WorldWideScience

Sample records for neutron transmission setup

  1. 350 keV accelerator-based neutron transmission setup at KFUPM for hydrogen detection

    CERN Document Server

    Naqvi, A; Maslehuddin, M; Kidwai, S; Nassar, R

    2002-01-01

    An experimental setup has been developed to determine hydrogen contents of bulk samples using fast neutron transmission technique. Neutrons with 3 MeV energy were produced via D(d, n) reaction. The neutrons transmitted through the sample were detected by a NE213 scintillation detector. Preliminary tests of the setup were carried out using soil samples with different moisture contents. In addition to experimental study, Monte Carlo simulations were carried out to generate calibration curve of the experimental setup. Finally, experimental tests results were compared with the results of Monte Carlo simulations. A good agreement has been obtained between the simulation results and experimental results.

  2. Characterization of a neutron imaging setup at the INES facility

    Energy Technology Data Exchange (ETDEWEB)

    Durisi, E.A., E-mail: elisabettaalessandra.durisi@unito.it [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Visca, L. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Albertin, F.; Brancaccio, R. [Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Corsi, J. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Dughera, G. [Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Ferrarese, W. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Giovagnoli, A.; Grassi, N. [Fondazione Centro per la Conservazione ed il Restauro dei Beni Culturali “La Venaria Reale”, Piazza della Repubblica, 10078 Venaria Reale, Torino (Italy); Grazzi, F. [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Lo Giudice, A.; Mila, G. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); and others

    2013-10-21

    The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field. -- Highlights: A full characterization of the present INES imaging set-up was carried out. Two CCD cameras and two scintillators (ZnS/{sup 6}LiF) of different thicknesses were tested. Linearity, effective dynamic range and spatial resolution were determined. Radiographies of steep wedges were performed using the highest dynamic range setup. Tomography of a bronze cube was performed using the best spatial resolution setup.

  3. Characterization of a neutron imaging setup at the INES facility

    International Nuclear Information System (INIS)

    Durisi, E.A.; Visca, L.; Albertin, F.; Brancaccio, R.; Corsi, J.; Dughera, G.; Ferrarese, W.; Giovagnoli, A.; Grassi, N.; Grazzi, F.; Lo Giudice, A.; Mila, G.

    2013-01-01

    The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field. -- Highlights: A full characterization of the present INES imaging set-up was carried out. Two CCD cameras and two scintillators (ZnS/ 6 LiF) of different thicknesses were tested. Linearity, effective dynamic range and spatial resolution were determined. Radiographies of steep wedges were performed using the highest dynamic range setup. Tomography of a bronze cube was performed using the best spatial resolution setup

  4. Characterization of a neutron imaging setup at the INES facility

    Science.gov (United States)

    Durisi, E. A.; Visca, L.; Albertin, F.; Brancaccio, R.; Corsi, J.; Dughera, G.; Ferrarese, W.; Giovagnoli, A.; Grassi, N.; Grazzi, F.; Lo Giudice, A.; Mila, G.; Nervo, M.; Pastrone, N.; Prino, F.; Ramello, L.; Re, A.; Romero, A.; Sacchi, R.; Salvemini, F.; Scherillo, A.; Staiano, A.

    2013-10-01

    The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field.

  5. High precision neutron interferometer setup S18b

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Lemmel, H.

    2011-01-01

    The present setup at S18 is a multi purpose instrument. It is used for both interferometry and a Bonse-Hart camera for USANS (Ultra Small Angle Neutron Scattering) spectroscopy with wide range tunability of wavelength. Some recent measurements demand higher stability of the instrument, which made us to propose a new setup dedicated particularly for neutron interferometer experiments requiring high phase stability. To keep both options available, we suggest building the new setup in addition to the old one. By extending the space of the present setup by 1.5 m to the upstream, both setups can be accommodated side by side. (authors)

  6. The setup to investigate rare processes with neutron producing

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Zhuravlev, N.I.; Merzlyakov, S.I.; Sidorov, V.T.; Stolupin, V.A.; Strelkov, A.V.; Shvetsov, V.N.

    1995-01-01

    An experimental setup has been created to study rare processes with neutron production. The detecting system comprises a scintillation detector in the form of a cup around which thermal neutron detectors (BF3 counters) set in paraffin are placed parallel to the common axis in two concentric circles. The detecting system and registering electronics make it possible to obtain time and amplitude information for each registered event. 8 refs., 5 figs

  7. Novel Experimental Setups for In Situ Neutron Diffraction

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; H. Gjørup, Frederik; Mørch, Mathias

    Modern synchrotron and neutron sources provide the intensities needed for performing never-before-seen experiments. With the imminent launch of the scattering facilities MAX IV & ESS, it is interesting to explore novel setups that enable new experiments at these sites. X-ray and neutron technique...... also provide information on the magnetic structure and can probe large bulk samples, allowing the study of compacted powders for use in permanent magnets....

  8. Neutron Transmission through Sapphire Crystals

    DEFF Research Database (Denmark)

    of simulations, in order to reproduce the transmission of cold neutrons through sapphire crystals. Those simulations were part of the effort of validating and improving the newly developed interface between the Monte-Carlo neutron transport code MCNP and the Monte Carlo ray-tracing code McStas....

  9. neutron transmission through crystalline materials

    International Nuclear Information System (INIS)

    El Mesiry, M.S.

    2011-01-01

    The aim of the present work is to study the neutron transmission through crystalline materials. Therefore a study of pyrolytic graphite (PG) as a highly efficient selective thermal neutron filter and Iron single crystal as a whole one, as well as the applicability of using their polycrystalline powders as a selective cold neutron filters is given. Moreover, the use of PG and iron single crystal as an efficient neutron monochromator is also investigated. An additive formula is given which allows calculating the contribution of the total neutron cross-section including the Bragg scattering from different )(hkl planes to the neutron transmission through crystalline iron and graphite. The formula takes into account their crystalline form. A computer CFe program was developed in order to provide the required calculations for both poly- and single-crystalline iron. The validity of the CFe program was approved from the comparison of the calculated iron cross-section data with the available experimental ones. The CFe program was also adapted to calculate the reflectivity from iron single crystal when it used as a neutron monochromator The computer package GRAPHITE, developed in Neutron Physics laboratory, Nuclear Research Center, has been used in order to provide the required calculations for crystalline graphite in the neutron energy range from 0.1 meV to 10 eV. A Mono-PG code was added to the computer package GRAPHITE in order to calculate the reflectivity from PG crystal when it used as a neutron monochromator.

  10. Neutron transmission through crystalline Fe

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Kilany, M.; El-Mesiry, M.S.

    2004-01-01

    The neutron transmission through crystalline Fe has been calculated for neutron energies in the range 10 4 < E<10 eV using an additive formula. The formula permits calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-section as a function of temperature and crystalline form. The obtained agreement between the calculated values and available experimental ones justifies the applicability of the used formula. A feasibility study on using poly-crystalline Fe as a cold neutron filter and a large Fe single crystal as a thermal one is given

  11. The new cold neutron tomography set-up at SINQ

    CERN Document Server

    Baechler, S; Cauwels, P; Dierick, M; Jolie, J; Materna, T; Mondelaers, W

    2002-01-01

    A new cold neutron tomography set-up is operational at the neutron spallation source SINQ of the Paul Scherrer Institute (PSI) in Villigen, Switzerland. The detection system is based on a sup 6 LiF/ZnS:Ag conversion screen and a CCD camera. Several tests have been carried out to characterize the quality of the tomography system, such as homogeneity, reproducibility, L/D-ratio and spatial resolution. The high flux and the good efficiency of the detector lead to very short exposure times. Thus, a typical set of tomography scans can be performed in only 20 min. Then, 3D computed tomography objects were calculated using the filtered back-projection reconstruction method. Initial results of various samples show that cold neutron tomography can be a useful tool for industry, geology and dentistry. Furthermore, suitable applications can be found in the field of archaeology.

  12. Design of a setup for {sup 252}Cf neutron source for storage and analysis purpose

    Energy Technology Data Exchange (ETDEWEB)

    Hei, Daqian [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Zhuang, Haocheng [Xi’an Middle School of Shanxi Province, Xi’an 710000 (China); Jia, Wenbao, E-mail: jiawenbao@163.com [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000 (China); Cheng, Can; Jiang, Zhou; Wang, Hongtao [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Chen, Da [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000 (China)

    2016-11-01

    {sup 252}Cf is a reliable isotopic neutron source and widely used in the prompt gamma ray neutron activation analysis (PGNAA) technique. A cylindrical barrel made by polymethyl methacrylate contained with the boric acid solution was designed for storage and application of a 5 μg {sup 252}Cf neutron source. The size of the setup was optimized with Monte Carlo code. The experiments were performed and the results showed the doses were reduced with the setup and less than the allowable limit. The intensity and collimating radius of the neutron beam could also be adjusted through different collimator.

  13. Sample to moderator volume ratio effects in neutron yield from a PGNAA setup

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, KFUPM Box 1815, Dhahran-31261 (Saudi Arabia)]. E-mail: aanaqvi@kfupm.edu.sa; Fazal-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, KFUPM Box 1815, Dhahran-31261 (Saudi Arabia); Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, KFUPM Box 1815, Dhahran-31261 (Saudi Arabia); Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, KFUPM Box 1815, Dhahran-31261 (Saudi Arabia)

    2007-02-15

    Performance of a prompt gamma ray neutron activation analysis (PGNAA) setup depends upon thermal neutron yield at the PGNAA sample location. For a moderator, which encloses a sample, thermal neutron intensity depends upon the effective moderator volume excluding the void volume due to sample volume. A rectangular moderator assembly has been designed for the King Fahd University of Petroleum and Minerals (KFUPM) PGNAA setup. The thermal and fast neutron yield has been measured inside the sample cavity as a function of its front moderator thickness using alpha particle tracks density and recoil proton track density inside the CR-39 nuclear track detectors (NTDs). The thermal/fast neutron yield ratio, obtained from the alpha particle tracks density to proton tracks density ratio in the NTDs, shows an inverse correlation with sample to moderator volume ratio. Comparison of the present results with the previously published results of smaller moderators of the KFUPM PGNAA setup confirms the observation.

  14. National array of neutron detectors (NAND) a versatile setup for studies on reaction dynamics

    International Nuclear Information System (INIS)

    Golda, K.S.; Singh, R.P.; Zacharias, J.; Archunan, M.; Kothari, A.; Barua, P.; Gupta, Arti; Venkataramanan, S.; Suman, S.K.; Kumar, Rajesh; Kumar, Pankaj; Jhingan, A.; Sugathan, P.; Datta, S.K.; Chatterjee, Mihir; Bhowmik, R.K.; Singh, Hardev; Behera, B.; Kumar, A.; Singh, G.; Ranjit; Mandal, S.

    2006-01-01

    National Array of Neutron Detectors (NAND) is a large array of neutron detectors being setup at Inter University Accelerator Centre. The primary motive behind the development of this array, is the study of reaction dynamics in the energy domain near the Coulomb barrier

  15. Fast and thermal neutron intensity measurements at the KFUPM PGNAA setup

    CERN Document Server

    Al-Jarallah, M I; Fazal-Ur-Rehman; Abu-Jarad, F A

    2002-01-01

    Fast and thermal neutron intensity distributions have been measured at an accelerator based prompt gamma ray neutron activation analysis (PGNAA) setup. The setup is built at the 350 keV accelerator laboratory of King Fahd University of Petroleum and Minerals (KFUPM). The setup is mainly designed to carry out PGNAA elemental analysis via thermal neutron capture. In this study relative intensity of fast and thermal neutrons was measured as a function of the PGNAA moderator assembly parameters using nuclear track detectors (NTDs). The relative intensity of the neutrons was measured inside the sample region as a function of front moderator thickness as well as sample length. Measurements were carried out at the KFUPM 350 keV accelerator using 2.8 MeV pulsed neutron beam from D(d,n) reaction. The pulsed deuteron beam with 5 ns pulse width and 30 kHz frequency was used to produce neutrons. Experimental results were compared with results of Monte Carlo design calculations of the PGNAA setup. A good agreement has bee...

  16. Fast and thermal neutron intensity measurements at the KFUPM PGNAA setup

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I.; Naqvi, A.A. E-mail: aanaqvi@kfupm.edu.sa; Fazal-ur-Rehman; Abu-jarad, F

    2002-10-01

    Fast and thermal neutron intensity distributions have been measured at an accelerator based prompt gamma ray neutron activation analysis (PGNAA) setup. The setup is built at the 350 keV accelerator laboratory of King Fahd University of Petroleum and Minerals (KFUPM). The setup is mainly designed to carry out PGNAA elemental analysis via thermal neutron capture. In this study relative intensity of fast and thermal neutrons was measured as a function of the PGNAA moderator assembly parameters using nuclear track detectors (NTDs). The relative intensity of the neutrons was measured inside the sample region as a function of front moderator thickness as well as sample length. Measurements were carried out at the KFUPM 350 keV accelerator using 2.8 MeV pulsed neutron beam from D(d,n) reaction. The pulsed deuteron beam with 5 ns pulse width and 30 kHz frequency was used to produce neutrons. Experimental results were compared with results of Monte Carlo design calculations of the PGNAA setup. A good agreement has been found between the experimental results and the calculations.

  17. A simple setup for neutron tomography at the Portuguese nuclear research reactor

    International Nuclear Information System (INIS)

    Pereira, M.A. Stanojev; Marques, J.G.; Pugliesi, R.

    2012-01-01

    A simple setup for neutron radiography and tomography was recently installed at the Portuguese Research Reactor. The objective of this work was to determine the operational characteristics of the installed setup, namely the irradiation time to obtain the best dynamic range for individual images and the spatial resolution. The performance of the equipment was demonstrated by imaging a fragment of a seventeenth-century decorative tile. (author)

  18. Transmission of Thermal Neutrons through Boral

    Energy Technology Data Exchange (ETDEWEB)

    Aakerhielm, F

    1960-06-15

    Transmission measurements have been performed using Maxwellian distributed neutrons from the R1 reactor perpendicularly incident upon a boral absorption plate. American, English, German, Swedish and Swiss samples have been investigated and the results are compared to calculated values. The influence of the absorber grain size is discussed.

  19. Transmission of Thermal Neutrons through Boral

    International Nuclear Information System (INIS)

    Aakerhielm, F.

    1960-06-01

    Transmission measurements have been performed using Maxwellian distributed neutrons from the R1 reactor perpendicularly incident upon a boral absorption plate. American, English, German, Swedish and Swiss samples have been investigated and the results are compared to calculated values. The influence of the absorber grain size is discussed

  20. Improvement of the polarized neutron interferometer setup demonstrating violation of a Bell-like inequality

    Energy Technology Data Exchange (ETDEWEB)

    Geppert, H., E-mail: hgeppert@ati.ac.at [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Denkmayr, T.; Sponar, S. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Lemmel, H. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Institut Laue Langevin, 38000 Grenoble (France); Hasegawa, Y. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria)

    2014-11-01

    For precise measurements with polarised neutrons high efficient spin-manipulation is required. We developed several neutron optical elements suitable for a new sophisticated setup, i.e., DC spin-turners and Larmor-accelerators which diminish thermal disturbances and depolarisation considerably. The gain in performance is exploited demonstrating violation of a Bell-like inequality for a spin-path entangled single-neutron state. The obtained value of S=2.365(13), which is much higher than previous measurements by neutron interferometry, is 28σ above the limit of S=2 predicted by contextual hidden variable theories. The new setup is more flexible referring to state preparation and analysis, therefore new, more precise measurements can be carried out.

  1. Improvement of the polarized neutron interferometer setup demonstrating violation of a Bell-like inequality.

    Science.gov (United States)

    Geppert, H; Denkmayr, T; Sponar, S; Lemmel, H; Hasegawa, Y

    2014-11-01

    For precise measurements with polarised neutrons high efficient spin-manipulation is required. We developed several neutron optical elements suitable for a new sophisticated setup, i.e., DC spin-turners and Larmor-accelerators which diminish thermal disturbances and depolarisation considerably. The gain in performance is exploited demonstrating violation of a Bell-like inequality for a spin-path entangled single-neutron state. The obtained value of [Formula: see text], which is much higher than previous measurements by neutron interferometry, is [Formula: see text] above the limit of S =2 predicted by contextual hidden variable theories. The new setup is more flexible referring to state preparation and analysis, therefore new, more precise measurements can be carried out.

  2. Setup for precise measurement of neutro lifetime by UCN storage method with inelastically scattered neutron detection

    International Nuclear Information System (INIS)

    Arzumanov, S.S; Bondarenko, L.N.; Gel'tenbort, P.; Morozov, V.I.; Nesvizhevskij, V.V.; Panin, Yu.N.; Strepetov, A.N.

    2007-01-01

    The experimental setup and the method of measuring the neutron lifetime with a precision less then 1 s is described. The measurements will be carried out by storage of ultracold neutrons (UCN) into vessels with inner walls coated with fluorine polymer oil with simultaneous registration of inelastically scattered UCN leaving storage vessels. The analysis of statistical and methodical errors is carried out. The calculated estimation of the measurement accuracy is presented [ru

  3. Neutron transmission through pyrolytic graphite crystals

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M. [Reactor Physics Department NRC, Reactor Physics Division, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759 (Egypt); Habib, N. [Reactor Physics Department NRC, Reactor Physics Division, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759 (Egypt)]. E-mail: nadiahabib15@yahoo.com; Fathaalla, M. [Reactor Physics Department NRC, Reactor Physics Division, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759 (Egypt)

    2006-05-15

    Calculation of the total cross-section, neutron transmission and removal coefficient of pyrolytic graphite (PG) for thermal neutron energies were carried out using an additive formula. The formula takes into account the variation of thermal diffuse and Bragg scattering cross-sections in terms of PG temperature and mosaic spread for neutron energies in the range 1 meV to 1 eV. A computer code PG has been developed which allow calculations for the graphite in its hexagonal close-packed structure, when its c-direction is parallel with incident neutron beam (parallel orientation). The calculated total neutron cross-sections for PG in parallel orientation at different mosaic spreads were compared with the measured values. An overall agreement is indicated between the formula fits and experimental data at room and liquid nitrogen temperatures. A feasibility study for use of PG crystals as second-order neutron filter is detailed in terms of mosaic spread, optimum thickness and temperature. The calculated removal coefficients of PG crystals show that such crystals are high efficiency second-order filter within neutron energy intervals (4-7 meV) and (10-15 meV)

  4. Neutron moderation in a bulk sample and its effects on PGNAA setup geometry

    International Nuclear Information System (INIS)

    Al-Jarallah, M.I.; Naqvi, A.A.; Fazal-ur-Rehman,; Maselehuddin, M.; Abu-Jarad, F.; Raashid, M.

    2003-01-01

    In a prompt gamma ray neutron activation analysis (PGNAA) setup, the neutron moderation in the bulk sample also plays a key role. This can even dominate the thermalization effects of the external moderator in some cases. In order to study the neutron moderation effect in the bulk sample, moderators with two different sizes of the sample were tested at the King Fahd University of Petroleum and Minerals (KFUPM) PGNAA facility. In these tests, the thermal neutron relative intensity and prompt gamma ray yield from the two moderators were measured using nuclear track detectors (NTDs) and NaI detector, respectively. As predicted by Monte Carlo simulations, the measured intensity of thermal neutron inside the large sample cavity due to the external moderator was smaller than that from the smaller sample cavity. Due to its larger size, additional thermalization of neutrons will take place in the larger sample. In spite of smaller thermal neutron yield from the external moderator at the large sample location, higher yield of the prompt gamma ray was observed as compared to that from the smaller sample. This confirms the significance of neutron moderation effects in the bulk sample and can thereby affect the PGNAA geometry size. This allows larger samples in conjunction with smaller moderators in the PGNAA setup

  5. Neutron moderation in a bulk sample and its effects on PGNAA setup geometry

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Naqvi, A.A.; Fazal-ur-Rehman,; Maselehuddin, M.; Abu-Jarad, F.; Raashid, M

    2003-06-01

    In a prompt gamma ray neutron activation analysis (PGNAA) setup, the neutron moderation in the bulk sample also plays a key role. This can even dominate the thermalization effects of the external moderator in some cases. In order to study the neutron moderation effect in the bulk sample, moderators with two different sizes of the sample were tested at the King Fahd University of Petroleum and Minerals (KFUPM) PGNAA facility. In these tests, the thermal neutron relative intensity and prompt gamma ray yield from the two moderators were measured using nuclear track detectors (NTDs) and NaI detector, respectively. As predicted by Monte Carlo simulations, the measured intensity of thermal neutron inside the large sample cavity due to the external moderator was smaller than that from the smaller sample cavity. Due to its larger size, additional thermalization of neutrons will take place in the larger sample. In spite of smaller thermal neutron yield from the external moderator at the large sample location, higher yield of the prompt gamma ray was observed as compared to that from the smaller sample. This confirms the significance of neutron moderation effects in the bulk sample and can thereby affect the PGNAA geometry size. This allows larger samples in conjunction with smaller moderators in the PGNAA setup.

  6. Material characterization using cold neutron transmission spectroscopy

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Kamiyama, Takashi; Nagata, Toshiyuki; Hiraga, Fujio; Suzuki, Shun

    2006-01-01

    Transmission data using a pulsed neutron source have information on neutron cross-section that reflects the crystal structure of the object, and combined with area detector we can obtain the structural change depending on the position in the object. We performed several experimental studies to observe the change of the structure. We demonstrate position-dependent structural change of the lead in solid. It was indicated that the structure changed largely within few millimeters region. Furthermore, we observed the cross-section change of stainless steel (SS) samples with different treatments, which may be the effect of crystal grain structure of the SS samples caused by different treatment

  7. Neutron transmission bands in one dimensional lattices

    International Nuclear Information System (INIS)

    Monsivais, G.; Moshinsky, M.

    1999-01-01

    The original Kronig-Penney lattice, which had delta function interactions at the end of each of the equal segments, seems a good model for the motion of neutrons in a linear lattice if the strength b of the δ functions depends of the energy of the neutrons, i.e., b(E). We derive the equation for the transmission bands and consider the relations of b(E) with the R(E) function discussed in a previous paper. We note the great difference in the behavior of the bands when b(E) is constant and when it is related with a single resonance of the R function. (Author)

  8. Neutron transmission through pyrolytic graphite crystal II

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M., E-mail: mamdouhshihata@yahoo.com [Reactor Physics Department, NRC, AEAE, Cairo (Egypt); Habib, N. [Reactor Physics Department, NRC, AEAE, Cairo (Egypt); Bashter, I.; Saleh, A. [Faculty of Science, Zagazig University (Egypt)

    2011-04-15

    The measured neutron transmissions through 6.7 mm thick pyroletic graphite (PG) crystal set at different take-off-angles with respect to the beam, as a function of wavelength, were compared with the calculated values using a general formula. An adapted version of the computer package graphite was developed in order to provide the required calculations in the neutron energy range from 0.1 MeV to 10 eV. An overall agreement was obtained between the formula fits and the measured data at different take-off-angles. The major dips in transmission caused by various reflections were identified. From the shape of the dips due to 0 0 l reflections, the mosaic spread of the used PG crystal has been determined within an accuracy of 0.12{sup o}. A feasibility study is carried out on using two PG crystals to select from the reactor spectrum a neutron monochromatic beam with wavelengths longer than 0.3 nm and almost free from accompanying higher-order reflections. Calculation shows that 2 mm thick highly oriented PG (0.5{sup o} FWHM on mosaic spread) crystal set at glancing angle 20.0{sup o} reflects first-order monochromatic neutrons with 0.3 nm wavelengths. When 6.0 cm thick PG crystal (2{sup o} FWHM on mosaic spread) set at 60.63{sup o} take-off-angle is inserted on the way of the reflected neutrons, it transmits more than 70% of the first-order neutrons while attenuating the high- order ones by more than 20 times. Similar results were obtained when the selected monochromatic neutrons had wavelengths longer than 0.3 nm.

  9. Neutron polarizing set-up of the Sofia IRT research reactor

    International Nuclear Information System (INIS)

    Krezhov, K.; Mikhajlova, V.; Okorokov, A.

    1990-01-01

    Neutron polarizing set-up of one of the horizontal beam tubes of the IRT-200 research reactor of the Bulgarian Institute of Nuclear Research and Nuclear Energy is presented. Neutron mirrors are extensively used in an effort to compensate the moderate reactor beam intensity by the high reflected intensity and wide-band transmittance of the mirror neutron guides. Time-to-flight technique using a slotted neutron absorbing chopper with a horizontal rotation axis has been applied to obtain the exit neutron spectra. Beam polarization and flipping ratios have been determined. Cadmium ratio in the polarized beam has been found almost 10 4 and the average polarization has been measured to be higher than 96%. 3 figs, 3 refs

  10. A new instrumental set-up for polarized neutron scattering experiments

    International Nuclear Information System (INIS)

    Schmidt, Wolfgang; Ohl, Michael

    2005-01-01

    Neutron scattering with polarization analysis is a powerful tool to determine magnetic structures and excitations. A common setup is to mount the sample at the center of a Helmholtz-type coil which can provide a magnetic field of any direction at the sample position and also a guide field along the neutron flight paths around the sample. Recent experiments showed quite a high demand for measurements at low momentum transfers. For the corresponding low scattering angles air scattering gives rise to a very large background. For this reason we have extended the standard setup to a combination of a large vacuum tank surrounded by electrical coils. The vacuum tank eliminates the air scattering and we can use the polarization analysis down to the lowest accessible momentum transfers. The coils themselves also show some new features: In contrary to the classic (symmetric) coil distribution we use an asymmetric setup which gives the advantage of a larger scattering window. Due to a more sophisticated current distribution this modified coil arrangement needs not to be rotated for different scattering conditions. The whole set-up will soon be available at IN12, a cold neutrons three-axis spectrometer operated by FZ Juelich in collaboration with CEA Grenoble as a CRG-B instrument at the Institut Laue Langevin in Grenoble

  11. Automatic control unit for neutron transmission measurements

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Abdel-Kawy, A.; Eid, Y.; Ashry, A.; Mostafa, M.; Hamouda, I. (Atomic Energy Establishment, Inshas (Egypt). Reactor and Neutron Physics Dept.)

    1981-01-01

    An automatic transistorized unit has been designed to control the neutron transmission measurements carried out using the time-of-flight spectrometer. The function of the automatic unit is to control the measurements of the neutron counting rate distribution transmitted through a sample at a selected channel group of the time analyzer for a certain preadjusted time period. At the end of this time, the unit removes the sample out of the neutron beam, selects a second equal channel group of the time analyzer and provides the measurement of the neutron counting rate distribution for the same time period as in the case with the sample on. Such a measuring cycle can be repeated as much as the experiment requires. At the end of these cycles the stored information can be immediately obtained through the analyzer read out unit. It is found that the time of removing the sample out of the neutron beam or returning it back does not exceed 20 seconds instead of the five minutes required in case of manual operation. The most important advantages of using such an automatic unit are saving about 20 percent of the reactor operating time avoidng unnecessary radiation exposure of the experimentalists.

  12. Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments

    International Nuclear Information System (INIS)

    MJ Trbovich; DP Barry; RE Slovacck; Y Danon; RC Block; JA Burke; NJ Drindak; G Leinweber; RV Ballad

    2004-01-01

    The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping 176 Hf and 178 Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions. Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. 6 Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically-enriched liquid samples. The liquid samples were designed to provide information on the 176 Hf and 178 Hf contributions to the 8 eV doublet without saturation. Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY [1] and INTER [2] codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little

  13. GALS – setup for production and study of heavy neutron rich nuclei

    Directory of Open Access Journals (Sweden)

    Zemlyanoy Sergey

    2015-01-01

    Full Text Available The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 below 208Pb is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion–fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of 136Xe with 208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N=126.

  14. GALS – setup for production and study of heavy neutron rich nuclei

    CERN Document Server

    Zemlyanoy, Sergey; Kozulin, Eduard; Kudryavtsev, Yury; Fedosseev, Valentin; Bark, Robert; Janas, Zenon; Othman, Hosam

    2015-01-01

    The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 below ^208Pb is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion-fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of ^136Xe with ^208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N=126.

  15. Transmission of 14 MeV neutrons through concrete, soil, sugar, wood and coal samples - a Monte Carlo Study

    International Nuclear Information System (INIS)

    Abdelmonem, M.S.; Naqvi, A.A.

    2006-01-01

    Full text: Fast neutrons transmission measurements are ideal for the elemental analysis of bulk samples. In particular, they can be used to determine the hydrogen concentration in bulk samples. In the present study, Monte Carlo simulations have been carried to calculate the intensity of 14 MeV neutrons transmitted through concrete, soil, sugar, wood and coal samples. The simulated set-up consists of a cylindrical sample, placed at a distance of 9 cm from the neutron source. Fast neutrons transmitted through the sample are collimated through a double truncated neutron collimator to a fast neutron detector. The collimator contains a mixture of paraffin and lithium carbonate. In this study, transmitted intensity of fast neutron through each sample was calculated as a function of moisture contents of the sample for 14 MeV neutrons. The moisture contents of the samples were varied over 0-7 wt. %. The calculated intensity of 14 MeV neutrons transmitted through the samples, shows effects related to fast neutron thermalization in hydrogen of moisture and energy dependence of neutron transmission through the sample materials. This is clearly shown by different gradients of neutron yield vs moisture content curves of these samples. The gradient of the neutron yield curves for the 14 MeV neutrons has a lower value than those reported for a 241 Am-Be neutron source

  16. Transmission efficiency of neutron guide tube with alignment errors

    International Nuclear Information System (INIS)

    Kawabata, Yuji; Suzuki, Masatoshi; Sakamoto, Masanobu; Harami, Taikan; Takahashi, Hidetake; Onishi, Nobuaki

    1990-01-01

    The experimental studies on the neutron transmission efficiencies of neutron guide tubes were carried out by using thermal neutrons from the JAERI electron linac. The neutron guide tube facility on a large scale have been planned on the reconstructed JRR-3 in JAERI. The neutron efficiencies of the 1/10 scale neutron guide tube, which is 2 mm width and 1.8 m length, with and without appreciable alignment errors were studied to evaluate the efficiencies of the planned ones. Calculated results by the Neutron Guide Tube Analysis Code 'NEUGT' were also assessed by these neutron experiments. The experimental results agree well with the calculated results by 'NEUGT' even with alignment errors. From this experimental study, the efficiency of the planned neutron guide tubes is estimated to be good enough for the neutron beam experiments. (author)

  17. Thermal neutron dose calculations in a brain phantom from 7Li(p,n) reaction based BNCT setup

    International Nuclear Information System (INIS)

    Elshahat, B.A.; Naqvi, A.A.; Maalej, N.; Abdallah, Khalid

    2006-01-01

    Monte Carlo simulations were carried out to calculate neutron dose in a brain phantom from a 7 Li(p,n) reaction based setup utilizing a high density polyethylene moderator with graphite reflector. The dimensions of the moderator and the reflector were optimized through optimization of epithermal /(fast +thermal) neutron intensity ratio as a function of geometric parameters of the setup. Results of our calculation showed the capability of our setup to treat the tumor within 4 cm of the head surface. The calculated Peak Therapeutic Ratio for the setup was found to be 2.15. With further improvement in the moderator design and brain phantom irradiation arrangement, the setup capabilities can be improved to reach further deep-seated tumor. (author)

  18. Neutron-capture reactions with the R{sup 3}B-CaveC setup

    Energy Technology Data Exchange (ETDEWEB)

    Heine, Marcel [IKP, TU Darmstadt (Germany)

    2014-07-01

    Recent research has shown that the (n,γ) transition-rates on light nuclei can have an influence on the neutron-balance during the r-process. Especially neutron rich carbon isotopes play an important role in r-process nucleo synthesis network calculations which include light nuclei, since these nuclei are aligned along major flow-paths. In particular {sup 18}C is of interest, because it can be interpreted as a waiting point. The {sup 17}C(n,γ){sup 18}C rate could so far only be estimated theoretically and has an uncertainty of a factor of ten [1]. At the R{sup 3}B-CaveC setup at GSI we have measured the (n,γ) time reversed reaction, i.e. {sup 18}C(γ,n){sup 17}C for the above mentioned nucleus, via the Coulomb-breakup of {sup 18}C beam. The kinematically complete measurement allows extracting energy dependent neutron-capture cross section with respect to the excitation energy by using the invariant-mass method. Experimental results are presented in comparison to theoretical calculations.

  19. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    International Nuclear Information System (INIS)

    Späth, Andreas; Raabe, Jörg; Fink, Rainer H.

    2015-01-01

    A conventional STXM setup has been upgraded with a second micro zone plate and aligned to confocal geometry. Two confocal geometries (in-line and off-axis) have been evaluated and a discussion on prospects and limitations is presented. Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed

  20. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Späth, Andreas [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany); Raabe, Jörg [Paul Scherrer Institut, 5232 Villigen (Switzerland); Fink, Rainer H., E-mail: rainer.fink@fau.de [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany); Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany)

    2015-01-01

    A conventional STXM setup has been upgraded with a second micro zone plate and aligned to confocal geometry. Two confocal geometries (in-line and off-axis) have been evaluated and a discussion on prospects and limitations is presented. Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed.

  1. The Karlsruhe Neutron Transmission Experiment (KANT): Spherical shell transmission measurements with 14 MeV neutrons on beryllium

    International Nuclear Information System (INIS)

    Moellendorff, U. von; Fischer, U.; Giese, H.; Kappler, F.; Tayama, R.; Wiegner, E.; Klein, H.; Alevra, A.

    1996-01-01

    This is a set of viewgraphs (no additional text) of a presentation on spherical shell transmission measurements with 14 MeV neutrons on beryllium; the cross for 9 Be(n,2n)2α for the energy range between threshold (1.85 MeV) and 20 MeV neutron energy is measured and the measurement is compared with the literature. Also, neutron leakage multiplication in spherical Be shells with various thicknesses are presented. Figs, tabs

  2. Study on the transmission efficiency of curved neutron guide

    International Nuclear Information System (INIS)

    Wang Hongli; Zhang Li; Guo Liping; Yang Tonghua; Zhao Zhixiang

    2004-01-01

    Monte-Carlo simulation program NGT2002 is used to study the transmission efficiency of curved neutron guide from character wavelength, film reflectivity, film material, geometry adjustment error, gap between guides and guide fabricate error, the authors get the transmission efficiency curves of the Ni, supper mirror curved neutron guides, also we have a discuss of how to choose the curved neutron guide's character wavelength. By the simulation results, the authors determine the proper film reflectivity value, guide horizontal geometry adjustment error range, optimized gap value between guide elements and guide width fabricate geometry error range. (authors)

  3. Two reports: (i) Correlation properties of delayed neutrons from fast neutron induced fission. (ii) Method and set-up for measurements of trace level content of heavy fissionable elements based on delayed neutron counting

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Isaev, S.G.; Goverdovski, A.A.; Pshakin, G.M.

    1998-10-01

    The document includes the following two reports: 'Correlation properties of delayed neutrons from fast neutron induced fission' and 'Method and set-up for measurements of trace level content of heavy fissionable elements based on delayed neutron counting. A separate abstract was prepared for each report

  4. Precise measurement and calculation of 238U neutron transmissions

    International Nuclear Information System (INIS)

    Olsen, D.K.; de Saussure, G.; Silver, E.G.; Perez, R.B.

    1975-01-01

    The total neutron cross section of 238 U has been measured above 0.5 eV in precise transmission experiments and results are compared with ENDF/B-IV. Emphasis has been on measuring transmissions through thick samples in order to obtain accurate total cross sections in the potential-resonance interference regions between resonances. 4 figures, 1 table

  5. Neutron transmission measurements of poly and pyrolytic graphite crystals

    Science.gov (United States)

    Adib, M.; Abbas, Y.; Abdel-Kawy, A.; Ashry, A.; Kilany, M.; Kenawy, M. A.

    The total neutron cross-section measurements of polycrystalline graphite have been carried out in a neutron wavelength from 0.04 to 0.78 nm. This work also presents the neutron transmission measurements of pyrolytic graphite (PG) crystal in a neutron wavelength band from 0.03 to 0.50 nm, at different orientations of the PG crystal with regard to the beam direction. The measurements were performed using three time-of-flight (TOF) spectrometers installed in front of three of the ET-RR-1 reactor horizontal channels. The average value of the coherent scattering amplitude for polycrystalline graphite was calculated and found to be bcoh = (6.61 ± 0.07) fm. The behaviour of neutron transmission through the PG crystal, while oriented at different angles with regard to the beam direction, shows dips at neutron wavelengths corresponding to the reflections from (hkl) planes of hexagonal graphite structure. The positions of the observed dips are found to be in good agreement with the calculated ones. It was also found that a 40 mm thick PG crystal is quite enough to reduce the second-order contamination of the neutron beam from 2.81 to 0.04, assuming that the incident neutrons have a Maxwell distribution with neutron gas temperature 330 K.

  6. Neutron transmission measurements of poly and pyrolytic graphite crystals

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Kilany, M.

    1989-01-01

    The total neutron cross-section measurements of polycrystalline graphite have been carried out in a neutron wavelength from 0.04 to 0.78 nm. This work also presents the neutron transmission measurements of pyrolytic graphite (PG) crystal in a neutron wavelength band from 0.03 to 0.50 nm, at different orientations of the PG crystal with regard to the beam direction. The measurements were performed using three time-of-flight (TOF) spectrometers installed in front of three of the ET-RR-1 reactor horizontal channels. The average value of the coherent scattering amplitude for polycrystalline graphite was calculated and found to be b coh = (6.61 ± 0.07) fm. The behaviour of neutron transmission through the PG crystal, while orientated at different angles with regard to the beam direction, shows dips at neutron wavelengths corresponding to the reflections from (hk1) planes of hexagonal graphite structure. The positions of the observed dips are found to be in good agreement with the calculated ones. It was also found that a 40 mm thick PG crystal is quite enough to reduce the second-order contamination of the neutron beam from 2.81 to 0.04, assuming that the incident neutrons have a Maxwell distribution with neutron gas temperature 330 K. (author)

  7. Neutron Transmission of Germanium Poly- and Monocrystals

    International Nuclear Information System (INIS)

    Habib, N.

    2009-01-01

    The measured total neutron cross-sections of germanium poly- and mono-crystals were analyzed using an additive formula. The formula takes into account the germanium crystalline structure and its physical parameters. Computer programs have developed in order to provide the required analyses. The calculated values of the total cross-section of polycrystalline germanium in the neutron wavelength range from 0.001 up to 0.7 nm were fitted to the measured ones at ETRR-1. From the fitting the main constants of the additive formula were determined. The experimental data measured at ETRR-1 of the total cross-section of high quality Ge single crystal at 4400 K, room, and liquid nitrogen temperatures, in the wavelength range between 0.028 nm and 0.64 nm, were also compared with the calculated values using the formula having the same constants. An overall agreement is noticed between the formula fits and experimental data. A feasibility study is done for the use of germanium in poly-crystalline form, as cold neutron filter, and in mono-crystalline one as an efficient filter for thermal neutrons. The filtering efficiency of Ge single crystal is detailed in terms of its isotopic abundance, crystal thickness, mosaic spread, and temperature. It can be concluded that the 7.5 cm thick 76 Ge single crystal (0.10 FWHM mosaic spread) cooled at liquid nitrogen temperature is an efficient thermal neutron filter.

  8. ATLAS-TPX: a two-layer pixel detector setup for neutron detection and radiation field characterization

    International Nuclear Information System (INIS)

    Bergmann, B.; Caicedo, I.; Pospisil, S.; Vykydal, Z.; Leroy, C.

    2016-01-01

    A two-layer pixel detector setup (ATLAS-TPX), designed for thermal and fast neutron detection and radiation field characterization is presented. It consists of two segmented silicon detectors (256 × 256 pixels, pixel pitch 55 μm, thicknesses 300 μm and 500 μm) facing each other. To enhance the neutron detection efficiency a set of converter layers is inserted in between these detectors. The pixelation and the two-layer design allow a discrimination of neutrons against γs by pattern recognition and against charged particles by using the coincidence and anticoincidence information. The neutron conversion and detection efficiencies are measured in a thermal neutron field and fast neutron fields with energies up to 600 MeV. A Geant4 simulation model is presented, which is validated against the measured detector responses. The reliability of the coincidence and anticoincidence technique is demonstrated and possible applications of the detector setup are briefly outlined.

  9. Neutron transmission and reflection at a copper single crystal

    International Nuclear Information System (INIS)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Fayek, M.; Habib, N.; Wahba, M.

    1991-01-01

    Neutron transmission and reflection at a copper single crystal cut along the (111) plane were studied with the fixed-scattering-angle spectrometer installed at the ET-RR-1 reactor. The transmission was measured for neutron wavelengths between 0.15 and 0.46 nm and various orientations of the (111) plane with respect to the incident beam. When used as a neutron band pass filter, the crystal is optimally oriented when the neutron beam is incident parallel to the [111] direction. The reflectivity was measured for the (111) plane at 45deg with respect to the incident beam. The results were found to be in reasonable agreement with a value predicted for the reflected intensity at an imperfect crystal with finite absorption. (orig.) [de

  10. Neutron transmission and reflection at a copper single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Fayek, M.; Habib, N. (Atomic Energy Establishment, Cairo (Egypt). Reactor and Neutron Physics Dept.); Wahba, M. (Ain Shams Univ., Cairo (Egypt). Dept. of Engineering Physics and Mathematics)

    1991-06-01

    Neutron transmission and reflection at a copper single crystal cut along the (111) plane were studied with the fixed-scattering-angle spectrometer installed at the ET-RR-1 reactor. The transmission was measured for neutron wavelengths between 0.15 and 0.46 nm and various orientations of the (111) plane with respect to the incident beam. When used as a neutron band pass filter, the crystal is optimally oriented when the neutron beam is incident parallel to the (111) direction. The reflectivity was measured for the (111) plane at 45deg with respect to the incident beam. The results were found to be in reasonable agreement with a value predicted for the reflected intensity at an imperfect crystal with finite absorption. (orig.).

  11. Explosives detection via fast neutron transmission spectroscopy

    International Nuclear Information System (INIS)

    Overley, J.C.; Chmelik, M.S.; Rasmussen, R.J.; Schofield, R.M.S.; Sieger, G.E.; Lefevre, H.W.

    2006-01-01

    A review of a five-year project on detection of explosives in luggage is presented. Experimental methods are described. Explosive detection algorithms based on elemental distributions in a 5-dimensional space are also described. Single-blind tests of the method suggest that a false-alarm rate of 4% and a detection rate of 93% are possible. Improvements in the method are suggested. Measurements of neutron total cross sections for chlorine are presented

  12. Activation measurements for thermal neutrons. Part J. Evaluation of thermal neutron transmission factors

    International Nuclear Information System (INIS)

    Egbert, Stephen D.

    2005-01-01

    In order to relate thermal neutron activation measurements in samples to the calculated free-in-air thermal neutron activation levels given in Chapter 3, use is made of sample transmission factors. Transmission factors account for the modification of the fluence and activation at each sample's in situ location. For the purposes of this discussion, the transmission factor (TF) is defined as the ratio of the in situ sample activation divided by the free-in-air (FIA) activation at a height of 1 m above ground at the same ground range. The procedures for calculation of TF's and example results are presented in this section. (author)

  13. Activation measurements for fast neutrons. Part E. Evaluation of fast neutron 63Ni transmission factors

    International Nuclear Information System (INIS)

    Egbert, Stephen D.

    2005-01-01

    The 63 Ni measurements for fast neutrons in copper samples are compared to the calculated free-in-air 63 Ni neutron activation given in Chapter 3 by use of transmission factors. Transmission factors were calculated to account for the modification of the fluence and activation at each sample's in situ location. For the purposes of this discussion, the transmission factor (TF) is defined as the ratio of the in situ sample activation divided by the untilted free-in-air (FIA) activation at a height of 1 m above ground at the same ground range. Examples of the application of TF's will be provided in this section. (author)

  14. Neutron transmission of single-crystal sapphire filters

    International Nuclear Information System (INIS)

    Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.

    2005-01-01

    An additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for single-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula fits and experimental data. We discuss the use of sapphire single crystal as a thermal neutron filter in terms of the optimum crystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons. (author)

  15. Neutron Transmission of Single-crystal Sapphire Filters

    Science.gov (United States)

    Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.

    2005-05-01

    An additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for single-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula and experimental data. We discuss the use of sapphire single crystal as a thermal neutron filter in terms of the optimum cystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons.

  16. Neutron transmission of single-crystal sapphire filters

    International Nuclear Information System (INIS)

    Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.

    2004-01-01

    A simple additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for mono-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula fits and experimental data. We discuss the use of sapphire single-crystal as a thermal neutron filter in terms of the optimum crystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons

  17. Neutron transmission measurements on hydrogen filled microspheres

    International Nuclear Information System (INIS)

    Dyrnjaja, Eva; Hummel, Stefan; Keding, Marcus; Smolle, Marie-Theres; Gerger, Joachim; Zawisky, Michael

    2014-01-01

    Hollow microspheres are promising candidates for future hydrogen storage technologies. Although the physical process for hydrogen diffusion through glass is well understood, measurements of static quantities (e.q. hydrogen pressure inside the spheres) as well as dynamic properties (e.g. diffusion rate of hydrogen through glass) are still difficult to handle due to the small size of the spheres (d≈15μm). For diffusion rate measurements, the long-term stability of the experiment is also mandatory due to the relatively slow diffusion rate. In this work, we present an accurate and long-term stable measurement technique for static and dynamic properties, using neutron radiography. Furthermore, possible applications for hydrogen filled microspheres within the scope of radiation issues are discussed

  18. Illicit substance detection using fast-neutron transmission spectroscopy

    International Nuclear Information System (INIS)

    Micklich, B.J.; Harper, M.K.; Novick, A.H.; Smith, D.L.

