simple approach may be attractive in certain treaty verification scenarios.

  14. Spectroscopic fast neutron transmission imaging in a treaty verification setting

    Science.gov (United States)

    Ogren, K.; Nattress, J.; Jovanovic, I.

    2018-01-01

    Measurements of the geometric configuration of objects and their material composition are needed for nuclear treaty verification purposes. We experimentally demonstrate a simple method based on monoenergetic fast neutron transmission to realize crude imaging of the geometric configuration of special nuclear material, confirm its fissionable content, and obtain information on its approximate fissile mass. In the experiment, we used monoenergetic neutrons from D(d, n)3He and T(d, n)4He reactions and a linear array of liquid scintillation detectors to perform spectroscopic neutron imaging of up to 13.7 kg of highly enriched uranium in a spherical geometry. We also show an example of detection of material diversion and confirm the presence of fissionable material based on the measurement of high-energy prompt fission neutrons, including estimating the quantity of material from the comparison of measured and predicted fission neutron emission rate. The combination of crude imaging and fissionable material detection and quantification in a simple approach may be attractive in certain treaty verification scenarios.

  15. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    Science.gov (United States)

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-01

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g (r ) inferred from neutron scattering measurements of the differential cross section d/σ d Ω from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.

  16. Molecular dynamics of TBP and DBP studied by neutron transmission

    International Nuclear Information System (INIS)

    Salles Filho, J.B.V.; Refinetti, M.E.; Fulfaro, R.; Vinhas, L.A.

    1984-04-01

    Differences between the properties of TBP and DBP, concerning the uranium extraction processes, may be related to certain characteristics of the molecular dynamics of each compound. In order to investigate the dynamical behaviour of hydrogen in these molecules, neutron transmission of TBP and DBP has been measured as a function of neutron wavelenght in the range 4.0 - 6.0 A, at room temperature. Scattering cross sections per hydrogen atom have been obtained. From the comparison with results previously obtained for n-butanol, similar dynamical behaviour of butyl radicals in these compounds could be observed. This similarity indicates that the presence of two or three butyl radicals in butylphosphate molecules does not exert influence in the hydrogen motion of methyl and methylene groups. This suggests that the different chemical behaviour between TBP and DBP is related to the dynamics of the hydrogen directly bound to the DBP phosphate group.(Author) [pt

  17. Basic features of the upgraded S18 neutron interferometer set-up at ILL

    CERN Document Server

    Kroupa, G; Bolik, O; Zawisky, M; Hainbuchner, M; Badurek, G; Buchelt, R J; Schricker, A; Rauch, H

    2000-01-01

    The perfect crystal interferometer instrument S18 at the Institute Laue-Langevin (ILL) in Grenoble has been upgraded to allow more advanced neutron optics experiments for fundamental, nuclear and condensed matter physics. The new supermirror guide together with the multipurpose monochromator provides considerably higher intensities in a wide wavelength region. The optimal use of neutrons is obtained by a nondispersive arrangement of the monochromator and the interferometer crystals. This also allows to obtain completely polarised beams using permanent magnetic prism deflection. An additional third analyzer axis permits novel postselection experiments concerning momentum distribution and polarisation analysis of the interfering beams. Several types of large perfect crystal interferometers are available for different applications. The system can be configured as an advanced high-resolution Bonse-Hart small angle scattering camera. The results of various test measurements concerning intensities, interference con...

  18. High energy neutron transmission analysis of dry cask storage

    Science.gov (United States)

    Greulich, Christopher; Hughes, Christopher; Gao, Yuan; Enqvist, Andreas; Baciak, James

    2017-12-01

    Since the U.S. currently only approves of storing used nuclear fuel in pools or dry casks, the demand for dry cask storage is on the rise due to the continuous operation of currently existing nuclear plants which are reaching or have reached the capacity of their used fuel pools. With the rising demand comes additional pressure to ensure the integrity of dry cask systems. Visual inspection is costly and man-power intensive, so alternative nondestructive testing techniques are desired to insure the continued safe and effective storage of fuel. One such approach being investigated by the University of Florida is neutron based computed tomography. Simulations in MCNP are preformed where D-T energy neutrons are transmitted through the dry cask and measured on the opposite side. If the transmitted signal is clear enough, the interior of the cask can be reconstructed from the measurement of the alterations of neutron signal intensity using standard mathematical techniques developed for medical imaging. Preliminary efforts show a correlation between energy and number of scatters (which is an indication of retention of position information). Work is ongoing to quantify if the correlation is strong enough that an energy discriminator may be used as a filter in future image reconstruction. The calculated transmission probability suggests that an image could be reconstructed with a week of scanning.

  19. Molecular dynamics of tert-butanol studied by neutron transmission

    International Nuclear Information System (INIS)

    Amaral, L.Q.; Fulfaro, R.; Vinhas, L.A.

    1974-01-01

    Neutron transmission of the globular compound tert-butanol (CH 3 ) 3 COH have been measured in the temperature interval O 0 C to 40 0 C for 6.13 A neutrons and in the neutron wavelength range 4A to 7.5A in the liquid and solid states. Results show that the cross-section difference at the state transition in 24 0 C is 13%, while it is only approximately 1% at the first order phase transition in 14 0 C. Evidence of existence of third crystalline phase with the lowest cross-section has been found. The barrier to interval methyl rotation in the solid states is estimated as (3.=+ - 0.5) Kcal/mol and does change much over the phase and state transitions. The observed dynamical changes must be due to movements of the whole molecule and evidence that tert-butanol is not in the strict sense a plastic crystal. Correlation with heat capacity results is discussed

  20. Development of a detector setup based on BGO single crystals to measure high energy gamma spectra of neutron sources

    International Nuclear Information System (INIS)

    Tyagi, M.; Singh, S.G.; Singh, A.K.; Desai, D.G.; Tiwari, B.; Sen, S.; Gadkari, S.C.; Ghodke, S.S.; Sujatha, P.N.

    2014-01-01

    Radiation detectors based on Bi 4 Ge 3 O 12 (BGO) single crystal scintillators have many applications, mainly in high-energy physics, and nuclear industry. The BGO possesses several advantages including high density, large effective atomic number Z eff , small radiation length, high radiation hardness, stability of chemical properties, non-hygroscopic nature and much smaller afterglow which make these crystals indispensable in many applications. These crystals are the best choices for the spectroscopy of high energies gamma rays which are usually produced from (γ, n) reactions in various neutron sources. The major applications of these crystals in high energy physics and to detect high energy gammas require large size crystals. It has been well known that the signal output from BGO crystals is strongly governed by the purity and crystal defects. To grow high quality single crystals with large size and minimum number of defects has always been a daunting task for crystal growers. In this communication, we describe the growth and characterization BGO single crystals. Fabrication of a setup based on BGO scintillator useful to measure gamma-rays from an Am-Be neutron source is discussed

  1. The behavior of moisture content in Durian after harvesting by neutron reflection and transmission techniques

    International Nuclear Information System (INIS)

    Chimoye, T.; Fuangfoong, M.

    1998-01-01

    The study aimed at development of a neutron reflection and transmission technique to determine moisture content in Durian fruit as a function of time after harvesting. A system of a 3 mCi Am-Be neutron source with a BF 3 detector as a neutron probe was developed. The results obtained were validated using weighting method

  2. Setup for polarized neutron imaging using in situ3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline.

    Science.gov (United States)

    Dhiman, I; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X; Jiang, C Y; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay

    2017-09-01

    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3 He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe 3 Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3 He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  3. Setup for polarized neutron imaging using in situ 3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline

    Science.gov (United States)

    Dhiman, I.; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X.; Jiang, C. Y.; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay

    2017-09-01

    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe3Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  4. Isobaric analog impurities from neutron capture and transmission by magnesium

    International Nuclear Information System (INIS)

    Weigmann, H.; Macklin, R.L.; Harvey, J.A.

    1976-01-01

    Resonance neutron interactions with the stable isotopes of magnesium were measured at the Oak Ridge Electron Linear Accelerator time-of-flight facility. The transmission of a natural metal sample (78.7% 24 Mg) was measured at 200 m, and capture by natural metal and by enriched isotope samples was measured at 40 m. Twenty-six resonances in 24 Mg + n up to 1.8 MeV were fitted with Breit--Wigner multilevel parameters. The data were sufficient to assign spin and parity to 19 of these. The capture data were analyzed for resonances up to 850 keV for 24 Mg + n, 265 keV for 25 Mg + n (17 + resonances), and 440 keV for 26 Mg + n (4 resonances). Average capture at stellar interior temperatures was calculated. The 24 Mg + n data serve to assess the isospin impurities in three isobaric analog states. Three other states exhibit reduced neutron widths, each several percent of the Wigner limit, which may be understood in terms of simple shell model configurations

  5. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    OpenAIRE

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Abstract Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra ena...

  6. GEANT4 simulation of the neutron background of the C$_6$D$_6$ set-up for capture studies at n_TOF

    CERN Document Server

    Žugec, P.; Bosnar, D.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M.A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Duran, I.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A.R.; Giubrone, G.; Gómez-Hornillos, M.B.; Gonçalves, I.F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Heinitz, S.; Jenkins, D.G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Krtička, M.; Kroll, J.; Langer, C.; Lederer, C.; Leeb, H.; Leong, L.S.; Lo Meo, S.; Losito, R.; Manousos, A.; Marganiec, J.; Martìnez, T.; Massimi, C.; Mastinu, P.F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P.M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J.M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J.L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M.J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.

    2014-05-09

    The neutron sensitivity of the C$_6$D$_6$ detector setup used at n_TOF for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire n_TOF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has been implemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with a $^\\mathrm{nat}$C sample, showing an excellent agreement above 1 keV. At lower energies, an additional component in the measured $^\\mathrm{nat}$C yield has been discovered, which prevents the use of $^\\mathrm{nat}$C data for neutron background estimates at neutron energies below a few hundred eV. The origin and time structure of the neutron background have been derived from the simulations. Examples of the neutron backg...

  7. Optimization of a neutron transmission beamline applied to materials science for the CAB linear accelerator

    International Nuclear Information System (INIS)

    Ramirez, S; Santisteban, J.R

    2009-01-01

    The Neutrons and Reactors Laboratory (NYR) of CAB (Centro Atomico Bariloche) is equipped with a linear electron accelerator (LINAC - Linear particle accelerator). This LINAC is used as a neutron source from which two beams are extracted to perform neutron transmission and dispersion experiments. Through these experiments, structural and dynamic properties of materials can be studied. The neutron transmission experiments consist in a collimated neutron beam which interacts with a sample and a detector behind the sample. Important information about the microstructural characteristics of the material can be obtained from the comparison between neutron spectra before and after the interaction with the sample. In the NYR Laboratory, cylindrical samples of one inch of diameter have been traditionally studied. Nonetheless, there is a great motivation for doing systematic research on smaller and with different geometries samples; particularly sheets and samples for tensile tests. Hence, in the NYR Laboratory it has been considered the possibility of incorporating a neutron guide into the existent transmission line. According to all mentioned above, the main objective of this work consisted in the optimization of the flight transmission tube optics of neutrons. This optimization not only improved the existent line but also contributed to an election criterion for the neutron guide acquisition. [es

  8. Transmission of neutrons in serpentine mixed and ordinary concrete- a comparative study

    International Nuclear Information System (INIS)

    Ravishankar, R.; Bhattacharyya, Sarmishtha; Bandyopadhyay, Tapas; Sarkar, P. K.

    2002-01-01

    In particle accelerator facilities, for radiation shielding, concrete is commonly used for its effectiveness in attenuating neutrons in addition to its good structural and mechanical properties. Neutron attenuation depends largely on the water content in the concrete. Serpentine mixed concrete is reported to retain better water content than ordinary concrete. Experiments have been carried out to compare neutron attenuation properties of Serpentine mixed concrete slabs and ordinary concrete slabs of different thickness. Transmission of neutrons from a 185 GBq Pu-Be neutron source has been studied using NE-213 liquid scintillator detector, along with the associated electronics to discriminate neutron from gamma using pulse shape discrimination techniques. The energy differential neutron spectra transmitted through the concrete slabs and the corresponding dose have been obtained by unfolding the pulse height spectra using the FERDOR-U computer code and proper response matrix data of the NE-213 detector. The neutron transmission factors through both Serpentine and Ordinary concrete slabs have been studied. The results show serpentine mixed concrete slabs can attenuate more neutrons of varying energies compared to ordinary concrete slabs of equal dimensions. From the trend, it has been found out, with the increase in slab thickness, the gain in neutron attenuation increases. This is due to increase in quantity of serpentine with the increase in thickness of concrete. A Monte Carlo simulation carried out, for theoretical analysis of the results, has been found to be in order

  9. Development of an experimental set-up for the measurement of neutron-induced fission and capture cross sections of highly radioactive fissile nuclei

    Directory of Open Access Journals (Sweden)

    Companis Iulia

    2014-04-01

    Full Text Available The measurement of neutron-capture cross sections of many actinides is complicated by the difficulty in separating capture γ-rays from the large fission-fragment prompt γ-ray background. For example, current estimates of the capture cross section of 233U show large discrepancies, with differences of more than 20%. To improve the accuracy of data, a new experimental set-up for the simultaneous measurement of the neutron-induced capture and fission cross sections was designed, assembled and optimized. The measurements will be performed at the GEel LINear Accelerator (GELINA neutron time-of-flight facility in Belgium, where neutron cross sections can be measured over a wide energy range with high energy resolution. The fission detector consists of a dedicated multi-plate high-efficiency ionization chamber (IC. The γ-rays produced in capture reaction are detected by an array of C6D6 scintillators. Fission γ–rays are distinguished from capture γ–rays by the anticoincidence signals from the IC and the C6D6 detectors. For the undetected fission events a correction has to be applied based on the efficiency of the IC that should be high and known with a high accuracy. The performance of the IC during dedicated test experiments is presented, focusing on the determination of the detection efficiency.

  10. Non-uniform transmission of supermirror devices for neutron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Tong, X., E-mail: tongx@ornl.gov [Instrument and Source Design Division, Oak Ridge National Laboratory, Oak Ridge 37831, TN (United States); Robertson, J.L. [Instrument and Source Design Division, Oak Ridge National Laboratory, Oak Ridge 37831, TN (United States); Pynn, R. [Instrument and Source Design Division, Oak Ridge National Laboratory, Oak Ridge 37831, TN (United States); Indiana University Center for the Exploration of Energy and Matter, Bloomington 47408, IN (United States)

    2014-12-21

    Polarizing supermirrors have been widely used in neutron scattering facilities where they have been employed as neutron spin filters to polarize neutron beams as well as analyze their polarization. In the past, the performance of polarizing supermirrors has been limited by their small acceptance angle, which made them less suitable for use at short wavelengths or with highly divergent beams. Recent advances in supermirror coatings have led to an array of devices designed to, at least partially, overcome this limitation. V-polarizers and multi-channel polarizers have been employed in several different types of neutron scattering instruments. However, our observations in the field where these types of polarizers are in use have raised concerns about their performance. In this paper, we report on detailed Monte-Carlo simulations performed on a multi-channel polarizer used on a prototype Spin-Echo Small Angle Neutron Scattering (SESANS) instrument to better understand its performance. Our results show that careful simulations of polarizers based on mirror reflection are needed to determine whether a particular design is suitable for SESANS applications.

  11. Assessment of the parameters of a setup for searches for nucleon decay and neutron oscillation by detecting multiple neutron events in massive samples

    International Nuclear Information System (INIS)

    Sokol, E.A.; Dushin, V.N.; Daniel, A.V.; Zejnalov, Sh.S.; Ter-Akopyan, G.M.

    1986-01-01

    The parameters of a detector designed for detecting nucleon decay and/or the oscillations of a neutron bound in the atomic nucleus are estimated by observing multiple neutron emission events in massive samples. Calculations have been carried out for the detection efficiency and for spatial distribution of the points at which the single neutrons emitted from a point source had to be detected, for different variants of detector geometry. To evaluate the background characteristics of the detector, calculations have been performed for the multiplicities and spatial distributions of the points of formation of secondary neutrons occuring in the interactions of 0.3-1 GeV nucleons with infinite lead units. It is shown that the comparison of the spatial distribution of the points of neutron detection for nucleon decay or the neutron oscillation phenomena and the background processes allows one to suppress the cosmic-ray background of the detector by a factor of more than 10

  12. Neutron Resonance Transmission Analysis (NRTA): Initial Studies of a Method for Assaying Plutonium in Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; James W. Sterbentz

    2011-05-01

    Neutron Resonance Transmission Analysis (NRTA) is an analytical technique that uses neutrons to assay the isotopic content of bulk materials. The technique uses a pulsed accelerator to produce an intense, short pulse of neutrons in a time-of-flight configuration. These neutrons, traveling at different speeds according to their energy, can be used to interrogate a spent fuel (SF) assembly to determine its plutonium content. Neutron transmission through the assembly is monitored as a function of neutron energy (time after the pulse), similar to the way neutron cross-section data is often collected. The transmitted neutron intensity is recorded as a function of time, with faster (higher-energy) neutrons arriving first and slower (lower-energy) neutrons arriving later. The low-energy elastic scattering and absorption resonances of plutonium and other isotopes modulate the transmitted neutron spectrum. Plutonium content in SF can be determined by analyzing this attenuation. Work is currently underway at Idaho National Laboratory, as a part of United States Department of Energy's Next Generation Safeguards Initiative (NGSI), to investigate the NRTA technique and to assess its feasibility for quantifying the plutonium content in SF and for determining the diversion of SF pins from assemblies. Preliminary results indicate that NRTA has great potential for being able to assay intact SF assemblies. Operating in the 1-40 eV range, it can identify four plutonium isotopes (239, 240, 241, & 242Pu), three uranium isotopes (235, 236, & 238U), and six resonant fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm). It can determine the areal density or mass of these isotopes in single- or multiple-pin integral transmission scans. Further, multiple observables exist to allow the detection of material diversion (pin defects) including fast-neutron and x-ray radiography, gross-transmission neutron counting, plutonium resonance absorption analysis, and fission

  13. Time-of-flight neutron Bragg-edge transmission imaging of microstructures in bent steel plates

    International Nuclear Information System (INIS)

    Su, Yuhua; Oikawa, Kenichi; Harjo, Stefanus; Shinohara, Takenao; Kai, Tetsuya; Harada, Masahide; Hiroi, Kosuke; Zhang, Shuoyuan; Parker, Joseph Don; Sato, Hirotaka; Shiota, Yoshinori; Kiyanagi, Yoshiaki; Tomota, Yo

    2016-01-01

    Neutron Bragg-edge transmission imaging makes it possible to quantitatively visualize the two-dimensional distribution of microstructure within a sample. In order to examine its application to engineering products, time-of-flight Bragg-edge transmission imaging experiments using a pulsed neutron source were performed for plastically bent plates composed of a ferritic steel and a duplex stainless steel. The non-homogeneous microstructure distributions, such as texture, crystalline size, phase volume fraction and residual elastic strain, were evaluated for the cross sections of the bent plates. The obtained results were compared with those by neutron diffraction and electron back scatter diffraction, showing that the Bragg-edge transmission imaging is powerful for engineering use.

  14. Deriving Quantitative Crystallographic Information from the Wavelength-Resolved Neutron Transmission Analysis Performed in Imaging Mode

    Directory of Open Access Journals (Sweden)

    Hirotaka Sato

    2017-12-01

    Full Text Available Current status of Bragg-edge/dip neutron transmission analysis/imaging methods is presented. The method can visualize real-space distributions of bulk crystallographic information in a crystalline material over a large area (~10 cm with high spatial resolution (~100 μm. Furthermore, by using suitable spectrum analysis methods for wavelength-dependent neutron transmission data, quantitative visualization of the crystallographic information can be achieved. For example, crystallographic texture imaging, crystallite size imaging and crystalline phase imaging with texture/extinction corrections are carried out by the Rietveld-type (wide wavelength bandwidth profile fitting analysis code, RITS (Rietveld Imaging of Transmission Spectra. By using the single Bragg-edge analysis mode of RITS, evaluations of crystal lattice plane spacing (d-spacing relating to macro-strain and d-spacing distribution’s FWHM (full width at half maximum relating to micro-strain can be achieved. Macro-strain tomography is performed by a new conceptual CT (computed tomography image reconstruction algorithm, the tensor CT method. Crystalline grains and their orientations are visualized by a fast determination method of grain orientation for Bragg-dip neutron transmission spectrum. In this paper, these imaging examples with the spectrum analysis methods and the reliabilities evaluated by optical/electron microscope and X-ray/neutron diffraction, are presented. In addition, the status at compact accelerator driven pulsed neutron sources is also presented.

  15. Preliminary research on measuring grease in petroleum pipeline using fast neutron transmission method

    International Nuclear Information System (INIS)

    Liu Qingwei; Liu Shengkang; Zhang Zhiping; Ding Xiaoping

    2006-01-01

    The principle, experiment and conclusion on the grease stain measurement using fast neutron are reported. The experiment equipment consist of 241 Am-Be fast neutron source, ZnS detector and BH1224 multichannel spectrometer. Paraffin is used instead of real grease stain. Steel plates are used instead of pipeline. The results of the experiment indicate that there is a good linearship between the logarithm of the reciprocal of the neutron transmissivity and the paraffin thickness. The measuring accuracy of the paraffin thickness is 0.6 mm in this experiment. (authors)

  16. Analysis of Crystallographic Structure of a Japanese Sword by the Pulsed Neutron Transmission Method

    Science.gov (United States)

    Kino, K.; Ayukawa, N.; Kiyanagi, Y.; Uchida, T.; Uno, S.; Grazzi, F.; Scherillo, A.

    We measured two-dimensional transmission spectra of pulsed neutron beams for a Japanese sword sample. Atom density, crystalline size, and preferred orientation of crystals were obtained using the RITS code. The position dependence of the atomic density is consistent with the shape of the sample. The crystalline size is very small and shows position dependence, which is understood by the unique structure of Japanese swords. The preferred orientation has strong position dependence. Our study shows the usefulness of the pulsed neutron transmission method for cultural metal artifacts.

  17. 252Cf fission-neutron spectrum using a simplified time-of-flight setup: An advanced teaching laboratory experiment

    Science.gov (United States)

    Becchetti, F. D.; Febbraro, M.; Torres-Isea, R.; Ojaruega, M.; Baum, L.

    2013-02-01

    The removal of PuBe and AmBe neutron sources from many university teaching laboratories (due to heightened security issues) has often left a void in teaching various aspects of neutron physics. We have recently replaced such sources with sealed 252Cf oil-well logging sources (nominal 10-100 μCi), and developed several experiments using them as neutron sources. This includes a fission-neutron time-of-flight experiment using plastic scintillators, which utilizes the prompt γ rays emitted in 252Cf spontaneous fission as a fast timing start signal. The experiment can be performed with conventional nuclear instrumentation and a 1-D multi-channel pulse-height analyzer, available in most advanced teaching laboratories. Alternatively, a more sophisticated experiment using liquid scintillators and n/γ pulse-shape discrimination can be performed. Several other experiments using these neutron sources are also feasible. The experiments can introduce students to the problem of detecting the dark matter thought to dominate the universe and to the techniques used to detect contraband fissionable nuclear materials.

  18. Measurement of Fission Neutron Spectrum and Multiplicity using a Gamma Tag Double Time-of-flight Setup

    Science.gov (United States)

    Blain, E.; Daskalakis, A.; Danon, Y.

    2014-05-01

    Recent efforts have been made to improve the prompt fission neutron spectrum and nu-bar measurements for Uranium and Plutonium isotopes particularly in the keV region. A system has been designed at Rensselaer Polytechnic Institute (RPI) utilizing an array of EJ-301 liquid scintillators as well as lithium glass and plastic scintillators to experimentally determine these values. An array of BaF2 detectors was recently obtained from Oak Ridge National Laboratory to be used in conjunction with the neutron detectors. The system uses a novel gamma tagging method for fission which can offer an improvement over conventional fission chambers due to increased sample mass. A coincidence requirement on the gamma detectors from prompt fission gammas is used as the fission tag for the system as opposed to fission fragments in a conventional fission chamber. The system utilizes pulse digitization using Acqiris 8 bit digitizer boards which allow for gamma/neutron pulse height discrimination on the liquid scintillators during post processing. Additionally, a 252Cf fission chamber was designed and constructed at RPI which allowed for optimization and testing of the system without the need for an external neutron source. The characteristics of the gamma tagging method such as false detection rate and detection efficiency were determined using this fission chamber and verified using MCNP Polimi modeling. Prompt fission neutron spectrum data has been taken using the fission chamber focusing on the minimum detectable neutron energy for each of the various detectors. Plastic scintillators were found to offer a significant improvement over traditional liquid scintillators allowing energy measurements down to 50 keV. Background was also characterized for all detectors and will be discussed.

  19. EXILL - a high-efficiency, high-resolution setup for gamma-spectroscopy at an intense cold neutron beam facility

    Czech Academy of Sciences Publication Activity Database

    Jentschel, M.; Blanc, A.; de France, G.; Koster, U.; Leoni, S.; Mutti, P.; Simpson, G. S.; Krtička, M.; Tomandl, Ivo; Valenta, S.

    2017-01-01

    Roč. 12, č. 11 (2017), č. článku P11003. ISSN 1748-0221 Institutional support: RVO:61389005 Keywords : instrumentation for neutron sources * gamma detectors * spectrometers Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Nuclear physics Impact factor: 1.220, year: 2016

  20. The transmission of thermal neutrons along air filled ducts in water

    International Nuclear Information System (INIS)

    Piercey, D.C.

    1962-06-01

    Predictions and measurements of thermal neutron transmission along air filled ducts in water have been made. To aid the analysis, the ducts were shielded in various ways using cadmium sheet. The predictions were, in general, in agreement to better than a factor 4 for ducts up to 200 duct radii in length. (author)

  1. A transmission probability method for calculation of neutron flux distributions in hexagonal geometry

    International Nuclear Information System (INIS)

    Wasastjerna, F.; Lux, I.

    1980-03-01

    A transmission probability method implemented in the program TPHEX is described. This program was developed for the calculation of neutron flux distributions in hexagonal light water reactor fuel assemblies. The accuracy appears to be superior to diffusion theory, and the computation time is shorter than that of the collision probability method. (author)

  2. Measurement of Neutrons in Different Pb/U Setups Irradiated by Relativistic Protons and Deuterons by means of Activation Samples

    Czech Academy of Sciences Publication Activity Database

    Wagner, Vladimír; Svoboda, Ondřej; Vrzalová, Jitka; Suchopár, Martin; Kugler, Andrej; Honusek, Milan; Geier, B.

    2012-01-01

    Roč. 366, 012047 (2012), s. 1-5 ISSN 1742-6588. [XIX International School on Nuclear Physics. Varna, 19.09.2011-25.09.2011] R&D Projects: GA MŠk LA08002 Grant - others:Evropská komise(XE) FP6-036434 Institutional support: RVO:61389005 Keywords : ADT * spallation reactions * neutron production Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders

  3. Wavelength resolved neutron transmission analysis to identify single crystal particles in historical metallurgy

    Science.gov (United States)

    Barzagli, E.; Grazzi, F.; Salvemini, F.; Scherillo, A.; Sato, H.; Shinohara, T.; Kamiyama, T.; Kiyanagi, Y.; Tremsin, A.; Zoppi, Marco

    2014-07-01

    The phase composition and the microstructure of four ferrous Japanese arrows of the Edo period (17th-19th century) has been determined through two complementary neutron techniques: Position-sensitive wavelength-resolved neutron transmission analysis (PS-WRNTA) and time-of-flight neutron diffraction (ToF-ND). Standard ToF-ND technique has been applied by using the INES diffractometer at the ISIS pulsed neutron source in the UK, while the innovative PS-WRNTA one has been performed at the J-PARC neutron source on the BL-10 NOBORU beam line using the high spatial high time resolution neutron imaging detector. With ToF-ND we were able to reach information about the quantitative distribution of the metal and non-metal phases, the texture level, the strain level and the domain size of each of the samples, which are important parameters to gain knowledge about the technological level of the Japanese weapon. Starting from this base of data, the more complex PS-WRNTA has been applied to the same samples. This experimental technique exploits the presence of the so-called Bragg edges, in the time-of-flight spectrum of neutrons transmitted through crystalline materials, to map the microstructural properties of samples. The two techniques are non-invasive and can be easily applied to archaeometry for an accurate microstructure mapping of metal and ceramic artifacts.

  4. Transmission factors for neutrons produced by radioisotopes production used in PET

    International Nuclear Information System (INIS)

    Hernandez G, D.; Cruzate, J.A.

    1996-01-01

    The dose transmission factor for normal concrete and the neutrons produced in the 18 O(p,n) 18 F and 13 C(p,n) 13 N reactions are presented in this paper. These transmission factors permit to simplify the calculation of the necessary accelerator shielding to be used in the radioisotope production for positron emission tomography. The energy distributions of the neutrons resulting from the irradiation of thick targets, with 10 to 13 MeV protons, were determined using the thin target cross sections, the energy loss per path length and the energy balance of the reaction (Q-equation). The one dimensional discrete ordinate transport code ANISN and the conversion coefficients from fluence to dose, presented in the ICRP Publication 51 were employed to obtain the transmission factors. (authors). 12 refs., 3 figs., 2 tabs

  5. ${\\beta}$-decay studies of neutron-rich $^{61-70}$Mn isotopes with the new LISOL ${\\beta}$-decay setup

    CERN Document Server

    Diriken, J V J

    2008-01-01

    The aim of this proposal is to gather new information that will serve as benchmark to test shell model calculations in the region below $^{68}$Ni, where proper residual interactions are still under development. More specifically, the ${\\beta}$-decay experiment of the $^{61-70}$Mn isotopes will highlight the development of collectivity in the Fe isotopes and its daughters. At ISOLDE, neutron-rich Mn isotopes are produced with a UC$_{x}$ target and selective laser ionization. These beams are particularly pure and reasonable yields are obtained for the neutron-rich short lived $^{61-70}$Mn isotopes. We propose to perform ${\\beta}$-decay studies on $^{61-70}$Mn utilizing the newly-developed "LISOL ${\\beta}$-decay setup", consisting of two MINIBALL cluster Ge detectors and a standard tape station. The use of digital electronics in the readout of these detectors enables us to perform a "slow correlation technique" which should indicate the possible existence of isomers in the daughter nuclei.

  6. Neutron widths for 236U from high resolution transmission measurements at a 100M flightpath

    International Nuclear Information System (INIS)

    Carraro, G.; Brusegan, A.

    1975-01-01

    A series of neutron transmission measurements has been performed on 236 U aiming at a determination of the resonance parameters and their statistical properties. The analysis range covered neutron energies from 40eV to 4.1 keV. The experiments were carried out at about 100 m flightpath of the 80 MeV electron linear accelerator of CBNM using a 10 B slab-NaI detector and 2 236 U-oxyde samples on loan from the USAEC. A table displays the details of 6 experimental runs, 3 of which were arranged in such a way that the effect of the 235 U and 238 U impurities in the sample on the transmission was automatically compensated

  7. Moisture disturbance when measuring boron content in wet glass fibre materials with thermal neutron transmission method

    International Nuclear Information System (INIS)

    Zhang Zhiping; Liu Shengkang; Zhang Yongjie

    2001-01-01

    The theoretical calculation and experimental study on the moisture disturbance in the boron content measurement of wet glass fibre materials using the thermal neutron transmission method were reported. The relevant formula of the moisture disturbance was derived. For samples with a mass of 16 g, it was found that a moisture variation of 1% (mass percent) would result in a deviation of 0.28% (mass percent) in the measurement of boron contents

  8. Characterization of weakly deformed limestone from Chotec, Bohemia by neutron transmission

    Czech Academy of Sciences Publication Activity Database

    Kalvoda, L.; Vratislav, S.; Hladil, Jindřich; Machek, Matěj

    2011-01-01

    Roč. 1, 1/2 (2011), s. 113-118 ISSN 1869-1315. [European Powder Diffraction Conference /12./. Darmstadt, 27.08.2010-30.08.2010] R&D Projects: GA ČR GA205/08/0767 Institutional research plan: CEZ:AV0Z30120515; CEZ:AV0Z30130516 Keywords : limestone * microstructure * neutron transmission Subject RIV: DB - Geology ; Mineralogy http://www.oldenbourg-link.com/doi/pdfplus/10.1524/zkpr.2011.0017

  9. Non-invasive analysis of industrial products using the simultaneous transmission of neutrons and gamma rays (Neugat) method

    International Nuclear Information System (INIS)

    Bartle, C.M.

    1998-01-01

    This research programme is designed to develop industrial measurement systems utilising simultaneous transmission of neutrons and gamma rays (Neugat method). Descriptions of these systems have been given in reports and magazine articles, and industrial site trials have been undertaken. (author)

  10. Multigroup multi-layer models of neutron reflection and transmission for reactor transport calculations with anisotropic scattering

    International Nuclear Information System (INIS)

    Abreu, Marcos Pimenta de

    2006-01-01

    In this article, we extend the one-speed multi-layer models to neutron reflection and transmission developed in our earlier work (de Abreu, M.P., 2005. Multi-layer models to neutron reflection and transmission for whole-core transport calculations, Annals of Nuclear Energy 32, 215) to multigroup transport theory. We begin by considering a two-layer boundary region, and we develop for such a region discrete ordinates models to the diffuse reflection and transmission of neutrons for multigroup nuclear reactor core problems with anisotropic scattering. We perform numerical experiments to show that our models to neutron reflection and transmission can be used to replace efficiently and accurately two nonactive boundary layers in whole-core transport calculations. We conclude this article with an inductive extension of our two-layer results to a boundary region with an arbitrary number of layers

  11. A PROPOSAL TO MEASURE THE CROSS SECTION OF THE SPACE STAR IN NEUTRON-DEUTERON BREAKUP IN A RECOIL GEOMETRY SETUP. Final report

    International Nuclear Information System (INIS)

    Crowe, Benjamin J. III

    2009-01-01

    Nucleon-deuteron (Nd) breakup is an important tool for obtaining a better understanding of three-nucleon (3N) dynamics and for developing meson exchange descriptions of nuclear systems. The kinematics of the nd breakup reaction enable observables to be studied in a variety of exit-channel configurations that show sensitivity to realistic nucleon-nucleon (NN) potential models and three-nucleon force (3NF) models. Rigorous 3N calculations give very good descriptions of most 3N reaction data. However, there are still some serious discrepancies between data and theory. The largest discrepancy observed between theory and data for nd breakup is for the cross section for the space-star configuration. This discrepancy is known as the 'Space Star Anomaly'. Several experimental groups have obtained results consistent with the 'Space Star Anomaly', but it is important to note that they all used essentially the same experimental setup and so their experimental results are subject to the same systematic errors. We propose to measure the space-star cross-section at the Triangle Universities Nuclear Laboratory (TUNL) using an experimental technique that is significantly different from the one used in previous breakup experiments. This technique has been used by a research group from the University of Bonn to measure the neutron-neutron scattering length. There are three possible scenarios for the outcome of this work: (1) the new data are consistent with previous measurements; (2) the new data are not in agreement with previous measurements, but are in agreement with theory; and (3) the new data are not in agreement with either theory or previous measurements. Any one of the three scenarios will provide valuable insight on the Space Star Anomaly.

  12. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    Science.gov (United States)

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Abstract Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components. PMID:27877885

  13. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy.

    Science.gov (United States)

    Tremsin, Anton S; Gao, Yan; Dial, Laura C; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.

  14. Production and guide tube transmission of very cold neutrons from pulsed cold source

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Okumura, Kiyoshi

    1982-01-01

    The intensity and the energy spectra of Very Cold Neutrons (VCN) transmitted through a curved guide tube were measured by using the time-of-flight method of VCN. In the measurements, the curved guide tube having a characteristic neutron velocity of about 70 m/s is combined to a pulsed cold source of an electron linac in an internal target geometry. A space dependence of the VCN spectra was observed on the radial positions of a detector at the guide tube exit. A simple theoretical analysis on the transmission of VCN in the curved guide tube is also presented with taking into consideration about the effects of a finite size and a finite distance of the VCN-emitting source, and simple analytical formulas for the exit spectra of the guide tube are given. Comparisons between the experimental results and the theoretical calculations show good agreements, and the satisfactory performance of the present VCN guide tube assembly was ascertained. These results present also instructive features for understanding the structures and the space dependence of the exit spectra of a neutron guide tube. The VCN spectra at the guide tube exit can be divided into a few energy regions according to the transmission processes of VCN. Thus, the present study provides useful informations for the preparations of a VCN source with a curved guide tube. (author)

  15. Mean cross sections of fast neutrons radiative capture, transmission and mean resonance parameters for the tin isotopes

    International Nuclear Information System (INIS)

    Timokhov, V.M.; Bokhovko, M.V.; Kazakov, L.E.; Kononov, V.N.; Manturov, G.N.; Poletaev, E.D.

    1988-01-01

    Results of measurements of neutron radiative capture cross sections in the energy range of 20-450 keV and of neutron transmission in the energy range of 20-1400 keV for 112,114,115,116,117,118,119,120,122 ,124S n isotopes and natural mixture of tin are presented. Analysis of the experimental data in the framework of nuclear reactions statistical theory is carried out, as a result of which data on neutron and radiation strength functions, potential scattering radii for S- and P-neutrons, as well as nuclear levels density parameters, are obtained

  16. A new method to determine in situ the transmission of a neutron-guide system at a reactor source

    International Nuclear Information System (INIS)

    Haan, V.O. de; Gibcus, H.P.M.; Gommers, R.M.; Labohm, F.; Well, A.A. van; Leege, P.F.A. de; Schebetov, A.; Pusenkov, V.

    2002-01-01

    In this paper, a description of a new method to determine the transmission of neutron guides after they are installed in a beam-tube at a reactor source is given. The method is based on activation measurements of gold foils at the entrance of the beam-tube and at the exit of the neutron guides compared to Monte-Carlo calculations. In this method, a quality factor is defined as the ratio between the actual transmission and the theoretical maximum attainable transmission. This method is used to determine the quality of an optimised neutron-guide system developed for beam-tube R2 of the HOR. The HOR is a pool-type nuclear research reactor at the Interfaculty Reactor Institute of the Delft University of Technology. It is shown that the quality factors of the newly installed neutron guides are between 0.49 and 0.63

  17. A new method to determine in situ the transmission of a neutron-guide system at a reactor source

    CERN Document Server

    Haan, V O D; Gommers, R M; Labohm, F; Well, A A V; De Leege, P F A; Schebetov, A; Pusenkov, V

    2002-01-01

    In this paper, a description of a new method to determine the transmission of neutron guides after they are installed in a beam-tube at a reactor source is given. The method is based on activation measurements of gold foils at the entrance of the beam-tube and at the exit of the neutron guides compared to Monte-Carlo calculations. In this method, a quality factor is defined as the ratio between the actual transmission and the theoretical maximum attainable transmission. This method is used to determine the quality of an optimised neutron-guide system developed for beam-tube R2 of the HOR. The HOR is a pool-type nuclear research reactor at the Interfaculty Reactor Institute of the Delft University of Technology. It is shown that the quality factors of the newly installed neutron guides are between 0.49 and 0.63.

  18. Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures.

    Science.gov (United States)

    Cereser, Alberto; Strobl, Markus; Hall, Stephen A; Steuwer, Axel; Kiyanagi, Ryoji; Tremsin, Anton S; Knudsen, Erik B; Shinohara, Takenao; Willendrup, Peter K; da Silva Fanta, Alice Bastos; Iyengar, Srinivasan; Larsen, Peter M; Hanashima, Takayasu; Moyoshi, Taketo; Kadletz, Peter M; Krooß, Philipp; Niendorf, Thomas; Sales, Morten; Schmahl, Wolfgang W; Schmidt, Søren

    2017-08-25

    The physical properties of polycrystalline materials depend on their microstructure, which is the nano- to centimeter scale arrangement of phases and defects in their interior. Such microstructure depends on the shape, crystallographic phase and orientation, and interfacing of the grains constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND enables studies of samples that can be both larger in size and made of heavier elements. Moreover, ToF 3DND facilitates the use of complicated sample environments. The basic ToF 3DND setup, utilizing an imaging detector with high spatial and temporal resolution, can easily be implemented at a time-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure. The reconstruction algorithms have been validated by reconstructing two stacked Co-Ni-Ga single crystals, and by comparison with a grain map obtained by post-mortem electron backscatter diffraction (EBSD).

  19. Real time neutron transmission investigation of the austenite-bainite transformation in grey iron

    International Nuclear Information System (INIS)

    Meggers, Kay; Priesmeyer, Hans G.; Trela, Walter J.; Bowman, Charles D.; Dahms, Michael

    1994-01-01

    The first successful application of a new method to investigate phase transformations in real time, like the decomposition of austenite into bainite in grey iron, is described. During the ongoing transformation, transmission spectra of thermal neutrons, which contain Bragg edges corresponding to the crystal structure of the transforming phases, are recorded. By evaluating the height of these Bragg edges, which is a measure of the volume fraction of the phase, at different transformation times, the transformation can be followed in-situ in a time resolved manner. The method is compared to other previously used methods (micrographs, dilatometry, diffraction techniques); also a summary and an outlook are given. ((orig.))

  20. Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Samarium

    International Nuclear Information System (INIS)

    Leinweber, G.; Burke, J.A.; Knox, H.D.; Drindak, N.J.; Mesh, D.W.; Haines, W.T.; Ballad, R.V.; Block, R.C.; Slovacek, R.E.; Werner, C.J.; Trbovich, M.J.; Barry, D.P.; Sato, T.

    2001-01-01

    The purpose of the present work is to accurately measure the neutron cross sections of samarium. The most significant isotope is 149 Sm, which has a large neutron absorption cross section at thermal energies and is a 235 U fission product with a 1% yield. Its cross sections are thus of concern to reactor neutronics. Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic institute (RPI) LINAC facility using metallic and liquid Sm samples. The capture measurements were made at the 25 meter flight station with a multiplicity-type capture detector, and the transmission total cross-section measurements were performed at 15- and 25-meter flight stations with 6 Li glass scintillation detectors. Resonance parameters were determined by a combined analysis of six experiments (three capture and three transmission) using the multi-level R-matrix Bayesian code SAMMY version M2. The significant features of this work are as follows. Dilute samples of samarium nitrate in deuterated water (D 2 O) were prepared to measure the strong resonances at 0.1 and 8 eV without saturation. Disk-shaped spectroscopic quartz cells were obtained with parallel inner surfaces to provide a uniform thickness of solution. The diluent feature of the SAMMY program was used to analyze these data. The SAMMY program also includes multiple scattering corrections to capture yield data and resolution functions specific to the RPI facility. Resonance parameters for all stable isotopes of samarium were deduced for all resonances up to 30 eV. Thermal capture cross-section and capture resonance integral calculations were made using the resultant resonance parameters and were compared to results obtained using resonance parameters from ENDF/B-VI updated through release 3. Extending the definition of the capture resonance integral to include the strong 0.1 eV resonance in 149 Sm, present measurements agree within estimated uncertainties with En

  1. Further Improvement of the RITS Code for Pulsed Neutron Bragg-edge Transmission Imaging

    Science.gov (United States)

    Sato, H.; Watanabe, K.; Kiyokawa, K.; Kiyanagi, R.; Hara, K. Y.; Kamiyama, T.; Furusaka, M.; Shinohara, T.; Kiyanagi, Y.

    The RITS code is a unique and powerful tool for a whole Bragg-edge transmission spectrum fitting analysis. However, it has had two major problems. Therefore, we have proposed methods to overcome these problems. The first issue is the difference in the crystallite size values between the diffraction and the Bragg-edge analyses. We found the reason was a different definition of the crystal structure factor. It affects the crystallite size because the crystallite size is deduced from the primary extinction effect which depends on the crystal structure factor. As a result of algorithm change, crystallite sizes obtained by RITS drastically approached to crystallite sizes obtained by Rietveld analyses of diffraction data; from 155% to 110%. The second issue is correction of the effect of background neutrons scattered from a specimen. Through neutron transport simulation studies, we found that the background components consist of forward Bragg scattering, double backward Bragg scattering, and thermal diffuse scattering. RITS with the background correction function which was developed through the simulation studies could well reconstruct various simulated and experimental transmission spectra, but refined crystalline microstructural parameters were often distorted. Finally, it was recommended to reduce the background by improving experimental conditions.

  2. Examination of total cross section resonance structure of niobium and silicon in neutron transmission experiments

    Science.gov (United States)

    Andrianova, Olga; Lomakov, Gleb; Manturov, Gennady

    2017-09-01

    The neutron transmission experiments are one of the main sources of information about the neutron cross section resonance structure and effect in the self-shielding. Such kind of data for niobium and silicon nuclides in energy range 7 keV to 3 MeV can be obtained from low-resolution transmission measurements performed earlier in Russia (with samples of 0.027 to 0.871 atom/barn for niobium and 0.076 to 1.803 atom/barn for silicon). A significant calculation-to-experiment discrepancy in energy range 100 to 600 keV and 300 to 800 keV for niobium and silicon, respectively, obtained using the evaluated nuclear data library ROSFOND, were found. The EVPAR code was used for estimation the average resonance parameters in energy range 7 to 600 keV for niobium. For silicon a stochastic optimization method was used to modify the resolved resonance parameters in energy range 300 to 800 keV. The improved ROSFOND evaluated nuclear data files were tested in calculation of ICSBEP integral benchmark experiments.

  3. Simultaneous neutron transmission and diffraction contrast tomography as a non-destructive 3D method for bulk single crystal quality investigations

    OpenAIRE

    Peetermans Steven; Lehmann Eberhard

    2013-01-01

    Traditional neutron tomography allows to reconstruct the attenuation cross section a measure for the material distribution at high spatial resolution and non destructively. However it does not state anything about the ordering structure of the atoms inside this material. Extending the setup with a second neutron imaging detector diffracted neutrons from the ordered crystal lattice could be captured. Emerging iterative reconstruction techniques allow reconstructing the local Bragg reflectivity...

  4. Preliminary microstructural characterization by transmission electron microscopy of 14 MeV neutron irradiated type 316 stainless steel

    International Nuclear Information System (INIS)

    Echer, C.J.