    1994-01-01

    Fast-neutron interrogation techniques are of interest for detecting illicit substances such as explosives and drugs because of their ability to identify light elements such as carbon, nitrogen, and oxygen. Fast-Neutron Transmission Spectroscopy (FNTS) uses standard time-of-flight techniques to measure the energy spectrum of neutrons emitted from a collimated continuum source before and after transmission through the interrogated sample. The Monte Carlo transport code MCNP is used to model fast-neutron transmission experiments using a 9 Be(d, n) source (E d =5 MeV). The areal densities (number of atoms per cm 2 ), and the uncertainties, of various elements present in the sample are determined by an unfolding algorithm which includes the effects of cross-section errors and correlations. Results are displayed in the form of normalized densities, including their errors and correlations, which are then compared to the values for explosives and benign substances. Probabilistic interpretations of the results are discussed in terms of substance detection and identification. ((orig.))

  19. Illicit substance detection using Fast-Neutron Transmission Spectroscopy

    International Nuclear Information System (INIS)

    Micklich, B.J.; Harper, M.K.; Novick, A.H.; Smith, D.L.

    1994-01-01

    Fast-neutron interrogation techniques are of interest for detecting illicit substances such as explosives and drugs because of their ability to identify light elements such as carbon, nitrogen, and oxygen. Fast-Neutron Transmission Spectroscopy (FNTS) uses standard time-of-flight techniques to measure the energy spectrum of neutrons emitted from a collimated continuum source before and after transmission through the interrogated sample. The Monte Carlo transport code MCNP is used to model fast-neutron transmission experiments using a 9 Be(d,n) source [E d = 5 MeV]. The areal densities (number of atoms per cm 2 ), and the uncertainties, of various elements present in the sample are determined by an unfolding algorithm which includes the effects of cross-section errors and correlations. Results are displayed in the form of normalized densities, including their errors and correlations, which are then compared to the values for explosives and benign substances. Probabilistic interpretations of the results are discussed in terms of substance detection and identification

  20. The neutron transmission of single crystal MgO filters

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Hilleke, R.O.

    1989-01-01

    We have measured and analyzed the wavelength dependence of the transmission probability of a beam of neutrons passing through a single crystal MgO filter at 77 K. The 12.7 cm filter transmits 70% or more of the incident beam at wavelengths greater than about 1.8 A. At shorter wavelengths the transmission probability drops sharply, with 50% transmission occurring at about 1.2 A, and 1% transmission for the range 0.1-0.4 A. We have determined that cooling the filter to 77 K improves the transmission of >1 A neutrons, while further cooling to 25 K shows little additional improvement, and no improvement for short wavelengths. We have identified the wavelengths of the sharp dips in the transmission found in this region caused by Bragg scattering in MgO. We also show how these peaks may be used to calibrate the wavelength scale of time-of-flight measurements taken on instruments using similar filters. (orig.)

  1. Characterization of weak, fair and strong neutron absorbing materials by means of neutron transmission: Beam hardening effect

    Science.gov (United States)

    Kharfi, F.; Bastuerk, M.; Boucenna, A.

    2006-09-01

    The characterization of neutron absorbing materials as well as quantification of neutron attenuation through matter is very essential in various fields, namely in shielding calculation. The objective of this work is to describe an experimental procedure to be used for the determination of neutron transmission through different materials. The proposed method is based on the relation between the gray value measured on neutron radiography image and the corresponding inducing neutron beam. For such a purpose, three kinds of materials (in shape of plate) were investigated using thermal neutrons: (1) boron-alloyed stainless steel as strong absorber; (2) copper and steel as fair absorbers and (3) aluminum as weak absorber. This work is not limited to the determination of neutron transmission through matters; it is also spread out to the measure of the surface density of the neutron absorbing elements (ρs) as a function of thickness of neutron absorbing material such as boron-alloyed stainless steel. The beam hardening effect depending on material thickness was also studied using the neutron transmission measurements. A theoretical approach was used to interpret the experimental results. The neutron transmission measurements were performed at the Neutron Radiography and Tomography facility of the Atomic Institute of the Austrian Universities in Vienna. Finally, a Maxwellian neutron distribution of incident neutron beam was used in the theoretical calculations of neutron energy shift in order to compare with experiments results. The obtained experimental results are in a good agreement with the developed theoretical approach.

  2. A set-up for measuring neutron cross sections and radiation multiplicity from neutron-nucleus interaction

    International Nuclear Information System (INIS)

    Georgiev, G.P.; Ermakov, V.A.; Grigor'ev, Yu.V.

    1988-01-01

    A multiplicity detector of the ''Romashka'' type has been used on the 500 m flight part of the IBR-30 pulsed reactor. The detector consists of 16 independent sections with NaJ(Tl) crystals with a total volume of 36 liters. The geometric efficiency of single-ray detection is ∼ 80%. The gamma-ray to neutron detection efficiency ratio is ≥600 for neutrons with energies below 200 keV. This detector allows one to perform neutron capture and fission cross section measurements and to study gamma-ray multiplicity and resonance selfabsorption effects in the 20 eV-200keV neutron energy range

  3. Optimum transmission for a 3He neutron polarizer

    International Nuclear Information System (INIS)

    Tasset, F.; Ressouche, E.

    1995-01-01

    Following recent achievements in polarizing gaseous 3 He targets by optical pumping at room temperature, polarized helium-3 is now the most promising polarizer for thermal and epithermal neutrons and should soon compete favorably with existing Heusler polarizing crystals. Because it is gaseous, a degree of freedom exists in such a filter: the pressure of the gas in the cell. This parameter allows a choice to be made in the filter design: for a given polarization of 3 He, one is able to increase the pressure, to favor neutron beam polarization, or to stay at relatively low pressure to favor the filter's transmission. In this paper, we discuss this point in the framework of a classical polarized neutron experiment, and we compare our more general results with the quality factor Q=P√(T), which is generally taken as standard for such a filter. (orig.)

  4. Two-dimensional void reconstruction by neutron transmission

    International Nuclear Information System (INIS)

    Zakaib, G.D.; Harms, A.A.; Vlachopoulos, J.

    1978-01-01

    Contemporary algebraic reconstruction methods are utilized in investigating the two-dimensional void distribution in a water analog from neutron transmission measurements. It is sought to ultimately apply these techniques to the determination of time-averaged void distribution in two-phase flow systems as well as for potential usage in neutron radiography. Initially, projection data were obtained from a digitized model of a hypothetical two-phase representation and later from neutron beam traverses across a voided methacrylate plastic model. From 10 to 15 views were incorporated, and decoupling of overlapped measurements was utilized to afford greater resolution. In general, the additive Algebraic Reconstruction Technique yielded the best reconstructions, with others showing promise for noisy data. Results indicate the need for some further development of the method in interpreting real data

  5. Neutron transmission measurements of zinc and lead single crystals

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.

    1988-01-01

    Neutron transmission measurements of zinc and lead single crystals have been carried out in a neutron wavelength band from 0.03 to 0.55 nm at different orientations of the crystal with regard to the beam direction. The measurements were performed using both time-of-flight and fixed-angle scattering spectrometers installed in front of the ET-RR-1 reactor horizontal channels. It was found that the position of the observed dips in the neutron transmission measurements corresponded to the reflections from the (h k l) planes of the hexagonal zinc single crystal which was cut along the (0 0 2) plane, while in the case of lead, the single crystal was cut perpendicular to the (3 1 1) plane. The reflectivity from the (0 0 2) plane of zinc was determined using both transmission and reflection methods. The maximum reflectivity was found to be 55% when the zinc crystal was orientated at 45 0 to the beam direction. The wavelength spread of the observed reflectivity curve was found to be in agreement with the calculated one, taking into consideration the spectrometer's resolution and the crystal mosaic spread. (author)

  6. Multilevel resonance analysis of sup 59 Co neutron transmission measurements

    Energy Technology Data Exchange (ETDEWEB)

    De Saussure, G.; Larson, N.M.; Harvey, J.A.; Hill, N.W. (Oak Ridge National Lab., TN (United States))

    1992-07-01

    Large discrepancies exist between the recent high-resolution neutron transmission data of {sup 59}Co measured at the Oak Ridge Electron Linear Accelerator (ORELA) and transmissions computed from the resolved resonance parameters of the nuclear data collection ENDF/B-VI. In order to provide new resonance parameters consistent with these data, the transmission measurements have been analyzed with the computer code SAMMY in the energy range 200 eV to 100 keV. The resonance parameters reported in this paper provide an accurate total cross section from 10{sup -5} eV to 100 keV and correctly reproduce the thermal capture cross section. Thermal cross-section values and related quantities are also reviewed here. (author).

  7. A multilevel shape fit analysis of neutron transmission data

    International Nuclear Information System (INIS)

    Naguib, K.; Sallam, O.H.; Adib, M.

    1989-01-01

    A multilevel shape fit analysis of neutron transmission data is presented. A multilevel computer code SHAPE is used to analyse clean transmission data obtained from time-of-flight (TOF) measurements. The shape analysis deduces the parameters of the observed resonances in the energy region considered in the measurements. The shape code is based upon a least square fit of a multilevel Breit-Wigner formula and includes both instrumental resolution and Doppler broadenings. Operating the SHAPE code on a test example of a measured transmission data of 151 Eu, 153 Eu and natural Eu in the energy range 0.025-1 eV acquired a good result for the used technique of analysis. (author)

  8. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    Science.gov (United States)

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-01

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g (r ) inferred from neutron scattering measurements of the differential cross section d/σ d Ω from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.

  9. Molecular dynamics of TBP and DBP studied by neutron transmission

    International Nuclear Information System (INIS)

    Salles Filho, J.B.V.; Refinetti, M.E.; Fulfaro, R.; Vinhas, L.A.

    1984-04-01

    Differences between the properties of TBP and DBP, concerning the uranium extraction processes, may be related to certain characteristics of the molecular dynamics of each compound. In order to investigate the dynamical behaviour of hydrogen in these molecules, neutron transmission of TBP and DBP has been measured as a function of neutron wavelenght in the range 4.0 - 6.0 A, at room temperature. Scattering cross sections per hydrogen atom have been obtained. From the comparison with results previously obtained for n-butanol, similar dynamical behaviour of butyl radicals in these compounds could be observed. This similarity indicates that the presence of two or three butyl radicals in butylphosphate molecules does not exert influence in the hydrogen motion of methyl and methylene groups. This suggests that the different chemical behaviour between TBP and DBP is related to the dynamics of the hydrogen directly bound to the DBP phosphate group.(Author) [pt

  10. A prestorage method to measure neutron transmission of ultracold neutron guides

    International Nuclear Information System (INIS)

    Blau, B.; Daum, M.; Fertl, M.; Geltenbort, P.; Göltl, L.; Henneck, R.; Kirch, K.; Knecht, A.; Lauss, B.; Schmidt-Wellenburg, P.; Zsigmond, G.

    2016-01-01

    There are worldwide efforts to search for physics beyond the Standard Model of particle physics. Precision experiments using ultracold neutrons (UCN) require very high intensities of UCN. Efficient transport of UCN from the production volume to the experiment is therefore of great importance. We have developed a method using prestored UCN in order to quantify UCN transmission in tubular guides. This method simulates the final installation at the Paul Scherrer Institute's UCN source where neutrons are stored in an intermediate storage vessel serving three experimental ports. This method allowed us to qualify UCN guides for their intended use and compare their properties.

  11. The possibility to use 'energy plus transmutation' set-up for neutron ...

    Indian Academy of Sciences (India)

    Neutron field was measured in different places of this set- up using different .... to see that the proton integral was around 1013 protons for all experiments. The shape of the .... The lines are drawn to guide the eyes, only statistical errors are ...

  12. Molecular dynamics of tert-butanol studied by neutron transmission

    International Nuclear Information System (INIS)

    Amaral, L.Q.; Fulfaro, R.; Vinhas, L.A.

    1974-01-01

    Neutron transmission of the globular compound tert-butanol (CH 3 ) 3 COH have been measured in the temperature interval O 0 C to 40 0 C for 6.13 A neutrons and in the neutron wavelength range 4A to 7.5A in the liquid and solid states. Results show that the cross-section difference at the state transition in 24 0 C is 13%, while it is only approximately 1% at the first order phase transition in 14 0 C. Evidence of existence of third crystalline phase with the lowest cross-section has been found. The barrier to interval methyl rotation in the solid states is estimated as (3.=+ - 0.5) Kcal/mol and does change much over the phase and state transitions. The observed dynamical changes must be due to movements of the whole molecule and evidence that tert-butanol is not in the strict sense a plastic crystal. Correlation with heat capacity results is discussed

  13. A Multilevel Shape Fit Analysis of Neutron Transmission Data

    Science.gov (United States)

    Naguib, K.; Sallam, O. H.; Adib, M.; Ashry, A.

    A multilevel shape fit analysis of neutron transmission data is presented. A multilevel computer code SHAPE is used to analyse clean transmission data obtained from time-of-flight (TOF) measurements. The shape analysis deduces the parameters of the observed resonances in the energy region considered in the measurements. The shape code is based upon a least square fit of a multilevel Briet-Wigner formula and includes both instrumental resolution and Doppler broadenings. Operating the SHAPE code on a test example of a measured transmission data of 151Eu, 153Eu and natural Eu in the energy range 0.025-1 eV accquired a good result for the used technique of analysis.Translated AbstractAnalyse von Neutronentransmissionsdaten mittels einer VielniveauformanpassungNeutronentransmissionsdaten werden in einer Vielniveauformanpassung analysiert. Dazu werden bereinigte Daten aus Flugzeitmessungen mit dem Rechnerprogramm SHAPE bearbeitet. Man erhält die Parameter der beobachteten Resonanzen im gemessenen Energiebereich. Die Formanpassung benutzt eine Briet-Wignerformel und berücksichtigt Linienverbreiterungen infolge sowohl der Meßeinrichtung als auch des Dopplereffekts. Als praktisches Beispiel werden 151Eu, 153Eu und natürliches Eu im Energiebereich 0.025 bis 1 eV mit guter Übereinstimmung theoretischer und experimenteller Werte behandelt.

  14. Isobaric analog impurities from neutron capture and transmission by magnesium

    International Nuclear Information System (INIS)

    Weigmann, H.; Macklin, R.L.; Harvey, J.A.

    1976-01-01

    Resonance neutron interactions with the stable isotopes of magnesium were measured at the Oak Ridge Electron Linear Accelerator time-of-flight facility. The transmission of a natural metal sample (78.7% 24 Mg) was measured at 200 m, and capture by natural metal and by enriched isotope samples was measured at 40 m. Twenty-six resonances in 24 Mg + n up to 1.8 MeV were fitted with Breit--Wigner multilevel parameters. The data were sufficient to assign spin and parity to 19 of these. The capture data were analyzed for resonances up to 850 keV for 24 Mg + n, 265 keV for 25 Mg + n (17 + resonances), and 440 keV for 26 Mg + n (4 resonances). Average capture at stellar interior temperatures was calculated. The 24 Mg + n data serve to assess the isospin impurities in three isobaric analog states. Three other states exhibit reduced neutron widths, each several percent of the Wigner limit, which may be understood in terms of simple shell model configurations

  15. The behavior of moisture content in Durian after harvesting by neutron reflection and transmission techniques

    International Nuclear Information System (INIS)

    Chimoye, T.; Fuangfoong, M.

    1998-01-01

    The study aimed at development of a neutron reflection and transmission technique to determine moisture content in Durian fruit as a function of time after harvesting. A system of a 3 mCi Am-Be neutron source with a BF 3 detector as a neutron probe was developed. The results obtained were validated using weighting method

  16. Energy and direction distribution of neutrons in workplace fields: Implication of the results from the EVIDOS project for the set-up of simulated workplace fields

    International Nuclear Information System (INIS)

    Luszik-Bhadra, M.; Lacoste, V.; Reginatto, M.; Zimbal, A.

    2007-01-01

    Workplace neutron spectra from nuclear facilities obtained within the European project EVIDOS are compared with those of the simulated workplace fields CANEL and SIGMA and fields set-up with radionuclide sources at the PTB. Contributions of neutrons to ambient dose equivalent and personal dose equivalent are given in three energy intervals (for thermal, intermediate and fast neutrons) together with the corresponding direction distribution, characterised by three different types of distributions (isotropic, weakly directed and directed). The comparison shows that none of the simulated workplace fields investigated here can model all the characteristics of the fields observed at power reactors. (authors)

  17. A new position-sensitive transmission detector for epithermal neutron imaging

    International Nuclear Information System (INIS)

    Schooneveld, E M; Kockelmann, W; Rhodes, N; Tardocchi, M; Gorini, G; Perelli Cippo, E; Nakamura, T; Postma, H; Schillebeeckx, P

    2009-01-01

    A new neutron resonant transmission (NRT) detector for epithermal neutron imaging has been designed and built for the ANCIENT CHARM project, which is developing a set of complementary neutron imaging methods for analysis of cultural heritage objects. One of the techniques being exploited is NRT with the aim of performing bulk elemental analysis. The 16-pixel prototype NRT detector consists of independent crystals of 2 x 2 mm pixel size, which allow for 2D position-sensitive transmission measurements with epithermal neutrons. First results obtained at the ISIS pulsed spallation neutron source are presented. (fast track communication)

  18. Effect of different lay-ups on the microstructure, mechanical properties and neutron transmission of neutron shielding fibre metal laminates

    International Nuclear Information System (INIS)

    Fu, Xuelong; Tang, Xiaobin; Hu, Yubing; Li, Huaguan; Tao, Jie

    2016-01-01

    A novel neutron shielding fibre metal laminates (NSFMLs) with different lay-ups, composed of stacking layers of AA6061 plates, neutron shielding composite and carbon fibre reinforced polyimide (CFRP), were fabricated using hot molding process in atmospheric environments. The microstructure, mechanical properties and neutron transmission of the NSFMLs were evaluated, respectively. The results indicated that the NSFMLs possessed good mechanical properties owing to the good interfacial adhesion of the components. Tensile strength and elastic modulus of the NSFMLs increased with the numbers of lay-ups, while the elongation to fracture exhibited obvious declining tendency. Flexural strength and modulus of the NSFMLs were improved obviously with the increasing of stacking layers. Neutron transmission of the NSFMLs decreased obviously with increasing the number of lay-ups, owing to the increase of "1"0B areal density. Besides, the effect of carbon fibres on the neutron shielding performance of the NSFMLs was also taken into consideration. - Highlights: • A novel neutron shielding fibre metal laminates (NSFMLs) with different lay-ups was successfully fabricated using hot molding process. • Mechanical properties of the NSFMLs were performed in accordance with relative standards. • Neutron transmission of the NSFMLs was conducted according to the testing results. • The effect of carbon fibres on the neutron transmission of the NSFMLs was also investigated.

  19. Effect of different lay-ups on the microstructure, mechanical properties and neutron transmission of neutron shielding fibre metal laminates

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xuelong [College of Material Science & Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, 211100 (China); Department of Mechanical and Electronic Engineering, Jiangsu Polytechnic of Finance & Economics, Huai' an, 223003 (China); Tang, Xiaobin; Hu, Yubing; Li, Huaguan [College of Material Science & Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, 211100 (China); Tao, Jie, E-mail: taojie@nuaa.edu.cn [College of Material Science & Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, 211100 (China)

    2016-07-15

    A novel neutron shielding fibre metal laminates (NSFMLs) with different lay-ups, composed of stacking layers of AA6061 plates, neutron shielding composite and carbon fibre reinforced polyimide (CFRP), were fabricated using hot molding process in atmospheric environments. The microstructure, mechanical properties and neutron transmission of the NSFMLs were evaluated, respectively. The results indicated that the NSFMLs possessed good mechanical properties owing to the good interfacial adhesion of the components. Tensile strength and elastic modulus of the NSFMLs increased with the numbers of lay-ups, while the elongation to fracture exhibited obvious declining tendency. Flexural strength and modulus of the NSFMLs were improved obviously with the increasing of stacking layers. Neutron transmission of the NSFMLs decreased obviously with increasing the number of lay-ups, owing to the increase of {sup 10}B areal density. Besides, the effect of carbon fibres on the neutron shielding performance of the NSFMLs was also taken into consideration. - Highlights: • A novel neutron shielding fibre metal laminates (NSFMLs) with different lay-ups was successfully fabricated using hot molding process. • Mechanical properties of the NSFMLs were performed in accordance with relative standards. • Neutron transmission of the NSFMLs was conducted according to the testing results. • The effect of carbon fibres on the neutron transmission of the NSFMLs was also investigated.

  20. Setup for polarized neutron imaging using in situ 3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline.

    Science.gov (United States)

    Dhiman, I; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X; Jiang, C Y; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay

    2017-09-01

    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3 He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe 3 Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3 He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  1. Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Shinohara, T.; Kai, T.; Ooi, M. [Japan Atomic Energy Agency, 2–4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kamiyama, T.; Kiyanagi, Y.; Shiota, Y. [Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo-shi, Hokkaido 060-8628 (Japan); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2014-05-11

    The sharp variation of neutron attenuation at certain energies specific to particular nuclides (the lower range being from ∼1 eV up to ∼1 keV), can be exploited for the remote mapping of element and/or isotope distributions, as well as temperature probing, within relatively thick samples. Intense pulsed neutron beam-lines at spallation sources combined with a high spatial, high-timing resolution neutron counting detector, provide a unique opportunity to measure neutron transmission spectra through the time-of-flight technique. We present the results of experiments where spatially resolved neutron resonances were measured, at energies up to 50 keV. These experiments were performed with the intense flux low background NOBORU neutron beamline at the J-PARC neutron source and the high timing resolution (∼20 ns at epithermal neutron energies) and spatial resolution (∼55 µm) neutron counting detector using microchannel plates coupled to a Timepix electronic readout. Simultaneous element-specific imaging was carried out for several materials, at a spatial resolution of ∼150 µm. The high timing resolution of our detector combined with the low background beamline, also enabled characterization of the neutron pulse itself – specifically its pulse width, which varies with neutron energy. The results of our measurements are in good agreement with the predicted results for the double pulse structure of the J-PARC facility, which provides two 100 ns-wide proton pulses separated by 600 ns, broadened by the neutron energy moderation process. Thermal neutron radiography can be conducted simultaneously with resonance transmission spectroscopy, and can reveal the internal structure of the samples. The transmission spectra measured in our experiments demonstrate the feasibility of mapping elemental distributions using this non-destructive technique, for those elements (and in certain cases, specific isotopes), which have resonance energies below a few keV, and with lower

  2. Method for analysis of averages over transmission energy of resonance neutrons

    International Nuclear Information System (INIS)

    Komarov, A.V.; Luk'yanov, A.A.

    1981-01-01

    Experimental data on transmissions on iron specimens in different energy groups have been analyzed on the basis of an earlier developed theoretical model for the description of resonance neutron averages in transmission energy, as the functions of specimen thickness and mean resonance parameters. The parameter values obtained agree with the corresponding data evaluated in the theory of mean neutron cross sections. The method suggested for the transmission description permits to reproduce experimental results for any thicknesses of specimens [ru

  3. Optimization of a neutron transmission beamline applied to materials science for the CAB linear accelerator

    International Nuclear Information System (INIS)

    Ramirez, S; Santisteban, J.R

    2009-01-01

    The Neutrons and Reactors Laboratory (NYR) of CAB (Centro Atomico Bariloche) is equipped with a linear electron accelerator (LINAC - Linear particle accelerator). This LINAC is used as a neutron source from which two beams are extracted to perform neutron transmission and dispersion experiments. Through these experiments, structural and dynamic properties of materials can be studied. The neutron transmission experiments consist in a collimated neutron beam which interacts with a sample and a detector behind the sample. Important information about the microstructural characteristics of the material can be obtained from the comparison between neutron spectra before and after the interaction with the sample. In the NYR Laboratory, cylindrical samples of one inch of diameter have been traditionally studied. Nonetheless, there is a great motivation for doing systematic research on smaller and with different geometries samples; particularly sheets and samples for tensile tests. Hence, in the NYR Laboratory it has been considered the possibility of incorporating a neutron guide into the existent transmission line. According to all mentioned above, the main objective of this work consisted in the optimization of the flight transmission tube optics of neutrons. This optimization not only improved the existent line but also contributed to an election criterion for the neutron guide acquisition. [es

  4. GEANT4 simulation of the neutron background of the C$_6$D$_6$ set-up for capture studies at n_TOF

    CERN Document Server

    Žugec, P.; Bosnar, D.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M.A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Duran, I.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A.R.; Giubrone, G.; Gómez-Hornillos, M.B.; Gonçalves, I.F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Heinitz, S.; Jenkins, D.G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Krtička, M.; Kroll, J.; Langer, C.; Lederer, C.; Leeb, H.; Leong, L.S.; Lo Meo, S.; Losito, R.; Manousos, A.; Marganiec, J.; Martìnez, T.; Massimi, C.; Mastinu, P.F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P.M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J.M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J.L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M.J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.

    2014-05-09

    The neutron sensitivity of the C$_6$D$_6$ detector setup used at n_TOF for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire n_TOF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has been implemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with a $^\\mathrm{nat}$C sample, showing an excellent agreement above 1 keV. At lower energies, an additional component in the measured $^\\mathrm{nat}$C yield has been discovered, which prevents the use of $^\\mathrm{nat}$C data for neutron background estimates at neutron energies below a few hundred eV. The origin and time structure of the neutron background have been derived from the simulations. Examples of the neutron backg...

  5. Transmission of neutrons in serpentine mixed and ordinary concrete a comparative study

    International Nuclear Information System (INIS)

    Ravishankar, R.; Bhattacharyya, Sarmishtha; Bandyopadhyay, Tapas; Sarkar, P.K.

    2002-01-01

    Full text: In particle accelerator facilities, for radiation shielding, concrete is commonly used for its effectiveness in attenuating neutrons in addition to its good structural and mechanical properties. Neutron attenuation depends largely on the water content in the concrete. Serpentine mixed concrete is reported to retain better water content than ordinary concrete. Experiments have been carried out to compare neutron attenuation properties of Serpentine mixed concrete slabs and ordinary concrete slabs of different thickness. Transmission of neutrons from a 185 GBq Pu-Be neutron source has been studied using NE-213 liquid scintillator detector, along with the associated electronics to discriminate neutron from gamma using pulse shape discrimination techniques. The energy differential neutron spectra transmitted through the concrete slabs and the corresponding dose have been obtained by unfolding the pulse height spectra using the FERDOR-U computer code and proper response matrix data of the NE-213 detector. The neutron transmission factors through both Serpentine and Ordinary concrete slabs have been studied. The results show serpentine mixed concrete slabs can attenuate more neutrons of varying energies compared to ordinary concrete slabs of equal dimensions. From the trend, it has been found out, with the increase in slab thickness, the gain in neutron attenuation increases. This is due to increase in quantity of serpentine with the increase in thickness of, concrete. A Monte Carlo simulation carried out, for theoretical analysis of the results, has been found to be in order

  6. Transmission of neutrons in serpentine mixed and ordinary concrete- a comparative study

    International Nuclear Information System (INIS)

    Ravishankar, R.; Bhattacharyya, Sarmishtha; Bandyopadhyay, Tapas; Sarkar, P. K.

    2002-01-01

    In particle accelerator facilities, for radiation shielding, concrete is commonly used for its effectiveness in attenuating neutrons in addition to its good structural and mechanical properties. Neutron attenuation depends largely on the water content in the concrete. Serpentine mixed concrete is reported to retain better water content than ordinary concrete. Experiments have been carried out to compare neutron attenuation properties of Serpentine mixed concrete slabs and ordinary concrete slabs of different thickness. Transmission of neutrons from a 185 GBq Pu-Be neutron source has been studied using NE-213 liquid scintillator detector, along with the associated electronics to discriminate neutron from gamma using pulse shape discrimination techniques. The energy differential neutron spectra transmitted through the concrete slabs and the corresponding dose have been obtained by unfolding the pulse height spectra using the FERDOR-U computer code and proper response matrix data of the NE-213 detector. The neutron transmission factors through both Serpentine and Ordinary concrete slabs have been studied. The results show serpentine mixed concrete slabs can attenuate more neutrons of varying energies compared to ordinary concrete slabs of equal dimensions. From the trend, it has been found out, with the increase in slab thickness, the gain in neutron attenuation increases. This is due to increase in quantity of serpentine with the increase in thickness of concrete. A Monte Carlo simulation carried out, for theoretical analysis of the results, has been found to be in order

  7. First observation of new effects at the set-up for searching for a neutron electric dipole moment by a crystal-diffraction method

    CERN Document Server

    Fedorov, V V; Semenikhin, S Y; Voronin, V V

    2002-01-01

    First observation of new effects was carried out using the set-up created for searching for a neutron electric dipole moment (EDM) by a crystal-diffraction method. For the first time the neutron dynamical Laue diffraction for the Bragg angles close to a right angle (up to 87 ) was studied, using the direct diffraction beam and a thick (propor to 3.5-cm) crystal. The effect of an essential time delay of diffracting neutrons inside the crystal for Bragg angles close to 90 was experimentally observed, using a time-of-flight method. The phenomenon of neutron-beam depolarization was first experimentally observed for the case of Laue diffraction in a noncentrosymmetric alpha-quartz crystal. It is experimentally proved that the interplanar electric field, affecting a neutron in a crystal, maintains its value up to Bragg angles equal to 87 . These results confirm the opportunity to increase by more than an order of magnitude the sensitivity of the method to the neutron EDM, using the diffraction angles close to 90 , ...

  8. Investigation of Fe3O4 Colloid Behaviour in a Magnetic Field by Polarized Neutron Transmission

    International Nuclear Information System (INIS)

    Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.

    1994-01-01

    Experiments were conducted to measure the dependence of neutron polarization following their transmission through a magnetic colloid on the concentration of magnetic particles, magnetic field strength and wavelength of neutrons. In a magnetic field up to 500 Oe the precession of the neutron polarization is seen. Comparison of the experimental data and theory is made and colloid magnetization is determined. The measurement was carried out with the SPN-1 polarized neutron spectrometer at the high-flux pulsed reactor IBR-2 in Dubna. 7 refs., 2 figs

  9. VIRGIN2007, Calculates Un-collided Neutron Flux and Neutron Reactions from Transmission in ENDF Format

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: VIRGIN calculates un-collided flux and reactions due to transmission of a mono-directional beam of neutrons through any thickness of material. In order to simulate an experimental measurement the results are given as integrals over energy tally groups (as opposed to point-wise in energy). IAEA0932/10: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: Virgin VERS. 2007-1 (Jan. 2007): checked against all ENDF/B-VII; increased in-core page size from 60,000 to 240,000. 2 - Method of solution: By taking the ratio of reactions to flux in each group an equivalent spatially dependent group averaged cross section is calculated. 3 - Restrictions on the complexity of the problem: The evaluated data must be in the ENDF/B format. However it must be linear-linear interpolable in energy-cross section between tabulated points. Since only cross sections (file 3) are used, this program will work on any version of ENDF/B

  10. On efficiently computing multigroup multi-layer neutron reflection and transmission conditions

    International Nuclear Information System (INIS)

    Abreu, Marcos P. de

    2007-01-01

    In this article, we present an algorithm for efficient computation of multigroup discrete ordinates neutron reflection and transmission conditions, which replace a multi-layered boundary region in neutron multiplication eigenvalue computations with no spatial truncation error. In contrast to the independent layer-by-layer algorithm considered thus far in our computations, the algorithm here is based on an inductive approach developed by the present author for deriving neutron reflection and transmission conditions for a nonactive boundary region with an arbitrary number of arbitrarily thick layers. With this new algorithm, we were able to increase significantly the computational efficiency of our spectral diamond-spectral Green's function method for solving multigroup neutron multiplication eigenvalue problems with multi-layered boundary regions. We provide comparative results for a two-group reactor core model to illustrate the increased efficiency of our spectral method, and we conclude this article with a number of general remarks. (author)

  11. Neutron Resonance Transmission Analysis (NRTA): Initial Studies of a Method for Assaying Plutonium in Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; James W. Sterbentz

    2011-05-01

    Neutron Resonance Transmission Analysis (NRTA) is an analytical technique that uses neutrons to assay the isotopic content of bulk materials. The technique uses a pulsed accelerator to produce an intense, short pulse of neutrons in a time-of-flight configuration. These neutrons, traveling at different speeds according to their energy, can be used to interrogate a spent fuel (SF) assembly to determine its plutonium content. Neutron transmission through the assembly is monitored as a function of neutron energy (time after the pulse), similar to the way neutron cross-section data is often collected. The transmitted neutron intensity is recorded as a function of time, with faster (higher-energy) neutrons arriving first and slower (lower-energy) neutrons arriving later. The low-energy elastic scattering and absorption resonances of plutonium and other isotopes modulate the transmitted neutron spectrum. Plutonium content in SF can be determined by analyzing this attenuation. Work is currently underway at Idaho National Laboratory, as a part of United States Department of Energy's Next Generation Safeguards Initiative (NGSI), to investigate the NRTA technique and to assess its feasibility for quantifying the plutonium content in SF and for determining the diversion of SF pins from assemblies. Preliminary results indicate that NRTA has great potential for being able to assay intact SF assemblies. Operating in the 1-40 eV range, it can identify four plutonium isotopes (239, 240, 241, & 242Pu), three uranium isotopes (235, 236, & 238U), and six resonant fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm). It can determine the areal density or mass of these isotopes in single- or multiple-pin integral transmission scans. Further, multiple observables exist to allow the detection of material diversion (pin defects) including fast-neutron and x-ray radiography, gross-transmission neutron counting, plutonium resonance absorption analysis, and fission

  12. Time-of-flight neutron Bragg-edge transmission imaging of microstructures in bent steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuhua, E-mail: yuhua.su@j-parc.jp [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195 (Japan); Oikawa, Kenichi; Harjo, Stefanus; Shinohara, Takenao; Kai, Tetsuya; Harada, Masahide; Hiroi, Kosuke [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195 (Japan); Zhang, Shuoyuan; Parker, Joseph Don [Neutron R& D Division, CROSS-Tokai, 162-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Sato, Hirotaka [Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Shiota, Yoshinori; Kiyanagi, Yoshiaki [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Tomota, Yo [Research Center for Strategic Materials, National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2016-10-15

    Neutron Bragg-edge transmission imaging makes it possible to quantitatively visualize the two-dimensional distribution of microstructure within a sample. In order to examine its application to engineering products, time-of-flight Bragg-edge transmission imaging experiments using a pulsed neutron source were performed for plastically bent plates composed of a ferritic steel and a duplex stainless steel. The non-homogeneous microstructure distributions, such as texture, crystalline size, phase volume fraction and residual elastic strain, were evaluated for the cross sections of the bent plates. The obtained results were compared with those by neutron diffraction and electron back scatter diffraction, showing that the Bragg-edge transmission imaging is powerful for engineering use.

  13. Neutron activation analysis for sulphur in coal samples and moisture content by gamma-ray transmission

    International Nuclear Information System (INIS)

    Selvi, S.

    1993-01-01

    A neutron activation analysis method is described for the determination of sulphur in coal samples by analysing the beta spectrum emitted from 32 P and 33 P following the reactions 32 S(n, p) 32 P and 33 S(n, p) 33 P using 252 Cf as a source of neutrons. The transmission of the combined gamma-rays emitted from three 137 Cs and three 241 Am sources is used to measure the water content of the coal samples. (author)

  14. Deriving Quantitative Crystallographic Information from the Wavelength-Resolved Neutron Transmission Analysis Performed in Imaging Mode

    Directory of Open Access Journals (Sweden)

    Hirotaka Sato

    2017-12-01

    Full Text Available Current status of Bragg-edge/dip neutron transmission analysis/imaging methods is presented. The method can visualize real-space distributions of bulk crystallographic information in a crystalline material over a large area (~10 cm with high spatial resolution (~100 μm. Furthermore, by using suitable spectrum analysis methods for wavelength-dependent neutron transmission data, quantitative visualization of the crystallographic information can be achieved. For example, crystallographic texture imaging, crystallite size imaging and crystalline phase imaging with texture/extinction corrections are carried out by the Rietveld-type (wide wavelength bandwidth profile fitting analysis code, RITS (Rietveld Imaging of Transmission Spectra. By using the single Bragg-edge analysis mode of RITS, evaluations of crystal lattice plane spacing (d-spacing relating to macro-strain and d-spacing distribution’s FWHM (full width at half maximum relating to micro-strain can be achieved. Macro-strain tomography is performed by a new conceptual CT (computed tomography image reconstruction algorithm, the tensor CT method. Crystalline grains and their orientations are visualized by a fast determination method of grain orientation for Bragg-dip neutron transmission spectrum. In this paper, these imaging examples with the spectrum analysis methods and the reliabilities evaluated by optical/electron microscope and X-ray/neutron diffraction, are presented. In addition, the status at compact accelerator driven pulsed neutron sources is also presented.

  15. Fast neutron and gamma-ray transmission technique in mixed samples. MCNP calculations

    International Nuclear Information System (INIS)

    Perez, N.; Padron, I.

    2001-01-01

    In this paper the moisture in sand and also the sulfur content in toluene have been described by using the simultaneous fast neutron/gamma transmission technique (FNGT). Monte Carlo calculations show that it is possible to apply this technique with accelerator-based and isotopic neutron sources in the on-line analysis to perform the product quality control, specifically in the building materials industry and the petroleum one. It has been used particles from a 14MeV neutron generator and also from an Am-Be neutron source. The estimation of optimal system parameters like the efficiency, detection time, hazards and costs were performed in order to compare both neutron sources

  16. Preliminary research on measuring grease in petroleum pipeline using fast neutron transmission method

    International Nuclear Information System (INIS)

    Liu Qingwei; Liu Shengkang; Zhang Zhiping; Ding Xiaoping

    2006-01-01

    The principle, experiment and conclusion on the grease stain measurement using fast neutron are reported. The experiment equipment consist of 241 Am-Be fast neutron source, ZnS detector and BH1224 multichannel spectrometer. Paraffin is used instead of real grease stain. Steel plates are used instead of pipeline. The results of the experiment indicate that there is a good linearship between the logarithm of the reciprocal of the neutron transmissivity and the paraffin thickness. The measuring accuracy of the paraffin thickness is 0.6 mm in this experiment. (authors)

  17. Analysis of Crystallographic Structure of a Japanese Sword by the Pulsed Neutron Transmission Method

    Science.gov (United States)

    Kino, K.; Ayukawa, N.; Kiyanagi, Y.; Uchida, T.; Uno, S.; Grazzi, F.; Scherillo, A.

    We measured two-dimensional transmission spectra of pulsed neutron beams for a Japanese sword sample. Atom density, crystalline size, and preferred orientation of crystals were obtained using the RITS code. The position dependence of the atomic density is consistent with the shape of the sample. The crystalline size is very small and shows position dependence, which is understood by the unique structure of Japanese swords. The preferred orientation has strong position dependence. Our study shows the usefulness of the pulsed neutron transmission method for cultural metal artifacts.

  18. UF6 Cylinder Imaging by Fast Neutron Transmission Tomography

    International Nuclear Information System (INIS)

    McElroy, R.; Hausladen, P.; Blackston, M.; Croft, S.

    2015-01-01

    The common use Non-Destructive Assay techniques for the determination of 235 U enrichment and mass of UF6 cylinders used in the production of nuclear reactor fuel require prior knowledge of the physical distribution of the UF6 within the cylinder. The measurement performance for these techniques is typically evaluated based on assumed bounding case distributions of the material. However, little direct data such as radiographic or tomographic images, regarding the distribution of the UF6 within the cylinder is available against which to judge these assumptions. We have developed and tested a prototype active neutron tomographic imaging system employing an Associated Particle Imaging (API) neutron generator and an array of pixelated neutron scintillation counters. This system has been successfully used to obtain the 3-dimensional map of the distribution of UF6 within a type 12B storage cylinder. Results from these measurements are presented and the potential performance and utility of this technique with larger 30B and 48Y cylinders is discussed. (author)

  19. Benchmarking of multigroup neutron cross sections libraries on neutron transmission through WWER-440 vessel

    International Nuclear Information System (INIS)

    Ilieva, K.; Belousov, S.; Apostolov, T.

    1998-01-01

    The verification of calculated neutron fluence onto the WWER-440/230 pressure vessel is very topical task in particular referring that some of this type of reactors have been operated the major part of its design lifetime. Since the induced activity from the neutron irradiation onto the elements is a simple response of neutron flux the neutron fluence verification usually is done using the measured activity of radionuclides produced during reactor operation. Calculational and experimental results of 54 Mn induced activity of scraps from inner wall of Unit 1 reactor pressure vessel after 18th cycle and detectors irradiated behind the vessel during the 18th cycle of Unit 1 at Kozloduy NPP as well as neutron flux attenuation through the WWER-440/230 pressure vessel are presented. Neutron cross sections libraries generated on the base of ENDF/B-IV and ENDF/B-VI have been used in the calculations. The comparative analysis of evaluated activities and attenuation coefficient demonstrates the better reliability of the neutron fluence calculations by the libraries based on ENDF/B-VI than by ones on ENDF/B-IV. The extreme rarity of data for the activity of scraps from the WWER-440 reactor vessel and its combination with the data for the detectors irradiated behind the vessel makes them especially attractive for verification of calculational methods of neutron fluence onto the WWER-440 vessel with dummy cassettes loading. (author)

  20. A setup for active neutron analysis of the fissile material content in fuel assemblies of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bushuev, A. V.; Kozhin, A. F., E-mail: alexfkozhin@yandex.ru; Aleeva, T. B.; Zubarev, V. N.; Petrova, E. V.; Smirnov, V. E. [National Research Nuclear University MEPhI (Russian Federation)

    2016-12-15

    An active neutron method for measuring the residual mass of {sup 235}U in spent fuel assemblies (FAs) of the IRT MEPhI research reactor is presented. The special measuring stand design and uniform irradiation of the fuel with neutrons along the entire length of the active part of the FA provide high accuracy of determination of the residual {sup 235}U content. AmLi neutron sources yield a higher effect/background ratio than other types of sources and do not induce the fission of {sup 238}U. The proposed method of transfer of the isotope source in accordance with a given algorithm may be used in experiments where the studied object needs to be irradiated with a uniform fluence.

  1. A transmission probability method for calculation of neutron flux distributions in hexagonal geometry

    International Nuclear Information System (INIS)

    Wasastjerna, F.; Lux, I.

    1980-03-01

    A transmission probability method implemented in the program TPHEX is described. This program was developed for the calculation of neutron flux distributions in hexagonal light water reactor fuel assemblies. The accuracy appears to be superior to diffusion theory, and the computation time is shorter than that of the collision probability method. (author)

  2. Calculation of 14 MeV neutron transmission

    International Nuclear Information System (INIS)

    Vyrskij, M.Yu.; Dubinin, A.A.; Zhuravlev, V.I.; Isaev, N.V.; Klintsov, A.A.; Krivtsov, A.S.; Linge, I.I.; Panfilov, E.I.; Prit'mov, A.P.

    1979-01-01

    The possibility of using the 28 group constant system (28-GCS) for calculating the transport of neutrons with initial energy of 14 MeV in thermonuclear reactor blankets is studied. A blanket project suggested by the Oak Ridge National Laboratory is used as a test version to estimate applicability of the 28-GCS. Niobium is used in a blanket as a structural material. A mixture of lithium nuclides is used for tritium production. The results of blanket test calculation and the calculational results obtained using the 28-GCS from the UKNDL library are compared. The numerical 28-group calculation of blonket is carried out by means of the ROZ-6 and ROZ-9 codes but not by the Monte-Carlo method as compared with the test calculation. Time of the blanket calculation on the BESM-6 computer by means of the ROZ-9 code in 2P 5 approximation using the 28-GCS amounts to 10 min. It is noted that to create effective codes for the numerical blanket calculation different calculational grids are necessary for different energy grups. The calculations carried out have shown the possibility of using the 28-group library of cross sections for the numerical solution of the neutron transport equation in estimating analysis of blankets

  3. Effect of sample moisture and bulk density on performance of the 241Am-Be source based prompt gamma rays neutron activation analysis setup. A Monte Carlo study

    International Nuclear Information System (INIS)

    Almisned, Ghada

    2010-01-01

    Monte Carlo simulations were carried out using the dependence of gamma ray yield on the bulk density and moisture content for five different lengths of Portland cement samples in a thermal neutron capture based Prompt Gamma ray Neutron Activation Analysis (PGNAA) setup for source inside moderator geometry using an 241 Am-Be neutron source. In this study, yields of 1.94 and 6.42 MeV prompt gamma rays from calcium in the five Portland cement samples were calculated as a function of sample bulk density and moisture content. The study showed a strong dependence of the 1.94 and 6.42 MeV gamma ray yield upon the sample bulk density but a weaker dependence upon sample moisture content. For an order of magnitude increase in the sample bulk density, an order of magnitude increase in the gamma rays yield was observed, i.e., a one-to-one correspondence. In case of gamma ray yield dependence upon sample moisture content, an order of magnitude increase in the moisture content of the sample resulted in about 16-17% increase in the yield of 1.94 and 6.42 MeV gamma rays from calcium. (author)

  4. Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Niobium

    International Nuclear Information System (INIS)

    NJ Drindak; JA Burke; G Leinweber; JA Helm; JG Hoole; RC Block; Y Danon; RE Slovacek; BE Moretti; CJ Werner; ME Overberg; SA Kolda; MJ Trbovich; DP Barry

    2005-01-01

    Epithermal neutron capture and transmission measurements were performed using the time-of-flight method at the RPI linac using metallic Nb samples. The capture measurements were made at the 25-meter flight station with a 16-section sodium iodide multiplicity detector and the transmission measurements at the 25-meter flight station with a Li-6 glass scintillation detector. Resonance parameters were determined for all resonances up to 500eV with a combined analysis of capture and transmission data using the multi-level R-matrix Bayesian code SAMMY. The present results are compared to those presented in ENDF/B-VI, updated through Release 3

  5. EXILL - a high-efficiency, high-resolution setup for gamma-spectroscopy at an intense cold neutron beam facility

    Czech Academy of Sciences Publication Activity Database

    Jentschel, M.; Blanc, A.; de France, G.; Koster, U.; Leoni, S.; Mutti, P.; Simpson, G. S.; Krtička, M.; Tomandl, Ivo; Valenta, S.