    1977-01-01

    Substantial changes in the mechanical properties of 316 stainless steel were observed after neutron irradiation (phi/sub t/ = 2.3 x 10 21 n/m 2 and E = 14 MeV) at 25 0 C. Comparison of microstructures of the unirradiated and neutron irradiated materials were evaluated using transmission electron microscopy. Evidence of small defect clusters in the irradiated material was found. These findings are consistent with other investigators also evaluating low dose irradiations

  5. Transmission and signal loss in mask designs for a dual neutron and gamma imager applied to mobile standoff detection

    International Nuclear Information System (INIS)

    Ayaz-Maierhafer, Birsen; Hayward, Jason P.; Ziock, Klaus P.; Blackston, Matthew A.; Fabris, Lorenzo

    2013-01-01

    In order to design a next-generation, dual neutron and gamma imager for mobile standoff detection which uses coded aperture imaging as its primary detection modality, the following design parameters have been investigated for gamma and neutron radiation incident upon a hybrid, coded mask: (1) transmission through mask elements for various mask materials and thicknesses; and (2) signal attenuation in the mask versus angle of incidence. Each of these parameters directly affects detection significance, as quantified by the signal-to-noise ratio. The hybrid mask consists of two or three layers: organic material for fast neutron attenuation and scattering, Cd for slow neutron absorption (if applied), and one of three of the following photon or photon and slow neutron attenuating materials—Linotype alloy, CLYC, or CZT. In the MCNP model, a line source of gamma rays (100–2500 keV), fast neutrons (1000–10,000 keV) or thermal neutrons was positioned above the hybrid mask. The radiation penetrating the mask was simply tallied at the surface of an ideal detector, which was located below the surface of the last mask layer. The transmission was calculated as the ratio of the particles transmitted through the fixed aperture to the particles passing through the closed mask. In order to determine the performance of the mask considering relative motion between the source and detector, simulations were used to calculate the signal attenuation for incident radiation angles of 0–50°. The results showed that a hybrid mask can be designed to sufficiently reduce both transmission through the mask and signal loss at large angles of incidence, considering both gamma ray and fast neutron radiations. With properly selected material thicknesses, the signal loss of a hybrid mask, which is necessarily thicker than the mask required for either single mode imaging, is not a setback to the system's detection significance

  6. Void fraction measurements in two-phase flow by transmission and scattering of a neutrons beam

    International Nuclear Information System (INIS)

    Souza, M.C.L.

    1984-01-01

    Calibration curves have been obtained which supply average values of void fraction (α) of water-steam two-phase mixtures for bubble, slug, annular and invert annular flow states. The measurements were carried out in simulated models of lucite-air for the steady-state, using the techniques of transmission and diffusion of a thermal neutrons beam. The calibration curves obtained were used for measurements of void fraction in a circuit containing two-phase water-air mixtures, in upward concurrent flow, for slug flow (P sub(max) = 1,06 bar) and annular flow (P sub(max) = 1,33 bar), using the same techniques. In both of the systems, a test section made up of an aluminium (99,9%) tube was used with internal diameter of 25,25 mm and 2,0 mm wall thichness. The beam of neutrons was obtained from a 5 Ci isotopic Am-Be source, thermalised in a cylindrical moderator of paraffin of 500 mm diameter (with H/D=1) which was covered by 2 mm thick cadmium sheets and having in its centre a parallepeliped made from high density polyethilene with the dimensions 240 x 240 x 144 mm. The neutrons escape through a rectangular collimator of 53,0 x 25,25 mm, with a length of 273 mm cut out of a single block of borated paraffin (32% of H 3 BO 3 ). The experimental results are in good agreement with theorical models in published literature. (Author) [pt

  7. Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    J. W. Sterbentz; D. L. Chichester

    2011-09-01

    This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620).

  8. A Preliminary Study on Detecting Fake Gold Bars Using Prompt Gamma Activation Analysis: Simulation of Neutron Transmission in Gold Bar

    International Nuclear Information System (INIS)

    Lee, K. M.; Sun, G. M.

    2016-01-01

    The purpose of this study is to develop fake gold bar detecting method by using Prompt-gamma activation analysis (PGAA) facility at the Korea Atomic Energy Research Institute (KAERI). PGAA is an established nuclear analytical technique for non-destructive determination of elemental and isotopic compositions. For a preliminary study on detecting fake gold bar, Monte Carlo simulation of neutron transmission in gold bar was conducted and the possibility for detecting fake gold bar was confirmed. Under the gold bullion standard, it guaranteed the government would redeem any amount of currency for its value in gold. After the gold bullion standard ended, gold bars have been the target for investment as ever. But it is well known that fake gold bar exist in the gold market. This cannot be identified easily without performing a testing as it has the same appearance as the pure gold bar. In order to avoid the trading of fake gold bar in the market, they should be monitored thoroughly. Although the transmissivity of cold neutrons are low comparing that of thermal neutrons, the slower neutrons are more apt to be absorbed in a target, and can increase the prompt gamma emission rate. Also the flux of both thermal and cold neutron beam is high enough to activate thick target. If the neutron beam is irradiated on the front and the reverse side of gold bar, all insides of it can be detected

  9. Neutron transmission benchmark problems for iron and concrete shields in low, intermediate and high energy proton accelerator facilities

    International Nuclear Information System (INIS)

    Nakane, Yoshihiro; Sakamoto, Yukio; Hayashi, Katsumi

    1996-09-01

    Benchmark problems were prepared for evaluating the calculation codes and the nuclear data for accelerator shielding design by the Accelerator Shielding Working Group of the Research Committee on Reactor Physics in JAERI. Four benchmark problems: transmission of quasi-monoenergetic neutrons generated by 43 MeV and 68 MeV protons through iron and concrete shields at TIARA of JAERI, neutron fluxes in and around an iron beam stop irradiated by 500 MeV protons at KEK, reaction rate distributions inside a thick concrete shield irradiated by 6.2 GeV protons at LBL, and neutron and hadron fluxes inside an iron beam stop irradiated by 24 GeV protons at CERN are compiled in this document. Calculational configurations and neutron reaction cross section data up to 500 MeV are provided. (author)

  10. Applying neutron transmission physics and 3D statistical full-field model to understand 2D Bragg-edge imaging

    Science.gov (United States)

    Xie, Q.; Song, G.; Gorti, S.; Stoica, A. D.; Radhakrishnan, B.; Bilheux, J. C.; Kirka, M.; Dehoff, R.; Bilheux, H. Z.; An, K.

    2018-02-01

    Bragg-edge imaging, which is also known as neutron radiography, has recently emerged as a novel crystalline characterization technique. Modelling of this novel technique by incorporating various features of the underlying microstructure (including the crystallographic texture, the morphological texture, and the grain size) of the material remains a subject of considerable research and development. In this paper, Inconel 718 samples made by additive manufacturing were investigated by neutron diffraction and neutron radiography techniques. The specimen features strong morphological and crystallographic textures and a highly heterogeneous microstructure. A 3D statistical full-field model is introduced by taking details of the microstructure into account to understand the experimental neutron radiography results. The Bragg-edge imaging and the total cross section were calculated based on the neutron transmission physics. A good match was obtained between the model predictions and experimental results at different incident beam angles with respect to the sample build direction. The current theoretical approach has the ability to incorporate 3D spatially resolved microstructural heterogeneity information and shows promise in understanding the 2D neutron radiography of bulk samples. With further development to incorporate the heterogeneity in lattice strain in the model, it can be used as a powerful tool in the future to better understand the neutron radiography data.

  11. A Numerical Method for Obtaining Monoenergetic Neutron Flux Distributions and Transmissions in Multiple-Region Slabs

    Science.gov (United States)

    Schneider, Harold

    1959-01-01

    This method is investigated for semi-infinite multiple-slab configurations of arbitrary width, composition, and source distribution. Isotropic scattering in the laboratory system is assumed. Isotropic scattering implies that the fraction of neutrons scattered in the i(sup th) volume element or subregion that will make their next collision in the j(sup th) volume element or subregion is the same for all collisions. These so-called "transfer probabilities" between subregions are calculated and used to obtain successive-collision densities from which the flux and transmission probabilities directly follow. For a thick slab with little or no absorption, a successive-collisions technique proves impractical because an unreasonably large number of collisions must be followed in order to obtain the flux. Here the appropriate integral equation is converted into a set of linear simultaneous algebraic equations that are solved for the average total flux in each subregion. When ordinary diffusion theory applies with satisfactory precision in a portion of the multiple-slab configuration, the problem is solved by ordinary diffusion theory, but the flux is plotted only in the region of validity. The angular distribution of neutrons entering the remaining portion is determined from the known diffusion flux and the remaining region is solved by higher order theory. Several procedures for applying the numerical method are presented and discussed. To illustrate the calculational procedure, a symmetrical slab ia vacuum is worked by the numerical, Monte Carlo, and P(sub 3) spherical harmonics methods. In addition, an unsymmetrical double-slab problem is solved by the numerical and Monte Carlo methods. The numerical approach proved faster and more accurate in these examples. Adaptation of the method to anisotropic scattering in slabs is indicated, although no example is included in this paper.

  12. New prompt fission neutron spectra measurements in the 238U(n,f reaction with a dedicated setup at LANSCE/WNR

    Directory of Open Access Journals (Sweden)

    Laurent Benoit

    2017-01-01

    Full Text Available A new prompt fission neutron spectra (PFNS measurement in the 238U(n,f reaction was performed at LANSCE/WNR facility. Evaluated data show discrepancies on the low (below 1 MeV and high (above 5 MeV energy parts in the PFNS for different major and minor actinides. The goal is to improve these measurements in a wide range of incident energy. The energy of the incoming neutron, inducing the fission, and the prompt neutron energies, are measured by time-of-flight method. A dedicated fission chamber was developed, in order to improve alpha-fission discrimination, timing resolution, actinide mass, and to reduce the amount of neutron scattering. To detect prompt neutrons, the 54 Chi-Nu scintillator cells array were surrounding the fission chamber. High statistics were recorded during this experiment, allowing a precise study of PFNS behavior as a function of incident neutron energy, from 1 MeV to 200 MeV. This experiment also showed that all the new tools developed to improve PFNS measurements are performing. Therefore, measurements of PFNS with others actinides such as 239Pu are planned.

  13. A hydrogen leak-tight, transparent cryogenic sample container for ultracold-neutron transmission measurements

    Science.gov (United States)

    Döge, Stefan; Hingerl, Jürgen

    2018-03-01

    The improvement of the number of extractable ultracold neutrons (UCNs) from converters based on solid deuterium (sD2) crystals requires a good understanding of the UCN transport and how the crystal's morphology influences its transparency to the UCNs. Measurements of the UCN transmission through cryogenic liquids and solids of interest, such as hydrogen (H2) and deuterium (D2), require sample containers with thin, highly polished and optically transparent windows and a well defined sample thickness. One of the most difficult sealing problems is that of light gases like hydrogen and helium at low temperatures against high vacuum. Here we report on the design of a sample container with two 1 mm thin amorphous silica windows cold-welded to aluminum clamps using indium wire gaskets, in order to form a simple, reusable, and hydrogen-tight cryogenic seal. The container meets the above-mentioned requirements and withstands up to 2 bar hydrogen gas pressure against isolation vacuum in the range of 10-5 to 10-7 mbar at temperatures down to 4.5 K. Additionally, photographs of the crystallization process are shown and discussed.

  14. A hydrogen leak-tight, transparent cryogenic sample container for ultracold-neutron transmission measurements.

    Science.gov (United States)

    Döge, Stefan; Hingerl, Jürgen

    2018-03-01

    The improvement of the number of extractable ultracold neutrons (UCNs) from converters based on solid deuterium (sD 2 ) crystals requires a good understanding of the UCN transport and how the crystal's morphology influences its transparency to the UCNs. Measurements of the UCN transmission through cryogenic liquids and solids of interest, such as hydrogen (H 2 ) and deuterium (D 2 ), require sample containers with thin, highly polished and optically transparent windows and a well defined sample thickness. One of the most difficult sealing problems is that of light gases like hydrogen and helium at low temperatures against high vacuum. Here we report on the design of a sample container with two 1 mm thin amorphous silica windows cold-welded to aluminum clamps using indium wire gaskets, in order to form a simple, reusable, and hydrogen-tight cryogenic seal. The container meets the above-mentioned requirements and withstands up to 2 bar hydrogen gas pressure against isolation vacuum in the range of 10 -5 to 10 -7 mbar at temperatures down to 4.5 K. Additionally, photographs of the crystallization process are shown and discussed.

  15. Neutron diffraction and transmission electron microscopy study of hydrogen-induced phase transformations in Zr3Al

    International Nuclear Information System (INIS)

    Meng, W.J.; Faber, J. Jr.; Okamoto, P.R.; Rehn, L.E.; Kestel, B.J.; Hitterman, R.L.

    1990-01-01

    Hydrogen-induced phase transformations of the equilibrium intermetallic compound Zr 3 Al have been studied by in situ elastic neutron scattering, x-ray diffraction, and transmission electron microscopy (TEM). TEM observations reveal two distinct modes of amorphous phase formation in Zr 3 Al upon hydrogenation, namely, heterogeneous nucleation at preexisting grain boundaries, and homogeneous nucleation within single-crystal grains. In situ neutron diffraction reveals a phase separation between a hydrogen (deuterium) poor and a hydrogen (deuterium) rich crystalline phase. Rietveld profile refinement of the neutron diffraction data indicates predominant hydrogen (deuterium) occupation of the octahedral interstitial sites in the crystalline matrix that have only Zr nearest-neighbor atoms. The two different modes of amorphous phase nucleation are directly related to the degree of hydrogen dissolution in the host crystalline matrix

  16. Magnetic scattering in the simultaneous measurement of small-angle neutron scattering and Bragg edge transmission from steel.

    Science.gov (United States)

    Oba, Yojiro; Morooka, Satoshi; Ohishi, Kazuki; Sato, Nobuhiro; Inoue, Rintaro; Adachi, Nozomu; Suzuki, Jun-Ichi; Tsuchiyama, Toshihiro; Gilbert, Elliot Paul; Sugiyama, Masaaki

    2016-10-01

    Pulsed neutron sources enable the simultaneous measurement of small-angle neutron scattering (SANS) and Bragg edge transmission. This simultaneous measurement is useful for microstructural characterization in steel. Since most steels are ferromagnetic, magnetic scattering contributions should be considered in both SANS and Bragg edge transmission analyses. An expression for the magnetic scattering contribution to Bragg edge transmission analysis has been derived. The analysis using this expression was applied to Cu steel. The ferrite crystallite size estimated from this Bragg edge transmission analysis with the magnetic scattering contribution was larger than that estimated using conventional expressions. This result indicates that magnetic scattering has to be taken into account for quantitative Bragg edge transmission analysis. In the SANS analysis, the ratio of magnetic to nuclear scattering contributions revealed that the precipitates consist of body-centered cubic Cu 0.7 Fe 0.3 and pure Cu, which probably has 9R structure including elastic strain and vacancies. These results show that effective use of the magnetic scattering contribution allows detailed analyses of steel microstructure.

  17. On the impact of neutron beam divergence and scattering on the quality of transmission acquired tomographic images

    Science.gov (United States)

    Silvani, Maria Ines; Lopes, Ricardo T.; de Almeida, Gevaldo L.; Gonçalves, Marcelo José; Furieri, Rosanne C. A. A.

    2007-10-01

    The impact of the divergence of a thermal neutron beam and the scattered neutrons on the quality of tomographic images acquired by transmission have been evaluated by using a third generation tomographic system incorporating neutron collimators under several different arrangements. The system equipped with a gaseous position sensitive detector has been placed at the main channel outlet of the Argonauta Research Reactor in Instituto de Engenharia Nuclear (CNEN-Brazil) which furnishes a thermal neutron flux of 2.3 × 105 n cm-2 s-1. Experiments have then been conducted using test-objects with well-known inner structure and composition to assess the influence of the collimators arrangement on the quality of the acquired images. Both, beam divergence and scattering - expected to spoil the image quality - have been reduced by using properly positioned collimators between the neutron source and the object, and in the gap between the object and the detector, respectively. The shadow cast by this last collimator on the projections used to reconstruct the tomographic images has been eliminated by a proper software specifically written for this purpose. Improvement of the tomographic images has been observed, demonstrating the effectiveness of the proposed approach to improve their quality by using properly positioned collimators.

  18. Radioisotopic neutron transmission spectrometry: Quantitative analysis by using partial least-squares method.

    Science.gov (United States)

    Kim, Jong-Yun; Choi, Yong Suk; Park, Yong Joon; Jung, Sung-Hee

    2009-01-01

    Neutron spectrometry, based on the scattering of high energy fast neutrons from a radioisotope and slowing-down by the light hydrogen atoms, is a useful technique for non-destructive, quantitative measurement of hydrogen content because it has a large measuring volume, and is not affected by temperature, pressure, pH value and color. The most common choice for radioisotope neutron source is (252)Cf or (241)Am-Be. In this study, (252)Cf with a neutron flux of 6.3x10(6)n/s has been used as an attractive neutron source because of its high flux neutron and weak radioactivity. Pulse-height neutron spectra have been obtained by using in-house built radioisotopic neutron spectrometric system equipped with (3)He detector and multi-channel analyzer, including a neutron shield. As a preliminary study, polyethylene block (density of approximately 0.947g/cc and area of 40cmx25cm) was used for the determination of hydrogen content by using multivariate calibration models, depending on the thickness of the block. Compared with the results obtained from a simple linear calibration model, partial least-squares regression (PLSR) method offered a better performance in a quantitative data analysis. It also revealed that the PLSR method in a neutron spectrometric system can be promising in the real-time, online monitoring of the powder process to determine the content of any type of molecules containing hydrogen nuclei.

  19. Optic fibber data acquisition and transmission system dedicated to a neutron generator

    International Nuclear Information System (INIS)

    Ledo Pereda, Luis Miguel; Vergara Limon, Sergio; Arteche Diaz, Raul

    2009-01-01

    Hereby, are presented the design, construction and application of a virtual data acquisition system based on the usage of microcontrollers, optic fibber, and PC. System is aimed to the reestablishment of the communication between the basic modules of a Neutron Generator. The work shows, how the original interface design is upgraded by the automation of the data acquisition, on the Neutron Generator exploitation parameters. The PC usage is being introduced in the Neutron Generator and the precedent is established for further subsystem

  20. Characterisation of nanovoiding in dental porcelain using small angle neutron scattering and transmission electron microscopy.

    Science.gov (United States)

    Lunt, Alexander; Terry, Ann; Ying, Siqi; Baimpas, Nikolaos; Sui, Tan; Kabra, Saurabh; Kelleher, Joe; King, Stephen; Khin, Neo Tee; Korsunsky, Alexander M

    2017-05-01

    Recent studies of the yttria partially stabilised zirconia-porcelain interface have revealed the presence of near-interface porcelain nanovoiding which reduces toughness and leads to component failure. One potential explanation for these nanoscale features is thermal creep which is induced by the combination of the residual stresses at the interface and sintering temperatures applied during manufacture. The present study provides improved understanding of this important phenomenon. Transmission electron microscopy and small angle neutron scattering were applied to a sample which was crept at 750°C and 100MPa (sample C), a second which was exposed to an identical heat treatment schedule in the absence of applied stress (sample H), and a reference sample in the as-machined state (sample A). The complementary insights provided by the two techniques were in good agreement and log-normal void size distributions were found in all samples. The void number density was found to be 1.61μm -2 , 25.4μm -2 and 98.6μm -2 in samples A, H and C respectively. The average void diameter in sample A (27.1nm) was found to be more than twice as large as in samples H (10.2nm) and C (11.6nm). The crept data showed the highest skewness parameter (2.35), indicating stress-induced growth of larger voids and void coalescence that has not been previously observed. The improved insight presented in this study can be integrated into existing models of dental prostheses in order to optimise manufacturing routes and thereby reduce the significant detrimental impact of this nanostructural phenomenon. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Simulation and analysis of the transmission properties of curved-straight neutron guide systems

    International Nuclear Information System (INIS)

    Copley, J.R.D.; Mildner, D.F.R.

    1992-01-01

    This paper reports that the spatial intensity distribution of neutrons emerging from a curved guide is far from uniform, particularly at short wavelengths, and curved guides are sometimes followed by a straight section of guide to make the intensity distribution more uniform. The behavior of neutrons within curved-straight neutron guide systems is examined using both ray-tracing and analytical approaches to the problem. The intensity distribution within the straight guide tends to wash from one side of the guide to the other. The amplitude of this transverse wave decreases with increasing guide length, and the characteristic length of the wave decreases with increasing neutron wavelength

  2. The behavior of a type-II superconductor Nb in a magnetic field as investigated in polarized-neutron transmission experiments

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.

    1995-01-01

    The type-II superconducting polycrystal Nb was investigated on the SPN-1 polarized-neutron spectrometer at the high-intensity pulsed reactor IBR-2 at Dubna. In polarized-neutron transmission experiments the magnetic-field dependence of the neutron beam polarization was measured. Experiments were performed over a wide magnetic-field range from 0 to H c2 at a temperature of 4.8 K. A quasiperiodic variation of the neutron depolarization as a function of magnetic-field strength was observed. (orig.)

  3. Measurement of the para-hydrogen concentration in the ISIS moderators using neutron transmission and thermal conductivity

    Science.gov (United States)

    Romanelli, Giovanni; Rudić, Svemir; Zanetti, Matteo; Andreani, Carla; Fernandez-Alonso, Felix; Gorini, Giuseppe; Krzystyniak, Maciej; Škoro, Goran

    2018-04-01

    We present an experimental study to determine the para-hydrogen concentration in the hydrogen moderators at the ISIS pulsed neutron and muon source. The experimental characterisation is based on neutron transmission experiments performed on the VESUVIO spectrometer, and thermal conductivity measurements using the TOSCA para-hydrogen rig. A reliable estimation of the level of para-hydrogen concentration in the hydrogen moderators is of crucial importance in the framework of a current project to completely refurbish the first target station at ISIS. Moreover, we report a new measurement of the total neutron cross section for normal hydrogen at 15 K on the broad energy range 3 meV -10 eV suggesting a revision of the most recent nuclear libraries for incident neutron energies lower than 10 meV. Finally, we characterise systematic errors affecting the para-hydrogen level estimation due to conversion from para to ortho hydrogen, as a function of the time a batch of gas spends in every component of our gas panel and apparatus.

  4. Setup and taking into operation of a highly sensitive 3He magnetometer for a future experiment for the determination of an electric dipole moment of the free neutron

    International Nuclear Information System (INIS)

    Kraft, Andreas

    2012-01-01

    The measurement of the electric dipole moment of the free neutron is directly linked to the question on the accurate determination of the magnetic field conditions inside the nEDM spectrometer. Using in-situ the spin-precession of polarized 3 He, monitored by optically pumped Cs-magnetometers a sensitivity on the femto-tesla-scale can be obtained. At the institute of physics of the University Mainz a 3 He/Cs-test facility was built to investigate the readout of 3 He-spin-precession with a lamp-pumped Cs-magnetometer. Additionally, an ultra-compact and transportable polarizer unit was developed and installed in Mainz, which polarizes 3 He gas up to 55 % of polarization before the compressed gas is delivered to two sandwich magnetometer cells inside the EDM chamber. This theses will present some results of the first successful test of the polarizer unit in January 2012. 3 He was polarized in the ultra compact polarizer unit and transferred via guiding fields into a 4 layer mu-metal shield, where the free spin precession was detected with a lamp pumped Cs-magnetometer.

  5. Testing neutron cross-section files from the BROND-2 and ENDF/B-6 libraries in benchmark experiments on neutron transmission through spherical layers

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Blokhin, A.I.; Kulagin, N.T.; Pronyaev, V.G.; Simakov, S.P.

    1997-01-01

    The effect of angular anisotropy in inelastic secondary neutron scattering on neutron leakage spectra from the surface of spherical specimens is investigated. It is shown how inadequate representation of the cross-section structure in the neutron energy resonance region can affect the neutron leakage spectrum. (author). 19 refs, 5 figs, 6 tabs

  6. Setup planning for machining

    CERN Document Server

    Hazarika, Manjuri

    2015-01-01

    Professionals as well as researchers can benefit from this comprehensive introduction into the topic of setup planning, which reflects the latest state of research and gives hands-on examples. Starting with a brief but thorough introduction, this book explains the significance of setup planning in process planning and includes a reflection on its external constraints. Step-by-step the different phases of setup planning are outlined and traditional as well as modern approaches, such as fuzzy logic based setup planning, on the solution of setup planning problems are presented. Three detailed examples of applications provide a clear and accessible insight into the up-to-date techniques and various approaches in setup planning.

  7. Cable for the transmission of electrical signals from a neutron detector in a nuclear reactor

    International Nuclear Information System (INIS)

    Warren, H.D.

    1976-01-01

    To reduce spurious signals arising from neutron-produced secondary-electrons in coaxial cables sited in a nuclear reactor, materials with low neutron-interaction cross-sections are chosen. In order to minimise the effect of electron currents due to the gamma radiation a double strategy is applied. 1) Electron production in the insulating layer is held low by using a low density material. 2) The electron current from the inner conductor to the outer conductor is made to cancel the current from the opposite direction by using a higher atomic number material for the inner conductor (which has a smaller emission surface) than for the outer conductor (which has a greater emission surface). (RW) [de

  8. Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures

    DEFF Research Database (Denmark)

    Cereser, Alberto; Strobl, Markus; Hall, Stephen A.

    2017-01-01

    constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND......-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure....... The reconstruction algorithms have been validated by reconstructing two stacked Co-Ni-Ga single crystals, and by comparison with a grain map obtained by post-mortem electron backscatter diffraction (EBSD)....

  9. Transmission of fast neutrons from the Li(d,xn) reaction through thick iron

    International Nuclear Information System (INIS)

    Johnson, D.L.; Mann, F.M.; Carter, L.L.; Woodruff, G.L.; Brady, F.P.; Romero, J.L.; Ullmann, J.L.; Johnson, M.L.; Castaneda, C.M.

    1983-05-01

    Measurements of the spectra of neutrons that leaked through about 30 cm of iron were performed. The neutron source was produced by a beam of 35 MeV deuterons which was stopped in a target of lithium as in the Fusion Materials Irradiation Test (FMIT) facility. The source spectrum peaks near 14 MeV in the forward direction, but is broad and has a small tail that extends to 50 MeV. The leakage spectra were observed from about 10 keV to 20 MeV using proton recoil proportional counters and an NE213 liquid scintillator. Measurements were also obtained of the energy deposited by neutron and gamma radiation within the iron using thermoluminescent detectors (TLDs) and also of the flux-spectra of gamma rays emitted from the iron using the NE213 detector. Monte Carlo calculations were performed using ENDF/B-5 and other cross sections for direct comparison to experimental results. The results of the comparison are discussed

  10. Structural Change of Carbon Anode in a Lithium-ion Battery Product Associated with Charging Process Observed by Neutron Transmission Bragg-edge Imaging

    Science.gov (United States)

    Kamiyama, Takashi; Narita, Yuki; Sato, Hirotaka; Ohnuma, Masato; Kiyanagi, Yoshiaki

    Spectroscopic neutron Bragg-edge imaging was performed to study a lithium-ion battery (LIB) product. This non-destructive neutron imaging method is suitable for the evaluation of industrial products, but presents some difficulties for application to multicomponent products. The LIB includes a strong neutron scatterer and an absorber, and is thus a suitable test case for the use of neutron imaging in actual product measurement. In this study, we analyzed the variation of the graphite anode structure with changes in the battery charge level. The experiments were carried out using the compact neutron source at the Hokkaido University neutron source facility (HUNS). To eliminate the effect of scattered neutron contamination, we first determined the distance between the sample and detector required to reduce this effect to under 1%. Using this separation, the charge level dependence of the anode structure was measured. The graphite {002} Bragg-edge could be recognized on the neutron transmission spectra. The Bragg-edge was shifted and broadened with increasing battery charge. The edge was consistent with the existence of multiple graphite structural stages. The layer spacing distribution images for different charge levels showed the inhomogeneous fluctuation on the LIB lattice plane. Based on the images the fraction of the graphite structural stages were analyzed. The ratio of each stage varied with the charge level, and the ideal intercalation structure, in which the graphite layers are stuffed with Li-ions, was found to be minor in the final charging state.

  11. Radiography with polarised neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael L.

    2010-08-20

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni{sub 3}Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature T{sub C} on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with

  12. Radiography with polarised neutrons

    International Nuclear Information System (INIS)

    Schulz, Michael L.

    2010-01-01

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd 1-x Ni x and Ni 3 Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd 1-x Ni x and Ni 3 Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni 3 Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature T C on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with different ordering temperatures. This

  13. Experimental Setup for Studying Guiding of Proton Microbeam

    OpenAIRE

    Nagy, G. U. L.; Rajta, I.; Bereczky, R. J.; Tőkési, K.

    2014-01-01

    We present the design and construction of our experimental setup for studying the transmission of proton microbeam through a single, cylindrical shape, macroscopic insulating capillary. The intensity as a function of time, the energy distribution as a function of the transmission and the deflection of the transmitted particles can be measured with the new setup.

  14. Neutron and gamma-ray transmission technique for the on-line determination of moisture in coal and coke

    International Nuclear Information System (INIS)

    Sowerby, B.D.; Millen, M.J.; Rafter, P.T.

    1985-01-01

    A fast neutron and gamma-ray transmission technique is being developed for the on-line analysis of moisture in coal and coke. The technique utilises 252 Cf and 137 Cs sources and 3 He and NaI(Tl) detectors. Laboratory measurements on single coal samples have shown that moisture can be determined to better than 1 wt% over the range 0 to 16 wt% moisture and 5 to 17cm thickness. Reduced errors were obtained for restricted ranges of moisture and thickness. Preliminary measurements on coke of thickness 30 to 50cm have shown that moisture can be determined to within 0.26 wt% over the range 1 to 16 wt% moisture

  15. Structural Properties of Bulk and Aqueous Systems of PEO-PIB-PEO Triblock Copolymers as Studied by Small-Angle Neutron Scattering and Cryo-Transmission Electron Microscopy

    DEFF Research Database (Denmark)

    Mortensen, Kell; Talmon, Yeshayahu; Gao, Bo

    1997-01-01

    The phase behavior of a low molecular weight (M-w = 6000) symmetric triblock copolymer of poly(ethylene oxide) and poly(isobutylene), PEO-PIB-PEO, in the bulk as well in aqueous, D2O, solutions has been studied using small-angle neutron scattering and cryo-transmission electron microscopy...

  16. Numerical analysis of resonances induced by s wave neutrons in transmission time-of-flight experiments with a computer IBM 7094 II

    International Nuclear Information System (INIS)

    Corge, Ch.

    1969-01-01

    Numerical analysis of transmission resonances induced by s wave neutrons in time-of-flight experiments can be achieved in a fairly automatic way on an IBM 7094/II computer. The involved computations are carried out following a four step scheme: 1 - experimental raw data are processed to obtain the resonant transmissions, 2 - values of experimental quantities for each resonance are derived from the above transmissions, 3 - resonance parameters are determined using a least square method to solve the over determined system obtained by equalling theoretical functions to the correspondent experimental values. Four analysis methods are gathered in the same code, 4 - graphical control of the results is performed. (author) [fr

  17. Neutron transmission and capture measurements and analysis of 60Ni from 1 to 450 keV

    International Nuclear Information System (INIS)

    Perey, C.M.; Harvey, J.A.; Macklin, R.L.; Winters, R.R.; Perey, F.G.

    1982-11-01

    High-resolution transmission and capture measurements of 60 Ni-enriched targets have been made at the Oak Ridge Electron Linear Accelerator (ORELA) from a few eV to 1800 keV in transmission and from 2.5 keV to 5 MeV in capture . The transmission data from 1 to 450 keV were analyzed with a multi-level R-matrix code which uses the Bayes' theorem for the fitting process. This code provides the energies and neutron widths of the resonances inside the 1- to 450-keV region as well as a possible parameterization for outside resonances to describe the smooth cross section in this region. The capture data were analyzed with a least-squares fitting code using the Breit-Wigner formula. From 2.5 to 450 keV, 166 resonances were seen in both sets of data. Correspondence between the energy scales shows a discontinuity around 300 keV which makes the matching of resonances at higher energies difficult. Eighty-nine resonances were seen in the capture data only. Average parameters for the 30 observed s-wave resonances were deduced. The average level spacing D 0 was found to be equal to 15.2 +- 1.5 keV, the strength function, S 0 , equal to (2.2 +- 0.6) x 10 -4 and the average radiation width, GAMMA/sub γ/, equal to 1.30 +- 0.07 eV. The staircase plot of the reduced level widths and the plot of the Lorentz-weighted strength function averaged over various energy intervals show possible evidence for doorway states. The level densities calculated with the Fermi-gas model for l = 0 and for l > 0 resonances were compared with the cumulative number of observed resonances, but the analysis is not conclusive. The average capture cross section as a function of the neutron incident energy is compared to the tail of the giant electric dipole resonance prediction

  18. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    Science.gov (United States)

    Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.

    2015-12-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.

  19. An edge over diagnostic setup

    Directory of Open Access Journals (Sweden)

    Sridhar Kannan

    2017-01-01

    Full Text Available Diagnostic setup proposed by H.D. Kingsley serves as a practical aid in treatment planning and diagnosis. These setups have some inherent shortcomings. A simple technique of duplication of the setups in dental stone can solve problems encountered before as well as provide many other advantages over the conventional procedure. The diagnostic setup is prepared by the conventional method [Figure 1]. An alginate impression is then taken of the setups and poured in dental stone to obtain the derived treatment model [Figure 2]. The same setup can now be further modified for alternate lines of treatment. Subsequently models could then be obtained as required [Figure 3].

  20. Numerical analysis of resonances induced by s wave neutrons in transmission time-of-flight experiments with a computer IBM 7094 II; Methodes d'analyse des resonances induites par les neutrons s dans les experiences de transmission par temps de vol et automatisation de ces methodes sur ordinateur IBM 7094 II

    Energy Technology Data Exchange (ETDEWEB)

    Corge, Ch. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-01-01

    Numerical analysis of transmission resonances induced by s wave neutrons in time-of-flight experiments can be achieved in a fairly automatic way on an IBM 7094/II computer. The involved computations are carried out following a four step scheme: 1 - experimental raw data are processed to obtain the resonant transmissions, 2 - values of experimental quantities for each resonance are derived from the above transmissions, 3 - resonance parameters are determined using a least square method to solve the over determined system obtained by equalling theoretical functions to the correspondent experimental values. Four analysis methods are gathered in the same code, 4 - graphical control of the results is performed. (author) [French] L'automatisation, sur ordinateur IBM 7094/II, de l'analyse des resonances induites par les neutrons s dans les experiences de transmission par temps de vol a ete accomplie en la decomposant selon un schema articule en quatre phases: 1 - le traitement des donnees experimentales brutes pour obtenir les transmissions interfero-resonnantes, 2 - la determination des grandeurs d'analyse a partir des transmissions precedentes, 3 - l'analyse proprement dite des resonances dont les parametres sont obtenus par la resolution d'un systeme surabondant. Quatre methodes d'analyse sont groupees en un meme programme, 4 - la procedure de verification graphique. (auteur)

  1. A Comparative Study of the Crystallite Size and the Dislocation Density of Bent Steel Plates using Bragg-edge Transmission Imaging, TOF Neutron Diffraction and EBSD

    Science.gov (United States)

    Oikawa, K.; Su, Y. H.; Tomota, Y.; Kawasaki, T.; Shinohara, T.; Kai, T.; Hiroi, K.; Zhang, S. Y.; Parker, J. D.; Sato, H.; Kiyanagi, Y.

    Line broadening analysis was performed on the time-of-flight neutron diffraction data for the plastically bent plates of a ferritic steel and a duplex stainless steel. A Rietveld analysis program, Z-Rietveld ver. 1.0 was used to fit the anisotropically broadened patterns where the increase in Lorentzian full width at half maximum (FWHM) and the Gaussian FWHM involves information of the crystallite size and the dislocation density, respectively. The derived results were compared with those obtained by using Bragg-edge transmission spectrum analysis and electron backscatter diffraction (EBSD) observations.

  2. The closed-form expressions for the neutron and x-ray reflection and transmission coefficients of a one-dimensional profile

    International Nuclear Information System (INIS)

    Zhou, Xiao-Lin; Chen, Sow-Hsin

    1990-11-01

    As the first part of an effort to systematically study the inversion problem in x-ray and neutron reflectivity experiments, the closed-form expressions are derived for the reflection and transmission coefficients as functionals of the sample profile. The assumption used is that the reflection is mainly due to the first- and the second-order derivatives of the profile and thus the third-and higher-order derivatives are negligible. One of the two major characteristics of the formulas is that the reflection and transmission coefficients are explicitly expressed in terms of the profile; the other is that the formulas are valid over the entire range of momentum transfer Q. This procedure enables the straight-forward calculation of the real space profile using the reflectivity data as the computer input, with an accuracy that still remains to be evaluated through both analytical and numerical analyses with the aid of model profiles

  3. Neutron radiography

    International Nuclear Information System (INIS)

    Hiraoka, Eiichi

    1988-01-01

    The thermal neutron absorption coefficient is essentially different from the X-ray absorption coefficient. Each substance has a characteristic absorption coefficient regardless of its density. Neutron deams have the following features: (1) neutrons are not transmitted efficiently by low molecular weight substances, (2) they are transmitted efficiently by heavy metals, and (3) the transmittance differs among isotopes. Thus, neutron beams are suitable for cheking for foreign matters in heavy metals and testing of composites consisting of both heavy and light materials. A neutron source generates fast neutrons, which should be converted into thermal neutrons by reducing their energy. Major neutron souces include nuclear reactors, radioisotopes and particle accelerators. Photographic films and television systems are mainly used to observe neutron transmission images. Computers are employed for image processing, computerized tomography and three-dimensional analysis. The major applications of neutron radiography include inspection of neclear fuel; evaluation of material for airplane; observation of fuel in the engine and oil in the hydraulic systems in airplanes; testing of composite materials; etc. (Nogami, K.)

  4. Fast-neutron and gamma-ray transmission technique for the on-line determination of moisture in coal and coke

    International Nuclear Information System (INIS)

    Sowerby, B.D.; Millen, M.J.; Rafter, P.T.

    1988-01-01

    A fast neutron and γ-ray transmission technique is being developed for the on-line analysis of moisture. Calculations show that the technique is capable of determining coke moisture to better than 0.2 wt% over a wide range of coke thicknesses. The favoured technique uses a thick Li-glass detector surrounded by a neutron moderator to determine simultaneously the fast neutron and γ-ray intensities. Laboratory measurements on single coke samples showed that moisture can be determined to within 0.2 wt% over the range 3-13 wt% moisture and 300-500 mm thickness. Measurements on a range of coke samples showed that the increase in r.m.s. error due to bound H variations is less than about 0.4 wt% moisture. Applications of the technique, to moisture determination in black and brown coal are also investigated, both by calculation and experiment. Further potential applications of the technique are discussed, including the determination of C in steel. (author)

  5. The current status of the MASHA setup

    Energy Technology Data Exchange (ETDEWEB)

    Vedeneev, V. Yu., E-mail: vvedeneyev@gmail.com; Rodin, A. M.; Krupa, L.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Kamas, D. [Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions (Russian Federation); Kliman, J. [Slovak Academy of Sciences, Institute of Physics (Slovakia); Komarov, A. B.; Motycak, S.; Novoselov, A. S.; Salamatin, V. S.; Stepantsov, S. V.; Podshibyakin, A. V.; Yukhimchuk, S. A. [Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions (Russian Federation); Granja, C.; Pospisil, S. [Czech Technical University in Prague, Institute of Experimental and Applied Physics (Czech Republic)

    2017-11-15

    The MASHA setup designed as the mass-separator with the resolving power of about 1700, which allows mass identification of superheavy nuclides is described. The setup uses solid ISOL (Isotope Separation On-Line) method. In the present article the upgrade of some parts of MASHA are described: target box (rotating target + hot catcher), ion source based on electron cyclotron resonance, data acquisition, beam diagnostics and control systems. The upgrade is undertaken in order to increase the total separation efficiency, reduce the separation time, of the installation and working stability and make possible continuous measurements at high beam currents. Ion source efficiency was measured in autonomous regime with using calibrated gas leaks of Kr and Xe injected directly to ion source. Some results of the first experiments for production of radon isotopes using the multi-nucleon transfer reaction {sup 48}Ca+{sup 242}Pu are described in the present article. The using of TIMEPIX detector with MASHA setup for neutron-rich Rn isotopes identification is also described.

  6. Server farms with setup costs

    NARCIS (Netherlands)

    Gandhi, A.; Harchol-Balter, M.; Adan, I.

    2010-01-01

    In this paper we consider server farms with a setup cost. This model is common in manufacturing systems and data centers, where there is a cost to turn servers on. Setup costs always take the form of a time delay, and sometimes there is additionally a power penalty, as in the case of data centers.

  7. Neutron emission anisotropy in fission

    OpenAIRE

    CHIETERA A.; STUTTGE L.; GOENNENWEIN F.; KOPATCH Y.; MUTTERER M.; GUSEVA I.; GAGARSKI A.; CHERNYSHEVA E; DORVAUX O; HAMBSCH Franz-Josef; HANAPPE F.; MEZENTSEVAH Z.; TELEZHNIKOVCH S.

    2015-01-01

    Experimental neutron angular distributions are investigated in the spontaneous fission process of 252Cf. The CORA experiment, presented in this paper, has the aim to study neutron angular correlations in order to elucidate the neutron emission mechanisms in the fission process. The experimental setup is composed by the CODIS fission chamber and the DEMON neutron multidetector. The development of a simulation toolkit based on GEANT4 and ROOT adopted as strategy to investigate the emission of t...

  8. Plant trial of a fast neutron and gamma-ray transmission gauge for the on-belt determination of moisture in lump coke

    International Nuclear Information System (INIS)

    Millen, M.J.; Rafter, P.T.; Sowerby, B.D.; Rainbow, M.T.; Jelenich, L.

    1990-01-01

    A fast neutron and γ-ray transmission (FNGT) gauge has been used to determine the moisture content of lump coke on the conveyor belt supplying the No. 3 blast furnace at the BHP Newcastle Steelworks. The gauge was operated on-line over the period June 1988-March 1989. Gauge moisture was compared with laboratory moisture, based on 30 increment composite samples taken from the belt, and with moisture determined by a second FNGT gauge on one of the hoppers feeding the conveyor belt. The r.m.s. difference between conveyor gauge moisture and laboratory moisture was 0.24 wt% during the calibration period for two hopper flow on the belt, which is normal plant condition. The accuracy of the conveyor belt gauge was maintained to within 0.37 wt% moisture over the full period of the plant trial. (author)

  9. High resolution neutron Larmor diffraction using superconducting magnetic Wollaston prisms.

    Science.gov (United States)

    Li, Fankang; Feng, Hao; Thaler, Alexander N; Parnell, Steven R; Hamilton, William A; Crow, Lowell; Yang, Wencao; Jones, Amy B; Bai, Hongyu; Matsuda, Masaaki; Baxter, David V; Keller, Thomas; Fernandez-Baca, Jaime A; Pynn, Roger

    2017-04-13

    The neutron Larmor diffraction technique has been implemented using superconducting magnetic Wollaston prisms in both single-arm and double-arm configurations. Successful measurements of the coefficient of thermal expansion of a single-crystal copper sample demonstrates that the method works as expected. The experiment involves a new method of tuning by varying the magnetic field configurations in the device and the tuning results agree well with previous measurements. The difference between single-arm and double-arm configurations has been investigated experimentally. We conclude that this measurement benchmarks the applications of magnetic Wollaston prisms in Larmor diffraction and shows in principle that the setup can be used for inelastic phonon line-width measurements. The achievable resolution for Larmor diffraction is comparable to that using Neutron Resonance Spin Echo (NRSE) coils. The use of superconducting materials in the prisms allows high neutron polarization and transmission efficiency to be achieved.

  10. Current status of GALS setup in JINR

    Energy Technology Data Exchange (ETDEWEB)

    Zemlyanoy, S., E-mail: zemlya@jinr.ru; Avvakumov, K., E-mail: kavvakumov@jinr.ru [Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions (Russian Federation); Fedosseev, V. [CERN (Switzerland); Bark, R. [Nat. Research Foundation, iThemba LABS (South Africa); Blazczak, Z. [A. Mickiewicz University, Faculty of Physics (Poland); Janas, Z. [University of Warsaw, Faculty of Physics (Poland)

    2017-11-15

    This is a brief report on the current status of the new GAs cell based Laser ionization Setup (GALS) at the Flerov Laboratory for Nuclear Reactions (FLNR) of the Joint Institute for Nuclear Research (JINR) in Dubna. GALS will exploit available beams from the U-400M cyclotron in low energy multi-nucleon transfer reactions to study exotic neutron-rich nuclei located in the “north-east” region of nuclear map. Products from 4.5 to 9 MeV/nucleon heavy-ion collisions, such as {sup 136}Xe on {sup 208}Pb, are thermalized and neutralized in a high pressure gas cell and subsequently selectively laser re-ionized. In order to choose the best scheme of ion extraction the results of computer simulations of two different systems are presented. The first off- and online experiment will be performed on osmium atoms that is regarded as a most convenient element for producing isotopes with neutron number in the vicinity of the magic N = 126.

  11. A study of rates of (n, f), (n, γ), and (n, 2n) reactions in natU and 232Th produced by the neutron fluence in the graphite set-up (gamma-3) irradiated by 2.33 GeV deuteron beam

    International Nuclear Information System (INIS)

    Adam, J.; Chitra Bhatia; Katovskij, K.

    2011-01-01

    Spallation neutrons produced in a collision of 2.33 GeV deuteron beam with the large lead target are moderated by the thick graphite block surrounding the target and used to activate the radioactive samples of nat U and Th put at the three different positions, identified as holes 'a', 'b' and 'c' in the graphite block. Rates of the (n, f), (n, γ), and (n, 2n) reactions in the two samples are determined using the gamma spectrometry. Ratio of the experimental reaction rates, R(n, 2n)/R(n, f) for the 232 Th and nat U are estimated in order to understand the role of reactions of (n, xn) type in Accelerator Driven Subcritical Systems. For the Th-sample, the ratio is ∼ 54(10)% in case of hole 'a' and ∼ 95(57)% in case of hole 'b' compared to 1.73(20)% for the hole 'a' and 0.710(9)% for the hole 'b' in case of the nat U sample. Also the ratio of fission rates in uranium to thorium, nat U(n, f)/ 232 Th(n, f), is ∼ 11.2(17) in case of hole 'a' and 26.8(85) in hole 'b'. Similarly, ratio 238 U(n, 2n)/ 232 Th(n, 2n) is 0.36(4) for the hole 'a' and 0.20(10) for the hole 'b' showing that 232 Th is more prone to the (n, xn) reaction than 238 U. All the experimental reaction rates are compared with the simulated ones by generating neutron fluxes at the three holes from MCNPX 2.6c and making use of LA150 library of cross sections. The experimental and calculated rates of all the three reactions are in good agreement. The transmutation power of the set-up is estimated using the rates of (n, γ) and (n, 2n) reactions for both the samples in the three holes and compared with some of the results of the 'Energy plus Transmutation' set-up and TARC experiment

  12. Setup reduction approaches for machining

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1997-04-01

    Rapid setup is a common improvement approach in press working operations such as blanking and shearing. It has paid major dividends in the sheet metal industry. It also has been a major improvement thrust for high-production machining operations. However, the literature does not well cover all the setup operations and constraints for job shop work. This review provides some insight into the issues involved. It highlights the floor problems and provides insights for further improvement. The report is designed to provide a quick understanding of the issues.

  13. Transmission electron microscopy investigation of neutron irradiated Si and ZrN coated UMo particles prepared using FIB

    Science.gov (United States)

    Van Renterghem, W.; Miller, B. D.; Leenaers, A.; Van den Berghe, S.; Gan, J.; Madden, J. W.; Keiser, D. D.

    2018-01-01

    Two fuel plates, containing Si and ZrN coated U-Mo fuel particles dispersed in an Al matrix, were irradiated in the BR2 reactor of SCK•CEN to a burn-up of ∼70% 235U. Five samples were prepared by INL using focused ion beam milling and transported to SCK•CEN for transmission electron microscopy (TEM) investigation. Two samples were taken from the Si coated U-Mo fuel particles at a burn-up of ∼42% and ∼66% 235U and three samples from the ZrN coated U-Mo at a burn-up of ∼42%, ∼52% and ∼66% 235U. The evolution of the coating, fuel structure, fission products and the formation of interaction layers are discussed. Both coatings appear to be an effective barrier against fuel matrix interaction and only on the samples having received the highest burn-up and power, the formation of an interaction between Al and U(Mo) can be observed on those locations where breaches in the coatings were formed during plate fabrication.

  14. On SIP Session setup delay for VoIP services over correlated fading channels

    DEFF Research Database (Denmark)

    Fathi, Hanane; Chakraborty, Shyam S.; Prasad, Ramjee

    2006-01-01

    In this paper, the session setup delay of the session initiation protocol (SIP) is studied. The transmissions on both the forward and reverse channel are assumed to experience Markovian errors. The session setup delay is evaluated for different transport protocols, and with the use of the radio l...

  15. Polarized neutron scattering on HYSPEC: the HYbrid SPECtrometer at SNS

    Energy Technology Data Exchange (ETDEWEB)

    Zaliznyak, Igor [Brookhaven National Laboratory (BNL); Savici, Andrei T [ORNL; Garlea, Vasile O [ORNL; Winn, Barry L [ORNL; Schneelock, John [Brookhaven National Laboratory (BNL); Tranquada, John M. [Brookhaven National Laboratory (BNL); Gu, G. D. [Brookhaven National Laboratory (BNL); Wang, Aifeng [Brookhaven National Laboratory (BNL); Petrovic, C [Brookhaven National Laboratory (BNL)

    2017-01-01

    We describe some of the first polarized neutron scattering measurements performed at HYSPEC spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. We discuss details of the instrument setup and the experimental procedures in the mode with the full polarization analysis. Examples of the polarized neutron diffraction and the polarized inelastic neutron data obtained on single crystal samples are presented.

  16. Extensions of cutting problems: setups

    Directory of Open Access Journals (Sweden)

    Sebastian Henn

    2013-08-01

    Full Text Available Even though the body of literature in the area of cutting and packing is growing rapidly, research seems to focus on standard problems in the first place, while practical aspects are less frequently dealt with. This is particularly true for setup processes which arise in industrial cutting processes whenever a new cutting pattern is started (i.e. a pattern is different from its predecessor and the cutting equipment has to be prepared in order to meet the technological requirements of the new pattern. Setups involve the consumption of resources and the loss of production time capacity. Therefore, consequences of this kind must explicitly be taken into account for the planning and control of industrial cutting processes. This results in extensions to traditional models which will be reviewed here. We show how setups can be represented in such models, and we report on the algorithms which have been suggested for the determination of solutions of the respective models. We discuss the value of these approaches and finally point out potential directions of future research.

  17. Neutron physics

    International Nuclear Information System (INIS)

    Beckurts, K.H.; Wirtz, K.

    1974-01-01

    This textbook consists of four sections which deal with the following subjects: 1. Production of neutrons and their interactions with the nuclei; neutron sources; neutron detectors; cross-section measurements. 2. Theory of neutron interactions with macroscopic media; neutron slowing down; space distribution of moderated neutrons; neutron thermalization; neutron scattering. 3. Radioactive probe measurements of thermal neutron fluxes; activation by means of epithermal neutrons; threshold detectors of fast neutrons; neutron calibration. 4. Neutron energy; slowing down kernels; neutron age; diffusion length and absorption of neutrons

  18. Experiments on iron shield transmission of quasi-monoenergetic neutrons generated by 43- and 68-MeV protons via the {sup 7}Li(p,n) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tanaka, Shun-ichi; Nakao, Noriaki [and others

    1996-03-01

    In order to provide benchmark data of neutrons transmitted through iron shields in the intermediate-energy region, spatial distributions of neutron energy spectra and reaction rates behind and inside the iron shields of thickness up to 130 cm were measured for 43- and 68-MeVp-{sup 7}Li neutrons using a quasi-monoenergetic neutron beam source at the 90-MV AVF cyclotron facility of the TLARA facility in JAERI. The measured data by five kinds of detectors: the BC501A detector, the Bonner ball counter, {sup 238}U and {sup 232}Th fission counters, {sup 7}LiF and {sup nat}LiF TLDs and solid state nuclear track detector, are numerically provided in this report in the energy region between 10{sup -4} eV and the energy of peak neutrons generated by the {sup 7}Li(p,n) reaction. (author).

  19. Experiments on iron shield transmission of quasi-monoenergetic neutrons generated by 43- and 68-MeV protons via the 7Li(p,n) reaction

    International Nuclear Information System (INIS)

    Nakashima, Hiroshi; Tanaka, Shun-ichi; Nakao, Noriaki

    1996-03-01

    In order to provide benchmark data of neutrons transmitted through iron shields in the intermediate-energy region, spatial distributions of neutron energy spectra and reaction rates behind and inside the iron shields of thickness up to 130 cm were measured for 43- and 68-MeVp- 7 Li neutrons using a quasi-monoenergetic neutron beam source at the 90-MV AVF cyclotron facility of the TLARA facility in JAERI. The measured data by five kinds of detectors: the BC501A detector, the Bonner ball counter, 238 U and 232 Th fission counters, 7 LiF and nat LiF TLDs and solid state nuclear track detector, are numerically provided in this report in the energy region between 10 -4 eV and the energy of peak neutrons generated by the 7 Li(p,n) reaction. (author)

  20. Neutron diagnostic investigations with a research reactor

    International Nuclear Information System (INIS)

    Harms, A.A.

    1977-01-01

    Some aspects of the use of neutron transmission analysis in applied research, as pursued at McMaster University (Canada), are examined. Examples considered are void measurements in two-phase flow, neutron conversion enhancement in neutron radiography, reconstruction of interior bulk heterogenities in solids and temperature sensing with neutrons. (author)

  1. Setup Analysis: Combining SMED with Other Tools

    Directory of Open Access Journals (Sweden)

    Stadnicka Dorota

    2015-02-01

    Full Text Available The purpose of this paper is to propose the methodology for the setup analysis, which can be implemented mainly in small and medium enterprises which are not convinced to implement the setups development. The methodology was developed after the research which determined the problem. Companies still have difficulties with a long setup time. Many of them do nothing to decrease this time. A long setup is not a sufficient reason for companies to undertake any actions towards the setup time reduction. To encourage companies to implement SMED it is essential to make some analyses of changeovers in order to discover problems. The methodology proposed can really encourage the management to take a decision about the SMED implementation, and that was verified in a production company. The setup analysis methodology is made up of seven steps. Four of them concern a setups analysis in a chosen area of a company, such as a work stand which is a bottleneck with many setups. The goal is to convince the management to begin actions concerning the setups improvement. The last three steps are related to a certain setup and, there, the goal is to reduce a setup time and the risk of problems which can appear during the setup. In this paper, the tools such as SMED, Pareto analysis, statistical analysis, FMEA and other were used.

  2. Lecture notes on: Neutron- and #betta#-gauges, their principle, theory, use and calibration

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1981-08-01

    The lecture notes are divided into five parts. In part I neutron sources based on (α,n) and (#betta#,n) reaction as well as on spontaneous fission and the use of accelerators are discussed. The source spectra are considered and the slowing-down of fast source neutrons is calculated. Finally, the basic concepts of neutron transport such as nuclear cross sections, mean free path, reaction rate and neutron flux are discussed. In part II a formula for the neutron current density is derived and from this the two-group and three-group diffusion equations for fast and thermal neutrons are established. For a fast neutron point source in an infinite medium, the flux-distribution around the source is calculated by use of two- and three-group theory and by Fermi-age theory. Neutron detectors are also discussed. In part III (n,n)-gauges, containing a fast neutron source and a thermal or near-thermal neutron detector, are considered together with their practical applications, in particular measurements of water content. The calibration of such gauges is described and the factors influencing the measurements such as dry bulk density and chemical composition are discussed. In part IV the interactions of #betta#-quanta with matter are discussed and formulas for reaction cross sections, absorption coefficients, build-up factors and #betta#-flux are presented. Simplified models for (#betta#-#betta#)-gauges, containing a #betta#-source and a #betta#-detector, are derived both for a backscatter and a transmission gauge. Different types of #betta#-detectors are discussed. In part V (n-#betta#)-gauges based on both capture-#betta# analysis and activation-#betta# analysis are considered. In both cases the experimental set-up is discussed, simplified models derived and practical applications described. Finally, a comparison between the two methods is made. (author)

  3. Physical methods for studying minerals and solid materials: X-ray, electron and neutron diffraction; scanning and transmission electron microscopy; X-ray, electron and ion spectrometry

    International Nuclear Information System (INIS)

    Eberhart, J.-P.

    1976-01-01

    The following topics are discussed: theoretical aspects of radiation-matter interactions; production and measurement of radiations (X rays, electrons, neutrons); applications of radiation interactions to the study of crystalline materials. The following techniques are presented: X-ray and neutron diffraction, electron microscopy, electron diffraction, X-ray fluorescence analysis, electron probe microanalysis, surface analysis by electron emission spectrometry (ESCA and Auger electrons), scanning electron microscopy, secondary ion emission analysis [fr

  4. Development of neutron measurement techniques in reactor diagnostics and determination of water content and water flow

    International Nuclear Information System (INIS)

    Avdic, Senada

    2000-09-01

    The present thesis deals with three comparatively different topics in neutron physics research. These topics are as follows: construction and experimental investigation of a new detector, capable of measuring the neutron current, and investigation of the possibility to use it for the localisation of a neutron source in a simple experimental arrangement; execution of neutron transmission measurements based on a stationary neutron generator, and the study of their suitability for determining the volume porosity of geological samples; study of the possibility for improving the accuracy of water flow measurements based on the pulsed neutron activation technique. The first subject of this thesis concerns the measurement of the neutron current by a newly constructed detector. The motivation for this work stems from a recent suggestion that the performance of core monitoring methods could be enhanced if, in addition to the scalar neutron flux, also the neutron current was measured. To this end, a current detector was based on a scintillator mounted on a fibre and a Cd layer on one side of the detector. The measurements of the 2-D neutron current were performed in an experimental system by using this detector. The efficiency of the detector in reactor diagnostics was illustrated by demonstrating that the position of a neutron source can be determined by measuring the scalar neutron flux and the neutron current in one spatial point. The results of measurement and calculation show both the suitability of the detector construction for the measurement of the neutron current vector and the use of the current in diagnostics and monitoring. The second subject of this thesis concerns fast neutron transmission measurements, based on a stationary neutron generator, for determining the volume porosity of a sample in a model experiment. Such a technique could be used in field measurements with obvious advantages in comparison with thermal neutron transmission techniques, which can

  5. Preliminary study of the {alpha} ratio measurement, ratio of the neutron capture cross section to the fission one for {sup 233}U, on the PEREN platform. Development and study of the experimental setup; Etude preliminaire de la mesure du rapport {alpha}, rapport de la section efficace moyenne de capture sur celle de fission de l'{sup 233}U, sur la plateforme PEREN. Developpement et etude du dispositif experimental

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, M.A

    2007-12-15

    Producing nuclear energy in order to reduce anthropic CO{sub 2} emission and to meet high energy demand, implies three conditions to the nuclear plants of the IV. generation: safety improvements, radioactive waste minimization, and fuel breeding for a sustainable use of the resources. The Thorium fuel cycle used in Molten Salt Reactors seems promising. Many numerical studies based on probabilistic codes are carried out in order to analyse the behaviour of such reactors. Nevertheless, one of the most important parameters is badly known: the alpha ratio of {sup 233}U, ratio of the neutron capture cross section to fission one for {sup 233}U. This key-parameter is necessary to calculate the breeding ratio and thus, the deployment capacities of those reactors. This Ph-D thesis was intended to prepare a precise measurement of the alpha ratio of {sup 233}U between 1 eV and 10 keV. Preliminary measurements have been performed on the experimental platform PEREN. This experimental environment is composed of a lead slowing-down time spectrometer associated with an intense pulsed neutron generator. Capture and fission rates are measured thanks to eight scintillators with their photomultipliers, surrounding a fission chamber. A software analysis sets the coincidence rate between the scintillators. In order to understand perfectly the experimental setup, preliminary tests using a {sup 235}U fission chamber have been done. This experiment resulted in a very low signal to background ratio (1 %). The background coming from the scintillators themselves seriously handicapped the measurement. Another series of experiment has been done with scintillators 5 times thinner. Nevertheless, the signal to background ratio should still be increased to measure the capture of {sup 235}U. To make sure that the experimental setup has totally been understood, we made many comparisons between experimental results and simulations. Two simulation codes were mainly used: MCNP and GEANT4. We paid

  6. Setup and taking into operation of a highly sensitive {sup 3}He magnetometer for a future experiment for the determination of an electric dipole moment of the free neutron; Aufbau und Inbetriebnahme eines hochsensitiven {sup 3}He-Magnetometers fuer ein zukuenftiges Experiment zur Bestimmung eines elektrischen Dipolmoments des freien Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Andreas

    2012-12-20

    The measurement of the electric dipole moment of the free neutron is directly linked to the question on the accurate determination of the magnetic field conditions inside the nEDM spectrometer. Using in-situ the spin-precession of polarized {sup 3}He, monitored by optically pumped Cs-magnetometers a sensitivity on the femto-tesla-scale can be obtained. At the institute of physics of the University Mainz a {sup 3}He/Cs-test facility was built to investigate the readout of {sup 3}He-spin-precession with a lamp-pumped Cs-magnetometer. Additionally, an ultra-compact and transportable polarizer unit was developed and installed in Mainz, which polarizes {sup 3}He gas up to 55 % of polarization before the compressed gas is delivered to two sandwich magnetometer cells inside the EDM chamber. This theses will present some results of the first successful test of the polarizer unit in January 2012. {sup 3}He was polarized in the ultra compact polarizer unit and transferred via guiding fields into a 4 layer mu-metal shield, where the free spin precession was detected with a lamp pumped Cs-magnetometer.

  7. Neutron-induced reaction cross-section measurements using a ...

    Indian Academy of Sciences (India)

    The experimental setup of Louvain-la-Neuve (UCL-Belgium) used to perform lightcharged particle production experiment in fast neutron-induced reactions is presented. A short description of the neutron modular detector DEMON is also given. DEMON is a detector array for neutrons emitted in heavy ion induced reactions at ...

  8. Neutron-induced reaction cross-section measurements using a ...

    Indian Academy of Sciences (India)

    Abstract. The experimental setup of Louvain-la-Neuve (UCL-Belgium) used to perform light- charged particle production experiment in fast neutron-induced reactions is presented. A short de- scription of the neutron modular detector DEMON is also given. DEMON is a detector array for neutrons emitted in heavy ion induced ...

  9. Control of a high temperature DLTS setup

    OpenAIRE

    Marklund, Daniel

    2017-01-01

    This thesis deals with a DLTS-setup and how this can be controlled. The controlling program is constructed in LABVIEW, where a previous built program measuring transients at varying pulses been handled and tried to be implemented for this setup. Parts of the program was implemented successfully, other part needs more work. The heater in the setup has further been connected directly to the sample. This one has been tested to see that the setup can handle the heat and that the difference betwee...

  10. Analysis methods of neutrons induced resonances in the transmission experiments by time-of-flight and automation of these methods on IBM 7094 II computer; Methode d'analyse des resonances induites par les neutrons dans les experiences de transmission par temps-de-vol et automatisation de ces methodes sur ordinateur IBM-7094 II

    Energy Technology Data Exchange (ETDEWEB)

    Corge, C

    1967-07-01

    The neutron induced resonances analysis aims to determine the neutrons characteristics, leading to the excitation energies, de-excitation probabilities by gamma radiation emission, by neutron emission or by fission, their spin, their parity... This document describes the methods developed, or adapted, the calculation schemes and the algorithms implemented to realize such analysis on a computer, from data obtained during time-of-flight experiments on the linear accelerator of Saclay. (A.L.B.)

  11. Neutron, fluorescence, and optical imaging: An in situ combination of complementary techniques

    International Nuclear Information System (INIS)

    Wagner, D.; Egelhaaf, S. U.; Hermes, H. E.; Börgardts, M.; Müller, T. J. J.; Grünzweig, C.; Lehmann, E.

    2015-01-01

    An apparatus which enables the simultaneous combination of three complementary imaging techniques, optical imaging, fluorescence imaging, and neutron radiography, is presented. While each individual technique can provide information on certain aspects of the sample and their time evolution, a combination of the three techniques in one setup provides a more complete and consistent data set. The setup can be used in transmission and reflection modes and thus with optically transparent as well as opaque samples. Its capabilities are illustrated with two examples. A polymer hydrogel represents a transparent sample and the diffusion of fluorescent particles into and through this polymer matrix is followed. In reflection mode, the absorption of solvent by a nile red-functionalized mesoporous silica powder and the corresponding change in fluorescent signal are studied

  12. Improved mortar set-up technique

    CSIR Research Space (South Africa)

    De Villiers, D

    2010-05-01

    Full Text Available of the most cumbersome aspects of a mortar set-up, namely the use of aiming posts. The prismatic mirror and bearing dials is described as well as the required setup procedures. The measurement of effectiveness, of a mortar system, showed that the concept has...

  13. Virtual setup: application in orthodontic practice

    NARCIS (Netherlands)

    Camardella, L.T.; Rothier, E.K.; Vilella, O.V.; Ongkosuwito, E.M.; Breuning, K.H.

    2016-01-01

    BACKGROUND: A plaster dental model is a patient's traditional three-dimensional (3D) record. If the dental crowns from a plaster model are separated and positioned in wax, this setup of the crowns can be used to simulate orthodontic treatment. The traditional way to make this dental setup requires

  14. Split Scheduling with Uniform Setup Times

    NARCIS (Netherlands)

    Schalekamp, F.; Sitters, R.A.; van der Ster, S.L.; Stougie, L.; Verdugo, V.; van Zuylen, A.

    2015-01-01

    We study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a machine cannot process or

  15. Split scheduling with uniform setup times.

    NARCIS (Netherlands)

    F. Schalekamp; R.A. Sitters (René); S.L. van der Ster; L. Stougie (Leen); V. Verdugo; A. van Zuylen

    2015-01-01

    htmlabstractWe study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a

  16. Polycapillary neutron lenses

    International Nuclear Information System (INIS)

    Mildner, D.F.R.

    1997-01-01

    The principle of multiple mirror reflection from smooth surfaces at small grazing angles enables the transport and guiding of high intensity slow neutron beams to locations of low background for neutron scattering and absorption experiments and to provide facilities for multiple instruments. Curved guides have been widely used at cold neutron facilities to remove the unwanted radiation (fast neutrons and gamma rays) from the beam without the use of filters. A typical guide has transverse dimensions of 50 mm and, with a radius of curvature of 1 km, transmits wavelengths longer than 5 A. Much tighter curves requires narrower transverse dimensions, otherwise there is little transmission. Typical neutron benders have a number of slots with transverse dimensions of ∼5 mm. Based on the same principle but using a different technology, recent developments in glass polycapillary fibers have produced miniature versions of neutron guides. Fibers with many thousands of channels having sizes of ∼ 10 μm enable beams of long wavelength neutrons (λ > 4 A) to be transmitted efficiently in a radius of curvature as small as a fraction of 1 m. A large collection of these miniature versions of neutron guides can be used to bend the neutron trajectories such that the incident beam can be focused. (author)

  17. Set-up for differential manometers testing

    International Nuclear Information System (INIS)

    Ratushnyj, M.I.; Galkin, Yu.V.; Nechaj, A.G.

    1985-01-01

    Set-up characteristic for controlling and testing metrological characteristics of TPP and NPP differential manometers with extreme pressure drop upto 250 kPa is briefly described. The set-up provides with automatic and manual assignment of values of gauge air pressure with errors of 0.1 and 0.25% correspondingly. The set-up is supplied with standard equipment to measure output signals. Set-up supply is carried out by a one-phase alternating current circuit with 220 V. Air supply is carried out by O.4-0.6 MPa. pressure of a pneumatic system. Application of the set-up increases operating efficiency 5 times while checking and turning differential manometers

  18. Development of a Laser Driver test setup for SLHC experiments

    Science.gov (United States)

    Meroli, S.; Cazzorla, A.; Checcucci, B.; Mazza, G.; Moschitta, A.; Servoli, L.

    2011-06-01

    Future experiments at the European Organization for Nuclear Research (CERN) will increase the demand for high-bandwidth optical links due to the growing amounts of data to be treated by the data-transmission and acquisition systems. The development of the Giga Bit Laser Driver (GBLD) chip-set addresses this issue providing a means to increase the bandwidth available to transmit data to and from the counting room. This paper describes some aspect of test setup implementation and the protocol test used to evaluate and qualify the GBLD.

  19. Development of a Laser Driver test setup for SLHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Meroli, S., E-mail: Stefano.Meroli@pg.infn.it [Istituto Nazionale di Fisica Nucleare Sezione di Perugia (Italy); Universita' degli Studi di Perugia (Italy); Cazzorla, A. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia (Italy); Universita' degli Studi di Perugia (Italy); Checcucci, B. [Universita' degli Studi di Perugia (Italy); Mazza, G. [Istituto Nazionale di Fisica Nucleare Sezione di Torino (Italy); Moschitta, A. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia (Italy); Universita' degli Studi di Perugia (Italy); Servoli, L. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia (Italy)

    2011-06-15

    Future experiments at the European Organization for Nuclear Research (CERN) will increase the demand for high-bandwidth optical links due to the growing amounts of data to be treated by the data-transmission and acquisition systems. The development of the Giga Bit Laser Driver (GBLD) chip-set addresses this issue providing a means to increase the bandwidth available to transmit data to and from the counting room. This paper describes some aspect of test setup implementation and the protocol test used to evaluate and qualify the GBLD.

  20. Development of a Laser Driver test setup for SLHC experiments

    International Nuclear Information System (INIS)

    Meroli, S.; Cazzorla, A.; Checcucci, B.; Mazza, G.; Moschitta, A.; Servoli, L.

    2011-01-01

    Future experiments at the European Organization for Nuclear Research (CERN) will increase the demand for high-bandwidth optical links due to the growing amounts of data to be treated by the data-transmission and acquisition systems. The development of the Giga Bit Laser Driver (GBLD) chip-set addresses this issue providing a means to increase the bandwidth available to transmit data to and from the counting room. This paper describes some aspect of test setup implementation and the protocol test used to evaluate and qualify the GBLD.

  1. Neutron gamma fraction imaging: Detection, location and identification of neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Gamage, K.A.A., E-mail: k.gamage@lancaster.ac.uk [Department of Engineering, University of Lancaster , Lancaster LA1 4YR (United Kingdom); Taylor, G.C. [National Physical Laboratory, Hampton Road,Teddington, Middlesex TW11 0LW (United Kingdom)

    2015-07-11

    In this paper imaging of neutron sources and identification and separation of a neutron source from another neutron source is described. The system is based upon organic liquid scintillator detector, tungsten collimator, bespoke fast digitiser and adjustable equatorial mount. Three environments have been investigated with this setup corresponding to an AmBe neutron source, a {sup 252}Cf neutron source and both sources together separated in space. In each case, events are detected, digitised, discriminated and radiation images plotted corresponding to the area investigated. The visualised neutron count distributions clearly locate the neutron source and, relative gamma to neutron (or neutron to gamma) fraction images aid in discriminating AmBe sources from {sup 252}Cf source. The measurements were performed in the low scatter facility of the National Physical Laboratory, Teddington, UK.

  2. Self-powered neutron detector

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1976-01-01

    A self-powered neutron detector is detailed wherein a thin conductive layer of low neutron cross section, high density material is disposed about an emitter core of material which spontaneously emits radiation on neutron capture. The high density material is absorptive of beta radiation emitted by decay of the emitter core activation product, but is substantially transmissive to the high average energy prompt electrons emitted by the emitter core material. (author)

  3. Transmission line matching simulation for 350 MHz RF driver for 400 KeV (deuterium) RFQ based 14 MeV neutron source

    International Nuclear Information System (INIS)

    Sharma, Sonal; Pande, Manjiri; Handu, V.K.

    2009-01-01

    A 60 KW, 350 MHz tetrode based high power RF system is being developed for 400 KeV RFQ based 14 MeV neutron generator in Bhabha Atomic Research Centre to study physics of coupled neutron sources and subcritical assembly. This RF system requires a 2.5 kW RF driver which is being designed by using tetrode TH-393. At such high frequency i.e. 350 MHz, lumped components are not practically useful due to radiation losses. Therefore, techniques such as coaxial line with stub tuning are preferred, which minimizes these losses. Simulation of two such stub tuning based matched coaxial lines at the input and output of the tube has been done by using CST studio. CST STUDIO is a special tool for the 3D EM simulation of high frequency components

  4. Study on the P-odd asymmetry of longitudinally polarized neutron transmission in 117Sn, 233Th, 239Pu isotopes and natural mixture of Cl and Pb isotopes

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Ermakov, O.N.; Karpikhin, I.L.; Krupchitskij, P.A.; Kuznetsov, Yu.Eh.; Perepelitsa, V.F.; Petrushin, V.I.

    1983-01-01

    The results of measurements of P-odd helicity dependence of the total cross-section a=(σsub(tot)sup(+)-σsub(tot)sup(-))/(σsub(tot)sup(+)+σsub(tot)sup(-)) for thermal neutrons on several targets are presented. The result for 117 Sn is a=(11.2+-2.6)x10 -6 . The upper limits for a in the region of several units of 10 -6 are obtained for 232 Th, 239 Pu, Cl (natural) and Pb (natural)

  5. The study of low-temperature austenite decomposition in a Fe-C-Mn-Si steel using the neutron Bragg edge transmission technique

    International Nuclear Information System (INIS)

    Huang, J.; Vogel, S.C.; Poole, W.J.; Militzer, M.; Jacques, P.

    2007-01-01

    A new technique based on the study of the transmitted neutron beam has been developed to study the low-temperature decomposition of austenite in a 0.4 wt.% C-3 wt.% Mn-2 wt.% Si steel. Experiments were conducted in which the neutron beam continuously passed through a specially designed layered sample, the temperature of which could be controlled to allow for a high-temperature austenization treatment followed by accelerated cooling to an isothermal transformation temperature in the range of 275-450 deg. C. It was possible to measure the volume fraction of the face-centred cubic (fcc) and body-centred cubic (bcc) phases and the carbon concentration of the fcc phase by characterizing the neutron Bragg edges in the transmitted beam. This provides a technique for in situ continuous measurements on the decomposition of austentite. The technique has been validated by comparing the data with other experimental techniques such as dilatometry, quantitative optical metallography and room temperature X-ray diffraction

  6. Digital setup for Doppler broadening spectroscopy

    International Nuclear Information System (INIS)

    Cizek, J; Vlcek, M; Prochazka, I

    2011-01-01

    New digital spectrometer for measurement of the Doppler shift of annihilation photons was developed and tested in this work. Digital spectrometer uses a fast 12-bit digitizer for direct sampling of signals from HPGe detectors. Analysis of sampled waveforms is performed off-line in software. Performance of the new digital setup was compared with its traditional analogue counterpart. Superior energy resolution was achieved in the digital setup. Moreover, the digital setup allows for a better control of the shape of detector signals. This enables to eliminate undesired signals damaged by pile-up effects or by ballistic deficit.

  7. Neutron polarisers for diffraction experiments

    International Nuclear Information System (INIS)

    Cussen, L.D.; Goossens, D.J.; Hicks, T.J.

    2000-01-01

    Full text: Every neutron in a neutron beam has a spin which is either up or down. In an unpolarised beam, half the neutrons are up and half are down. A neutron polariser is a device which creates an imbalance in the number of up and down spin neutrons in the beam, thus giving a net beam polarisation. The three most common techniques for polarising neutron beams are supermirrors, Heusler alloy polarising monochromators and neutron spin filters. Supermirrors use the difference in refractive index for up and down spin neutrons at a magnetic/non-magnetic interface to selectively remove neutrons of one spin state from the beam. Heusler alloy polarisers give polarised beams through spin dependent Bragg reflection, and transmission filters work by preferentially absorbing the neutrons in one spin state. The most promising filter material is polarised gaseous 3 He, in which the lone neutron is polarised and then the atom will preferentially absorb a neutron of the opposite spin. All three techniques have different advantages. Here, we compare the three techniques by generating quality factors which relate closely to an instruments performance in an experiment and determining which polariser will give the best quality factor for a given type of experiment. We find that supermirrors give the best results when narrow angular divergence of the neutron beam is desired, while filters are best when short wavelengths and wide angular divergence is required. For a powder diffractometer, this implies that a supermirror would be used to polarise the incident beam, while a large array of supermirrors or a single curved transmission filter could be used to analyse the polarisation of the diffracted intensity. We note that while Heusler alloys have advantages in that they combine polarisation with monochromation, on purely performance based criteria, they are not competitive with supermirrors or well-developed transmission filter technology

  8. T violating neutron spin rotation asymmetry

    International Nuclear Information System (INIS)

    Masuda, Yasushiro.

    1993-01-01

    A new experiment on T-violation is proposed, where a spin-rotating-neutron transmission through a polarized nuclear target is measuered. The method to control the neutron spin is discussed for the new T-violation experiment. The present method has possibility to provide us more accurate T-violation information than the neutron EDM measurement

  9. High-pressure cell for neutron reflectometry of supercritical and subcritical fluids at solid interfaces.

    Science.gov (United States)

    Carmichael, Justin R; Rother, Gernot; Browning, James F; Ankner, John F; Banuelos, Jose L; Anovitz, Lawrence M; Wesolowski, David J; Cole, David R

    2012-04-01

    A new high-pressure cell design for use in neutron reflectometry (NR) for pressures up to 50 MPa and a temperature range of 300-473 K is described. The cell design guides the neutron beam through the working crystal without passing through additional windows or the bulk fluid, which provides for a high neutron transmission, low scattering background, and low beam distortion. The o-ring seal is suitable for a wide range of subcritical and supercritical fluids and ensures high chemical and pressure stability. Wafers with a diameter of 5.08 cm (2 in.) and 5 mm or 10 mm thickness can be used with the cells, depending on the required pressure and momentum transfer range. The fluid volume in the sample cell is very small at about 0.1 ml, which minimizes scattering background and stored energy. The cell design and pressure setup for measurements with supercritical fluids are described. NR data are shown for silicon/silicon oxide and quartz wafers measured against air and subsequently within the high-pressure cell to demonstrate the neutron characteristics of the high-pressure cell. Neutron reflectivity data for supercritical CO(2) in contact with quartz and Si/SiO(2) wafers are also shown. © 2012 American Institute of Physics

  10. A setup for active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2006-01-01

    A setup for active fault diagnosis (AFD) of parametric faults in dynamic systems is formulated in this paper. It is shown that it is possible to use the same setup for both open loop systems, closed loop systems based on a nominal feedback controller as well as for closed loop systems based...... on a reconfigured feedback controller. This will make the proposed AFD approach very useful in connection with fault tolerant control (FTC). The setup will make it possible to let the fault diagnosis part of the fault tolerant controller remain unchanged after a change in the feedback controller. The setup for AFD...... is based on the YJBK (after Youla, Jabr, Bongiorno and Kucera) parameterization of all stabilizing feedback controllers and the dual YJBK parameterization. It is shown that the AFD is based directly on the dual YJBK transfer function matrix. This matrix will be named the fault signature matrix when...

  11. Experimental Setups for Single Event Effect Studies

    OpenAIRE

    N. H. Medina; V. A. P. Aguiar; N. Added; F. Aguirre; E. L. A. Macchione; S. G. Alberton; M. A. G. Silveira; J. Benfica; F. Vargas; B. Porcher

    2016-01-01

    Experimental setups are being prepared to test and to qualify electronic devices regarding their tolerance to Single Event Effect (SEE). A multiple test setup and a new beam line developed especially for SEE studies at the São Paulo 8 UD Pelletron accelerator were prepared. This accelerator produces proton beams and heavy ion beams up to 107Ag. A Super conducting Linear accelerator, which is under construction, may fulfill all of the European Space Agency requirements to qualify electronic...

  12. Influence of the neutron transport tube on neutron resonance densitometry

    Directory of Open Access Journals (Sweden)

    Kitatani Fumito

    2017-01-01

    Full Text Available Neutron Resonance Densitometry (NRD is a non-destructive assay technique of nuclear materials in particle-like debris that contains various materials. An aim of NRD is to quantify nuclear materials in a melting fuel of Fukusima Daiichi plant, spent nuclear fuel and annihilation disposal fuel etc. NRD consists of two techniques of Neutron Resonance Transmission Analysis (NRTA and Neutron Resonance Capture Analysis (NRCA or Prompt Gamma-ray Analysis (PGA. A density of nuclear material isotopes is decided with NRTA. The materials absorbing a neutron in a wide energy range such as boron in a sample are identified by NRCA/PGA. The information of NRCA/PGA is used in NRTA analysis to quantify nuclear material isotopes. A neutron time of flight (TOF method is used in NRD measurements. A facility, consisting of a neutron source, a neutron flight path, and a detector is required. A short flight path and a strong neutron source are needed to downsize such a facility and put NRD into practical use. A neutron transport tube covers a flight path to prevent noises. In order to investigate the effect of neutron transport tube and pulse width of a neutron source, we carried out NRTA experiments with a 2-m short neutron transport tube constructed at Kyoto University Research Reactor Institute - Linear Accelerator (KURRI-LINAC, and impacts of shield of neutron transport tube and influence of pulse width of a neutron source were examined. A shield of the neutron transport tube reduced a background and had a good influence on the measurement. The resonance dips of 183W at 27 eV was successfully observed with a pulse width of a neutron source less than 2 μs.

  13. Influence of the neutron transport tube on neutron resonance densitometry

    Science.gov (United States)

    Kitatani, Fumito; Tsuchiya, Harufumi; Koizumi, Mitsuo; Takamine, Jun; Hori, Junichi; Sano, Tadafumi

    2017-09-01

    Neutron Resonance Densitometry (NRD) is a non-destructive assay technique of nuclear materials in particle-like debris that contains various materials. An aim of NRD is to quantify nuclear materials in a melting fuel of Fukusima Daiichi plant, spent nuclear fuel and annihilation disposal fuel etc. NRD consists of two techniques of Neutron Resonance Transmission Analysis (NRTA) and Neutron Resonance Capture Analysis (NRCA) or Prompt Gamma-ray Analysis (PGA). A density of nuclear material isotopes is decided with NRTA. The materials absorbing a neutron in a wide energy range such as boron in a sample are identified by NRCA/PGA. The information of NRCA/PGA is used in NRTA analysis to quantify nuclear material isotopes. A neutron time of flight (TOF) method is used in NRD measurements. A facility, consisting of a neutron source, a neutron flight path, and a detector is required. A short flight path and a strong neutron source are needed to downsize such a facility and put NRD into practical use. A neutron transport tube covers a flight path to prevent noises. In order to investigate the effect of neutron transport tube and pulse width of a neutron source, we carried out NRTA experiments with a 2-m short neutron transport tube constructed at Kyoto University Research Reactor Institute - Linear Accelerator (KURRI-LINAC), and impacts of shield of neutron transport tube and influence of pulse width of a neutron source were examined. A shield of the neutron transport tube reduced a background and had a good influence on the measurement. The resonance dips of 183W at 27 eV was successfully observed with a pulse width of a neutron source less than 2 μs.

  14. A simple activation set-up for a determination of pollutants

    International Nuclear Information System (INIS)

    Kshira Sagar, T.V.S.R.

    1991-01-01

    An attempt has been made to determine the pollutants using instrumental neutron activation analysis (INAA) with the facilities available in the Swamy Jnanananda Laboratories for Nuclear Research, Andhra University. The simple activation set-up improved by the author consists a 500 mc (Ra-Be) neutron source for irradiation and a summing scintillation spectrometer with a 4π arrangement for counting. The sensitivity for detection is further enhanced by using a specially fabricated cast-iron shielding. (author). 4 figs., 2 tabs., 11 refs

  15. Measurements of angular and energy distributions of prompt neutrons from thermal neutron-induced fission

    Science.gov (United States)

    Vorobyev, A. S.; Shcherbakov, O. A.; Pleva, Yu. S.; Gagarski, A. M.; Val'ski, G. V.; Petrov, G. A.; Petrova, V. I.; Zavarukhina, T. A.

    2009-01-01

    The experimental setup and methodology used to measure prompt neutron angular and energy distributions from thermal neutron-induced fission are described. The neutrons are detected using two scintillation detectors, while the fission fragments are detected by multi-wire proportional detectors in conjunction with the TOF technique. To separate events corresponding to neutrons and γ-quanta, a double discrimination by the pulse shape and the time-of-flight is applied. Some preliminary results of an experiment performed with the 235U target are presented and briefly discussed. The yield of "scission" neutrons has been estimated in the framework of a simple evaporation model and was found not to exceed 5% of the total neutron yield. Including an assumed of anisotropy of the fission neutron angular distribution in the center-of-mass system of fission fragments into the model calculation leads to an increase in the "scission" neutron yields inferred from the data.

  16. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.sa [Department of Physics and King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Matouq, Faris A.; Khiari, F.Z.; Gondal, M.A.; Rehman, Khateeb-ur [Department of Physics and King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Isab, A.A. [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Raashid, M.; Dastageer, M.A. [Department of Physics and King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2013-11-21

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53–3.68, 4.51, 5.27–5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples.

  17. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    Science.gov (United States)

    Naqvi, A. A.; Al-Matouq, Faris A.; Khiari, F. Z.; Gondal, M. A.; Rehman, Khateeb-ur; Isab, A. A.; Raashid, M.; Dastageer, M. A.

    2013-11-01

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53-3.68, 4.51, 5.27-5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples.

  18. Biosensor based on the measurements of clustering dynamics of magnetic particles using a double pass setup

    DEFF Research Database (Denmark)

    2014-01-01

    Disclosed herein is a biosensor for optical detection of Brownian relaxation dynamics of magnetic particles measured by light transmission. The magnetic particles can be functionalized with biological ligands for the detection of target analytes in a sample. The setup may be implemented in a disc...

  19. Mathematical Model of the Electronuclear Set-Up on the Beam of the JINR Synchrotron

    CERN Document Server

    Barashenkov, V S; Kumawat, H; Lobanova, V A

    2004-01-01

    On the base of the Monte Carlo code CASCADE, developed at JINR, a mathematical model of the deep-subcritical set-up with uranium blanket used in experiments underway at JINR using a 0.6-4 GeV proton beam, is created. The neutron spectra, yields and energies of generated particles are calculated and compared for several modifications of the set-up. The influence of paraffin and graphite moderators on the characteristics of particles escaping lead target is studied. The modelled set-up can be considered as a first step to experiments with the designed at JINR U-Pu ADS SAD with heat power of several tens of kW.

  20. Neutron supermirrors and application to neutron guides

    International Nuclear Information System (INIS)

    Ballot, B.; Samuel, F.; Farnoux, B.

    1994-01-01

    Metallic multilayers are now commonly used in many neutron optics devices like supermirrors. Supermirrors are made of stacks of aperiodic bilayers, and present a reflection coefficient close to one for angles much larger than the critical angle of nickel. We show here the results of investigation of neutron reflectometry of such supermirrors. They have been prepared by magnetron sputtering and are made of 25 layers of NiC and Ti, thicknesses of which were determined using the Hayter's algorithm [1]. This enables us to obtain on large surfaces 5x50 cm 2 , an effective critical angle of 1.9 times the critical angle of natural nickel. These supermirrors have been used in the construction of a new neutron guide on the ORPHEE reactor in the Leon Brillouin Laboratory of Saclay. The use of supermirrors enables us to enhance the transmission of the short wavelength by the guide, and so to increase the transmitted flux. ((orig.))

  1. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer.

    Science.gov (United States)

    Maglieri, Robert; Licea, Angel; Evans, Michael; Seuntjens, Jan; Kildea, John

    2015-11-01

    Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation-maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors' measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. The NNS may be used to reliably measure the neutron

  2. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Maglieri, Robert, E-mail: robert.maglieri@mail.mcgill.ca; Evans, Michael; Seuntjens, Jan; Kildea, John [Medical Physics Unit, McGill University, Montreal, Quebec H4A 3J1 (Canada); Licea, Angel [Canadian Nuclear Safety Commission, Ottawa, Ontario K1P 5S9 (Canada)

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  3. Commissioning of the BRIKEN beta-delayed neutron detector for the study of exotic neutron-rich nuclei

    Directory of Open Access Journals (Sweden)

    Tolosa-Delgado A.

    2017-01-01

    Full Text Available The commissioning of a new setup for β-delayed neutron measurements was carried out successfully in November-2016, at the RIKEN Nishina Center in Japan. The β-decay half-lives and Pn branching ratios of several isotopes in the 78Ni region were measured. Details of the experimental setup and the first results are given.

  4. Optymisation of equipment setup processes in enterprises

    Directory of Open Access Journals (Sweden)

    K. Grzybowska

    2012-10-01

    Full Text Available Fast equipment setup in a machine on production line is the key precondition to increase the fl exibility of the production. Methodology of SMED (Single Minute Exchange of Die is an example which allows reducing the time of setup practically to the minimum. The article presents the theoretical bases and required rules as well as case study conducted in one of chosen enterprises. This paper also answers the question if SMED methodology is applicable in metallurgical sector, presenting the example of shortening the time between the production of various metallurgical products manufactured in the machine for continuous casting of steel (COS in Polish.

  5. Braneworld setup and embedding in teleparallel gravity

    Directory of Open Access Journals (Sweden)

    A. Behboodi

    2015-01-01

    Full Text Available We construct the setup of a five-dimensional braneworld scenario in teleparallel gravity. Both cases of Minkowski and Friedmann–Robertson–Walker branes embedded in anti-de Sitter bulk are studied and the effective 4D action were studied. 4-dimensional local Lorentz invariance is found to be recovered in both cases. However, due to different junction conditions, the equations governing the 4D cosmological evolution differ from general relativistic case. Using the results of Ref. [13], we consider a simple inflationary scenario in this setup. The inflation parameters are found to be modified compared to general relativistic case.

  6. Improvement of neutron collimator design for thermal neutron radiography using Monte Carlo N-particle transport code version 5

    International Nuclear Information System (INIS)

    Thiagu Supramaniam

    2007-01-01

    The aim of this research was to propose a new neutron collimator design for thermal neutron radiography facility using tangential beam port of PUSPATI TRIGA Mark II reactor, Malaysia Institute of Nuclear Technology Research (MINT). Best geometry and materials for neutron collimator were chosen in order to obtain a uniform beam with maximum thermal neutron flux, high L/ D ratio, high neutron to gamma ratio and low beam divergence with high resolution. Monte Carlo N-particle Transport Code version 5 (MCNP 5) was used to optimize six neutron collimator components such as beam port medium, neutron scatterer, neutron moderator, gamma filter, aperture and collimator wall. The reactor and tangential beam port setup in MCNP5 was plotted according to its actual sizes. A homogeneous reactor core was assumed and population control method of variance reduction technique was applied by using cell importance. The comparison between experimental results and simulated results of the thermal neutron flux measurement of the bare tangential beam port, shows that both graph obtained had similar pattern. This directly suggests the reliability of MCNP5 in order to obtained optimal neutron collimator parameters. The simulated results of the optimal neutron medium, shows that vacuum was the best medium to transport neutrons followed by helium gas and air. The optimized aperture component was boral with 3 cm thickness. The optimal aperture center hole diameter was 2 cm which produces 88 L/ D ratio. Simulation also shows that graphite neutron scatterer improves thermal neutron flux while reducing fast neutron flux. Neutron moderator was used to moderate fast and epithermal neutrons in the beam port. Paraffin wax with 90 cm thick was bound to be the best neutron moderator material which produces the highest thermal neutron flux at the image plane. Cylindrical shape high density polyethylene neutron collimator produces the highest thermal neutron flux at the image plane rather than divergent

  7. A new PGAI-NT setup at the NIPS facility of the Budapest Research Reactor

    International Nuclear Information System (INIS)

    Belgya, T.; Kis, Z.; Szentmiklosi, L.; Kasztovszky, Zs.; Kudejova, P.; Schulze, R.; Materna, T.

    2008-01-01

    Prompt gamma activation analysis (PGAA) is a well known tool for non-destructive bulk elemental analysis of objects. The measured concentrations are only representative of the whole sample if it is homogenous; otherwise it provides only a sort of average composition of the irradiated part. In this latter case one has to scan the sample to obtain the spatial distribution of the elements. To test this idea we have constructed a prompt gamma activation imaging - neutron tomograph (PGAI-NT) setup at the NIPS station of the Budapest Research Reactor, consisting of a high-resolution neutron tomograph and a germanium gamma-spectrometer. The samples are positioned relative to the intersection of the collimated neutron beam and the projection of the gamma-collimator (isocenter) by using an xyzω-moving table. (author)

  8. Performance of velocity vector estimation using an improved dynamic beamforming setup

    DEFF Research Database (Denmark)

    Munk, Peter; Jensen, Jørgen Arendt

    2001-01-01

    control of the acoustic field, based on the Pulsed Plane Wave Decomposition (PPWD), is presented. The PPWD gives an unambigious relation between a given acoustic field and the time functions needed on an array transducer for transmission. Applying this method for the receive beamformation results in a set......-up of the beamformer with different filters for each channel for each estimation depth. The method of the PPWD is illustrated by analytical expressions of the decomposed acoustic field and these results are used for simulation. Results of velocity estimates using the new setup are given on the basis of simulated...

  9. ASD FieldSpec Calibration Setup and Techniques

    Science.gov (United States)

    Olive, Dan

    2001-01-01

    This paper describes the Analytical Spectral Devices (ASD) Fieldspec Calibration Setup and Techniques. The topics include: 1) ASD Fieldspec FR Spectroradiometer; 2) Components of Calibration; 3) Equipment list; 4) Spectral Setup; 5) Spectral Calibration; 6) Radiometric and Linearity Setup; 7) Radiometric setup; 8) Datadets Required; 9) Data files; and 10) Field of View Measurement. This paper is in viewgraph form.

  10. The neutron-deuteron elastic scattering angular distribution at 95 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Mermod, Philippe

    2004-04-01

    The neutron-deuteron elastic scattering differential cross section has been measured at 95 MeV incident neutron energy, with the Medley setup at TSL in Uppsala. The neutron-proton differential cross section has also been measured for normalization purposes. The data are compared with theoretical calculations to investigate the role of three-nucleon force effects.