    2017-01-01

    Roč. 12, č. 11 (2017), č. článku P11003. ISSN 1748-0221 Institutional support: RVO:61389005 Keywords : instrumentation for neutron sources * gamma detectors * spectrometers Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Nuclear physics Impact factor: 1.220, year: 2016

  6. Transmission factors for neutrons produced by radioisotopes production used in PET

    International Nuclear Information System (INIS)

    Hernandez G, D.; Cruzate, J.A.

    1996-01-01

    The dose transmission factor for normal concrete and the neutrons produced in the 18 O(p,n) 18 F and 13 C(p,n) 13 N reactions are presented in this paper. These transmission factors permit to simplify the calculation of the necessary accelerator shielding to be used in the radioisotope production for positron emission tomography. The energy distributions of the neutrons resulting from the irradiation of thick targets, with 10 to 13 MeV protons, were determined using the thin target cross sections, the energy loss per path length and the energy balance of the reaction (Q-equation). The one dimensional discrete ordinate transport code ANISN and the conversion coefficients from fluence to dose, presented in the ICRP Publication 51 were employed to obtain the transmission factors. (authors). 12 refs., 3 figs., 2 tabs

  7. Measurement of Neutrons in Different Pb/U Setups Irradiated by Relativistic Protons and Deuterons by means of Activation Samples

    Czech Academy of Sciences Publication Activity Database

    Wagner, Vladimír; Svoboda, Ondřej; Vrzalová, Jitka; Suchopár, Martin; Kugler, Andrej; Honusek, Milan; Geier, B.

    2012-01-01

    Roč. 366, 012047 (2012), s. 1-5 ISSN 1742-6588. [XIX International School on Nuclear Physics. Varna, 19.09.2011-25.09.2011] R&D Projects: GA MŠk LA08002 Grant - others:Evropská komise(XE) FP6-036434 Institutional support: RVO:61389005 Keywords : ADT * spallation reactions * neutron production Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  8. Measurements of Accelerator-Produced Leakage Neutron and Photon Transmission through Concrete

    International Nuclear Information System (INIS)

    2002-01-01

    Optimum shielding of the radiation from particle accelerators requires knowledge of the attenuation characteristics of the shielding material. The most common material for shielding this radiation is concrete, which can be made using various materials of different densities as aggregates. These different concrete mixes can have very different attenuation characteristics. Information about the attenuation of leakage photons and neutrons in ordinary and heavy concrete is, however, very limited. To increase our knowledge and understanding of the radiation attenuation in concrete of various compositions, we have performed measurements of the transmission of leakage radiation, photons and neutrons, from a Varian Clinac 2100C medical linear accelerator operating at maximum electron energies of 6 and 18 MeV. We have also calculated, using Monte Carlo techniques, the leakage neutron spectra and its transmission through concrete. The results of these measurements and calculations extend the information currently available for designing shielding for medical electron accelerators. Photon transmission characteristics depend more on the manufacturer of the concrete than on the atomic composition. A possible cause for this effect is a non-uniform distribution of the high-density aggregate, typically iron, in the concrete matrix. Errors in estimated transmission of photons can exceed a factor of three, depending on barrier thickness, if attenuation in high-density concrete is simply scaled from that of normal density concrete. We found that neutron transmission through the high-density concretes can be estimated most reasonably and conservatively by using the linear tenth-value layer of normal concrete if specific values of the tenth-value layer of the high-density concrete are not known. The reason for this is that the neutron transmission depends primarily on the hydrogen content of the concrete, which does not significantly depend on concrete density. Errors of factors of two

  9. Medical set-up of boron neutron capture therapy (BNCT) for malignant glioma at the Japan research reactor (JRR)-4

    International Nuclear Information System (INIS)

    Yamamoto, T.; Matsumura, A.; Nose, T.; Shibata, Y.; Nakai, K.; Sakurai, F.; Kishi, T.; Kumada, H.; Yamamoto, K.; Torii, Y.

    2001-01-01

    The University of Tsukuba project for boron neutron capture therapy (BNCT) was initiated at the Japan Atomic Energy Research Institute (JAERI) in 1992. The clinical study for BNCT began at the Japan Research Reactor (JRR)-2 of the JAERI in November 1995. By the end of 1998, a new medical irradiation facility had been installed in JRR-4 of that included a new medical treatment room and patient-monitoring area adjacent to the irradiation room. The medical treatment room was built to reflect a hospital-type operation room that includes an operating table with a carbon head frame, anesthesia apparatus with several cardiopulmonary monitors, etc. Following craniotomy in the treatment room, a patient under anesthesia is transported into the irradiation room for BNCT. The boron concentration in tissue is measured with prompt gamma ray analysis (PGA) and simultaneously by inductively coupled plasma atomic emission spectroscopy (ICP-AES) methods. For the immediate pre- and post-BNCT care, a collaborating neurosurgical department of the University of Tsukuba was prepared in the vicinity of the JAERI. The long term follow-up is done at the University of Tsukuba Hospital. Epithermal neutron beam also became available at the new JRR-4. By changing the thickness and/or the configuration of heavy water, a cadmium plate, and a graphite reflector, the JRR-4 provides a variety of neutron beams, including three typical beams (Epithermal mode and Thermal modes I and II). Intraoperative BNCT using the thermal beam is planned to study at the beginning of the clinical trial. The ongoing development of the JAERI Computational Dosimetry System (JCDS) and radiobiological studies have focused in the application of the epithermal beam for BNCT. After obtaining these basic data, we are planning to use the epithermal beam for intraoperative BNCT. (author)

  10. Set-up and calibration of a method to measure {sup 10}B concentration in biological samples by neutron autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Gadan, M.A. [National Commission for Atomic Energy (CNEA), Buenos Aires (Argentina); Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Bortolussi, S., E-mail: silva.bortolussi@pv.infn.it [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute for Nuclear Physics (INFN), Section of Pavia, Pavia (Italy); Postuma, I. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Ballarini, F. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute for Nuclear Physics (INFN), Section of Pavia, Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Protti, N.; Santoro, D.; Stella, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute for Nuclear Physics (INFN), Section of Pavia, Pavia (Italy); Cansolino, L.; Clerici, A.; Ferrari, C.; Zonta, A.; Zonta, C. [Department of Experimental Surgery, University of Pavia, Pavia (Italy); Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute for Nuclear Physics (INFN), Section of Pavia, Pavia (Italy)

    2012-03-01

    A selective uptake of boron in the tumor is the base of Boron Neutron Capture Therapy, which can destroy the tumor substantially sparing the normal tissue. In order to deliver a lethal dose to the tumor, keeping the dose absorbed by normal tissues below the tolerance level, it is mandatory to know the {sup 10}B concentration present in each kind of tissue at the moment of irradiation. This work presents the calibration procedure adopted for a boron concentration measurement method based on neutron autoradiography, where biological samples are deposited on sensitive films and irradiated in the thermal column of the TRIGA reactor (University of Pavia). The latent tracks produced in the film by the charged particles coming from the neutron capture in {sup 10}B are made visible by a proper etching, allowing the measurement of the track density. A calibration procedure with standard samples provides curves of track density as a function of boron concentration, to be used in the measurement of biological samples. In this paper, the bulk etch rate parameter and the calibration curves obtained for both liquid samples and biological tissues with known boron concentration are presented. A bulk etch rate value of (1.64 {+-} 0.02) {mu}m/h and a linear dependence with etching time were found. The plots representing the track density versus the boron concentration in a range between 5 and 50 {mu}g/g (ppm) are linear, with an angular coefficient of (1.614 {+-} 0.169){center_dot}10{sup -3} tracks/({mu}m{sup 2} ppm) for liquids and (1.598 {+-} 0.097){center_dot}10{sup -2} tracks/({mu}m{sup 2} ppm) for tissues.

  11. ${\\beta}$-decay studies of neutron-rich $^{61-70}$Mn isotopes with the new LISOL ${\\beta}$-decay setup

    CERN Multimedia

    Diriken, J V J

    2008-01-01

    The aim of this proposal is to gather new information that will serve as benchmark to test shell model calculations in the region below $^{68}$Ni, where proper residual interactions are still under development. More specifically, the ${\\beta}$-decay experiment of the $^{61-70}$Mn isotopes will highlight the development of collectivity in the Fe isotopes and its daughters. At ISOLDE, neutron-rich Mn isotopes are produced with a UC$_{x}$ target and selective laser ionization. These beams are particularly pure and reasonable yields are obtained for the neutron-rich short lived $^{61-70}$Mn isotopes. We propose to perform ${\\beta}$-decay studies on $^{61-70}$Mn utilizing the newly-developed "LISOL ${\\beta}$-decay setup", consisting of two MINIBALL cluster Ge detectors and a standard tape station. The use of digital electronics in the readout of these detectors enables us to perform a "slow correlation technique" which should indicate the possible existence of isomers in the daughter nuclei.

  12. EXILL—a high-efficiency, high-resolution setup for γ-spectroscopy at an intense cold neutron beam facility

    Science.gov (United States)

    Jentschel, M.; Blanc, A.; de France, G.; Köster, U.; Leoni, S.; Mutti, P.; Simpson, G.; Soldner, T.; Ur, C.; Urban, W.; Ahmed, S.; Astier, A.; Augey, L.; Back, T.; Baczyk, P.; Bajoga, A.; Balabanski, D.; Belgya, T.; Benzoni, G.; Bernards, C.; Biswas, D. C.; Bocchi, G.; Bottoni, S.; Britton, R.; Bruyneel, B.; Burnett, J.; Cakirli, R. B.; Carroll, R.; Catford, W.; Cederwall, B.; Celikovic, I.; Cieplicka-Oryńczak, N.; Clement, E.; Cooper, N.; Crespi, F.; Csatlos, M.; Curien, D.; Czerwiński, M.; Danu, L. S.; Davies, A.; Didierjean, F.; Drouet, F.; Duchêne, G.; Ducoin, C.; Eberhardt, K.; Erturk, S.; Fraile, L. M.; Gottardo, A.; Grente, L.; Grocutt, L.; Guerrero, C.; Guinet, D.; Hartig, A.-L.; Henrich, C.; Ignatov, A.; Ilieva, S.; Ivanova, D.; John, B. V.; John, R.; Jolie, J.; Kisyov, S.; Krticka, M.; Konstantinopoulos, T.; Korgul, A.; Krasznahorkay, A.; Kröll, T.; Kurpeta, J.; Kuti, I.; Lalkovski, S.; Larijani, C.; Leguillon, R.; Lica, R.; Litaize, O.; Lozeva, R.; Magron, C.; Mancuso, C.; Ruiz Martinez, E.; Massarczyk, R.; Mazzocchi, C.; Melon, B.; Mengoni, D.; Michelagnoli, C.; Million, B.; Mokry, C.; Mukhopadhyay, S.; Mulholland, K.; Nannini, A.; Napoli, D. R.; Olaizola, B.; Orlandi, R.; Patel, Z.; Paziy, V.; Petrache, C.; Pfeiffer, M.; Pietralla, N.; Podolyak, Z.; Ramdhane, M.; Redon, N.; Regan, P.; Regis, J. M.; Regnier, D.; Oliver, R. J.; Rudigier, M.; Runke, J.; Rzaca-Urban, T.; Saed-Samii, N.; Salsac, M. D.; Scheck, M.; Schwengner, R.; Sengele, L.; Singh, P.; Smith, J.; Stezowski, O.; Szpak, B.; Thomas, T.; Thürauf, M.; Timar, J.; Tom, A.; Tomandl, I.; Tornyi, T.; Townsley, C.; Tuerler, A.; Valenta, S.; Vancraeyenest, A.; Vandone, V.; Vanhoy, J.; Vedia, V.; Warr, N.; Werner, V.; Wilmsen, D.; Wilson, E.; Zerrouki, T.; Zielinska, M.

    2017-11-01

    In the EXILL campaign a highly efficient array of high purity germanium (HPGe) detectors was operated at the cold neutron beam facility PF1B of the Institut Laue-Langevin (ILL) to carry out nuclear structure studies, via measurements of γ-rays following neutron-induced capture and fission reactions. The setup consisted of a collimation system producing a pencil beam with a thermal capture equivalent flux of about 108 n s-1cm-2 at the target position and negligible neutron halo. The target was surrounded by an array of eight to ten anti-Compton shielded EXOGAM Clover detectors, four to six anti-Compton shielded large coaxial GASP detectors and two standard Clover detectors. For a part of the campaign the array was combined with 16 LaBr3:(Ce) detectors from the FATIMA collaboration. The detectors were arranged in an array of rhombicuboctahedron geometry, providing the possibility to carry out very precise angular correlation and directional-polarization correlation measurements. The triggerless acquisition system allowed a signal collection rate of up to 6 × 105 Hz. The data allowed to set multi-fold coincidences to obtain decay schemes and in combination with the FATIMA array of LaBr3:(Ce) detectors to analyze half-lives of excited levels in the pico- to microsecond range. Precise energy and efficiency calibrations of EXILL were performed using standard calibration sources of 133Ba, 60Co and 152Eu as well as data from the reactions 27Al(n,γ)28Al and 35Cl(n,γ)36Cl in the energy range from 30 keV up to 10 MeV.

  13. Measurement and resonance analysis of neutron transmissions through four samples of 238U

    International Nuclear Information System (INIS)

    Olsen, D.K.; de Saussure, G.; Perez, R.B.; Difilippo, F.C.; Ingle, R.W.

    1977-01-01

    Accurate total and partial cross sections for 238 U are important for nuclear reactor design. In the resolved resonance region, energies below 4.0 keV, these cross sections are described in terms of individual resonance parameters of which the neutron widths in the 1.5 to 4.0 keV region from various workers appear discrepant. In order to determine these widths, (0.880 to 100.0 keV) neutron transmissions through 0.076, 0.254, 1.080, and 3.620 cm thick enriched 238 U samples were measured, and (0.880 to 100.0 keV) range transmissions were analyzed

  14. Neutron widths for 236U from high resolution transmission measurements at a 100M flightpath

    International Nuclear Information System (INIS)

    Carraro, G.; Brusegan, A.

    1975-01-01

    A series of neutron transmission measurements has been performed on 236 U aiming at a determination of the resonance parameters and their statistical properties. The analysis range covered neutron energies from 40eV to 4.1 keV. The experiments were carried out at about 100 m flightpath of the 80 MeV electron linear accelerator of CBNM using a 10 B slab-NaI detector and 2 236 U-oxyde samples on loan from the USAEC. A table displays the details of 6 experimental runs, 3 of which were arranged in such a way that the effect of the 235 U and 238 U impurities in the sample on the transmission was automatically compensated

  15. Moisture disturbance when measuring boron content in wet glass fibre materials with thermal neutron transmission method

    International Nuclear Information System (INIS)

    Zhang Zhiping; Liu Shengkang; Zhang Yongjie

    2001-01-01

    The theoretical calculation and experimental study on the moisture disturbance in the boron content measurement of wet glass fibre materials using the thermal neutron transmission method were reported. The relevant formula of the moisture disturbance was derived. For samples with a mass of 16 g, it was found that a moisture variation of 1% (mass percent) would result in a deviation of 0.28% (mass percent) in the measurement of boron contents

  16. Simultaneous transmission of neutrons and gamma rays (NEUGAT) to measure fat in meat

    International Nuclear Information System (INIS)

    Bartle, C.M.

    1991-01-01

    A new method has been established for the measurement of fat in boneless meat based on the simultaneous transmission through the mixture of neutrons and γ-rays (NEUGAT Technique). The method is insensitive to the manner in which the fat is distributed in the meat, and to the thickness of the mixture. The method has been applied in a meat packing plant to fat measurement in boxes of boneless meat for export. (author)

  17. Characteristics and calibration of the transmission-type fast neutron moisture meter

    International Nuclear Information System (INIS)

    Banzai, K.

    1984-01-01

    With the Transmission-type Fast Neutron Moisture Meter, we did some experiments for calibration and the effective range of fast neutron scattering, and observed soil moisture process before and after making artificial rainfall at a lysimeter filled by decomposed granite. A fast neutron source of this meter is 252 Cf and capacity of 100 μ Ci. The neutron detector is NE-213 liquid scintilator which recovers a little flux of neutron source. For the customary thermal neutron meter, the effective range of neutron scattering is variable by soil moisture values surrounding the observation point, but this fast neutron, insert and transmission-type meter shows soil moisture in small capacity between a source and a detector. Experimental Results; 1) The calibration curve, calculated statistically from the relation of soil moisture and the count ratio in a 200 l drum packed with beads, gravel, sand and Kanto loam, became only one line. The correlation coefficient of this curve was 0.996 and the standard error was 1.94% with volumetric water content. 2) Count ratio started to decrease as observation point approached soil surface from the boundary of 6 cm depth in soil. Volumetric water content increased more than fact with the previous calibration curve. 3) We limited the detectable range to fast neutron, but a little scattering was seen surrounding the soil of a observation point. The effective range of horizontal scattering was a width of 20 cm with the center line connected between a source and a detector, with a circle of 5 cm diameter surrounding the source, and a circle of 10-15 cm diameter surrounding the detector. 4) Soil moisture before and after artificial rainfall was observed with this meter and by the measurement of a 100 cm 3 oven dried sampling vessel. Volumetric water content by the latter measurement, was more variable because sampling points were at a distance from the center of observation site and sampling technique was bad. Otherwise soil moisture values

  18. Non-invasive analysis of industrial products using the simultaneous transmission of neutrons and gamma rays (Neugat) method

    International Nuclear Information System (INIS)

    Bartle, C.M.

    1998-01-01

    This research programme is designed to develop industrial measurement systems utilising simultaneous transmission of neutrons and gamma rays (Neugat method). Descriptions of these systems have been given in reports and magazine articles, and industrial site trials have been undertaken. (author)

  19. A PROPOSAL TO MEASURE THE CROSS SECTION OF THE SPACE STAR IN NEUTRON-DEUTERON BREAKUP IN A RECOIL GEOMETRY SETUP. Final report

    International Nuclear Information System (INIS)

    Crowe, Benjamin J. III

    2009-01-01

    Nucleon-deuteron (Nd) breakup is an important tool for obtaining a better understanding of three-nucleon (3N) dynamics and for developing meson exchange descriptions of nuclear systems. The kinematics of the nd breakup reaction enable observables to be studied in a variety of exit-channel configurations that show sensitivity to realistic nucleon-nucleon (NN) potential models and three-nucleon force (3NF) models. Rigorous 3N calculations give very good descriptions of most 3N reaction data. However, there are still some serious discrepancies between data and theory. The largest discrepancy observed between theory and data for nd breakup is for the cross section for the space-star configuration. This discrepancy is known as the 'Space Star Anomaly'. Several experimental groups have obtained results consistent with the 'Space Star Anomaly', but it is important to note that they all used essentially the same experimental setup and so their experimental results are subject to the same systematic errors. We propose to measure the space-star cross-section at the Triangle Universities Nuclear Laboratory (TUNL) using an experimental technique that is significantly different from the one used in previous breakup experiments. This technique has been used by a research group from the University of Bonn to measure the neutron-neutron scattering length. There are three possible scenarios for the outcome of this work: (1) the new data are consistent with previous measurements; (2) the new data are not in agreement with previous measurements, but are in agreement with theory; and (3) the new data are not in agreement with either theory or previous measurements. Any one of the three scenarios will provide valuable insight on the Space Star Anomaly.

  20. Pattern decomposition and quantitative-phase analysis in pulsed neutron transmission

    International Nuclear Information System (INIS)

    Steuwer, A.; Santisteban, J.R.; Withers, P.J.; Edwards, L.

    2004-01-01

    Neutron diffraction methods provide accurate quantitative insight into material properties with applications ranging from fundamental physics to applied engineering research. Neutron radiography or tomography on the other hand, are useful tools in the non-destructive spatial imaging of materials or engineering components, but are less accurate with respect to any quantitative analysis. It is possible to combine the advantages of diffraction and radiography using pulsed neutron transmission in a novel way. Using a pixellated detector at a time-of-flight source it is possible to collect 2D 'images' containing a great deal of interesting information in the thermal regime. This together with the unprecedented intensities available at spallation sources and improvements in computing power allow for a re-assessment of the transmission methods. It opens the possibility of simultaneous imaging of diverse material properties such as strain or temperature, as well as the variation in attenuation, and can assist in the determination of phase volume fraction. Spatial and time resolution (for dynamic experiment) are limited only by the detector technology and the intensity of the source. In this example, phase information contained in the cross-section is extracted from Bragg edges using an approach similar to pattern decomposition

  1. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    Science.gov (United States)

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with 100 μm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.

  2. Production and guide tube transmission of very cold neutrons from pulsed cold source

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Okumura, Kiyoshi

    1982-01-01

    The intensity and the energy spectra of Very Cold Neutrons (VCN) transmitted through a curved guide tube were measured by using the time-of-flight method of VCN. In the measurements, the curved guide tube having a characteristic neutron velocity of about 70 m/s is combined to a pulsed cold source of an electron linac in an internal target geometry. A space dependence of the VCN spectra was observed on the radial positions of a detector at the guide tube exit. A simple theoretical analysis on the transmission of VCN in the curved guide tube is also presented with taking into consideration about the effects of a finite size and a finite distance of the VCN-emitting source, and simple analytical formulas for the exit spectra of the guide tube are given. Comparisons between the experimental results and the theoretical calculations show good agreements, and the satisfactory performance of the present VCN guide tube assembly was ascertained. These results present also instructive features for understanding the structures and the space dependence of the exit spectra of a neutron guide tube. The VCN spectra at the guide tube exit can be divided into a few energy regions according to the transmission processes of VCN. Thus, the present study provides useful informations for the preparations of a VCN source with a curved guide tube. (author)

  3. A new method to determine in situ the transmission of a neutron-guide system at a reactor source

    CERN Document Server

    Haan, V O D; Gommers, R M; Labohm, F; Well, A A V; De Leege, P F A; Schebetov, A; Pusenkov, V

    2002-01-01

    In this paper, a description of a new method to determine the transmission of neutron guides after they are installed in a beam-tube at a reactor source is given. The method is based on activation measurements of gold foils at the entrance of the beam-tube and at the exit of the neutron guides compared to Monte-Carlo calculations. In this method, a quality factor is defined as the ratio between the actual transmission and the theoretical maximum attainable transmission. This method is used to determine the quality of an optimised neutron-guide system developed for beam-tube R2 of the HOR. The HOR is a pool-type nuclear research reactor at the Interfaculty Reactor Institute of the Delft University of Technology. It is shown that the quality factors of the newly installed neutron guides are between 0.49 and 0.63.

  4. A new method to determine in situ the transmission of a neutron-guide system at a reactor source

    International Nuclear Information System (INIS)

    Haan, V.O. de; Gibcus, H.P.M.; Gommers, R.M.; Labohm, F.; Well, A.A. van; Leege, P.F.A. de; Schebetov, A.; Pusenkov, V.

    2002-01-01

    In this paper, a description of a new method to determine the transmission of neutron guides after they are installed in a beam-tube at a reactor source is given. The method is based on activation measurements of gold foils at the entrance of the beam-tube and at the exit of the neutron guides compared to Monte-Carlo calculations. In this method, a quality factor is defined as the ratio between the actual transmission and the theoretical maximum attainable transmission. This method is used to determine the quality of an optimised neutron-guide system developed for beam-tube R2 of the HOR. The HOR is a pool-type nuclear research reactor at the Interfaculty Reactor Institute of the Delft University of Technology. It is shown that the quality factors of the newly installed neutron guides are between 0.49 and 0.63

  5. Mean cross sections of fast neutrons radiative capture, transmission and mean resonance parameters for the tin isotopes

    International Nuclear Information System (INIS)

    Timokhov, V.M.; Bokhovko, M.V.; Kazakov, L.E.; Kononov, V.N.; Manturov, G.N.; Poletaev, E.D.

    1988-01-01

    Results of measurements of neutron radiative capture cross sections in the energy range of 20-450 keV and of neutron transmission in the energy range of 20-1400 keV for 112,114,115,116,117,118,119,120,122 ,124S n isotopes and natural mixture of tin are presented. Analysis of the experimental data in the framework of nuclear reactions statistical theory is carried out, as a result of which data on neutron and radiation strength functions, potential scattering radii for S- and P-neutrons, as well as nuclear levels density parameters, are obtained

  6. Real time neutron transmission investigation of the austenite-bainite transformation in grey iron

    International Nuclear Information System (INIS)

    Meggers, Kay; Priesmeyer, Hans G.; Trela, Walter J.; Bowman, Charles D.; Dahms, Michael

    1994-01-01

    The first successful application of a new method to investigate phase transformations in real time, like the decomposition of austenite into bainite in grey iron, is described. During the ongoing transformation, transmission spectra of thermal neutrons, which contain Bragg edges corresponding to the crystal structure of the transforming phases, are recorded. By evaluating the height of these Bragg edges, which is a measure of the volume fraction of the phase, at different transformation times, the transformation can be followed in-situ in a time resolved manner. The method is compared to other previously used methods (micrographs, dilatometry, diffraction techniques); also a summary and an outlook are given. ((orig.))

  7. GEANT4 simulation of the neutron background of the C{sub 6}D{sub 6} set-up for capture studies at n{sub T}OF

    Energy Technology Data Exchange (ETDEWEB)

    Žugec, P., E-mail: pzugec@phy.hr [Department of Physics, Faculty of Science, University of Zagreb (Croatia); Colonna, N. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Bosnar, D. [Department of Physics, Faculty of Science, University of Zagreb (Croatia); Altstadt, S. [Johann-Wolfgang-Goethe Universität, Frankfurt (Germany); Andrzejewski, J. [Uniwersytet Łódzki, Lodz (Poland); Audouin, L. [Centre National de la Recherche Scientifique/IN2P3 – IPN, Orsay (France); Barbagallo, M. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Bécares, V. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Bečvář, F. [Charles University, Prague (Czech Republic); Belloni, F. [Commissariat à l' Énergie Atomique (CEA) Saclay – Irfu, Gif-sur-Yvette (France); Berthoumieux, E. [Commissariat à l' Énergie Atomique (CEA) Saclay – Irfu, Gif-sur-Yvette (France); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Billowes, J. [University of Manchester, Oxford Road, Manchester (United Kingdom); Boccone, V.; Brugger, M.; Calviani, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Calviño, F. [Universitat Politecnica de Catalunya, Barcelona (Spain); Cano-Ott, D. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Carrapiço, C. [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa (Portugal); Cerutti, F. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); and others

    2014-10-01

    The neutron sensitivity of the C{sub 6}D{sub 6} detector setup used at n{sub T}OF facility for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire n{sub T}OF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has been implemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with a {sup nat}C sample, showing an excellent agreement above 1 keV. At lower energies, an additional component in the measured {sup nat}C yield has been discovered, which prevents the use of {sup nat}C data for neutron background estimates at neutron energies below a few hundred eV. The origin and time structure of the neutron background have been derived from the simulations. Examples of the neutron background for two different samples are demonstrating the important role of accurate simulations of the neutron background in capture cross-section measurements.

  8. Examination of total cross section resonance structure of niobium and silicon in neutron transmission experiments

    Science.gov (United States)

    Andrianova, Olga; Lomakov, Gleb; Manturov, Gennady

    2017-09-01

    The neutron transmission experiments are one of the main sources of information about the neutron cross section resonance structure and effect in the self-shielding. Such kind of data for niobium and silicon nuclides in energy range 7 keV to 3 MeV can be obtained from low-resolution transmission measurements performed earlier in Russia (with samples of 0.027 to 0.871 atom/barn for niobium and 0.076 to 1.803 atom/barn for silicon). A significant calculation-to-experiment discrepancy in energy range 100 to 600 keV and 300 to 800 keV for niobium and silicon, respectively, obtained using the evaluated nuclear data library ROSFOND, were found. The EVPAR code was used for estimation the average resonance parameters in energy range 7 to 600 keV for niobium. For silicon a stochastic optimization method was used to modify the resolved resonance parameters in energy range 300 to 800 keV. The improved ROSFOND evaluated nuclear data files were tested in calculation of ICSBEP integral benchmark experiments.

  9. Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Samarium

    International Nuclear Information System (INIS)

    Leinweber, G.; Burke, J.A.; Knox, H.D.; Drindak, N.J.; Mesh, D.W.; Haines, W.T.; Ballad, R.V.; Block, R.C.; Slovacek, R.E.; Werner, C.J.; Trbovich, M.J.; Barry, D.P.; Sato, T.

    2001-01-01

    The purpose of the present work is to accurately measure the neutron cross sections of samarium. The most significant isotope is 149 Sm, which has a large neutron absorption cross section at thermal energies and is a 235 U fission product with a 1% yield. Its cross sections are thus of concern to reactor neutronics. Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic institute (RPI) LINAC facility using metallic and liquid Sm samples. The capture measurements were made at the 25 meter flight station with a multiplicity-type capture detector, and the transmission total cross-section measurements were performed at 15- and 25-meter flight stations with 6 Li glass scintillation detectors. Resonance parameters were determined by a combined analysis of six experiments (three capture and three transmission) using the multi-level R-matrix Bayesian code SAMMY version M2. The significant features of this work are as follows. Dilute samples of samarium nitrate in deuterated water (D 2 O) were prepared to measure the strong resonances at 0.1 and 8 eV without saturation. Disk-shaped spectroscopic quartz cells were obtained with parallel inner surfaces to provide a uniform thickness of solution. The diluent feature of the SAMMY program was used to analyze these data. The SAMMY program also includes multiple scattering corrections to capture yield data and resolution functions specific to the RPI facility. Resonance parameters for all stable isotopes of samarium were deduced for all resonances up to 30 eV. Thermal capture cross-section and capture resonance integral calculations were made using the resultant resonance parameters and were compared to results obtained using resonance parameters from ENDF/B-VI updated through release 3. Extending the definition of the capture resonance integral to include the strong 0.1 eV resonance in 149 Sm, present measurements agree within estimated uncertainties with En

  10. Preliminary microstructural characterization by transmission electron microscopy of 14 MeV neutron irradiated type 316 stainless steel

    International Nuclear Information System (INIS)

    Echer, C.J.

    1977-01-01

    Substantial changes in the mechanical properties of 316 stainless steel were observed after neutron irradiation (phi/sub t/ = 2.3 x 10 21 n/m 2 and E = 14 MeV) at 25 0 C. Comparison of microstructures of the unirradiated and neutron irradiated materials were evaluated using transmission electron microscopy. Evidence of small defect clusters in the irradiated material was found. These findings are consistent with other investigators also evaluating low dose irradiations

  11. Generalized matrix method for transmission of neutrons through multilayer magnetic system with non-colinear magnetization

    International Nuclear Information System (INIS)

    Radu, F.; Ignatovich, V.K.

    1999-01-01

    A generalized matrix method (GMM) for reflection and transmission of polarized and nonpolarized neutrons for multilayer systems with non-colinear magnetization of neighboring layers is developed. Several methods exist for calculation of the reflection and transmission coefficients of the multilayer systems (MS). We consider here only two of them. One is the recurrence method (RM), and another one is the matrix method. Previously these methods were used for scalar particles and for spinor particles. In the last case a limitation was imposed on the directions of the magnetization of different layers: they were required to lie in the plane parallel to the layers. In 1995 Fermon has described a different approach of the neutrons in MS. Here, the behaviour of the wave inside the layers depends on the position within the plane. The RM, as shown by us earlier, permits to treat multilayer systems with arbitrary directions of the magnetization. We show how to treat these systems with the updated matrix method, which we call the generalized matrix method. In the GMM method the transmission and reflection of a layered system are obtained by finding a 4 x 4 matrix, which is a product of elementary 4 x 4 matrices related to the different layers, and in the RM the solution is found by recurrent application of the same procedure of finding the reflection and transmission matrices for a continuously increasing number of layers. The RM method permits to use a simple algorithm to write analytical formulas for the reflection and transmission. However, for more or less complicated systems these formulas become useless and one needs to do numerical calculations. The GMM does not give a simple analytical algorithm, but it gives a very simple numerical algorithm. We have developed two computer codes for computing the coefficients of reflection and transmission of a layered system using the GMM and RM methods. The calculated reflectivities R ++ and R +- for a polarized beam which fall on

  12. Development Of A Method For Measurement Of Total Neutron Cross Sections Based On The Neutron Transmission Method Using A He-3 Counter On Filtered Neutron Beams At Dalat Research Reactor

    International Nuclear Information System (INIS)

    Tran Tuan Anh; Dang Lanh; Nguyen Canh Hai; Nguyen Xuan Hai; Pham Kien; Nguyen Thuy Nham; Pham Ngoc Son; Ho Huu Thang

    2007-01-01

    Determination of total neutron cross sections and average resonance parameters in the energy range from tens keV to hundreds keV is important for fast reactors calculations and designs because this energy range gives the most output of all neutron induced reactions in the spectrum of fast reactors. Besides, the total neutron cross section measurement is also one of the methods for determination of s, p and d-wave neutron strength functions. The purpose of this project is to develop a method for measurement of total neutron cross sections based on the neutron transmission technique using a He-3 counter. The average total neutron cross sections of 238 U were obtained from neutron transmission measurements on filtered neutron beams of 55 keV and 144 keV at the horizontal channel No.4 of the Dalat research reactor. The present results have been compared with the previous measurements, and the evaluated data from ENDF/B-6.8 library. (author)

  13. Transmission and signal loss in mask designs for a dual neutron and gamma imager applied to mobile standoff detection

    International Nuclear Information System (INIS)

    Ayaz-Maierhafer, Birsen; Hayward, Jason P.; Ziock, Klaus P.; Blackston, Matthew A.; Fabris, Lorenzo

    2013-01-01

    In order to design a next-generation, dual neutron and gamma imager for mobile standoff detection which uses coded aperture imaging as its primary detection modality, the following design parameters have been investigated for gamma and neutron radiation incident upon a hybrid, coded mask: (1) transmission through mask elements for various mask materials and thicknesses; and (2) signal attenuation in the mask versus angle of incidence. Each of these parameters directly affects detection significance, as quantified by the signal-to-noise ratio. The hybrid mask consists of two or three layers: organic material for fast neutron attenuation and scattering, Cd for slow neutron absorption (if applied), and one of three of the following photon or photon and slow neutron attenuating materials—Linotype alloy, CLYC, or CZT. In the MCNP model, a line source of gamma rays (100–2500 keV), fast neutrons (1000–10,000 keV) or thermal neutrons was positioned above the hybrid mask. The radiation penetrating the mask was simply tallied at the surface of an ideal detector, which was located below the surface of the last mask layer. The transmission was calculated as the ratio of the particles transmitted through the fixed aperture to the particles passing through the closed mask. In order to determine the performance of the mask considering relative motion between the source and detector, simulations were used to calculate the signal attenuation for incident radiation angles of 0–50°. The results showed that a hybrid mask can be designed to sufficiently reduce both transmission through the mask and signal loss at large angles of incidence, considering both gamma ray and fast neutron radiations. With properly selected material thicknesses, the signal loss of a hybrid mask, which is necessarily thicker than the mask required for either single mode imaging, is not a setback to the system's detection significance

  14. Bragg-edge neutron transmission strain tomography for in situ loadings

    Energy Technology Data Exchange (ETDEWEB)

    Wensrich, C.M., E-mail: christopher.wensrich@newcastle.edu.au [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Hendriks, J.N.; Gregg, A. [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Meylan, M.H. [School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Luzin, V. [Bragg Institute, Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232 (Australia); Tremsin, A.S. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

    2016-09-15

    An approach for tomographic reconstruction of three-dimensional strain distributions from Bragg-edge neutron transmission strain images is outlined and investigated. This algorithm is based on the link between Bragg-edge strain measurements and the Longitudinal Ray Transform, which has been shown to be sensitive only to boundary displacement. By exploiting this observation we provide a method for reconstructing boundary displacement from sets of Bragg-edge strain images. In the case where these displacements are strictly the result of externally applied tractions, corresponding internal strain fields can then be found through traditional linear-static finite element methods. This approach is tested on synthetic data in two-dimensions, where the rate of convergence in the presence of measurement noise and beam attenuation is examined.

  15. Transmission electron microscope study of neutron irradiation-induced defects in silicon

    International Nuclear Information System (INIS)

    Oshima, Ryuichiro; Kawano, Tetsuya; Fujimoto, Ryoji

    1994-01-01

    Commercial Czochralski-grown silicon (Cz-Si) and float-zone silicon (Fz-Si) wafers were irradiated with fission neutrons at various fluences from 10 19 to 10 22 n/cm 2 at temperatures ranging from 473 K to 1043 K. The irradiation induced defect structures were examined by transmission electron microscopy and ultra high voltage electron microscopy, which were compared with Marlowe code computer simulation results. It was concluded that the vacancy-type damage structure formed at 473 K were initiated from collapse of vacancy-rich regions of cascades, while interstitial type defect clusters formed by irradiation above 673 K were associated with interstitial oxygen atoms and free interstitials which diffused out of the cascades. Complex defect structures were identified to consist of {113} and {111} planar faults by the parallel beam illumination diffraction analysis. (author)

  16. Transmission probability method for solving neutron transport equation in three-dimensional triangular-z geometry

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guoming [Department of Nuclear Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)], E-mail: gmliusy@gmail.com; Wu Hongchun; Cao Liangzhi [Department of Nuclear Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2008-09-15

    This paper presents a transmission probability method (TPM) to solve the neutron transport equation in three-dimensional triangular-z geometry. The source within the mesh is assumed to be spatially uniform and isotropic. At the mesh surface, the constant and the simplified P{sub 1} approximation are invoked for the anisotropic angular flux distribution. Based on this model, a code TPMTDT is encoded. It was verified by three 3D Takeda benchmark problems, in which the first two problems are in XYZ geometry and the last one is in hexagonal-z geometry, and an unstructured geometry problem. The results of the present method agree well with those of Monte-Carlo calculation method and Spherical Harmonics (P{sub N}) method.

  17. Void fraction measurements in two-phase flow by transmission and scattering of a neutrons beam

    International Nuclear Information System (INIS)

    Souza, M.C.L.

    1984-01-01

    Calibration curves have been obtained which supply average values of void fraction (α) of water-steam two-phase mixtures for bubble, slug, annular and invert annular flow states. The measurements were carried out in simulated models of lucite-air for the steady-state, using the techniques of transmission and diffusion of a thermal neutrons beam. The calibration curves obtained were used for measurements of void fraction in a circuit containing two-phase water-air mixtures, in upward concurrent flow, for slug flow (P sub(max) = 1,06 bar) and annular flow (P sub(max) = 1,33 bar), using the same techniques. In both of the systems, a test section made up of an aluminium (99,9%) tube was used with internal diameter of 25,25 mm and 2,0 mm wall thichness. The beam of neutrons was obtained from a 5 Ci isotopic Am-Be source, thermalised in a cylindrical moderator of paraffin of 500 mm diameter (with H/D=1) which was covered by 2 mm thick cadmium sheets and having in its centre a parallepeliped made from high density polyethilene with the dimensions 240 x 240 x 144 mm. The neutrons escape through a rectangular collimator of 53,0 x 25,25 mm, with a length of 273 mm cut out of a single block of borated paraffin (32% of H 3 BO 3 ). The experimental results are in good agreement with theorical models in published literature. (Author) [pt

  18. Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    J. W. Sterbentz; D. L. Chichester

    2011-09-01

    This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620).

  19. A Preliminary Study on Detecting Fake Gold Bars Using Prompt Gamma Activation Analysis: Simulation of Neutron Transmission in Gold Bar

    International Nuclear Information System (INIS)

    Lee, K. M.; Sun, G. M.

    2016-01-01

    The purpose of this study is to develop fake gold bar detecting method by using Prompt-gamma activation analysis (PGAA) facility at the Korea Atomic Energy Research Institute (KAERI). PGAA is an established nuclear analytical technique for non-destructive determination of elemental and isotopic compositions. For a preliminary study on detecting fake gold bar, Monte Carlo simulation of neutron transmission in gold bar was conducted and the possibility for detecting fake gold bar was confirmed. Under the gold bullion standard, it guaranteed the government would redeem any amount of currency for its value in gold. After the gold bullion standard ended, gold bars have been the target for investment as ever. But it is well known that fake gold bar exist in the gold market. This cannot be identified easily without performing a testing as it has the same appearance as the pure gold bar. In order to avoid the trading of fake gold bar in the market, they should be monitored thoroughly. Although the transmissivity of cold neutrons are low comparing that of thermal neutrons, the slower neutrons are more apt to be absorbed in a target, and can increase the prompt gamma emission rate. Also the flux of both thermal and cold neutron beam is high enough to activate thick target. If the neutron beam is irradiated on the front and the reverse side of gold bar, all insides of it can be detected

  20. A Preliminary Study on Detecting Fake Gold Bars Using Prompt Gamma Activation Analysis: Simulation of Neutron Transmission in Gold Bar

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. M.; Sun, G. M. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to develop fake gold bar detecting method by using Prompt-gamma activation analysis (PGAA) facility at the Korea Atomic Energy Research Institute (KAERI). PGAA is an established nuclear analytical technique for non-destructive determination of elemental and isotopic compositions. For a preliminary study on detecting fake gold bar, Monte Carlo simulation of neutron transmission in gold bar was conducted and the possibility for detecting fake gold bar was confirmed. Under the gold bullion standard, it guaranteed the government would redeem any amount of currency for its value in gold. After the gold bullion standard ended, gold bars have been the target for investment as ever. But it is well known that fake gold bar exist in the gold market. This cannot be identified easily without performing a testing as it has the same appearance as the pure gold bar. In order to avoid the trading of fake gold bar in the market, they should be monitored thoroughly. Although the transmissivity of cold neutrons are low comparing that of thermal neutrons, the slower neutrons are more apt to be absorbed in a target, and can increase the prompt gamma emission rate. Also the flux of both thermal and cold neutron beam is high enough to activate thick target. If the neutron beam is irradiated on the front and the reverse side of gold bar, all insides of it can be detected.

  1. Neutron transmission benchmark problems for iron and concrete shields in low, intermediate and high energy proton accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hayashi, Katsumi [and others

    1996-09-01

    Benchmark problems were prepared for evaluating the calculation codes and the nuclear data for accelerator shielding design by the Accelerator Shielding Working Group of the Research Committee on Reactor Physics in JAERI. Four benchmark problems: transmission of quasi-monoenergetic neutrons generated by 43 MeV and 68 MeV protons through iron and concrete shields at TIARA of JAERI, neutron fluxes in and around an iron beam stop irradiated by 500 MeV protons at KEK, reaction rate distributions inside a thick concrete shield irradiated by 6.2 GeV protons at LBL, and neutron and hadron fluxes inside an iron beam stop irradiated by 24 GeV protons at CERN are compiled in this document. Calculational configurations and neutron reaction cross section data up to 500 MeV are provided. (author)

  2. Quantitative Assay of Pu-239 and Pu-240 by Neutron Transmission Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E

    1971-04-15

    A method for quantitative assay of 239Pu and 240Pu has been tested at the reactor R1 in Stockholm. The method makes use of a fast chopper to measure the neutron transmission through a sample around the main resonances of these two isotopes - at 0.296 eV in 239Pu and at 1.056 eV in 240Pu. The transmission data measured are then combined with the known resonance cross sections to give the content of the isotopes. The method is nondestructive, i.e., one can use fuel pins as samples, even highly irradiated ones. A time-of-flight spectrometer of moderate capacity, like our fast chopper, is sufficient as the resonances are located at low energy. Altogether five samples have been used in the tests of the method. The results have been compared with mass spectrometer values. This comparison came out quite well for 239Pu whereas the chopper results for 240Pu were more than 10 per cent higher than the mass spectrometer results. This large deviation might be due to errors in the resonance cross section for 240Pu used in the analysis of the transmission data from the chopper. The best possible accuracy for a 15-hour run with our equipment is +- 1 per cent for 239Pu and +- 2 per cent for 240Pu, obtained for thick samples - about 3 x 1020 atoms per cm2 for each isotope. The accuracy corresponds to 68 per cent confidence level and does not include any contribution from the uncertainty in the resonance cross section

  3. EXCALIBUR-at-CALIBAN: a neutron transmission experiment for {sup 238}U(n,n'{sub continuum}γ) nuclear data validation

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, David; Leconte, Pierre; Destouches, Christophe [CEA, DEN, DER, SPRC et SPEX, Cadarache F-13108 SAINT-PAUL-LEZ-DURANCE (France); Casoli, Pierre; Chambru, Laurent; Chanussot, Didier; Chateauvieux, Herve; Gevrey, Gaetan; Guilbert, Frederique; Lereuil, Hugues; Rousseau, Guillaume; Schaub, Muriel [CEA, DAM, Valduc F-21120 IS-SUR-TILLE (France); Heusch, Murielle; Meplan, Olivier; Ramdhane, Mourad [CNRS/IN2P3, 53 rue des Martyrs, F-38026 Grenoble, Cedex (France)

    2015-07-01

    Two recent papers justified a new experimental program to give a new basis for the validation of {sup 238}U nuclear data, namely neutron induced inelastic scattering and transport codes at neutron fission energies. The general idea is to perform a neutron transmission experiment through natural uranium material. As shown by Hans Bethe, neutron transmissions measured by dosimetric responses are linked to inelastic cross sections. This paper describes the principle and the results of such an experience called EXCALIBUR performed recently (January and October 2014) at the CALIBAN reactor facility. (authors)

  4. A hydrogen leak-tight, transparent cryogenic sample container for ultracold-neutron transmission measurements

    Science.gov (United States)

    Döge, Stefan; Hingerl, Jürgen

    2018-03-01

    The improvement of the number of extractable ultracold neutrons (UCNs) from converters based on solid deuterium (sD2) crystals requires a good understanding of the UCN transport and how the crystal's morphology influences its transparency to the UCNs. Measurements of the UCN transmission through cryogenic liquids and solids of interest, such as hydrogen (H2) and deuterium (D2), require sample containers with thin, highly polished and optically transparent windows and a well defined sample thickness. One of the most difficult sealing problems is that of light gases like hydrogen and helium at low temperatures against high vacuum. Here we report on the design of a sample container with two 1 mm thin amorphous silica windows cold-welded to aluminum clamps using indium wire gaskets, in order to form a simple, reusable, and hydrogen-tight cryogenic seal. The container meets the above-mentioned requirements and withstands up to 2 bar hydrogen gas pressure against isolation vacuum in the range of 10-5 to 10-7 mbar at temperatures down to 4.5 K. Additionally, photographs of the crystallization process are shown and discussed.

  5. A hydrogen leak-tight, transparent cryogenic sample container for ultracold-neutron transmission measurements.

    Science.gov (United States)

    Döge, Stefan; Hingerl, Jürgen

    2018-03-01

    The improvement of the number of extractable ultracold neutrons (UCNs) from converters based on solid deuterium (sD 2 ) crystals requires a good understanding of the UCN transport and how the crystal's morphology influences its transparency to the UCNs. Measurements of the UCN transmission through cryogenic liquids and solids of interest, such as hydrogen (H 2 ) and deuterium (D 2 ), require sample containers with thin, highly polished and optically transparent windows and a well defined sample thickness. One of the most difficult sealing problems is that of light gases like hydrogen and helium at low temperatures against high vacuum. Here we report on the design of a sample container with two 1 mm thin amorphous silica windows cold-welded to aluminum clamps using indium wire gaskets, in order to form a simple, reusable, and hydrogen-tight cryogenic seal. The container meets the above-mentioned requirements and withstands up to 2 bar hydrogen gas pressure against isolation vacuum in the range of 10 -5 to 10 -7 mbar at temperatures down to 4.5 K. Additionally, photographs of the crystallization process are shown and discussed.

  6. The Transmission of Thermal and Fast Neutrons in Air Filled Annular Ducts through Slabs of Iron and Heavy Water

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, J; Sandlin, R

    1964-12-15

    An investigation has been carried out concerning the transmission of thermal and fast neutrons in air filled annular ducts through laminated Fe-D{sub 2}O shields. Measurements have been made with annular air gaps of 0.5, 1.0, 1.5 and 2.0 cm, at a duct length of half a meter. The neutron fluxes were determined with a foil activation technique. The thermal flux was theoretically and experimentally divided into three components, a streaming, a leakage and an albedo component. The fast flux was similarly divided into a streaming component and a 'leakage' component. A calculational model to predict the components was then developed and fitted, to the data obtained by experiments. The model reported here for prediction of neutron attenuation in ducted configurations may be applied to straight annular ducts of arbitrary dimensions and material configurations but is especially designed for the problems met with in short ducts.

  7. Radioisotopic neutron transmission spectrometry: Quantitative analysis by using partial least-squares method

    International Nuclear Information System (INIS)

    Kim, Jong-Yun; Choi, Yong Suk; Park, Yong Joon; Jung, Sung-Hee

    2009-01-01

    Neutron spectrometry, based on the scattering of high energy fast neutrons from a radioisotope and slowing-down by the light hydrogen atoms, is a useful technique for non-destructive, quantitative measurement of hydrogen content because it has a large measuring volume, and is not affected by temperature, pressure, pH value and color. The most common choice for radioisotope neutron source is 252 Cf or 241 Am-Be. In this study, 252 Cf with a neutron flux of 6.3x10 6 n/s has been used as an attractive neutron source because of its high flux neutron and weak radioactivity. Pulse-height neutron spectra have been obtained by using in-house built radioisotopic neutron spectrometric system equipped with 3 He detector and multi-channel analyzer, including a neutron shield. As a preliminary study, polyethylene block (density of ∼0.947 g/cc and area of 40 cmx25 cm) was used for the determination of hydrogen content by using multivariate calibration models, depending on the thickness of the block. Compared with the results obtained from a simple linear calibration model, partial least-squares regression (PLSR) method offered a better performance in a quantitative data analysis. It also revealed that the PLSR method in a neutron spectrometric system can be promising in the real-time, online monitoring of the powder process to determine the content of any type of molecules containing hydrogen nuclei.

  8. Optic fibber data acquisition and transmission system dedicated to a neutron generator

    International Nuclear Information System (INIS)

    Ledo Pereda, Luis Miguel; Vergara Limon, Sergio; Arteche Diaz, Raul

    2009-01-01

    Hereby, are presented the design, construction and application of a virtual data acquisition system based on the usage of microcontrollers, optic fibber, and PC. System is aimed to the reestablishment of the communication between the basic modules of a Neutron Generator. The work shows, how the original interface design is upgraded by the automation of the data acquisition, on the Neutron Generator exploitation parameters. The PC usage is being introduced in the Neutron Generator and the precedent is established for further subsystem

  9. Simulation and analysis of the transmission properties of curved-straight neutron guide systems

    International Nuclear Information System (INIS)

    Copley, J.R.D.; Mildner, D.F.R.

    1992-01-01

    This paper reports that the spatial intensity distribution of neutrons emerging from a curved guide is far from uniform, particularly at short wavelengths, and curved guides are sometimes followed by a straight section of guide to make the intensity distribution more uniform. The behavior of neutrons within curved-straight neutron guide systems is examined using both ray-tracing and analytical approaches to the problem. The intensity distribution within the straight guide tends to wash from one side of the guide to the other. The amplitude of this transverse wave decreases with increasing guide length, and the characteristic length of the wave decreases with increasing neutron wavelength

  10. Neutron transmission study of the rotacional freedom of methyl groups in polydimethylsiloxane

    International Nuclear Information System (INIS)

    Amaral, L.Q.; Vinhas, L.A.; Herdade, S.B.

    1973-01-01

    The total neutron cross section of polydimethylsiloxane has been measured as a function of neutron wavelenght in the range of 4A to 10A, at room temperature, using a slow-neutron chopper and time-of-flight spectrometer. Scattering cross sections per hydrogen atom were obtained and the slope (12.2 +- 0.2) barns/A has been derived. Comparison with calculated neutron cross sections using the Krieger-Nelkin formalism for different dynamical situations as well as comparison with calibration curves relating the slope to the barrier hindering internal rotation indicates the existence of pratically free rotation of CH 3 groups about their C 3 axis

  11. Measurement of the para-hydrogen concentration in the ISIS moderators using neutron transmission and thermal conductivity

    Science.gov (United States)

    Romanelli, Giovanni; Rudić, Svemir; Zanetti, Matteo; Andreani, Carla; Fernandez-Alonso, Felix; Gorini, Giuseppe; Krzystyniak, Maciej; Škoro, Goran

    2018-04-01

    We present an experimental study to determine the para-hydrogen concentration in the hydrogen moderators at the ISIS pulsed neutron and muon source. The experimental characterisation is based on neutron transmission experiments performed on the VESUVIO spectrometer, and thermal conductivity measurements using the TOSCA para-hydrogen rig. A reliable estimation of the level of para-hydrogen concentration in the hydrogen moderators is of crucial importance in the framework of a current project to completely refurbish the first target station at ISIS. Moreover, we report a new measurement of the total neutron cross section for normal hydrogen at 15 K on the broad energy range 3 meV -10 eV suggesting a revision of the most recent nuclear libraries for incident neutron energies lower than 10 meV. Finally, we characterise systematic errors affecting the para-hydrogen level estimation due to conversion from para to ortho hydrogen, as a function of the time a batch of gas spends in every component of our gas panel and apparatus.

  12. The behavior of a type-II superconductor Nb in a magnetic field as investigated in polarized-neutron transmission experiments

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.

    1995-01-01

    The type-II superconducting polycrystal Nb was investigated on the SPN-1 polarized-neutron spectrometer at the high-intensity pulsed reactor IBR-2 at Dubna. In polarized-neutron transmission experiments the magnetic-field dependence of the neutron beam polarization was measured. Experiments were performed over a wide magnetic-field range from 0 to H c2 at a temperature of 4.8 K. A quasiperiodic variation of the neutron depolarization as a function of magnetic-field strength was observed. (orig.)

  13. Experiment on neutron transmission through depleted uranium layers and analysis with DOT 3.5 and MCNP

    International Nuclear Information System (INIS)

    Oka, Y.; Kodama, T.; Akiyama, M.; Hashikura, H.; Kondo, S.

    1987-01-01

    The reaction rates in the multi-layers containing depleted uranium were measured by activation foils and micro-fission chambers. The analysis of the experiment was carried out by using the multi-group transport calculation code, DOT 3.5 and the continuous energy Monte Carlo code, MCNP. The multi-group calculation overpredicted the low energy reaction rates in the DU layers, while the continuous energy calculation agreed well. The multi-group and continuous energy calculation was compared for the one-dimensional transmission of iron spheres. The results revealed overprediction of the multi-group calculation near the fast neutron source. The averaging of the resonance shapes in generating the multi-group cross sections made minima of the resonance valleys higher than that of the pointwise cross section. This increased the scattering of the neutrons inside and caused the overprediction of the multi-group calculation

  14. Transmission test of the polyethylene shield against 40 and 65 MeV quasi monochrome neutron

    International Nuclear Information System (INIS)

    Nakao, Makoto; Nakamura, Takashi; Sakuya, Yoshimasa; Nauchi, Yasushi; Nakao, Noriaki; Tanaka, Susumu; Sakamoto, Yukio; Nakajima, Hiroshi; Nakane, Yoshihiro.

    1996-01-01

    Using 40 and 65 MeV quasi monochrome neutron of the AVF cyclotron installed at Takasaki Laboratory, Japan Atomic Energy Research Institute, the neutron energy spectra were measured after transmitting the polyethylene shield. Results of the shielding experiments using concrete and iron recognized as main shielding material were proposed previously. As data obtained in the experiments were useful for a bench-mark experiment to investigate for shielding calculation and sectional data set, a shielding calculation simulated with new experiment to compare with and investigate for the previous experimental data. As a result, it was found that calculation result of neutron flux transmitting through the polyethylene shield showed difference with increase of the shield thickness. And, reducing distance of the peak neutron was also found to be over-estimated in its calculation value, such as three and five times on 43 MeV at 120 and 180 cm thick, respectively. (G.K.)

  15. Preliminary study of the α ratio measurement, ratio of the neutron capture cross section to the fission one for 233U, on the PEREN platform. Development and study of the experimental setup

    International Nuclear Information System (INIS)

    Cognet, M.A.

    2007-12-01

    Producing nuclear energy in order to reduce anthropic CO 2 emission and to meet high energy demand, implies three conditions to the nuclear plants of the IV. generation: safety improvements, radioactive waste minimization, and fuel breeding for a sustainable use of the resources. The Thorium fuel cycle used in Molten Salt Reactors seems promising. Many numerical studies based on probabilistic codes are carried out in order to analyse the behaviour of such reactors. Nevertheless, one of the most important parameters is badly known: the alpha ratio of 233 U, ratio of the neutron capture cross section to fission one for 233 U. This key-parameter is necessary to calculate the breeding ratio and thus, the deployment capacities of those reactors. This Ph-D thesis was intended to prepare a precise measurement of the alpha ratio of 233 U between 1 eV and 10 keV. Preliminary measurements have been performed on the experimental platform PEREN. This experimental environment is composed of a lead slowing-down time spectrometer associated with an intense pulsed neutron generator. Capture and fission rates are measured thanks to eight scintillators with their photomultipliers, surrounding a fission chamber. A software analysis sets the coincidence rate between the scintillators. In order to understand perfectly the experimental setup, preliminary tests using a 235 U fission chamber have been done. This experiment resulted in a very low signal to background ratio (1 %). The background coming from the scintillators themselves seriously handicapped the measurement. Another series of experiment has been done with scintillators 5 times thinner. Nevertheless, the signal to background ratio should still be increased to measure the capture of 235 U. To make sure that the experimental setup has totally been understood, we made many comparisons between experimental results and simulations. Two simulation codes were mainly used: MCNP and GEANT4. We paid special attention to quantify the

  16. Quasi-free one nucleon knockout reactions on neutron-rich oxygen isotopes at the R3B-LAND setup

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Leyla; Aumann, Thomas [TU Darmstadt, Darmstadt (Germany); GSI, Darmstadt (Germany); Bertulani, Carlos [Texas A and M University-Commerce, Commerce (United States); Paschalis, Stefanos [TU Darmstadt, Darmstadt (Germany); Nociforo, Chiara [GSI, Darmstadt (Germany); Collaboration: R3B-Collaboration

    2016-07-01

    Recent experiments have showed a reduction of spectroscopic strengths of about 60-70% for stable nuclei. When going to driplines this tendency is changing, loosely bound nucleons have spectroscopic strengths close unity while deeply bound nucleons have a large reduction of the strength. We aim to make a systematic study of spectroscopic factors (SF) of the Oxygen isotopes using quasi-free (p,2p) and (p,pn) knockout reactions in inverse kinematics. Quasi-free knockout reactions are a direct tool to study the occupancy and the location of valance and deeply bound single particle states. The Oxygen isotopes offer a large variation of separation energies which will allow us to obtain a qualitative and quantitative understanding of SF in a large variation of isospin asymmetry. For this we performed an experiment at the R3B-LAND setup at the GSI with a secondary beam {sup 14-24}O. The {sup 16-18}O and {sup 21-23}O isotopes have been analyzed and the preliminary results will be presented. The results include the partial cross sections, gamma ray spectra of the residual fragments in coincidence, and the SF obtained via comparison with theory.

  17. Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures

    DEFF Research Database (Denmark)

    Cereser, Alberto; Strobl, Markus; Hall, Stephen A.

    2017-01-01

    constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND......-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure...

  18. Transmission of germanium poly- and monocrystals for thermal neutrons at different temperatures

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Eid, Y.; Maayouf, R.M.; Abbas, Y.; Habib, N.; Kilany, M.; Ashry, A.

    1987-01-01

    Neutron cross-sections of germanium poly- and monocrystals were measured with two time-of-flight and two double-axis crystal spectrometers. The results were analyzed using the single-level Breit-Wigner formula. The coherent scattering amplitude was determined from the Bragg reflections observed in the cross-section of a polycrystal and the analysis of the neutron diffraction pattern. The incoherent and the thermal diffuse scattering cross-section were estimated from the analysis of the total cross-section data obtained for a monocrystal at different temperatures in the energy range 2 meV to 1 eV. (orig./HP) [de

  19. Transmission of germanium poly- and monocrystals for thermal neutrons at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Abdel-Kawy, A.; Eid, Y.; Maayouf, R.M.; Abbas, Y.; Habib, N.; Kilany, M.; Ashry, A.

    Neutron cross-sections of germanium poly- and monocrystals were measured with two time-of-flight and two double-axis crystal spectrometers. The results were analyzed using the single-level Breit-Wigner formula. The coherent scattering amplitude was determined from the Bragg reflections observed in the cross-section of a polycrystal and the analysis of the neutron diffraction pattern. The incoherent and the thermal diffuse scattering cross-section were estimated from the analysis of the total cross-section data obtained for a monocrystal at different temperatures in the energy range 2 meV to 1 eV.

  20. Sync transmission method and apparatus for high frequency pulsed neutron spectral analysis systems

    International Nuclear Information System (INIS)

    Culver, R.B.

    1981-01-01

    An improved synchronization system was developed for high-frequency pulsed-neutron gamma ray well-logging which extends the upper limit of the usable source pulsing frequency. A clock is used to pulse the neutron generator at a given frequency and a scaler generates scaled-down sync pulses at a lower frequency. Radiation from the formations surrounding the borehole is detected and electrical signals related functionally to the radiation are generated. The scaled-down sync pulses and electrical signals are transmitted to the earth's surface via a seven conductor well logging cable. (DN)

  1. Setup and taking into operation of a highly sensitive 3He magnetometer for a future experiment for the determination of an electric dipole moment of the free neutron

    International Nuclear Information System (INIS)

    Kraft, Andreas

    2012-01-01

    The measurement of the electric dipole moment of the free neutron is directly linked to the question on the accurate determination of the magnetic field conditions inside the nEDM spectrometer. Using in-situ the spin-precession of polarized 3 He, monitored by optically pumped Cs-magnetometers a sensitivity on the femto-tesla-scale can be obtained. At the institute of physics of the University Mainz a 3 He/Cs-test facility was built to investigate the readout of 3 He-spin-precession with a lamp-pumped Cs-magnetometer. Additionally, an ultra-compact and transportable polarizer unit was developed and installed in Mainz, which polarizes 3 He gas up to 55 % of polarization before the compressed gas is delivered to two sandwich magnetometer cells inside the EDM chamber. This theses will present some results of the first successful test of the polarizer unit in January 2012. 3 He was polarized in the ultra compact polarizer unit and transferred via guiding fields into a 4 layer mu-metal shield, where the free spin precession was detected with a lamp pumped Cs-magnetometer.

  2. Neutron radiography with ultracold neutrons

    International Nuclear Information System (INIS)

    Bates, J.C.

    1981-01-01

    The neutron transmission factor of very thin films may be low if the neutron energy is comparable to the pseudo-potential of the film material. Surprisingly, perhaps, it is relatively easy to obtain neutrons with such low energies in sufficient numbers to produce neutron radiographs. (orig.)

  3. Setup planning for machining

    CERN Document Server

    Hazarika, Manjuri

    2015-01-01

    Professionals as well as researchers can benefit from this comprehensive introduction into the topic of setup planning, which reflects the latest state of research and gives hands-on examples. Starting with a brief but thorough introduction, this book explains the significance of setup planning in process planning and includes a reflection on its external constraints. Step-by-step the different phases of setup planning are outlined and traditional as well as modern approaches, such as fuzzy logic based setup planning, on the solution of setup planning problems are presented. Three detailed examples of applications provide a clear and accessible insight into the up-to-date techniques and various approaches in setup planning.

  4. Slow neutron total cross-section, transmission and reflection calculation for poly- and mono-NaCl and PbF{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mansy, Muhammad S., E-mail: mmansy88@asrt.sci.eg [Reactor Physics Department, Nuclear Research Centre, Atomic Energy Authority, Cairo (Egypt); Radioactive Waste Management Unit, Hot Labs Centre, Atomic Energy Authority, Cairo (Egypt); Adib, M.; Habib, N. [Reactor Physics Department, Nuclear Research Centre, Atomic Energy Authority, Cairo (Egypt); Bashter, I.I. [Physics Department, Faculty of Science, Zagazig University (Egypt); Morcos, H.N.; El-Mesiry, M.S. [Reactor Physics Department, Nuclear Research Centre, Atomic Energy Authority, Cairo (Egypt)

    2016-10-01

    Highlights: • Slow neutron cross-section calculation for poly- and mono-crystalline materials. • Monochromatic features of PbF{sub 2} and NaCl mono-crystals. • Characterization of poly- and mono-crystal filters used in neutron diffraction. • Computer code developed calculates neutron cross-section, transmission & reflection. - Abstract: A detailed study about the calculation of total neutron cross-section, transmission and reflection from crystalline materials was performed. The developed computer code is approved to be sufficient for the required calculations, also an excellent agreement has been shown when comparing the code results with the other calculated and measured values. The optimal monochromator and filter parameters were discussed in terms of crystal orientation, mosaic spread, and thickness. Calculations show that 30 cm thick of PbF{sub 2} poly-crystal is an excellent cold neutron filter producing neutron wavelengths longer than 0.66 nm needed for the investigation of magnetic structure experiments. While mono-crystal filter PbF{sub 2} cut along its (1 1 1), having mosaic spread (η = 0.5°) and thickness 10 cm can only transmit thermal neutrons of the desired wavelengths and suppress epithermal and γ-rays forming unwanted background, when it is cooled to liquid nitrogen temperature. NaCl (2 0 0) and PbF{sub 2} (1 1 1) monochromator crystals having mosaic spread (η = 0.5°) and thickness 10 mm shows high neutron reflectivity for neutron wavelengths (λ = 0.114 nm and λ = 0.43 nm) when they used as a thermal and cold neutron monochromators respectively with very low contamination from higher order reflections.

  5. A new transmission based monochromator for energy-selective neutron imaging at the ICON beamline

    International Nuclear Information System (INIS)

    Peetermans, S.; Tamaki, M.; Hartmann, S.; Kaestner, A.; Morgano, M.; Lehmann, E.H.

    2014-01-01

    A new type of monochromator has been developed for energy-selective neutron imaging at continuous sources. It combines the use of a mechanical neutron velocity selector with pyrolytic graphite crystals of different mosaicity. The beam can be monochromatized to similar levels as a standard double crystal monochromator. It can flexibly produce different desired spectral shapes, even an asymmetric one. Intrinsically, no higher order contamination of the spectrum is present. Working with the transmitted beam, the beam divergence (and thus the spatial resolution) is uncompromised. The device has been calibrated, characterized and its performance demonstrated with the measurement of Bragg edges for iron and lead, resolving them more sharply than if solely a mechanical velocity selector was used

  6. Testing neutron cross-section files from the BROND-2 and ENDF/B-6 libraries in benchmark experiments on neutron transmission through spherical layers

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Blokhin, A.I.; Kulagin, N.T.; Pronyaev, V.G.; Simakov, S.P.

    1997-01-01

    The effect of angular anisotropy in inelastic secondary neutron scattering on neutron leakage spectra from the surface of spherical specimens is investigated. It is shown how inadequate representation of the cross-section structure in the neutron energy resonance region can affect the neutron leakage spectrum. (author). 19 refs, 5 figs, 6 tabs

  7. Testing neutron cross-section files from the BROND-2 and ENDF/B-6 libraries in benchmark experiments on neutron transmission through spherical layers

    Energy Technology Data Exchange (ETDEWEB)

    Androsenko, A A; Androsenko, P A; Blokhin, A I; Kulagin, N T; Pronyaev, V G; Simakov, S P [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-06-01

    The effect of angular anisotropy in inelastic secondary neutron scattering on neutron leakage spectra from the surface of spherical specimens is investigated. It is shown how inadequate representation of the cross-section structure in the neutron energy resonance region can affect the neutron leakage spectrum. (author). 19 refs, 5 figs, 6 tabs.

  8. Transmission of fast neutrons from the Li(d,xn) reaction through thick iron

    International Nuclear Information System (INIS)

    Johnson, D.L.; Mann, F.M.; Carter, L.L.; Woodruff, G.L.; Brady, F.P.; Romero, J.L.; Ullmann, J.L.; Johnson, M.L.; Castaneda, C.M.

    1983-05-01

    Measurements of the spectra of neutrons that leaked through about 30 cm of iron were performed. The neutron source was produced by a beam of 35 MeV deuterons which was stopped in a target of lithium as in the Fusion Materials Irradiation Test (FMIT) facility. The source spectrum peaks near 14 MeV in the forward direction, but is broad and has a small tail that extends to 50 MeV. The leakage spectra were observed from about 10 keV to 20 MeV using proton recoil proportional counters and an NE213 liquid scintillator. Measurements were also obtained of the energy deposited by neutron and gamma radiation within the iron using thermoluminescent detectors (TLDs) and also of the flux-spectra of gamma rays emitted from the iron using the NE213 detector. Monte Carlo calculations were performed using ENDF/B-5 and other cross sections for direct comparison to experimental results. The results of the comparison are discussed

  9. Neutron and gamma-ray transmission technique for the on-line determination of moisture in coal and coke

    International Nuclear Information System (INIS)

    Sowerby, B.D.; Millen, M.J.; Rafter, P.T.

    1985-01-01

    A fast neutron and gamma-ray transmission technique is being developed for the on-line analysis of moisture in coal and coke. The technique utilises 252 Cf and 137 Cs sources and 3 He and NaI(Tl) detectors. Laboratory measurements on single coal samples have shown that moisture can be determined to better than 1 wt% over the range 0 to 16 wt% moisture and 5 to 17cm thickness. Reduced errors were obtained for restricted ranges of moisture and thickness. Preliminary measurements on coke of thickness 30 to 50cm have shown that moisture can be determined to within 0.26 wt% over the range 1 to 16 wt% moisture

  10. Evaluation of few-view reconstruction parameters for illicit substance detection using fast-neutron transmission spectroscopy

    International Nuclear Information System (INIS)

    Fink, C.L.; Humm, P.G.; Martin, M.M.; Micklich, B.J.

    1996-01-01

    The authors have evaluated the performance of an illicit substance detection system that performs image reconstruction using the Maximum Likelihood algebraic reconstruction algorithm, a fe number of projections, and relatively coarse projection and pixel resolution. This evaluation was done using receiver operator curves and simulated data from the fast-neutron transmission spectroscopy system operated in a mode to detect explosives in luggage. The results show that increasing the number of projection angles is more important than increasing the projection resolution, the reconstructed pixel resolution, of the number of iterations in the Maximum Likelihood algorithm. A 100% detection efficiency with essentially no false positives is possible for a square block of RDX explosive, a projection resolution of 2 cm, a reconstructed pixel size of 2x2 cm, and five projection angles. For rectangular shaped explosives more angles are required to obtain the same system performance

  11. Improved mortar setup technique

    CSIR Research Space (South Africa)

    De Villiers, D

    2008-10-01

    Full Text Available bearing sensor. This concept focuses directly on one of the most cumbersome aspects of a mortar set-up, namely the use of aiming posts. The prismatic mirror and bearing dials is described as well as the required setup procedures. The measurement...

  12. Characterization and MCNP simulation of neutron energy spectrum shift after transmission through strong absorbing materials and its impact on tomography reconstructed image.

    Science.gov (United States)

    Hachouf, N; Kharfi, F; Boucenna, A

    2012-10-01

    An ideal neutron radiograph, for quantification and 3D tomographic image reconstruction, should be a transmission image which exactly obeys to the exponential attenuation law of a monochromatic neutron beam. There are many reasons for which this assumption does not hold for high neutron absorbing materials. The main deviations from the ideal are due essentially to neutron beam hardening effect. The main challenges of this work are the characterization of neutron transmission through boron enriched steel materials and the observation of beam hardening. Then, in our work, the influence of beam hardening effect on neutron tomographic image, for samples based on these materials, is studied. MCNP and FBP simulation are performed to adjust linear attenuation coefficients data and to perform 2D tomographic image reconstruction with and without beam hardening corrections. A beam hardening correction procedure is developed and applied based on qualitative and quantitative analyses of the projections data. Results from original and corrected 2D reconstructed images obtained shows the efficiency of the proposed correction procedure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Numerical analysis of resonances induced by s wave neutrons in transmission time-of-flight experiments with a computer IBM 7094 II

    International Nuclear Information System (INIS)

    Corge, Ch.

    1969-01-01

    Numerical analysis of transmission resonances induced by s wave neutrons in time-of-flight experiments can be achieved in a fairly automatic way on an IBM 7094/II computer. The involved computations are carried out following a four step scheme: 1 - experimental raw data are processed to obtain the resonant transmissions, 2 - values of experimental quantities for each resonance are derived from the above transmissions, 3 - resonance parameters are determined using a least square method to solve the over determined system obtained by equalling theoretical functions to the correspondent experimental values. Four analysis methods are gathered in the same code, 4 - graphical control of the results is performed. (author) [fr

  14. Neutron transmission and capture measurements and analysis of 60Ni from 1 to 450 keV

    International Nuclear Information System (INIS)

    Perey, C.M.; Harvey, J.A.; Macklin, R.L.; Winters, R.R.; Perey, F.G.

    1982-11-01

    High-resolution transmission and capture measurements of 60 Ni-enriched targets have been made at the Oak Ridge Electron Linear Accelerator (ORELA) from a few eV to 1800 keV in transmission and from 2.5 keV to 5 MeV in capture . The transmission data from 1 to 450 keV were analyzed with a multi-level R-matrix code which uses the Bayes' theorem for the fitting process. This code provides the energies and neutron widths of the resonances inside the 1- to 450-keV region as well as a possible parameterization for outside resonances to describe the smooth cross section in this region. The capture data were analyzed with a least-squares fitting code using the Breit-Wigner formula. From 2.5 to 450 keV, 166 resonances were seen in both sets of data. Correspondence between the energy scales shows a discontinuity around 300 keV which makes the matching of resonances at higher energies difficult. Eighty-nine resonances were seen in the capture data only. Average parameters for the 30 observed s-wave resonances were deduced. The average level spacing D 0 was found to be equal to 15.2 +- 1.5 keV, the strength function, S 0 , equal to (2.2 +- 0.6) x 10 -4 and the average radiation width, GAMMA/sub γ/, equal to 1.30 +- 0.07 eV. The staircase plot of the reduced level widths and the plot of the Lorentz-weighted strength function averaged over various energy intervals show possible evidence for doorway states. The level densities calculated with the Fermi-gas model for l = 0 and for l > 0 resonances were compared with the cumulative number of observed resonances, but the analysis is not conclusive. The average capture cross section as a function of the neutron incident energy is compared to the tail of the giant electric dipole resonance prediction

  15. Slow neutron total cross-section, transmission and reflection calculation for poly- and mono-NaCl and PbF2 crystals

    Science.gov (United States)

    Mansy, Muhammad S.; Adib, M.; Habib, N.; Bashter, I. I.; Morcos, H. N.; El-Mesiry, M. S.

    2016-10-01

    A detailed study about the calculation of total neutron cross-section, transmission and reflection from crystalline materials was performed. The developed computer code is approved to be sufficient for the required calculations, also an excellent agreement has been shown when comparing the code results with the other calculated and measured values. The optimal monochromator and filter parameters were discussed in terms of crystal orientation, mosaic spread, and thickness. Calculations show that 30 cm thick of PbF2 poly-crystal is an excellent cold neutron filter producing neutron wavelengths longer than 0.66 nm needed for the investigation of magnetic structure experiments. While mono-crystal filter PbF2 cut along its (1 1 1), having mosaic spread (η = 0.5°) and thickness 10 cm can only transmit thermal neutrons of the desired wavelengths and suppress epithermal and γ-rays forming unwanted background, when it is cooled to liquid nitrogen temperature. NaCl (2 0 0) and PbF2 (1 1 1) monochromator crystals having mosaic spread (η = 0.5°) and thickness 10 mm shows high neutron reflectivity for neutron wavelengths (λ = 0.114 nm and λ = 0.43 nm) when they used as a thermal and cold neutron monochromators respectively with very low contamination from higher order reflections.

  16. Radiography with polarised neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael L.

    2010-08-20

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni{sub 3}Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature T{sub C} on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with

  17. Radiography with polarised neutrons

    International Nuclear Information System (INIS)

    Schulz, Michael L.

    2010-01-01

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd 1-x Ni x and Ni 3 Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd 1-x Ni x and Ni 3 Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni 3 Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature T C on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with different ordering temperatures. This

  18. Leadership set-up

    DEFF Research Database (Denmark)

    Thude, Bettina Ravnborg; Stenager, Egon; von Plessen, Christian

    2018-01-01

    . Findings: The study found that the leadership set-up did not have any clear influence on interdisciplinary cooperation, as all wards had a high degree of interdisciplinary cooperation independent of which leadership set-up they had. Instead, the authors found a relation between leadership set-up and leader...... could influence legitimacy. Originality/value: The study shows that leadership set-up is not the predominant factor that creates interdisciplinary cooperation; but rather, leader legitimacy also should be considered. Additionally, the study shows that leader legitimacy can be difficult to establish...... and that it cannot be taken for granted. This is something chief executive officers should bear in mind when they plan and implement new leadership structures. Therefore, it would also be useful to look more closely at how to achieve legitimacy in cases where the leader is from a different profession to the staff....

  19. Field Observation of Setup

    National Research Council Canada - National Science Library

    Yemm, Sean

    2004-01-01

    Setup is defined as the superelevation of mean water surface within the surfzone and is caused by the reduction in wave momentum shoreward of the breaking point and compensating positive pressure gradient...

  20. Transmission probability method based on triangle meshes for solving unstructured geometry neutron transport problem

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hongchun [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China)]. E-mail: hongchun@mail.xjtu.edu.cn; Liu Pingping [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Zhou Yongqiang [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Cao Liangzhi [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China)

    2007-01-15

    In the advanced reactor, the fuel assembly or core with unstructured geometry is frequently used and for calculating its fuel assembly, the transmission probability method (TPM) has been used widely. However, the rectangle or hexagon meshes are mainly used in the TPM codes for the normal core structure. The triangle meshes are most useful for expressing the complicated unstructured geometry. Even though finite element method and Monte Carlo method is very good at solving unstructured geometry problem, they are very time consuming. So we developed the TPM code based on the triangle meshes. The TPM code based on the triangle meshes was applied to the hybrid fuel geometry, and compared with the results of the MCNP code and other codes. The results of comparison were consistent with each other. The TPM with triangle meshes would thus be expected to be able to apply to the two-dimensional arbitrary fuel assembly.

  1. The virtual slice setup.

    Science.gov (United States)

    Lytton, William W; Neymotin, Samuel A; Hines, Michael L

    2008-06-30

    In an effort to design a simulation environment that is more similar to that of neurophysiology, we introduce a virtual slice setup in the NEURON simulator. The virtual slice setup runs continuously and permits parameter changes, including changes to synaptic weights and time course and to intrinsic cell properties. The virtual slice setup permits shocks to be applied at chosen locations and activity to be sampled intra- or extracellularly from chosen locations. By default, a summed population display is shown during a run to indicate the level of activity and no states are saved. Simulations can run for hours of model time, therefore it is not practical to save all of the state variables. These, in any case, are primarily of interest at discrete times when experiments are being run: the simulation can be stopped momentarily at such times to save activity patterns. The virtual slice setup maintains an automated notebook showing shocks and parameter changes as well as user comments. We demonstrate how interaction with a continuously running simulation encourages experimental prototyping and can suggest additional dynamical features such as ligand wash-in and wash-out-alternatives to typical instantaneous parameter change. The virtual slice setup currently uses event-driven cells and runs at approximately 2 min/h on a laptop.

  2. Neutron Resonance Transmission Analysis (NRTA): A Nondestructive Assay Technique for the Next Generation Safeguards Initiative’s Plutonium Assay Challenge

    Energy Technology Data Exchange (ETDEWEB)

    J. W. Sterbentz; D. L. Chichester

    2010-12-01

    This is an end-of-year report for a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The first-year goals for this project were modest and included: 1) developing a zero-order MCNP model for the NRTA technique, simulating data results presented in the literature, 2) completing a preliminary set of studies investigating important design and performance characteristics for the NRTA measurement technique, and 3) documentation of this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes a nine month period of work.

  3. Neutron Transmission and Capture Measurements and Resonance Parameter Analysis of Neodymium from 1eV to 500 eV

    International Nuclear Information System (INIS)

    DP Barry; MJ Trbovich; Y Danon; RC Block; RE Slovacek

    2005-01-01

    Neodymium is a 235 U fission product and is important for reactor neutronic calculations. The aim of the present work is to improve upon the existing neutron cross section data of neodymium. Neutron capture and transmission measurements were performed by the time-off-light technique at the Rensselaer Polytechnic Institute LINAC laboratory using metallic neodymium samples. The capture measurements were made at the 25-m flight station with a 16-segment NaI multiplicity detector, and the transmission measurements were performed at 15-m and 25-m flight stations, respectively, with 6 Li glass scintillation detectors. After the data were collected and reduced, resonance parameters were determined by combined fitting of the transmission and capture data with the multilevel R-matrix Bayesian code SAMMY. The resonance parameters for all naturally occurring neodymium isotopes were deduced within the energy range of 1 eV to 500 eV. The resulting resonance parameters were used to calculate the capture resonance integrals from this energy. The RPI parameters gave a resonance integral value of 32 ± 1 barns that is approximately 7% lower than that obtained with the ENDF-B/VI parameters. The current measurements significantly reduce the uncertainties on the resonance parameters when compared with previously published parameters

  4. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, R. [Dalton Cumbrian Facility, Dalton Nuclear Institute, The University of Manchester, Westlakes Science & Technology Park, Moor Row, Whitehaven, Cumbria, CA24 3HA (United Kingdom); Jones, A.N., E-mail: Abbie.Jones@manchester.ac.uk [Nuclear Graphite Research Group, School of MACE, The University of Manchester, Manchester, M13 9PL (United Kingdom); McDermott, L.; Marsden, B.J. [Nuclear Graphite Research Group, School of MACE, The University of Manchester, Manchester, M13 9PL (United Kingdom)

    2015-12-15

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated ‘D’peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of ‘G’ and ‘D’ in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure. - Highlights: • Irradiated graphite

  5. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    International Nuclear Information System (INIS)

    Krishna, R.; Jones, A.N.; McDermott, L.; Marsden, B.J.

    2015-01-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated ‘D’peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of ‘G’ and ‘D’ in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure. - Highlights: • Irradiated graphite exhibits

  6. An edge over diagnostic setup

    Directory of Open Access Journals (Sweden)

    Sridhar Kannan

    2017-01-01

    Full Text Available Diagnostic setup proposed by H.D. Kingsley serves as a practical aid in treatment planning and diagnosis. These setups have some inherent shortcomings. A simple technique of duplication of the setups in dental stone can solve problems encountered before as well as provide many other advantages over the conventional procedure. The diagnostic setup is prepared by the conventional method [Figure 1]. An alginate impression is then taken of the setups and poured in dental stone to obtain the derived treatment model [Figure 2]. The same setup can now be further modified for alternate lines of treatment. Subsequently models could then be obtained as required [Figure 3].

  7. Numerical analysis of resonances induced by s wave neutrons in transmission time-of-flight experiments with a computer IBM 7094 II; Methodes d'analyse des resonances induites par les neutrons s dans les experiences de transmission par temps de vol et automatisation de ces methodes sur ordinateur IBM 7094 II

    Energy Technology Data Exchange (ETDEWEB)

    Corge, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-01-01

    Numerical analysis of transmission resonances induced by s wave neutrons in time-of-flight experiments can be achieved in a fairly automatic way on an IBM 7094/II computer. The involved computations are carried out following a four step scheme: 1 - experimental raw data are processed to obtain the resonant transmissions, 2 - values of experimental quantities for each resonance are derived from the above transmissions, 3 - resonance parameters are determined using a least square method to solve the over determined system obtained by equalling theoretical functions to the correspondent experimental values. Four analysis methods are gathered in the same code, 4 - graphical control of the results is performed. (author) [French] L'automatisation, sur ordinateur IBM 7094/II, de l'analyse des resonances induites par les neutrons s dans les experiences de transmission par temps de vol a ete accomplie en la decomposant selon un schema articule en quatre phases: 1 - le traitement des donnees experimentales brutes pour obtenir les transmissions interfero-resonnantes, 2 - la determination des grandeurs d'analyse a partir des transmissions precedentes, 3 - l'analyse proprement dite des resonances dont les parametres sont obtenus par la resolution d'un systeme surabondant. Quatre methodes d'analyse sont groupees en un meme programme, 4 - la procedure de verification graphique. (auteur)

  8. Numerical analysis of resonances induced by s wave neutrons in transmission time-of-flight experiments with a computer IBM 7094 II; Methodes d'analyse des resonances induites par les neutrons s dans les experiences de transmission par temps de vol et automatisation de ces methodes sur ordinateur IBM 7094 II

    Energy Technology Data Exchange (ETDEWEB)

    Corge, Ch. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-01-01

    Numerical analysis of transmission resonances induced by s wave neutrons in time-of-flight experiments can be achieved in a fairly automatic way on an IBM 7094/II computer. The involved computations are carried out following a four step scheme: 1 - experimental raw data are processed to obtain the resonant transmissions, 2 - values of experimental quantities for each resonance are derived from the above transmissions, 3 - resonance parameters are determined using a least square method to solve the over determined system obtained by equalling theoretical functions to the correspondent experimental values. Four analysis methods are gathered in the same code, 4 - graphical control of the results is performed. (author) [French] L'automatisation, sur ordinateur IBM 7094/II, de l'analyse des resonances induites par les neutrons s dans les experiences de transmission par temps de vol a ete accomplie en la decomposant selon un schema articule en quatre phases: 1 - le traitement des donnees experimentales brutes pour obtenir les transmissions interfero-resonnantes, 2 - la determination des grandeurs d'analyse a partir des transmissions precedentes, 3 - l'analyse proprement dite des resonances dont les parametres sont obtenus par la resolution d'un systeme surabondant. Quatre methodes d'analyse sont groupees en un meme programme, 4 - la procedure de verification graphique. (auteur)

  9. Characterization of duplex stainless steels by TEM [transmission electron microscopy], SANS [small-angle neutron scattering], and APFIM [atom-probe field ion microscopy] techniques

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.

    1987-06-01

    Results are presented of complementary characterization of aged duplex stainless steels by advanced metallographic techniques, including transmission and high-voltage electron microscopies; small-angle neutron scattering; and atom-probe field ion microscopy. On the basis of the characterization, the mechanisms of aging embrittlement have been shown to be associated with the precipitation of Ni- and Si-rich G phase and Cr-rich α' in the ferrite, and M 23 C 6 carbides on the austenite-ferrite phase boundaries. 19 refs., 19 figs., 1 tab

  10. Analysis of resonances due to 'S' neutrons in experiments on transmission by time-of-flight. 1. without the interference term; Analyse des resonances dues aux neutrons 'S' dans les experiences de transmission par temps de vol. 1. sans terme d'interference

    Energy Technology Data Exchange (ETDEWEB)

    Corge, C R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Various methods of transmission resonance analysis for 's' wave neutrons in time of flight experiments are described in this report. Only the case when the interference term can be neglected is treated in this first part. Results are given relative to a more complete partial area method and also to a new method so-called the width at half depth method. (author) [French] Le present rapport est consacre a l'expose de differentes methodes d'analyse des resonances dues aux neutrons d'ondes 's' dans les experiences de transmission par temps de vol, cette premiere partie traitant uniquement le cas ou l'on peut negliger le terme d'interference. Y figurent en particulier sous forme de reseaux de courbes, les resultats relatifs a une methode des aires partielles amelioree et ceux relatifs a une nouvelle methode dite de la largeur a mi-profondeur. (auteur)

  11. Analysis of neutron spectra and fluxes obtained with cold and thermal moderators at IBR-2 reactor: experimental and computer modeling studies at small-angle scattering YuMO setup

    International Nuclear Information System (INIS)

    Kuklin, A.I.; Rogov, A.D.; Gorshkova, Yu.E.; Kovalev, Yu.S.; Kutuzov, S.A.; Utrobin, P.K.; Rogachev, A.V.; Ivan'kov, O.I.; Solov'ev, D.V.; Gordelij, V.I.

    2011-01-01

    Results of experimental and computer modeling investigations of neutron spectra and fluxes obtained with cold and thermal moderators at the IBR-2 reactor (JINR, Dubna) are presented. The studies are done for small-angle neutron scattering (SANS) spectrometer YuMO (beamline number 4 of the IBR-2). The measurements of neutron spectra for two methane cold moderators are done for the standard configuration of the SANS instrument. The data from both moderators under different conditions of their operation are compared. The ratio of experimentally determined neutron fluxes of cold and thermal moderators at different wavelength is shown. Monte Carlo simulations are done to determine spectra for cold methane and thermal moderators. The results of the calculations of the ratio of neutron fluxes of cold and thermal moderators at different wavelength are demonstrated. In addition, the absorption of neutrons in the air gaps on the way from the moderator to the investigated sample is presented. SANS with the protein apoferritin was done in the case of cold methane as well as a thermal moderator and the data were compared. The perspectives for the use of the cold moderator for a SANS spectrometer at the IBR-2 are discussed. The advantages of the YuMO spectrometer with the thermal moderator with respect to the tested cold moderator are shown

  12. Fast-neutron and gamma-ray transmission technique for the on-line determination of moisture in coal and coke

    International Nuclear Information System (INIS)

    Sowerby, B.D.; Millen, M.J.; Rafter, P.T.

    1988-01-01

    A fast neutron and γ-ray transmission technique is being developed for the on-line analysis of moisture. Calculations show that the technique is capable of determining coke moisture to better than 0.2 wt% over a wide range of coke thicknesses. The favoured technique uses a thick Li-glass detector surrounded by a neutron moderator to determine simultaneously the fast neutron and γ-ray intensities. Laboratory measurements on single coke samples showed that moisture can be determined to within 0.2 wt% over the range 3-13 wt% moisture and 300-500 mm thickness. Measurements on a range of coke samples showed that the increase in r.m.s. error due to bound H variations is less than about 0.4 wt% moisture. Applications of the technique, to moisture determination in black and brown coal are also investigated, both by calculation and experiment. Further potential applications of the technique are discussed, including the determination of C in steel. (author)

  13. Effect of neutron radiation on the dielectric, mechanical and thermal properties of ceramics for RF transmission windows

    International Nuclear Information System (INIS)

    Hazelton, C.; Rice, J.; Snead, L.L.; Zinkle, S.J.

    1998-01-01

    The behavior of electrically insulating ceramics was investigated before and after exposure to neutron radiation. Mechanical, thermal and dielectric specimens were studied after exposure to a fast neutron dose of 0.1 displacements per atom (dpa) at Oak Ridge National Laboratory (ORNL). Four materials were compared to alumina: polycrystalline spinel, aluminum nitride, sialon and silicon nitride. Mechanical bend tests were performed before and after irradiation. Thermal diffusivity was measured using a room temperature laser flash technique. Dielectric loss factor was measured at 105 MHz with a special high resolution resonance cavity. The materials exhibited a significant degradation of thermal diffusivity and an increase in dielectric loss tangent. The flexural strength and physical dimensions were not significantly affected by the 0.1 dpa level of neutron radiation. The aluminum nitride and S silicon nitride showed superior RF window performance over the sialon and the alumina. The results are compared to radiation studies on similar materials

  14. Europium resonance parameters from neutron capture and transmission measurements in the energy range 0.01–200 eV

    International Nuclear Information System (INIS)

    Leinweber, G.; Barry, D.P.; Burke, J.A.; Rapp, M.J.; Block, R.C.; Danon, Y.; Geuther, J.A.; Saglime III, F.J.