  11. Quality assessment of neutron delivery system for small-angle neutron scattering diffractometers of the Jülich Centre for Neutron Science at the FRM II

    International Nuclear Information System (INIS)

    Radulescu, Aurel; Pipich, Vitaliy; Ioffe, Alexander

    2012-01-01

    Following the shutdown of FRJ-2 research reactor in Jülich, the pinhole small-angle neutron diffractometers KWS-1 and KWS-2 have been moved to the research reactor FRM II in Garching. The installation of these 40 m long instruments required the design and setup of new neutron guides with geometrical and optical features imposed by the instruments' positioning in the neutron guide hall, such as, the predetermined length and beam height as well as the foreseen improvement of the instrument performance. We report here about the quality assessment of the newly constructed neutron guides with respect to the optical, geometrical and alignment characteristics and the positioning of the velocity selector integrated in the neutron guide system by comparing the features of the measured neutron beams (in terms of neutron flux, intensity distribution and beam profile) with the results of the simulations of optimal neutron guide systems.

  12. Analysis of Neutron Flux Using Monte Carlo Methods

    International Nuclear Information System (INIS)

    Picha, Roppon

    2007-08-01

    Full text: The energy profile of neutrons from a fission reactor core and a neutron irradiation setup are simulated. The neutron doses deposited inside casings of aluminum, cadmium, and tantalum are studied via MCNP simulations to estimate the doses received by materials with different types of shielding. It is found that the difference in dose reduction between cadmium and tantalum is most pronounced at the thermal energy region

  13. Modulation spectrometry of neutrons with diffractometry applications

    CERN Document Server

    Hiismäki, Pekka

    1997-01-01

    Modulation spectrometry of neutrons refers to a measuring principle, characterized by classification of neutron histories in a probabilistic way, not the usual deterministic way. In order to accomplish this, neutron beams entering the sample are modulated by high-transmission, white-beam selectors of the multislit type, such as Fourier or statistical choppers or high-frequency-modulated spin-flippers. In this scheme it is impossible to decide in a unique way through which particular slit any single neutron passed, but the distribution of histories for a large population of neutrons can neverth

  14. Performance of an elliptically tapered neutron guide

    International Nuclear Information System (INIS)

    Muehlbauer, Sebastian; Stadlbauer, Martin; Boeni, Peter; Schanzer, Christan; Stahn, Jochen; Filges, Uwe

    2006-01-01

    Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics

  15. New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis.

    Science.gov (United States)

    Marchese, N; Cannuli, A; Caccamo, M T; Pace, C

    2017-01-01

    Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Aligning the μs-ALEX Setup.

    Science.gov (United States)

    Kapanidis, Achillefs; Majumdar, Devdoot; Heilemann, Mike; Nir, Eyal; Weiss, Shimon

    2015-11-02

    To achieve single-molecule sensitivity and thus have the ability to detect single diffusing fluorophores, careful alignment of the microsecond-alternating laser excitation (μs-Alex) setup is crucial. The following protocol describes routine alignment for 2c-ALEX (532 nm/635 nm) with spectral windows G(550-620)R(650-750). © 2015 Cold Spring Harbor Laboratory Press.

  17. Measurements of operator performance - an experimental setup

    International Nuclear Information System (INIS)

    Netland, K.

    1980-01-01

    The human has to be considered as an important element in a process control system, even if the degree of automation is extremely high. Other elements, e.g. computer, displays, etc., can to a large extent be described and quantified. The human (operator), is difficult to describe in a precise way, and it is just as difficult to predict his thinking and acting in a control room environment. Many factors influence his performance, such as: experience, motivation, level of knowledge, training, control environment, job organization, etc. These factors have to a certain degree to be described before guidelines for design of the man-process interfaces and the control room layout can be developed. For decades, the psychological science has obtained knowledge of the human mind and behaviour. This knowledge should have the potential of a positive input on our effort to describe the factors influencing the operator performance. Even if the human is complex, a better understanding of his thinking and acting, and a more precise description of the factors influencing his performance can be obtained. At OECD Halden Reactor Project an experimental set-up for such studies has been developed and implemented in the computer laboratory. The present set-up includes elements as a computer- and display-based control room, a simulator representing a nuclear power plant, training programme for the subjects, and methods for the experiments. Set-up modules allow reconfiguration of experiments. (orig./HP)

  18. The spectral imaging facility: Setup characterization

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, Simone, E-mail: simone.deangelis@iaps.inaf.it; De Sanctis, Maria Cristina; Manzari, Paola Olga [Institute for Space Astrophysics and Planetology, INAF-IAPS, Via Fosso del Cavaliere, 100, 00133 Rome (Italy); Ammannito, Eleonora [Institute for Space Astrophysics and Planetology, INAF-IAPS, Via Fosso del Cavaliere, 100, 00133 Rome (Italy); Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, Los Angeles, California 90095-1567 (United States); Di Iorio, Tatiana [ENEA, UTMEA-TER, Rome (Italy); Liberati, Fabrizio [Opto Service SrL, Campagnano di Roma (RM) (Italy); Tarchi, Fabio; Dami, Michele; Olivieri, Monica; Pompei, Carlo [Selex ES, Campi Bisenzio (Italy); Mugnuolo, Raffaele [Italian Space Agency, ASI, Spatial Geodesy Center, Matera (Italy)

    2015-09-15

    The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratory in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated.

  19. A compact multi-chamber setup for degradation and lifetime studies of organic solar cells

    DEFF Research Database (Denmark)

    Gevorgyan, Suren; Jørgensen, Mikkel; Krebs, Frederik C

    2011-01-01

    A controlled atmosphere setup designed for long-term degradation studies of organic solar cells under illumination is presented. The setup was designed with ease-of-use and compactness in mind and allows for multiple solar cells distributed on four glass substrates to be studied in four different...... chambers with temperature and atmosphere control. The four chambers are situated at close proximity in the setup thereby allowing the solar cells to be subjected to as uniform an illumination distribution as possible for the given solar simulator employed. The cell substrates serve as the front window...... and present a tight seal. Hence no illumination correction needs to be performed due to transmission and reflection losses as otherwise seen with test chambers employing a window as a seal. The solar cells in each chamber are continuously and individually electrically monitored under biased conditions...

  20. Neutron guide

    Science.gov (United States)

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  1. Delayed neutron measurements for 232Th neutron-induced fission

    Science.gov (United States)

    Ledoux, X.; Doré, D.; Mosconi, M.; Nolte, R.; Roettger, S.

    2010-10-01

    Delayed neutrons (DN) play an important role in nuclear reactor physics. Innovative critical reactor studies bring to light the need of new DN yields data. For the Th fuel cycle, according to the OECD recommendation, DN of the 232Th is needed with an accuracy of 5%. In the literature, significant discrepancies were observed for energies below 4 MeV and data are dispersed around 14 MeV. Therefore, a programme has been undertaken by CEA in order to measure DN yields from 232Th with incident neutron energies from 2 to 16 MeV. In this paper, the experimental setup will be described and preliminary results obtained at the PTB Ion Accelerator Facility of Braunschweig for incident neutron beam energies of 2, 3, 4, 6, 7, 10 and 16 MeV will be presented.

  2. Engineering Electrochemical Setups for Electron Microscopy of Liquid Processes

    DEFF Research Database (Denmark)

    Jensen, Eric; Burrows, Andrew

    This work focuses on creating tools for imaging liquid samples at atmospheric pressure and room temperature in two different electron microscopes; the scanning electron microscope (SEM) and the transmission electron microscope (TEM). The main focus of the project was the fabrication of the two sy......-SEM cell. In TEM, holography of graphene multi-layer sheets has been performed and the phase change per sheet has been determined as a step towards in-situ holography of liquid through graphene.......-transparent window and built-in electrodes was placed above a reservoir, sealing off the liquid from the vacuum, but allowing imaging through the window in the chip. In-situ electrochemical experiments have been performed with this setup: imaging the electron beam (e-beam) deposition of nickel on the window......This work focuses on creating tools for imaging liquid samples at atmospheric pressure and room temperature in two different electron microscopes; the scanning electron microscope (SEM) and the transmission electron microscope (TEM). The main focus of the project was the fabrication of the two...

  3. NECTAR-A fission neutron radiography and tomography facility

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T., E-mail: thomas.buecherl@radiochemie.de [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie (RCM), Walther-Meissner-Str. 3, 85748 Garching (Germany); Lierse von Gostomski, Ch. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie (RCM), Walther-Meissner-Str. 3, 85748 Garching (Germany); Breitkreutz, H.; Jungwirth, M.; Wagner, F.M. [Technische Universitaet Muenchen, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) (Germany)

    2011-09-21

    NECTAR (Neutron Computerized Tomography and Radiography) is a versatile facility for radiographic and tomographic investigations as well as for neutron activation experiments using fission neutrons. The radiation sources for this facility are two plates of highly enriched uranium situated in the moderator vessel in FRM II. Thermal neutrons originating from the main fuel element of the reactor generate in these plates fast neutrons. These can escape through a horizontal beam tube without moderation. The beam can be filtered and manipulated in order to reduce the accompanying gamma radiation and to match the specific experimental tasks. A summary of the main parameters required for experimental set-up and (quantitative) data evaluation is presented. The (measured) spectra of the neutron and gamma radiations are shown along with the effect of different filters on their behavior. The neutron and gamma fluxes, dose rates, L/D-ratios, etc. and the main parameters of the actually used detection systems for neutron imaging are given, too.

  4. Inelastic neutron scattering facilities at the Budapest Neutron Center

    Energy Technology Data Exchange (ETDEWEB)

    Toeroek, Gy.; Nagy, A. [Research Institute for Solid State Physics and Optics, P.O.B.49, 1525 Budapest (Hungary); Lebedev, V.T.; Gordeev, G.P. [Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Zsigmond, G. [Hahn Meitner Institute, Glienicker str 100, 14109 Berlin (Germany)

    2004-11-01

    Two Triple Axis spectrometers are commissioned now at the Budapest Neutron Center. The Thermal Triple Axis Spectrometer (TAST) is installed on the 8-th beam (60 mm diameter) and supplied with a 120 mm-long sapphire crystal placed inside the channel (2 m far from monochromator) to filter fast neutrons. The Eulerian cradle can be placed at the sample position to carry out holographic measurements. Otherwise a normal goniometer (carrying up to 100 kg weight for orientation, e.g. Cryostat/magnet/heavy sample) is used. This spectrometer's resolution was modeled by VITESS program package. The second (cold) neutron spectrometer (ATHOS) on a curved (4200 m) neutron guide is mounted at the 19 m-position from the cold source. The neutron guide 1.5{theta}{sub c}, made of boron glass, is coated with NiTi multilayer. This instrument, developed into the RITA-type spectrometer, is supplied with a 190 x 190 mm{sup 2} position sensitive detector and a polarization option (stacked polarizer). In addition it has the optional COMPACT Neutron Spin Echo setup, based on Larmor precession, for energy analysis with the resolution of 10 {mu}eV. The test measurements are presented. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. The neutron reflectometer at `SINQ`

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, D. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    SINQ`s dedicated reflectometer will be a flexible instrument in many respect. A `white beam time of flight` as well as a `constant wavelength` setup are possible for reflectometric experiments in a vertical scattering geometry. The phase controlled double chopper at the beginning of the instrument together with properly chosen time channels at the detector allow for the variation of the temporal resolution. Collimation slits serve to determine the angular resolution. In combination, the resolution can be tailored to the experimental needs. Additionally, one can adjust the illumination of the sample by setting the sample table and the detector to an appropriate distance. A mounting for exchangeable mirrors can be used to supply polarized neutrons by a multilayer polarizer or monochromatic neutrons by a multilayer monochromator. When it is equipped with a supermirror as a deflecting unit one can maintain a horizontal sample position which makes reflectometry on liquid samples practicable. Remanent polarizers are assigned for the changing over of the neutron polarization. A 1 T electromagnet installed on the sample manipulation table and polarization analyzers complete the polarized reflectometry setup. Alternately, an x-y-detector and single detectors will be available. By 1997/1998 the neutron reflectometer will be operational as a users` instrument. (author) 9 figs., 2 tabs., 30 refs.

  6. Diffraction in neutron imaging-A review

    Science.gov (United States)

    Woracek, Robin; Santisteban, Javier; Fedrigo, Anna; Strobl, Markus

    2018-01-01

    Neutron imaging is a highly successful experimental technique ever since adequate neutron sources were available. In general, neutron imaging is performed with a wide wavelength spectrum for best flux conditions in transmission geometry. Neutrons provide outstanding features in the penetration of many structural materials, which often makes them more suited for bulk sample studies than other forms of radiation, often in particular as they are also highly sensitive to some light elements, especially Hydrogen. In contrast to neutron scattering applications, imaging resolves macroscopic structures, nowadays down to, in the best case, below 10 micrometre, directly in real space. However, since more than a decade there is a growing number of techniques and applications in neutron imaging that - supported by powerful neutron sources - are taking advantage of wavelength resolved measurements. In this review we summarize and discuss this outstanding development and how wavelength resolved transmission neutron imaging is successfully exploiting diffraction mechanisms to access crystal structure information in the Angstrom regime, which conventionally is probed in reciprocal space by diffraction techniques. In particular the combination of information gained in real space and on crystallographic length scales makes this neutron imaging technique a valuable tool for a wide range of new applications, while it also qualifies neutron imaging to fully profit from the new generation of powerful pulsed neutron sources.

  7. Automated Transmission Loss Measurement in the Structural Acoustic Loads and Transmission Facility at NASA Langley Research Center

    Science.gov (United States)

    Klos, J.; Brown, S. A.

    2002-01-01

    A technique to measure the radiated acoustic intensity and transmission loss of panels is documented in this paper. This facility has been upgraded to include a test fixture that scans the acoustic intensity radiated from a panel on the anechoic receiving room side of the transmission loss window. The acoustic intensity incident on the panel from the reverberant side of the transmission loss window is estimated from measurements made using six stationary microphones in the reverberant source room. From the measured incident and radiated intensity, the sound power transmission loss is calculated. The setup of the facility and data acquisition system are documented. A transmission loss estimate of a typical panel is shown. The measurement-to-measurement and setup-to-setup repeatability of the transmission loss estimate are assessed. Conclusions are drawn about the ability to measure changes in transmission loss due to changes in panel construction.

  8. Neutron physics

    CERN Document Server

    Reuss, Paul

    2008-01-01

    Originally just an offshoot of nuclear physics, neutron physics soon became a branch of physics in its own right. It deals with the movement of neutrons in nuclear reactors and ail the nuclear reactions they trigger there, particularly the fission of heavy nuclei which starts a chain reaction to produce energy. Neutron Physics covers the whole range of knowledge of this complex science, discussing the basics of neutron physics and some principles of neutron physics calculations. Because neutron physics is the essential part of reactor physics, it is the main subject taught to students of Nuclear Engineering. This book takes an instructional approach for that purpose. Neutron Physics is also intended for ail physicists and engineers involved in development or operational aspects of nuclear power.

  9. Note: Coincidence measurements of 3He and neutrons from a compact D-D neutron generator.

    Science.gov (United States)

    Ji, Q; Lin, C-J; Tindall, C; Garcia-Sciveres, M; Schenkel, T; Ludewigt, B A

    2017-05-01

    Tagging of neutrons (2.45 MeV) with their associated 3 He particles from deuterium-deuterium (D-D) fusion reactions has been demonstrated in a compact neutron generator setup enabled by a high brightness, microwave-driven ion source with a high fraction of deuterons. Energy spectra with well separated peaks of the D-D fusion reaction products, 3 He, tritons, and protons, were measured with a silicon PIN diode. The neutrons were detected using a liquid scintillator detector with pulse shape discrimination. By correlating the 3 He detection events with the neutron detection in time, we demonstrated the tagging of emitted neutrons with 3 He particles detected with a Si PIN diode detector mounted inside the neutron generator vacuum vessel.

  10. Note: Coincidence measurements of 3He and neutrons from a compact D-D neutron generator

    Science.gov (United States)

    Ji, Q.; Lin, C.-J.; Tindall, C.; Garcia-Sciveres, M.; Schenkel, T.; Ludewigt, B. A.

    2017-05-01

    Tagging of neutrons (2.45 MeV) with their associated 3He particles from deuterium-deuterium (D-D) fusion reactions has been demonstrated in a compact neutron generator setup enabled by a high brightness, microwave-driven ion source with a high fraction of deuterons. Energy spectra with well separated peaks of the D-D fusion reaction products, 3He, tritons, and protons, were measured with a silicon PIN diode. The neutrons were detected using a liquid scintillator detector with pulse shape discrimination. By correlating the 3He detection events with the neutron detection in time, we demonstrated the tagging of emitted neutrons with 3He particles detected with a Si PIN diode detector mounted inside the neutron generator vacuum vessel.

  11. Neutron forward diffraction by single crystal prisms

    International Nuclear Information System (INIS)

    Abbas, Sohrab; Wagh, Apoorva G.; Strobl, Markus; Treimer, Wolfgang

    2008-01-01

    We have derived analytic expressions for the deflection as well as transmitted fraction of monochromatic neutrons forward diffracted by a single crystal prism. In the vicinity of a Bragg reflection, the neutron deflection deviates sharply from that for an amorphous prism, exhibiting three orders of magnitude greater sensitivity to the incidence angle. We have measured the variation of neutron deflection and transmission across a Bragg reflection, for several single crystal prisms. The results agree well with theory. (author)

  12. Laboratory setup for temperature and humidity measurements

    CERN Document Server

    Eimre, Kristjan

    2015-01-01

    In active particle detectors, the temperature and humidity conditions must be under constant monitoring and control, as even small deviations from the norm cause changes to detector characteristics and result in a loss of precision. To monitor the temperature and humidity, different kinds of sensors are used, which must be calibrated beforehand to ensure their accuracy. To calibrate the large number of sensors that are needed for the particle detectors and other laboratory work, a calibration system is needed. The purpose of the current work was to develop a laboratory setup for temperature and humidity sensor measurements and calibration.

  13. Advanced Laboratory Setup for Testing Offshore Foundations

    DEFF Research Database (Denmark)

    Nielsen, Søren Dam; Ibsen, Lars Bo; Nielsen, Benjaminn Nordahl

    2016-01-01

    This paper describes a test setup for testing small-scale offshore foundations under realistic conditions of high pore-water pressure and high impact loads. The actuator, used for loading has enough capacity to apply sufficient force and displacement to achieve both drained and undrained failure...... modes for small-scale offshore foundations. Results from trial tests on two small-scale bucket foundations, subjected to transient or cyclic loading, are presented. Tests showed that cavitation limits the undrained bearing capacity. Hence, a high pore-water pressure is important for simulating offshore...

  14. Probe Selection in Multiprobe OTA Setups

    DEFF Research Database (Denmark)

    Fan, Wei; Sun, Fan; Nielsen, Jesper Ødum

    2014-01-01

    is costly, so finding ways to limit the number of probes while still reproducing the target channels accurately could make the test system both cheaper and simpler to implement. Several probe selection algorithms are presented in this paper to address this issue. The proposed techniques provide a probe...... selection framework for the channel emulation techniques published in the literature. Simulation results show that good channel emulation accuracy can be achieved with the selected subset of probes for the considered target channel models. The probe selection algorithm is further supported by measurement...... results in a practical multiprobe setup...

  15. Composite Inflation Setup and Glueball Inflation

    DEFF Research Database (Denmark)

    Bezrukov, Fedor; Channuie, Phongpichit; Jark Joergensen, Jakob

    2012-01-01

    We explore the paradigm according to which inflation is driven by a four-dimensional strongly coupled dynamics coupled non-minimally to gravity. We start by introducing the general setup, both in the metric and Palatini formulation, for generic models of composite inflation. We then analyze......-minimally to gravity. We demonstrate that it is possible to achieve successful inflation with the confining scale of the underlying Yang-Mills theory naturally of the order of the grand unified energy scale. We also argue that within the metric formulation models of composite inflation lead to a more consistent...

  16. Setup of Mössbauer spectrometers at RCPTM

    Science.gov (United States)

    Pechoušek, J.; Jančík, D.; Frydrych, J.; Navařík, J.; Novák, P.

    2012-10-01

    Setup of Mössbauer spectrometers (MS) for structural, phase, and magnetic characterization of iron-or tin-containing samples is presented. This comprehensive line of 57Fe and 119Sn Mössbauer spectrometers covers transmission spectrometers (TMS) for roomtemperature (RT) measurements, temperature dependent measurements and measurements in an external magnetic field. An RT Conversion Electron/Conversion X-ray Mössbauer technique (CEMS/CXMS) is also available. The main concept of the RT MS is a table-top spectrometric bench with a control unit based on special-purpose hardware or standard PC platform. The first way offers a compact design and PC independent spectra collection system. The second setup, a PC-based system, which uses commercial devices and LabVIEW software, offers easy customization and enables advancement in spectrometer construction. The both types of control systems are able to operate special parts (velocity transducers, gamma-ray detectors) of unusual spectrometric benches. The standard velocity axis range is up to ±20 mm/s with a maximum nonlinearity of 0.1%. Applicable measuring conditions of presented TMSs cover a cryogenic temperature range from 1.5 up to 300 K and high temperature range from RT up to 1000 °C. With in-field low-temperature MS, we are able to analyze samples normally in the external magnetic fields up to 8 T (in temperature interval from 1.5 up to 300 K). In addition, special modes of measurements can be applied including backscattering gamma-ray geometry or measurement in an inert or controlled-humidity atmosphere. Technical details and construction aspects of spectrometers are presented.

  17. Cryogenic setup for trapped ion quantum computing.

    Science.gov (United States)

    Brandl, M F; van Mourik, M W; Postler, L; Nolf, A; Lakhmanskiy, K; Paiva, R R; Möller, S; Daniilidis, N; Häffner, H; Kaushal, V; Ruster, T; Warschburger, C; Kaufmann, H; Poschinger, U G; Schmidt-Kaler, F; Schindler, P; Monz, T; Blatt, R

    2016-11-01

    We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120 dB reduction of 50 Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than ±20 nm over 2 s. In addition to the cryogenic apparatus, we describe the setup required for an operation with 40 Ca + and 88 Sr + ions. The instability of the laser manipulating the optical qubits in 40 Ca + is characterized by yielding a minimum of its Allan deviation of 2.4 ⋅ 10 -15 at 0.33 s. To evaluate the performance of the apparatus, we trapped 40 Ca + ions, obtaining a heating rate of 2.14(16) phonons/s and a Gaussian decay of the Ramsey contrast with a 1/e-time of 18.2(8) ms.

  18. Contribution to construction and setup of a detection system for the focal plan of the BBS spectrometer. Application to study of the neutron emission decay of the resonant states populated by the reaction (4He,3He) at 42 MeV/u in nuclei 208Pb and 209Pb

    International Nuclear Information System (INIS)

    Plankl-Chabib, Elke

    1999-01-01

    In order to realize an experimental program dedicated to nuclear structure studies we have conceived and constructed at IPN Orsay a detection system for the focal plane of the magnetic spectrometer BBS, installed at the cryogenic cyclotron AGOR of the laboratory KVI (The Netherlands). Two detection units, consisting each of two localization plans of the Cathode Strip Chamber (CSC) type, measure the position and angle of particle trajectory. This information is used for the determination of the reaction parameters at the target by a backtracking procedure. The identification of the reaction products is done by the measurement of their time-of-flight and energy loss. For light ions this task is assumed by plastic scintillators, and for heavy ions by a parallel plan detector (PPAC) and an ionization chamber. This detection system is well adapted to the requirements given by the detection of a large range of ions (protons to 36 Ar at energies of several tenths of MeV/nucleon) as well as the big acceptance, the small dispersion and the aberration of the BBS. The results of the test show the good performances of the detection system. In a first experiment the focal plane detection system was coupled to the neutron multidetector EVEN in order to study the decay of resonant high spin states at high excitation energies by the ( 4 He, 3 He) reaction on 207 Pb and 208 Pb targets. The transfer spectra, inclusive and in coincidence, of the nuclei 208 Pb and 209 Pb show a striking resemblance except for an excitation energy shift which is due to the hole in the last neutron shell of 207 Pb. The resonances at l 8 and l = 9 are clearly populated, in agreement with the predictions of the Bonaccorso-Brink model. A sizeable fraction of the decay of the l = 8 resonance is direct, but at excitation energies higher than 15 MeV (in 208 Pb) the decay is mostly statistical. (author)

  19. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  20. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  1. Chlorine detection in fly ash concrete using a portable neutron generator.

    Science.gov (United States)

    Naqvi, A A; Kalakada, Zameer; Al-Matouq, Faris A; Maslehuddin, M; Al-Amoudi, O S B

    2012-08-01

    The chlorine concentration in chloride-contaminated FA cement concrete specimens was measured using a portable neutron generator based prompt gamma-ray neutron activation (PGNAA) setup with the neutron generator and the gamma-ray detector placed side-by-side on one side of the concrete sample. The minimum detectable concentration of chlorine in FA cement concrete measured in the present study was comparable with previous results for larger accelerator based PGNAA setup. It shows the successful application of a portable neutron generator in concrete corrosion studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The neutron

    International Nuclear Information System (INIS)

    Cheetham, A.K.

    1990-01-01

    In 1932, when Chadwick obtained the first unambiguous evidence for the existence of the neutron, his discovery confirmed the widely held belief that there existed a particle with zero charge and a mass similar to that of the proton. Indeed, as early as 1920, Lord Rutherford had suggested such a possibility in a lecture to the Royal Society. The discovery of the neutron had an immediate and dramatic impact in several areas. The nucleus, which had hitherto been regarded, somewhat unsatisfactorily, as a combination of protons and electrons, was now seen as comprising of protons and neutrons. This in turn lead to a proper understanding of the nature of isotopes and provided a fresh basis for nuclear theories. This paper examines the nature and properties of the neutron, and describes some facets of its remarkable role in contemporary science and technology. The aspects covered are its properties, the production and detection of neutrons, the reactions between neutrons and nuclei, fission reactions, neutron scattering, pulsed neutron scattering and neutron spectroscopy. (author)

  3. Atmospheric neutrons

    International Nuclear Information System (INIS)

    Preszler, A.M.; Moon, S.; White, R.S.

    1976-01-01

    Additional calibrations of the University of California double-scatter neutron and additional analysis corrections lead to the slightly changed neutron fluxes reported here. The theoretical angular distributions of Merker (1975) are in general agreement with our experimental fluxes but do not give the peaks for vertical upward and downward moving neutrons. The theoretical neutron escape current J 2 /sub pi/ (Merker, 1972; Armstrong et al., 1973) is in agreement with the experimental values from 10 to 100 MeV. Our experimental fluxes agree with those of the Kanbach et al. (1974) in the overlap region from 70 to 100 MeV

  4. Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem

    International Nuclear Information System (INIS)

    William Charlton

    2007-01-01

    Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions

  5. Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem

    Energy Technology Data Exchange (ETDEWEB)

    William Charlton

    2007-07-01

    Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions.

  6. The measurement of the fluence rate of accelerator fusion neutrons by using the associated particle method

    International Nuclear Information System (INIS)

    Wang Dalun; Li Yijun; Jiang Li

    1998-11-01

    The associated particle method is normally used to measure the fluence rate of accelerator fusion neutron. The principle, set-up and technical points are standardized. The measurement error is up to 1%∼1.5%

  7. Low energy neutron background in deep underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Best, Andreas, E-mail: andreas.best@lngs.infn.it [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Görres, Joachim [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Junker, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Kratz, Karl-Ludwig [Department for Biogeochemistry, Max-Planck-Institute for Chemistry, 55020 Mainz (Germany); Laubenstein, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Long, Alexander [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nisi, Stefano [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Smith, Karl; Wiescher, Michael [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2016-03-11

    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new large-scale experiments as well as in the analysis of experimental data. Using a portable setup of {sup 3}He counters we measured the thermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented.

  8. Study of Neutron-Unbound States with MoNA

    Science.gov (United States)

    Kuchera, A. N.; Spyrou, A.; Smith, J. K.; Baumann, T.; Christian, G.; De Young, P. A.; Finck, J. E.; Frank, N.; Jones, M. D.; Kohley, Z.; Mosby, S.; Peters, W. A.; Thoennessen, M.

    2015-06-01

    The Modular Neutron Array (MoNA) in conjunction with the large-gap Sweeper magnet at the NSCL is an effective setup to explore neutron-unbound states and has been operating for ten years. Neutron-unbound nuclei beyond the drip-line as well as neutron unbound excited states of bound nuclei have been populated primarily using proton removal reactions. A recent example, the search for 3n emission of the decay of 15Be to1 12Be, is discussed.

  9. Neutron irradiation studies of avalanche photodiodes using californium-252

    Science.gov (United States)

    Reucroft, S.; Rusack, R.; Ruuska, D.; Swain, J.

    1997-02-01

    Californium-252 is a convenient and copious source of neutrons of energies around 1 MeV, and provides many advantages over reactors for neutron irradiation studies of detector components. We describe here an experimental setup at Oak Ridge National Laboratory which has been constructed to study the performance of avalanche photodiodes in neutron fluences up to 10 13 neutrons/cm 2, similar to what is expected in parts of the CMS detector at the LHC. An irradiation study of some avalanche photodiodes is discussed, followed by a brief summary of results obtained.

  10. Experimental Setup to Characterize Bentonite Hydration Processes

    International Nuclear Information System (INIS)

    Bru, A.; Casero, D.; Pastor, J. M.

    2001-01-01

    We present an experimental setup to follow-up the hydration process of a bentonite. Clay samples, of 2 cm x 12 cm x 12 cm, were made and introduced in a Hele-Shaw cell with two PMM windows and two steel frames. In hydration experiments, a fluid enters by an orifice in the frame, located both at the top and the bottom of the cell, to perform hydration in both senses. To get a uniform hydration we place a diffuser near the orifice. Volume influxes in hydration cells are registered in time. The evolution of the developed interface was recorded on a videotape. The video cameras was fixed to a holder so that the vertical direction in the monitor was the same as the direction of the larger extension of the cell. (Author) 6 refs

  11. Experimental study of time-reversal invariance in neutron-nucleus interactions

    International Nuclear Information System (INIS)

    Shaparov, E.I.; Shimizu, H.M.

    1996-01-01

    Experimental approaches for the test of time-reversal invariance in neutron-nucleus interactions are reviewed. Possible transmission experiments with polarized neutron beams and polarized or aligned targets are discussed as well as neutron capture experiments with unpolarized resonance neutrons. 102 refs., 13 figs., 3 tabs

  12. Performances of a β-delayed neutron detection array at Peking University

    Science.gov (United States)

    Lou, Jianling; Li, Zhihuan; Ye, Yanlin; Hua, Hui; Faisal, Q. J.; Jiang, Dongxing; Li, Xiangqing; Zhang, Shuangquan; Zheng, Tao; Ge, Yucheng; Kong, Zan; Song, Yushou; Lv, Linhui; Li, Chen; Lu, Fei; Fan, Fengying; Li, Zhongyu; Cao, Zhongxin; Ma, Liying; Li, Qite; Xiao, Jun

    2009-07-01

    A β-delayed neutron detection array composed of a neutron sphere and two neutron walls was constructed in the State Key Laboratory of Nuclear Physics and Technology at Peking University. Recently the performances of this detection array were largely improved and tested with a Co60 source, cosmic rays and C16 and N17 radioactive beams. The Tyvek 1056D paper and silicone grease were chosen for the reflection and coupling materials, respectively. For the neutron sphere with large detection solid angle (30% of 4π steradian), the intrinsic efficiency is about 14.1% at a neutron energy of 1 MeV and the detection threshold is about 350 keV; for the neutron walls with flexible setup, these values are 36.5% and 200 keV, respectively. The combined array of neutron sphere and neutron walls has successfully been applied to measure the β-delayed neutrons emitted from neutron-rich unstable nuclei.

  13. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  14. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield

  15. Neutron diffraction

    International Nuclear Information System (INIS)

    Bacon, G.E.

    1983-01-01

    The paper reviews neutron diffraction work from the early studies to the present-day development of the subject. Direct structural investigations were described, including chemical applications associated with single crystal techniques, and magnetic applications identified with powder techniques. The properties of the neutron beams are discussed, as well as the use of polarised beams. (UK)

  16. Neutron holography

    International Nuclear Information System (INIS)

    Beynon, T.D.

    1986-01-01

    the paper concerns neutron holography, which allows an image to be constructed of the surfaces, as well as the interiors, of objects. The technique of neutron holography and its applications are described. Present and future use of the method is briefly outlined. (U.K.)

  17. Neutron tubes

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA; Lou, Tak Pui [Berkeley, CA; Reijonen, Jani [Oakland, CA

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  18. Neutron source

    Science.gov (United States)

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  19. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... to hundreds of nanometers. Thickness resolution for flat surfaces is in the range of few Ǻngstrøm, and as a peculiar benefit, the presence and properties of buried interfaces are accessible. Focus here will be on neutron reflectometry, a technique that is unique in applications involving composite organic...... films or films with magnetic properties. The reason is the peculiar property of neutron light since the mass of a neutron is close to the one of a proton, and since it bears a magnetic moment. The optical properties of matter, when interacting with neutrons, are described by a refractive index...

  20. Neutron source

    International Nuclear Information System (INIS)

    Cason, J.L. Jr.; Shaw, C.B.

    1975-01-01

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap

  1. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    International Nuclear Information System (INIS)

    Rich, D.R.; Bowman, J.D.; Crawford, B.E.; Delheij, P.P.J.; Espy, M.A.; Haseyama, T.; Jones, G.; Keith, C.D.; Knudson, J.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilae, S.I.; Pomeroy, V.R.; Smith, D.A.; Snow, W.M.; Szymanski, J.J.; Stephenson, S.L.; Thompson, A.K.; Yuan, V.

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3 He spin filter and a relative transmission measurement technique. 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method

  2. Self-absorption of neutron capture gamma-rays in gold samples

    International Nuclear Information System (INIS)

    Wisshak, K.; Walter, G.; Kaeppeler, F.

    1983-06-01

    The self absorption of neutron capture gamma rays in gold samples has been determined experimentally for two standard setups used in measurements of neutron capture cross sections. One makes use of an artificially collimated neutron beam and two C 6 D 6 detectors, the other of kinematically collimated neutrons and three Moxon-Rae detectors. Correction factors for an actual measurement of a neutron capture cross section using a gold standard of 1 mm thickness up to 12% were found for the first setup while they are only 4% for the second setup. The present data allow to determine the correction in an actual measurement with an accuracy of 0.5-1%. (orig.) [de

  3. Building-transmission factors

    International Nuclear Information System (INIS)

    Woolson, W.A.; Marcum, J.; Scott, W.H.; Staggs, V.E.

    1982-01-01

    Parametric representations (called the nine-parameter formula) of the measurements of the radiation transmission through Japanese house models at the BREN reactor and 60 Co experiments are used to correct the free-in-air (FIA) T65 dose values for buildings shielding in the built-up residential areas at Hiroshima and Nagasaki. The accuracy of transmission factors derived from the nine-parameter formula impact the accuracy of the final-exposure dose estimates in the same manner as the accuracy of weapon yield and FIA radiation transport. A preliminary investigation of the accuracy of these transmission factors, sponsored by the Defense Nuclear Agency, has focused primarily on the adequacy of the Bare Reactor Experiment, Nevada (BREN) radiation environments for producing transmission factor data relevant to the situations at Hiroshima and Nagasaki. In addition, the radiation equivalency of house models used at BREN to Japanese house models and the physical basis for the nine-parameter formula have been studied. This investigation has concluded that the average gamma-ray transmission factors based on the nine-parameter formula are probably too high by about a factor of 2. The large discrepancy between the nine-parameter formula and recent estimates results from the apparent failure to properly account for the large gamma-ray dose component caused by capture gamma rays produced in the house walls by the large neutron flux present at BREN

  4. Imaging with cold neutrons

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-01-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 A). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects-choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  5. Imaging with cold neutrons

    Science.gov (United States)

    Lehmann, E. H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-09-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 Å). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects—choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  6. Improving quantitative neutron radiography through image restoration

    Energy Technology Data Exchange (ETDEWEB)

    Hussey, D.S., E-mail: daniel.hussey@nist.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Coakley, K.J. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Baltic, E.; Jacobson, D.L. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2013-11-21

    Commonly in neutron image experiments, the interpretation of the point spread function (PSF) is limited to describing the achievable spatial resolution in an image. In this article it is shown that for various PSF models, the resulting blurring due to the PSF affects the quantification of the neutron transmission of an object and that the effect is separate from the scattered neutron field from the sample. The effect is observed in several neutron imaging detector configurations using different neutron scintillators and light sensors. In the context of estimation of optical densities with an algorithm that assumes a parallel beam, the effect of blurring fractionates the neutron signal spatially and introduces an effective background that scales with the area of the detector illuminated by neutrons. Examples are provided that demonstrate that the illuminated field of view can alter the observed neutron transmission for nearly purely absorbing objects. It is found that by accurately modeling the PSF, image restoration methods can yield more accurate estimates of the neutron attenuation by an object.

  7. Improving quantitative neutron radiography through image restoration

    Science.gov (United States)

    Hussey, D. S.; Coakley, K. J.; Baltic, E.; Jacobson, D. L.

    2013-11-01

    Commonly in neutron image experiments, the interpretation of the point spread function (PSF) is limited to describing the achievable spatial resolution in an image. In this article it is shown that for various PSF models, the resulting blurring due to the PSF affects the quantification of the neutron transmission of an object and that the effect is separate from the scattered neutron field from the sample. The effect is observed in several neutron imaging detector configurations using different neutron scintillators and light sensors. In the context of estimation of optical densities with an algorithm that assumes a parallel beam, the effect of blurring fractionates the neutron signal spatially and introduces an effective background that scales with the area of the detector illuminated by neutrons. Examples are provided that demonstrate that the illuminated field of view can alter the observed neutron transmission for nearly purely absorbing objects. It is found that by accurately modeling the PSF, image restoration methods can yield more accurate estimates of the neutron attenuation by an object.

  8. Computational investigations on a catenary-shaped double-reflecting neutron guide

    International Nuclear Information System (INIS)

    Priesmeyer, H.G.

    1983-01-01

    The results of Monte-Carlo calculations of the neutron transmission of a vertical catenary-shaped neutron guide are presented. A two-dimensional problem was considered. Focussing and special coatings are investigated. (orig.) [de

  9. Development of neutron calibration field using accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Mamoru [Tohoku Univ., Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan)

    2003-03-01

    A brief summary is given on the fast neutron calibration fields for 1) 8 keV to 15 MeV range, and 2) 30-80 MeV range. The field for 8 keV to 15 MeV range was developed at the Fast Neutron Laboratory (FNL) at Tohoku University using a 4.5 MV pulsed Dynamitron accelerator and neutron production reactions, {sup 45}Sc(p, n), {sup 7}Li(p, n), {sup 3}H(p, n), D(d, n) and T(d, n). The latter 30-80 MeV fields are setup at TIARA of Takasaki Establishment of Japan Atomic Energy Research Institute, and at Cyclotron Radio Isotope Center (CYRIC) of Tohoku University using a 90 MeV AVF cyclotron and the {sup 7}Li(p, n) reaction. These fields have been applied for various calibration of neutron spectrometers and dosimeters, and for irradiation purposes. (author)

  10. TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz

    Energy Technology Data Exchange (ETDEWEB)

    Ketelaer, J. [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz, Staudinger Weg 7, D-55128 Mainz (Germany)], E-mail: ketela@uni-mainz.de; Kraemer, J. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz (Germany); Beck, D. [Gesellschaft fuer Schwerionenforschung mbH, Planckstrasse 1, D-64291 Darmstadt (Germany); Blaum, K. [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Gesellschaft fuer Schwerionenforschung mbH, Planckstrasse 1, D-64291 Darmstadt (Germany); Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Block, M. [Gesellschaft fuer Schwerionenforschung mbH, Planckstrasse 1, D-64291 Darmstadt (Germany); Eberhardt, K. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz (Germany); Eitel, G.; Ferrer, R. [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Geppert, C. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz (Germany); Gesellschaft fuer Schwerionenforschung mbH, Planckstrasse 1, D-64291 Darmstadt (Germany); George, S. [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Gesellschaft fuer Schwerionenforschung mbH, Planckstrasse 1, D-64291 Darmstadt (Germany); Herfurth, F. [Gesellschaft fuer Schwerionenforschung mbH, Planckstrasse 1, D-64291 Darmstadt (Germany); Ketter, J.; Nagy, Sz.; Neidherr, D. [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Neugart, R. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz (Germany)] (and others)

    2008-09-01

    The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich nuclides with production rates sufficiently large for mass spectrometric and laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as well as a beamline for collinear laser spectroscopy are being installed. Several new developments will ensure high sensitivity of the trap setup enabling mass measurements even on a single ion. Besides neutron-rich fission products produced in the reactor, also heavy nuclides such as {sup 235}U or {sup 252}Cf can be investigated for the first time with an off-line ion source. The data provided by the mass measurements will be of interest for astrophysical calculations on the rapid neutron-capture process as well as for tests of mass models in the heavy-mass region. The laser spectroscopic measurements will yield model-independent information on nuclear ground-state properties such as nuclear moments and charge radii of neutron-rich nuclei of refractory elements far from stability. TRIGA-SPEC also serves as a test facility for mass and laser spectroscopic experiments at SHIPTRAP and the low-energy branch of the future GSI facility FAIR. This publication describes the experimental setup as well as its present status.

  11. Development of a bandwidth limiting neutron chopper for CSNS

    Science.gov (United States)

    Wang, P.; Yang, B.; Cai, W. L.

    2015-08-01

    Bandwidth limiting neutron choppers are indispensable key equipments for the time-of-flight neutron scattering spectrometers of China Spallation Neutron Source (CSNS). The main principle is to chop the neutron beam to limit the neutron wavelength bandwidth at the neutron detector. We have successfully developed a bandwidth limiting neutron chopper for CSNS in the CSNS advance research project II. The transmission rate of the neutron absorbing coating is less than 1×10-4 (for 1 angstrom neutron). The phase control accuracy is ±0.084° (±9.4 μs at 25 Hz). The dynamic balance grade is G1.0. Various experimental technical features have met the design requirements, and it also runs stably and reliably during the long-term tests.

  12. Development of a bandwidth limiting neutron chopper for CSNS

    International Nuclear Information System (INIS)

    Wang, P.; Yang, B.; Cai, W.L.

    2015-01-01

    Bandwidth limiting neutron choppers are indispensable key equipments for the time-of-flight neutron scattering spectrometers of China Spallation Neutron Source (CSNS). The main principle is to chop the neutron beam to limit the neutron wavelength bandwidth at the neutron detector. We have successfully developed a bandwidth limiting neutron chopper for CSNS in the CSNS advance research project II. The transmission rate of the neutron absorbing coating is less than 1×10 −4 (for 1 angstrom neutron). The phase control accuracy is ±0.084° (±9.4 μs at 25 Hz). The dynamic balance grade is G1.0. Various experimental technical features have met the design requirements, and it also runs stably and reliably during the long-term tests

  13. Compact electrically detected magnetic resonance setup

    International Nuclear Information System (INIS)

    Eckardt, Michael; Harneit, Wolfgang; Behrends, Jan; Münter, Detlef

    2015-01-01

    Electrically detected magnetic resonance (EDMR) is a commonly used technique for the study of spin-dependent transport processes in semiconductor materials and electro-optical devices. Here, we present the design and implementation of a compact setup to measure EDMR, which is based on a commercially available benchtop electron paramagnetic resonance (EPR) spectrometer. The electrical detection part uses mostly off-the-shelf electrical components and is thus highly customizable. We present a characterization and calibration procedure for the instrument that allowed us to quantitatively reproduce results obtained on a silicon-based reference sample with a “large-scale” state-of-the-art instrument. This shows that EDMR can be used in novel contexts relevant for semiconductor device fabrication like clean room environments and even glove boxes. As an application example, we present data on a class of environment-sensitive objects new to EDMR, semiconducting organic microcrystals, and discuss similarities and differences to data obtained for thin-film devices of the same molecule

  14. Neutron diffraction

    International Nuclear Information System (INIS)

    James, M.; Howard, C.J.; Kennedy, S.

    1999-01-01

    Diffraction methods, especially X-ray diffraction, are widely used in materials science. Neutron diffraction is in many ways similar to X-ray diffraction, but is also complementary to the X-ray technique so that in some cases it yields information not accessible using X-rays. Successes of neutron diffraction include the elucidation of the crystal structures of high temperature superconductors and materials that display colossal magnetoresistance, the phase analysis of zirconia engineering ceramics, in depth stress determination in composites, successful determination of the structures of metal hydrides, transition metal polymer complexes and the determination of magnetic structure. A brief description of current studies, using neutron diffraction is given

  15. J-NSE: Neutron spin echo spectrometer

    Directory of Open Access Journals (Sweden)

    Olaf Holderer

    2015-08-01

    Full Text Available Neutron Spin-Echo (NSE spectroscopy is well known as the only neutron scattering technique that achieves energy resolution of several neV. By using the spin precession of polarized neutrons in magnetic field one can measure tiny velocity changes of the individual neutron during the scattering process. Contrary to other inelastic neutron scattering techniques, NSE measures the intermediate scattering function S(Q,t in reciprocal space and time directly. The Neutron Spin-Echo spectrometer J-NSE, operated by JCNS, Forschungszentrum Jülich at the Heinz Maier-Leibnitz Zentrum (MLZ in Garching, covers a time range (2 ps to 200 ns on length scales accessible by small angle scattering technique. Along with conventional NSE spectroscopy that allows bulk measurements in transmission mode, J-NSE offers a new possibility - gracing incidence spin echo spectroscopy (GINSENS, developed to be used as "push-button" option in order to resolve the depth dependent near surface dynamics.

  16. Neutron diffraction and optics in noncentrosymmetric crystals New feasibility of a search for neutron EDM

    International Nuclear Information System (INIS)

    Fedorov, V.V.; Voronin, V.V.

    2003-01-01

    Recently strong electric fields (up to 10 9 V/cm) have been discovered, which affect the neutrons moving in noncentrosymmetric crystals. Such fields allow for new polarization phenomena in the neutron diffraction and in the optics and provide, for instance, a new method of a search for the neutron electric dipole moment (EDM). A strong interplanar electric field of the crystal and a sufficiently long time for the neutron passage through the crystal for Bragg angle close to π/2 in the case of Laue diffraction make it possible to exceed the sensitivity achieved with the magnetic resonance method using ultra cold neutrons (UCN method). The pilot setup has been created and mounted at the neutron beam at the WWR-M reactor in Gatchina. It allows to study the optics and the dynamical diffraction of polarized neutrons in thick (1-10 cm) crystals, using the direct diffraction beam and Bragg angles close to 90 deg. . The first experimental results are discussed on observing new effects in both the Laue diffraction and the optics of cold neutrons. These results confirm the opportunity to increase more than by an order of magnitude the sensitivity of the method to neutron EDM, using the diffraction angles close to 90 deg. and give a real prospect to exceed the sensitivity of the UCN method

  17. Simple optical setup implementation for digital Fourier transform holography

    International Nuclear Information System (INIS)

    De Oliveira, G N; Rodrigues, D M C; Dos Santos, P A M

    2011-01-01

    In the present work a simple implementation of Digital Fourier Transform Holography (DFTH) setup is discussed. This is obtained making a very simple modification in the classical setup arquiteture of the Fourier Transform holography. It is also demonstrated the easy and practical viability of the setup in an interferometric application for mechanical parameters determination. The work is also proposed as an interesting advanced introductory training for graduated students in digital holography.