    2014-01-01

    Highlights: • Metal samples were sealed and imaged with X-rays to determine sample uniformity. • Eleven new resonances were identified below 100 eV. • The resonance regions of 151 Eu and 153 Eu have been extended from 100 to 200 eV. • The thermal total cross section for 151 Eu was measured, up (9 ± 3)% from ENDF/B-VII.1. • Radiation widths were assigned for all resonances from experimental data. - Abstract: Europium is a good absorber of neutrons suitable for use as a nuclear reactor control material. It is also a fission product in the low-yield tail at the high end of the fission fragment mass distribution. Measurements have been made of the stable isotopes with natural and enriched samples. The linear electron accelerator center (LINAC) at the Rensselaer Polytechnic Institute (RPI) was used to explore neutron interactions with europium in the energy region from 0.01 to 200 eV. Neutron capture and transmission measurements were performed by the time-of-flight technique. Two transmission measurements were performed at flight paths of 15 and 25 m with 6 Li glass scintillation detectors. The neutron capture measurements were performed at a flight path of 25 m with a 16-segment sodium iodide multiplicity detector. Resonance parameters were extracted from the data using the multilevel R-matrix Bayesian code SAMMY. A table of resonance parameters and their uncertainties is presented. To prevent air oxidation metal samples were sealed in airtight aluminum cans in an inert environment. Metal samples of natural europium, 47.8 atom% 151 Eu, 52.2 atom% 153 Eu, as well as metal samples enriched to 98.77 atom% 153 Eu were measured. The measured neutron capture resonance integral for 153 Eu is (9.9 ± 0.4)% larger than ENDF/B-VII.1. The capture resonance integral for 151 Eu is (7 ± 1)% larger than ENDF/B-VII.1. Another significant finding from these measurements was a significant increase in thermal total cross section for 151 Eu, up (9 ± 3)% from ENDF/B-VII.1

  15. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  16. The current status of the MASHA setup

    Energy Technology Data Exchange (ETDEWEB)

    Vedeneev, V. Yu., E-mail: vvedeneyev@gmail.com; Rodin, A. M.; Krupa, L.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Kamas, D. [Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions (Russian Federation); Kliman, J. [Slovak Academy of Sciences, Institute of Physics (Slovakia); Komarov, A. B.; Motycak, S.; Novoselov, A. S.; Salamatin, V. S.; Stepantsov, S. V.; Podshibyakin, A. V.; Yukhimchuk, S. A. [Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions (Russian Federation); Granja, C.; Pospisil, S. [Czech Technical University in Prague, Institute of Experimental and Applied Physics (Czech Republic)

    2017-11-15

    The MASHA setup designed as the mass-separator with the resolving power of about 1700, which allows mass identification of superheavy nuclides is described. The setup uses solid ISOL (Isotope Separation On-Line) method. In the present article the upgrade of some parts of MASHA are described: target box (rotating target + hot catcher), ion source based on electron cyclotron resonance, data acquisition, beam diagnostics and control systems. The upgrade is undertaken in order to increase the total separation efficiency, reduce the separation time, of the installation and working stability and make possible continuous measurements at high beam currents. Ion source efficiency was measured in autonomous regime with using calibrated gas leaks of Kr and Xe injected directly to ion source. Some results of the first experiments for production of radon isotopes using the multi-nucleon transfer reaction {sup 48}Ca+{sup 242}Pu are described in the present article. The using of TIMEPIX detector with MASHA setup for neutron-rich Rn isotopes identification is also described.

  17. The current status of the MASHA setup

    Science.gov (United States)

    Vedeneev, V. Yu.; Rodin, A. M.; Krupa, L.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Kamas, D.; Kliman, J.; Komarov, A. B.; Motycak, S.; Novoselov, A. S.; Salamatin, V. S.; Stepantsov, S. V.; Podshibyakin, A. V.; Yukhimchuk, S. A.; Granja, C.; Pospisil, S.

    2017-11-01

    The MASHA setup designed as the mass-separator with the resolving power of about 1700, which allows mass identification of superheavy nuclides is described. The setup uses solid ISOL (Isotope Separation On-Line) method. In the present article the upgrade of some parts of MASHA are described: target box (rotating target + hot catcher), ion source based on electron cyclotron resonance, data acquisition, beam diagnostics and control systems. The upgrade is undertaken in order to increase the total separation efficiency, reduce the separation time, of the installation and working stability and make possible continuous measurements at high beam currents. Ion source efficiency was measured in autonomous regime with using calibrated gas leaks of Kr and Xe injected directly to ion source. Some results of the first experiments for production of radon isotopes using the multi-nucleon transfer reaction 48Ca+242Pu are described in the present article. The using of TIMEPIX detector with MASHA setup for neutron-rich Rn isotopes identification is also described.

  18. The current status of the MASHA setup

    International Nuclear Information System (INIS)

    Vedeneev, V. Yu.; Rodin, A. M.; Krupa, L.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Kamas, D.; Kliman, J.; Komarov, A. B.; Motycak, S.; Novoselov, A. S.; Salamatin, V. S.; Stepantsov, S. V.; Podshibyakin, A. V.; Yukhimchuk, S. A.; Granja, C.; Pospisil, S.

    2017-01-01

    The MASHA setup designed as the mass-separator with the resolving power of about 1700, which allows mass identification of superheavy nuclides is described. The setup uses solid ISOL (Isotope Separation On-Line) method. In the present article the upgrade of some parts of MASHA are described: target box (rotating target + hot catcher), ion source based on electron cyclotron resonance, data acquisition, beam diagnostics and control systems. The upgrade is undertaken in order to increase the total separation efficiency, reduce the separation time, of the installation and working stability and make possible continuous measurements at high beam currents. Ion source efficiency was measured in autonomous regime with using calibrated gas leaks of Kr and Xe injected directly to ion source. Some results of the first experiments for production of radon isotopes using the multi-nucleon transfer reaction "4"8Ca+"2"4"2Pu are described in the present article. The using of TIMEPIX detector with MASHA setup for neutron-rich Rn isotopes identification is also described.

  19. Neutron detector

    International Nuclear Information System (INIS)

    Endo, Hiroshi.

    1993-01-01

    The device of the present invention detects neutrons in a reactor container under a high temperature and reduces the noise level in an FBR type reactor. That is, the detection section comprises a high heat resistant vessel containing a scintillator therein for detecting neutrons. Neutron signals sent from the detection section are inputted to a neutron measuring section by way of a signal transmission section. The detection section is disposed at the inside of the reactor container. Further, the signal transmission section is connected optically to the detection section. With such a constitution, since the detection section comprising the high temperature resistant vessel is disposed at the inside of the reactor container, neutron fluxes can be detected and measured at high sensitivity even under a high temperature circumstance. Since the signal transmission section is optically connected to the detection section, influence of radiation rays upon transmission of the neutron detection signals can be reduced. Accordingly, the noise level can be kept low. (I.S.)

  20. SIOB: a FORTRAN code for least-squares shape fitting several neutron transmission measurements using the Breit--Wigner multilevel formula. [For IBM-360/91

    Energy Technology Data Exchange (ETDEWEB)

    de Saussure, G.; Olsen, D. K.; Perez, R. B.

    1978-05-01

    The FORTRAN-IV code SIOB was developed to least-square fit the shape of neutron transmission curves. Any number of measurements on a common energy scale for different sample thicknesses can be simultaneously fitted. The computed transmission curves can be broadened with either a Gaussian or a rectangular resolution function or both, with the resolution width a function of energy. The total cross section is expressed as a sum of single-level or multilevel Breit--Wigner terms and Doppler broadened by using the fast interpolation routine QUICKW. The number of data points, resonance levels, and variables which can be handled simultaneously is only limited by the overall dimensions of two arrays in the program and by the stability of the matrix inversion. In a test problem seven transmissions each with 3750 data points were simultaneously fitted with 74 resonances and 110 variable parameters. The problem took 47 min of CPU time on an IBM-360/91, for 3 iterations. 3 figures, 2 tables.

  1. Server farms with setup costs

    NARCIS (Netherlands)

    Gandhi, A.; Harchol-Balter, M.; Adan, I.J.B.F.

    2010-01-01

    In this paper we consider server farms with a setup cost. This model is common in manufacturing systems and data centers, where there is a cost to turn servers on. Setup costs always take the form of a time delay, and sometimes there is additionally a power penalty, as in the case of data centers.

  2. Neutron radiography

    International Nuclear Information System (INIS)

    Hiraoka, Eiichi

    1988-01-01

    The thermal neutron absorption coefficient is essentially different from the X-ray absorption coefficient. Each substance has a characteristic absorption coefficient regardless of its density. Neutron deams have the following features: (1) neutrons are not transmitted efficiently by low molecular weight substances, (2) they are transmitted efficiently by heavy metals, and (3) the transmittance differs among isotopes. Thus, neutron beams are suitable for cheking for foreign matters in heavy metals and testing of composites consisting of both heavy and light materials. A neutron source generates fast neutrons, which should be converted into thermal neutrons by reducing their energy. Major neutron souces include nuclear reactors, radioisotopes and particle accelerators. Photographic films and television systems are mainly used to observe neutron transmission images. Computers are employed for image processing, computerized tomography and three-dimensional analysis. The major applications of neutron radiography include inspection of neclear fuel; evaluation of material for airplane; observation of fuel in the engine and oil in the hydraulic systems in airplanes; testing of composite materials; etc. (Nogami, K.)

  3. Performance tests of external moderators of a PGNAA setup

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Fazal-ur-Rehman,; Al-Jarallah, M.I.; Abu-Jarad, F.; Maslehuddin, M.

    2003-01-01

    Performance tests of external cylindrical moderators of an accelerator-based prompt gamma ray neutron activation analysis (PGNAA) setup have been carried out through thermal neutrons and prompt γ-ray yield measurements. The PGNAA setup is to be used for analysis of cement samples. This study was conducted to investigate the effects of geometry of cylindrical moderator on yield of thermal neutrons and prompt γ-rays for two different types of moderator assemblies. One of the moderators was to be used with a small sample and the other to be used with a large sample. Fast and thermal neutron yield was measured inside the sample volume as a function of the front moderator thickness as well as sample length. Neutron yield measurement was carried out at the King Fahd University of Petroleum and Minerals 350 keV pulsed beam accelerator using nuclear track detectors. The pulsed 200 keV deuteron beam with 5 ns pulse width and 31.25 kHz frequency was used to produce 2.8 MeV neutrons via D(d,n) reaction. Neutron yield measurements showed that the large sample moderator has a smaller yield of thermal neutrons as compared to the small sample moderator, which is in complete agreement with the results of Monte Carlo yield calculations of the thermal and fast neutrons from both the moderators. Finally, the prompt γ-ray yield from a Portland cement sample was measured using the two moderators and was compared with each other. As predicted by Monte Carlo simulations, in spite of a smaller yield of thermal neutrons, the large sample moderator has a higher yield of prompt γ-rays

  4. Performance tests of external moderators of a PGNAA setup

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. E-mail: aanaqvi@kfupm.edu.sa; Fazal-ur-Rehman,; Al-Jarallah, M.I.; Abu-Jarad, F.; Maslehuddin, M

    2003-01-01

    Performance tests of external cylindrical moderators of an accelerator-based prompt gamma ray neutron activation analysis (PGNAA) setup have been carried out through thermal neutrons and prompt {gamma}-ray yield measurements. The PGNAA setup is to be used for analysis of cement samples. This study was conducted to investigate the effects of geometry of cylindrical moderator on yield of thermal neutrons and prompt {gamma}-rays for two different types of moderator assemblies. One of the moderators was to be used with a small sample and the other to be used with a large sample. Fast and thermal neutron yield was measured inside the sample volume as a function of the front moderator thickness as well as sample length. Neutron yield measurement was carried out at the King Fahd University of Petroleum and Minerals 350 keV pulsed beam accelerator using nuclear track detectors. The pulsed 200 keV deuteron beam with 5 ns pulse width and 31.25 kHz frequency was used to produce 2.8 MeV neutrons via D(d,n) reaction. Neutron yield measurements showed that the large sample moderator has a smaller yield of thermal neutrons as compared to the small sample moderator, which is in complete agreement with the results of Monte Carlo yield calculations of the thermal and fast neutrons from both the moderators. Finally, the prompt {gamma}-ray yield from a Portland cement sample was measured using the two moderators and was compared with each other. As predicted by Monte Carlo simulations, in spite of a smaller yield of thermal neutrons, the large sample moderator has a higher yield of prompt {gamma}-rays.

  5. Plant trial of a fast neutron and gamma-ray transmission gauge for the on-belt determination of moisture in lump coke

    International Nuclear Information System (INIS)

    Millen, M.J.; Rafter, P.T.; Sowerby, B.D.; Rainbow, M.T.; Jelenich, L.

    1990-01-01

    A fast neutron and γ-ray transmission (FNGT) gauge has been used to determine the moisture content of lump coke on the conveyor belt supplying the No. 3 blast furnace at the BHP Newcastle Steelworks. The gauge was operated on-line over the period June 1988-March 1989. Gauge moisture was compared with laboratory moisture, based on 30 increment composite samples taken from the belt, and with moisture determined by a second FNGT gauge on one of the hoppers feeding the conveyor belt. The r.m.s. difference between conveyor gauge moisture and laboratory moisture was 0.24 wt% during the calibration period for two hopper flow on the belt, which is normal plant condition. The accuracy of the conveyor belt gauge was maintained to within 0.37 wt% moisture over the full period of the plant trial. (author)

  6. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    International Nuclear Information System (INIS)

    Jalali, Majid; Mohammadi, Ali

    2008-01-01

    The compounds Na 2 B 4 O 7 , H 3 BO 3 , CdCl 2 and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the γ rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H 3 BO 3 with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds

  7. Current status of GALS setup in JINR

    Energy Technology Data Exchange (ETDEWEB)

    Zemlyanoy, S., E-mail: zemlya@jinr.ru; Avvakumov, K., E-mail: kavvakumov@jinr.ru [Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions (Russian Federation); Fedosseev, V. [CERN (Switzerland); Bark, R. [Nat. Research Foundation, iThemba LABS (South Africa); Blazczak, Z. [A. Mickiewicz University, Faculty of Physics (Poland); Janas, Z. [University of Warsaw, Faculty of Physics (Poland)

    2017-11-15

    This is a brief report on the current status of the new GAs cell based Laser ionization Setup (GALS) at the Flerov Laboratory for Nuclear Reactions (FLNR) of the Joint Institute for Nuclear Research (JINR) in Dubna. GALS will exploit available beams from the U-400M cyclotron in low energy multi-nucleon transfer reactions to study exotic neutron-rich nuclei located in the “north-east” region of nuclear map. Products from 4.5 to 9 MeV/nucleon heavy-ion collisions, such as {sup 136}Xe on {sup 208}Pb, are thermalized and neutralized in a high pressure gas cell and subsequently selectively laser re-ionized. In order to choose the best scheme of ion extraction the results of computer simulations of two different systems are presented. The first off- and online experiment will be performed on osmium atoms that is regarded as a most convenient element for producing isotopes with neutron number in the vicinity of the magic N = 126.

  8. Reflection of neutrons from a helicoidal system

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Ignatovich, V.K.; Nikitenko, Yu.V.

    2006-01-01

    Analytical solution for neutron reflection and transmission of magnetic mirrors with helicoidal magnetization is found. The dependence of neutron speed of reflection and transmission curves is shown. Resonant properties of helicoidal systems are found

  9. High-temperature metallography setup

    International Nuclear Information System (INIS)

    Blumenfeld, M.; Shmarjahu, D.; Elfassy, S.

    1979-06-01

    A high-temperature metallography setup is presented. In this setup the observation of processes such as that of copper recrystallization was made possible, and the structure of metals such as uranium could be revealed. A brief historical review of part of the research works that have been done with the help of high temperature metallographical observation technique since the beginning of this century is included. Detailed description of metallographical specimen preparation technique and theoretical criteria based on the rate of evaporation of materials present on the polished surface of the specimens are given

  10. Transmission electron microscopy investigation of neutron irradiated Si and ZrN coated UMo particles prepared using FIB

    Science.gov (United States)

    Van Renterghem, W.; Miller, B. D.; Leenaers, A.; Van den Berghe, S.; Gan, J.; Madden, J. W.; Keiser, D. D.

    2018-01-01

    Two fuel plates, containing Si and ZrN coated U-Mo fuel particles dispersed in an Al matrix, were irradiated in the BR2 reactor of SCK•CEN to a burn-up of ∼70% 235U. Five samples were prepared by INL using focused ion beam milling and transported to SCK•CEN for transmission electron microscopy (TEM) investigation. Two samples were taken from the Si coated U-Mo fuel particles at a burn-up of ∼42% and ∼66% 235U and three samples from the ZrN coated U-Mo at a burn-up of ∼42%, ∼52% and ∼66% 235U. The evolution of the coating, fuel structure, fission products and the formation of interaction layers are discussed. Both coatings appear to be an effective barrier against fuel matrix interaction and only on the samples having received the highest burn-up and power, the formation of an interaction between Al and U(Mo) can be observed on those locations where breaches in the coatings were formed during plate fabrication.

  11. A study of rates of (n, f), (n, γ), and (n, 2n) reactions in natU and 232Th produced by the neutron fluence in the graphite set-up (gamma-3) irradiated by 2.33 GeV deuteron beam

    International Nuclear Information System (INIS)

    Adam, J.; Chitra Bhatia; Katovskij, K.

    2011-01-01

    Spallation neutrons produced in a collision of 2.33 GeV deuteron beam with the large lead target are moderated by the thick graphite block surrounding the target and used to activate the radioactive samples of nat U and Th put at the three different positions, identified as holes 'a', 'b' and 'c' in the graphite block. Rates of the (n, f), (n, γ), and (n, 2n) reactions in the two samples are determined using the gamma spectrometry. Ratio of the experimental reaction rates, R(n, 2n)/R(n, f) for the 232 Th and nat U are estimated in order to understand the role of reactions of (n, xn) type in Accelerator Driven Subcritical Systems. For the Th-sample, the ratio is ∼ 54(10)% in case of hole 'a' and ∼ 95(57)% in case of hole 'b' compared to 1.73(20)% for the hole 'a' and 0.710(9)% for the hole 'b' in case of the nat U sample. Also the ratio of fission rates in uranium to thorium, nat U(n, f)/ 232 Th(n, f), is ∼ 11.2(17) in case of hole 'a' and 26.8(85) in hole 'b'. Similarly, ratio 238 U(n, 2n)/ 232 Th(n, 2n) is 0.36(4) for the hole 'a' and 0.20(10) for the hole 'b' showing that 232 Th is more prone to the (n, xn) reaction than 238 U. All the experimental reaction rates are compared with the simulated ones by generating neutron fluxes at the three holes from MCNPX 2.6c and making use of LA150 library of cross sections. The experimental and calculated rates of all the three reactions are in good agreement. The transmutation power of the set-up is estimated using the rates of (n, γ) and (n, 2n) reactions for both the samples in the three holes and compared with some of the results of the 'Energy plus Transmutation' set-up and TARC experiment

  12. Fast neutron activation analysis in metallurgy

    International Nuclear Information System (INIS)

    Sterlinski, S.

    1981-01-01

    Article discusses the usage of a 14 MeV neutron generator for producing fast neutrons of different energies and intensities. A complete instrumental set-up for the neutron activation analysis (NAA) is given. In metallurgy the device is mainly used in the determination of oxygen and silicon in steel and non-ferrous metal, including different alloys

  13. Application of activation methods on the Dubna experimental transmutation set-ups.

    Science.gov (United States)

    Stoulos, S; Fragopoulou, M; Adloff, J C; Debeauvais, M; Brandt, R; Westmeier, W; Krivopustov, M; Sosnin, A; Papastefanou, C; Zamani, M; Manolopoulou, M

    2003-02-01

    High spallation neutron fluxes were produced by irradiating massive heavy targets with proton beams in the GeV range. The experiments were performed at the Dubna High Energy Laboratory using the nuclotron accelerator. Two different experimental set-ups were used to produce neutron spectra convenient for transmutation of radioactive waste by (n,x) reactions. By a theoretical analysis neutron spectra can be reproduced from activation measurements. Thermal-epithermal and fast-super-fast neutron fluxes were estimated using the 197Au, 238U (n,gamma) and (n,2n) reactions, respectively. Depleted uranium transmutation rates were also studied in both experiments.

  14. Validity test of design calculations of a PGNAA setup

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Garwan, M.A.

    2004-01-01

    A rectangular moderator has been designed for the prompt gamma ray neutron activation analysis (PGNAA) setup at King Fahd University of Petroleum and Minerals (KFUPM) to analyze Portland cement samples. The design of the moderator assembly was obtained using Monte Carlo calculations. The design calculations of the new rectangular moderator of the KFUPM PGNAA setup have been verified experimentally through prompt gamma ray yield measurement as a function of the front moderator thickness. In this study the yield of the 3.54 and 4.94 MeV prompt gamma rays from silicon in a soil sample was measured as a function of thickness of the front moderator of the rectangular moderator. The experimental results were compared with the results of the Monte Carlo simulations. A good agreement has been achieved between the experimental results and the results of the calculations. The experimental results have provided useful information about the PGNAA setup performance, neutron moderation, and gamma ray attenuation in the PGNAA sample

  15. Analysis methods of neutrons induced resonances in the transmission experiments by time-of-flight and automation of these methods on IBM 7094 II computer

    International Nuclear Information System (INIS)

    Corge, C.

    1967-01-01

    The neutron induced resonances analysis aims to determine the neutrons characteristics, leading to the excitation energies, de-excitation probabilities by gamma radiation emission, by neutron emission or by fission, their spin, their parity... This document describes the methods developed, or adapted, the calculation schemes and the algorithms implemented to realize such analysis on a computer, from data obtained during time-of-flight experiments on the linear accelerator of Saclay. (A.L.B.)

  16. Dynamically polarized hydrogen target as a broadband, wavelength-independent thermal neutron spin polarizer

    International Nuclear Information System (INIS)

    Zhao Jinkui; Garamus, Vasil M.; Mueller, Wilhelm; Willumeit, Regine

    2005-01-01

    A hydrogen-rich sample with dynamically polarized hydrogen nuclei was tested as a wavelength-independent neutron transmission spin polarizer. The experiment used a modified setup of the dynamic nuclear polarization target station at the GKSS research center. The standard solvent sample at the GKSS DNP station was used. It is 2.8mm thick and consists of 43.4wt% water, 54.6wt% glycerol, and 2wt% of EHBA-Cr(v) complex. The wavelength of the incident neutrons for the transmission experiment was λ=8.1A with Δλ/λ=10%. The polarization of neutron beam after the target sample was analyzed with a supermirror analyzer. A neutron polarization of -52% was achieved at the hydrogen polarization of -69%. Further experiments will test the feasibility of other hydrogen-rich materials, such as methane, as the polarizer. A theoretical calculation shows that a polarized methane target would allow over 95% neutron polarizations with more than 30% transmission

  17. On SIP Session setup delay for VoIP services over correlated fading channels

    DEFF Research Database (Denmark)

    Fathi, Hanane; Chakraborty, Shyam S.; Prasad, Ramjee

    2006-01-01

    In this paper, the session setup delay of the session initiation protocol (SIP) is studied. The transmissions on both the forward and reverse channel are assumed to experience Markovian errors. The session setup delay is evaluated for different transport protocols, and with the use of the radio...... link protocol (RLP). An adaptive retransmission timer is used to optimize SIP performances. Using numerical results, we find that SIP over user datagram protocol (UDP) instead of transport control protocol (TCP) can make the session setup up to 30% shorter. Also, RLP drastically reduces the session...... setup delay down to 4 to 5 s, even in environments with high frame error rates (10%) and significant correlation in the fading process (fDT=0.02). SIP is compared with its competitor H.323. SIP session setup delay with compressed messages outperforms H.323 session setup delay....

  18. Polarized neutron scattering on HYSPEC: the HYbrid SPECtrometer at SNS

    Energy Technology Data Exchange (ETDEWEB)

    Zaliznyak, Igor [Brookhaven National Laboratory (BNL); Savici, Andrei T [ORNL; Garlea, Vasile O [ORNL; Winn, Barry L [ORNL; Schneelock, John [Brookhaven National Laboratory (BNL); Tranquada, John M. [Brookhaven National Laboratory (BNL); Gu, G. D. [Brookhaven National Laboratory (BNL); Wang, Aifeng [Brookhaven National Laboratory (BNL); Petrovic, C [Brookhaven National Laboratory (BNL)

    2017-01-01

    We describe some of the first polarized neutron scattering measurements performed at HYSPEC spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. We discuss details of the instrument setup and the experimental procedures in the mode with the full polarization analysis. Examples of the polarized neutron diffraction and the polarized inelastic neutron data obtained on single crystal samples are presented.

  19. Polarized neutron scattering on HYSPEC: the HYbrid SPECtrometer at SNS

    OpenAIRE

    Zaliznyak, Igor A; Savici, Andrei T.; Garlea, V. Ovidiu; Winn, Barry; Filges, Uwe; Schneeloch, John; Tranquada, John M.; Gu, Genda; Wang, Aifeng; Petrovic, Cedomir

    2016-01-01

    We describe some of the first polarized neutron scattering measurements performed at HYSPEC spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. We discuss details of the instrument setup and the experimental procedures in the mode with full polarization analysis. Examples of polarized neutron diffraction and polarized inelastic neutron data obtained on single crystal samples are presented.

  20. GINA-A polarized neutron reflectometer at the Budapest Neutron Centre

    Energy Technology Data Exchange (ETDEWEB)

    Bottyan, L.; Merkel, D. G.; Nagy, B.; Sajti, Sz.; Deak, L.; Endroczi, G. [Wigner RCP, RMKI, H-1525 Budapest, P.O. Box 49 (Hungary); Fuezi, J. [Wigner RCP, SZFKI, H-1525 Budapest, P.O. Box 49 (Hungary); University of Pecs, Pollack Mihaly Faculty of Engineering and Information Technology, H-7602 Pecs, P.O. Box 219 (Hungary); Petrenko, A. V. [Frank Laboratory of Neutron Physics, JINR, Joliot-Curie 6, Dubna, 141980 (Russian Federation); Major, J. [Wigner RCP, RMKI, H-1525 Budapest, P.O. Box 49 (Hungary); Max-Planck-Institut fuer Intelligente Systeme (formerly Max-Planck-Institut fuer Metallforschung), Heisenbergstr. 3, D-70569 Stuttgart (Germany)

    2013-01-15

    The setup, capabilities, and operation parameters of the neutron reflectometer GINA, the recently installed 'Grazing Incidence Neutron Apparatus' at the Budapest Neutron Centre, are introduced. GINA, a dance-floor-type, constant-energy, angle-dispersive reflectometer is equipped with a 2D position-sensitive detector to study specular and off-specular scattering. Wavelength options between 3.2 and 5.7 A are available for unpolarized and polarized neutrons. Spin polarization and analysis are achieved by magnetized transmission supermirrors and radio-frequency adiabatic spin flippers. As a result of vertical focusing by a five-element pyrolytic graphite monochromator, the reflected intensity from a 20 Multiplication-Sign 20 mm{sup 2} sample has been doubled. GINA is dedicated to studies of magnetic films and heterostructures, but unpolarized options for non-magnetic films, membranes, and other surfaces are also provided. Shortly after its startup, reflectivity values as low as 3 Multiplication-Sign 10{sup -5} have been measured by the instrument. The instrument capabilities are demonstrated by a non-polarized and a polarized reflectivity experiment on a Si wafer and on a magnetic film of [{sup 62}Ni/{sup nat}Ni]{sub 5} isotope-periodic layer composition. The facility is now open for the international user community. Its further development is underway establishing new sample environment options and spin analysis of off-specularly scattered radiation as well as further decreasing the background.

  1. GINA--a polarized neutron reflectometer at the Budapest Neutron Centre.

    Science.gov (United States)

    Bottyán, L; Merkel, D G; Nagy, B; Füzi, J; Sajti, Sz; Deák, L; Endrőczi, G; Petrenko, A V; Major, J

    2013-01-01

    The setup, capabilities, and operation parameters of the neutron reflectometer GINA, the recently installed "Grazing Incidence Neutron Apparatus" at the Budapest Neutron Centre, are introduced. GINA, a dance-floor-type, constant-energy, angle-dispersive reflectometer is equipped with a 2D position-sensitive detector to study specular and off-specular scattering. Wavelength options between 3.2 and 5.7 Å are available for unpolarized and polarized neutrons. Spin polarization and analysis are achieved by magnetized transmission supermirrors and radio-frequency adiabatic spin flippers. As a result of vertical focusing by a five-element pyrolytic graphite monochromator, the reflected intensity from a 20 × 20 mm(2) sample has been doubled. GINA is dedicated to studies of magnetic films and heterostructures, but unpolarized options for non-magnetic films, membranes, and other surfaces are also provided. Shortly after its startup, reflectivity values as low as 3 × 10(-5) have been measured by the instrument. The instrument capabilities are demonstrated by a non-polarized and a polarized reflectivity experiment on a Si wafer and on a magnetic film of [(62)Ni/(nat)Ni](5) isotope-periodic layer composition. The facility is now open for the international user community. Its further development is underway establishing new sample environment options and spin analysis of off-specularly scattered radiation as well as further decreasing the background.

  2. Setup Analysis: Combining SMED with Other Tools

    Directory of Open Access Journals (Sweden)

    Stadnicka Dorota

    2015-02-01

    Full Text Available The purpose of this paper is to propose the methodology for the setup analysis, which can be implemented mainly in small and medium enterprises which are not convinced to implement the setups development. The methodology was developed after the research which determined the problem. Companies still have difficulties with a long setup time. Many of them do nothing to decrease this time. A long setup is not a sufficient reason for companies to undertake any actions towards the setup time reduction. To encourage companies to implement SMED it is essential to make some analyses of changeovers in order to discover problems. The methodology proposed can really encourage the management to take a decision about the SMED implementation, and that was verified in a production company. The setup analysis methodology is made up of seven steps. Four of them concern a setups analysis in a chosen area of a company, such as a work stand which is a bottleneck with many setups. The goal is to convince the management to begin actions concerning the setups improvement. The last three steps are related to a certain setup and, there, the goal is to reduce a setup time and the risk of problems which can appear during the setup. In this paper, the tools such as SMED, Pareto analysis, statistical analysis, FMEA and other were used.

  3. Experiments on iron shield transmission of quasi-monoenergetic neutrons generated by 43- and 68-MeV protons via the 7Li(p,n) reaction

    International Nuclear Information System (INIS)

    Nakashima, Hiroshi; Tanaka, Shun-ichi; Nakao, Noriaki

    1996-03-01

    In order to provide benchmark data of neutrons transmitted through iron shields in the intermediate-energy region, spatial distributions of neutron energy spectra and reaction rates behind and inside the iron shields of thickness up to 130 cm were measured for 43- and 68-MeVp- 7 Li neutrons using a quasi-monoenergetic neutron beam source at the 90-MV AVF cyclotron facility of the TLARA facility in JAERI. The measured data by five kinds of detectors: the BC501A detector, the Bonner ball counter, 238 U and 232 Th fission counters, 7 LiF and nat LiF TLDs and solid state nuclear track detector, are numerically provided in this report in the energy region between 10 -4 eV and the energy of peak neutrons generated by the 7 Li(p,n) reaction. (author)

  4. Experiments on iron shield transmission of quasi-monoenergetic neutrons generated by 43- and 68-MeV protons via the {sup 7}Li(p,n) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tanaka, Shun-ichi; Nakao, Noriaki [and others

    1996-03-01

    In order to provide benchmark data of neutrons transmitted through iron shields in the intermediate-energy region, spatial distributions of neutron energy spectra and reaction rates behind and inside the iron shields of thickness up to 130 cm were measured for 43- and 68-MeVp-{sup 7}Li neutrons using a quasi-monoenergetic neutron beam source at the 90-MV AVF cyclotron facility of the TLARA facility in JAERI. The measured data by five kinds of detectors: the BC501A detector, the Bonner ball counter, {sup 238}U and {sup 232}Th fission counters, {sup 7}LiF and {sup nat}LiF TLDs and solid state nuclear track detector, are numerically provided in this report in the energy region between 10{sup -4} eV and the energy of peak neutrons generated by the {sup 7}Li(p,n) reaction. (author).

  5. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  6. A new CCD-camera neutron radiography detector at the Atominstitute of the Austrian Universities

    International Nuclear Information System (INIS)

    Koerner, S.; Boeck, H.; Rauch, H.; Lehmann, E.

    1999-01-01

    Neutron radiography provides a very efficient tool for non-destructive testing as well as for many applications in fundamental research. A neutron beam penetrating a specimen is attenuated by the sample material and detected by a two dimensional imaging device. The image contains information about materials and structure inside the sample because neutrons are attenuated according to the basic law of radiation attenuation. At the Atominstitute of the Austrian Universities neutron radiographic examinations have been carried out for more than 35 years, mainly with detectors consisting of X-ray films and a Gd- converter enclosed in a vacuum cassette. Presently a neutron tomography set-up is under development. For high quality 3D image reconstruction, about 200 digitized neutron transmission images from different angles of the object are necessary. Therefore the first step was the design of an adequate electronic neutron radiography imaging device. The requirements for a detector suitable for neutron tomography are: exact and reproducible positioning, easy handling, high spatial resolution and dynamic range, high efficiency and a good linearity. The key components of the detector system selected on the basis of the requirements consist of a neutron sensitive scintillator screen, a cooled slow scan CCD camera and a mirror to reflect the light emitted by the scintillator to the CCD camera. The whole assembly is placed in a light tight enclosure. In this paper the strategy of the selection of the individual detector components is described. Comparisons on the influence of the use of different components on the properties of the whole position sensitive imaging device are demonstrated. Finally the new CCD camera neutron radiography detector of the Atominstitute is presented and first results of test measurements performed at the neutron radiography facility NEUTRA at the continuous spallation source SINQ at Paul Scherrer Institute are shown.(author)

  7. Physical methods for studying minerals and solid materials: X-ray, electron and neutron diffraction; scanning and transmission electron microscopy; X-ray, electron and ion spectrometry

    International Nuclear Information System (INIS)

    Eberhart, J.-P.

    1976-01-01

    The following topics are discussed: theoretical aspects of radiation-matter interactions; production and measurement of radiations (X rays, electrons, neutrons); applications of radiation interactions to the study of crystalline materials. The following techniques are presented: X-ray and neutron diffraction, electron microscopy, electron diffraction, X-ray fluorescence analysis, electron probe microanalysis, surface analysis by electron emission spectrometry (ESCA and Auger electrons), scanning electron microscopy, secondary ion emission analysis [fr

  8. GRAPhEME: a setup to measure (n, xn γ) reaction cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Henning, Greg; Bacquias, A.; Capdevielle, O.; Dessagne, P.; Kerveno, M.; Rudolf, G. [Universite de Strasbourg, IPHC, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France); Borcea, C.; Negret, A.; Olacel, A. [Nat. Inst. Of Phys. And Nucl. Eng., Bucharest (Romania); Drohe, J.C.; Plompen, A.J.M.; Nyman, M. [EU/ JRC-IRMM, Geel (Belgium)

    2015-07-01

    Most of nuclear reactor developments are using evaluated data base for numerical simulations. However, the considered databases present still large uncertainties and disagreements. To improve their level of precision, new measurements are needed, in particular for (n, xn) reactions, which are of great importance as they modify the neutron spectrum, the neutron population, and produce radioactive species. The IPHC group started an experimental program to measure (n, xn gamma) reaction cross sections using prompt gamma spectroscopy and neutron energy determination by time of flight. Measurements of (n, xn gamma) cross section have been performed for {sup 235,238}U, {sup 232}Th, {sup nat,182,183,184,186}W, {sup nat}Zr. The experimental setup is installed at the neutron beam at GELINA (Geel, Belgium). The setup has recently been upgraded with the addition of a highly segmented 36 pixels planar HPGe detector. Significant efforts have been made to reduce radiation background and electromagnetic perturbations. The setup is equipped with a high rate digital acquisition system. The analysis of the segmented detector data requires a specific procedure to account for cross signals between pixels. An overall attention is paid to the precision of the measurement. The setup characteristic and the analysis procedure will be presented along with the acquisition and analysis challenges. Examples of results and their impact on models will be discussed. (authors)

  9. Neutron diagnostic investigations with a research reactor

    International Nuclear Information System (INIS)

    Harms, A.A.

    1977-01-01

    Some aspects of the use of neutron transmission analysis in applied research, as pursued at McMaster University (Canada), are examined. Examples considered are void measurements in two-phase flow, neutron conversion enhancement in neutron radiography, reconstruction of interior bulk heterogenities in solids and temperature sensing with neutrons. (author)

  10. Preliminary study of the {alpha} ratio measurement, ratio of the neutron capture cross section to the fission one for {sup 233}U, on the PEREN platform. Development and study of the experimental setup; Etude preliminaire de la mesure du rapport {alpha}, rapport de la section efficace moyenne de capture sur celle de fission de l'{sup 233}U, sur la plateforme PEREN. Developpement et etude du dispositif experimental

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, M A

    2007-12-15

    Producing nuclear energy in order to reduce anthropic CO{sub 2} emission and to meet high energy demand, implies three conditions to the nuclear plants of the IV. generation: safety improvements, radioactive waste minimization, and fuel breeding for a sustainable use of the resources. The Thorium fuel cycle used in Molten Salt Reactors seems promising. Many numerical studies based on probabilistic codes are carried out in order to analyse the behaviour of such reactors. Nevertheless, one of the most important parameters is badly known: the alpha ratio of {sup 233}U, ratio of the neutron capture cross section to fission one for {sup 233}U. This key-parameter is necessary to calculate the breeding ratio and thus, the deployment capacities of those reactors. This Ph-D thesis was intended to prepare a precise measurement of the alpha ratio of {sup 233}U between 1 eV and 10 keV. Preliminary measurements have been performed on the experimental platform PEREN. This experimental environment is composed of a lead slowing-down time spectrometer associated with an intense pulsed neutron generator. Capture and fission rates are measured thanks to eight scintillators with their photomultipliers, surrounding a fission chamber. A software analysis sets the coincidence rate between the scintillators. In order to understand perfectly the experimental setup, preliminary tests using a {sup 235}U fission chamber have been done. This experiment resulted in a very low signal to background ratio (1 %). The background coming from the scintillators themselves seriously handicapped the measurement. Another series of experiment has been done with scintillators 5 times thinner. Nevertheless, the signal to background ratio should still be increased to measure the capture of {sup 235}U. To make sure that the experimental setup has totally been understood, we made many comparisons between experimental results and simulations. Two simulation codes were mainly used: MCNP and GEANT4. We paid

  11. Preliminary study of the {alpha} ratio measurement, ratio of the neutron capture cross section to the fission one for {sup 233}U, on the PEREN platform. Development and study of the experimental setup; Etude preliminaire de la mesure du rapport {alpha}, rapport de la section efficace moyenne de capture sur celle de fission de l'{sup 233}U, sur la plateforme PEREN. Developpement et etude du dispositif experimental

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, M.A

    2007-12-15

    Producing nuclear energy in order to reduce anthropic CO{sub 2} emission and to meet high energy demand, implies three conditions to the nuclear plants of the IV. generation: safety improvements, radioactive waste minimization, and fuel breeding for a sustainable use of the resources. The Thorium fuel cycle used in Molten Salt Reactors seems promising. Many numerical studies based on probabilistic codes are carried out in order to analyse the behaviour of such reactors. Nevertheless, one of the most important parameters is badly known: the alpha ratio of {sup 233}U, ratio of the neutron capture cross section to fission one for {sup 233}U. This key-parameter is necessary to calculate the breeding ratio and thus, the deployment capacities of those reactors. This Ph-D thesis was intended to prepare a precise measurement of the alpha ratio of {sup 233}U between 1 eV and 10 keV. Preliminary measurements have been performed on the experimental platform PEREN. This experimental environment is composed of a lead slowing-down time spectrometer associated with an intense pulsed neutron generator. Capture and fission rates are measured thanks to eight scintillators with their photomultipliers, surrounding a fission chamber. A software analysis sets the coincidence rate between the scintillators. In order to understand perfectly the experimental setup, preliminary tests using a {sup 235}U fission chamber have been done. This experiment resulted in a very low signal to background ratio (1 %). The background coming from the scintillators themselves seriously handicapped the measurement. Another series of experiment has been done with scintillators 5 times thinner. Nevertheless, the signal to background ratio should still be increased to measure the capture of {sup 235}U. To make sure that the experimental setup has totally been understood, we made many comparisons between experimental results and simulations. Two simulation codes were mainly used: MCNP and GEANT4. We paid

  12. Note: 4-bounce neutron polarizer for reflectometry applications

    Science.gov (United States)

    Nagy, B.; Merkel, D. G.; Jakab, L.; Füzi, J.; Veres, T.; Bottyán, L.

    2018-05-01

    A neutron polarizer using four successive reflections on m = 2.5 supermirrors was built and installed at the GINA neutron reflectometer at the Budapest Neutron Centre. This simple setup exhibits 99.6% polarizing efficiency with 80% transmitted intensity of the selected polarization state. Due to the geometry, the higher harmonics in the incident beam are filtered out, while the optical axis of the beam remains intact for easy mounting and dismounting the device in an existing experimental setup.

  13. Verification of design calculations of a PGNAA setup using nuclear track ejectors

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. E-mail: aanaqvi@kfupm.edu.sa; Fazal-ur-Rehman,; Nagadi, .M.; Maslehuddin, M.; Khateeb-ur-Rehman; Kidwai, S

    2004-02-01

    A rectangular moderator assembly has been designed for the PGNAA setup at ing Fahd University of Petroleum and Minerals (KFUPM). The design calculations of the rectangular moderator, which were obtained through Monte Carlo simulation, have been verified experimentally through thermal neutron field measurement using CR-39 nuclear track detectors (NTDs). These measurements were carried out at the KFUPM 350 keV accelerator using 2.8 MeV pulsed neutron beam from D(d,n) reaction. The thermal neutron yield was measured inside the sample volume of the rectangular moderator by two NTDs fixed at back and front end of the sample cavity. The good agreement between he experimental results and the results of the calculations shows useful application of NTDs in verification of design calculations of a PGNAA setup.

  14. Setup and taking into operation of a highly sensitive {sup 3}He magnetometer for a future experiment for the determination of an electric dipole moment of the free neutron; Aufbau und Inbetriebnahme eines hochsensitiven {sup 3}He-Magnetometers fuer ein zukuenftiges Experiment zur Bestimmung eines elektrischen Dipolmoments des freien Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Andreas

    2012-12-20

    The measurement of the electric dipole moment of the free neutron is directly linked to the question on the accurate determination of the magnetic field conditions inside the nEDM spectrometer. Using in-situ the spin-precession of polarized {sup 3}He, monitored by optically pumped Cs-magnetometers a sensitivity on the femto-tesla-scale can be obtained. At the institute of physics of the University Mainz a {sup 3}He/Cs-test facility was built to investigate the readout of {sup 3}He-spin-precession with a lamp-pumped Cs-magnetometer. Additionally, an ultra-compact and transportable polarizer unit was developed and installed in Mainz, which polarizes {sup 3}He gas up to 55 % of polarization before the compressed gas is delivered to two sandwich magnetometer cells inside the EDM chamber. This theses will present some results of the first successful test of the polarizer unit in January 2012. {sup 3}He was polarized in the ultra compact polarizer unit and transferred via guiding fields into a 4 layer mu-metal shield, where the free spin precession was detected with a lamp pumped Cs-magnetometer.

  15. Analysis methods of neutrons induced resonances in the transmission experiments by time-of-flight and automation of these methods on IBM 7094 II computer; Methode d'analyse des resonances induites par les neutrons dans les experiences de transmission par temps-de-vol et automatisation de ces methodes sur ordinateur IBM-7094 II

    Energy Technology Data Exchange (ETDEWEB)

    Corge, C

    1967-07-01

    The neutron induced resonances analysis aims to determine the neutrons characteristics, leading to the excitation energies, de-excitation probabilities by gamma radiation emission, by neutron emission or by fission, their spin, their parity... This document describes the methods developed, or adapted, the calculation schemes and the algorithms implemented to realize such analysis on a computer, from data obtained during time-of-flight experiments on the linear accelerator of Saclay. (A.L.B.)

  16. Analysis methods of neutrons induced resonances in the transmission experiments by time-of-flight and automation of these methods on IBM 7094 II computer; Methode d'analyse des resonances induites par les neutrons dans les experiences de transmission par temps-de-vol et automatisation de ces methodes sur ordinateur IBM-7094 II

    Energy Technology Data Exchange (ETDEWEB)

    Corge, C

    1967-07-01

    The neutron induced resonances analysis aims to determine the neutrons characteristics, leading to the excitation energies, de-excitation probabilities by gamma radiation emission, by neutron emission or by fission, their spin, their parity... This document describes the methods developed, or adapted, the calculation schemes and the algorithms implemented to realize such analysis on a computer, from data obtained during time-of-flight experiments on the linear accelerator of Saclay. (A.L.B.)

  17. Inventory control with multiple setup costs

    NARCIS (Netherlands)

    Alp, O.; Huh, W.T.; Tan, T.

    2014-01-01

    We consider an infinite-horizon, periodic-review, single-item production/inventory system with random demand and backordering, where multiple setups are allowed in any period and a separate fixed cost is associated for each setup. Contrary to the majority of the literature on this topic, we do not

  18. Split Scheduling with Uniform Setup Times

    NARCIS (Netherlands)

    Schalekamp, F.; Sitters, R.A.; van der Ster, S.L.; Stougie, L.; Verdugo, V.; van Zuylen, A.

    2015-01-01

    We study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a machine cannot process or

  19. Split scheduling with uniform setup times.

    NARCIS (Netherlands)

    F. Schalekamp; R.A. Sitters (René); S.L. van der Ster; L. Stougie (Leen); V. Verdugo; A. van Zuylen

    2015-01-01

    htmlabstractWe study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a

  20. Basic research of neutron radiography using cold neutron beam

    International Nuclear Information System (INIS)

    Oda, Masahiro; Tamaki, Masayoshi; Tasaka, Kanji

    1995-01-01

    As the result of demanding high quality images, now the nuclear reactors which can supply stably intense neutron beam have become the most general neutron source for radiography. For the purpose, mostly thermal neutrons have been used, but it is indispensable to use other neutrons than thermal neutrons for advancing neutron radiography technology and expanding the application fields. The radiography using cold neutrons is most behind in the development because the suitable neutron source was not available in Japan. The neutron sources for exclusively obtaining intense cold neutron beam were installed in the Kyoto University reactor in 1986 and in the JRR-3M of Japan Atomic Energy Research Institute in 1991. Basically as neutron energy lowers, the cross section of substances increases. In certain crystalline substances, the Bragg cutoff arises. The removal of scattered neutrons, the measurement of parallelism of beam and the relation of the thickness of objects with the transmissivity of cold neutrons are described. The imaging by TV method and the cold neutron CT in the CNRF and the simplified neutron CT by film method are reported. (K.I.)

  1. Set-up for differential manometers testing

    International Nuclear Information System (INIS)

    Ratushnyj, M.I.; Galkin, Yu.V.; Nechaj, A.G.

    1985-01-01

    Set-up characteristic for controlling and testing metrological characteristics of TPP and NPP differential manometers with extreme pressure drop upto 250 kPa is briefly described. The set-up provides with automatic and manual assignment of values of gauge air pressure with errors of 0.1 and 0.25% correspondingly. The set-up is supplied with standard equipment to measure output signals. Set-up supply is carried out by a one-phase alternating current circuit with 220 V. Air supply is carried out by O.4-0.6 MPa. pressure of a pneumatic system. Application of the set-up increases operating efficiency 5 times while checking and turning differential manometers

  2. Setup for demonstrating interactive binaural synthesis for telepresence applications

    DEFF Research Database (Denmark)

    Madsen, Esben; Olesen, Søren Krarup; Markovic, Milos

    2011-01-01

    position Totem with a single loudspeaker. The Position and movements of participants, particularly the head, are tracked and from this sound is rendered to include binaural cues so the Visitor is able to move around in a limited space while perceiving Destination sound as "stationary". This setup includes......, latency and transmission reliablity must be adjusted to obtain the best compromise. Bandwidth use and reliablity can be improved at the cost of latency. Finally the binaural synthesis for each source is processed at the listener's site (here Visitor) to have a minimum latency on responding to movement...

  3. The PTB thermal neutron reference field at GeNF

    International Nuclear Information System (INIS)

    Boettger, R.; Friedrich, H.; Janssen, H.

    2004-01-01

    The experimental setup and procedure for the characterization of the thermal neutron reference field established at the Geesthacht neutron facility (GeNF) of the GKSS is described. The neutron beam, free in air, with a maximum flux of 10 6 s -1 , can easily be reduced to less than 10 4 s -1 by using a diaphragm variable in size and without changing the beam divergence. Also, the spectral distribution with a mean energy of 45 meV, measured by time-of-flight over a 6.6 m long flight path, is independent of the beam current chosen. In the 2002/2003 experiments reported here, a 6 Li glass detector was employed to determine the absolute beam current and to calibrate the 3 He transmission beam monitor. In addition, activation measurements of gold foils were carried out at a reduced beam divergence. The results agree within ±2%. Furthermore, the beam is characterized by a low gamma background intensity and a negligible fraction of epithermal neutrons. Irradiations in combination with a scanner device to achieve a homogeneously illuminated scan field have shown that the thermal beam is well suited for dosemeter development and for the calibration of radiation protection instruments. (orig.)

  4. The PTB thermal neutron reference field at GeNF

    Energy Technology Data Exchange (ETDEWEB)

    Boettger, R.; Friedrich, H.; Janssen, H.

    2004-07-01

    The experimental setup and procedure for the characterization of the thermal neutron reference field established at the Geesthacht neutron facility (GeNF) of the GKSS is described. The neutron beam, free in air, with a maximum flux of 10{sup 6} s{sup -1}, can easily be reduced to less than 10{sup 4} s{sup -1} by using a diaphragm variable in size and without changing the beam divergence. Also, the spectral distribution with a mean energy of 45 meV, measured by time-of-flight over a 6.6 m long flight path, is independent of the beam current chosen. In the 2002/2003 experiments reported here, a {sup 6}Li glass detector was employed to determine the absolute beam current and to calibrate the {sup 3}He transmission beam monitor. In addition, activation measurements of gold foils were carried out at a reduced beam divergence. The results agree within {+-}2%. Furthermore, the beam is characterized by a low gamma background intensity and a negligible fraction of epithermal neutrons. Irradiations in combination with a scanner device to achieve a homogeneously illuminated scan field have shown that the thermal beam is well suited for dosemeter development and for the calibration of radiation protection instruments. (orig.)

  5. Neutron transportation simulator

    International Nuclear Information System (INIS)

    Uenohara, Yuzo.

    1995-01-01

    In the present invention, problems in an existent parallelized monte carlo method is solved, and behaviors of neutrons in a large scaled system are accurately simulated at a high speed. Namely, a neutron transportation simulator according to the monte carlo method simulates movement of each of neutrons by using a parallel computer. In this case, the system to be processed is divided based on a space region and an energy region to which neutrons belong. Simulation of neutrons in the divided regions is allotted to each of performing devices of the parallel computer. Tarry data and nuclear data of the neutrons in each of the regions are memorized dispersedly to memories of each of the performing devices. A transmission means for simulating the behaviors of the neutrons in the region by each of the performing devices, as well as transmitting the information of the neutrons, when the neutrons are moved to other region, to the performing device in a transported portion are disposed to each of the performing devices. With such procedures, simulation for the neutrons in the allotted region can be conducted with small capacity of memories. (I.S.)

  6. Transmission line matching simulation for 350 MHz RF driver for 400 KeV (deuterium) RFQ based 14 MeV neutron source

    International Nuclear Information System (INIS)

    Sharma, Sonal; Pande, Manjiri; Handu, V.K.

    2009-01-01

    A 60 KW, 350 MHz tetrode based high power RF system is being developed for 400 KeV RFQ based 14 MeV neutron generator in Bhabha Atomic Research Centre to study physics of coupled neutron sources and subcritical assembly. This RF system requires a 2.5 kW RF driver which is being designed by using tetrode TH-393. At such high frequency i.e. 350 MHz, lumped components are not practically useful due to radiation losses. Therefore, techniques such as coaxial line with stub tuning are preferred, which minimizes these losses. Simulation of two such stub tuning based matched coaxial lines at the input and output of the tube has been done by using CST studio. CST STUDIO is a special tool for the 3D EM simulation of high frequency components

  7. Study on the P-odd asymmetry of longitudinally polarized neutron transmission in 117Sn, 233Th, 239Pu isotopes and natural mixture of Cl and Pb isotopes

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Ermakov, O.N.; Karpikhin, I.L.; Krupchitskij, P.A.; Kuznetsov, Yu.Eh.; Perepelitsa, V.F.; Petrushin, V.I.

    1983-01-01

    The results of measurements of P-odd helicity dependence of the total cross-section a=(σsub(tot)sup(+)-σsub(tot)sup(-))/(σsub(tot)sup(+)+σsub(tot)sup(-)) for thermal neutrons on several targets are presented. The result for 117 Sn is a=(11.2+-2.6)x10 -6 . The upper limits for a in the region of several units of 10 -6 are obtained for 232 Th, 239 Pu, Cl (natural) and Pb (natural)

  8. Development of the environmental neutron detection system

    International Nuclear Information System (INIS)

    Kume, Kyo

    2002-03-01

    Environmental neutron detection system was proposed and developed. The main goal of this system was set to detect fast and thermal neutrons with the identical detectors setup without degraders. This system consists of a 10 B doped liquid scintillator for n detection and CsI scintillators for simultaneous γ emission from 10 B doped in the liquid scintillator after the n capture reaction. The first setup was optimized for the thermal n detection, while the second setup was for the fast n detection. It was shown that the thermal n flux was obtained in the first setup by using the method of the γ coincidence method with the help of the Monte Carlo calculation. The second setup was designed to improve the detection efficiency for the fast n, and was shown qualitatively that both the pulse shape discrimination and the coincidence methods are efficient. There will be more improvements, particularly for the quantitative discussion. (author)

  9. Digital setup for Doppler broadening spectroscopy

    International Nuclear Information System (INIS)

    Cizek, J; Vlcek, M; Prochazka, I

    2011-01-01

    New digital spectrometer for measurement of the Doppler shift of annihilation photons was developed and tested in this work. Digital spectrometer uses a fast 12-bit digitizer for direct sampling of signals from HPGe detectors. Analysis of sampled waveforms is performed off-line in software. Performance of the new digital setup was compared with its traditional analogue counterpart. Superior energy resolution was achieved in the digital setup. Moreover, the digital setup allows for a better control of the shape of detector signals. This enables to eliminate undesired signals damaged by pile-up effects or by ballistic deficit.

  10. The neutron computer tomography

    International Nuclear Information System (INIS)

    Matsumoto, G.; Krata, S.

    1983-01-01

    The method of computer tomography (CT) was applied for neutrons instead of X-rays. The neutron radiography image of samples was scanned by microphotometer to get the transmission data. This process was so time-consuming that the number of incident angles to samples could not be increased. The transmission data was processed by FACOM computer and CT image was gained. In the experiment at the Japan Research Reactor No. 4 at Tokai-mura with 18 projection angles, the resolution of paraffin in the aluminum block was less than 0.8 mm. In the experiment at Van de Graaf accelerator of Nagoya University, this same resolution was 1.2 mm because of the angle distribution of neutron beam. This experiment is the preliminary one, the facility which utilizes neutron television and video-recorder will be necessary for the next stage. (Auth.)

  11. Neutron filters for producing monoenergetic neutron beams

    International Nuclear Information System (INIS)

    Harvey, J.A.; Hill, N.W.; Harvey, J.R.

    1982-01-01

    Neutron transmission measurements have been made on high-purity, highly-enriched samples of 58 Ni (99.9%), 60 Ni (99.7%), 64 Zn (97.9%) and 184 W (94.5%) to measure their neutron windows and to assess their potential usefulness for producing monoenergetic beams of intermediate energies from a reactor. Transmission measurements on the Los Alamos Sc filter (44.26 cm Sc and 1.0 cm Ti) have been made to determine the characteristics of the transmitted neutron beam and to measure the total cross section of Sc at the 2.0 keV minimum. When corrected for the Ti and impurities, a value of 0.35 +- 0.03 b was obtained for this minimum

  12. A setup for active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2006-01-01

    A setup for active fault diagnosis (AFD) of parametric faults in dynamic systems is formulated in this paper. It is shown that it is possible to use the same setup for both open loop systems, closed loop systems based on a nominal feedback controller as well as for closed loop systems based...... on a reconfigured feedback controller. This will make the proposed AFD approach very useful in connection with fault tolerant control (FTC). The setup will make it possible to let the fault diagnosis part of the fault tolerant controller remain unchanged after a change in the feedback controller. The setup for AFD...... is based on the YJBK (after Youla, Jabr, Bongiorno and Kucera) parameterization of all stabilizing feedback controllers and the dual YJBK parameterization. It is shown that the AFD is based directly on the dual YJBK transfer function matrix. This matrix will be named the fault signature matrix when...

  13. Scintillation forward spectrometer of the SPHERE setup

    International Nuclear Information System (INIS)

    Anisimov, Yu.S.; Afanas'ev, S.V.; Bondarev, V.K.

    1991-01-01

    The construction of the forward spectrometer for the 4π SPHERE setup to study multiple production of particles in nucleus-nucleus interactions is described. The measured parameters of the spectrometer detectors are presented. 7 refs.; 14 figs.; 1 tab

  14. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  15. Experimental Setups for Single Event Effect Studies

    OpenAIRE

    N. H. Medina; V. A. P. Aguiar; N. Added; F. Aguirre; E. L. A. Macchione; S. G. Alberton; M. A. G. Silveira; J. Benfica; F. Vargas; B. Porcher

    2016-01-01

    Experimental setups are being prepared to test and to qualify electronic devices regarding their tolerance to Single Event Effect (SEE). A multiple test setup and a new beam line developed especially for SEE studies at the São Paulo 8 UD Pelletron accelerator were prepared. This accelerator produces proton beams and heavy ion beams up to 107Ag. A Super conducting Linear accelerator, which is under construction, may fulfill all of the European Space Agency requirements to qualify electronic...

  16. Neutron--neutron logging

    International Nuclear Information System (INIS)

    Allen, L.S.

    1977-01-01

    A borehole logging tool includes a steady-state source of fast neutrons, two epithermal neutron detectors, and two thermal neutron detectors. A count rate meter is connected to each neutron detector. A first ratio detector provides an indication of the porosity of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two epithermal neutron detectors. A second ratio detector provides an indication of both porosity and macroscopic absorption cross section of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two thermal neutron detectors. By comparing the signals of the two ratio detectors, oil bearing zones and salt water bearing zones within the formation being logged can be distinguished and the amount of oil saturation can be determined. 6 claims, 2 figures

  17. Polycapillary neutron lenses

    International Nuclear Information System (INIS)

    Mildner, D.F.R.

    1997-01-01

    The principle of multiple mirror reflection from smooth surfaces at small grazing angles enables the transport and guiding of high intensity slow neutron beams to locations of low background for neutron scattering and absorption experiments and to provide facilities for multiple instruments. Curved guides have been widely used at cold neutron facilities to remove the unwanted radiation (fast neutrons and gamma rays) from the beam without the use of filters. A typical guide has transverse dimensions of 50 mm and, with a radius of curvature of 1 km, transmits wavelengths longer than 5 A. Much tighter curves requires narrower transverse dimensions, otherwise there is little transmission. Typical neutron benders have a number of slots with transverse dimensions of ∼5 mm. Based on the same principle but using a different technology, recent developments in glass polycapillary fibers have produced miniature versions of neutron guides. Fibers with many thousands of channels having sizes of ∼ 10 μm enable beams of long wavelength neutrons (λ > 4 A) to be transmitted efficiently in a radius of curvature as small as a fraction of 1 m. A large collection of these miniature versions of neutron guides can be used to bend the neutron trajectories such that the incident beam can be focused. (author)

  18. Biosensor based on the measurements of clustering dynamics of magnetic particles using a double pass setup

    DEFF Research Database (Denmark)

    2014-01-01

    Disclosed herein is a biosensor for optical detection of Brownian relaxation dynamics of magnetic particles measured by light transmission. The magnetic particles can be functionalized with biological ligands for the detection of target analytes in a sample. The setup may be implemented in a disc...

  19. Self-powered neutron detector

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1976-01-01

    A self-powered neutron detector is detailed wherein a thin conductive layer of low neutron cross section, high density material is disposed about an emitter core of material which spontaneously emits radiation on neutron capture. The high density material is absorptive of beta radiation emitted by decay of the emitter core activation product, but is substantially transmissive to the high average energy prompt electrons emitted by the emitter core material. (author)

  20. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.sa [Department of Physics and King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Matouq, Faris A.; Khiari, F.Z.; Gondal, M.A.; Rehman, Khateeb-ur [Department of Physics and King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Isab, A.A. [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Raashid, M.; Dastageer, M.A. [Department of Physics and King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2013-11-21

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53–3.68, 4.51, 5.27–5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples.

  1. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Al-Matouq, Faris A.; Khiari, F.Z.; Gondal, M.A.; Rehman, Khateeb-ur; Isab, A.A.; Raashid, M.; Dastageer, M.A.

    2013-01-01

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53–3.68, 4.51, 5.27–5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples

  2. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    Science.gov (United States)

    Naqvi, A. A.; Al-Matouq, Faris A.; Khiari, F. Z.; Gondal, M. A.; Rehman, Khateeb-ur; Isab, A. A.; Raashid, M.; Dastageer, M. A.

    2013-11-01

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53-3.68, 4.51, 5.27-5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples.

  3. T violating neutron spin rotation asymmetry

    International Nuclear Information System (INIS)

    Masuda, Yasushiro.

    1993-01-01

    A new experiment on T-violation is proposed, where a spin-rotating-neutron transmission through a polarized nuclear target is measuered. The method to control the neutron spin is discussed for the new T-violation experiment. The present method has possibility to provide us more accurate T-violation information than the neutron EDM measurement

  4. Mathematical model of the electronuclear set-up on the beam of the JINR synchrotron

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Kumawat, H.; Lobanova, V.A.; Kumar, V.

    2003-01-01

    On the base of the Monte Carlo code CASCADE, developed at JINR, a mathematical model of the deep-subcritical set-up with uranium blanket used in experiments underway at JINR using a 0.6-4 GeV proton beam, is created. The neutron spectra, yields and energies of generated particles are calculated and compared for several modifications of the set-up. The influence of paraffin and graphite moderators on the characteristics of particles escaping lead target is studied. The modelled set-up can be considered as a first step to experiments with the designed at JINR U-Pu ADS SAD with heat power of several tens of kW

  5. Mathematical Model of the Electronuclear Set-Up on the Beam of the JINR Synchrotron

    CERN Document Server

    Barashenkov, V S; Kumawat, H; Lobanova, V A

    2004-01-01

    On the base of the Monte Carlo code CASCADE, developed at JINR, a mathematical model of the deep-subcritical set-up with uranium blanket used in experiments underway at JINR using a 0.6-4 GeV proton beam, is created. The neutron spectra, yields and energies of generated particles are calculated and compared for several modifications of the set-up. The influence of paraffin and graphite moderators on the characteristics of particles escaping lead target is studied. The modelled set-up can be considered as a first step to experiments with the designed at JINR U-Pu ADS SAD with heat power of several tens of kW.

  6. Ultracold neutrons

    International Nuclear Information System (INIS)

    Steenstrup, S.

    Briefly surveys recent developments in research work with ultracold neutrons (neutrons of very low velocity, up to 10 m/s at up to 10 -7 eV and 10 -3 K). Slow neutrons can be detected in an ionisation chamber filled with B 10 F 3 . Very slow neutrons can be used for investigations into the dipole moment of neutrons. Neutrons of large wave length have properties similar to those of light. The limit angle for total reflection is governed by the wave length and by the material. Total reflection can be used to filter ultracold neutrons out of the moderator material of a reactor. Total reflection can also be used to store ultracold neutrons but certain problems with storage have not yet been clarified. Slow neutrons can be made to lose speed in a neutron turbine, and come out as ultracold neutrons. A beam of ultracold neutrons could be used in a neutron microscope. (J.S.)

  7. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, Majid [Isfahan Nuclear Science and Technology Research Institute (NSTRT), Reactor and Accelerators Research and Development School, Atomic Energy Organization (Iran, Islamic Republic of)], E-mail: m_jalali@entc.org.ir; Mohammadi, Ali [Faculty of Science, Department of Physics, University of Kashan, Km. 6, Ravand Road, Kashan (Iran, Islamic Republic of)

    2008-05-15

    The compounds Na{sub 2}B{sub 4}O{sub 7}, H{sub 3}BO{sub 3}, CdCl{sub 2} and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the {gamma} rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H{sub 3}BO{sub 3} with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds.

  8. R-matrix analysis of 235U neutron transmission and cross sections in the energy range 0 to 2.25 keV

    International Nuclear Information System (INIS)

    Leal, L.C.; Derrien, H.; Larson, N.M.; Wright, R.Q.

    1997-11-01

    This document describes a new R-matrix analysis of 235 U cross section data in the energy range from 0 to 2,250 eV. The analysis was performed with the computer code SAMMY, that has recently been updated to permit, for the first time, inclusion of both differential and integral data within the analysis process. Fourteen differential data sets and six integral quantities were used in this evaluation: two measurements of fission plus capture, one of fission plus absorption, six of fission alone, two of transmission, and one of eta, plus standard values of thermal cross sections for fission, capture, and scattering, and of K1 and the Westcott g-factors for both fission and absorption. An excellent representation was obtained for the high-resolution transmission, fission, and capture cross-section data as well as for the integral quantities. The result is a single set of resonance parameters spanning the entire range up to 2,250 eV, a decided improvement over the present ENDF/VI evaluation, in which eleven discrete resonance parameter sets are required to cover that same energy range. This new evaluation is expected to greatly improve predictability of the criticality safety margins for nuclear systems in which 235 U is present

  9. Microstructure of oxide dispersion strengthened Eurofer and iron-chromium alloys investigated by means of small-angle neutron scattering and transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heintze, C. [Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Bergner, F., E-mail: f.bergner@fzd.de [Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Ulbricht, A. [Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Hernandez-Mayoral, M. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Keiderling, U. [Helmholtz-Zentrum Berlin, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Lindau, R. [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Weissgaerber, T. [Fraunhofer Institute IFAM-Dresden, Winterbergstr. 28, 01277 Dresden (Germany)

    2011-09-01

    Oxide dispersion strengthening of ferritic/martensitic chromium steels is a promising route for the extension of the range of operation temperatures for nuclear applications. The investigation of dedicated model alloys is an important means in order to separate individual effects contributing to the mechanical behaviour under irradiation and to improve mechanistic understanding. A powder metallurgy route based on spark plasma sintering was applied to fabricate oxide dispersion strengthened (ODS) Fe9Cr model materials. These materials along with Eurofer97 and ODS-Eurofer were investigated by means of small-angle neutron scattering (SANS) and TEM. For Fe9Cr-0.6 wt.%Y{sub 2}O{sub 3}, TEM results indicate a peak radius of the size distribution of Y{sub 2}O{sub 3} particles of 4.2 nm with radii ranging up to 15 nm, and a volume fraction of 0.7%, whereas SANS indicates a peak radius of 3.8 nm and a volume fraction of 0.6%. It was found that the non-ODS Fe9Cr and Eurofer97 are suitable reference materials for ODS-Fe9Cr and ODS-Eurofer, respectively, and that the ODS-Fe9Cr variants are suitable model materials for the separated investigation of irradiation-Y{sub 2}O{sub 3} particle interaction effects.

  10. Advanced Laboratory Setup for Testing Offshore Foundations

    DEFF Research Database (Denmark)

    Nielsen, Søren Dam; Ibsen, Lars Bo; Nielsen, Benjaminn Nordahl

    2016-01-01

    This paper describes a test setup for testing small-scale offshore foundations under realistic conditions of high pore-water pressure and high impact loads. The actuator, used for loading has enough capacity to apply sufficient force and displacement to achieve both drained and undrained failure ...

  11. Current status of neutron scattering in Thailand

    International Nuclear Information System (INIS)

    Ampornrat, Pantip

    2000-01-01

    The neutron scattering experiments in Thailand have been done continuously since the start up of the reactor. In 1977, Thai research reactor was modified into TRIGA MARK III core. After that, the neutron spectrometer was installed again under a development program. Installation of upgrading spectrometer was delayed because of some problems involving the neutron intensity and instruments. However, these problems were solved and the setup is almost completed. The paper reports the current status of neutron spectrometer, the problems and plans for the experiments. (author)

  12. Polarized neutron reflectometry in high magnetic fields

    International Nuclear Information System (INIS)

    Fritzsche, H.

    2005-01-01

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe 2 /DyFe 2 multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada

  13. Combined neutron imaging techniques for cultural heritage purpose

    International Nuclear Information System (INIS)

    Materna, T.

    2009-01-01

    This article presents the different new neutron techniques developed by the Ancient Charm collaboration to image objects of cultural heritage importance: Prompt-gamma-ray activation imaging (PGAI) coupled to cold/thermal neutron transmission tomography, Neutron Resonance Capture Imaging (NRCI) and Neutron Resonance Tomography.

  14. ASD FieldSpec Calibration Setup and Techniques

    Science.gov (United States)

    Olive, Dan

    2001-01-01

    This paper describes the Analytical Spectral Devices (ASD) Fieldspec Calibration Setup and Techniques. The topics include: 1) ASD Fieldspec FR Spectroradiometer; 2) Components of Calibration; 3) Equipment list; 4) Spectral Setup; 5) Spectral Calibration; 6) Radiometric and Linearity Setup; 7) Radiometric setup; 8) Datadets Required; 9) Data files; and 10) Field of View Measurement. This paper is in viewgraph form.

  15. Commissioning of the BRIKEN beta-delayed neutron detector for the study of exotic neutron-rich nuclei

    Directory of Open Access Journals (Sweden)

    Tolosa-Delgado A.

    2017-01-01

    Full Text Available The commissioning of a new setup for β-delayed neutron measurements was carried out successfully in November-2016, at the RIKEN Nishina Center in Japan. The β-decay half-lives and Pn branching ratios of several isotopes in the 78Ni region were measured. Details of the experimental setup and the first results are given.

  16. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Maglieri, Robert, E-mail: robert.maglieri@mail.mcgill.ca; Evans, Michael; Seuntjens, Jan; Kildea, John [Medical Physics Unit, McGill University, Montreal, Quebec H4A 3J1 (Canada); Licea, Angel [Canadian Nuclear Safety Commission, Ottawa, Ontario K1P 5S9 (Canada)

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  17. Neutron reflectometry

    International Nuclear Information System (INIS)

    Van Well, A.A.

    1999-01-01

    Neutron research where reflection, refraction, and interference play an essential role is generally referred to as 'neutron optics'. The neutron wavelength, the scattering length density and the magnetic properties of the material determine the critical angle for total reflection. The theoretical background of neutron reflection, experimental methods and the interpretation of reflection data are presented. (K.A.)

  18. Evidence for neutron production in deuterium gas with a pyroelectric crystal without tip

    International Nuclear Information System (INIS)

    Tornow, W.; Shafroth, S. M.; Brownridge, J. D.

    2008-01-01

    We present evidence for the production of 2 H(d,n) 3 He neutrons in gaseous deuterium by using a pyroelectric crystal as positive ion accelerator. In contrast to previous studies, neutrons were generated without a tip attached to the crystal and without using a solid deuterated target. The deuterium gas provided both the projectile and target nuclei. On the average, 1 neutron/s was obtained in our ''hot fusion'' experimental setup. No neutrons were detected when a tip was used

  19. The ATLAS Level-1 Trigger Timing Setup

    CERN Document Server

    Spiwoks, R; Ellis, Nick; Farthouat, P; Gällnö, P; Haller, J; Krasznahorkay, A; Maeno, T; Pauly, T; Pessoa-Lima, H; Resurreccion-Arcas, I; Schuler, G; De Seixas, J M; Torga-Teixeira, R; Wengler, T

    2005-01-01

    The ATLAS detector at CERN's LHC will be exposed to proton-proton collisions at a bunch-crossing rate of 40 MHz. In order to reduce the data rate, a three-level trigger system selects potentially interesting physics. The first trigger level is implemented in electronics and firmware. It aims at reducing the output rate to less than 100 kHz. The Central Trigger Processor combines information from the calorimeter and muon trigger processors and makes the final Level-1-Accept decision. It is a central element in the timing setup of the experiment. Three aspects are considered in this article: the timing setup with respect to the Level-1 trigger, with respect to the expriment, and with respect to the world.

  20. A simple Lissajous curves experimental setup

    Science.gov (United States)

    Şahin Kızılcık, Hasan; Damlı, Volkan

    2018-05-01

    The aim of this study is to develop an experimental setup to produce Lissajous curves. The setup was made using a smartphone, a powered speaker (computer speaker), a balloon, a laser pointer and a piece of mirror. Lissajous curves are formed as follows: a piece of mirror is attached to a balloon. The balloon is vibrated with the sound signal provided by the speaker that is connected to a smartphone. The laser beam is reflected off the mirror and the reflection is shaped as a Lissajous curve. Because of the intersection of two frequencies (frequency of the sound signal and natural vibration frequency of the balloon), these curves are formed. They can be used to measure the ratio of frequencies.

  1. New neutron imaging using pulsed sources. Characteristics of a pulsed neutron source and principle of pulsed neutron imaging

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki

    2012-01-01

    Neutron beam is one of important tools to obtain the transmission image of an object. Until now, steady state neutron sources such as reactors are mainly used for this imaging purpose. Recently, it has been demonstrated that pulsed neutron imaging based on accelerator neutron sources can provide a real-space distribution of physical information of materials such as crystallographic structure, element, temperature, hydrogen bound state, magnetic field and so on, by analyzing wavelength dependent transmission spectrum, which information cannot be observed or difficult to obtain with a traditional imaging method using steady state neutrons. Here, characteristics of the pulsed neutron source and principle of the pulsed neutron imaging are explained as a basic concept of the new method. (author)

  2. The spectral imaging facility: Setup characterization

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, Simone, E-mail: simone.deangelis@iaps.inaf.it; De Sanctis, Maria Cristina; Manzari, Paola Olga [Institute for Space Astrophysics and Planetology, INAF-IAPS, Via Fosso del Cavaliere, 100, 00133 Rome (Italy); Ammannito, Eleonora [Institute for Space Astrophysics and Planetology, INAF-IAPS, Via Fosso del Cavaliere, 100, 00133 Rome (Italy); Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, Los Angeles, California 90095-1567 (United States); Di Iorio, Tatiana [ENEA, UTMEA-TER, Rome (Italy); Liberati, Fabrizio [Opto Service SrL, Campagnano di Roma (RM) (Italy); Tarchi, Fabio; Dami, Michele; Olivieri, Monica; Pompei, Carlo [Selex ES, Campi Bisenzio (Italy); Mugnuolo, Raffaele [Italian Space Agency, ASI, Spatial Geodesy Center, Matera (Italy)

    2015-09-15

    The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratory in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated.

  3. Measurements of operator performance - an experimental setup

    International Nuclear Information System (INIS)

    Netland, K.

    1980-01-01

    The human has to be considered as an important element in a process control system, even if the degree of automation is extremely high. Other elements, e.g. computer, displays, etc., can to a large extent be described and quantified. The human (operator), is difficult to describe in a precise way, and it is just as difficult to predict his thinking and acting in a control room environment. Many factors influence his performance, such as: experience, motivation, level of knowledge, training, control environment, job organization, etc. These factors have to a certain degree to be described before guidelines for design of the man-process interfaces and the control room layout can be developed. For decades, the psychological science has obtained knowledge of the human mind and behaviour. This knowledge should have the potential of a positive input on our effort to describe the factors influencing the operator performance. Even if the human is complex, a better understanding of his thinking and acting, and a more precise description of the factors influencing his performance can be obtained. At OECD Halden Reactor Project an experimental set-up for such studies has been developed and implemented in the computer laboratory. The present set-up includes elements as a computer- and display-based control room, a simulator representing a nuclear power plant, training programme for the subjects, and methods for the experiments. Set-up modules allow reconfiguration of experiments. (orig./HP)

  4. Improvement of neutron collimator design for thermal neutron radiography using Monte Carlo N-particle transport code version 5

    International Nuclear Information System (INIS)

    Thiagu Supramaniam

    2007-01-01

    The aim of this research was to propose a new neutron collimator design for thermal neutron radiography facility using tangential beam port of PUSPATI TRIGA Mark II reactor, Malaysia Institute of Nuclear Technology Research (MINT). Best geometry and materials for neutron collimator were chosen in order to obtain a uniform beam with maximum thermal neutron flux, high L/ D ratio, high neutron to gamma ratio and low beam divergence with high resolution. Monte Carlo N-particle Transport Code version 5 (MCNP 5) was used to optimize six neutron collimator components such as beam port medium, neutron scatterer, neutron moderator, gamma filter, aperture and collimator wall. The reactor and tangential beam port setup in MCNP5 was plotted according to its actual sizes. A homogeneous reactor core was assumed and population control method of variance reduction technique was applied by using cell importance. The comparison between experimental results and simulated results of the thermal neutron flux measurement of the bare tangential beam port, shows that both graph obtained had similar pattern. This directly suggests the reliability of MCNP5 in order to obtained optimal neutron collimator parameters. The simulated results of the optimal neutron medium, shows that vacuum was the best medium to transport neutrons followed by helium gas and air. The optimized aperture component was boral with 3 cm thickness. The optimal aperture center hole diameter was 2 cm which produces 88 L/ D ratio. Simulation also shows that graphite neutron scatterer improves thermal neutron flux while reducing fast neutron flux. Neutron moderator was used to moderate fast and epithermal neutrons in the beam port. Paraffin wax with 90 cm thick was bound to be the best neutron moderator material which produces the highest thermal neutron flux at the image plane. Cylindrical shape high density polyethylene neutron collimator produces the highest thermal neutron flux at the image plane rather than divergent

  5. First delayed neutron emission measurements at ALTO with the neutron detector TETRA

    International Nuclear Information System (INIS)

    Testov, D.; Ancelin, S.; Bettane, J.; Ibrahim, F.; Kolos, K.; Mavilla, G.; Niikura, M.; Verney, D.; Wilson, J.; Kuznetsova, E.; Penionzhkevich, Yu.; Smirnov, V.; Sokol, E.

    2013-01-01

    Beta-decay properties are among the easiest and, therefore, the first ones to be measured to study new neutron-rich isotopes. Eventually, a very small number of nuclei could be sufficient to estimate their lifetime and neutron emission probability. With the new radioactive beam facilities which have been commissioned recently (or will be constructed shortly) new areas of neutron-rich isotopes will become reachable. To study beta-decay properties of such nuclei at IPN (Orsay) in the framework of collaboration with JINR (Dubna), a new experimental setup including the neutron detector of high efficiency TETRA was developed and commissioned

  6. Neutron Skins and Neutron Stars

    OpenAIRE

    Piekarewicz, J.

    2013-01-01

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ("PREX") at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in 208Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron be...

  7. Direct measurement of the inelastic neutron acceleration by 177mLu

    Directory of Open Access Journals (Sweden)

    Menelle A.

    2010-03-01

    Full Text Available The inelastic neutron acceleration (INNA cross section on the long-lived isomer state of 177mLu has been measured from a new isomeric target using a direct method. The detection of high energy neutrons has been performed using a specially designed setup and a cold neutron beam at the ORPHEE reactor facility in Saclay.

  8. The neutron-deuteron elastic scattering angular distribution at 95 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Mermod, Philippe

    2004-04-01

    The neutron-deuteron elastic scattering differential cross section has been measured at 95 MeV incident neutron energy, with the Medley setup at TSL in Uppsala. The neutron-proton differential cross section has also been measured for normalization purposes. The data are compared with theoretical calculations to investigate the role of three-nucleon force effects.

  9. Neutron Dosimetry

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2001-01-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding

  10. Neutron Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vanhavere, F

    2001-04-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding.

  11. Laboratory setup for temperature and humidity measurements

    CERN Document Server

    Eimre, Kristjan

    2015-01-01

    In active particle detectors, the temperature and humidity conditions must be under constant monitoring and control, as even small deviations from the norm cause changes to detector characteristics and result in a loss of precision. To monitor the temperature and humidity, different kinds of sensors are used, which must be calibrated beforehand to ensure their accuracy. To calibrate the large number of sensors that are needed for the particle detectors and other laboratory work, a calibration system is needed. The purpose of the current work was to develop a laboratory setup for temperature and humidity sensor measurements and calibration.

  12. Improved cable compensation technique for self powered neutron detectors

    International Nuclear Information System (INIS)

    Nieuwenhove, R. van

    1996-01-01

    Measurements with cobalt self powered neutron detectors on the BR2 reactor have revealed that the currents induced by external gamma radiation can be of the same order as the neutron induced signal and that the gamma induced current on the emitter and the compensator wires are not symmetric. In this case, the standard detection electronic setup leads to erroneous results. It is shown that a slightly modified electronic setup, in which this asymmetry is compensated for, can nevertheless allow to obtain correct neutron flux measurements. Measures to reduce the influence of external gamma radiation in general will also be discussed. (orig.)

  13. Setup of Mössbauer spectrometers at RCPTM

    Science.gov (United States)

    Pechoušek, J.; Jančík, D.; Frydrych, J.; Navařík, J.; Novák, P.

    2012-10-01

    Setup of Mössbauer spectrometers (MS) for structural, phase, and magnetic characterization of iron-or tin-containing samples is presented. This comprehensive line of 57Fe and 119Sn Mössbauer spectrometers covers transmission spectrometers (TMS) for roomtemperature (RT) measurements, temperature dependent measurements and measurements in an external magnetic field. An RT Conversion Electron/Conversion X-ray Mössbauer technique (CEMS/CXMS) is also available. The main concept of the RT MS is a table-top spectrometric bench with a control unit based on special-purpose hardware or standard PC platform. The first way offers a compact design and PC independent spectra collection system. The second setup, a PC-based system, which uses commercial devices and LabVIEW software, offers easy customization and enables advancement in spectrometer construction. The both types of control systems are able to operate special parts (velocity transducers, gamma-ray detectors) of unusual spectrometric benches. The standard velocity axis range is up to ±20 mm/s with a maximum nonlinearity of 0.1%. Applicable measuring conditions of presented TMSs cover a cryogenic temperature range from 1.5 up to 300 K and high temperature range from RT up to 1000 °C. With in-field low-temperature MS, we are able to analyze samples normally in the external magnetic fields up to 8 T (in temperature interval from 1.5 up to 300 K). In addition, special modes of measurements can be applied including backscattering gamma-ray geometry or measurement in an inert or controlled-humidity atmosphere. Technical details and construction aspects of spectrometers are presented.

  14. Neuroglial Transmission

    DEFF Research Database (Denmark)

    Gundersen, Vidar; Storm-Mathisen, Jon; Bergersen, Linda Hildegard

    2015-01-01

    as a signaling substance recently shown to act on specific lactate receptors in the brain. Complementing neurotransmission at a synapse, neuroglial transmission often implies diffusion of the transmitter over a longer distance and concurs with the concept of volume transmission. Transmission from glia modulates...... synaptic neurotransmission based on energetic and other local conditions in a volume of tissue surrounding the individual synapse. Neuroglial transmission appears to contribute significantly to brain functions such as memory, as well as to prevalent neuropathologies....

  15. Analysis of Neutron Flux Using Monte Carlo Methods

    International Nuclear Information System (INIS)

    Picha, Roppon

    2007-08-01

    Full text: The energy profile of neutrons from a fission reactor core and a neutron irradiation setup are simulated. The neutron doses deposited inside casings of aluminum, cadmium, and tantalum are studied via MCNP simulations to estimate the doses received by materials with different types of shielding. It is found that the difference in dose reduction between cadmium and tantalum is most pronounced at the thermal energy region

  16. Cryogenic setup for trapped ion quantum computing.

    Science.gov (United States)

    Brandl, M F; van Mourik, M W; Postler, L; Nolf, A; Lakhmanskiy, K; Paiva, R R; Möller, S; Daniilidis, N; Häffner, H; Kaushal, V; Ruster, T; Warschburger, C; Kaufmann, H; Poschinger, U G; Schmidt-Kaler, F; Schindler, P; Monz, T; Blatt, R

    2016-11-01

    We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120 dB reduction of 50 Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than ±20 nm over 2 s. In addition to the cryogenic apparatus, we describe the setup required for an operation with 40 Ca + and 88 Sr + ions. The instability of the laser manipulating the optical qubits in 40 Ca + is characterized by yielding a minimum of its Allan deviation of 2.4 ⋅ 10 -15 at 0.33 s. To evaluate the performance of the apparatus, we trapped 40 Ca + ions, obtaining a heating rate of 2.14(16) phonons/s and a Gaussian decay of the Ramsey contrast with a 1/e-time of 18.2(8) ms.

  17. Single Crystal Filters for Neutron Spectrometry

    International Nuclear Information System (INIS)

    Habib, N.

    2008-01-01

    A study of neutron transmission properties trough a large single crystals specimens of Si, Ge, Pb, Bi and sapphire at 300 K and 80 K have been made for a wide range of neutron energies. The effectiveness of such filters is given by the ratio of the total cross-section of unwanted epithermal neutrons to that the desired thermal neutron beam and by the optimum choice of the crystal orientation, its mosaic spread, thickness and temperature.Our study indicates that sapphire is significantly more effective than the others for a wide range of neutron energies

  18. Response of a PGNAA setup for pozzolan-based cement concrete specimens

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Garwan, M.A.; Maslehuddin, M.; Nagadi, M.M.; Al-Amoudi, O.S.B.; Raashid, M.

    2010-01-01

    Pozzolanic materials are added to Portland cement concrete to increase its durability, particularly corrosion-resistance. In this study the elemental composition of a pozzolanic cement concrete was measured non-destructively utilizing an accelerator-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup. The optimum size of the pozzolanic cement concrete specimen was obtained through Monte Carlo simulations. The simulation results were experimentally verified through the γ-ray yield measurement from the pozzolanic cement concrete specimens as a function of their radii. The concentration of the pozzolanic material in the cement concrete specimens was evaluated by measuring γ-ray yield for calcium and iron from pozzolanic cement concrete specimens containing 5-80 wt% pozzolan. A good agreement was noted between the experimental values and the Monte Carlo simulation results, indicating an excellent response of the KFUPM accelerator-based PGNAA setup for pozzolan based concrete.

  19. Response of a PGNAA setup for pozzolan-based cement concrete specimens

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Garwan, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2010-04-15

    Pozzolanic materials are added to Portland cement concrete to increase its durability, particularly corrosion-resistance. In this study the elemental composition of a pozzolanic cement concrete was measured non-destructively utilizing an accelerator-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup. The optimum size of the pozzolanic cement concrete specimen was obtained through Monte Carlo simulations. The simulation results were experimentally verified through the {gamma}-ray yield measurement from the pozzolanic cement concrete specimens as a function of their radii. The concentration of the pozzolanic material in the cement concrete specimens was evaluated by measuring {gamma}-ray yield for calcium and iron from pozzolanic cement concrete specimens containing 5-80 wt% pozzolan. A good agreement was noted between the experimental values and the Monte Carlo simulation results, indicating an excellent response of the KFUPM accelerator-based PGNAA setup for pozzolan based concrete.

  20. Performance of an elliptically tapered neutron guide

    International Nuclear Information System (INIS)

    Muehlbauer, Sebastian; Stadlbauer, Martin; Boeni, Peter; Schanzer, Christan; Stahn, Jochen; Filges, Uwe

    2006-01-01

    Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics

  1. Neutron radiography

    International Nuclear Information System (INIS)

    Hrdlicka, Z.

    1977-01-01

    Neutron radiography is a radiographic method using a neutron beam of a defined geometry. The neutron source usually consists of a research reactor, a specialized neutron radiography reactor or the 252 Cf radioisotope source. There are two types of the neutron radiography display system, viz., a system producing neutron radiography images by a photographic process or a system allowing a visual display, eg., using a television monitor. The method can be used wherever X-ray radiography is used except applications in the radiography of humans. The neutron radiography unit at UJV uses the WWR-S reactor as the neutron source and both types of the above mentioned display system. (J.P.)

  2. A simple experimental setup for magneto-dielectric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Manimuthu, P.; Shanker, N. Praveen; Kumar, K. Saravana; Venkateswaran, C., E-mail: cvunom@hotmail.com

    2014-09-01

    The increasing demand for the multiferroic materials calls for the need of an experimental setup that will facilitate magneto-dielectric coupling measurements. A connector setup designed makes it possible to measure and analyze the dielectric properties of the material under the influence of a magnetic field. The salient feature of this setup is in its incorporation with the already existing experimental facilities.

  3. A simple experimental setup for magneto-dielectric measurements

    International Nuclear Information System (INIS)

    Manimuthu, P.; Shanker, N. Praveen; Kumar, K. Saravana; Venkateswaran, C.

    2014-01-01

    The increasing demand for the multiferroic materials calls for the need of an experimental setup that will facilitate magneto-dielectric coupling measurements. A connector setup designed makes it possible to measure and analyze the dielectric properties of the material under the influence of a magnetic field. The salient feature of this setup is in its incorporation with the already existing experimental facilities

  4. New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis.

    Science.gov (United States)

    Marchese, N; Cannuli, A; Caccamo, M T; Pace, C

    2017-01-01

    Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The neutron

    International Nuclear Information System (INIS)

    Kredov, B.M.

    1979-01-01

    The history of the neutron is displayed on the basis of contributions by scientists who produced outstanding results in neutron research (part 1), of summarizing discoveries and theories which led to the discovery of the neutron and the resulting development of nuclear physics (part 2), and of fundamental papers written by Rutherford, Chadwick, Iwanenko, and others (appendix). Of interest to physicists, historians, and students

  6. Neutron techniques

    International Nuclear Information System (INIS)

    Charlton, J.S.

    1986-01-01

    The way in which neutrons interact with matter such as slowing-down, diffusion, neutron absorption and moderation are described. The use of neutron techniques in industry, in moisture gages, level and interface measurements, the detection of blockages, boron analysis in ore feedstock and industrial radiography are discussed. (author)

  7. Small angle neutron scattering

    International Nuclear Information System (INIS)

    Bernardini, G.; Cherubini, G.; Fioravanti, A.; Olivi, A.