  18. Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation.

    Science.gov (United States)

    Pálfalvi, László; Tóth, György; Tokodi, Levente; Márton, Zsuzsanna; Fülöp, József András; Almási, Gábor; Hebling, János

    2017-11-27

    A hybrid-type terahertz pulse source is proposed for high energy terahertz pulse generation. It is the combination of the conventional tilted-pulse-front setup and a transmission stair-step echelon-faced nonlinear crystal with a period falling in the hundred-micrometer range. The most important advantage of the setup is the possibility of using plane parallel nonlinear optical crystal for producing good-quality, symmetric terahertz beam. Another advantage of the proposed setup is the significant reduction of imaging errors, which is important in the case of wide pump beams that are used in high energy experiments. A one dimensional model was developed for determining the terahertz generation efficiency, and it was used for quantitative comparison between the proposed new hybrid setup and previously introduced terahertz sources. With lithium niobate nonlinear material, calculations predict an approximately ten-fold increase in the efficiency of the presently described hybrid terahertz pulse source with respect to that of the earlier proposed setup, which utilizes a reflective stair-step echelon and a prism shaped nonlinear optical crystal. By using pump pulses of 50 mJ pulse energy, 500 fs pulse length and 8 mm beam spot radius, approximately 1% conversion efficiency and 0.5 mJ terahertz pulse energy can be reached with the newly proposed setup.

  19. A new setup for the underground study of capture reactions

    Energy Technology Data Exchange (ETDEWEB)

    Casella, C.; Costantini, H.; Lemut, A.; Limata, B.; Bemmerer, D.; Bonetti, R.; Broggini, C.; Campajola, L.; Cocconi, P.; Corvisiero, P.; Cruz, J.; D' Onofrio, A.; Formicola, A.; Fueloep, Z.; Gervino, G.; Gialanella, L.; Guglielmetti, A.; Gustavino, C.; Gyurky, G.; Loiano, A.; Imbriani, G.; Jesus, A.P.; Junker, M.; Musico, P.; Ordine, A.; Parodi, F.; Parolin, M.; Pinto, J.V.; Prati, P. E-mail: prati@ge.infn.it; Ribeiro, J.P.; Roca, V.; Rogalla, D.; Rolfs, C.; Romano, M.; Rossi-Alvarez, C.; Rottura, A.; Schuemann, F.; Somorjai, E.; Strieder, F.; Terrasi, F.; Trautvetter, H.P.; Vomiero, A.; Zavatarelli, S

    2002-08-21

    For the study of astrophysically relevant capture reactions in the underground laboratory LUNA a new setup of high sensitivity has been implemented. The setup includes a windowless gas target, a 4{pi} BGO summing crystal, and beam calorimeters. The setup has been recently used to measure the d(p,{gamma}){sup 3}He cross-section for the first time within its solar Gamow peak, i.e. down to 2.5 keV c.m. energy. The features of the optimized setup are described.

  20. A new setup for the underground study of capture reactions

    CERN Document Server

    Casella, C; Lemut, A; Limata, B; Bemmerer, D; Bonetti, R; Broggini, C; Campajola, L; Cocconi, P; Corvisiero, P; Cruz, J; D'Onofrio, A; Formicola, A; Fülöp, Z; Gervino, G; Gialanella, L; Guglielmetti, A; Gustavino, C; Gyürky, G; Loiano, A; Imbriani, G; Jesus, A P; Junker, M; Musico, P; Ordine, A; Parodi, F; Parolin, M; Pinto, J V; Prati, P; Ribeiro, J P; Roca, V; Rogalla, D; Rolfs, C; Romano, M; Rossi-Alvarez, C; Rottura, A; Schuemann, F; Somorjai, E; Strieder, F; Terrasi, F; Trautvetter, H P; Vomiero, A; Zavatarelli, S

    2002-01-01

    For the study of astrophysically relevant capture reactions in the underground laboratory LUNA a new setup of high sensitivity has been implemented. The setup includes a windowless gas target, a 4 pi BGO summing crystal, and beam calorimeters. The setup has been recently used to measure the d(p,gamma) sup 3 He cross-section for the first time within its solar Gamow peak, i.e. down to 2.5 keV c.m. energy. The features of the optimized setup are described.

  1. Neutron scattering

    International Nuclear Information System (INIS)

    Furrer, A.

    1993-01-01

    This report contains the text of 16 lectures given at the Summer School and the report on a panel discussion entitled ''the relative merits and complementarities of x-rays, synchrotron radiation, steady- and pulsed neutron sources''. figs., tabs., refs

  2. Optimization of a solid state polarizing bender for cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Shah, V.R.; Washington, A.L.; Stonaha, P.; Ashkar, R.; Kaiser, H. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington IN (United States); Krist, T. [Helmholtz Zentrum Berlin, 14109 Berlin (Germany); Pynn, Roger [Center for the Exploration of Energy and Matter, Indiana University, Bloomington IN (United States); Neutron Science Directorate, Oak Ridge National Laboratory, Oak Ridge TN (United States)

    2014-12-21

    We have designed a solid state bender to polarize cold neutrons for the Spin Echo Scattering Angle Measurement (SESAME) instrument at the Low Energy Neutron Source (LENS) at Indiana University. The design attempts to achieve high neutron polarization across a wide range of neutron wavelengths and divergence angles by optimizing the supermirror coating materials. The transmission and polarizing efficiency of the bender were modeled using the VITESS software, then measured at both continuous-wave and pulsed neutron sources. While the measured peak neutron transmission and polarization agree reasonably well with simulations, neither quantity has been successfully modeled for long wavelength neutrons. These results imply an insufficient understanding of the magnetic microstructure of the supermirror coatings used.

  3. Background neutron in the endcap and barrel regions of resistive ...

    Indian Academy of Sciences (India)

    function of the neutron energy in the range of 0.01 eV–1 GeV have been simulated through. RPC set-up. In order to evaluate the response of detector in the LHC background envi- ronment, the neutron spectrum expected in the CMS muon endcap and barrel region were taken into account. A hit rate of about 165.5 Hz cm. −2.

  4. Neutron Scattering

    International Nuclear Information System (INIS)

    Fayer, Michael J.; Gee, Glendon W.

    2005-01-01

    The neutron probe is a standard tool for measuring soil water content. This article provides an overview of the underlying theory, describes the methodology for its calibration and use, discusses example applications, and identifies the safety issues. Soil water makes land-based life possible by satisfying plant water requirements, serving as a medium for nutrient movement to plant roots and nutrient cycling, and controlling the fate and transport of contaminants in the soil environment. Therefore, a successful understanding of the dynamics of plant growth, nutrient cycling, and contaminant behavior in the soil requires knowledge of the soil water content as well as its spatial and temporal variability. After more than 50 years, neutron probes remain the most reliable tool available for field monitoring of soil water content. Neutron probes provide integrated measurements over relatively large volumes of soil and, with proper access, allow for repeated sampling of the subsurface at the same locations. The limitations of neutron probes include costly and time-consuming manual operation, lack of data automation, and costly regulatory requirements. As more non-radioactive systems for soil water monitoring are developed to provide automated profiling capabilities, neutron-probe usage will likely decrease. Until then, neutron probes will continue to be a standard for reliable measurements of field water contents in soils around the globe

  5. Neutron energy focusing with magnetic fields

    International Nuclear Information System (INIS)

    Schwab, D.E.; Summhammer, J.; Rauch, H.

    2001-01-01

    Full text: For the majority of neutron optics instruments and many neutron scattering techniques the use of a monochromatic neutron beam is vitally important. Most monochromators are passive, and often include an interaction with matter. They cut off certain parts of the spectrum, and as a consequence, large losses of neutron density occur, and the spectral density is depleted as well. On the other hand, active energy focusing systems enrich the beam in a very narrow velocity band without considerable losses. Here, we study the active monochromatization of neutrons, generated at a pulsed neutron source by interaction with magnetic fields. The first proposed set-up consists of magnets which surround the beam-line. They produce traveling magnetic waves with desired velocity to escort a neutron pulse between the source and an instrument. During the interaction, the magnetic field forces the neutrons to accelerate or decelerate to this velocity. Simulations show that a comoving magnetic field, shaped like an harmonic oscillator, or of a sinusoidal form, effectuates an increase of neutron intensity up to an order of magnitude in a small but variable velocity band. Consequently, the precision of related neutron scattering experiments is increased or their measurement time is decreased, accordingly. Another concept arises from static and rf spinflip stages. Thereby, an appropriate number of photons of the rf-field can be transmitted to or extracted from the neutrons. Polarized neutrons entering a static magnetic field which is oriented perpendicularly to the neutrons propagation direction, are subject to acceleration or deceleration depending on their spin orientation (Zeeman shift). Flipping the neutrons spin by on rf coil inside the static field, causes a second acceleration or deceleration of the neutrons when they are leaving the static field. They immediately enter the next stage with another static field, which is much smaller than the one they have just left. Its

  6. The intensive DT neutron generator of TU Dresden

    Science.gov (United States)

    Klix, Axel; DÖring, Toralf; Domula, Alexander; Zuber, Kai

    2018-01-01

    TU Dresden operates an accelerator-based intensive DT neutron generator. Experimental activities comprise investigation into material activation and decay, neutron and photon transport in matter and R&D work on radiation detectors for harsh environments. The intense DT neutron generator is capable to produce a maximum of 1012 n/s. The neutron source is a solid-type water-cooled tritium target based on a titanium matrix on a copper carrier. The neutron yield at a typical deuteron beam current of 1 mA is of the order of 1011 n/s in 4Π. A pneumatic sample transport system is available for short-time irradiations and connected to wo high-purity germanium detector spectrometers for the measurement of induced activities. The overall design of the experimental hall with the neutron generator allows a flexible setup of experiments including the possibility of investigating larger structures and cooled samples or samples at high temperatures.

  7. FOREWORD: Neutron metrology Neutron metrology

    Science.gov (United States)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  8. Transmission issues

    International Nuclear Information System (INIS)

    Bradford, J.; Wilson, L.; Thon, S.; Millar, N.

    2005-01-01

    This session on transmission issues focused on the role that transmission plays in electricity markets and the importance of getting the market structure right in terms of generation divestiture with buy back contracts, demand side responsive programs, transmission upgrades and long term contracts. The difficulties of distinguishing between market power and scarcity were examined along with some of the complications that ensue if transmission experiences congestion, as exemplified by the August 2003 blackout in eastern North America. The presentations described the best ways to handle transmission issues, and debated whether transmission should be deregulated or follow market forces. Issues of interconnections and reliability of connections were also debated along with the attempt to integrate renewables into the grid. Some presentations identified what new transmission must be built and what must be done to ensure that transmission gets built. The challenges and business opportunities for transmission in Alberta were discussed with reference to plans to invest in new infrastructure, where it is going outside of the province and how it works with other jurisdictions. Manitoba's Conawapa Hydro Project and its 2000 MW tie line to Ontario was also discussed. Some examples of non-optimal use of interconnections in Europe were also discussed in an effort to learn from these mistakes and avoid them in Canada. tabs., figs

  9. An experimental set-up to test heatmoisture exchangers

    NARCIS (Netherlands)

    N. Ünal (N.); J.C. Pompe (Jan); W.P. Holland (Wim); I. Gultuna; P.E.M. Huygen; K. Jabaaij (K.); C. Ince (Can); B. Saygin (B.); H.A. Bruining (Hajo)

    1995-01-01

    textabstractObjectives: The purpose of this study was to build an experimental set-up to assess continuously the humidification, heating and resistance properties of heat-moisture exchangers (HMEs) under clinical conditions. Design: The experimental set-up consists of a patient model, measurement

  10. Fault tolerant control - a residual based set-up

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2009-01-01

    A new set-up for fault tolerant control (FTC) for stable systems is presented in this paper. The new set-up is based on a simple implementation of the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization. This implementation of the YJBK parameterization will allow a direct and simple reconfigurati...

  11. CALIBRATION PROCEDURES IN MID FORMAT CAMERA SETUPS

    Directory of Open Access Journals (Sweden)

    F. Pivnicka

    2012-07-01

    Full Text Available A growing number of mid-format cameras are used for aerial surveying projects. To achieve a reliable and geometrically precise result also in the photogrammetric workflow, awareness on the sensitive parts is important. The use of direct referencing systems (GPS/IMU, the mounting on a stabilizing camera platform and the specific values of the mid format camera make a professional setup with various calibration and misalignment operations necessary. An important part is to have a proper camera calibration. Using aerial images over a well designed test field with 3D structures and/or different flight altitudes enable the determination of calibration values in Bingo software. It will be demonstrated how such a calibration can be performed. The direct referencing device must be mounted in a solid and reliable way to the camera. Beside the mechanical work especially in mounting the camera beside the IMU, 2 lever arms have to be measured in mm accuracy. Important are the lever arms from the GPS Antenna to the IMU's calibrated centre and also the lever arm from the IMU centre to the Camera projection centre. In fact, the measurement with a total station is not a difficult task but the definition of the right centres and the need for using rotation matrices can cause serious accuracy problems. The benefit of small and medium format cameras is that also smaller aircrafts can be used. Like that, a gyro bases stabilized platform is recommended. This causes, that the IMU must be mounted beside the camera on the stabilizer. The advantage is, that the IMU can be used to control the platform, the problematic thing is, that the IMU to GPS antenna lever arm is floating. In fact we have to deal with an additional data stream, the values of the movement of the stabiliser to correct the floating lever arm distances. If the post-processing of the GPS-IMU data by taking the floating levers into account, delivers an expected result, the lever arms between IMU and

  12. Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan

    Directory of Open Access Journals (Sweden)

    Yoshiaki Kiyanagi

    2018-03-01

    Full Text Available Neutron imaging has been recognized to be very useful to investigate inside of materials and products that cannot be seen by X-ray. New imaging methods using the pulsed structure of neutron sources based on accelerators has been developed also at compact accelerator-driven neutron sources and opened new application fields in neutron imaging. The world’s first dedicated imaging instrument at pulsed neutron sources was constructed at J-PARC in Japan owing to the development of such new methods. Then, usefulness of the compact accelerator-driven neutron sources in neutron science was recognized and such facilities were newly constructed in Japan. Now, existing and new sources have been used for neutron imaging. Traditional imaging and newly developed pulsed neutron imaging such as Bragg edge transmission have been applied to various fields by using compact and large neutron facilities. Here, compact accelerator-driven neutron sources used for imaging in Japan are introduced and some of their activities are presented.

  13. Study of neutron-rich $^{51−53}$ Ca isotopes via $\\beta$-decay

    CERN Multimedia

    The high Q$_\\beta$ values in certain neutron-rich regions of the chart of nuclides opens up the possibility to study states in the daughter nuclei which lie at high excitation energy, above the neutron separation threshold. We propose to perform spectroscopy of the $\\beta$-delayed neutron emission of the $^{51-53}$K isotopes to study the population of single-particle or particle-hole states both below and above the neutron separation threshold. The VANDLE neutron detector will be used in combination with the IDS tape station setup and Ge detectors.

  14. Neutron diffraction

    International Nuclear Information System (INIS)

    Elcomb, M.M.

    2002-01-01

    Full text: Thermal neutrons have a particular combination of properties, which make them the probe of choice for a wide range of scattering applications. They penetrate most materials easily, the wavelength matches interatomic spacings, the energy matches the atomic vibrational energies and the magnetic moment allows them to uniquely interact with magnetic structures. Their widely varying scattering length is also used to advantage. It enables the determination of light atoms in the presence of heavy ones: hydrogen in organic molecules, and oxygen in the high Tc superconductors for example, or solving problems in alloy systems where distinction of atoms, which are neighbours in the periodic table, is required. In the 50 years since thermal neutron beams have been used for research there has been a steady increase in applications as technology has advanced. This also applies to the environments in which the materials are studied. In-situ studies at other than ambient temperatures, pressures and magnetic fields are now routine. By using multiple detector channels in powder instruments the data collection rate has increased by an order of magnitude to some extent compensating for the diffuse nature of the neutron source. The applications of neutron scattering are becoming more industrially oriented. The talk will highlight the complementarity of neutrons to other more readily available techniques, and give examples of recent research and applications. Copyright (2002) Australian X-ray Analytical Association Inc

  15. Neutron diffraction

    International Nuclear Information System (INIS)

    Howard, C.J.; Kennedy, S.J.

    1994-01-01

    A brief account is given of neutron diffraction techniques. Similarities and differences compared with the more familiar X-ray counterparts are discussed. In certain applications, neutron diffraction can be used to obtain information about materials which would be difficult or even impossible to obtain using other techniques. One spectacular success has been the elucidation, from neutron powder diffraction, of the crystal structures of high critical temperature oxide superconductors. There have been substantial contributions in other fields, and these are illustrated by Australian work. The ability of the neutron to penetrate deeply into most materials has been invoked for in-depth determination of stresses in composites and of phase composition in zirconia ceramics. The unique properties of the neutron have been successfully exploited in studies of metal hydrides, to determine where hydrogen is located, and in magnetic structure determination. There is much interest in studying materials under different conditions of temperature and pressure, and kinetic studies under such conditions are now becoming possible. The article includes information on the principles, the instrumentation with particular reference to the instruments installed around the HIFAR reactor at Lucas Heights, and methods for the interpretation of data. 59 refs., 3 tabs., 16 figs

  16. Neutron radiography

    International Nuclear Information System (INIS)

    Pugliesi, R.; Freitas, A.G. de; Gammal, A.; Rizzatti, M.R.; Vercelli, P.

    1990-01-01

    The objective was to demonstrate the main characteristics of the neutron radiography technique, which has been developed in the Nuclear Physics Department of the IPEN-CNEN-SP. Its employment, in technology varies enormously and includes among others, the inspection of the hydrogen-rich substances, highly radioactive materials, etc. The indirect conversion method with Dysprosium screen was employed. The experimental arrangement used was a neutron collimator installed in the bottom of the IEA-R1 Nuclear Research Reactor pool. Several samples were analysed which were exposed in a neutron flux ∼ 10 7 n/s.cm 2 during 10 minutes. The obtained results confirm the main characteristics of this technique as well as its viability to be developed in this reactor. (author)

  17. neutron radiography

    International Nuclear Information System (INIS)

    Barton, J.P.

    1993-01-01

    Neutron radiography (or radiology) is a diverse filed that uses neutrons of various energies, subthermal, thermal, epithermal or fast in either steady state or pulsed mode to examine objects for industrial, medical, or other purposes, both microscopic and macroscopic. The applications include engineering design, biological studies, nondestructive inspection and materials evaluation. In the past decade, over 100 different centers in some 30 countries have published reports of pioneering activities using reactors, accelerators and isotopic neutron sources. While film transparency and electronic video are most common imaging methods for static or in motion objects respectively, there are other important data gathering techniques, including track etch, digital gauging and computed tomography. A survey of the world-wide progress shows the field to be gaining steadily in its diversity, its sophistication and its importance. (author)

  18. Neutron guide system for small-angle neutron scattering instruments of the Juelich Centre for Neutron Science at the FRM-II

    International Nuclear Information System (INIS)

    Radulescu, A.; Ioffe, A.

    2008-01-01

    Following the shut-down of the FRJ-2 research reactor in Juelich a large part of the neutron scattering instrumentation operating there is currently being moved to the FRM-II research reactor in Garching-Muenchen. The installation of these instruments requires the design and set-up of new neutron guides with geometrical and optical features imposed by the positioning of the instruments in the neutron guide hall and by the foreseen significant improvement of the instrument performance. Particularly three SANS diffractometers require a special approach due to on one hand, their pre-determined size and on the other hand, the demanded neutron wavelength range. Expected characteristics of three neutron guides (currently under construction) optimized using VITESS and McStas simulation packages, namely the vertically 'S-shaped' guides serving the KWS2 and KWS1 conventional SANS instruments and the horizontally 'S-shaped' guide serving the focusing KWS3 instrument, will be reported on

  19. Determination of the total neutron cross section using average energy shift method for filtered neutron beam

    Directory of Open Access Journals (Sweden)

    О. О. Gritzay

    2016-12-01

    Full Text Available Development of the technique for determination of the total neutron cross sections from the measurements of sample transmission by filtered neutrons, scattered on hydrogen is described. One of the methods of the transmission determination TH52Cr from the measurements of 52Cr sample, using average energy shift method for filtered neutron beam is presented. Using two methods of the experimental data processing, one of which is presented in this paper (another in [1], there is presented a set of transmissions, obtained for different samples and for different measurement angles. Two methods are fundamentally different; therefore, we can consider the obtained processing results, using these methods as independent. In future, obtained set of transmissions is planned to be used for determination of the parameters E0, Гn and R/ of the resonance 52Cr at the energy of 50 keV.

  20. Neutron nuclear data measurements for criticality safety

    Science.gov (United States)

    Guber, Klaus; Paradela, Carlos; Heyse, Jan; Kopecky, Stefan; Schillebeeckx, Peter; Siegler, Peter

    2017-09-01

    To support the US Department of Energy Nuclear Criticality Safety Program, neutron-induced cross section experiments were performed at the Geel Electron Linear Accelerator of the Joint Research Center Site Geel, European Union. Neutron capture and transmission measurements were carried out using metallic natural cerium and vanadium samples. Together with existing data, the measured data will be used for a new evaluation and will be submitted with covariances to the ENDF/B nuclear data library.

  1. Quantifying Transmission.

    Science.gov (United States)

    Woolhouse, Mark

    2017-07-01

    Transmissibility is the defining characteristic of infectious diseases. Quantifying transmission matters for understanding infectious disease epidemiology and designing evidence-based disease control programs. Tracing individual transmission events can be achieved by epidemiological investigation coupled with pathogen typing or genome sequencing. Individual infectiousness can be estimated by measuring pathogen loads, but few studies have directly estimated the ability of infected hosts to transmit to uninfected hosts. Individuals' opportunities to transmit infection are dependent on behavioral and other risk factors relevant given the transmission route of the pathogen concerned. Transmission at the population level can be quantified through knowledge of risk factors in the population or phylogeographic analysis of pathogen sequence data. Mathematical model-based approaches require estimation of the per capita transmission rate and basic reproduction number, obtained by fitting models to case data and/or analysis of pathogen sequence data. Heterogeneities in infectiousness, contact behavior, and susceptibility can have substantial effects on the epidemiology of an infectious disease, so estimates of only mean values may be insufficient. For some pathogens, super-shedders (infected individuals who are highly infectious) and super-spreaders (individuals with more opportunities to transmit infection) may be important. Future work on quantifying transmission should involve integrated analyses of multiple data sources.

  2. Neutron diffraction

    International Nuclear Information System (INIS)

    Heger, G.

    1996-01-01

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs

  3. Neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Heger, G. [Rheinisch-Westfaelische Technische Hochschule Aachen, Inst. fuer Kristallographie, Aachen (Germany)

    1996-12-31

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs.

  4. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  5. Quantitative neutron radiography using neutron absorbing honeycomb

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.

    1993-01-01

    This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)

  6. An Improved Automated Setup for Solubility Determination of Drugs

    Directory of Open Access Journals (Sweden)

    Ahmad Ghanbari 1, Yashar Sarbaz, Vahid Jouyban-Gharamaleki, Karim Jouyban-Gharamaleki, Jafar Soleymani, Abolghasem Jouyban

    2016-09-01

    Full Text Available Background: Solubility of a drug/drug candidate is an essential information in the pharmaceutical area. Classical solubility determination method used in the laboratories are expensive and time-consuming. Attempts were made to provide an automated solubility determination setup based on a laser monitoring technique. Methods: In a previously developed setup, drug powder was added to a given quantity of the solvent which made some troubles in practical applications. The present work reports another setup which adds solvent to a given mass of the drug. The validity of the measured solubilities is checked by comparing the measured solubilities of acetaminophen at two temperatures in water and ethanol mixtures with the corresponding data from the literature. Results: The results reveal that the improved setup could overcome the limitations of the previously developed setup and could be used for drug solubility determination. Conclusion: The improved setup overcomes the troubles made in the previous setup and could be used in generating large amount of solubility data to be used in the pharmaceutical industry.

  7. Studies of magnetism with inelastic scattering of cold neutrons

    International Nuclear Information System (INIS)

    Jacrot, B.

    1964-01-01

    Inelastic scattering of cold neutrons can be used to study some aspects of magnetism: spins waves, exchange integrals, vicinity of Curie point. After description of the experimental set-up, several experiments, in the fields mentioned above, are analysed. (author) [fr

  8. Recent results on neutron rich tin isotopes by laser spectroscopy

    CERN Document Server

    Roussière, B; Crawford, J E; Essabaa, S; Fedosseev, V; Geithner, W; Genevey, J; Girod, M; Huber, G; Horn, R; Kappertz, S; Lassen, J; Le Blanc, F; Lee, J K P; Le Scornet, G; Lettry, Jacques; Mishin, V I; Neugart, R; Obert, J; Oms, J; Ouchrif, A; Peru, S; Pinard, J; Ravn, H L; Sauvage, J; Verney, D

    2001-01-01

    Laser spectroscopy measurements have been performed on neutron rich tin isotopes using the COMPLIS experimental setup. The nuclear charge radii of the even-even isotopes from A=108 to 132 are compared to the results of macroscopic and microscopic calculations. The improvements and optimizations needed to perform the isotope shift measurement on $^{134}$Sn are presented.

  9. Thermal neutron dose calculation in synovium membrane for BNCS

    International Nuclear Information System (INIS)

    Abdalla, Khalid; Naqvi, A.A.; Maalej, N.; El-Shahat, B.

    2006-01-01

    A D(d,n) reaction based setup has been optimized for Boron Neutron Capture Synovectomy (BNCS). The polyethylene moderator and graphite reflector sizes were optimized to deliver the highest ratio of thermal to fast neutron yield. The neutron dose was calculated at various depths in a knee phantom loaded with boron to determine therapeutic ratios of synovium dose/skin dose and synovium dose/bone dose. Normalized to same boron loading in synovium, the values of the therapeutic ratios obtained in the present study are 12-30 times higher than the published values. (author)

  10. Collider shot setup for Run 2 observations and suggestions

    International Nuclear Information System (INIS)

    Annala, J.; Joshel, B.

    1996-01-01

    This note is intended to provoke discussion on Collider Run II shot setup. We hope this is a start of activities that will converge on a functional description of what is needed for shot setups in Collider Run II. We will draw on observations of the present shot setup to raise questions and make suggestions for the next Collider run. It is assumed that the reader has some familiarity with the Collider operational issues. Shot setup is defined to be the time between the end of a store and the time the Main Control Room declares colliding beams. This is the time between Tevatron clock events SCE and SCB. This definition does not consider the time experiments use to turn on their detectors. This analysis was suggested by David Finley. The operational scenarios for Run II will require higher levels of reliability and speed for shot setup. See Appendix I and II. For example, we estimate that a loss of 3 pb -1 /week (with 8 hour stores) will occur if shot setups take 90 minutes instead of 30 minutes. In other words: If you do 12 shots for one week and accept an added delay of one minute in each shot, you will loose more than 60 nb -1 for that week alone (based on a normal shot setup of 30 minutes). These demands should lead us to be much more pedantic about all the factors that affect shot setups. Shot setup will be viewed as a distinct process that is composed of several inter- dependent 'components': procedures, hardware, controls, and sociology. These components don't directly align with the different Accelerator Division departments, but are topical groupings of the needed accelerator functions. Defining these components, and categorizing our suggestions within them, are part of the goal of this document. Of course, some suggestions span several of these components

  11. Compact Neutron Generators for Medical, Home Land Security, and Planetary Exploration

    CERN Document Server

    Reijonen, Jani

    2005-01-01

    The Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory has developed various types of advanced D-D (neutron energy 2.5 MeV), D-T (14 MeV) and T-T (0 - 9 MeV) neutron generators for wide range of applications. These applications include medical (Boron Neutron Capture Therapy), homeland security (Prompt Gamma Activation Analysis, Fast Neutron Activation Analysis and Pulsed Fast Neutron Transmission Spectroscopy) and planetary exploration in form of neutron based, sub-surface hydrogen detection systems. These neutron generators utilize RF induction discharge to ionize the deuterium/tritium gas. This discharge method provides high plasma density for high output current, high atomic species from molecular gases, long life operation and versatility for various discharge chamber geometries. Three main neutron generator developments are discussed here: high neutron output co-axial neutron generator for BNCT applications, point neutron generator for security applications, compact and sub-c...

  12. Live surgery in neurosurgical training courses: essential infrastructure and technical set-up.

    Science.gov (United States)

    Roser, Florian; Pfister, Gerd; Tatagiba, Marcos; Ebner, Florian H

    2013-03-01

    Training courses in neurosurgery are essential educational elements of residency. Teaching methods vary due to cultural differences, monetary restrictions and infrastructure conditions. Anatomical dissection courses combined with annotated live surgeries performed by senior surgeons have proved to be best accepted by students. In this technical note, we provide detailed information about the necessary requirements, resources and optimal performance of live surgeries in neurosurgical training courses. From 2007 to 2012, 12 neurosurgical training courses with live surgeries were organised at the Department of Neurosurgery. Here, we share our experience and report the essential set-up for these courses. Our department organised seven skull base, four cervical spine and one spinal cord stimulation hands-on dissection course with live surgeries. The course structure included lectures, cadaver dissections and live surgeries. The technical set-up included video transmission via an IP-based network with fibreglass backbone between the operating theatre (OR) and lecture room. During surgery, bidirectional discussions offered the participants the ability to interject and ask questions. Important issues included the careful selection of live operated patients with clearly presented pathology for the didactic cases used to demonstrate the technique. A live surgery should include the entire procedure: intraoperative set-up, positioning, anaesthesiological procedures and handling of intraoperative situations. A professionally prepared step-by-step educational program including surgical anatomy, cadaver dissection and live surgeries with online discussion offers a high level of training and enriches both the participants and instructors.

  13. Neutron diffraction texture analysis for industrial applications

    International Nuclear Information System (INIS)

    Brokmeier, H.G.

    1994-01-01

    Considering the high transmission of neutron radiation, neutron diffraction is an efficient tool for the analysis of various material parameters of bulk material in a non-destructive way. Industrial application of texture analysis by X-ray diffraction is well established, whereas neutron diffraction applications are seldom. Thus a brief description explains the main differences between X-ray and neutron diffraction regarding texture measurements such as the investigation of coarse-grained materials, of large sample volumes and of multi-phase materials. The investigation of average textures of large sample volumes allows directly a correlation to material properties (e.g. Young's modulus, electric conductivity, plastic deformability, strength), which were determined on a workpiece. Examples will be given to show some applications of neutron diffraction texture analysis for technological interests. (orig.)

  14. Prompt gamma and neutron detection in BNCT utilizing a CdTe detector.

    Science.gov (United States)

    Winkler, Alexander; Koivunoro, Hanna; Reijonen, Vappu; Auterinen, Iiro; Savolainen, Sauli

    2015-12-01

    In this work, a novel sensor technology based on CdTe detectors was tested for prompt gamma and neutron detection using boronated targets in (epi)thermal neutron beam at FiR1 research reactor in Espoo, Finland. Dedicated neutron filter structures were omitted to enable simultaneous measurement of both gamma and neutron radiation at low reactor power (2.5 kW). Spectra were collected and analyzed in four different setups in order to study the feasibility of the detector to measure 478 keV prompt gamma photons released from the neutron capture reaction of boron-10. The detector proved to have the required sensitivity to detect and separate the signals from both boron neutron and cadmium neutron capture reactions, which makes it a promising candidate for monitoring the spatial and temporal development of in vivo boron distribution in boron neutron capture therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: the EXILL campaign

    Directory of Open Access Journals (Sweden)

    de France G.

    2014-03-01

    Full Text Available A combination of germanium detectors has been installed at the PF1B neutron guide of the ILL to perform the prompt spectroscopy of neutron-rich nuclei produced in the neutron-capture induced-fission of 235U and 241Pu. In addition LaBr3 detectors from the FATIMA collaboration have been installed in complement with the EXOGAM clovers to measure lifetimes of low-lying excited states. The measured characteristics and online spectra indicate very good performances of the overall setup.

  16. Radiography and tomography using fission neutrons at FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T.; Lierse von Gostomski, Ch. [Inst. fuer Radiochemie, TU-Muenchen, Garching (Germany)

    2004-07-01

    Fission neutrons offer complementary information in radiography and tomography compared to the well established techniques using X-rays, gamma-rays, thermal or cold neutrons. They penetrate thick layers of high density materials with only little attenuation, while for light, specially for hydrogen containing materials, their attenuation is high. In the past, fast neutrons for NDT (non-destructive testing) were only available at accelerator driven systems. These high energy neutrons have to be moderated to achieve acceptable detection efficiencies thus drastically reducing the available neutron intensities and either resulting in a high beam divergence or in additional losses in neutron intensities due to beam collimation. The recently installed neutron computerized tomography and radiography system NECTAR at the Forschungsreaktor Muenchen-II (FRM-II) overcomes these disadvantages by using fission neutrons of about 1.7 MeV mean energy created in two converter plates set-up of highly enriched uranium. The beam quality, i.e. the neutron divergence can be adapted to the object to be measured by using different collimators, resulting in L/D-values up to 300. The available neutron beam intensity at the measuring position is up to 1.7E+08 cm{sup -2} s{sup -1} for a maximum beam area of 40 cm x 40 cm. For conventional imaging a two-dimensional detector system based on a CCD-camera is used, other more specialised systems are available. (author)

  17. Neutron Interferometry at the National Institute of Standards and Technology

    International Nuclear Information System (INIS)

    Huber, M. G.; Sarenac, D.; Nsofini, J.; Pushin, D. A.; Arif, M.; Wood, C. J.; Cory, D. G.; Shahi, C. B.

    2015-01-01

    Neutron interferometry has proved to be a very precise technique for measuring the quantum mechanical phase of a neutron caused by a potential energy difference between two spatially separated neutron paths inside interferometer. The path length inside the interferometer can be many centimeters (and many centimeters apart) making it very practical to study a variety of samples, fields, potentials, and other macroscopic medium and quantum effects. The precision of neutron interferometry comes at a cost; neutron interferometers are very susceptible to environmental noise that is typically mitigated with large, active isolated enclosures. With recent advances in quantum information processing especially quantum error correction (QEC) codes we were able to demonstrate a neutron interferometer that is insensitive to vibrational noise. A facility at NIST’s Center for Neutron Research (NCNR) has just been commissioned with higher neutron flux than the NCNR’s older interferometer setup. This new facility is based on QEC neutron interferometer, thus improving the accessibility of neutron interferometry to the greater scientific community and expanding its applications to quantum computing, gravity, and material research

  18. Texture determination by neutron diffraction

    International Nuclear Information System (INIS)

    Dervin, P.

    1981-02-01

    Application of neutron diffraction to crystallographic texture determination shows many advantages: possibility of an important grain size, the quantity of material contributing to diffraction is more important than with X rays, good accuracy and complete pole figures are obtained by transmission only eliminating corrections needed with X rays. Texture determination allows control and improvement of material quality. Texture studies give good informations on mechanisms occuring in deformation or recrystallization of polycrystals and on anisotropy of physical and mechanical properties [fr

  19. Data transmission

    National Research Council Canada - National Science Library

    Tugal, Dogan A; Tugal, Osman

    1989-01-01

    This updated second edition provides working answers to today's critical questions about designing and managing all types of data transmission systems and features a new chapter on local area networks (LANs...

  20. Shingles Transmission

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search The CDC Shingles (Herpes Zoster) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Shingles Home About Shingles Overview Signs & Symptoms Transmission Complications ...

  1. Experimental setup and procedure for the measurement of the 7Be(n,p)7Li reaction at n_TOF

    Science.gov (United States)

    Barbagallo, M.; Andrzejewski, J.; Mastromarco, M.; Perkowski, J.; Damone, L. A.; Gawlik, A.; Cosentino, L.; Finocchiaro, P.; Maugeri, E. A.; Mazzone, A.; Dressler, R.; Heinitz, S.; Kivel, N.; Schumann, D.; Colonna, N.; Aberle, O.; Amaducci, S.; Audouin, L.; Bacak, M.; Balibrea, J.; Bečvář, F.; Bellia, G.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Cortés, G.; Cortés-Giraldo, M. A.; Cristallo, S.; Diakaki, M.; Dietz, M.; Domingo-Pardo, C.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Furman, V.; Göbel, K.; García, A. R.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Johnston, K.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui-Marco, J.; Lo Meo, S.; Lonsdale, S. J.; Macina, D.; Manna, A.; Marganiec, J.; Martínez, T.; Martins-Correia, J. G.; Masi, A.; Massimi, C.; Mastinu, P.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Pappalardo, A. D.; Patronis, N.; Pavlik, A.; Piscopo, M.; Porras, I.; Praena, J.; Quesada, J. M.; Radeck, D.; Rauscher, T.; Reifarth, R.; Robles, M. S.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schell, J.; Schillebeeckx, P.; Sedyshev, P.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weiss, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2018-04-01

    Following the completion of the second neutron beam line and the related experimental area (EAR2) at the n_TOF spallation neutron source at CERN, several experiments were planned and performed. The high instantaneous neutron flux available in EAR2 allows to investigate neutron induced reactions with charged particles in the exit channel even employing targets made out of small amounts of short-lived radioactive isotopes. After the successful measurement of the 7Be(n, α) α cross section, the 7Be(n,p)7Li reaction was studied in order to provide still missing cross section data of relevance for Big Bang Nucleosynthesis (BBN), in an attempt to find a solution to the cosmological Lithium abundance problem. This paper describes the experimental setup employed in such a measurement and its characterization.

  2. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    The method of operating a water-cooled neutronic reactor having a graphite moderator is described which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40--60 volume percent of the mixture, in contact with the graphite moderator. 2 claims, 4 figures

  3. Neutronic reactor

    International Nuclear Information System (INIS)

    Carleton, J.T.

    1977-01-01

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment. 3 claims, 6 figures

  4. Visualization of Bulk Magnetic Properties by Neutron Grating Interferometry

    Science.gov (United States)

    Betz, B.; Rauscher, P.; Siebert, R.; Schaefer, R.; Kaestner, A.; Van Swygenhoven, H.; Lehmann, E.; Grünzweig, C.

    The neutron Grating Interferometer (nGI) is a standard user instrument at the cold neutron imaging beamline ICON (Kaestner, 2011) at the neutron source SINQ at Paul Scherrer Institute (PSI), Switzerland. The setup is able to deliver simultaneously information about the attenuation, phase shift (DPC) (Pfeiffer, 2006) and scattering properties in the so-called dark-field image (DFI) (Grünzweig, 2008-I) of a sample. Since neutrons only interact with the nucleus they are often able to penetrate deeper into matter than X-rays, in particular heavier materials. A further advantage of neutrons compared to X-rays is the interaction of the neutron's magnetic moment with magnetic structures that allows for the bulk investigation of magnetic domain structures using the nGI technique (Grünzweig, 2008-II). The nGI-setup and its technique for imaging with cold neutrons is presented in this contribution. The main focus will be on magnetic investigations of electrical steel laminations using the nGI technique. Both, grain-oriented (GO) and non-oriented (NO) laminations will be presented. GO-laminations are widely used in industrial transformer applications, while NO-sheets are common in electrical machines. For grain-oriented sheet, domain walls were visualized individually,spatially resolved, while in NO-sheet a relative density distribution is depicted.

  5. Upgrade of the ultracold neutron source at the pulsed reactor TRIGA Mainz

    Science.gov (United States)

    Kahlenberg, J.; Ries, D.; Ross, K. U.; Siemensen, C.; Beck, M.; Geppert, C.; Heil, W.; Hild, N.; Karch, J.; Karpuk, S.; Kories, F.; Kretschmer, M.; Lauss, B.; Reich, T.; Sobolev, Y.; Trautmann, N.

    2017-11-01

    The performance of the upgraded solid deuterium ultracold neutron source at the pulsed reactor TRIGA Mainz is described. The current configuration stage comprises the installation of a He liquefier to run UCN experiments over long-term periods, the use of stainless steel neutron guides with improved transmission as well as sputter-coated non-magnetic 58NiMo alloy at the inside walls of the thermal bridge and the converter cup. The UCN yield was measured in a "standard" UCN storage bottle (stainless steel) with a volume of 32 litres outside the biological shield at the experimental area yielding UCN densities of 8.5/cm3; an increase by a factor of 3.5 compared to the former setup. The measured UCN storage curve is in good agreement with the predictions from a Monte Carlo simulation developed to model the source. The growth and formation of the solid deuterium converter during freeze-out are affected by the ortho/para ratio of the H2 premoderator.

  6. Upgrade of the ultracold neutron source at the pulsed reactor TRIGA Mainz

    Energy Technology Data Exchange (ETDEWEB)

    Kahlenberg, J.; Ross, K.U.; Beck, M.; Heil, W.; Karch, J.; Kories, F.; Kretschmer, M. [Johannes Gutenberg University, Institute of Physics, Mainz (Germany); Ries, D. [Johannes Gutenberg University, Institute of Nuclear Chemistry, Mainz (Germany); Paul Scherrer Institute (PSI), Laboratory for Particle Physics, Villigen (Switzerland); ETH Zuerich, Institute for Particle Physics, Zuerich (Switzerland); Siemensen, C.; Geppert, C.; Karpuk, S.; Reich, T.; Sobolev, Y.; Trautmann, N. [Johannes Gutenberg University, Institute of Nuclear Chemistry, Mainz (Germany); Hild, N. [Paul Scherrer Institute (PSI), Laboratory for Particle Physics, Villigen (Switzerland); ETH Zuerich, Institute for Particle Physics, Zuerich (Switzerland); Lauss, B. [Paul Scherrer Institute (PSI), Laboratory for Particle Physics, Villigen (Switzerland)

    2017-11-15

    The performance of the upgraded solid deuterium ultracold neutron source at the pulsed reactor TRIGA Mainz is described. The current configuration stage comprises the installation of a He liquefier to run UCN experiments over long-term periods, the use of stainless steel neutron guides with improved transmission as well as sputter-coated non-magnetic {sup 58}NiMo alloy at the inside walls of the thermal bridge and the converter cup. The UCN yield was measured in a ''standard'' UCN storage bottle (stainless steel) with a volume of 32 litres outside the biological shield at the experimental area yielding UCN densities of 8.5/cm{sup 3}; an increase by a factor of 3.5 compared to the former setup. The measured UCN storage curve is in good agreement with the predictions from a Monte Carlo simulation developed to model the source. The growth and formation of the solid deuterium converter during freeze-out are affected by the ortho/para ratio of the H{sub 2} premoderator. (orig.)

  7. Neutron stars as cosmic neutron matter laboratories

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    Recent developments which have radically changed our understanding of the dynamics of neutron star superfluids and the free precession of neutron stars are summarized, and the extent to which neutron stars are cosmic neutron matter laboratories is discussed. 17 refs., 1 tab

  8. Development of a new deuterium-deuterium (D-D) neutron generator for prompt gamma-ray neutron activation analysis.

    Science.gov (United States)

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    A new deuterium-deuterium (D-D) neutron generator has been developed by Adelphi Technology for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA), and fast neutron radiography. The generator makes an excellent fast, intermediate, and thermal neutron source for laboratories and industrial applications that require the safe production of neutrons, a small footprint, low cost, and small regulatory burden. The generator has three major components: a Radio Frequency Induction Ion Source, a Secondary Electron Shroud, and a Diode Accelerator Structure and Target. Monoenergetic neutrons (2.5MeV) are produced with a yield of 10(10)n/s using 25-50mA of deuterium ion beam current and 125kV of acceleration voltage. The present study characterizes the performance of the neutron generator with respect to neutron yield, neutron production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. In addition the Monte Carlo N-Particle Transport (MCNP) simulation code was used to optimize the setup with respect to thermal flux and radiation protection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Impact of the frequency of online verifications on the patient set-up accuracy and set-up margins

    International Nuclear Information System (INIS)

    Rudat, Volker; Hammoud, Mohamed; Pillay, Yogin; Alaradi, Abdul Aziz; Mohamed, Adel; Altuwaijri, Saleh

    2011-01-01

    The purpose of the study was to evaluate the patient set-up error of different anatomical sites, to estimate the effect of different frequencies of online verifications on the patient set-up accuracy, and to calculate margins to accommodate for the patient set-up error (ICRU set-up margin, SM). Alignment data of 148 patients treated with inversed planned intensity modulated radiotherapy (IMRT) or three-dimensional conformal radiotherapy (3D-CRT) of the head and neck (n = 31), chest (n = 72), abdomen (n = 15), and pelvis (n = 30) were evaluated. The patient set-up accuracy was assessed using orthogonal megavoltage electronic portal images of 2328 fractions of 173 planning target volumes (PTV). In 25 patients, two PTVs were analyzed where the PTVs were located in different anatomical sites and treated in two different radiotherapy courses. The patient set-up error and the corresponding SM were retrospectively determined assuming no online verification, online verification once a week and online verification every other day. The SM could be effectively reduced with increasing frequency of online verifications. However, a significant frequency of relevant set-up errors remained even after online verification every other day. For example, residual set-up errors larger than 5 mm were observed on average in 18% to 27% of all fractions of patients treated in the chest, abdomen and pelvis, and in 10% of fractions of patients treated in the head and neck after online verification every other day. In patients where high set-up accuracy is desired, daily online verification is highly recommended

  10. Impact of the frequency of online verifications on the patient set-up accuracy and set-up margins

    Directory of Open Access Journals (Sweden)

    Mohamed Adel

    2011-08-01

    Full Text Available Abstract Purpose The purpose of the study was to evaluate the patient set-up error of different anatomical sites, to estimate the effect of different frequencies of online verifications on the patient set-up accuracy, and to calculate margins to accommodate for the patient set-up error (ICRU set-up margin, SM. Methods and materials Alignment data of 148 patients treated with inversed planned intensity modulated radiotherapy (IMRT or three-dimensional conformal radiotherapy (3D-CRT of the head and neck (n = 31, chest (n = 72, abdomen (n = 15, and pelvis (n = 30 were evaluated. The patient set-up accuracy was assessed using orthogonal megavoltage electronic portal images of 2328 fractions of 173 planning target volumes (PTV. In 25 patients, two PTVs were analyzed where the PTVs were located in different anatomical sites and treated in two different radiotherapy courses. The patient set-up error and the corresponding SM were retrospectively determined assuming no online verification, online verification once a week and online verification every other day. Results The SM could be effectively reduced with increasing frequency of online verifications. However, a significant frequency of relevant set-up errors remained even after online verification every other day. For example, residual set-up errors larger than 5 mm were observed on average in 18% to 27% of all fractions of patients treated in the chest, abdomen and pelvis, and in 10% of fractions of patients treated in the head and neck after online verification every other day. Conclusion In patients where high set-up accuracy is desired, daily online verification is highly recommended.

  11. Basic of Neutron NDA

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    The objectives of this presentation are to introduce the basic physics of neutron production, interactions and detection; identify the processes that generate neutrons; explain the most common neutron mechanism, spontaneous and induced fission and (a,n) reactions; describe the properties of neutron from different sources; recognize advantages of neutron measurements techniques; recognize common neutrons interactions; explain neutron cross section measurements; describe the fundamental of 3He detector function and designs; and differentiate between passive and active assay techniques.

  12. A new ceramic material for shielding pulsed neutron scattering instruments

    International Nuclear Information System (INIS)

    Celli, M.; Grazzi, F.; Zoppi, M.

    2006-01-01

    We propose a new ceramic composite, based on boron carbide, to use as a shielding material for pulsed neutron scattering instrumentation. The measured transmission data show characteristics equivalent to crispy mix, a common shielding material used at ISIS (UK)

  13. Status and Perspectives of Neutron Imaging Facilities

    Science.gov (United States)

    Lehmann, E.; Trtik, P.; Ridikas, D.

    The methodology and the application range of neutron imaging techniques have been significantly improved at numerous facilities worldwide in the last decades. This progress has been achieved by new detector systems, the setup of dedicated, optimized and flexible beam lines and the much better understanding of the complete imaging process thanks to complementary simulations. Furthermore, new applications and research topics were found and implemented. However, since the quality and the number of neutron imaging facilities depend much on the access to suitable beam ports, there is still an enormous potential to implement state-of-the-art neutron imaging techniques at many more facilities. On the one hand, there are prominent and powerful sources which do not intend/accept the implementation of neutron imaging techniques due to the priorities set for neutron scattering and irradiation techniques exclusively. On the other hand, there are modern and useful devices which remain under-utilized and have either not the capacity or not the know-how to develop attractive user programs and/or industrial partnerships. In this overview of the international status of neutron imaging facilities, we will specify details about the current situation.

  14. Broadband transmission EPR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Wilfred R Hagen

    Full Text Available EPR spectroscopy employs a resonator operating at a single microwave frequency and phase-sensitive detection using modulation of the magnetic field. The X-band spectrometer is the general standard with a frequency in the 9-10 GHz range. Most (biomolecular EPR spectra are determined by a combination of the frequency-dependent electronic Zeeman interaction and a number of frequency-independent interactions, notably, electron spin - nuclear spin interactions and electron spin - electron spin interactions, and unambiguous analysis requires data collection at different frequencies. Extant and long-standing practice is to use a different spectrometer for each frequency. We explore the alternative of replacing the narrow-band source plus single-mode resonator with a continuously tunable microwave source plus a non-resonant coaxial transmission cell in an unmodulated external field. Our source is an arbitrary wave digital signal generator producing an amplitude-modulated sinusoidal microwave in combination with a broadband amplifier for 0.8-2.7 GHz. Theory is developed for coaxial transmission with EPR detection as a function of cell dimensions and materials. We explore examples of a doublet system, a high-spin system, and an integer-spin system. Long, straigth, helical, and helico-toroidal cells are developed and tested with dilute aqueous solutions of spin label hydroxy-tempo. A detection limit of circa 5 µM HO-tempo in water at 800 MHz is obtained for the present setup, and possibilities for future improvement are discussed.

  15. New education system for construction of optical holography setup - Tangible learning with Augmented Reality

    Science.gov (United States)

    Yamaguchi, Takeshi; Yoshikawa, Hiroshi

    2013-02-01

    In case of teaching optical system construction, it is difficult to prepare the optical components for the attendance student. However the tangible learning is very important to master the optical system construction. It helps learners understand easily to use an inexpensive learning system that provides optical experiments experiences. Therefore, we propose the new education system for construction of optical setup with the augmented reality. To use the augmented reality, the proposed system can simulate the optical system construction by the direct hand control. Also, this system only requires an inexpensive web camera, printed makers and a personal computer. Since this system does not require the darkroom and the expensive optical equipments, the learners can study anytime, anywhere when they want to do. In this paper, we developed the system that can teach the optical system construction of the Denisyuk hologram and 2-step transmission type hologram. For the tangible learning and the easy understanding, the proposed system displays the CG objects of the optical components on the markers which are controlled by the learner's hands. The proposed system does not only display the CG object, but also display the light beam which is controlled by the optical components. To display the light beam that is hard to be seen directly, the learners can confirm about what is happening by the own manipulation. For the construction of optical holography setup, we arrange a laser, mirrors, a PBS (polarizing beam splitter), lenses, a polarizer, half-wave plates, spatial filters, an optical power meter and a recording plate. After the construction, proposed system can check optical setup correctly. In comparison with the learners who only read a book, the learners who use the system can construct the optical holography setup more quickly and correctly.

  16. New education system for construction of optical holography setup – Tangible learning with Augmented Reality

    International Nuclear Information System (INIS)

    Yamaguchi, Takeshi; Yoshikawa, Hiroshi

    2013-01-01

    In case of teaching optical system construction, it is difficult to prepare the optical components for the attendance student. However the tangible learning is very important to master the optical system construction. It helps learners understand easily to use an inexpensive learning system that provides optical experiments experiences. Therefore, we propose the new education system for construction of optical setup with the augmented reality. To use the augmented reality, the proposed system can simulate the optical system construction by the direct hand control. Also, this system only requires an inexpensive web camera, printed makers and a personal computer. Since this system does not require the darkroom and the expensive optical equipments, the learners can study anytime, anywhere when they want to do. In this paper, we developed the system that can teach the optical system construction of the Denisyuk hologram and 2-step transmission type hologram. For the tangible learning and the easy understanding, the proposed system displays the CG objects of the optical components on the markers which are controlled by the learner's hands. The proposed system does not only display the CG object, but also display the light beam which is controlled by the optical components. To display the light beam that is hard to be seen directly, the learners can confirm about what is happening by the own manipulation. For the construction of optical holography setup, we arrange a laser, mirrors, a PBS (polarizing beam splitter), lenses, a polarizer, half-wave plates, spatial filters, an optical power meter and a recording plate. After the construction, proposed system can check optical setup correctly. In comparison with the learners who only read a book, the learners who use the system can construct the optical holography setup more quickly and correctly.

  17. IMPLEMENTATION OF INDUSTRIAL ROBOT-MANIPULATOR SETUPS IN EDUCATIONAL PROCESS

    Directory of Open Access Journals (Sweden)

    A. A. Bobtsov

    2013-01-01

    Full Text Available The article deals with the most important aspects of industrial robot-manipulator setups implementation as an educational tool for the workshop part of advanced technologies in robotics and control engineering courses.

  18. The COMPASS Setup for Physics with Hadron Beams

    CERN Document Server

    Abbon, Ph.; Akhunzyanov, R.; Alexandrov, Yu.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Burtin, E.; Capozza, L.; Ciliberti, P.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Cotte, D.; Crespo, M.L.; Curiel, Q.; Dafni, T.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Desforge, D.; Dinkelbach, A.M.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Durand, D.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Gatignon, L.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giganon, A.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Gregori, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Hoppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jorg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kroumchtein, Z.V.; Kuchinski, N.; Kuhn, R.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Menon, G.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Moinester, M.A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nunes, Ana Sofia; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesaro, G.; Pesaro, V.; Peshekhonov, D.V.; Pires, C.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Reymond, J-M.; Rocco, E.; Rossiyskaya, N.S.; Rousse, J.Y.; Ryabchikov, D.I.; Rychter, A.; Samartsev, A.; Samoylenko, V.D.; Sandacz, A.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schluter, T.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Schott, M.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tskhay, V.; Uhl, S.; Uman, I.; Virius, M.; Wang, L.; Weisrock, T.; Weitzel, Q.; Wilfert, M.; Windmolders, R.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2015-01-01

    The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successfully used with positive and negative hadron beams and with liquid hydrogen and solid nuclear targets. This article describes the new and upgraded detectors and auxiliary equipment, outlines the reconstruction procedures used, and summarises the general performance of the setup.

  19. A Test Setup for Quality Assurance of Front End Hybrids

    CERN Document Server

    Axer, Markus; Camps, Clemens; Commichau, Volker; Flügge, Günter; Franke, Torsten; Hangarter, Klaus; Ilgin, Can; Mnich, Joachim; Niehusmann, Jan; Poettgens, Michael; Schorn, Peter; Schulte, Reiner; Struczinski, Wolfgang

    2001-01-01

    The APV Readout Control (ARC) Test Setup is a compact, cost efficient test and diagnostic tool which is suited for full operation and characterisation of FE hybrids and Si-Detector modules. This note gives an overview of the construction and the features of the test facility. Based on the ARC setup and the experience gained with one prototype FE hybrid, possible quality assurance scenarios for short and long term tests of FE hybrids are also presented.

  20. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    International Nuclear Information System (INIS)

    Wehring, B.W.; Uenlue, K.

    1995-01-01

    Funds were received for the first year of a three year DOE Nuclear Engineering Research Grant, ''Study of Neutron Focusing at the Texas Cold Neutron Source'' (FGO2-92ER75711). The purpose of this three year study was to develop a neutron focusing system to be used with the Texas Cold Neutron Source (TCNS) to produce an intense beam of neutrons. A prompt gamma activation analysis (PGAA) facility was also to be designed, setup, and tested under the three year project. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which we wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, we obtained gains of 3 to 5 for the neutron flux averaged over an area of 1 x 1 cm

  1. Dynamically polarized samples for neutron protein crystallography at the Spallation Neutron Source

    Science.gov (United States)

    Zhao, Jinkui; Pierce, Josh; Myles, Dean; Robertson, J. L.; Herwig, Kenneth W.; Standaert, Bob; Cuneo, Matt; Li, Le; Meilleur, Flora

    2016-09-01

    To prepare for the next generation neutron scattering instruments for the planned second target station at the Spallation Neutron Source (SNS) and to broaden the scientific impact of neutron protein crystallography at the Oak Ridge National Laboratory, we have recently ramped up our efforts to develop a dynamically polarized target for neutron protein crystallography at the SNS. Proteins contain a large amount of hydrogen which contributes to incoherent diffraction background and limits the sensitivity of neutron protein crystallography. This incoherent background can be suppressed by using polarized neutron diffraction, which in the same time also improves the coherent diffraction signal. Our plan is to develop a custom Dynamic Nuclear Polarization (DNP) setup tailored to neutron protein diffraction instruments. Protein crystals will be polarized at a magnetic field of 5 T and temperatures of below 1 K. After the dynamic polarization process, the sample will be brought to a frozen-spin mode in a 0.5 T holding field and at temperatures below 100 mK. In a parallel effort, we are also investigating various ways of incorporating polarization agents needed for DNP, such as site specific spin labels, into protein crystals.

  2. Selected topics in thermal and resonance neutron capture

    International Nuclear Information System (INIS)

    Raman, S.

    1981-01-01

    Several topics of current interest are discussed including energy and intensity standards, direct thermal neutron capture, primary E2 transitions in (n,γ) reactions, nonstatistical effects in resonance neutron capture, transmission measurements of Sc employed in 2-keV facilities, and tests of Axel-Brink predictions of γ-ray strength functions via average resonance capture

  3. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2012-07-01

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  4. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2013-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)

  5. Pulsed neutron generator

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Bykovskii, Yu.A.; Vergun, I.I.; Kozlovskii, K.I.; Kozyrev, Yu.P.; Leonov, R.K.; Simagin, B.I.; Tsybin, A.S.; Shikanov, A.Ie.

    1986-03-01

    The paper describes a new device for generating pulsed neutron fields, utilized in nuclear geophysics for carrying out pulsed neutron logging and activation analysis under field conditions. The invention employs a sealed-off neutron tube with a laser ion source which increases neutron yield to the level of 10 neutrons per second or higher. 2 refs., 1 fig

  6. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2012-01-01

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  7. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2013-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)

  8. Polarized neutron source and detectors for the TUNL parity-even test of time reversal invariance

    International Nuclear Information System (INIS)

    Huffman, P.R.; Roberson, N.R.; Wilburn, W.S.

    1995-01-01

    The development and implementation of a 10 MHz neutron production target and detector system are presented. The system has been used in a test of parity-even time reversal invariance in neutron transmission through an aligned target. Neutrons were produced via the D(d,n) 3 He reaction using a liquid nitrogen cooled deuterium gas cell. The cryogenic cell required temperature stabilization for minimization of systematic effects. Two four-detector arrays of neutron detectors were developed for 0 degrees transmission measurements and flux monitoring. The system allowed transmission asymmetries to be measured to accuracies better than 10 -6 in a parity-conserving test of time reversal invariance

  9. Neutron scattering

    International Nuclear Information System (INIS)

    1991-02-01

    The annual report on hand gives an overview of the research work carried out in the Laboratory for Neutron Scattering (LNS) of the ETH Zuerich in 1990. Using the method of neutron scattering, it is possible to examine in detail the static and dynamic properties of the condensed material. In accordance with the multidisciplined character of the method, the LNS has for years maintained a system of intensive co-operation with numerous institutes in the areas of biology, chemistry, solid-state physics, crystallography and materials research. In 1990 over 100 scientists from more than 40 research groups both at home and abroad took part in the experiments. It was again a pleasure to see the number of graduate students present, who were studying for a doctorate and who could be introduced into the neutron scattering during their stay at the LNS and thus were in the position to touch on central ways of looking at a problem in their dissertation using this modern experimental method of solid-state research. In addition to the numerous and interesting ways of formulating the questions to explain the structure, nowadays the scientific programme increasingly includes particularly topical studies in connection with high temperature-supraconductors and materials research

  10. Storage of cold and thermal neutrons with perfect crystals at the pulsed source

    International Nuclear Information System (INIS)

    Jericha, E.

    1996-12-01

    The possibility of storing cold neutrons by sequential Bragg reflections between two parallel perfect crystal plates in backscattering geometry has been implemented as the parasitic instrument VESTA at the pulsed neutron source ISIS. Filling the neutrons into and releasing them from the storage cavity is accomplished by applying a short-pulsed magnetic field at the crystal plates. The method takes advantage of the conservation of the axial component of the neutron wave vector after Bragg reflection and its Zeeman shift in a magnetic field. The setup at ISIS is presented where a monochromatic neutron beam with wavelength 6.27 A and 2.9 x 10 4 n/scm 2 flux is taken out of the neutron guide leading to the IRIS backscattering spectrometer by a pyrolytic graphite crystal monochromator. The longest storage period obtained with the setup was 2.655 s which corresponds to 1574 consecutive Bragg reflections and a distance traveled of 1675 n. The measurements are analyzed by heuristic methods developed for neutron storage experiments. The apparatus is seen as a passive resonator system and characteristics like stored neutron intensity, the efficiency of the storage process, the probability to remain in the system, the mirror reflectivity, the dispersion of the stored distribution, the penetration depth of a neutron into a crystal mirror and the figure of merit of the resonator system are discussed. Monte Carlo simulations of the extracted beam and of the stored neutron distribution were performed to deepen the understanding of the experimental results. (author)

  11. HIV Transmission

    Science.gov (United States)

    ... Abroad Treatment Basic Statistics Get Tested Find an HIV testing site near you. Enter ZIP code or city Follow HIV/AIDS CDC HIV CDC HIV/AIDS See RSS | ... on HIV Syndicated Content Website Feedback HIV/AIDS HIV Transmission Language: English (US) Español (Spanish) Recommend on ...

  12. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  13. Neutron structure analysis using neutron imaging plate

    International Nuclear Information System (INIS)

    Karasawa, Yuko; Minezaki, Yoshiaki; Niimura, Nobuo

    1997-01-01

    Neutron is complementary against X-ray and is dispensable for structure analysis. However, because of the lack of the neutron intensity, it was not so common as X-ray. In order to overcome the intensity problem, a neutron imaging plate (NIP) has been successfully developed. The NIP has opened the door of neutron structure biology, where all the hydrogen atoms and bound water molecules of protein are determined, and contributed to development of other fields such as neutron powder diffraction and neutron radiography, too. (author)

  14. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  15. REFRACTIVE NEUTRON LENS

    OpenAIRE

    Petrov, P. V.; Kolchevsky, N. N.

    2013-01-01

    Compound concave refractive lenses are used for focusing neutron beam. Investigations of spectral and focusing properties of a refractive neutron lens are presented. Resolution of the imaging system on the base of refractive neutron lenses depends on material properties and parameters of neutron source. Model of refractive neutron lens are proposed. Results of calculation diffraction resolution and focal depth of refractive neutron lens are discussed.

  16. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  17. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  18. Neutron therapy coupling brachytherapy and boron neutron capture therapy (BNCT) techniques

    International Nuclear Information System (INIS)

    Chaves, Iara Ferreira.

    1994-12-01

    In the present dissertation, neutron radiation techniques applied into organs of the human body are investigated as oncologic radiation therapy. The proposal treatment consists on connecting two distinct techniques: Boron Neutron Capture Therapy (BNCT) and irradiation by discrete sources of neutrons, through the brachytherapy conception. Biological and radio-dosimetrical aspects of the two techniques are considered. Nuclear aspects are discussed, presenting the nuclear reactions occurred in tumoral region, and describing the forms of evaluating the dose curves. Methods for estimating radiation transmission are reviewed through the solution of the neutron transport equation, Monte Carlo methodology, and simplified analytical calculation based on diffusion equation and numerical integration. The last is computational developed and presented as a quickly way to neutron transport evaluation in homogeneous medium. The computational evaluation of the doses for distinct hypothetical situations is presented, applying the coupled techniques BNTC and brachytherapy as an possible oncologic treatment. (author). 78 refs., 61 figs., 21 tabs

  19. Development of spin echo small angle neutron scattering

    International Nuclear Information System (INIS)

    Bouwman, W.G.; Uca, O.; Van Oossanen, M.; Kraan, W.H.; Rekveldt, M.T.

    1999-01-01

    A novel kind of small angle neutron scattering (SANS) instrument is being built, based on the Larmor precession of polarised neutrons in a magnetic field. A spin echo of the polarised neutrons is used to detect the scattering. The basis of this instrument is a symmetric set-up with a spin flipper in the centre, which creates a spin echo, even with a divergent beam. The precession regions on either side of the spin flipper are shaped such to produce a very sensitive relation between the vertical angle of the neutron path and the total precession angle on one side. Any SANS of a sample placed in the instrument changes the symmetry of the neutron path and therefore decreases the echo. This amounts to measuring only the difference of the incoming and outgoing angle. This gives a huge increase in intensity of the signal with respect to conventional SANS in which both incoming and outgoing angle are defined. Magnetised foils, which rotate the neutron spin between being parallel to the magnetic field and perpendicular to the field are used to start or terminate the precession. With a preliminary set-up the first spin echo SANS signal have been measured. A full correlation function in samples over distances from 5 to 1000 nm is expected to be measured in some minutes. (author)

  20. Diffraction of very cold neutrons at phase gratings

    Science.gov (United States)

    Eder, Kurt; Gruber, Manfred; Zeilinger, Anton; Gähler, Roland; Mampe, Walter

    1991-06-01

    We report extensive experiments on the diffraction of very cold neutrons ( λ ≈ 100 Å) at large-area transmission phase gratings with grating constants d = 2 μm and d = 1 μm, respectively. The experimental results are compared with Fresnel-Kirchhoff calculations showing agreement in great detail. Using phase gratings it is possible to shift intensities between different diffraction orders, thus making them very useful for other neutron-optics experiments at low energies. Also, the excellent manufacturing precision of our transmission phase gratings meets the requirements for such experiments like very-cold-neutron interferometry.

  1. Diffraction of very cold neutrons at phase gratings

    International Nuclear Information System (INIS)

    Eder, K.; Gruber, M.; Zeilinger, A.; Gaehler, R.; Mampe, W.

    1991-01-01

    We report extensive experiments on the diffraction of very cold neutrons (λ ≅ 100A) at large-area transmission phase gratings with grating constants d=2μm and d=1μm, respectively. The experimental results are compared with Fresnel-Kirchhoff calculations showing agreement in great detail. Using phase gratings it is possible to shift intensities between different diffraction orders, thus making them very useful for other neutron-optics experiments at low energies. Also, the excellent manufacturing precision of our transmission phase gratings meets the requirements for such experiments like very-cold-neutron interferometry. (orig.)

  2. Discrimination methods between neutron and gamma rays for boron loaded plastic scintillators

    CERN Document Server

    Normand, S; Haan, S; Louvel, M

    2002-01-01

    Boron loaded plastic scintillators exhibit interesting properties for neutron detection in nuclear waste management and especially in investigating the amount of fissile materials when enclosed in waste containers. Combining a high thermal neutron efficiency and a low mean neutron lifetime, they are suitable in neutron multiplicity counting. However, due to their high sensitivity to gamma rays, pulse shape discrimination methods need to be developed in order to optimize the passive neutron assay measurement. From the knowledge of their physical properties, it is possible to separate the three kinds of particles that have interacted in the boron loaded plastic scintillator (gamma, fast neutron and thermal neutron). For this purpose, we have developed and compared the two well known discrimination methods (zero crossing and charge comparison) applied for the first time to boron loaded plastic scintillator. The setup for the zero crossing discrimination method and the charge comparison methods is thoroughly expl...

  3. Search for neutrons from deuterated palladium subject to high electrical currents

    International Nuclear Information System (INIS)

    Taylor, S.F.; Claytor, T.N.; Tuggle, D.G.; Jones, S.E.

    1994-01-01

    Tritium has been detected evolving from samples of deuteriated palladium wires and powders subject to pulsed high voltage at Los Alamos. They wanted to measure whether these samples were emitting neutrons. The idea of pulsing current through the wires and powders was to drive the deuterium in and out by rapid electrical heating. With promising tritium results in hand, the experiments were prepared at Los Alamos, and then taken to BYU and run in the neutron detector located in a tunnel in Provo canyon under 35 m of rock and dirt overburden. The neutrons detector and sample setup are described. Results including total neutron counts, time distributions, and an indication of the energy distributions are discussed. The results do not provide compelling evidence of neutron production, but are not inconsistent with earlier measurements of neutrons and tritium. Difficulties in explaining the difference in tritium and neutron measurements are also discussed. Plans for further work are presented

  4. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  5. Malaysia: Overview of activities on Neutron Imaging (NI) and Cultural Heritage (CH) studies

    International Nuclear Information System (INIS)

    Muhammad Rawi Mohamed Zin

    2012-01-01

    Inspection of cultural heritage artifact by neutron imaging becoming interesting and important research area since its able to sees internal structure non-destructively. Therefore advanced neutron imaging capability to conduct this kind of inspection is needed. Associated with this needs, TRIGA MARK II PUSPATI reactor has neutron imaging facility, NUR-2 which capable for radiography and tomography usage. Details parameters of current set up is given. Neutron radiography capability at this facility has been relied on direct method technique by the usage of SR-45 KODAK film technology. Current set-up has been used by university student through-out the country to conduct their research in various levels of educations

  6. Fusion between heavy neutron-rich nuclei using radioactive and stable ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Shapira, D.; Liang, J.F.; Gross, C.J.; Beene, J.R.; Varner, R.L.; Galindo U, A.; Gomez del Campo, J.; Mueller, P.E.; Stracener, D. W. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Amro, H.; Kolata, J.J. [Physics Department, University of Notre Dame, Notre Dame, IN 46556 (United States); Bierman, J.D. [Physics Department AD-51, Gonzaga Universiy, Spokane, WA 99258-0051 (United States); Caraley, A.L. [Department of Physics, State University of New York at Oswego, Oswego, NY 13126 (United States); Chavez L, E.; Ortiz, M.E. [lFUNAM, 04510 Mexico D.F. (Mexico); Jones, K.L. [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08856 (United States); Loveland, W.; Sprunger, P.H.; Vinodkumar, A.M. [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States)

    2007-12-15

    Evaporation residues (ERs) and fission products were measured following bombardment of {sup 64}Ni with radioactive Sn and Te neutron rich isotopes. The experimental setup was tailored to measurements with low intensity radioactive beams and the data obtained show the obvious enhancement of ER production (survival) with the addition of neutrons to the fused system. A calculation of nucleus-nucleus capture within a WKB formalism incorporating neutron transfer in a two step approach was performed. Using global potentials in our calculations we attempted to predict trends as well as account for measured capture cross sections of collisions between heavy nuclei with large neutron excess. (Author)

  7. Characterization of textile electrodes and conductors using standardized measurement setups

    International Nuclear Information System (INIS)

    Beckmann, L; Neuhaus, C; Medrano, G; Walter, M; Leonhardt, S; Jungbecker, N; Gries, T

    2010-01-01

    Textile electrodes and conductors are being developed and used in different monitoring scenarios, such as ECG or bioimpedance spectroscopy measurements. Compared to standard materials, conductive textile materials offer improved wearing comfort and enable long-term measurements. Unfortunately, the development and investigation of such materials often suffers from the non-reproducibility of the test scenarios. For example, the materials are generally tested on human skin which is difficult since the properties of human skin differ for each person and can change within hours. This study presents two test setups which offer reproducible measurement procedures for the systematic analysis of textile electrodes and conductors. The electrode test setup was designed with a special skin dummy which allows investigation of not only the electrical properties of textile electrodes but also the contact behavior between electrode and skin. Using both test setups, eight textile electrodes and five textile conductors were analyzed and compared

  8. Characterization of textile electrodes and conductors using standardized measurement setups.

    Science.gov (United States)

    Beckmann, L; Neuhaus, C; Medrano, G; Jungbecker, N; Walter, M; Gries, T; Leonhardt, S

    2010-02-01

    Textile electrodes and conductors are being developed and used in different monitoring scenarios, such as ECG or bioimpedance spectroscopy measurements. Compared to standard materials, conductive textile materials offer improved wearing comfort and enable long-term measurements. Unfortunately, the development and investigation of such materials often suffers from the non-reproducibility of the test scenarios. For example, the materials are generally tested on human skin which is difficult since the properties of human skin differ for each person and can change within hours. This study presents two test setups which offer reproducible measurement procedures for the systematic analysis of textile electrodes and conductors. The electrode test setup was designed with a special skin dummy which allows investigation of not only the electrical properties of textile electrodes but also the contact behavior between electrode and skin. Using both test setups, eight textile electrodes and five textile conductors were analyzed and compared.

  9. Measurement Uncertainty Investigation in the Multi-probe OTA Setups

    DEFF Research Database (Denmark)

    Fan, Wei; Szini, Istvan Janos; Foegelle, M. D.

    2014-01-01

    Extensive efforts are underway to standardize over the air (OTA) testing of the multiple input multiple output (MIMO) capable terminals in COST IC1004, 3GPP RAN4 and CTIA. Due to the ability to reproduce realistic radio propagation environments inside the anechoic chamber and evaluate end user me...... chamber setup. This contribution presents the results of uncertainty measurements carried out in three practical multi-probe setups. Some sources of measurement errors, i.e. cable effect, cable termination, etc. are identified based on the measurement results....... metrics in real world scenarios, the multi-probe based method has attracted huge interest from both industry and academia. This contribution attempts to identify some of the measurement uncertainties of the practical multi-probe setups and provide some guidance to establish the multi-probe anechoic...

  10. A cryogenic measurement setup for characterization microwave devices

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr

    2017-01-01

    A cryogenic measurement setup for characterization microwave devices from room to cryogenic temperatures is presented. The setup allows testing microwave devices at variable temperatures ranging from 300 to 77 K. Frequency doubler (94/188 GHz) has been cooled to 77 K and peak efficiency of 32......% at an input-power level of 207 mW is achieved. For verification experimental results the millimeter-wave GaAs Schottky barrier diode model is developed for CAD simulator. The simulated peak efficiency is 37% at 77 K. The estimation of simulated and measured data of the doubler efficiency versus temperature...... has the same trend from 77 to 300 K which confirmed the cryogenic measurement setup applicability....

  11. Eye-in-Hand Manipulation for Remote Handling: Experimental Setup

    Science.gov (United States)

    Niu, Longchuan; Suominen, Olli; Aref, Mohammad M.; Mattila, Jouni; Ruiz, Emilio; Esque, Salvador

    2018-03-01

    A prototype for eye-in-hand manipulation in the context of remote handling in the International Thermonuclear Experimental Reactor (ITER)1 is presented in this paper. The setup consists of an industrial robot manipulator with a modified open control architecture and equipped with a pair of stereoscopic cameras, a force/torque sensor, and pneumatic tools. It is controlled through a haptic device in a mock-up environment. The industrial robot controller has been replaced by a single industrial PC running Xenomai that has a real-time connection to both the robot controller and another Linux PC running as the controller for the haptic device. The new remote handling control environment enables further development of advanced control schemes for autonomous and semi-autonomous manipulation tasks. This setup benefits from a stereovision system for accurate tracking of the target objects with irregular shapes. The overall environmental setup successfully demonstrates the required robustness and precision that remote handling tasks need.

  12. Simulation and prototyping of 2 m long resistive plate chambers for detection of fast neutrons and multi-neutron event identification

    Energy Technology Data Exchange (ETDEWEB)

    Elekes, Z., E-mail: z.elekes@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Aumann, T. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Technische Universität Darmstadt, Darmstadt (Germany); Bemmerer, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Boretzky, K. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Caesar, C. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Technische Universität Darmstadt, Darmstadt (Germany); Cowan, T.C. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universität Dresden, Dresden (Germany); Hehner, J.; Heil, M. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Kempe, M. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Rossi, D. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Röder, M. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universität Dresden, Dresden (Germany); Simon, H. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Sobiella, M.; Stach, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Reinhardt, T. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universität Dresden, Dresden (Germany); Wagner, A.; Yakorev, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Zilges, A. [Universität zu Köln, Köln (Germany); Zuber, K. [Technische Universität Dresden, Dresden (Germany)

    2013-02-11

    Resistive plate chamber (RPC) prototypes of 2 m length were simulated and built. The experimental tests using a 31 MeV electron beam, discussed in details, showed an efficiency higher than 90% and an excellent time resolution of around σ=100ps. Furthermore, comprehensive simulations were performed by GEANT4 toolkit in order to study the possible use of these RPCs for fast neutron (200 MeV–1 GeV) detection and multi-neutron event identification. The validation of simulation parameters was carried out via a comparison to experimental data. A possible setup for invariant mass spectroscopy of multi-neutron emission is presented and the characteristics are discussed. The results show that the setup has a high detection efficiency. Its capability of determining the momentum of the outgoing neutrons and reconstructing the relative energy between the fragments from nuclear reactions is demonstrated for different scenarios.

  13. Radio-isotopic neutron sources for industrial applications and basic research

    International Nuclear Information System (INIS)

    Mohamed, G.Y.; Hassan, M.F.; Ali, M.A.; Abd-El-Wahab, M.; Aziz, M.

    2010-01-01

    CNIF 2 is an irradiation facility based on an Am-Be (b, n) source with present activity of about 175 GBq results in a neutron yield of about 1.04*107 n/s. The facility provides fast and epi-thermal neutrons as well. The aim of the present work is to develop methods able to use neutron activation analysis to estimate the hydrogen content in bulk samples through neutron reflection and transmission processes.

  14. Neutron microdosimetry

    International Nuclear Information System (INIS)

    Kliauga, P.

    1987-01-01

    A major effort was made during the past year to do precision microdosimetry of neutrons at the RARAF facility. By precision microdosimetry the authors mean a special effort to understand, better than previously, some of the factors which go into the limitation of the accuracy and precision of microdosimetric measurements of neutrons. That such factors are still not clearly understood, or at least accounted for, is immediately evident upon examination of published microdosimetric measurements. What becomes immediately apparent upon examination of, say, the dose mean lineal energies reported, is that the spread of reported values for exceeds the reported experimental uncertainty, commonly taken as about 5%. Differences of 50% are not uncommon. It is easy to make the mistake that since classical microdosimetry uses a well-established experimental tool, the proportional counter, that sources of error should also be well understood. However, microdosimetry makes use of the proportional counter in a way which is quite different from its origins as a low-energy photon spectroscopy device. Microdosimetric spectra, particularly of neutrons, span 5 to 6 decades of event sizes. It is by no means certain that proportionality extends over such a range, and in fact it has been pointed out that it probably does not. Data analysis techniques vary from one experimenter to another, and can substantially affect mean values as well as spectral shape. The authors are examining these parameters, as well as others, such as calibration errors, but they are especially concentrating on the effect of counter design and performance on the resultant spectra which the counter measures

  15. An acceptance diagram analysis of the contaminant pulse removal problem with direct geometry neutron chopper spectrometers

    International Nuclear Information System (INIS)

    Copley, J.R.D.

    2003-01-01

    Phased choppers are used to produce pulsed beams of monochromatic neutrons at research reactors and spallation neutron sources. Depending on the design of the instrument, it is very possible that the choppers will transmit neutrons with wavelengths other than those within the desired band of wavelengths. One or more additional choppers are typically needed to remove these contaminant pulses. We describe a method of determining the wavelength- and time-dependent transmission of a system of choppers using acceptance diagrams. The method is illustrated with calculations for the Disk Chopper Spectrometer at the NIST Center for Neutron Research and the proposed Cold Neutron Chopper Spectrometer at the Spallation Neutron Source (Oak Ridge, TN)

  16. Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source

    CERN Document Server

    Hannaske, Roland; Beyer, Roland; Junghans, Arnd; Bemmerer, Daniel; Birgersson, Evert; Ferrari, Anna; Grosse, Eckart; Kempe, Mathias; Kögler, Toni; Marta, Michele; Massarczyk, Ralph; Matic, Andrija; Schramm, Georg; Schwengner, Ronald; Wagner, Andreas

    2014-01-01

    Neutron total cross sections of 197 Au and nat Ta have been measured at the nELBE photoneutron source in the energy range from 0.1 - 10 MeV with a statistical uncertainty of up to 2 % and a total systematic uncertainty of 1 %. This facility is optimized for the fast neutron energy range and combines an excellent t ime structure of the neutron pulses (electron bunch width 5 ps) with a short flight path of 7 m. Because of the low instantaneous neutron flux transmission measurements of neutron total cross sections are possible, that exhibit very different beam and back ground conditions than found at other neutron sources.

  17. Bulk hydrogen analysis, using neutrons. Final report of the first research co-ordination meeting

    International Nuclear Information System (INIS)

    1997-07-01

    There are many situations when hydrogen is required to be measured in a bulk medium. For this reason neutrons are used due to their high penetrating power in dense material. In addition, the mass attenuation coefficient for neutrons in hydrogen is significantly larger than for all other elements, meaning that neutrons have a higher probability of interacting with hydrogen than with other elements in the sample matrix. This CRP was recommended for further development of the techniques and new applications in the following areas: Fast Neutron/Gamma Transmission Technique; Digital Neutron Imaging; Hydrogen Detection by Epithermal Neutrons; Microscopic Behaviour of Hydrogen in Bulk Materials

  18. Diamondlike carbon can replace beryllium in physics with ultracold neutrons

    International Nuclear Information System (INIS)

    Atchison, F.; Blau, B.; Daum, M.; Fierlinger, P.; Foelske, A.; Geltenbort, P.; Gupta, M.; Henneck, R.; Heule, S.; Kasprzak, M.; Kuzniak, M.; Kirch, K.; Meier, M.; Pichlmaier, A.; Plonka, Ch.; Reiser, R.; Theiler, B.; Zimmer, O.; Zsigmond, G.

    2006-01-01

    To complete our study of ultracold neutron (UCN) storage-vessel coatings, we have measured the Fermi potential for neutrons on diamondlike carbon coatings produced by laser induced vacuum arc deposition. A sample with an sp 3 content of 0.45, measured using, for the first time, neutron transmission had a Fermi potential of (249+/-14)neV. A second sample with an sp 3 fraction of 0.67, measured using cold neutron reflectometry, gave (271+/-13)neV. These values complete the demonstration that there is a viable alternative to Be in UCN physics

  19. Why IV Setup for Stream Ciphers is Difficult

    DEFF Research Database (Denmark)

    Zenner, Erik

    2007-01-01

    In recent years, the initialization vector (IV) setup has proven to be the most vulnerable point when designing secure stream ciphers. In this paper, we take a look at possible reasons why this is the case, identifying numerous open research problems in cryptography.......In recent years, the initialization vector (IV) setup has proven to be the most vulnerable point when designing secure stream ciphers. In this paper, we take a look at possible reasons why this is the case, identifying numerous open research problems in cryptography....

  20. Determination of hydrogen content by neutron techniques

    International Nuclear Information System (INIS)

    Santisteban, J.R.; Granada, J.R.; Mayer, R.E.

    1997-01-01

    The commonly available techniques for the determination of hydrogen dissolved in solids are usually destructive from the point of view of the sample. A new, nondestructive method for this kind of measurements has been developed at our laboratory, with the requirement of improved sensitivity for massive samples. This scattering method is based on the use of epithermal neutrons, and has been implemented through the design and construction of a spectrometer dedicated to that task. In addition, the traditional transmission method has been employed to determine hydrogen content in metals, using the full sub thermal and thermal neutron energy ranges. A pulsed neutron source based on an electron LINAC is employed, together with time-of-flight techniques. In this work we will present some results illustrative of the sensitivity achieved by these neutron techniques in different systems and for a wide range of hydrogen concentrations. (author) [es

  1. Transmission dose estimation algorithm for tissue deficit

    International Nuclear Information System (INIS)

    Yun, Hyong Geun; Shin, Kyo Chul; Chie, Eui Kyu; Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo

    2002-01-01

    Measurement of transmission dose is useful for in vivo dosimetry. In this study, previous algorithm for estimation of transmission dose was modified for use in cases with tissue deficit. The beam data was measured with flat solid phantom in various conditions of tissue deficit. New algorithm for correction of transmission dose for tissue deficit was developed by physical reasoning. The algorithm was tested in experimental settings with irregular contours mimicking breast cancer patients using multiple sheets of solid phantoms. The correction algorithm for tissue deficit could accurately reflect the effect of tissue deficit with errors within ± 1.0% in most situations and within ± 3.0% in experimental settings with irregular contours mimicking breast cancer treatment set-up. Developed algorithm could accurately reflect the effect of tissue deficit and irregularly shaped body contour on transmission dosimetry

  2. X-ray phase scanning setup for non-destructive testing using Talbot-Lau interferometer

    Science.gov (United States)

    Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A.

    2016-09-01

    X-ray grating interferometry has a great potential for X-ray phase imaging over conventional X-ray absorption imaging which does not provide significant contrast for weakly absorbing objects and soft biological tissues. X-ray Talbot and Talbot-Lau interferometers which are composed of transmission gratings and measure the differential X-ray phase shifts have gained popularity because they operate with polychromatic beams. In X-ray radiography, especially for nondestructive testing in industrial applications, the feasibility of continuous sample scanning is not yet completely revealed. A scanning setup is frequently advantageous when compared to a direct 2D static image acquisition in terms of field of view, exposure time, illuminating radiation, etc. This paper demonstrates an efficient scanning setup for grating-based Xray phase imaging using laboratory-based X-ray source. An apparatus consisting of an X-ray source that emits X-rays vertically, optical gratings and a photon-counting detector was used with which continuously moving objects across the field of view as that of conveyor belt system can be imaged. The imaging performance of phase scanner was tested by scanning a long continuous moving sample at a speed of 5 mm/s and absorption, differential-phase and visibility images were generated by processing non-uniform moire movie with our specially designed phase measurement algorithm. A brief discussion on the feasibility of phase scanner with scanning setup approach including X-ray phase imaging performance is reported. The successful results suggest a breakthrough for scanning objects those are moving continuously on conveyor belt system non-destructively using the scheme of X-ray phase imaging.

  3. Development of a new electronic neutron imaging system

    CERN Document Server

    Brenizer, J S; Gibbs, K M; Mengers, P; Stebbings, C T; Polansky, D; Rogerson, D J

    1999-01-01

    An electronic neutron imaging camera system was developed for use with thermal, epithermal, and fast neutrons in applications that include nondestructive inspection of explosives, corrosion, turbine blades, electronics, low Z components, etc. The neutron images are expected to provide information to supplement that available from X-ray tests. The primary camera image area was a 30x30 cm field-of-view with a spatial resolution approaching 1.6 line pairs/mm (lp/mm). The camera had a remotely changeable second lens to limit the field-of-view to 7.6x7.6 cm for high spatial resolution (at least 4 lp/mm) thermal neutron imaging, but neutron and light scatter will limit resolution for fast neutrons to about 0.5 lp/mm. Remote focus capability enhanced camera set-up for optimum operation. The 75 dB dynamic range camera system included sup 6 Li-based screens for imaging of thermal and epithermal neutrons and ZnS(Ag)-based screens for fast neutron imaging. The fast optics was input to a Super S-25 Gen II image intensifi...

  4. Silicon detectors for the n-TOF neutron beams monitoring

    CERN Document Server

    Cosentino, L.; Barbagallo, M.; Colonna, N.; Damone, L.; Pappalardo, A.; Piscopo, M.; Finocchiaro, P.

    2015-01-01

    During 2014 the second experimental area EAR2 was completed at the n-TOF neutron beam facility at CERN. As the neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target, the resulting neutron beam covers an enormous energy range, from thermal to several GeV. In this paper we describe two beam diagnostic devices, designed and built at INFN-LNS, both exploiting silicon detectors coupled with neutron converter foils containing 6Li. The first one is based on four silicon pads and allows to monitor the neutron beam flux as a function of the neutron energy. The second one, based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices have been ch...

  5. Automation of angular movement of the arm neutron diffractometer

    International Nuclear Information System (INIS)

    Aguilar H, F.; Herrera A, E.; Quintana C, G.; Torres R, C. E.; Reyes V, M.

    2015-09-01

    A technique to determine the crystal structure of some materials is the neutron diffraction. This technique consists on placing the material in question in a monoenergetic neutron beam obtained by neutron diffraction in a monochromator crystal. The neutron energy depends of the diffraction angle. The Instituto Nacional de Investigaciones Nucleares has a neutron diffractometer and monochromator crystals of pyrolytic graphite. This crystal can be selecting the neutron energy depending on the angle of diffraction in the glass. The radiation source for the neutron diffractometer is the TRIGA Mark III reactor of the Nuclear Center Dr. Nabor Carrillo Flores. During their operation are also obtained besides neutrons, β and γ radiation. The interest is to have thermal neutrons, so fast neutrons and γ rays are removed using appropriate shielding. The average neutron fluxes of the radial port RE2 of neutron diffractometer at power 1 MW are: heat flow 2,466 x 10 8 n cm -2 sec -1 and fast flow 1,239 x 10 8 n cm -2 sec -1 . The neutron detector is housed in a shield mounted on a mechanical linkage with which the diffraction angle is selected, and therefore the energy of the neutrons. The movement of this joint was performed by the equipment operator manually, so that accuracy to select the diffraction angle was not good and the process rather slow. Therefore a mechanical system was designed, automated by means of a motor as an actuator, a system of force transmission and an electronic control in order that the operator will schedule the diffraction angles and allow the count in the neutrons detection system in a simple manner. (Author)

  6. Optimization of Shielding- Collimator Parameters for ING-27 Neutron Generator Using MCNP5

    Directory of Open Access Journals (Sweden)

    Hegazy Aya Hamdy

    2018-01-01

    Full Text Available Neutron generators are now used in various fields. They produce only fast neutrons; D-D neutron generator produces 2.45 MeV neutrons and D-T produces 14.1 MeV neutrons. In order to optimize shielding-collimator parameters to achieve higher neutron flux at the investigated sample (The signal with lower neutron and gamma rays flux at the area of the detectors, design iterations are widely used. This work was applied to ROMASHA setup, TANGRA project, FLNP, Joint Institute for Nuclear Research. The studied parameters were; (1 shielding-collimator material, (2 Distance between the shielding-collimator assembly first plate and center of the neutron beam, and (3 thickness of collimator sheets. MCNP5 was used to simulate ROMASHA setup after it was validated on the experimental results of irradiation of Carbon-12 sample for one hour to detect its 4.44 MeV characteristic gamma line. The ratio between the signal and total neutron flux that enters each detector was calculated and plotted, concluding that the optimum shielding-collimator assembly is Tungsten of 5 cm thickness for each plate, and a distance of 2.3 cm. Also, the ratio between the signal and total gamma rays flux was calculated and plotted for each detector, leading to the previous conclusion but the distance was 1 cm.

  7. Optimization of Shielding- Collimator Parameters for ING-27 Neutron Generator Using MCNP5

    Science.gov (United States)

    Hegazy, Aya Hamdy; Skoy, V. R.; Hossny, K.

    2018-04-01

    Neutron generators are now used in various fields. They produce only fast neutrons; D-D neutron generator produces 2.45 MeV neutrons and D-T produces 14.1 MeV neutrons. In order to optimize shielding-collimator parameters to achieve higher neutron flux at the investigated sample (The signal) with lower neutron and gamma rays flux at the area of the detectors, design iterations are widely used. This work was applied to ROMASHA setup, TANGRA project, FLNP, Joint Institute for Nuclear Research. The studied parameters were; (1) shielding-collimator material, (2) Distance between the shielding-collimator assembly first plate and center of the neutron beam, and (3) thickness of collimator sheets. MCNP5 was used to simulate ROMASHA setup after it was validated on the experimental results of irradiation of Carbon-12 sample for one hour to detect its 4.44 MeV characteristic gamma line. The ratio between the signal and total neutron flux that enters each detector was calculated and plotted, concluding that the optimum shielding-collimator assembly is Tungsten of 5 cm thickness for each plate, and a distance of 2.3 cm. Also, the ratio between the signal and total gamma rays flux was calculated and plotted for each detector, leading to the previous conclusion but the distance was 1 cm.

  8. Comparison of Channel Emulation Techniques in Multiprobe Anechoic Chamber Setups

    DEFF Research Database (Denmark)

    Llorente, Ines Carton; Fan, Wei; Nielsen, Jesper Ødum

    2015-01-01

    This paper compares two different techniques for channel emulation in multiprobe anechoic chamber based setups, which is a candidate solution for the standardization of MIMO OTA performance testing of mobile devices. The comparison is performed via simulations of the field distribution, temporal ...

  9. IBM PC based automatic drive system for Bulat setup

    International Nuclear Information System (INIS)

    Luchaninov, A.A.; Tolok, V.T.

    1999-01-01

    Non-expensive computer drive system for Bulat setup is described. System's hardware consists of IBM PC and conjunction block, providing 12 output channels, Software includes the main program, utilities and technology processes database. System may be used at surface modification processes, especially multilayer multicomponent coatings deposition

  10. View of the WA10 set-up

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The WA10 experiment by the Geneva-Lausanne Collaboration was set-up in the H5 beam (unseparated, up to 50 GeV/c) to study K+-p --> K0pi+-p and other reactions of similar topology, and the energy dependence of resonance production.