    1976-09-01

    A method for the analysis of the data derived from neutron small angle scattering measurements has been accomplished in the case of homogeneous particles, starting from the basic theory without making any assumption on the form of particle size distribution function. The experimental scattering curves are interpreted with the aid the computer by means of a proper routine. The parameters obtained are compared with the corresponding ones derived from observations at the transmission electron microscope

  8. The neutron reflectometer at `SINQ`

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, D [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    SINQ`s dedicated reflectometer will be a flexible instrument in many respect. A `white beam time of flight` as well as a `constant wavelength` setup are possible for reflectometric experiments in a vertical scattering geometry. The phase controlled double chopper at the beginning of the instrument together with properly chosen time channels at the detector allow for the variation of the temporal resolution. Collimation slits serve to determine the angular resolution. In combination, the resolution can be tailored to the experimental needs. Additionally, one can adjust the illumination of the sample by setting the sample table and the detector to an appropriate distance. A mounting for exchangeable mirrors can be used to supply polarized neutrons by a multilayer polarizer or monochromatic neutrons by a multilayer monochromator. When it is equipped with a supermirror as a deflecting unit one can maintain a horizontal sample position which makes reflectometry on liquid samples practicable. Remanent polarizers are assigned for the changing over of the neutron polarization. A 1 T electromagnet installed on the sample manipulation table and polarization analyzers complete the polarized reflectometry setup. Alternately, an x-y-detector and single detectors will be available. By 1997/1998 the neutron reflectometer will be operational as a users` instrument. (author) 9 figs., 2 tabs., 30 refs.

  9. The neutron reflectometer at 'SINQ'

    International Nuclear Information System (INIS)

    Clemens, D.

    1996-01-01

    SINQ's dedicated reflectometer will be a flexible instrument in many respect. A 'white beam time of flight' as well as a 'constant wavelength' setup are possible for reflectometric experiments in a vertical scattering geometry. The phase controlled double chopper at the beginning of the instrument together with properly chosen time channels at the detector allow for the variation of the temporal resolution. Collimation slits serve to determine the angular resolution. In combination, the resolution can be tailored to the experimental needs. Additionally, one can adjust the illumination of the sample by setting the sample table and the detector to an appropriate distance. A mounting for exchangeable mirrors can be used to supply polarized neutrons by a multilayer polarizer or monochromatic neutrons by a multilayer monochromator. When it is equipped with a supermirror as a deflecting unit one can maintain a horizontal sample position which makes reflectometry on liquid samples practicable. Remanent polarizers are assigned for the changing over of the neutron polarization. A 1 T electromagnet installed on the sample manipulation table and polarization analyzers complete the polarized reflectometry setup. Alternately, an x-y-detector and single detectors will be available. By 1997/1998 the neutron reflectometer will be operational as a users' instrument. (author) 9 figs., 2 tabs., 30 refs

  10. NECTAR-A fission neutron radiography and tomography facility

    International Nuclear Information System (INIS)

    Buecherl, T.; Lierse von Gostomski, Ch.; Breitkreutz, H.; Jungwirth, M.; Wagner, F.M.

    2011-01-01

    NECTAR (Neutron Computerized Tomography and Radiography) is a versatile facility for radiographic and tomographic investigations as well as for neutron activation experiments using fission neutrons. The radiation sources for this facility are two plates of highly enriched uranium situated in the moderator vessel in FRM II. Thermal neutrons originating from the main fuel element of the reactor generate in these plates fast neutrons. These can escape through a horizontal beam tube without moderation. The beam can be filtered and manipulated in order to reduce the accompanying gamma radiation and to match the specific experimental tasks. A summary of the main parameters required for experimental set-up and (quantitative) data evaluation is presented. The (measured) spectra of the neutron and gamma radiations are shown along with the effect of different filters on their behavior. The neutron and gamma fluxes, dose rates, L/D-ratios, etc. and the main parameters of the actually used detection systems for neutron imaging are given, too.

  11. NECTAR-A fission neutron radiography and tomography facility

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T., E-mail: thomas.buecherl@radiochemie.de [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie (RCM), Walther-Meissner-Str. 3, 85748 Garching (Germany); Lierse von Gostomski, Ch. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie (RCM), Walther-Meissner-Str. 3, 85748 Garching (Germany); Breitkreutz, H.; Jungwirth, M.; Wagner, F.M. [Technische Universitaet Muenchen, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) (Germany)

    2011-09-21

    NECTAR (Neutron Computerized Tomography and Radiography) is a versatile facility for radiographic and tomographic investigations as well as for neutron activation experiments using fission neutrons. The radiation sources for this facility are two plates of highly enriched uranium situated in the moderator vessel in FRM II. Thermal neutrons originating from the main fuel element of the reactor generate in these plates fast neutrons. These can escape through a horizontal beam tube without moderation. The beam can be filtered and manipulated in order to reduce the accompanying gamma radiation and to match the specific experimental tasks. A summary of the main parameters required for experimental set-up and (quantitative) data evaluation is presented. The (measured) spectra of the neutron and gamma radiations are shown along with the effect of different filters on their behavior. The neutron and gamma fluxes, dose rates, L/D-ratios, etc. and the main parameters of the actually used detection systems for neutron imaging are given, too.

  12. NECTAR—A fission neutron radiography and tomography facility

    Science.gov (United States)

    Bücherl, T.; Lierse von Gostomski, Ch.; Breitkreutz, H.; Jungwirth, M.; Wagner, F. M.

    2011-09-01

    NECTAR (Neutron Computerized Tomography and Radiography) is a versatile facility for radiographic and tomographic investigations as well as for neutron activation experiments using fission neutrons. The radiation sources for this facility are two plates of highly enriched uranium situated in the moderator vessel in FRM II. Thermal neutrons originating from the main fuel element of the reactor generate in these plates fast neutrons. These can escape through a horizontal beam tube without moderation. The beam can be filtered and manipulated in order to reduce the accompanying gamma radiation and to match the specific experimental tasks. A summary of the main parameters required for experimental set-up and (quantitative) data evaluation is presented. The (measured) spectra of the neutron and gamma radiations are shown along with the effect of different filters on their behavior. The neutron and gamma fluxes, dose rates, L/ D-ratios, etc. and the main parameters of the actually used detection systems for neutron imaging are given, too.

  13. The TwinEBIS setup: Machine description

    Energy Technology Data Exchange (ETDEWEB)

    Breitenfeldt, M. [CERN, Geneva 23 CH-1211 (Switzerland); Mertzig, R. [CERN, Geneva 23 CH-1211 (Switzerland); Technische Universität Dresden, 01069 Dresden (Germany); Pitters, J. [CERN, Geneva 23 CH-1211 (Switzerland); Technische Universität Wien, 1040 Vienna (Austria); Shornikov, A. [CERN, Geneva 23 CH-1211 (Switzerland); GANIL, Bd. Becquerel, BP 55027, 14076 Caen Cedex 05 (France); Wenander, F., E-mail: fredrik.wenander@cern.ch [CERN, Geneva 23 CH-1211 (Switzerland)

    2017-06-01

    TwinEBIS is an Electron Beam Ion Source (EBIS) recently made operational at CERN. The device is similar in construction to the REXEBIS charge breeder operating at the ISOLDE facility. After relocation of the solenoid from the Manne Siegbahn Laboratory (MSL) Stockholm, TwinEBIS was commissioned at CERN and serves as a test bench dedicated to manipulation of low-energy highly charged ions. In this paper we give an overview of the setup and present advanced numerical simulations of the electron optics. In addition, the alignment procedure of the solenoid magnetic field is described and measurement results are presented. Results from cathode investigations, electron beam tests and ion extraction modulation are presented in a follow-up paper.

  14. Experimental Setup to Characterize Bentonite Hydration Processes

    International Nuclear Information System (INIS)

    Bru, A.; Casero, D.; Pastor, J. M.

    2001-01-01

    We present an experimental setup to follow-up the hydration process of a bentonite. Clay samples, of 2 cm x 12 cm x 12 cm, were made and introduced in a Hele-Shaw cell with two PMM windows and two steel frames. In hydration experiments, a fluid enters by an orifice in the frame, located both at the top and the bottom of the cell, to perform hydration in both senses. To get a uniform hydration we place a diffuser near the orifice. Volume influxes in hydration cells are registered in time. The evolution of the developed interface was recorded on a videotape. The video cameras was fixed to a holder so that the vertical direction in the monitor was the same as the direction of the larger extension of the cell. (Author) 6 refs

  15. Contribution to construction and setup of a detection system for the focal plan of the BBS spectrometer. Application to study of the neutron emission decay of the resonant states populated by the reaction (4He,3He) at 42 MeV/u in nuclei 208Pb and 209Pb

    International Nuclear Information System (INIS)

    Plankl-Chabib, Elke

    1999-01-01

    In order to realize an experimental program dedicated to nuclear structure studies we have conceived and constructed at IPN Orsay a detection system for the focal plane of the magnetic spectrometer BBS, installed at the cryogenic cyclotron AGOR of the laboratory KVI (The Netherlands). Two detection units, consisting each of two localization plans of the Cathode Strip Chamber (CSC) type, measure the position and angle of particle trajectory. This information is used for the determination of the reaction parameters at the target by a backtracking procedure. The identification of the reaction products is done by the measurement of their time-of-flight and energy loss. For light ions this task is assumed by plastic scintillators, and for heavy ions by a parallel plan detector (PPAC) and an ionization chamber. This detection system is well adapted to the requirements given by the detection of a large range of ions (protons to 36 Ar at energies of several tenths of MeV/nucleon) as well as the big acceptance, the small dispersion and the aberration of the BBS. The results of the test show the good performances of the detection system. In a first experiment the focal plane detection system was coupled to the neutron multidetector EVEN in order to study the decay of resonant high spin states at high excitation energies by the ( 4 He, 3 He) reaction on 207 Pb and 208 Pb targets. The transfer spectra, inclusive and in coincidence, of the nuclei 208 Pb and 209 Pb show a striking resemblance except for an excitation energy shift which is due to the hole in the last neutron shell of 207 Pb. The resonances at l 8 and l = 9 are clearly populated, in agreement with the predictions of the Bonaccorso-Brink model. A sizeable fraction of the decay of the l = 8 resonance is direct, but at excitation energies higher than 15 MeV (in 208 Pb) the decay is mostly statistical. (author)

  16. Slaw extracted proton beam formation and monitoring for the ''QUARTZ'' setup

    International Nuclear Information System (INIS)

    Bushnin, Yu.B.; Gres', V.N.; Davydenko, Yu.P.

    1982-01-01

    The version of optical mode of the beam channel providing with simultaneous operating the experimental setups FODS and ''QUARTZ'' at consecutive usage of the slow extracted proton beam is reported. The ''QUARTZ'' setup beam diagnostics system comprises two subsystems: for measuring beam profile beam timing structure and beam intensity and operates in the beam extraction duration from 20 ns to few seconds at beam intensity from 10 10 to 5x10 12 protons/pulse. The ''QUARTZ'' setup represents a focusing crystal-diffraction spectrometer with 5-meter focal distance and Ge(Li) special construction detector. High efficiency target is applied in the setup. The ''QUARTZ'' setup is designed for studying exotic atoms produced by negative charged heavy particles (π, K, μ, P tilde) and atomic nuclei. Precise energy measurement of X ray transitions in such atoms is performed. For measuring beam geometric parameters 32-channel secondary emission chambers are used. As detector of beam intensity and timing structure of slow extracted beam the secondary emission chamber is employed. The principle circuit of current integrator is given. As data transmission line a 50-pair telephone cable is used. Information conversion into digital form and its subsequent processing is performed in the CAMAC system and the SM-3 computer. The proton beam full intensity measuring system provides with accuracy not worse than +-4.5% in the 10 10 -10 12 proton/sec range. The implemented optical mode of the beam channel and proton beam monitoring system permitted to begin fulfillment of the experimental program on the ''QUARTZ'' setup

  17. Note: Coincidence measurements of 3He and neutrons from a compact D-D neutron generator

    Science.gov (United States)

    Ji, Q.; Lin, C.-J.; Tindall, C.; Garcia-Sciveres, M.; Schenkel, T.; Ludewigt, B. A.

    2017-05-01

    Tagging of neutrons (2.45 MeV) with their associated 3He particles from deuterium-deuterium (D-D) fusion reactions has been demonstrated in a compact neutron generator setup enabled by a high brightness, microwave-driven ion source with a high fraction of deuterons. Energy spectra with well separated peaks of the D-D fusion reaction products, 3He, tritons, and protons, were measured with a silicon PIN diode. The neutrons were detected using a liquid scintillator detector with pulse shape discrimination. By correlating the 3He detection events with the neutron detection in time, we demonstrated the tagging of emitted neutrons with 3He particles detected with a Si PIN diode detector mounted inside the neutron generator vacuum vessel.

  18. Setup uncertainties in linear accelerator based stereotactic radiosurgery and a derivation of the corresponding setup margin for treatment planning.

    Science.gov (United States)

    Zhang, Mutian; Zhang, Qinghui; Gan, Hua; Li, Sicong; Zhou, Su-min

    2016-02-01

    In the present study, clinical stereotactic radiosurgery (SRS) setup uncertainties from image-guidance data are analyzed, and the corresponding setup margin is estimated for treatment planning purposes. Patients undergoing single-fraction SRS at our institution were localized using invasive head ring or non-invasive thermoplastic masks. Setup discrepancies were obtained from an in-room x-ray patient position monitoring system. Post treatment re-planning using the measured setup errors was performed in order to estimate the individual target margins sufficient to compensate for the actual setup errors. The formula of setup margin for a general SRS patient population was derived by proposing a correlation between the three-dimensional setup error and the required minimal margin. Setup errors of 104 brain lesions were analyzed, in which 81 lesions were treated using an invasive head ring, and 23 were treated using non-invasive masks. In the mask cases with image guidance, the translational setup uncertainties achieved the same level as those in the head ring cases. Re-planning results showed that the margins for individual patients could be smaller than the clinical three-dimensional setup errors. The derivation of setup margin adequate to address the patient setup errors was demonstrated by using the arbitrary planning goal of treating 95% of the lesions with sufficient doses. With image guidance, the patient setup accuracy of mask cases can be comparable to that of invasive head rings. The SRS setup margin can be derived for a patient population with the proposed margin formula to compensate for the institution-specific setup errors. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Np-237 incineration study in various beams in ADS setup QUINTA

    Directory of Open Access Journals (Sweden)

    Kilim Stanisław

    2018-03-01

    Full Text Available Neptunium-237 samples were irradiated in a spallation neutron field produced in accelerator-driven system (ADS setup QUINTA. Five experiments were carried out on the accelerators at the JINR in Dubna - one in carbon (C6+, three in deuteron, and one in a proton beam. The energy in carbon was 24 GeV, in deuteron 2, 4 and 8 GeV, respectively, and 660 MeV in the proton beam. The incineration study method was based on gamma-ray spectrometry. During the analysis of the spectra several fission products and one actinide were identified. Fission product activities yielded the number of fissions. The actinide (Np-238, a result of neutron capture by Np-237, yielded the number of captures. The main goal of this work was to find out if and how the incineration rate depended on parameters of the accelerator beam.

  20. Automatic control unit for neutron transmission measurements

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Eid, Y.; Ashry, A.; Mostafa, M.; Hamouda, I.

    1981-01-01

    Two soil samples were subjected to comprehensive study of the self-diffusion coefficient of Zn in soils previously treated with ZnSO 4 , EDTA and Zn-EDTA. The effect of chelating compounds on the ratio between solid phase fraction of the labile Zn and its concentration in the soil solution (capacity factor) was also studied. The data revealed the following items of more interest: (1) The use of chelating agents, i.e. EDTA and Zn-EDTA, increased the amount of Zn in soil solution hence, the capacity factor was decreased when these compounds were used. The effect of EDTA and Zn-EDTA on the capacity factors was different according to the type of soil, i.e. calcareous and alluvial. (2) The increasing of Zn-concentration in the soil solution, due to the use of chelating agents, increased the self-diffusion coefficient of Zn in the investigated soils. The self-diffusion coefficient for Zn in the alluvial soils was more than that of calcareous one. (3) The practical implication of the present study is that organic ameniments and chelated Zn fertilizers are expected to be more effective than soluble Zn salts in alleviating its deficiency in such soils. (author)

  1. Neutron instrumentation system

    International Nuclear Information System (INIS)

    Akiyama, Takao; Arita, Setsuo; Yuchi, Hiroyuki

    1989-01-01

    The neutron instrumentation system of this invention can greatly reduce the possibility that the shutdown flux is increased greater than a predetermiend value to cause scram due to vibrations caused by earthquakes or shocks in the neutron instrumentation system without injuring the reactor safety. That is, a sensor having a zero sensitivity to a neutron flux which is an object to be detected by the sensor (dummy sensor) is used together with a conventional sensor (a sensor having predetermined sensitivity to a neutron flux as an object to be measured ----- true sensor). Further, identical signal transmission cables, connector and the signal processing circuits are used for both of true sensor and the dummy sensor. The signal from the dummy sensor is subtracted from the signal from the true sensor at the output of the signal processing circuit. Since the output of the dummy sensor is zero during normal operation, the subtracted value is the same as the value from the true sensor. If the true sensor causes an output with the reason other than the neutron flux, this is outputted also from the dummy sensor but does not appear in the subtracted value. (I.S.)

  2. Neutron Depolarization in Submicron Ferromagnetic Materials

    NARCIS (Netherlands)

    Rekveldt, M.Th.

    1989-01-01

    The neutron depolarization technique is based on the loss of polarization of a polarized neutron beam after transmission through ferromagnetic substances. This loss, caused by Larmor precession in individual domains, determines the mean domain size, the mean square direction cosines of the domains

  3. High sensitivity neutron bursts detecting system

    International Nuclear Information System (INIS)

    Shyam, A.; Kaushik, T.C.; Srinivasan, M.; Kulkarni, L.V.

    1993-01-01

    Technique and instrumentation to detect multiplicity of fast neutrons, emitted in sharp bursts, has been developed. A bank of 16 BF 3 detectors, in an appropriate thermalising assembly, efficiency ∼ 16%, is used to detect neutron bursts. The output from this setup, through appropriate electronics, is divided into two paths. The first is directly connected to a computer controlled scalar. The second is connected to another similar scalar through a delay time unit (DTU). The DTU design is such that once it is triggered by a count pulse than it does not allow any counts to be recorded for a fixed dead time set at ∼ 100 μs. The difference in counts recorded directly and through DTU gives the total number of neutrons produced in bursts. This setup is being used to study lattice cracking, anomalous effects in solid deuterium systems and various reactor physics experiments. (author). 3 refs., 1 fig

  4. Transmission issues

    International Nuclear Information System (INIS)

    Bradford, J.; Wilson, L.; Thon, S.; Millar, N.

    2005-01-01

    This session on transmission issues focused on the role that transmission plays in electricity markets and the importance of getting the market structure right in terms of generation divestiture with buy back contracts, demand side responsive programs, transmission upgrades and long term contracts. The difficulties of distinguishing between market power and scarcity were examined along with some of the complications that ensue if transmission experiences congestion, as exemplified by the August 2003 blackout in eastern North America. The presentations described the best ways to handle transmission issues, and debated whether transmission should be deregulated or follow market forces. Issues of interconnections and reliability of connections were also debated along with the attempt to integrate renewables into the grid. Some presentations identified what new transmission must be built and what must be done to ensure that transmission gets built. The challenges and business opportunities for transmission in Alberta were discussed with reference to plans to invest in new infrastructure, where it is going outside of the province and how it works with other jurisdictions. Manitoba's Conawapa Hydro Project and its 2000 MW tie line to Ontario was also discussed. Some examples of non-optimal use of interconnections in Europe were also discussed in an effort to learn from these mistakes and avoid them in Canada. tabs., figs

  5. The research of knitting needle status monitoring setup

    Science.gov (United States)

    Liu, Lu; Liao, Xiao-qing; Zhu, Yong-kang; Yang, Wei; Zhang, Pei; Zhao, Yong-kai; Huang, Hui-jie

    2013-09-01

    In textile production, quality control and testing is the key to ensure the process and improve the efficiency. Defect of the knitting needles is the main factor affecting the quality of the appearance of textiles. Defect detection method based on machine vision and image processing technology is universal. This approach does not effectively identify the defect generated by damaged knitting needles and raise the alarm. We developed a knitting needle status monitoring setup using optical imaging, photoelectric detection and weak signal processing technology to achieve real-time monitoring of weaving needles' position. Depending on the shape of the knitting needle, we designed a kind of Glass Optical Fiber (GOF) light guides with a rectangular port used for transmission of the signal light. To be able to capture the signal of knitting needles accurately, we adopt a optical 4F system which has better imaging quality and simple structure and there is a rectangle image on the focal plane after the system. When a knitting needle passes through position of the rectangle image, the reflected light from needle surface will back to the GOF light guides along the same optical system. According to the intensity of signals, the computer control unit distinguish that the knitting needle is broken or curving. The experimental results show that this system can accurately detect the broken needles and the curving needles on the knitting machine in operating condition.

  6. Determination of the resonance parameters for 232Th from high resolution transmission and capture measurements at GELINA

    International Nuclear Information System (INIS)

    Brusegan, A.; Schillebeeckx, P.; Lobo, G.; Borella, A.; Volev, K.; Janeva, N.

    2003-01-01

    To deduce the resonance parameters for 232 Th in the resolved resonance region, high resolution transmission and capture measurements are being performed. The measurements are performed at the Time-Of-Flight facility GELINA. A comparison of experimental data resulting from capture (top) and transmission (bottom) are shown. The transmission measurements are performed at a 50 m flight path. The neutron are detected with a 0.25' thick lithium glass (NE912) placed in an Al sphere and viewed by a 5' EMI KQB photomultiplier orthogonal to the neutron beam axis. The injection of a stabilised light pulse in the detector during the measurements provided an efficient tool to control to better than 1% the gain of the entire electronics. The experimental set-up includes a sample-changer, placed at 23 m from the neutron source, which is driven by the acquisition system. The determination of the flight path length, was based on transmission of the 6.673 eV resonance of 238 U. We summarise, for the different energy regions of interest, the scheduled measurement conditions: the operation frequency of the accelerator and the target thickness. A simultaneous analysis of the data using REFIT will result in the resonance parameters from 0 to 4 keV. We show the result of a resonance shape analysis for the resonances at 21.8 and 23.5 eV. The resulting resonance parameters are important for the energy calibration and normalisation of the capture measurements in both the resolved and unresolved resonance region. The capture measurements are completed and were performed at a 60 m flight path. The sample consisted of a metallic natural thorium disc of 8 cm diameter and 1.0 mm thick, corresponding to a thickness of 3.176 10 -3 at/b. The neutron flux was measured with an ionisation chamber loaded with three back-to-back layers of about 40 μg/cm 2 10 B. The gamma rays, originating from the 232 Th(n,γ) reaction, were detected by four C 6 D 6 -based liquid scintillators (NE230) placed

  7. Bulk moisture determination in building materials by fast neutron/gamma technique

    International Nuclear Information System (INIS)

    Padron Diaz, I.; Felipe Desdin, L.; Martin Hernandez, G.; Shtejer, K.; Perez Tamayo, N.; Ceballos, C.; Lemus, O.

    1998-01-01

    Fast Neutron/Gamma Transmission technique has been improved to allow to measure moisture content in building materials. In order to improve fast neutron/gamma discrimination in the transmission system employing the NE-213 scintillation detector a pulse shape discrimination system was constructed at the CEADEN. A separate neutron/gamma detection approach was used with neutron transmission measurement using an Am-Be neutron source and a BF 3 detector and gamma transmission measurement using a collimated 137 Cs source and a NaI scintillator

  8. Transmission eigenvalues

    Science.gov (United States)

    Cakoni, Fioralba; Haddar, Houssem

    2013-10-01

    In inverse scattering theory, transmission eigenvalues can be seen as the extension of the notion of resonant frequencies for impenetrable objects to the case of penetrable dielectrics. The transmission eigenvalue problem is a relatively late arrival to the spectral theory of partial differential equations. Its first appearance was in 1986 in a paper by Kirsch who was investigating the denseness of far-field patterns for scattering solutions of the Helmholtz equation or, in more modern terminology, the injectivity of the far-field operator [1]. The paper of Kirsch was soon followed by a more systematic study by Colton and Monk in the context of developing the dual space method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium [2]. In this paper they showed that for a spherically stratified media transmission eigenvalues existed and formed a discrete set. Numerical examples were also given showing that in principle transmission eigenvalues could be determined from the far-field data. This first period of interest in transmission eigenvalues was concluded with papers by Colton et al in 1989 [3] and Rynne and Sleeman in 1991 [4] showing that for an inhomogeneous medium (not necessarily spherically stratified) transmission eigenvalues, if they existed, formed a discrete set. For the next seventeen years transmission eigenvalues were ignored. This was mainly due to the fact that, with the introduction of various sampling methods to determine the shape of an inhomogeneous medium from far-field data, transmission eigenvalues were something to be avoided and hence the fact that transmission eigenvalues formed at most a discrete set was deemed to be sufficient. In addition, questions related to the existence of transmission eigenvalues or the structure of associated eigenvectors were recognized as being particularly difficult due to the nonlinearity of the eigenvalue problem and the special structure of the associated transmission

  9. Chlorine detection in fly ash concrete using a portable neutron generator.

    Science.gov (United States)

    Naqvi, A A; Kalakada, Zameer; Al-Matouq, Faris A; Maslehuddin, M; Al-Amoudi, O S B

    2012-08-01

    The chlorine concentration in chloride-contaminated FA cement concrete specimens was measured using a portable neutron generator based prompt gamma-ray neutron activation (PGNAA) setup with the neutron generator and the gamma-ray detector placed side-by-side on one side of the concrete sample. The minimum detectable concentration of chlorine in FA cement concrete measured in the present study was comparable with previous results for larger accelerator based PGNAA setup. It shows the successful application of a portable neutron generator in concrete corrosion studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Patients setup verification tool for RT (PSVTs): DRR, simulation, portal and digital images

    International Nuclear Information System (INIS)

    Lee, Suk; Seong, Jin Sil; Chu, Sung Sil; Lee, Chang Geol; Suh, Chang Ok; Kwon, Soo Il

    2003-01-01

    To develop a patients' setup verification tool (PSVT) to verify the alignment of the machine and the target isocenters, and the reproducibility of patients' setup for three dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (MRT). The utilization of this system is evaluated through phantom and patient case studies. We developed and clinically tested a new method for patients' setup verification, using digitally reconstructed radiography (DRR), simulation, portal and digital images. The PSVT system was networked to a Pentium PC for the transmission of the acquired images to the PC for analysis. To verify the alignment of the machine and target isocenters, orthogonal pairs of simulation images were used as verification images. Errors in the isocenter alignment were measured by comparing the verification images with DRR of CT images. Orthogonal films were taken of all the patients once a week. These verification films were compared with the DRR were used for the treatment setup. By performing this procedure every treatment, using humanoid phantom and patient cases, the errors of localization can be analyzed, with adjustments made from the translation. The reproducibility of the patients' setup was verified using portal and digital images. The PSVT system was developed to verify the alignment of the machine and the target isocenters, and the reproducibility of the patients' setup for 3DCRT and IMRT The results show that the localization errors are 0.8±0.2 mm (AP) and 1.0±0.3 mm (Lateral) in the cases relating to the brain and 1.1± 0.5 mm (AP) and 1.0±0.6 mm (Lateral) in the cases relating to the pelvis. The reproducibility of the patients' setup was verified by visualization, using real-time image acquisition, leading to the practical utilization of our software. A PSVT system was developed for the verification of the alignment between machine and the target isocenters, and the reproducibility of the patients' setup in 3DCRT and IMRT

  11. Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem

    International Nuclear Information System (INIS)

    William Charlton

    2007-01-01

    Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions

  12. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  13. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  14. Neutron spectometers

    International Nuclear Information System (INIS)

    Poortmans, F.

    1977-01-01

    Experimental work in the field of low-energy neutron physics can be subdivided into two classes: 1)Study of the decay process of the compound-nucleus state as for example the study of the capture gamma rays and of the neutron induced fission process; 2)Study of the reaction mechanism, mainly by measuring the reaction cross-sections and resonance parameters. These neutron cross-sections and resonance parameters are also important data required for many technological applications especially for reactor development programmes. In general, the second class of experiments impose other requirements on the neutron spectrometer than the first class. In most cases, a better neutron energy resolution and a broader neutron energy range are required for the study of the reaction mechanism than for the study of various aspects of the decay process. (author)

  15. Cold neutron radiographic apparatus and method

    International Nuclear Information System (INIS)

    Larsen, J.E.

    1980-01-01

    Cold neutron radiography may be improved by matching neutron temperature to the specific material to be analyzed. It is possible to bombard the material with neutrons having the precise average temperature necessary to realize the minimum attenuation coefficient, or to choose a neutron temperature that would increase the attenuation by inclusions, defects, etc., or to choose a neutron temperature that provides a good balance between sample transmission and defect attenuation. Other neutron temperatures might also be chosen for other reasons. This may be done by having a source of neutrons embedded in a moderator material, such as solid methane, and cooling the moderator material to the desired temperature by a cryogenic refrigerator. In another embodiment, neutrons from a nuclear reactor are passed through a moderator cooled by a cryogenic refrigerator. Since the neutron temperature is matched to the material being radiographically inspected, improved contrast and resolution can be obtained through thicker materials than it has heretofore been possible to analyze by cold neutron radiography. More optimum filtering of a neutron beam is also achieved by using a cryogenic refrigerator to cool the neutron beam filter. (auth)

  16. Neutron exposure

    International Nuclear Information System (INIS)

    Prillinger, G.; Konynenburg, R.A. van

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 6, LWR-PV neutron transport calculations and dosimetry methods and how they are combined to evaluate the neutron exposure of the steel of pressure vessels are discussed. An effort to correlate neutron exposure parameters with damage is made

  17. Atmospheric neutrons

    International Nuclear Information System (INIS)

    Preszler, A.M.; Moon, S.; White, R.S.

    1976-01-01

    Additional calibrations of the University of California double-scatter neutron and additional analysis corrections lead to the slightly changed neutron fluxes reported here. The theoretical angular distributions of Merker (1975) are in general agreement with our experimental fluxes but do not give the peaks for vertical upward and downward moving neutrons. The theoretical neutron escape current J 2 /sub pi/ (Merker, 1972; Armstrong et al., 1973) is in agreement with the experimental values from 10 to 100 MeV. Our experimental fluxes agree with those of the Kanbach et al. (1974) in the overlap region from 70 to 100 MeV

  18. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  19. Simple optical setup implementation for digital Fourier transform holography

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, G N [Pos-graduacao em Engenharia Mecanica, TEM/PGMEC, Universidade Federal Fluminense, Rua Passo da Patria, 156, Niteroi, R.J., Cep.: 24.210-240 (Brazil); Rodrigues, D M C; Dos Santos, P A M, E-mail: pams@if.uff.br [Instituto de Fisica, Laboratorio de Optica Nao-linear e Aplicada, Universidade Federal Fluminense, Av. Gal. Nilton Tavares de Souza, s/n, Gragoata, Niteroi, R.J., Cep.:24.210-346 (Brazil)

    2011-01-01

    In the present work a simple implementation of Digital Fourier Transform Holography (DFTH) setup is discussed. This is obtained making a very simple modification in the classical setup arquiteture of the Fourier Transform holography. It is also demonstrated the easy and practical viability of the setup in an interferometric application for mechanical parameters determination. The work is also proposed as an interesting advanced introductory training for graduated students in digital holography.

  20. Quantifying Transmission.

    Science.gov (United States)

    Woolhouse, Mark

    2017-07-01

    Transmissibility is the defining characteristic of infectious diseases. Quantifying transmission matters for understanding infectious disease epidemiology and designing evidence-based disease control programs. Tracing individual transmission events can be achieved by epidemiological investigation coupled with pathogen typing or genome sequencing. Individual infectiousness can be estimated by measuring pathogen loads, but few studies have directly estimated the ability of infected hosts to transmit to uninfected hosts. Individuals' opportunities to transmit infection are dependent on behavioral and other risk factors relevant given the transmission route of the pathogen concerned. Transmission at the population level can be quantified through knowledge of risk factors in the population or phylogeographic analysis of pathogen sequence data. Mathematical model-based approaches require estimation of the per capita transmission rate and basic reproduction number, obtained by fitting models to case data and/or analysis of pathogen sequence data. Heterogeneities in infectiousness, contact behavior, and susceptibility can have substantial effects on the epidemiology of an infectious disease, so estimates of only mean values may be insufficient. For some pathogens, super-shedders (infected individuals who are highly infectious) and super-spreaders (individuals with more opportunities to transmit infection) may be important. Future work on quantifying transmission should involve integrated analyses of multiple data sources.

  1. Performance of velocity vector estimation using an improved dynamic beamforming setup

    DEFF Research Database (Denmark)

    Munk, Peter; Jensen, Jørgen Arendt

    2001-01-01

    control of the acoustic field, based on the Pulsed Plane Wave Decomposition (PPWD), is presented. The PPWD gives an unambigious relation between a given acoustic field and the time functions needed on an array transducer for transmission. Applying this method for the receive beamformation results in a set...... and experimental data. The simulation setup is an attempt to approximate the situation present when performing a scanning of the carotid artery with a linear array. Measurement of the flow perpendicular to the emission direction is possible using the approach of transverse spatial modulation. This is most often...... the case in a scanning of the carotid artery, where the situation is handled by an angled Doppler setup in the present ultrasound scanners. The modulation period of 2 mm is controlled for a range of 20-40 mm which covers the typical range of the carotid artery. A 6 MHz array on a 128-channel system...

  2. Comparison of different Bremsstrahlung converters and collimators for Nuclear Resonance Fluorescence setup at IFUSP

    International Nuclear Information System (INIS)

    Lopez, P.N; Corrales, Y.; Manso Guevara, M.V; Martins, M.N.

    2007-01-01

    Nuclear Resonance Fluorescence (NRF) setup will install in the new electron accelerator, which is in final stage of installation at the Physics Institute of Sao Paulo University (IFUSP). The Bremsstrahlung facility and the setup for photon scattering should be designed such that the background radiation caused by scattering photons and the production of neutrons is minimized. In this order the Monte Carlo simulation studies show the best options for the different elements of the NRF setup, and how to link these elements to the particularities of the irradiation room. In the present stage the simulations has been included the studies of different Bremsstrahlung converters and collimators. Several materials (Ta, W, Au, Nb, Cu) for Bremsstrahlung converters were studied. Detailed analyses of intensity as well as the opening angles of Bremsstrahlung radiation were carried out, for different converter thickness. For the collimator two materials (Cu and Pb) were studied in the simulations. Several opening angles and thickness (40 - 100 cm) were studied. The Bremsstrahlung beam collimation for different energy bins, and the photon scattering from the collimator ,were used as quality parameters of the collimators. (Author)

  3. A new setup for the underground study of capture reactions

    CERN Document Server

    Casella, C; Lemut, A; Limata, B; Bemmerer, D; Bonetti, R; Broggini, C; Campajola, L; Cocconi, P; Corvisiero, P; Cruz, J; D'Onofrio, A; Formicola, A; Fülöp, Z; Gervino, G; Gialanella, L; Guglielmetti, A; Gustavino, C; Gyürky, G; Loiano, A; Imbriani, G; Jesus, A P; Junker, M; Musico, P; Ordine, A; Parodi, F; Parolin, M; Pinto, J V; Prati, P; Ribeiro, J P; Roca, V; Rogalla, D; Rolfs, C; Romano, M; Rossi-Alvarez, C; Rottura, A; Schuemann, F; Somorjai, E; Strieder, F; Terrasi, F; Trautvetter, H P; Vomiero, A; Zavatarelli, S

    2002-01-01

    For the study of astrophysically relevant capture reactions in the underground laboratory LUNA a new setup of high sensitivity has been implemented. The setup includes a windowless gas target, a 4 pi BGO summing crystal, and beam calorimeters. The setup has been recently used to measure the d(p,gamma) sup 3 He cross-section for the first time within its solar Gamow peak, i.e. down to 2.5 keV c.m. energy. The features of the optimized setup are described.

  4. The compact and inexpensive arrowhead setup for holographic interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Ladera, Celso L; Donoso, Guillermo, E-mail: clladera@usb.v [Departamento de Fisica, Universidad Simon BolIvar, Apdo. 89000, Caracas 1086 (Venezuela, Bolivarian Republic of)

    2011-07-15

    Hologram recording and holographic interferometry are intrinsically sensitive to phase changes, and therefore both are easily perturbed by minuscule optical path perturbations. It is therefore very convenient to bank on holographic setups with a reduced number of optical components. Here we present a compact off-axis holographic setup that requires neither a collimator nor a beam-splitter, and whose layout is reminiscent of an arrowhead. We show that this inexpensive setup is a good alternative for the study and applications of scientific holography by measuring small displacements and deformations of a body. The arrowhead setup will be found particularly useful for holography and holographic interferometry experiments and projects in teaching laboratories.

  5. Low energy neutron background in deep underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Best, Andreas, E-mail: andreas.best@lngs.infn.it [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Görres, Joachim [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Junker, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Kratz, Karl-Ludwig [Department for Biogeochemistry, Max-Planck-Institute for Chemistry, 55020 Mainz (Germany); Laubenstein, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Long, Alexander [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nisi, Stefano [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Smith, Karl; Wiescher, Michael [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2016-03-11

    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new large-scale experiments as well as in the analysis of experimental data. Using a portable setup of {sup 3}He counters we measured the thermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented.

  6. A prototype detector using the neutron image intensifier and multi-anode type photomultiplier tube for pulsed neutron imaging

    International Nuclear Information System (INIS)

    Ishikawa, Hirotaku; Sato, Hirotaka; Hara, Kaoru Y.; Kamiyama, Takashi

    2016-01-01

    We developed a neutron two-dimensional (2-D) detector for pulsed neutron imaging as a prototype detector, which was composed of a neutron image intensifier and a multi-anode type photomultiplier tube. A neutron transmission spectrum of α-Fe plate was measured by the prototype detector, and compared with the one measured by a typical neutron 2-D detector. The spectrum was in reasonable agreement with the one measured by the typical detector in the neutron wavelength region above 0.15 nm. In addition, a neutron transmission image of a cadmium indicator was obtained by the prototype detector. The usefulness of the prototype detector for pulsed neutron imaging was demonstrated. (author)

  7. Experimental study of time-reversal invariance in neutron-nucleus interactions

    International Nuclear Information System (INIS)

    Shaparov, E.I.; Shimizu, H.M.

    1996-01-01

    Experimental approaches for the test of time-reversal invariance in neutron-nucleus interactions are reviewed. Possible transmission experiments with polarized neutron beams and polarized or aligned targets are discussed as well as neutron capture experiments with unpolarized resonance neutrons. 102 refs., 13 figs., 3 tabs

  8. Force transmissibility versus displacement transmissibility

    Science.gov (United States)

    Lage, Y. E.; Neves, M. M.; Maia, N. M. M.; Tcherniak, D.

    2014-10-01

    It is well-known that when a single-degree-of-freedom (sdof) system is excited by a continuous motion of the foundation, the force transmissibility, relating the force transmitted to the foundation to the applied force, equals the displacement transmissibility. Recent developments in the generalization of the transmissibility to multiple-degree-of-freedom (mdof) systems have shown that similar simple and direct relations between both types of transmissibility do not appear naturally from the definitions, as happens in the sdof case. In this paper, the authors present their studies on the conditions under which it is possible to establish a relation between force transmissibility and displacement transmissibility for mdof systems. As far as the authors are aware, such a relation is not currently found in the literature, which is justified by being based on recent developments in the transmissibility concept for mdof systems. Indeed, it does not appear naturally, but the authors observed that the needed link is present when the displacement transmissibility is obtained between the same coordinates where the applied and reaction forces are considered in the force transmissibility case; this implies that the boundary conditions are not exactly the same and instead follow some rules. This work presents a formal derivation of the explicit relation between the force and displacement transmissibilities for mdof systems, and discusses its potential and limitations. The authors show that it is possible to obtain the displacement transmissibility from measured forces, and the force transmissibility from measured displacements, opening new perspectives, for example, in the identification of applied or transmitted forces. With this novel relation, it becomes possible, for example, to estimate the force transmissibility matrix with the structure off its supports, in free boundary conditions, and without measuring the forces. As far as force identification is concerned, this

  9. Data transmission

    National Research Council Canada - National Science Library

    Tugal, Dogan A; Tugal, Osman

    1989-01-01

    This updated second edition provides working answers to today's critical questions about designing and managing all types of data transmission systems and features a new chapter on local area networks (LANs...

  10. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  11. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1994-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  12. High intensity TOF spectrometer for cold neutrons

    International Nuclear Information System (INIS)

    Maayouf, R.M.; Abd El-Kawy, A.; Habib, N.; Adib, M.; Hamouda, I.

    1984-01-01

    This work presents a neutron time-of-flight (TOF) spectrometer developed specially for total neutron cross-section measurements at neutron energies below 5 MeV and sample's temperature varying from the liquid nitrogen one and up to 500 0 K. The spectrometer is equipped by remote control unit, designed especially, in order to move the sample in and out of the beam during the experimental measurements. The spectrometer has proved to be useful for transmission measurements at neutron energies below 5 MeV. It has a reasonable energy resolution (4.4%) and high effect to background ratio (11.1) at 5 MeV

  13. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield

  14. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  15. Neutron holography

    International Nuclear Information System (INIS)

    Beynon, T.D.

    1986-01-01

    the paper concerns neutron holography, which allows an image to be constructed of the surfaces, as well as the interiors, of objects. The technique of neutron holography and its applications are described. Present and future use of the method is briefly outlined. (U.K.)

  16. Control system for RF-driven negative ion source experimental setup at HUST

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dong; Wang, Xiaomin, E-mail: xm_wang@hust.edu.cn; Zhao, Peng; Liu, Kaifeng; Zhang, Lige; Yue, Haikun; Chen, Dezhi; Zuo, Chen

    2017-03-15

    Highlights: • The CompactRIO system is reliable and could achieve high-speed data collection. • The queue and event software structure allows the control code to be flexible. • TCP/IP performs better than shared variable method for mass data transmission. • The method for lowering the peak RF reflected power has been discussed and given. - Abstract: An experimental setup of RF-driven negative ion source has been built at the Huazhong University of Science and Technology (HUST). The control system for this setup is responsible for RF loading, gas feeding, filament heating, filament DC bias, data collection and Langmuir probe triggering during plasma production. To research influences on the plasma ignition of gas puff and RF power loading, the control system should be of flexible operating sequence, high-speed data collection and reliable data transmission. The general control unit (GCU) adopts a CompactRIO system, which performs high-speed data collection for gas pressure and RF power. The host control program adopts a queue and event structure for flexible operation, and TCP/IP method is applied for mass data transmission. The development of the host control program is described in detail. The test results of the shared variable and TCP/IP methods are presented, as well as data showing the advantages of the TCP/IP method. The experiment results with two different sequences of plasma production are given and discussed here.

  17. Optical neutron polarizers

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1990-01-01

    A neutron wave will be refracted by an appropriately varying potential. Optical neutron polarizers use spatially varying, spin- dependent potentials to refract neutrons of opposite spin states into different directions, so that an unpolarized beam will be split into two beams of complementary polarization by such a device. This paper will concentrate on two methods of producing spin-dependent potentials which are particularly well-suited to polarizing cold neutron beams, namely thin-film structures and field-gradient techniques. Thin-film optical devices, such as supermirror multilayer structures, are usually designed to deviate only one spin-state, so that they offer the possibility of making insertion (transmission) polarizers. Very good supermirrors may now be designed and fabricated, but it is not always straightforward to design mirror-based devices which are useful in real (divergent beam) applications, and some practical configurations will be discussed. Field-gradient devices, which are usually based on multipolar magnets, have tended to be too expensive for general use, but this may change with new developments in superconductivity. Dipolar and hexapolar configurations will be considered, with emphasis on the focusing characteristics of the latter. 21 refs., 7 figs

  18. Neutron source

    International Nuclear Information System (INIS)

    Cason, J.L. Jr.; Shaw, C.B.

    1975-01-01

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap

  19. Neutron transport

    International Nuclear Information System (INIS)

    Berthoud, Georges; Ducros, Gerard; Feron, Damien; Guerin, Yannick; Latge, Christian; Limoge, Yves; Santarini, Gerard; Seiler, Jean-Marie; Vernaz, Etienne; Coste-Delclaux, Mireille; M'Backe Diop, Cheikh; Nicolas, Anne; Andrieux, Catherine; Archier, Pascal; Baudron, Anne-Marie; Bernard, David; Biaise, Patrick; Blanc-Tranchant, Patrick; Bonin, Bernard; Bouland, Olivier; Bourganel, Stephane; Calvin, Christophe; Chiron, Maurice; Damian, Frederic; Dumonteil, Eric; Fausser, Clement; Fougeras, Philippe; Gabriel, Franck; Gagnier, Emmanuel; Gallo, Daniele; Hudelot, Jean-Pascal; Hugot, Francois-Xavier; Dat Huynh, Tan; Jouanne, Cedric; Lautard, Jean-Jacques; Laye, Frederic; Lee, Yi-Kang; Lenain, Richard; Leray, Sylvie; Litaize, Olivier; Magnaud, Christine; Malvagi, Fausto; Mijuin, Dominique; Mounier, Claude; Naury, Sylvie; Nicolas, Anne; Noguere, Gilles; Palau, Jean-Marc; Le Pallec, Jean-Charles; Peneliau, Yannick; Petit, Odile; Poinot-Salanon, Christine; Raepsaet, Xavier; Reuss, Paul; Richebois, Edwige; Roque, Benedicte; Royer, Eric; Saint-Jean, Cyrille de; Santamarina, Alain; Serot, Olivier; Soldevila, Michel; Tommasi, Jean; Trama, Jean-Christophe; Tsilanizara, Aime; Behar, Christophe; Provitina, Olivier; Lecomte, Michael; Forestier, Alain; Bender, Alexandra; Parisot, Jean-Francois; Finot, Pierre

    2013-10-01

    This bibliographical note presents a reference book which addresses the study of neutron transport in matter, the study of conditions for a chain reaction and the study of modifications of matter composition due to nuclear reactions. This book presents the main nuclear data, their measurement, assessment and processing, and the spallation. It proposes an overview of methods applied for the study of neutron transport: basic equations and their derived forms, deterministic methods and Monte Carlo method of resolution of the Boltzmann equation, methods of resolution of generalized Bateman equations, methods of time resolution of space kinetics coupled equations. It presents the main calculation codes, discusses the qualification and experimental aspects, and gives an overview of neutron transport applications: neutron transport calculation of reactors, neutron transport coupled with other disciplines, physics of fuel cycle, criticality

  20. Self-absorption of neutron capture gamma-rays in gold samples

    International Nuclear Information System (INIS)

    Wisshak, K.; Walter, G.; Kaeppeler, F.