  11. MATLAB simulation for an experimental setup of digital feedback control

    International Nuclear Information System (INIS)

    Zheng Lifang; Liu Songqiang

    2005-01-01

    This paper describes the digital feedback simulation using MATLAB for an experimental accelerator control setup. By analyzing the plant characteristic in time-domain and frequency-domain, a guideline for design of digital filter and PID controller is derived. (authors)

  12. The setup of a mobile mobility panel for the Netherlands

    NARCIS (Netherlands)

    Geurs, Karst Teunis; Veenstra, Sander; Thomas, Tom

    2013-01-01

    This paper describes the setup of the Dutch Mobile Mobility Panel project, in which GPS-enabled mobile phones (smartphones) are used as a passive multiple-week and multiple-year travel behaviour data collection tool. The data collection methodology used in the Dutch Mobile Mobility Panel comprised

  13. Rician Channel Modeling for Multiprobe Anechoic Chamber Setups

    DEFF Research Database (Denmark)

    Fan, Wei; Kyösti, Pekka; Hentilä, Lassi

    2014-01-01

    This paper discusses over the air (OTA) testing for multiple input multiple output (MIMO) capable terminals, with emphasis on modeling Rician channel models in the multi-probe anechoic chamber setups. A technique to model Rician channels is proposed. The line-of-sight (LOS) component, with an arb...

  14. 3D Channel Model Emulation in a MIMO OTA Setup

    DEFF Research Database (Denmark)

    Fan, Wei; Kyösti, Pekka; Sun, Fan

    2013-01-01

    This paper presents a new channel reconstruction technique for 3D geometry-based channels in a multi-probe based MIMO OTA setup. The proposed method provides a general channel reconstruction framework for any spherical power spectrum. The channel reconstruction is formed as convex optimization...

  15. Development of a new experimental setup for studying collisions of ...

    Indian Academy of Sciences (India)

    Development of a new electron-recoil ion/photon coincidence setup for investigating some of the electron ... quisition system consisting of a 200 MHz Pentium based 8K-multichannel analyzer and a standard network of a .... electron gun via a differential pumping while the other one couples a Faraday cup. A de- tachable ...

  16. Practical considerations for coil-wrapped Distributed Temperature Sensing setups

    Science.gov (United States)

    Solcerova, Anna; van Emmerik, Tim; Hilgersom, Koen; van de Giesen, Nick

    2015-04-01

    Fiber-optic Distributed Temperature Sensing (DTS) has been applied widely in hydrological and meteorological systems. For example, DTS has been used to measure streamflow, groundwater, soil moisture and temperature, air temperature, and lake energy fluxes. Many of these applications require a spatial monitoring resolution smaller than the minimum resolution of the DTS device. Therefore, measuring with these resolutions requires a custom made setup. To obtain both high temporal and high spatial resolution temperature measurements, fiber-optic cable is often wrapped around, and glued to, a coil, for example a PVC conduit. For these setups, it is often assumed that the construction characteristics (e.g., the coil material, shape, diameter) do not influence the DTS temperature measurements significantly. This study compares DTS datasets obtained during four measurement campaigns. The datasets were acquired using different setups, allowing to investigate the influence of the construction characteristics on the monitoring results. This comparative study suggests that the construction material, shape, diameter, and way of attachment can have a significant influence on the results. We present a qualitative and quantitative approximation of errors introduced through the selection of the construction, e.g., choice of coil material, influence of solar radiation, coil diameter, and cable attachment method. Our aim is to provide insight in factors that influence DTS measurements, which designers of future DTS measurements setups can take into account. Moreover, we present a number of solutions to minimize these errors for improved temperature retrieval using DTS.

  17. Laboratory Test Setup for Cyclic Axially Loaded Piles in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2017-01-01

    conditions for all tests. For verifications purposes six static tension tests conducted at three different vertical effective stress levels of 0, 35 and 70 kPa. The load-displacement curves showed that the test setup provides repeatable test results. A preliminary comparison between the unit shaft friction...

  18. A Magnetic Set-Up to Help Teach Newton's Laws

    Science.gov (United States)

    Panijpan, Bhinyo; Sujarittham, Thanida; Arayathanitkul, Kwan; Tanamatayarat, Jintawat; Nopparatjamjomras, Suchai

    2009-01-01

    A set-up comprising a magnetic disc, a solenoid and a mechanical balance was used to teach first-year physics students Newton's third law with the help of a free body diagram. The image of a floating magnet immobilized by the solenoid's repulsive force should help dispel a common misconception of students as regards the first law: that stationary…

  19. Development of a new experimental setup for studying collisions of ...

    Indian Academy of Sciences (India)

    Development of a new electron-recoil ion/photon coincidence setup for investigating some of the electron induced collision processes, such as electron bremsstrahlung, electron backscattering, innershell excitation and multiple ionization of target atoms/molecules in bombardment of electrons having energies from 2.0 keV ...

  20. Off-line software for large experimental setups

    International Nuclear Information System (INIS)

    Bruyant, F.

    1983-07-01

    The purpose of this report is to emphasize the importance of Off-line software for large experimental setups in High Energy Physics. Simple notions of program structuring, data structuring and software organization are discussed in the context of the software developped for the European Hybrid Spectrometer. (author)

  1. Experimental setup for rapid crystallization using favoured chemical ...

    Indian Academy of Sciences (India)

    Unknown

    sent paper we describe a small scale experimental setup for rapid crystallization in which growth is favoured by chemical potential and hydrodynamic conditions. Using this we have grown KH2PO4 (KDP) single crystals up to. 40 × 43 × 66 mm3 in dimensions on a point seed in a glass crystallizer of 5 l capacity in about 72 h.

  2. Neutron matter, symmetry energy and neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, Gandolfi [Los Alamos National Laboratory (LANL); Steiner, Andrew W [ORNL

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  3. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  4. Neutron generator control system

    International Nuclear Information System (INIS)

    Peelman, H.E.; Bridges, J.R.

    1981-01-01

    A method is described of controlling the neutron output of a neutron generator tube used in neutron well logging. The system operates by monitoring the target beam current and comparing a function of this current with a reference voltage level to develop a control signal used in a series regulator to control the replenisher current of the neutron generator tube. (U.K.)

  5. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  6. A flexible setup for angle-resolved X-ray fluorescence spectrometry with laboratory sources

    Energy Technology Data Exchange (ETDEWEB)

    Spanier, M., E-mail: mspanier@physik.tu-berlin.de; Herzog, C.; Grötzsch, D.; Kramer, F.; Mantouvalou, I.; Malzer, W.; Kanngießer, B. [Institute for Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Lubeck, J.; Weser, J.; Streeck, C.; Beckhoff, B. [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin (Germany)

    2016-03-15

    X-ray fluorescence (XRF) analysis is one of the standard tools for the analysis of stratified materials and is widely applied for the investigation of electronics and coatings. The composition and thickness of the layers can be determined quantitatively and non-destructively. Recent work showed that these capabilities can be extended towards retrieving stratigraphic information like concentration depth profiles using angle-resolved XRF (ARXRF). This paper introduces an experimental sample chamber which was developed as a multi-purpose tool enabling different measurement geometries suited for transmission measurements, conventional XRF, ARXRF, etc. The chamber was specifically designed for attaching all kinds of laboratory X-ray sources for the soft and hard X-ray ranges as well as various detection systems. In detail, a setup for ARXRF using an X-ray tube with a polycapillary X-ray lens as source is presented. For such a type of setup, both the spectral and lateral characterizations of the radiation field are crucial for quantitative ARXRF measurements. The characterization is validated with the help of a stratified validation sample.

  7. Seminar | Development of a PET Cyclotron Based Irradiation Setup for Proton Radiobiology | 25 June

    CERN Multimedia

    2015-01-01

    Sharif Hasan Mahmoud Ghithan, a Palestinian postdoctoral researcher at the Laboratory of Instrumentation and Experimental Particle Physics (Portugal), will discuss the development of an out-of-yoke irradiation setup using the proton beam from a cyclotron that ordinarily produces radioisotopes for Positron Emission Tomography (PET). The speaker will also discuss possible future use of the results of this research for CERN’s new LEIR biomedical facility. The seminar will be proposed in the framework of a meeting of the CERN Medical Applications Study Group.   25 June, 2 p.m. to 3 p.m. Room 13-2-005 ABSTRACT: In this new irradiation setup, the current from a 20 mm thick aluminum transmission foil is read out by homemade transimpedance electronics, providing online dose information. The main monitoring variables, delivered in real-time, include beam current, integrated charge and dose rate. Hence the dose and integrated current delivered at a given instant to an experimental setu...

  8. Basic Physics Data: Measurement of Neutron Multiplicity from Induced Fission

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara [Univ. of Michigan, Ann Arbor, MI (United States); Haight, Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-04

    From October 1 to October 17 a team of researchers from UM visited the LANSCE facility for an experiment during beam-time allotted from October 4 to October 17. A total of 24 detectors were used at LANSCE including liquid organic scintillation detectors (EJ-309), NaI scintillation detectors, and Li-6 enriched glass detectors. It is a double time-offlight (TOF) measurement using spallation neutrons generated by a target bombarded with pulsed high-energy protons. The neutrons travel to an LLNL-manufactured parallel plate avalanche chamber (PPAC) loaded with thin U-235 foils in which fission events are induced. The generated fission neutrons and photons are then detected in a detector array designed and built at UM and shipped to LANSCE. Preparations were made at UM, where setup and proposed detectors were tested. The UM equipment was then shipped to LANSCE for use at the 15L beam of the weapons neutron research (WNR) facility.

  9. Neutron energy spectrum in graphite blankets of fusion reactors

    International Nuclear Information System (INIS)

    Tsechanski, A.

    1981-09-01

    Neutron flux measurements were performed in a graphite stack and compared with calculations made with a two dimensional transport computer code. In the present work it is observed that the calculated spectrum in the elastic and inelastic scattering ranges (the first collision range in both cases), is sensitive to details of the angular distribution of these neutrons. Regarding the discrepancies in the elastic scattering range it is concluded that the microscopic cross section library ENDF/B-IV overestimates the large angle scattering (back scattering) as can be seen from comparison of measured and calculated spectra. The two most important conclusions of the present work are: 1. Inelastic scattering interaction of D-T neutrons in graphite cannot be calculated without a proper account of energy-angle correlation. 2. An experimental setup supplying monoenergetic collimated D-T neutrons constitutes a sensitive although indirect means for measuring angular distributions in inelastic and elastic scattering

  10. Automation of angular movement of the arm neutron diffractometer; Automatizacion del movimiento angular del brazo del difractometro de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F.; Herrera A, E.; Quintana C, G. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Torres R, C. E.; Reyes V, M., E-mail: fortunato.aguilar@inin.gob.mx [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, Metepec, Estado de Mexico (Mexico)

    2015-09-15

    A technique to determine the crystal structure of some materials is the neutron diffraction. This technique consists on placing the material in question in a monoenergetic neutron beam obtained by neutron diffraction in a monochromator crystal. The neutron energy depends of the diffraction angle. The Instituto Nacional de Investigaciones Nucleares has a neutron diffractometer and monochromator crystals of pyrolytic graphite. This crystal can be selecting the neutron energy depending on the angle of diffraction in the glass. The radiation source for the neutron diffractometer is the TRIGA Mark III reactor of the Nuclear Center Dr. Nabor Carrillo Flores. During their operation are also obtained besides neutrons, β and γ radiation. The interest is to have thermal neutrons, so fast neutrons and γ rays are removed using appropriate shielding. The average neutron fluxes of the radial port RE2 of neutron diffractometer at power 1 MW are: heat flow 2,466 x 10{sup 8} n cm{sup -2} sec{sup -1} and fast flow 1,239 x 10{sup 8} n cm{sup -2} sec{sup -1}. The neutron detector is housed in a shield mounted on a mechanical linkage with which the diffraction angle is selected, and therefore the energy of the neutrons. The movement of this joint was performed by the equipment operator manually, so that accuracy to select the diffraction angle was not good and the process rather slow. Therefore a mechanical system was designed, automated by means of a motor as an actuator, a system of force transmission and an electronic control in order that the operator will schedule the diffraction angles and allow the count in the neutrons detection system in a simple manner. (Author)

  11. Realistic modeling of radiation transmission inspection systems

    International Nuclear Information System (INIS)

    Sale, K.E.

    1993-01-01

    We have applied Monte Carlo particle transport methods to assess a proposed neutron transmission inspection system for checked luggage. The geometry of the system and the time, energy and angle dependence of the source have been modeled in detail. A pulsed deuteron beam incident on a thick Be target generates a neutron pulse with a very broad energy spectrum which is detected after passage through the luggage item by a plastic scintillator detector operating in current mode (as opposed to pulse counting mode). The neutron transmission as a function of time information is used to infer the densities of hydrogen, carbon, oxygen and nitrogen in the volume sampled. The measured elemental densities can be compared to signatures for explosives or other contraband. By using such computational modeling it is possible to optimize many aspects of the design of an inspection system without costly and time consuming prototyping experiments or to determine that a proposed scheme will not work. The methods applied here can be used to evaluate neutron or photon schemes based on transmission, scattering or reaction techniques

  12. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  13. Miscellaneous neutron techniques

    International Nuclear Information System (INIS)

    Iddings, F.A.

    1976-01-01

    Attention is brought to the less often uses of neutrons in the areas of neutron radiography, well logging, and neutron gaging. Emphasis on neutron radiography points toward the isotopic sensitivity of the method versus the classical bulk applications. Also recognized is the ability of neutron radiography to produce image changes that correspond to thickness and density changes obtained in photon radiography. Similarly, neutron gaging applications center on the measurement of radiography. Similarly, neutron gaging applications center on the measurement of water, oil, or plastics in industrial samples. Well logging extends the neutron gaging to encompass many neutron properties and reactions besides thermalization and capture. Neutron gaging also gives information on organic structure and concentrations of a variety of elements or specific compounds in selected matrices

  14. The set-up for forward scattered particle detection at the external microbeam facility of the INFN-LABEC laboratory in Florence

    Energy Technology Data Exchange (ETDEWEB)

    Giuntini, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Massi, M. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Calusi, S. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Gelli, N.; Castelli, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Carraresi, L.; Czelusniak, C. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Fedi, M.E. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Gueli, A.M. [Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania (Italy); INFN Sezione di Catania, Via Santa Sofia 64, 95123 Catania (Italy); Liccioli, L.; Mandò, P.A.; Mazzinghi, A. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Palla, L. [INFN, Sezione di Pisa and Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); and others

    2015-04-01

    In the last few years some new implementations and upgrades have been made to the external scanning microbeam of INFN-LABEC laboratory in Florence, enriching the existing PIXE, PIGE, BS, IBIL set-up with complementary techniques, when possible allowing for simultaneous multi-technique analyses. We developed a system, compatible with the existing set-up, for the out-of-vacuum detection of the forward scattered particles. This system makes feasible the external-STIM (Scanning Transmission Ion Microscopy) and external-FS (Forward Scattering), now both available at our beamline. Test measurements are shortly presented.

  15. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    Science.gov (United States)

    Ikeda, Yoshimasa; Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki; Kumagai, Masayoshi; Oba, Yojiro; Otake, Yoshie; Suzuki, Hiroshi

    2016-10-01

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  16. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    International Nuclear Information System (INIS)

    Ikeda, Yoshimasa; Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki; Kumagai, Masayoshi; Oba, Yojiro; Otake, Yoshie; Suzuki, Hiroshi

    2016-01-01

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  17. Neutron diffraction texture analysis of multi-phase systems

    International Nuclear Information System (INIS)

    Brokmeier, H.G.

    1989-01-01

    Neutron diffraction methods for texture analysis are closely parallel to well-known X-ray diffraction techniques. The chief advantage of neutron diffraction over X-ray diffraction, however, arises from the fact that the interaction of neutrons with matter is relatively weak, and consequently the penetration depth of neutrons is 10 2 -10 3 times larger than that of X-rays. Hence neutron diffraction is an efficient tool for measuring textures in multi-phase systems. Based on the high transmission of a neutron beam the effect of anisotropic absorption in multi-phase materials can be neglected in most cases. Moreover, the analysis of bulk textures becomes possible, such that textures in a wide variety of multi-phase systems can be studied which are of special interest in engineering and science (metals, alloys, composites, ceramics and geological specimens). (orig.)

  18. Neutrons in science and technology

    International Nuclear Information System (INIS)

    Bromley, D.A.

    1984-01-01

    Occasionally to the fiftieth anniversy of the discovery of the neutron the author presents a historical review about the impact of this discovery on different fields at physics. Especially considered are nuclear physics, the neutron as an elementary particles, ultracold neutrons, condensed matter physics, radiation damage induced by neutrons, neutron activation analysis, imaging and radiography by neutrons, neutrons in mining operations, track etching, the use of intense gamma sources, gauging systems, neutron holography and neutron stars. (HSI)

  19. Cone beam CT with zonal filters for simultaneous dose reduction, improved target contrast and automated set-up in radiotherapy

    International Nuclear Information System (INIS)

    Moore, C J; Marchant, T E; Amer, A M

    2006-01-01

    Cone beam CT (CBCT) using a zonal filter is introduced. The aims are reduced concomitant imaging dose to the patient, simultaneous control of body scatter for improved image quality in the tumour target zone and preserved set-up detail for radiotherapy. Aluminium transmission diaphragms added to the CBCT x-ray tube of the Elekta Synergy TM linear accelerator produced an unattenuated beam for a central 'target zone' and a partially attenuated beam for an outer 'set-up zone'. Imaging doses and contrast noise ratios (CNR) were measured in a test phantom for transmission diaphragms 12 and 24 mm thick, for 5 and 10 cm long target zones. The effect on automatic registration of zonal CBCT to conventional CT was assessed relative to full-field and lead-collimated images of an anthropomorphic phantom. Doses along the axis of rotation were reduced by up to 50% in both target and set-up zones, and weighted dose (two thirds surface dose plus one third central dose) was reduced by 10-20% for a 10 cm long target zone. CNR increased by up to 15% in zonally filtered CBCT images compared to full-field images. Automatic image registration remained as robust as that with full-field images and was superior to CBCT coned down using lead-collimation. Zonal CBCT significantly reduces imaging dose and is expected to benefit radiotherapy through improved target contrast, required to assess target coverage, and wide-field edge detail, needed for robust automatic measurement of patient set-up error

  20. Digital pulse shape discrimination between fast neutrons and gamma rays with para-terphenyl scintillator

    Science.gov (United States)

    Chepurnov, A. S.; Kirsanov, M. A.; Klenin, A. A.; Klimanov, S. G.; Kubankin, A. S.

    2017-12-01

    In the presented work, we investigated several digital methods of a discrimination signals from fast neutrons and gamma quanta. The experimental setup consists of a Pu-Be neutron source, a scintillation detector with an organic para-terphenyl monocrystal, and a digitizer (CAEN DT5730, 500 MS/s). Mixed waveform sequences were stored and then separated by pulse shape. Four methods were used for signals separation. Comparison of the traditional and the new methods of Figure of Merit (FOM) calculation is given. FOM = 1.5 was obtained in our setup for the minimum threshold value. A scintillation detector with a para-terphenyl crystal was used to measure neutron yield in the neutron generator with carbon nanotubes.

  1. Measurement of high-energy prompt gamma-rays from neutron induced fission of U-235

    Directory of Open Access Journals (Sweden)

    Makii Hiroyuki

    2017-01-01

    Full Text Available We have developed a new setup to measure prompt γ-rays from the 235U(nth,f reaction. The setup consists of two multi-wire proportional counters (MWPCs to detect the fission fragments, two LaBr3(Ce scintillators to measure the γ-rays. The highly efficient setup was installed at the PF1B beam line of the Institut Laue Langevin (ILL. We have successfully measured the γ-ray spectrum up to about 20 MeV for the fist time in neutron-induced fission.

  2. Development of a neutron tomography at HANARO

    International Nuclear Information System (INIS)

    Lee, S.W.; Sim, C.M.; Hong, K.P.; Cheon, J.K.; Lee, C.H.; Kim, Y.J.; Kim, J.C.

    2004-01-01

    A thermal neutron tomography set-up has been installed and some initial results are acquired at the research reactor HANARO of the KAERI (Korea Atomic Energy Research Institute). The detection system is based on a NE 426 ( 6 LiF/ZnS:Ag) conversion screen and a CCD camera. The current beam flux and the efficiency of the detector results in about about 1 min exposure time for a single projection image of normal samples. Hence, a typical set of tomography scans can be carried out in about 3 hour. Then, 3D computed tomography objects were calculated using the conventional filtered back-projection reconstruction method after some post-processing of the raw data. Initial results of the various samples show that the neutron tomography system at HANARO can be a useful tool for several fields such as aerospace, construction material, agricultural industry and so on. (orig.)

  3. Radiography of weakly ferromagnetic metals with polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael; Calzada, Elbio; Muehlbauer, Martin; Schillinger, Burkhard [FRM II, Garching (Germany); E21, Physik Department TUM, Garching (Germany); Boeni, Peter; Neubauer, Andreas; Pfleiderer, Christian [E21, Physik Department TUM, Garching (Germany)

    2009-07-01

    The depolarization of a neutron beam passing through a ferromagnet crucially depends on the magnetic properties of the sample. Combining neutron depolarisation measurements with neutron radiography allows obtaining spatially resolved information about these properties. For measuring the depolarization, we have installed a longitudinal polarized beam setup at the ANTARES beamline consisting of {sup 3}He polarizers and flat coil spin flippers. With this setup we have performed radiography with polarized neutrons in the weak itinerant ferromagnets Pd{sub 1-x}Ni{sub x} in order to determine the spatial distribution of the Curie temperatures T{sub C} in the samples. The results show that the single crystals are rather inhomogeneous showing large variations in T{sub C}. The data allows firstly to cut out small crystals with improved homogeneity for neutron scattering experiments and secondly to provide feedback for improving the growth techniques for the crystals. In the future we hope to use the potential of this method to map out magnetic domains across large volume samples.

  4. Approaches to ultrafast neutron detectors

    International Nuclear Information System (INIS)

    Wang, C.L.; Kalibjian, R.; Singh, M.S.

    1984-01-01

    We discuss two approaches to obtain detectors of very high temporal resolution. In the first approach, uranium-coated cathode is used in a streak tube configuration. Secondary electrons accompanying the fission fragments from a neutron-uranium reaction are accelerated, focussed and energy analyzed through a pinhole and streaked. Calculations show that 20 ps time-resolution can be obtained. In the second approach, a uranium-coated cathode is integrated into a transmission line. State-of-the-art technology indicates that time resolution of 20 ps can be obtained by gating the cathode with a fast electric pulse

  5. Development of a PET cyclotron based irradiation setup for proton radiobiology

    Science.gov (United States)

    Ghithan, Sharif; Crespo, Paulo; do Carmo, S. J. C.; Ferreira Marques, Rui; Fraga, F. A. F.; Simões, Hugo; Alves, Francisco; Rachinhas, P. J. B. M.

    2015-02-01

    An out-of-yoke irradiation setup using the proton beam from a cyclotron that ordinary produces radioisotopes for positron emission tomography (PET) has been developed, characterized, calibrated and validated. The current from a 20 μm thick aluminum transmission foil is readout by home-made transimpedance electronics, providing online dose information. The main monitoring variables, delivered in real-time, include beam current, integrated charge and dose rate. Hence the dose and integrated current delivered at a given instant to an experimental setup can be computer-controlled with a shutter. In this work, we report on experimental results and Geant4 simulations of a setup which exploits for the first time the 18 MeV proton beam from a PET cyclotron to irradiate a selected region of a target using the developed irradiation system. By using this system, we are able to deliver a homogeneous beam on targets with 18 mm diameter, allowing to achieve the controlled irradiation of cell cultures located in biological multi-well dishes of 16 mm diameter. We found that the magnetic field applied inside the cyclotron plays a major role for achieving the referred to homogeneity. The quasi-Gaussian curve obtained by scanning the magnet current and measuring the corresponding dose rate must be measured before any irradiation procedure, with the shutter closed. At the optimum magnet current, which corresponds to the center of the Gaussian, a homogenous dose is observed over the whole target area. Making use of a rotating disk with a slit of 0.5 mm at a radius of 150 mm, we could measure dose rates on target ranging from 500 mGy/s down to 5 mGy/s. For validating the developed irradiation setup, several Gafchromic® EBT2 films were exposed to different values of dose. The absolute dose in the irradiated films were assessed in the 2D film dosimetry system of the Department of Radiotherapy of Coimbra University Hospital Center with a precision better than 2%. In the future, we plan

  6. Measurement and simulation for a complementary imaging with the neutron and X-ray beams

    Directory of Open Access Journals (Sweden)

    Hara Kaoru Y.

    2017-01-01

    Full Text Available By using a composite source system, we measured radiographs of the thermal neutron and keV X-ray in the 45-MeV electron linear accelerator facility at Hokkaido University. The source system provides the alternative beam of neutron and X-ray by switching the production target onto the electron beam axis. In the measurement to demonstrate a complementary imaging, the detector based on a vacuum-tube type neutron color image intensifier was applied to the both beams for dual-purpose. On the other hand, for reducing background in a neutron transmission spectrum, test measurements using a gadolinium-type neutron grid were performed with a cold neutron source at Hokkaido University. In addition, the simulations of the neutron and X-ray transmissions for various substances were performed using the PHITS code. A data analysis procedure for estimating the substance of sample was investigated through the simulations.

  7. Measurement and simulation for a complementary imaging with the neutron and X-ray beams

    Science.gov (United States)

    Hara, Kaoru Y.; Sato, Hirotaka; Kamiyama, Takashi; Shinohara, Takenao

    2017-09-01

    By using a composite source system, we measured radiographs of the thermal neutron and keV X-ray in the 45-MeV electron linear accelerator facility at Hokkaido University. The source system provides the alternative beam of neutron and X-ray by switching the production target onto the electron beam axis. In the measurement to demonstrate a complementary imaging, the detector based on a vacuum-tube type neutron color image intensifier was applied to the both beams for dual-purpose. On the other hand, for reducing background in a neutron transmission spectrum, test measurements using a gadolinium-type neutron grid were performed with a cold neutron source at Hokkaido University. In addition, the simulations of the neutron and X-ray transmissions for various substances were performed using the PHITS code. A data analysis procedure for estimating the substance of sample was investigated through the simulations.

  8. Equipment for neutron measurements at VR-1 Sparrow training reactor.

    Science.gov (United States)

    Kolros, Antonin; Huml, Ondrej; Kríz, Martin; Kos, Josef

    2010-01-01

    The VR-1 sparrow reactor is an experimental nuclear facility for training, student education and teaching purposes. The sparrow reactor is an educational platform for the basic experiments at the reactor physic and dosimetry. The aim of this article is to describe the new experimental equipment EMK310 features and possibilities for neutron detection by different gas filled detectors at VR-1 reactor. Among the EMK310 equipment typical attributes belong precise set-up, simple control, resistance to electromagnetic interference, high throughput (counting rate), versatility and remote controllability. The methods for non-linearity correction of pulse neutron detection system and reactimeter application are presented. Copyright 2009. Published by Elsevier Ltd.

  9. Alternative method for thermal neutron flux measurements based on common boric acid as converter and Lr-15 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, D.; Greaves, E. D.; Sajo B, L.; Barros, H. [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Apdo. Postal 89000, Caracas (Venezuela, Bolivarian Republic of); Ingles, R. [Universidad Nacional de San Antonio Abad del Cusco, Av. de la Cultura No. 733, Cusco (Peru)

    2010-02-15

    A method to determine the flux and angular distribution of thermal neutrons with the use of Lr-115 detectors was developed. The use of the Lr-115 detector involves the exposure of a pressed boric acid sample (tablet) as a target, in tight contact with the track detector, to a flux of thermalized neutrons. The self-absorption effects in thin films or foil type thermal neutron detectors can be neglected by using the Lr-115 detector and boric acid tablet setup to operate via backside irradiation. The energy window and the critical angle-residual energy curve were determined by comparisons between the experimental and simulated track parameters. A computer program was developed to calculate the detector registration efficiency, so that the thermal neutron flux can be calculated from the track densities induced in the Lr-115 detector using the derived empirical formula. The proposed setup can serves as directional detector of thermal neutrons. (Author)

  10. Transcending Transmission

    DEFF Research Database (Denmark)

    Schoeneborn, Dennis; Trittin, Hannah

    2013-01-01

    Purpose – Extant research on corporate social responsibility (CSR) communication primarily relies on a transmission model of communication that treats organizations and communication as distinct phenomena. This approach has been criticized for neglecting the formative role of communication...... in the emergence of organizations. This paper seeks to propose to reconceptualize CSR communication by drawing on the “communication constitutes organizations” (CCO) perspective. Design/methodology/approach – This is a conceptual paper that explores the implications of switching from an instrumental...... are stabilized by various non-human entities that “act” on their behalf. Accordingly, CSR communication should also take into account non-human agency and responsibility. Originality/value – This paper links the literature on CSR communication to broader debates in organizational communication studies and...

  11. Fiber optic neutron imaging system: calibration

    International Nuclear Information System (INIS)

    Malone, R.M.; Gow, C.E.; Thayer, D.R.

    1981-01-01

    Two neutron imaging experiments using fiber optics have been performed at the Nevada Test Site. In each experiment, an array of scintillator fluor tubes is exposed to neutrons. Light is coupled out through radiation resistant PCS fibers (8-m long) into high-bandwidth, graded index fibers. For image reconstruction to be accurate, common timing differences and transmission variations between fiber optic channels are needed. The calibration system featured a scanning pulsed dye laser, a specially designed fiber optic star coupler, a tektronix 7912AD transient digitizer, and a DEC PDP 11/34 computing system

  12. Neutron range spectrometer

    Science.gov (United States)

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  13. ASSIST: the test setup for the VLT AO facility

    Science.gov (United States)

    Stuik, Remko; Arsenault, Robin; Conzelmann, Ralf; Deep, Atul; Delabre, Bernard; Hallibert, Pascal; Jolissaint, Laurent; Hubin, Norbert; Kendrew, Sarah; Madec, Pierre-Yves; Molster, Frank; Paufique, Jerome; Pauwels, Evert; Stroebele, Stefan; Wiegers, Emiel

    2008-07-01

    ASSIST: The Adaptive Secondary Setup and Instrument STimulator is the test setup for the verification and calibration of three elements of the VLT Adaptive Optics Facility.; the Deformable Secondary Mirror (DSM) the AO system for MUSE and HAWK-I (GALACSI and GRAAL). In the DSM testing mode the DSM will be tested using both interferometry and fast wave front sensing. In full AO mode, ASSIST will allow testing of the AO systems under realistic atmospheric conditions and optically equivalent to the conditions on the telescope. ASSIST is nearing its final design review and in this paper we present the current optical and mechanical design of ASSIST. In this paper we highlight some of the specific aspects of ASSIST that we are developing for ASSIST.

  14. Electric field stimulation setup for photoemission electron microscopes.

    Science.gov (United States)

    Buzzi, M; Vaz, C A F; Raabe, J; Nolting, F

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures.

  15. Search for hybrid baryons with CLAS12 experimental setup

    Energy Technology Data Exchange (ETDEWEB)

    Lanza, Lucille [Univ. degli Studi di Roma Tor Vergata (Italy); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-03-01

    It is crucial to study the meson electroproduction in the kinematic region dominated by the formation of resonances. CLAS12 setup in Hall B at Jefferson Lab is particularly suitable for this task, since it is able to detect scattered electrons at low polar angles thanks to the Forward Tagger (FT) component. The process that we propose to study is ep → e'K+Λ, where the electron beam will be provided by the CEBAF accelerator with energies of 6.6, 8.8, and 11 GeV. This thesis work describes the setup and calibration of the FT calorimeter and the studies related to the search of hybrid baryons through the measurement of the K+ Λ electroproduction cross section.

  16. Applications of neutron activation analysis technique

    International Nuclear Information System (INIS)

    Jonah, S. A.

    2000-07-01

    The technique was developed as far back as 1936 by G. Hevesy and H. Levy for the analysis of Dy using an isotopic source. Approximately 40 elements can be analyzed by instrumental neutron activation analysis (INNA) technique with neutrons from a nuclear reactor. By applying radiochemical separation, the number of elements that can be analysed may be increased to almost 70. Compared with other analytical methods used in environmental and industrial research, NAA has some unique features. These are multi-element capability, rapidity, reproducibility of results, complementarity to other methods, freedom from analytical blank and independency of chemical state of elements. There are several types of neutron sources namely: nuclear reactors, accelerator-based and radioisotope-based sources, but nuclear reactors with high fluxes of neutrons from the fission of 235 U give the most intense irradiation, and hence the highest available sensitivities for NAA. In this paper, the applications of NAA of socio-economic importance are discussed. The benefits of using NAA and related nuclear techniques for on-line applications in industrial process control are highlighted. A brief description of the NAA set-ups at CERT is enumerated. Finally, NAA is compared with other leading analytical techniques

  17. Neutrons and materials

    International Nuclear Information System (INIS)

    Paulus, W.; Meinnel, J.

    2003-01-01

    The neutron is the only probe that gives information simultaneously on structure issues through interference phenomena and on dynamics issues through spectroscopy. The neutron carries a s=1/2 spin value which allows it to be polarizable and to interact with any magnetic field through the magnetic momentum associated to its spin. The great interest of neutron in research relies on 3 facts: -) the neutron fluxes used to study matter are supplied by nuclear reactors and spallation sources with wave lengths and energy range that directly correspond to interatomic distances and thermal-motion energies of matter, -) the possibility of setting or changing the contrast of an element by using its different isotopes, and -) the neutron does not carry an electrical charge so it can enter the bulk of matter easily and gives an image of stress and patterns of large pieces of metal through a non-destructive examination. This course reviews all the aspects of the use of neutron in physics and is made up of 16 chapters: 1) properties of neutrons, 2) neutron production, 3) complementarity between X-ray and neutrons, 4) neutron diffraction, 5) neutron diffusion, 6) neutron spectroscopy, 7) crystallography, 8) imaging techniques with neutrons, 9) neutron activation analysis, 10) low-angle diffusion, 11) neutron reflectivity, 12) non-destructive testing, 13) microstructure and diffraction rays of X-radiation, 14) access to neutron source facilities, 15) composites materials and neutron diffusion, and 16) studies of liquids and glasses through neutron and X-ray diffraction. (A.C.)

  18. Multiparametric Experiments and Multiparametric Setups for Metering Explosive Eruptions

    Science.gov (United States)

    Taddeucci, J.; Scarlato, P.; Del Bello, E.

    2016-12-01

    Explosive eruptions are multifaceted processes best studied by integrating a variety of observational perspectives. This need marries well with the continuous stream of new means that technological progress provides to volcanologists to parameterize these eruptions. Since decades, new technologies have been tested and integrated approaches have been attempted during so-called multiparametric experiments, i.e., short field campaigns with many, different instruments (and scientists) targeting natural laboratory volcanoes. Recently, portable multiparametric setups have been developed, including a few, highly complementary instruments to be rapidly deployed at any erupting volcano. Multiparametric experiments and setups share most of their challenges, like technical issues, site logistics, and data processing and interpretation. Our FAMoUS (FAst MUltiparametric Setup) setup pivots around coupled, high-speed imaging (visible and thermal) and acoustic (infrasonic to audible) recording, plus occasional seismic recording and sample collection. FAMoUS provided new insights on pyroclasts ejection and settling and jet noise dynamics at volcanoes worldwide. In the last years we conducted a series of BAcIO (Broadband ACquisition and Imaging Operation) experiments at Stromboli (Italy). These hosted state-of-the-art and prototypal eruption-metering technologies, including: multiple high-speed high-definition cameras for 3-D imaging; combined visible-infrared-ultraviolet imaging; in-situ and remote gas measurements; UAV aerial surveys; Doppler radar, and microphone arrays. This combined approach provides new understandings of the fundamental controls of Strombolian-style activity, and allows for crucial cross-validation of instruments and techniques. Several documentary expeditions participated in the BAcIO, attesting its tremendous potential for public outreach. Finally, sharing field work promotes interdisciplinary discussions and cooperation like nothing in the world.

  19. Construction of orthodontic setup models on a computer.

    Science.gov (United States)

    Kihara, Takuya; Tanimoto, Kotaro; Michida, Masahiko; Yoshimi, Yuki; Nagasaki, Toshikazu; Murayama, Takeshi; Tanne, Kazuo; Nikawa, Hiroki

    2012-06-01

    Orthodontic setup models are usually limited to the display of teeth, with no information about the roots. The purpose of this article is to present a method for visualizing the tooth roots in setup models by integrating information from cone-beam computed tomography and a laser scanner. The reproducibility of the integration was evaluated. The records of 5 patients were used in this study. Three-dimensional digital models were generated from the dental casts. Tooth models were generated from the cone-beam computed tomography slices. The 3-dimensional models were superimposed on the crowns of the teeth in the tooth models and integrated. The integrated 3-dimensional tooth model and 3-dimensional setup model were registered. The reproducibility of the integration was evaluated for each tooth. Unpaired Student t tests were performed on the data between the anterior and posterior teeth, and between the right and left teeth. The discrepancy among the integrated 3-dimensional models at the final positions after we used this technique was 0.025 ± 0.007 mm. There was a significant difference in the distance between the anterior and posterior teeth (P <0.05). However, the average distances between the anterior and posterior teeth were small: 0.023 ± 0.007 and 0.028 ± 0.007 mm, respectively. No significant difference was found between the right and left teeth (P = 0.831). The methods presented in this study provide a reproducible visualization of tooth roots in virtual setup models by registering accurate crown models to cone-beam computed tomography scans. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  20. Investigation of water films on fuel rods in boiling water reactors using neutron tomography

    International Nuclear Information System (INIS)

    Lanthen, Jonas

    2006-09-01

    In a boiling water reactor, thin films of liquid water around the fuel rods play a very important role in cooling the fuel, and evaporation of the film can lead to fuel damage. If the thickness of the water film could be measured accurately the reactor operation could be both safer and more economical. In this thesis, the possibility to use neutron tomography, to study thin water films on fuel rods in an experimental nuclear fuel set-up, has been investigated. The main tool for this has been a computer simulation software. The simulations have shown that very thin water films, down to around 20 pm, can be seen on fuel rods in an experimental set-up using neutron tomography. The spatial resolution needed to obtain this result is around 300 pm. A suitable detector system for this kind of experiment would be plastic fiber scintillators combined with a CCD camera. As a neutron source it would be possible to use a D-D neutron generator, which generates neutrons with energies of 2.5 MeV. Using a neutron generator with a high enough neutron yield and a detector with high enough detection efficiency, a neutron tomography to measure thin water films should take no longer than 25 - 30 minutes

  1. Setup accuracy for prone and supine whole breast irradiation

    International Nuclear Information System (INIS)

    Mulliez, Thomas; Vercauteren, Tom; Greveling, Annick van; Speleers, Bruno; Neve, Wilfried de; Veldeman, Liv; Gulyban, Akos

    2016-01-01

    To evaluate cone-beam computed tomography (CBCT) based setup accuracy and margins for prone and supine whole breast irradiation (WBI). Setup accuracy was evaluated on 3559 CBCT scans of 242 patients treated with WBI and uncertainty margins were calculated using the van Herk formula. Uni- and multivariate analysis on individual margins was performed for age, body mass index (BMI) and cup size. The population-based margin in vertical (VE), lateral (LA) and longitudinal (LO) directions was 10.4/9.4/9.4 mm for the 103 supine and 10.5/22.4/13.7 mm for the 139 prone treated patients, being significantly (p < 0.01) different for the LA and LO directions. Multivariate analysis identified a significant (p < 0.05) correlation between BMI and the LO margin in supine position and the VE/LA margin in prone position. In this series, setup accuracy is significantly worse in prone compared to supine position for the LA and LO directions. However, without proper image-guidance, uncertainty margins of about 1 cm are also necessary for supine WBI. For patients with a higher BMI, larger margins are required. (orig.) [de

  2. Quick setup of test unit for accelerator control system

    International Nuclear Information System (INIS)

    Fu, W.; D'Ottavio, T.; Gassner, D.; Nemesure, S.; Morris, J.

    2011-01-01

    Testing a single hardware unit of an accelerator control system often requires the setup of a program with graphical user interface. Developing a dedicated application for a specific hardware unit test could be time consuming and the application may become obsolete after the unit tests. This paper documents a methodology for quick design and setup of an interface focused on performing unit tests of accelerator equipment with minimum programming work. The method has three components. The first is a generic accelerator device object (ADO) manager which can be used to setup, store, and log testing controls parameters for any unit testing system. The second involves the design of a TAPE (Tool for Automated Procedure Execution) sequence file that specifies and implements all te testing and control logic. The sting third is the design of a PET (parameter editing tool) page that provides the unit tester with all the necessary control parameters required for testing. This approach has been used for testing the horizontal plane of the Stochastic Cooling Motion Control System at RHIC.

  3. High-pressure neutron diffraction with hybrid-anvil-cell on cold neutron TOF diffractometer WISH. Application for multiferroics

    International Nuclear Information System (INIS)

    Terada, Noriki

    2016-01-01

    Recently, we have developed the experimental setup for high pressure neutron diffraction experiment with using Hybrid-Anvil-Cell in combination with high flux cold neutron time of flight (TOF) diffractometer WISH at ISIS. By using this unique setup, we have succeeded in measuring pressure induced magnetic Bragg reflections for the multiferroic compounds CuFeO 2 and TbMnO 3 . The former shows pressure induced polar magnetic phases up to 7.9 GPa. For the latter compound, we have determined the magnetic structures under not only high pressure (5 GPa) but also high magnetic field (8T) condition. In this article, I would like to show utilization of the combination, and encourage researchers in other fields as well as multiferroics to use the unique combination. (author)

  4. Neutron CSI: Integrated platform for non-destructive composition and stress imaging with neutrons

    International Nuclear Information System (INIS)

    Materna, T.; Pirling, T.

    2011-01-01

    We propose to build an interdisciplinary platform for non-destructive analysis and imaging with neutrons. The project regroups an instrument already available at ILL (Laue-Langevin Institute), SALSA, with a new one for Neutron Tomography coupled to Prompt-Gamma Neutron Activation (PGNA) as well as partial usage of another proposed instrument, FIPPS. The focus of the proposition is the versatility of high spatial resolution and energy-selective neutron tomography to provide a rapid and precise 3D morphological map of an object as well as indirect information on its 3D elemental and structural composition through the scan of Bragg-edges in transmission. Coupled to PGNA imaging and the strain analysis power of SALSA, the aim of the platform is to answer key questions occurring in geological, metallurgical, engineering and medical fields, material research and cultural heritage. (authors)

  5. A neutron activation detector

    International Nuclear Information System (INIS)

    Ambardanishvili, T.S.; Kolomiitsev, M.A.; Zakharina, T.Y.; Dundua, V.J.; Chikhladze, N.V.

    1973-01-01

    The present invention concerns a neutron activation detector made from a moulded and hardened composition. According to the invention, that composition contains an activable substance constituted by at least two chemical elements and/or compounds of at least two chemical elements. Each of these chemical elements is capable of reacting with the neutrons forming radio-active isotopes with vatious levels of energy during desintegration. This neutron detector is mainly suitable for measuring integral thermal neutron and fast neutron fluxes during irradiation of the sample, and also for measuring the intensities of neutron fields [fr

  6. Neutron in biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1997-01-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10 2 to 10 3 times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  7. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  8. Possible standard specimens for neutron diffraction residual stress measurements

    International Nuclear Information System (INIS)

    Brand, P.C.; Prask, H.J.; Fields, R.J.; Blackburn, J.; Proctor, T.M.

    1995-01-01

    Increasingly, sub-surface residual stress measurements by means of neutron diffraction are being conducted at various laboratories around the world. Unlike X-ray diffraction residual stress measurement setups, neutron instruments in use worldwide vary widely in design, neutron flux, and level of dedication towards residual stress measurements. Although confidence in the neutron technique has increased within the materials science and engineering communities, no demonstration of standardization or consistency between laboratories has been made. One of the steps in the direction of such standardization is the development of standard specimens, that have well characterized residual stress states and which could be examined worldwide. In this paper the authors will examine two options for a neutron stress standard specimen: (1) a steel ring-plug specimen with very well defined diametrical interference; (2) a spot weld in a High Strength Low Alloy steel disk. The results of neutron residual stress measurements on these specimens will be discussed and conclusions as to their usefulness as neutron stress standards will be presented

  9. Cold neutron diffraction contrast tomography of polycrystalline material.

    Science.gov (United States)

    Peetermans, S; King, A; Ludwig, W; Reischig, P; Lehmann, E H

    2014-11-21

    Traditional neutron imaging is based on the attenuation of a neutron beam through scattering and absorption upon traversing a sample of interest. It offers insight into the sample's material distribution at high spatial resolution in a non-destructive way. In this work, it is expanded to include the diffracted neutrons that were ignored so far and obtain a crystallographic distribution (grain mapping). Samples are rotated in a cold neutron beam of limited wavelength band. Projections of the crystallites formed by the neutrons they diffract are captured on a two dimensional imaging detector. Their positions on the detector reveal their orientation whereas the projections themselves are used to reconstruct the shape of the grains. Indebted to established synchrotron diffraction contrast tomography, this 'cold neutron diffraction contrast tomography' is performed on recrystallized aluminium for experimental comparison between both. Differences between set-up and method are discussed, followed by the application range in terms of sample properties (crystallite size and number, mosaicity and typical materials). Neutron diffraction contrast tomography allows to study large grains in bulky metallic structures.

  10. Integrated Transmission Electron and Single-Molecule Fluorescence Microscopy Correlates Reactivity with Ultrastructure in a Single Catalyst Particle

    NARCIS (Netherlands)

    Hendriks, Frank C.|info:eu-repo/dai/nl/412642697; Mohammadian, Sajjad|info:eu-repo/dai/nl/374721327; Ristanovic, Zoran|info:eu-repo/dai/nl/328233005; Kalirai, Samanbir; Meirer, Florian; Vogt, Eelco T. C.|info:eu-repo/dai/nl/073717398; Bruijnincx, Pieter C. A.|info:eu-repo/dai/nl/33799529X; Gerritsen, Hans|info:eu-repo/dai/nl/071548777; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2018-01-01

    Establishing structure–activity relationships in complex, hierarchically structured nanomaterials, such as fluid catalytic cracking (FCC) catalysts, requires characterization with complementary, correlated analysis techniques. An integrated setup has been developed to perform transmission electron

  11. Basics of Neutrons for First Responders

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Brian G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-05

    These are slides from a presentation on the basics of neutrons. A few topics covered are: common origins of terrestrial neutron radiation, neutron sources, neutron energy, interactions, detecting neutrons, gammas from neutron interactions, neutron signatures in gamma-ray spectra, neutrons and NaI, neutron fluence to dose (msV), instruments' response to neutrons.

  12. Neutron stochastic transport theory with delayed neutrons

    International Nuclear Information System (INIS)

    Munoz-Cobo, J.L.; Verdu, G.

    1987-01-01

    From the stochastic transport theory with delayed neutrons, the Boltzmann transport equation with delayed neutrons for the average flux emerges in a natural way without recourse to any approximation. From this theory a general expression is obtained for the Feynman Y-function when delayed neutrons are included. The single mode approximation for the particular case of a subcritical assembly is developed, and it is shown that Y-function reduces to the familiar expression quoted in many books, when delayed neutrons are not considered, and spatial and source effects are not included. (author)

  13. Infrared-Guided Patient Setup for Lung Cancer Patients

    International Nuclear Information System (INIS)

    Lyatskaya, Yulia; James, Steven; Killoran, Joseph H.; Soto, Ricardo; Mamon, Harvey J.; Chin, Lee; Allen, Aaron M.

    2008-01-01

    Purpose: To evaluate the utility of an infrared-guided patient setup (iGPS) system to reduce the uncertainties in the setup of lung cancer patients. Methods and Materials: A total of 15 patients were setup for lung irradiation using skin tattoos and lateral leveling marks. Daily electronic portal device images and iGPS marker locations were acquired and retrospectively reviewed. The iGPS-based shifts were compared with the daily electronic portal device image shifts using both the central axis iGPS marker and all five iGPS markers. For shift calculation using the five markers, rotational misalignment was included. The level of agreement between the iGPS and portal imaging to evaluate the setup was evaluated as the frequency of the shift difference in the range of 0-5 mm, 5-10 mm, and >10 mm. Results: Data were obtained for 450 treatment sessions for 15 patients. The difference in the isocenter shifts between the weekly vs. daily images was 0-5 mm in 42%, 5-10 mm in 30%, and >10 mm in 10% of the images. The shifts seen using the iGPS data were 0-5 mm in 81%, 5-10 mm in 14%, and >10 mm in 5%. Using only the central axis iGPS marker, the difference between the iGPS and portal images was 10 mm in 7% in the left-right direction and 73%, 18%, and 9% in the superoinferior direction, respectively. When all five iGPS markers were used, the disagreements between the iGPS and portal image shifts >10 mm were reduced from 7% to 2% in the left-right direction and 9% to 3% in the superoinferior direction. Larger reductions were also seen (e.g., a reduction from 50% to 0% in 1 patient). Conclusion: The daily iGPS-based shifts correlated well with the daily electronic portal device-based shifts. When patient movement has nonlinear rotational components, a combination of surface markers and portal images might be particularly beneficial to improve the setup for lung cancer patients

  14. Edge localized modes of cold neutrons in periodic condensed media

    Science.gov (United States)

    Belyakov, V. A.

    2017-06-01

    It is found that for certain energies of discreet cold neutrons, quasi-stationary eigen solutions of the corresponding Schrodinger equation, which are localized in the layer of a periodic medium, exist. The localization time of these solutions is strongly dependent on the layer thickness, being finite for a finite layer thickness and increasing indefinitely upon a infinite growth of the layer thickness as the third power of the layer thickness. The problem has been solved in the two-wave approximation of the dynamic diffraction theory for the neutron propagation direction coinciding with the periodicity axes (normal incidence of the neutron beam on the layer). The expressions for neutron eigenwave functions in a periodic medium, the reflection and transmission coefficients, and the neutron wavefunction in the layer as a function of the neutron energy incident on the layer have been determined. It turns out that for the certain discrete neutron energies, the amplitudes of the neutron wavefunction in the layer reach sharp maxima. The corresponding energies are just outside of the neutron stop band (energies forbidden for neutron propagation in the layer) and determine the energies of neutron edge modes (NEMs) localized in the layer, which are direct analogs of the optical edge modes for photonic crystals. The dispersion equation for the localized neutron edge modes has been obtained and analytically solved for the case of thick layers. A rough estimate for the localization length L is L ( db N)-1, where b is the neutron scattering length, d is the crystal period, and N is the density of nuclei in the crystal. The estimates of the localized thermal neutron lifetime show that acheaving of a lifetime close to the free neutron lifetime seems nonrealistic due to absorption of thermal neutrons and requires a perfect large size crystal. Nevertheless, acheaving the localized neutron lifetime exceeding by 104 times the neutron time of flight through the layer appears as

  15. Development of a Fresnel lens for cold neutrons based on neutron refractive optics

    CERN Document Server

    Oku, T; Moriyasu, S; Yamagata, Y; Ohmori, H; Takizawa, Y; Shimizu, H M; Hirota, T; Kiyanagi, Y; Ino, T; Furusaka, M; Suzuki, J

    2001-01-01

    We have developed compound refractive lenses (CRLs) for cold neutrons, which are made of vitreous silica and have an effective potential of (90.1-2.7x10 sup - sup 4 i) neV. In the case of compound refractive optics, neutron absorption by the material deteriorates lens performance. Thus, to prevent an increase in neutron absorption with increasing beam size, we have developed Fresnel lenses using the electrolytic in-process dressing grinding technique. The lens characteristics were carefully investigated with experimental and numerical simulation studies. The lenses functioned as a neutron focusing lens, and the focal length of 14 m was obtained with a 44-element series of the Fresnel lenses for 10 A neutrons. Moreover, good neutron transmission of 0.65 for 15 A neutrons was obtained due to the shape effect. According to comprehensive analysis of the obtained results, it is possible to realize a CRL for practical use by choosing a suitable lens shape and material.

  16. Transmission Electron Microscopy and Diffractometry of Materials

    CERN Document Server

    Fultz, Brent

    2013-01-01

    This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The fourth edition adds important new techniques of TEM such as electron tomography, nanobeam diffraction, and geometric phase analysis. A new chapter on neutron scattering completes the trio of x-ray, electron and neutron diffraction. All chapters were updated and revised for clarity. The book explains the fundamentals of how waves and wavefunctions interact with atoms in solids, and the similarities and differences of using x-rays, electrons, or neutrons for diffraction measurements. Diffraction effects of crystalline order, defects, and disorder in materials are explained in detail. Both practical and theoretical issues are covered. The book can be used in an introductory-level or advanced-level course, since sections are identified by difficulty. Each chapter includes a set of problems to illustrate principles, and the extensive Appendix includes la...

  17. Transmutation program: preliminary measurements about the production of spallation neutrons; Programme transmutation: resultats des mesures elementaires sur la production de neutrons de spallation

    Energy Technology Data Exchange (ETDEWEB)

    Leray, S. [Laboratoire National Saturne - Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Beau, M. [CEA Centre d`Etudes de Bruyeres-le-Chatel, 91 (France); Boudard, A. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee] [and others

    1996-12-31

    The programme to measure the double differential cross-sections for the production of neutrons induced by protons and deuterons on various targets is presented. Two different experimental techniques are used for these measurements: for the low energy part of the neutron spectrum, time-of-flight is employed between the incident tagged proton and a NE213-scintillator detecting the neutron. At high energies, the neutron energy spectrum is obtained through the detection of recoil protons in a magnetic spectrometer, after scattering in a liquid hydrogen convector. The first results are discussed. The Phase 2 in which the experimental set-up will be modified to allow for the measurement of complete angular distributions and the study of neutron energy spectra from thick targets is also presented. (authors) 13 refs.

  18. Neutron anatomy

    International Nuclear Information System (INIS)

    Bacon, G.E.

    1994-01-01

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone

  19. Neutron anatomy.

    Science.gov (United States)

    Bacon, G E

    1996-01-01

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content-the crystals of the hexagonal hydroxyapatite- and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilising distances ranging from 1 mm to 10 mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals-including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighbouring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction, for a sample of bone.

  20. Fundamentals and applications of neutron imaging. Fundamentals part 5. Neutron sources for neutron imaging

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito

    2007-01-01

    Neutrons for experiments by neutron beams are classified regarding neutron sources as follows: (1) Neutrons from radioisotopes, (2) Neutrons from nuclear reactions induced by deuteron beams from accelerators, (3) Neutrons from nuclear spallation induced by high energy proton beams from accelerators, and (4) Neutrons from reactors. As for the neutron imaging, weak intensity neutron sources can be useful if the detector system is sensitive enough. A newly developed spallation neutron source has eminent characteristics that the neutron emission is pulsive with strong peak intensity. Imaging experiments availing this property will be developed henceforth. (K. Yoshida)

  1. Monte Carlo modeling of neutron imaging at the SINQ spallation source

    International Nuclear Information System (INIS)

    Lebenhaft, J.R.; Lehmann, E.H.; Pitcher, E.J.; McKinney, G.W.

    2003-01-01

    Modeling of the Swiss Spallation Neutron Source (SINQ) has been used to demonstrate the neutron radiography capability of the newly released MPI-version of the MCNPX Monte Carlo code. A detailed MCNPX model was developed of SINQ and its associated neutron transmission radiography (NEUTRA) facility. Preliminary validation of the model was performed by comparing the calculated and measured neutron fluxes in the NEUTRA beam line, and a simulated radiography image was generated for a sample consisting of steel tubes containing different materials. This paper describes the SINQ facility, provides details of the MCNPX model, and presents preliminary results of the neutron imaging. (authors)

  2. Atomic layer deposition on porous powders with in situ gravimetric monitoring in a modular fixed bed reactor setup.

    Science.gov (United States)

    Strempel, V E; Naumann d'Alnoncourt, R; Driess, M; Rosowski, F

    2017-07-01

    A modular setup for Atomic Layer Deposition (ALD) on high-surface powder substrates in fixed bed reactors with a gravimetric in situ monitoring was developed. The design and operation are described in detail. An integrated magnetically suspended balance records mass changes during ALD. The highly versatile setup consists of three modular main units: a dosing unit, a reactor unit, and a downstream unit. The reactor unit includes the balance, a large fixed bed reactor, and a quartz crystal microbalance. The dosing unit is equipped with a complex manifold to deliver gases and gaseous reagents including three different ALD precursors, five oxidizing or reducing agents, and two purge gas lines. The system employs reactor temperatures and pressures in the range of 25-600 °C and 10 -3 to 1 bar, respectively. Typically, powder batches between 100 mg and 50 g can be coated. The capabilities of the setup are demonstrated by coating mesoporous SiO 2 powder with a thin AlO x (submono) layer using three cycles with trimethylaluminium and H 2 O. The self-limiting nature of the deposition has been verified with the in situ gravimetric monitoring and full saturation curves are presented. The process parameters were used for a scale-up in a large fixed bed reactor. The samples were analyzed with established analytics such as X-ray diffraction, N 2 adsorption, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry.

  3. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  4. Neutron beams for therapy

    International Nuclear Information System (INIS)

    Kuplenikov, Eh.L.; Dovbnya, A.N.; Telegin, Yu.N.; Tsymbal, V.A.; Kandybej, S.S.

    2011-01-01

    It was given the analysis and generalization of the study results carried out during some decades in many world countries on application of thermal, epithermal and fast neutrons for neutron, gamma-neutron and neutron-capture therapy. The main attention is focused on the practical application possibility of the accumulated experience for the base creation for medical research and the cancer patients effective treatment.

  5. Reactor Neutron Sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.

    1994-01-01

    The present status and the prospects for development of reactor neutron sources for neutron scattering research in the world are considered. The fields of application of neutron scattering relative to synchrotron radiation, the creation stages of reactors (steady state and pulsed) and their position in comparison with spallation neutron sources at present and in the foreseen future are discussed. (author). 15 refs.; 8 figs.; 3 tabs

  6. Properties of neutron sources

    International Nuclear Information System (INIS)

    1987-03-01

    The Conference presentations were divided into sessions devoted to the following topics: white neutron sources, primarily pulsed (6 papers); fast neutron fields (5 papers); Californium-252 prompt fission neutron spectra (14 papers); monoenergetic sources and filtered beams (11 papers); 14 MeV neutron sources (10 papers); selected special application (one paper); and a general interest session (4 papers). Individual abstracts were prepared separately for the papers

  7. Polarimetric neutron scattering

    International Nuclear Information System (INIS)

    Tasset, F.

    2001-01-01

    Polarimetric Neutron Scattering in introduced, both by, explaining methodological issues and the corresponding instrumental developments. After a short overview of neutron spin polarization and the neutron polarization 3d-vector a pictorial approach of the microscopic theory is used to show how a polarized beam interacts with lattice and magnetic Fourier components in a crystal. Examples are given of using Spherical Neutron Polarimetry (SNP) and the corresponding Cryopad polarimeter for the investigation of non-collinear magnetic structures. (R.P.)

  8. High resolution powder diffraction by white source transmission measurements

    International Nuclear Information System (INIS)

    Johnson, R.G.; Bowman, C.D.

    1982-01-01

    Neutron powder diffraction has been studied by measuring the total neutron cross section using neutron time-of-flight in transmission geometry. This method is equivalent to measurements in scattering geometry of powder diffraction at 20 = 180 0 . Measurements on iron samples were conducted using the NBS 100 MeV electron linac as a pulsed neutron source and using flight paths of 20 and 60 meters. The resolution at 60 m for 25-MeV neutrons was limited to dlambda lambda=0.2% primarily by moderator hold-up. Although the change in cross section at the Bragg edges may be quite small, counting rates are high permitting the recording of data with a 0.1% statistical precision in about one day. For the Fe samples, diffraction edges were distinguished as high as n = 196 (where n is the sum of the squares of the Miller indicies) with all edges distinguishable below n = 90

  9. A variety of neutron sensors based on scintillating glass waveguides

    International Nuclear Information System (INIS)

    Bliss, M.; Craig, R.A.

    1995-05-01

    Pacific Northwest Laboratory (PNL) has fabricated cerium-activated, lithium-silicate glass scintillating fiber neutron sensors via a hot-downdraw process. These fibers typically have a transmission length (e -1 length) of greater than 2 meters. The underlying physics of, the properties of, and selected devices incorporating these fibers are described. These fibers constitute an enabling technology for a wide variety of neutron sensors

  10. Isotopic neutron sources for neutron activation analysis

    International Nuclear Information System (INIS)

    Hoste, J.

    1988-06-01

    This User's Manual is an attempt to provide for teaching and training purposes, a series of well thought out demonstrative experiments in neutron activation analysis based on the utilization of an isotopic neutron source. In some cases, these ideas can be applied to solve practical analytical problems. 19 refs, figs and tabs

  11. Neutron-based portable drug probe

    International Nuclear Information System (INIS)

    Womble, P. C.; Vourvopoulos, G.; Ball Howard, J.; Paschal, J.

    1999-01-01

    Based on previous measurements, a probe prototype for contraband detection utilizing the neutron technique of Pulsed Fast-Thermal Neutron Analysis (PFTNA) is being constructed. The prototype weighs less than 45 kg and is composed of a probe (5 cm diameter), a power pack and a data acquisition and display system. The probe is designed to be inserted in confined spaces such as the boiler of a ship or a tanker truck filled with liquid. The probe provides information on a) the elemental content, and b) the density variations of the interrogated object. By measuring elemental content, the probe can differentiate between innocuous materials and drugs. Density variations can be found through fast neutron transmission. In all cases, hidden drugs are identified through the measurement of the elemental content of the object, and the comparison of expected and measured elemental ratios

  12. International Neutron Radiography Newsletter

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    At the First World Conference on Neutron Radiography i t was decided to continue the "Neutron Radiography Newsletter", published previously by J.P. Barton, as the "International Neutron Radiography Newsletter" (INRNL), with J.C. Doraanus as editor. The British Journal of Non-Destructive Testing...

  13. Spallation neutron sources

    International Nuclear Information System (INIS)

    Fraser, J.S.; Bartholomew, G.A.

    1983-01-01

    The principles and theory of spallation neutron sources are outlined and a comparison is given with other types of neutron source. A summary of the available accelerator types for spallation neutron sources and their advantages and disadvantages is presented. Suitable target materials are discussed for specific applications, and typical target assemblies shown. (U.K.)

  14. Advances in neutron tomography

    Indian Academy of Sciences (India)

    Up to now the interaction of the neutron spin with magnetic fields in samples has not been applied to imaging techniques despite the fact that it was proposed many years ago. About ten years ago neutron depolarization as imaging signal for neutron radiography or tomography was demonstrated and in principle it works.

  15. Fundamental neutron physics

    International Nuclear Information System (INIS)

    Deslattes, R.; Dombeck, T.; Greene, G.; Ramsey, N.; Rauch, H.; Werner, S.

    1984-01-01

    Fundamental physics experiments of merit can be conducted at the proposed intense neutron sources. Areas of interest include: neutron particle properties, neutron wave properties, and fundamental physics utilizing reactor produced γ-rays. Such experiments require intense, full-time utilization of a beam station for periods ranging from several months to a year or more

  16. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  17. Neutron detection and radiography

    International Nuclear Information System (INIS)

    Bollen, R.H.; Van Esch, R.F.

    1975-01-01

    An improved method of recording neutron images is described which comprises imagewise irradiating with neutrons an intensifying screen containing a gadolinium compound that fluoresces when struck by x-rays and subjecting the fluorescent light pattern resulting from the impact of the neutrons on the screen onto a photographic material. (auth)

  18. Hydrogen content in Zircaloy-IV by neutron emissions

    International Nuclear Information System (INIS)

    Granada, J.R.

    1991-01-01

    The feasibility of using thermal neutron transmission techniques to determine the initial hydrogen content in Zry-IV is discussed in this work. The usual conditions of very low H concentration (∼ 10-20 ppm in weight) in the alloy, require a high degree of accuracy in the relevant cross sections in order to obtain reliable values of that concentration from the measured transmission spectra. Total cross sections corresponding to the metallic alloy and to hydrogen in that matrix were evaluated using interaction models developed in this Laboratory, for neutrons covering the range from subthermal up to epithermal energies. The sensitivity of this method as a function of neutron energy is discussed, and an optimized and self consistent procedure for data analysis after a transmission experiment is proposed. (Author) [es

  19. The possibility to use 'energy plus transmutation'set-up for neutron ...

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Home; Journals; Pramana – Journal of Physics; Volume 68; Issue 2. The possibility to use `energy plus transmutation' set-up for neutron production and transport benchmark studies. V Wagner A Krása M Majerla F Křížek O Svoboda A Kugler J Adam V M Tsoupko-Sitnikov M I Krivopustov I V Zhuk W ...

  20. Performance of a new small-angle neutron scattering instrument at the Malaysian TRIGA reactor

    International Nuclear Information System (INIS)

    Sufi, M.A.M.; Radiman, S.; Wiedenmann, A.; Mortensen, K.

    1997-01-01

    The set-up and alignment of a new small-angle neutron scattering (SANS) instrument, installed at the 1 MW light-water-moderated MINT TRIGA research reactor, are described. The wavelength distribution and the flux at the sample position have been determined. First neutron scattering measurements were made on two reference samples with strong scattering power; the results prove that the SANS signal is well reproduced on the instrument when samples of typical size are used, despite the high level of the background of fast and epithermal neutrons. (orig.)

  1. Detection of fast neutrons with LiF and Al2O3 scintillating bolometers

    International Nuclear Information System (INIS)

    Coron, N; Gironnet, J; Leblanc, J; Marcillac, P de; Redon, T; Torres, L; Cuesta, C; Domange, J; Garcia, E; Martinez, M; Ortigoza, Y; Ortiz de Solorzano, A; Pobes, C; Puimedon, J; Rolon, T; Sarsa, M L; Villar, J A

    2010-01-01

    Scintillating bolometers of LiF and Al 2 O 3 can monitor the fast neutrons flux in WIMPs searches. With both materials we merge the traditional fast neutron detection methods of induced reactions and scattering. The ROSEBUD collaboration devoted an underground run in the old Canfranc laboratory to study the response of LiF and Al 2 O 3 to fast neutrons from 252 Cf. Both bolometers were used simultaneously in a common experimental set-up resembling those of current WIMPs searches, which could give valuable insights into future WIMPs searches with cryogenic detectors as EURECA.

  2. Automated quality control system for LC-SRM setups.

    Science.gov (United States)

    Teleman, Johan; Waldemarson, Sofia; Malmström, Johan; Levander, Fredrik

    2013-12-16

    Selected reaction monitoring (SRM) is emerging as a standard tool for high-throughput protein quantification. For reliable and reproducible SRM protein quantification it is essential that system performance is stable. We present here a quality control workflow that is based on repeated analysis of a standard sample to allow insight into the stability of the key properties of a SRM setup. This is supported by automated software to monitor system performance and display information like signal intensities and retention time stability over time, and alert upon deviations from expected metrics. Utilising the software to evaluate 407 repeated injections of a standard sample during half a year, outliers in relative peptide signal intensities and relative peptide fragment ratios are identified, indicating the need for instrument maintenance. We therefore believe that the software could be a vital and powerful tool for any lab regularly performing SRM, increasing the reliability and quality of the SRM platform. Selected reaction monitoring (SRM) mass spectrometry is becoming established as a standard technique for accurate protein quantification. However, to achieve the required quantification reproducibility of the liquid chromatography (LC)-SRM setup, system performance needs to be monitored over time. Here we introduce a workflow with associated software to enable automated monitoring of LC-SRM setups. We believe that usage of the presented concepts will further strengthen the role of SRM as a reliable tool for protein quantification. This article is part of a Special Issue entitled: Standardization and Quality Control in Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Programming for controlling of pulse radiolysis setup. Program RADIO96

    International Nuclear Information System (INIS)

    Mirkowski, J.; Grodkowski, J.

    1998-01-01

    Program RADIO96 was written in Pascal using DELPHI 1.0 (Borland) programming platform. It can operate on IBM PC compatible computers in WINDOWS 3x or WINDOWS'95 environment. The program is dedicated to the pulse radiolysis setup based on the linear electron accelerator LAE 13/9 of the Department of Radiation Chemistry and Technology of the INCT. This work was based on apparatus and results described before and also on programming manuals of used equipment and technical data of programming platform. (author)

  4. Problems with ink skin markings for radiation field setups

    International Nuclear Information System (INIS)

    Endoh, Masaru; Saeki, Mituaki; Ishida, Yusei

    1982-01-01

    Ink skin markings are used in radiation therapy to aid in reproduction of treatment field setups or to indelibly outline field markings or tumors. We reported two cases of indelible ink skin for radiation field septa with minimal discomfort and dermatitis have been experienced for 6 months and above since end of radiotherapy. These indelible ink skin markings look like tattoo that will be big problems in the case of young female. We improved these problems by using of 10 percent silver nitrate instead of habitual skin ink. (author)

  5. Interfacing of high temperature Z-meter setup using python

    Science.gov (United States)

    Patel, Ashutosh; Sisodia, Shashank; Pandey, Sudhir K.

    2017-05-01

    In this work, we interface high temperature Z-meter setup to automize the whole measurement process. A program is built on open source programming language `Python' which convert the manual measurement process into fully automated process without any cost addition. Using this program, simultaneous measurement of Seebeck coefficient (α), thermal conductivity (κ) and electrical resistivity (ρ), are performed and using all three, figure-of-merit (ZT) is calculated. Developed program is verified by performing measurement over p-type Bi0.36Sb1.45Te3 sample and the data obtained are found to be in good agreement with the reported data.

  6. Wideband MIMO Channel Capacity Analysis in Multiprobe Anechoic Chamber Setups

    DEFF Research Database (Denmark)

    Fan, Wei; Kyosti, Pekka; Nielsen, Jesper Ødum

    2016-01-01

    This paper discusses over the air (OTA) testing for multiple input multiple output (MIMO) capable terminals with emphasis on wideband MIMO channel capacity analysis in a multi-probe anechoic chamber setup. In the literature, the spatial correlation simulation accuracy at the receiver (Rx) side has...... been used to determine the test area size for a limited number of probes. However, it is desirable that the test area size is defined in terms of data rate deviation of the simulated channel in the laboratory from that of the target channel model. This paper reports MIMO capacity analysis results...

  7. Four point bending setup for characterization of semiconductor piezoresistance

    DEFF Research Database (Denmark)

    Richter, Jacob; Arnoldus, Morten Berg; Hansen, Ole

    2008-01-01

    characterization. As a proof of concept, we show measurements of the piezocoefficient pi44 in p-type silicon at three different doping concentrations in the temperature range from T=30 °C to T=80 °C. The extracted piezocoefficients are determined with an uncertainty of 1.8%. ©2008 American Institute of Physics...... bending fixture is manufactured in polyetheretherketon and a dedicated silicon chip with embedded piezoresistors fits in the fixture. The fixture is actuated by a microstepper actuator and a high sensitivity force sensor measures the applied force on the fixture and chip. The setup includes heaters...

  8. Automated assembly of micro mechanical parts in a Microfactory setup

    DEFF Research Database (Denmark)

    Eriksson, Torbjörn Gerhard; Hansen, Hans Nørgaard; Gegeckaite, Asta

    2006-01-01

    Many micro products in use today are manufactured using semi-automatic assembly. Handling, assembly and transport of the parts are especially labour intense processes. Automation of these processes holds a large potential, especially if flexible, modular microfactories can be developed. This paper...... focuses on the issues that have to be taken into consideration in order to go from a semi-automatic production into an automated microfactory. The application in this study is a switch consisting of 7 parts. The development of a microfactory setup to take care of the automated assembly of the switch...

  9. Nondestructive determination of materials parameters by neutron diffraction

    International Nuclear Information System (INIS)

    Brokmeier, H.G.; Bunge, H.J.

    1989-01-01

    Using the high transmission of neutron radiation, neutron diffraction is described to be an efficient tool for the analysis of various materials parameters of the bulk of a material in a nondestructive way. Sample sizes up to 40 mm in diameter have been used to determine the phase composition, texture and internal stresses of polycrystalline, polyphased materials. Additionally to well-known X-ray techniques which analyse the surface of a sample, neutron diffraction measurements are carried out to investigate the average behaviour of a bulk sample or the local behaviour within a compact sample. Further advantages of neutron diffraction are that small volume fractions (e.g. 0.05 Vol.% Cu in Al) can be determined. Moreover, in the case of X-ray diffraction the examination of coarse-grained materials and of complex multiphase materials is limited, and neutron diffraction has to be used. (orig./RHM)

  10. A new compact self-referenced holographic setup tested on a fluorescent target

    OpenAIRE

    Kiss, Márton Zsolt

    2015-01-01

    We propose a new self-referenced holographic microscope setup based on a special bifocal lens. This setup can detect and visualize fluorescent objects. The new principle and the experimental results of the imaging are also presented.

  11. Neutron elastic scattering cross-sections measurement on carbon and fluorine in epithermal energy range using PEREN platform; Mesure des sections efficaces de diffusion elastique des neutrons sur le carbone et le fluor dans le domaine epithermique sur la plate-forme PEREN

    Energy Technology Data Exchange (ETDEWEB)

    Thiolliere, N

    2005-10-15

    Molten Salt Reactor (MSR) based on Th/U cycle is one of the new generation concepts for nuclear energy production. A typical MSR is a graphite-moderated core with liquid fuel ({sup 7}LiF +ThF{sub 4} + UF{sub 4}). Many numerical studies based on Monte-Carlo codes are currently carried out but the validity of these numerical result relies on the precise knowledge of neutron cross sections used such as elastic scattering on carbon ({sigma}{sub C}), fluorine ({sigma}{sub F}) and lithium 7 ({sigma}{sub Li}). The goal of this work is to obtain {sigma}{sub C} and {sigma}{sub F} between 1 eV and 100 keV. Such measurements have been performed at the Laboratoire de Physique Subatomique et de Cosmologie (LPSC) de Grenoble on the experimental platform PEREN using slowing-down time spectrometers (C and CF{sub 2}) associated to a pulsed neutron generator (GENEPI). Capture rates are obtained for reference materials (Au, Ag, Mo and In) using YAP scintillator coupled to a photo-multiplier. Very precise simulations (MCNP code) of the experimental setup have been performed and comparison with experiments has led to the determination of {sigma}{sub C} and {sigma}{sub F} with accuracies of 1% and 2% respectively. These results show a small discrepancy to evaluated nuclear data file (ENDF). Measures of total cross-sections {sigma}{sub C} and {sigma}{sub F} at higher energy (200 - 600 keV) were also carried out at Centre des Etudes Nucleaires de Bordeaux using a transmission method. Mono-energetic neutrons were produced by protons accelerated by a Van de Graaff accelerator on a LiF target and transmitted neutrons are counted in a proportional hydrogen gaseous detector. Discrepancies of 5% and 9% for {sigma}{sub C} and {sigma}{sub F} respectively with ENDF have been shown. (author)

  12. Efficient polarization analysis for focusing neutron instruments

    Science.gov (United States)

    Stahn, Jochen; Glavic, Artur

    2017-06-01

    Polarized neutrons are a powerful probe to investigate magnetism in condensed matter on length scales from single atomic distances to micrometers. With the ongoing advancement of neutron optics, that allow to transport beams with increased divergence, the demands on neutron polarizes and analyzers have grown as well. The situation becomes especially challenging for new instruments at pulsed sources, where a large wavelength band needs to be polarized to make efficient use of the time structure of the beam. Here we present a polarization analysis concept for highly focused neutron beams that is based on transmission supermirrors that are bend in the shape of equiangular spirals. The method allows polarizations above 95% and good transmission, without negative impact on other beam characteristics. An example of a compact polarizing device already tested on the AMOR reflectometer is presented as well as the concept for the next generation implementation of the technique that will be installed on the Estia instrument being build for the European Spallation Source.

  13. Measurements of neutron capture cross sections

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1984-01-01

    A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238 U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)

  14. Californium-252 neutron capture and decay methods for elemental analysis

    Science.gov (United States)

    1972-01-01

    The feasibility of using a Cf-252 neutron source in conjunction with a capture and/or decay gamma ray method for elemental analysis on lunar or planetary missions was tested. The general problems of using a Cf-252 neutron source for both decay and capture gamma ray analysis in terrestrial environments included the determination of the capture gamma ray spectra by neutron absorption in various metals used for the space hardware, Cf-252 source encapsulation materials, shielding, geometry, and optimum source size for a space mission. Computer data reduction and data transmission techniques were also investigated.

  15. Neutron scatter camera

    Science.gov (United States)

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  16. Grazing Incidence Neutron Optics

    Science.gov (United States)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  17. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  18. Neutron scattering. Experiment manuals

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  19. Neutron scattering. Experiment manuals

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2012-01-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, the neutron polarization analyzer DNS, the neutron spin-echo spectrometer J-NSE, the small-angle neutron diffractometers KWS-1/-2, the very-small-angle neutron diffractometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  20. Semiconductor neutron detector

    Science.gov (United States)

    Ianakiev, Kiril D [Los Alamos, NM; Littlewood, Peter B [Cambridge, GB; Blagoev, Krastan B [Arlington, VA; Swinhoe, Martyn T [Los Alamos, NM; Smith, James L [Los Alamos, NM; Sullivan, Clair J [Los Alamos, NM; Alexandrov, Boian S [Los Alamos, NM; Lashley, Jason Charles [Santa Fe, NM

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  1. Nanosecond neutron generator

    International Nuclear Information System (INIS)

    Lobov, S.I.; Pavlovskaya, N.G.; Pukhov, S.P.

    1991-01-01

    High-voltage nanosecond neutron generator for obtaining neutrons in D-T reaction is described. Yield of 6x10 6 neutron/pulse was generated in a sealed gas-filled diode with a target on the cathode by accelerating pulse voltage of approximately 0.5 MV and length at half-height of 0.5 ns and deuterium pressure of 6x10 -2 Torr. Ways of increasing neutron yield and possibilities of creating generators of nanosecond neutron pulses with great service life are considered

  2. Activation neutron detector

    International Nuclear Information System (INIS)

    Ambardanishvili, T.S.; Kolomiitsev, M.A.; Zakharina, T.Y.; Dundua, V.J.; Chikhladze, N.V.

    1976-01-01

    An activation neutron detector made as a moulded and cured composition of a material capable of being neutron-activated is described. The material is selected from a group consisting of at least two chemical elements, a compound of at least two chemical elements and their mixture, each of the chemical elements and their mixture, each of the chemical elements being capable of interacting with neutrons to form radioactive isotopes having different radiation energies when disintegrating. The material capable of being neutron-activated is distributed throughout the volume of a polycondensation resin inert with respect to neutrons and capable of curing. 17 Claims, No Drawings

  3. IMPROVED COMPUTATIONAL CHARACTERIZATION OF THE THERMAL NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY RESEARCH AT THE UNIVERSITY OF MISSOURI

    Energy Technology Data Exchange (ETDEWEB)

    Stuart R. Slattery; David W. Nigg; John D. Brockman; M. Frederick Hawthorne

    2010-05-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. This is essential for detailed dosimetric studies required for the anticipated research program.

  4. An ultracold neutron (UCN) detector with Ti/ sup 6 LiF multi-layer converter and sup 5 sup 8 Ni reflector

    CERN Document Server

    Maier-Komor, P; Bergmaier, A; Dollinger, G; Paul, S; Petzoldt, G; Schott, W

    2002-01-01

    High efficient detectors for ultracold neutrons (UCN) must be developed for the new high flux neutron source Forschungsreaktor Muenchen II (FRM II). On silicon PIN diodes 76 mu g/cm sup 2 sup 5 sup 8 Ni was deposited as a UCN reflector. On this 100 double layers of sup n sup a sup t Ti (4.7 mu g/cm sup 2) and sup 6 LiF (1.8 mu g/cm sup 2) were deposited to function as a UCN converter. On top of this, 33 double layers of sup n sup a sup t Ti (3.4 mu g/cm sup 2) and sup 6 LiF (0.92 mu g/cm sup 2) were condensed in addition to provide sensitivity to very low-energy UCN. Finally, 6.0 mu g/cm sup 2 sup n sup a sup t V was deposited to protect the multi-layers. Vanadium has nearly zero optical potential for UCN and thus should not hinder their transmission. Since no expensive isotopes were involved, a source to substrate distance of 24 cm could be chosen, leading to excellent uniformity. The setup designed for deposition under ultrahigh vacuum conditions and the evaporation procedures are described.

  5. Thermal neutron moderating device

    International Nuclear Information System (INIS)

    Takigami, Hiroyuki.

    1995-01-01

    In a thermal neutron moderating device, superconductive coils for generating magnetic fields capable of applying magnetic fields vertical to the longitudinal direction of a thermal neutron passing tube, and superconductive coils for magnetic field gradient for causing magnetic field gradient in the longitudinal direction of the thermal neutron passing tube are disposed being stacked at the outside of the thermal neutron passing tube. When magnetic field gradient is present vertically to the direction of a magnetic moment, thermal neutrons undergo forces in the direction of the magnetic field gradient in proportion to the magnetic moment. Then, the magnetic moment of the thermal neutrons is aligned with the direction vertical to the passing direction of the thermal neutrons, to cause the magnetic field gradient in the passing direction of the thermal neutrons. The speed of the thermal neutrons can be optionally selected and the wavelength can freely be changed by applying forces to the thermal neutrons and changing the extent and direction of the magnetic field gradient. Superconductive coils are used as the coils for generating magnetic fields and the magnetic field gradient in order to change extremely high energy of the thermal neutrons. (N.H.)

  6. The shielding of a 14 MeV neutron generator

    International Nuclear Information System (INIS)

    Brighton, D.R.

    1976-10-01

    The concrete masonry shield for a 14 MeV neutron generator was designed using data supplied by the manufacturer. Subsequent radiation surveys outside the shield showed doses higher than expected. Calculations indicated the sensitivity of dose transmission factors to concrete composition. The observed dose transmission factor agreed with that of Broerse but not with that of Hacke and Prudhomme. Measurements and calculations delineated the contribution that neutrons, scattered from the upper wall that supports the laboratory roof, made to the dose in adjoining areas. In redesigning the shield a compromise was made between additional cost and restrictions on the generator's duty cycle, which is automatically controlled to ensure personnel safety. (Author)

  7. High-pressure cell for simultaneous dielectric and neutron spectroscopy

    DEFF Research Database (Denmark)

    Sanz, Alejandro; Hansen, Henriette Wase; Jakobsen, Bo

    2018-01-01

    and fast vibrations at the same time. The cell, constructed in cylindrical geometry, is made of a high-strength aluminum alloy and operates up to 500 MPa in a temperature range between roughly 2 and 320 K. In order to measure the scattered neutron intensity and the sample capacitance simultaneously......In this article, we report on the design, manufacture, and testing of a high-pressure cell for simultaneous dielectric and neutron spectroscopy. This cell is a unique tool for studying dynamics on different time scales, from kilo- to picoseconds, covering universal features such as the α relaxation......, a cylindrical capacitor is positioned within the bore of the high-pressure container. The capacitor consists of two concentric electrodes separated by insulating spacers. The performance of this setup has been successfully verified by collecting simultaneous dielectric and neutron spectroscopy data...

  8. Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    DEFF Research Database (Denmark)

    Sales, Morten; Strobl, Markus; Shinohara, Takenao

    2018-01-01

    -destructively with the potential to probe the interior of bulk samples which is not amenable otherwise. Using a pioneering polarimetric set-up for ToF neutron instrumentation in combination with a newly developed tailored reconstruction algorithm, the magnetic field generated by a current carrying solenoid has been measured......Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non...... and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic...

  9. A HPMT based set-up to characterize scintillating crystals

    International Nuclear Information System (INIS)

    D'Ambrosio, C.; Ercoli, C.; Jaaskelainen, S.; Lecoeur, G.; Leutz, H.; Loos, R.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Schomaker, R.

    1999-01-01

    We have developed a fully automatic measurement set-up, capable of measuring light yields arising from scintillating crystals in a linear range of about four orders of magnitude. The photodetector is a hybrid photomultiplier tube specially developed to optimize linear range and photon detection. Crystal and photodetector are temperature controlled by a closed water circuit, as this is essential when measuring low light yield scintillating crystals with a marked temperature dependence of their light yield. Gamma sources can be placed either on top or on the side of the crystal. In this latter case, the source can be automatically moved by a computer-controlled step motor to provide a uniformity profile of the light yield along the crystal. Tagged and not-tagged operation modes are possible. The whole set-up is computer-controlled in an effort to provide fast and reliable measurements, to characterize many crystals per day. This is important for the quality control of the lead tungstate crystals that will be applied in the electromagnetic calorimeter of the CMS-detector at the LHC at CERN. (author)

  10. A HPMT based set-up to characterize scintillating crystals

    Energy Technology Data Exchange (ETDEWEB)

    D' Ambrosio, C.; Ercoli, C.; Jaaskelainen, S.; Lecoeur, G.; Leutz, H.; Loos, R.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Schomaker, R

    1999-09-21

    We have developed a fully automatic measurement set-up, capable of measuring light yields arising from scintillating crystals in a linear range of about four orders of magnitude. The photodetector is a hybrid photomultiplier tube specially developed to optimize linear range and photon detection. Crystal and photodetector are temperature controlled by a closed water circuit, as this is essential when measuring low light yield scintillating crystals with a marked temperature dependence of their light yield. Gamma sources can be placed either on top or on the side of the crystal. In this latter case, the source can be automatically moved by a computer-controlled step motor to provide a uniformity profile of the light yield along the crystal. Tagged and not-tagged operation modes are possible. The whole set-up is computer-controlled in an effort to provide fast and reliable measurements, to characterize many crystals per day. This is important for the quality control of the lead tungstate crystals that will be applied in the electromagnetic calorimeter of the CMS-detector at the LHC at CERN. (author)

  11. Improvements of the optical detection setup of COLLAPS

    CERN Document Server

    Sailer, Stefan

    2015-01-01

    In Collinear Laser Spectroscopy of rare isotopes it is crucial to keep the background of the measurements low. Using photomultiplier tubes for those measurements, the dark count rate should be as low as possible and the signal gain high. Therefore, it is important to use the right type of photomultiplier tubes for the purpose of single photon detection with a low signal rate. Thus, I tested several different types of photomultiplier tubes for their dark count rates and noise to signal separation. The results have identified the most suitable type of photomultiplier tubes, but further measuring for verification might be necessary. Therefore, it is very important to keep the photomultiplier tubes shut from light. Exposing the photocathode to light implies life-long damage and increased background for several days. So far, when dismounting one of these photomultiplier tubes from the setup, a big cage around the optical detection setup was covered into black sheets to keep it as dark as possible inside. Still, th...

  12. A HPMT based set-up to characterize scintillating crystals

    CERN Document Server

    D'Ambrosio, C; Jääskeläinen, S; Lecoeur, Gérard; Leutz, H; Loos, R; Piedigrossi, D; Puertolas, D; Rosso, E; Schomaker, R

    1999-01-01

    We have developed a fully automatic measurement set-up, capable of measuring light yields arising from scintillating crystals in a linear range of about four orders of magnitude. The photodetector is a Hybrid Photomultiplier Tube especially developed to optimize linear range and photon detection. Crystal and photodetector are temperature controlled by a closed water circuit, as this is essential when measuring low light yield scintillating crystals with a marked temperature dependence of their light yield. Gamma sources can be placed either on top or on the side of the crystal. In this latter case, the source can be automatically moved by a computer-controlled step motor to provide a uniformity profile of the light yield along the crystal. Tagged and not-tagged operation modes are possible. The whole set-up is computer-controlled in an effort to provide fast and reliable measurements, to characterize many crystals per day. This is important for the quality control of the Lead Tungstate crystals that will be a...

  13. Neutron structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in protein which play important roles in physiological functions. However, there are relatively few examples of neutron crystallography in biology since it takes a lot of time to collect a sufficient number of Bragg reflections due to the low flux of neutrons illuminating the sample. In order to overcome the flux problem, we have successfully developed the neutron IP, where the neutron converter, {sup 6}Li or Gd, was mixed with a photostimulated luminescence material on flexible plastic support. Neutron Laue diffraction 2A data from tetragonal lysozyme were collected for 10 days with neutron imaging plates, and 960 hydrogen atoms in the molecule and 157 bound water molecules were identified. These results explain the proposed hydrolysis mechanism of the sugar by the lysozyme molecule and that lysozyme is less active at pH7.0. (author)

  14. Atlas of neutron resonances

    CERN Document Server

    Mughabghab, Said

    2018-01-01

    Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z= 1-60, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=1-60, as well as thermal cross sections, capture resonance integrals, average resonance parameters and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections o...

  15. Neutron image intensifier tubes

    International Nuclear Information System (INIS)

    Verat, M.; Rougeot, H.; Driard, B.

    1983-01-01

    The most frequently used techniques in neutron radiography employ a neutron converter consisting of either a scintillator or a thin metal sheet. The radiation created by the neutrons exposes a photographic film that is in contact with the converter: in the direct method, the film is exposed during the time that the object is irradiated with neutrons; in the transfer method, the film is exposed after the irradiation of the object with neutrons. In industrial non-destructive testing, when many identical objects have to be checked, these techniques have several disadvantages. Non-destructive testing systems without these disadvantages can be constructed around neutron-image intensifier tubes. A description and the operating characteristics of neutron-image intensifier tubes are given. (Auth.)

  16. Neutrons as a probe

    International Nuclear Information System (INIS)

    Iizumi, Masashi

    1993-01-01

    As an introduction to the symposium a brief overview will be given about the features of neutrons as a probe. First it will be pointed out that the utilization of neutrons as a probe for investigating the structural and dynamical properties of condensed matters is a benign gift eventuated from the release of atomic energy initiated by Enrico Fermi exactly half century ago. Features of neutrons as a probe are discussed in accordance with the four basic physical properties of neutrons as an elementary particle; (1) no electric charge (the interaction with matter is nuclear), (2) the mass of neutron is 1 amu, (3) spin is 1/2 and (4) neutrons have magnetic dipole moment. Overview will be given on the uniqueness of neutrons as a probe and on the variety in the way they are used in the wide research area from the pure science to the industrial applications. (author)

  17. Methods of neutron spectrometry

    International Nuclear Information System (INIS)

    Doerschel, B.

    1981-01-01

    The different methods of neutron spectrometry are based on the direct measurement of neutron velocity or on the use of suitable energy-dependent interaction processes. In the latter case the measuring effect of a detector is connected with the searched neutron spectrum by an integral equation. The solution needs suitable unfolding procedures. The most important methods of neutron spectrometry are the time-of-flight method, the crystal spectrometry, the neutron spectrometry by use of elastic collisions with hydrogen nuclei, and neutron spectrometry with the aid of nuclear reactions, especially of the neutron-induced activation. The advantages and disadvantages of these methods are contrasted considering the resolution, the measurable energy range, the sensitivity, and the experimental and computational efforts. (author)

  18. Neutron source for generating fast neutrons

    International Nuclear Information System (INIS)

    Schraube, H.; Morhart, A.

    1980-01-01

    In radiotherapeutics, neutron sources are needed, generating a dose rate as high as possible and neutrons as energetic as possible. By bombardment of tritium targets with deuterons of some 100 keV, neutrons of about 15 MeV are produced, but because of the large slow-down effect in the target consisting of heavy metal the yield is too small. On applying beryllium targets the neutron yields are too small below a deuteron energy of 15 MeV; at the same time, the high percentage of low energy neutrons is undesirable. Based on the favorable yield of the D(d,n) He 3 reaction for deuterons of about 100 MeV, a gas-target chamber is designed. The pressure chamber is designed for a deuterium pressure of up to 11 atmospheres and provided with cooling devices. The flux density in beam direction at a distance of 1 m reaches 108 per cm 2 , the maximum energy of the neutrons amounts to 12 MeV at deuteron energies of 9 MeV, and the neutron share below 9 MeV is small. The maximum dose rate in a tissue-equivalent phantom lies at 40 rads/min. (orig./PW)

  19. Neutron microscope with refractive wedge

    International Nuclear Information System (INIS)

    Masalovich, S.V.

    1990-01-01

    A possibility of applying a refractive element in a mirror-neutron microscope using ultracold neutrons to reduce neutron aberrations is considered. Application of a refractive element in a neutron microscope with horizontal optical axis is studied. A scheme of neutron microscope with a refractive wedge is presented, evaluation of quartz wedge parameters is made. It is stressed that application of refractive elements in neutron microscopes facilitates aberration reduction in neutron-optical systems

  20. The intensive DT neutron generator of TU Dresden

    Directory of Open Access Journals (Sweden)

    Klix Axel

    2018-01-01

    Full Text Available TU Dresden operates an accelerator-based intensive DT neutron generator. Experimental activities comprise investigation into material activation and decay, neutron and photon transport in matter and R&D work on radiation detectors for harsh environments. The intense DT neutron generator is capable to produce a maximum of 1012 n/s. The neutron source is a solid-type water-cooled tritium target based on a titanium matrix on a copper carrier. The neutron yield at a typical deuteron beam current of 1 mA is of the order of 1011 n/s in 4Π. A pneumatic sample transport system is available for short-time irradiations and connected to wo high-purity germanium detector spectrometers for the measurement of induced activities. The overall design of the experimental hall with the neutron generator allows a flexible setup of experiments including the possibility of investigating larger structures and cooled samples or samples at high temperatures.