    1983-06-01

    The self absorption of neutron capture gamma rays in gold samples has been determined experimentally for two standard setups used in measurements of neutron capture cross sections. One makes use of an artificially collimated neutron beam and two C 6 D 6 detectors, the other of kinematically collimated neutrons and three Moxon-Rae detectors. Correction factors for an actual measurement of a neutron capture cross section using a gold standard of 1 mm thickness up to 12% were found for the first setup while they are only 4% for the second setup. The present data allow to determine the correction in an actual measurement with an accuracy of 0.5-1%. (orig.) [de

  1. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    International Nuclear Information System (INIS)

    Rich, D.R.; Bowman, J.D.; Crawford, B.E.; Delheij, P.P.J.; Espy, M.A.; Haseyama, T.; Jones, G.; Keith, C.D.; Knudson, J.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilae, S.I.; Pomeroy, V.R.; Smith, D.A.; Snow, W.M.; Szymanski, J.J.; Stephenson, S.L.; Thompson, A.K.; Yuan, V.

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3 He spin filter and a relative transmission measurement technique. 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method

  2. An experimental set-up to test heatmoisture exchangers

    NARCIS (Netherlands)

    N. Ünal (N.); J.C. Pompe (Jan); W.P. Holland (Wim); I. Gultuna; P.E.M. Huygen; K. Jabaaij (K.); C. Ince (Can); B. Saygin (B.); H.A. Bruining (Hajo)

    1995-01-01

    textabstractObjectives: The purpose of this study was to build an experimental set-up to assess continuously the humidification, heating and resistance properties of heat-moisture exchangers (HMEs) under clinical conditions. Design: The experimental set-up consists of a patient model, measurement

  3. Set-Up and Punchline as Figure and Ground

    DEFF Research Database (Denmark)

    Keisalo, Marianna Päivikki

    the two that cannot be resolved by appeal to either set-up or punchline, but traps thought between them in an ‘epistemological problem’ as comedian Louis CK put it. For comedians, set-ups and punchlines are basic tools, practical and concrete ways to create and organize material. They are also familiar...

  4. Imaging with cold neutrons

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-01-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 A). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects-choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  5. Calibration Procedures in Mid Format Camera Setups

    Science.gov (United States)

    Pivnicka, F.; Kemper, G.; Geissler, S.

    2012-07-01

    A growing number of mid-format cameras are used for aerial surveying projects. To achieve a reliable and geometrically precise result also in the photogrammetric workflow, awareness on the sensitive parts is important. The use of direct referencing systems (GPS/IMU), the mounting on a stabilizing camera platform and the specific values of the mid format camera make a professional setup with various calibration and misalignment operations necessary. An important part is to have a proper camera calibration. Using aerial images over a well designed test field with 3D structures and/or different flight altitudes enable the determination of calibration values in Bingo software. It will be demonstrated how such a calibration can be performed. The direct referencing device must be mounted in a solid and reliable way to the camera. Beside the mechanical work especially in mounting the camera beside the IMU, 2 lever arms have to be measured in mm accuracy. Important are the lever arms from the GPS Antenna to the IMU's calibrated centre and also the lever arm from the IMU centre to the Camera projection centre. In fact, the measurement with a total station is not a difficult task but the definition of the right centres and the need for using rotation matrices can cause serious accuracy problems. The benefit of small and medium format cameras is that also smaller aircrafts can be used. Like that, a gyro bases stabilized platform is recommended. This causes, that the IMU must be mounted beside the camera on the stabilizer. The advantage is, that the IMU can be used to control the platform, the problematic thing is, that the IMU to GPS antenna lever arm is floating. In fact we have to deal with an additional data stream, the values of the movement of the stabiliser to correct the floating lever arm distances. If the post-processing of the GPS-IMU data by taking the floating levers into account, delivers an expected result, the lever arms between IMU and camera can be applied

  6. CALIBRATION PROCEDURES IN MID FORMAT CAMERA SETUPS

    Directory of Open Access Journals (Sweden)

    F. Pivnicka

    2012-07-01

    Full Text Available A growing number of mid-format cameras are used for aerial surveying projects. To achieve a reliable and geometrically precise result also in the photogrammetric workflow, awareness on the sensitive parts is important. The use of direct referencing systems (GPS/IMU, the mounting on a stabilizing camera platform and the specific values of the mid format camera make a professional setup with various calibration and misalignment operations necessary. An important part is to have a proper camera calibration. Using aerial images over a well designed test field with 3D structures and/or different flight altitudes enable the determination of calibration values in Bingo software. It will be demonstrated how such a calibration can be performed. The direct referencing device must be mounted in a solid and reliable way to the camera. Beside the mechanical work especially in mounting the camera beside the IMU, 2 lever arms have to be measured in mm accuracy. Important are the lever arms from the GPS Antenna to the IMU's calibrated centre and also the lever arm from the IMU centre to the Camera projection centre. In fact, the measurement with a total station is not a difficult task but the definition of the right centres and the need for using rotation matrices can cause serious accuracy problems. The benefit of small and medium format cameras is that also smaller aircrafts can be used. Like that, a gyro bases stabilized platform is recommended. This causes, that the IMU must be mounted beside the camera on the stabilizer. The advantage is, that the IMU can be used to control the platform, the problematic thing is, that the IMU to GPS antenna lever arm is floating. In fact we have to deal with an additional data stream, the values of the movement of the stabiliser to correct the floating lever arm distances. If the post-processing of the GPS-IMU data by taking the floating levers into account, delivers an expected result, the lever arms between IMU and

  7. Computational investigations on a catenary-shaped double-reflecting neutron guide

    International Nuclear Information System (INIS)

    Priesmeyer, H.G.

    1983-01-01

    The results of Monte-Carlo calculations of the neutron transmission of a vertical catenary-shaped neutron guide are presented. A two-dimensional problem was considered. Focussing and special coatings are investigated. (orig.) [de

  8. Development of neutron calibration field using accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Mamoru [Tohoku Univ., Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan)

    2003-03-01

    A brief summary is given on the fast neutron calibration fields for 1) 8 keV to 15 MeV range, and 2) 30-80 MeV range. The field for 8 keV to 15 MeV range was developed at the Fast Neutron Laboratory (FNL) at Tohoku University using a 4.5 MV pulsed Dynamitron accelerator and neutron production reactions, {sup 45}Sc(p, n), {sup 7}Li(p, n), {sup 3}H(p, n), D(d, n) and T(d, n). The latter 30-80 MeV fields are setup at TIARA of Takasaki Establishment of Japan Atomic Energy Research Institute, and at Cyclotron Radio Isotope Center (CYRIC) of Tohoku University using a 90 MeV AVF cyclotron and the {sup 7}Li(p, n) reaction. These fields have been applied for various calibration of neutron spectrometers and dosimeters, and for irradiation purposes. (author)

  9. Neutron therapy

    International Nuclear Information System (INIS)

    Riesler, Rudi

    1995-01-01

    Standard radiotherapy uses Xrays or electrons which have low LET (linear energy transfer); in contrast, particles such as neutrons with high LET have different radiobiological responses. In the late 1960s, clinical trials by Mary Catterall at the Hammersmith Hospital in London indicated that fast neutron radiation had clinical advantages for certain malignant tumours. Following these early clinical trials, several cyclotron facilities were built in the 1980s for fast neutron therapy, for example at the University of Washington, Seattle, and at UCLA. Most of these newer machines use extracted cyclotron proton beams in the range 42 to 66 MeV with beam intensities of 15 to 60 microamps. The proton beams are transported to dedicated therapy rooms, where neutrons are produced from beryllium targets. Second-generation clinical trials showed that accurate neutron beam delivery to the tumour site is more critical than for photon therapy. In order to achieve precise beam geometries, the extracted proton beams have to be transported through a gantry which can rotate around the patient and deliver beams from any angle; also the neutron beam outline (''field shape'') must be adjusted to extremely irregular shapes using a flexible collimation system. A therapy procedure has to be appropriately organized, with physicians, radiotherapists, nurses, medical physicists and other staff in attendance; other specialized equipment, such as CT or MRI scanners and radiation simulators must be made available. Neutron therapy is usually performed only in radiation oncology departments of major medical centres

  10. Neutron radiography

    International Nuclear Information System (INIS)

    Alaa eldin, M.T.

    2011-01-01

    The digital processing of the neutron radiography images gives the possibility for data quantification. In this case an exact relation between the measured neutron attenuation and the real macroscopic attenuation coefficient for every point of the sample is required. The assumption that the attenuation of the neutron beam through the sample is exponential is valid only in an ideal case where a monochromatic beam, non scattering sample and non background contribution are assumed. In the real case these conditions are not fulfilled and in dependence on the sample material we have more or less deviation from the exponential attenuation law. Because of the high scattering cross-sections of hydrogen (σs=80.26 barn) for thermal neutrons, the problem with the scattered neutrons at quantitative radiography investigations of hydrogenous materials (as PE, Oil, H 2 O, etc) is not trivial. For these strong scattering materials the neutron beam attenuation is no longer exponential and a dependence of the macroscopic attenuation coefficient on the material thickness and on the distance between the sample and the detector appears. When quantitative radiography (2 D) or tomography investigations (3 D) are performed, some image correction procedures for a description of the scattering effect are required. This thesis presents a method that can be used to enhance the neutron radiography image for objects with high scattering materials like hydrogen, carbon and other light materials. This method uses the Monte Carlo code, MCNP5, to simulate the neutron radiography process and get the flux distribution for each pixel of the image and determine the scattered neutrons distribution that causes the image blur and then subtract it from the initial image to improve its quality.

  11. Development of a Fresnel lens for cold neutrons based on neutron refractive optics

    International Nuclear Information System (INIS)

    Oku, T.; Morita, S.; Moriyasu, S.; Yamagata, Y.; Ohmori, H.; Takizawa, Y.; Shimizu, H.M.; Hirota, T.; Kiyanagi, Y.; Ino, T.; Furusaka, M.; Suzuki, J.

    2001-01-01

    We have developed compound refractive lenses (CRLs) for cold neutrons, which are made of vitreous silica and have an effective potential of (90.1-2.7x10 -4 i) neV. In the case of compound refractive optics, neutron absorption by the material deteriorates lens performance. Thus, to prevent an increase in neutron absorption with increasing beam size, we have developed Fresnel lenses using the electrolytic in-process dressing grinding technique. The lens characteristics were carefully investigated with experimental and numerical simulation studies. The lenses functioned as a neutron focusing lens, and the focal length of 14 m was obtained with a 44-element series of the Fresnel lenses for 10 A neutrons. Moreover, good neutron transmission of 0.65 for 15 A neutrons was obtained due to the shape effect. According to comprehensive analysis of the obtained results, it is possible to realize a CRL for practical use by choosing a suitable lens shape and material

  12. Development of a bandwidth limiting neutron chopper for CSNS

    Science.gov (United States)

    Wang, P.; Yang, B.; Cai, W. L.

    2015-08-01

    Bandwidth limiting neutron choppers are indispensable key equipments for the time-of-flight neutron scattering spectrometers of China Spallation Neutron Source (CSNS). The main principle is to chop the neutron beam to limit the neutron wavelength bandwidth at the neutron detector. We have successfully developed a bandwidth limiting neutron chopper for CSNS in the CSNS advance research project II. The transmission rate of the neutron absorbing coating is less than 1×10-4 (for 1 angstrom neutron). The phase control accuracy is ±0.084° (±9.4 μs at 25 Hz). The dynamic balance grade is G1.0. Various experimental technical features have met the design requirements, and it also runs stably and reliably during the long-term tests.

  13. Development of a bandwidth limiting neutron chopper for CSNS

    International Nuclear Information System (INIS)

    Wang, P.; Yang, B.; Cai, W.L.

    2015-01-01

    Bandwidth limiting neutron choppers are indispensable key equipments for the time-of-flight neutron scattering spectrometers of China Spallation Neutron Source (CSNS). The main principle is to chop the neutron beam to limit the neutron wavelength bandwidth at the neutron detector. We have successfully developed a bandwidth limiting neutron chopper for CSNS in the CSNS advance research project II. The transmission rate of the neutron absorbing coating is less than 1×10 −4 (for 1 angstrom neutron). The phase control accuracy is ±0.084° (±9.4 μs at 25 Hz). The dynamic balance grade is G1.0. Various experimental technical features have met the design requirements, and it also runs stably and reliably during the long-term tests

  14. Nuclear-physical investigations with oriented nuclei and polarized neutrons

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Pikel'ner, L.B.; Sharapov, Eh.I.

    1980-01-01

    Several experiments with oriented nuclei and polarized neutrons are considered, as well as some methods of polarization of neutrons and nuclei. Experiments on the study of spin dependence of neutron cross sections for fissionable and nonfissionable nuclei interaction of polarized neutrons with polarized nuclei as well as measurement of magnetic momenta of compound-states of rare-earth nuclei. Described are some investigations with thermal neutrons: study on spin dependence of neutron scattering length with nuclei and gamma radiation of neutron radiation capture. Difficulties of production of high-intensive polarized neutron beams and construction of oriented targets are noted. Neutron polarization by transmission of them through a polarized proton target is the most universal method (out of existing methods) in the energy range under consideration [ru

  15. Neutronics codes

    International Nuclear Information System (INIS)

    Buckel, G.

    1983-01-01

    The objectives are the development, testing and cultivation of reliable, efficient and user-optimized neutron-physical calculation methods and conformity with users' requirements concerning design of power reactors, planning and analysis of experiments necessary for their protection as well as research on physical key problems. A short outline of available computing programmes for the following objectives is given: - Provision of macroscopic group constants, - Calculation of neutron flux distribution in transport theory and diffusion approximation, - Evaluation of neutron flux-distribution, - Execution of disturbance calculations for the determination reactivity coefficients, and - graphical representation of results. (orig./RW) [de

  16. Modulation Spectrometry Of Neutrons With Diffractometry Applications

    International Nuclear Information System (INIS)

    Hiismaki, P.

    1997-01-01

    Modulation spectrometry of neutrons refers to a measuring principle, characterized by classification of neutron histories in a probabilistic way, not the usual deterministic way. In order to accomplish this, neutron beams entering the sample are modulated by high-transmission, white-beam selectors of the multislit type, such as Fourier or statistical choppers or high-frequency-modulated spin-flippers. In this scheme it is impossible to decide in a unique way through which particular slit any single neutron passed, but the distribution of histories for a large population of neutrons can nevertheless be correctly obtained, by classifying each conceivable history either as a high-probability or as a low-probability event,based on the actual observed state of the neutron selector. So far the principle has been successfully applied to powder diffraction, but it seems to offer extra degrees of freedom if applied to measuring dispersion curves of coherent excitations, such as phonons in single crystals

  17. J-NSE: Neutron spin echo spectrometer

    Directory of Open Access Journals (Sweden)

    Olaf Holderer

    2015-08-01

    Full Text Available Neutron Spin-Echo (NSE spectroscopy is well known as the only neutron scattering technique that achieves energy resolution of several neV. By using the spin precession of polarized neutrons in magnetic field one can measure tiny velocity changes of the individual neutron during the scattering process. Contrary to other inelastic neutron scattering techniques, NSE measures the intermediate scattering function S(Q,t in reciprocal space and time directly. The Neutron Spin-Echo spectrometer J-NSE, operated by JCNS, Forschungszentrum Jülich at the Heinz Maier-Leibnitz Zentrum (MLZ in Garching, covers a time range (2 ps to 200 ns on length scales accessible by small angle scattering technique. Along with conventional NSE spectroscopy that allows bulk measurements in transmission mode, J-NSE offers a new possibility - gracing incidence spin echo spectroscopy (GINSENS, developed to be used as "push-button" option in order to resolve the depth dependent near surface dynamics.

  18. Electrical transmission

    Energy Technology Data Exchange (ETDEWEB)

    Sayers, D P

    1960-05-01

    After briefly tracing the history of electricity transmission, trends in high voltage transmission and experiments being conducted on 650 kV are discussed. 5000 miles of the U.K. grid are operated at 132 kV and 1000 at 275 kV, ultimately to provide a super grid at 380 kV. Problems are insulation, radio interference and the cost of underground lines (16 times that of overhead lines). Also considered are the economics of the grid as a means of transporting energy and as a means of spreading the peak load over the power stations in the most efficient manner. Finally, the question of amenities is discussed.

  19. Influence of random setup error on dose distribution

    International Nuclear Information System (INIS)

    Zhai Zhenyu

    2008-01-01

    Objective: To investigate the influence of random setup error on dose distribution in radiotherapy and determine the margin from ITV to PTV. Methods: A random sample approach was used to simulate the fields position in target coordinate system. Cumulative effect of random setup error was the sum of dose distributions of all individual treatment fractions. Study of 100 cumulative effects might get shift sizes of 90% dose point position. Margins from ITV to PTV caused by random setup error were chosen by 95% probability. Spearman's correlation was used to analyze the influence of each factor. Results: The average shift sizes of 90% dose point position was 0.62, 1.84, 3.13, 4.78, 6.34 and 8.03 mm if random setup error was 1,2,3,4,5 and 6 mm,respectively. Univariate analysis showed the size of margin was associated only by the size of random setup error. Conclusions: Margin of ITV to PTV is 1.2 times random setup error for head-and-neck cancer and 1.5 times for thoracic and abdominal cancer. Field size, energy and target depth, unlike random setup error, have no relation with the size of the margin. (authors)

  20. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    of desired information. In the course, an introduction into the method and an overview on selected instruments at large scale facilities will be presented. Examples will be given that illustrate the potential of the method, mostly based on organic films. Results from the investigation of layered films......Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... films or films with magnetic properties. The reason is the peculiar property of neutron light since the mass of a neutron is close to the one of a proton, and since it bears a magnetic moment. The optical properties of matter, when interacting with neutrons, are described by a refractive index...

  1. Neutron scattering

    International Nuclear Information System (INIS)

    Furrer, A.

    1993-01-01

    This report contains the text of 16 lectures given at the Summer School and the report on a panel discussion entitled ''the relative merits and complementarities of x-rays, synchrotron radiation, steady- and pulsed neutron sources''. figs., tabs., refs

  2. Analysis of patient setup accuracy using electronic portal imaging device

    International Nuclear Information System (INIS)

    Onogi, Yuzo; Aoki, Yukimasa; Nakagawa, Keiichi

    1996-01-01

    Radiation therapy is performed in many fractions, and accurate patient setup is very important. This is more significant nowadays because treatment planning and radiation therapy are more precisely performed. Electronic portal imaging devices and automatic image comparison algorithms let us analyze setup deviations quantitatively. With such in mind we developed a simple image comparison algorithm. Using 2459 electronic verification images (335 ports, 123 treatment sites) generated during the past three years at our institute, we evaluated the results of the algorithm, and analyzed setup deviations according to the area irradiated, use of a fixing device (shell), and arm position. Calculated setup deviation was verified visually and their fitness was classified into good, fair, bad, and incomplete. The result was 40%, 14%, 22%, 24% respectively. Using calculated deviations classified as good (994 images), we analyzed setup deviations. Overall setup deviations described in 1 SD along axes x, y, z, was 1.9 mm, 2.5 mm, 1.7 mm respectively. We classified these deviations into systematic and random components, and found that random error was predominant in our institute. The setup deviations along axis y (cranio-caudal direction) showed larger distribution when treatment was performed with the shell. Deviations along y (cranio-caudal) and z (anterior-posterior) had larger distribution when treatment occurred with the patient's arm elevated. There was a significant time-trend error, whose deviations become greater with time. Within all evaluated ports, 30% showed a time-trend error. Using an electronic portal imaging device and automatic image comparison algorithm, we are able to analyze setup deviations more precisely and improve setup method based on objective criteria. (author)

  3. Collider shot setup for Run 2 observations and suggestions

    International Nuclear Information System (INIS)

    Annala, J.; Joshel, B.

    1996-01-01

    This note is intended to provoke discussion on Collider Run II shot setup. We hope this is a start of activities that will converge on a functional description of what is needed for shot setups in Collider Run II. We will draw on observations of the present shot setup to raise questions and make suggestions for the next Collider run. It is assumed that the reader has some familiarity with the Collider operational issues. Shot setup is defined to be the time between the end of a store and the time the Main Control Room declares colliding beams. This is the time between Tevatron clock events SCE and SCB. This definition does not consider the time experiments use to turn on their detectors. This analysis was suggested by David Finley. The operational scenarios for Run II will require higher levels of reliability and speed for shot setup. See Appendix I and II. For example, we estimate that a loss of 3 pb -1 /week (with 8 hour stores) will occur if shot setups take 90 minutes instead of 30 minutes. In other words: If you do 12 shots for one week and accept an added delay of one minute in each shot, you will loose more than 60 nb -1 for that week alone (based on a normal shot setup of 30 minutes). These demands should lead us to be much more pedantic about all the factors that affect shot setups. Shot setup will be viewed as a distinct process that is composed of several inter- dependent 'components': procedures, hardware, controls, and sociology. These components don't directly align with the different Accelerator Division departments, but are topical groupings of the needed accelerator functions. Defining these components, and categorizing our suggestions within them, are part of the goal of this document. Of course, some suggestions span several of these components

  4. Polarimetric neutron spin echo: Feasibility and first results

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, C. [Hahn-Meitner Institut Berlin, Glienickerstr. 100, 14109 Berlin (Germany)], E-mail: pappas@hmi.de; Lelievre-Berna, E. [Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble (France); Bentley, P. [Hahn-Meitner Institut Berlin, Glienickerstr. 100, 14109 Berlin (Germany); Bourgeat-Lami, E. [Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble (France); Moskvin, E. [Hahn-Meitner Institut Berlin, Glienickerstr. 100, 14109 Berlin (Germany); PNPI, 188300 Gatchina, Leningrad District (Russian Federation); Thomas, M. [Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble (France); Grigoriev, S.; Dyadkin, V. [PNPI, 188300 Gatchina, Leningrad District (Russian Federation)

    2008-07-21

    Neutron Spin Echo (NSE) spectroscopy uses polarized neutrons and accordingly polarization analysis is an intrinsic feature of NSE. However, the multifaceted dynamics of antiferromagnets and helimagnets require more than the classical NSE set-up. Here we present the feasibility test and first results of a new and powerful technique: Polarimetric NSE, obtained by combining the wide angle NSE spectrometer SPAN, developed at HMI with the zero-field polarimeter Cryopad developed at ILL.

  5. Polarimetric neutron spin echo: Feasibility and first results

    International Nuclear Information System (INIS)

    Pappas, C.; Lelievre-Berna, E.; Bentley, P.; Bourgeat-Lami, E.; Moskvin, E.; Thomas, M.; Grigoriev, S.; Dyadkin, V.

    2008-01-01

    Neutron Spin Echo (NSE) spectroscopy uses polarized neutrons and accordingly polarization analysis is an intrinsic feature of NSE. However, the multifaceted dynamics of antiferromagnets and helimagnets require more than the classical NSE set-up. Here we present the feasibility test and first results of a new and powerful technique: Polarimetric NSE, obtained by combining the wide angle NSE spectrometer SPAN, developed at HMI with the zero-field polarimeter Cryopad developed at ILL

  6. Neutron storage

    International Nuclear Information System (INIS)

    Strelkov, A.V.

    2004-01-01

    The report is devoted to neutron storage (NS) and describes the history of experiments on the NS development. Great attention is paid to ultracold neutron (UCN) storage. The experiments on the UCN generation, transport, spectroscopy, storage and detection are described. Experiments on searching the UCN electric-dipole moment and electric charge are continued. Possible using of UCN for studying the nanoparticles is discussed [ru

  7. Neutron radiography

    International Nuclear Information System (INIS)

    Bayon, G.

    1989-01-01

    Neutronography or neutron radiography, a non-destructive test method which is similar in its principle to conventional X-ray photography, presently occupies a marginal position among non-destructive test methods (NDT) (no source of suitable performance or cost). Neutron radiography associated with the ORPHEE reactor permits industrial testing; it can very quickly meet a cost requirement comparable to that of conventional test methods. In 1988, 2500 parts were tested on this unit [fr

  8. Non-destructive studies of fuel pellets by neutron resonance absorption radiography and thermal neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California, Berkeley, CA 94720 (United States); Vogel, S.C.; Mocko, M.; Bourke, M.A.M.; Yuan, V.; Nelson, R.O.; Brown, D.W. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2013-09-15

    Many isotopes in nuclear materials exhibit strong peaks in neutron absorption cross sections in the epithermal energy range (1–1000 eV). These peaks (often referred to as resonances) occur at energies specific to particular isotopes, providing a means of isotope identification and concentration measurements. The high penetration of epithermal neutrons through most materials is very useful for studies where samples consist of heavy-Z elements opaque to X-rays and sometimes to thermal neutrons as well. The characterization of nuclear fuel elements in their cladding can benefit from the development of high resolution neutron resonance absorption imaging (NRAI), enabled by recently developed spatially-resolved neutron time-of-flight detectors. In this technique the neutron transmission of the sample is measured as a function of spatial location and of neutron energy. In the region of the spectra that borders the resonance energy for a particular isotope, the reduction in transmission can be used to acquire an image revealing the 2-dimensional distribution of that isotope within the sample. Provided that the energy of each transmitted neutron is measured by the neutron detector used and the irradiated sample possesses neutron absorption resonances, then isotope-specific location maps can be acquired simultaneously for several isotopes. This can be done even in the case where samples are opaque or have very similar transmission for thermal neutrons and X-rays or where only low concentrations of particular isotopes are present (<0.1 atom% in some cases). Ultimately, such radiographs of isotope location can be utilized to measure isotope concentration, and can even be combined to produce three-dimensional distributions using tomographic methods. In this paper we present the proof-of-principle of NRAI and transmission Bragg edge imaging performed at Flight Path 5 (FP5) at the LANSCE pulsed, moderated neutron source of Los Alamos National Laboratory. A set of urania mockup

  9. Automated PCR setup for forensic casework samples using the Normalization Wizard and PCR Setup robotic methods.

    Science.gov (United States)

    Greenspoon, S A; Sykes, K L V; Ban, J D; Pollard, A; Baisden, M; Farr, M; Graham, N; Collins, B L; Green, M M; Christenson, C C

    2006-12-20

    Human genome, pharmaceutical and research laboratories have long enjoyed the application of robotics to performing repetitive laboratory tasks. However, the utilization of robotics in forensic laboratories for processing casework samples is relatively new and poses particular challenges. Since the quantity and quality (a mixture versus a single source sample, the level of degradation, the presence of PCR inhibitors) of the DNA contained within a casework sample is unknown, particular attention must be paid to procedural susceptibility to contamination, as well as DNA yield, especially as it pertains to samples with little biological material. The Virginia Department of Forensic Science (VDFS) has successfully automated forensic casework DNA extraction utilizing the DNA IQ(trade mark) System in conjunction with the Biomek 2000 Automation Workstation. Human DNA quantitation is also performed in a near complete automated fashion utilizing the AluQuant Human DNA Quantitation System and the Biomek 2000 Automation Workstation. Recently, the PCR setup for casework samples has been automated, employing the Biomek 2000 Automation Workstation and Normalization Wizard, Genetic Identity version, which utilizes the quantitation data, imported into the software, to create a customized automated method for DNA dilution, unique to that plate of DNA samples. The PCR Setup software method, used in conjunction with the Normalization Wizard method and written for the Biomek 2000, functions to mix the diluted DNA samples, transfer the PCR master mix, and transfer the diluted DNA samples to PCR amplification tubes. Once the process is complete, the DNA extracts, still on the deck of the robot in PCR amplification strip tubes, are transferred to pre-labeled 1.5 mL tubes for long-term storage using an automated method. The automation of these steps in the process of forensic DNA casework analysis has been accomplished by performing extensive optimization, validation and testing of the

  10. Optimization of the Army’s Fast Neutron Moderator for Radiography

    Science.gov (United States)

    2013-02-26

    TECHNOLOGY DEVELOPMENTS 13 PNL Generator / Moderator Design 13 CONCLUSIONS 15 REFERENCES 16 LIST OF SYMBOLS, ABBREVIATIONS...and x-ray image 12 Figure 6: Second half comparison of neutron, processed, and x-ray image 13 Figure 7: The initial setup of the PNL neutron...reactor facility; for example, muntions and weapon systems that contain energetic materials. TECHNOLOGY DEVELOPMENTS: PNL Generator / Moderator

  11. Neutron Scattering

    International Nuclear Information System (INIS)

    Fayer, Michael J.; Gee, Glendon W.

    2005-01-01

    The neutron probe is a standard tool for measuring soil water content. This article provides an overview of the underlying theory, describes the methodology for its calibration and use, discusses example applications, and identifies the safety issues. Soil water makes land-based life possible by satisfying plant water requirements, serving as a medium for nutrient movement to plant roots and nutrient cycling, and controlling the fate and transport of contaminants in the soil environment. Therefore, a successful understanding of the dynamics of plant growth, nutrient cycling, and contaminant behavior in the soil requires knowledge of the soil water content as well as its spatial and temporal variability. After more than 50 years, neutron probes remain the most reliable tool available for field monitoring of soil water content. Neutron probes provide integrated measurements over relatively large volumes of soil and, with proper access, allow for repeated sampling of the subsurface at the same locations. The limitations of neutron probes include costly and time-consuming manual operation, lack of data automation, and costly regulatory requirements. As more non-radioactive systems for soil water monitoring are developed to provide automated profiling capabilities, neutron-probe usage will likely decrease. Until then, neutron probes will continue to be a standard for reliable measurements of field water contents in soils around the globe

  12. The intensive DT neutron generator of TU Dresden

    Science.gov (United States)

    Klix, Axel; DÖring, Toralf; Domula, Alexander; Zuber, Kai

    2018-01-01

    TU Dresden operates an accelerator-based intensive DT neutron generator. Experimental activities comprise investigation into material activation and decay, neutron and photon transport in matter and R&D work on radiation detectors for harsh environments. The intense DT neutron generator is capable to produce a maximum of 1012 n/s. The neutron source is a solid-type water-cooled tritium target based on a titanium matrix on a copper carrier. The neutron yield at a typical deuteron beam current of 1 mA is of the order of 1011 n/s in 4Π. A pneumatic sample transport system is available for short-time irradiations and connected to wo high-purity germanium detector spectrometers for the measurement of induced activities. The overall design of the experimental hall with the neutron generator allows a flexible setup of experiments including the possibility of investigating larger structures and cooled samples or samples at high temperatures.

  13. Direct evidence for inelastic neutron 'acceleration' by 177Lum

    International Nuclear Information System (INIS)

    Roig, O.; Meot, V.; Rosse, B.; Belier, G.; Daugas, J.-M.; Morel, P.; Letourneau, A.; Menelle, A.

    2011-01-01

    The inelastic neutron acceleration cross section on the long-lived metastable state of 177 Lu has been measured using a direct method. High-energy neutrons have been detected using a specially designed setup placed on a cold neutron beam extracted from the ORPHEE reactor in Saclay. The 146±19 b inelastic neutron acceleration cross section in the ORPHEE cold neutron flux confirms the high cross section for this process on the 177 Lu m isomer. The deviation from the 258±58 b previously published obtained for a Maxwellian neutron flux at a 323 K temperature could be explained by the presence of a low energy resonance. Resonance parameters are deduced and discussed.

  14. Neutron-neutron probe for uranium exploration

    International Nuclear Information System (INIS)

    Smith, R.C.

    1979-01-01

    A neutron activation probe for assaying the amount of fissionable isotopes in an ore body is described which comprises a casing which is movable through a borehole in the ore body, a neutron source and a number of delayed neutron detectors arranged colinearly in the casing below the neutron source for detecting delayed neutrons

  15. Magneto-optical detection of the relaxation dynamics of alloy nanoparticles with a high-stability magnetic circular dichroism setup

    International Nuclear Information System (INIS)

    Cavigli, L.; Julian Fernandez, C. de; Gatteschi, D.; Gurioli, M.; Sangregorio, C.; Mattei, G.; Mazzoldi, P.; Bogani, L.

    2007-01-01

    We present a versatile high-stability and high-sensitivity magneto-optical setup that allows transmission and reflection measurements at high fields and low temperatures. We apply the technique to measure the decay in time of the magnetization of highly monodisperse 3.3nm Co 33 Ni 67 alloy nanoparticles embedded in a silica host. We demonstrate the possibility of observing the dynamics of the magnetization over a macroscopic timescale in dilute samples, where other techniques are unavailable

  16. Magneto-optical detection of the relaxation dynamics of alloy nanoparticles with a high-stability magnetic circular dichroism setup

    Science.gov (United States)

    Cavigli, L.; de Julián Fernández, C.; Gatteschi, D.; Gurioli, M.; Sangregorio, C.; Mattei, G.; Mazzoldi, P.; Bogani, L.

    2007-09-01

    We present a versatile high-stability and high-sensitivity magneto-optical setup that allows transmission and reflection measurements at high fields and low temperatures. We apply the technique to measure the decay in time of the magnetization of highly monodisperse 3.3 nm Co33Ni67 alloy nanoparticles embedded in a silica host. We demonstrate the possibility of observing the dynamics of the magnetization over a macroscopic timescale in dilute samples, where other techniques are unavailable.

  17. A user-friendly technical set-up for infrared photography of forensic findings.

    Science.gov (United States)

    Rost, Thomas; Kalberer, Nicole; Scheurer, Eva

    2017-09-01

    Infrared photography is interesting for a use in forensic science and forensic medicine since it reveals findings that normally are almost invisible to the human eye. Originally, infrared photography has been made possible by the placement of an infrared light transmission filter screwed in front of the camera objective lens. However, this set-up is associated with many drawbacks such as the loss of the autofocus function, the need of an external infrared source, and long exposure times which make the use of a tripod necessary. These limitations prevented up to now the routine application of infrared photography in forensics. In this study the use of a professional modification inside the digital camera body was evaluated regarding camera handling and image quality. This permanent modification consisted of the replacement of the in-built infrared blocking filter by an infrared transmission filter of 700nm and 830nm, respectively. The application of this camera set-up for the photo-documentation of forensically relevant post-mortem findings was investigated in examples of trace evidence such as gunshot residues on the skin, in external findings, e.g. hematomas, as well as in an exemplary internal finding, i.e., Wischnewski spots in a putrefied stomach. The application of scattered light created by indirect flashlight yielded a more uniform illumination of the object, and the use of the 700nm filter resulted in better pictures than the 830nm filter. Compared to pictures taken under visible light, infrared photographs generally yielded better contrast. This allowed for discerning more details and revealed findings which were not visible otherwise, such as imprints on a fabric and tattoos in mummified skin. The permanent modification of a digital camera by building in a 700nm infrared transmission filter resulted in a user-friendly and efficient set-up which qualified for the use in daily forensic routine. Main advantages were a clear picture in the viewfinder, an auto

  18. Impact of the frequency of online verifications on the patient set-up accuracy and set-up margins

    Directory of Open Access Journals (Sweden)

    Mohamed Adel

    2011-08-01

    Full Text Available Abstract Purpose The purpose of the study was to evaluate the patient set-up error of different anatomical sites, to estimate the effect of different frequencies of online verifications on the patient set-up accuracy, and to calculate margins to accommodate for the patient set-up error (ICRU set-up margin, SM. Methods and materials Alignment data of 148 patients treated with inversed planned intensity modulated radiotherapy (IMRT or three-dimensional conformal radiotherapy (3D-CRT of the head and neck (n = 31, chest (n = 72, abdomen (n = 15, and pelvis (n = 30 were evaluated. The patient set-up accuracy was assessed using orthogonal megavoltage electronic portal images of 2328 fractions of 173 planning target volumes (PTV. In 25 patients, two PTVs were analyzed where the PTVs were located in different anatomical sites and treated in two different radiotherapy courses. The patient set-up error and the corresponding SM were retrospectively determined assuming no online verification, online verification once a week and online verification every other day. Results The SM could be effectively reduced with increasing frequency of online verifications. However, a significant frequency of relevant set-up errors remained even after online verification every other day. For example, residual set-up errors larger than 5 mm were observed on average in 18% to 27% of all fractions of patients treated in the chest, abdomen and pelvis, and in 10% of fractions of patients treated in the head and neck after online verification every other day. Conclusion In patients where high set-up accuracy is desired, daily online verification is highly recommended.

  19. Impact of the frequency of online verifications on the patient set-up accuracy and set-up margins

    International Nuclear Information System (INIS)

    Rudat, Volker; Hammoud, Mohamed; Pillay, Yogin; Alaradi, Abdul Aziz; Mohamed, Adel; Altuwaijri, Saleh

    2011-01-01

    The purpose of the study was to evaluate the patient set-up error of different anatomical sites, to estimate the effect of different frequencies of online verifications on the patient set-up accuracy, and to calculate margins to accommodate for the patient set-up error (ICRU set-up margin, SM). Alignment data of 148 patients treated with inversed planned intensity modulated radiotherapy (IMRT) or three-dimensional conformal radiotherapy (3D-CRT) of the head and neck (n = 31), chest (n = 72), abdomen (n = 15), and pelvis (n = 30) were evaluated. The patient set-up accuracy was assessed using orthogonal megavoltage electronic portal images of 2328 fractions of 173 planning target volumes (PTV). In 25 patients, two PTVs were analyzed where the PTVs were located in different anatomical sites and treated in two different radiotherapy courses. The patient set-up error and the corresponding SM were retrospectively determined assuming no online verification, online verification once a week and online verification every other day. The SM could be effectively reduced with increasing frequency of online verifications. However, a significant frequency of relevant set-up errors remained even after online verification every other day. For example, residual set-up errors larger than 5 mm were observed on average in 18% to 27% of all fractions of patients treated in the chest, abdomen and pelvis, and in 10% of fractions of patients treated in the head and neck after online verification every other day. In patients where high set-up accuracy is desired, daily online verification is highly recommended

  20. New education system for construction of optical holography setup – Tangible learning with Augmented Reality

    International Nuclear Information System (INIS)

    Yamaguchi, Takeshi; Yoshikawa, Hiroshi

    2013-01-01

    In case of teaching optical system construction, it is difficult to prepare the optical components for the attendance student. However the tangible learning is very important to master the optical system construction. It helps learners understand easily to use an inexpensive learning system that provides optical experiments experiences. Therefore, we propose the new education system for construction of optical setup with the augmented reality. To use the augmented reality, the proposed system can simulate the optical system construction by the direct hand control. Also, this system only requires an inexpensive web camera, printed makers and a personal computer. Since this system does not require the darkroom and the expensive optical equipments, the learners can study anytime, anywhere when they want to do. In this paper, we developed the system that can teach the optical system construction of the Denisyuk hologram and 2-step transmission type hologram. For the tangible learning and the easy understanding, the proposed system displays the CG objects of the optical components on the markers which are controlled by the learner's hands. The proposed system does not only display the CG object, but also display the light beam which is controlled by the optical components. To display the light beam that is hard to be seen directly, the learners can confirm about what is happening by the own manipulation. For the construction of optical holography setup, we arrange a laser, mirrors, a PBS (polarizing beam splitter), lenses, a polarizer, half-wave plates, spatial filters, an optical power meter and a recording plate. After the construction, proposed system can check optical setup correctly. In comparison with the learners who only read a book, the learners who use the system can construct the optical holography setup more quickly and correctly.

  1. The COMPASS Setup for Physics with Hadron Beams

    CERN Document Server

    Abbon, Ph.; Akhunzyanov, R.; Alexandrov, Yu.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Burtin, E.; Capozza, L.; Ciliberti, P.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Cotte, D.; Crespo, M.L.; Curiel, Q.; Dafni, T.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Desforge, D.; Dinkelbach, A.M.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Durand, D.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Gatignon, L.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giganon, A.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Gregori, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Hoppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jorg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kroumchtein, Z.V.; Kuchinski, N.; Kuhn, R.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Menon, G.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Moinester, M.A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nunes, Ana Sofia; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesaro, G.; Pesaro, V.; Peshekhonov, D.V.; Pires, C.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Reymond, J-M.; Rocco, E.; Rossiyskaya, N.S.; Rousse, J.Y.; Ryabchikov, D.I.; Rychter, A.; Samartsev, A.; Samoylenko, V.D.; Sandacz, A.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schluter, T.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Schott, M.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tskhay, V.; Uhl, S.; Uman, I.; Virius, M.; Wang, L.; Weisrock, T.; Weitzel, Q.; Wilfert, M.; Windmolders, R.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2015-01-01

    The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successfully used with positive and negative hadron beams and with liquid hydrogen and solid nuclear targets. This article describes the new and upgraded detectors and auxiliary equipment, outlines the reconstruction procedures used, and summarises the general performance of the setup.

  2. Neutron cross section measurement using the Oak Ridge Electron Linear Accelerator

    International Nuclear Information System (INIS)

    Winters, R.R.

    1991-08-01

    This report discusses: argon-40 -- neutron reaction total cross sections from 6.9 kev to 50 kev; The maxwellian averaged neutron capture cross section of oxygen-16; r-matrix parameter analysis of the lead-208 -- neutron reaction cross section measurement; r-matrix parameter analysis of the ORELA neutron transmission zirconium-90 low energy measurement; porting computer codes from the HP9000 to the IBM RISC/6000;and measurements of neutron reactions with strontium-88, zirconium-90, and calcium-40

  3. A Test Setup for Quality Assurance of Front End Hybrids

    CERN Document Server

    Axer, Markus; Camps, Clemens; Commichau, Volker; Flügge, Günter; Franke, Torsten; Hangarter, Klaus; Ilgin, Can; Mnich, Joachim; Niehusmann, Jan; Poettgens, Michael; Schorn, Peter; Schulte, Reiner; Struczinski, Wolfgang

    2001-01-01

    The APV Readout Control (ARC) Test Setup is a compact, cost efficient test and diagnostic tool which is suited for full operation and characterisation of FE hybrids and Si-Detector modules. This note gives an overview of the construction and the features of the test facility. Based on the ARC setup and the experience gained with one prototype FE hybrid, possible quality assurance scenarios for short and long term tests of FE hybrids are also presented.

  4. Setup uncertainties: consequences for multi-isocentre stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Ebert, M.A.; Harper, C.S.

    2000-01-01

    Full text: Beam data for use in dose calculations by planning systems is generally measured under static and controlled conditions. Yet, patient motion and setup uncertainties will effectively blur the resulting dose distributions leading to a discrepancy between planned and delivered dose distributions. This is particularly so for stereotactic radiotherapy where small well-defined fields are used. When multiple isocentres are used (possibly for larger irregular lesions), relative motion of isocentres due to setup variations may have deleterious effects on the intended radiation delivery. The influence of setup uncertainties was examined by performing a three-dimensional convolution of measured off-axis ratio (OAR) data with a Maxwellian distribution, with standard deviations representing several feasible levels of inaccuracy in patient setup. A sample of patient plans (predominantly multi-isocentre plans) were then considered using original (measured) OAR data, and then modified data in order to observe the resulting effect. The effect of systematic localisation error was also considered by examining resulting DVHs as isocentres were shifted by fixed amounts. In all cases considered, the maximum dose varied quite minimally with increase in setup error with the variation decreasing with increasing high-dose volume. The minimum dose however varied more significantly, and this has serious consequences for dose prescription as the minimum dose can be the controlling factor in treatment efficacy. For multi-isocentre plans, the degree of non-uniformity generated by setup error was not as significant as originally expected. This is in part due to the non-uniformity already present in such plans to begin with. Through incorporation of the effect of setup error into planning data, the influence of setup variations on dose distributions for multi-isocentre treatments has been determined. This influence should be considered when creating plans based on the level of spatial

  5. Accuracy in tangential breast treatment set-up

    International Nuclear Information System (INIS)

    Tienhoven, G. van; Lanson, J.H.; Crabeels, D.; Heukelom, S.; Mijnheer, B.J.

    1991-01-01

    To test accuracy and reproducibility of tangential breast treatment set-up used in The Netherlands Cancer Institute, a portal imaging study was performed in 12 patients treated for early stage breast cancer. With an on-line electronic portal imaging device (EPID) images were obtained of each patient in several fractions and compared with simulator films and with each other. In 5 patients multiple images (on the average 7) per fraction were obtained to evaluate set-up variations due to respiratory movement. The central lung distance (CLD) and other set-up parameters varied within 1 fraction about 1mm (1SD). The average variation of these parameters between various fractions was about 2 mm (1SD). The differences between simulator and treatment set-up over all patients and all fractions was on the average 2-3mm for the central beam edge to skin distance and CLD. It can be concluded that the tangential breast treatment set-up is very stable and reproducible and that respiration does not have a significant influence on treatment volume. EPID appears to be an adequate tool for studies of treatment set-up accuracy like this. (author). 35 refs.; 2 figs.; 3 tabs

  6. Using MASHA+TIMEPIX Setup for Registration Beta Decay Isotopes Produced in Heavy Ion Induced Reactions

    Science.gov (United States)

    Rodin, A. M.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Itkis, M. G.; Novoselov, A. S.; Oganessian, Yu. Ts.; Salamatin, V. S.; Stepantsov, S. V.; Vedeneev, V. Yu.; Yukhimchuk, S. A.; Krupa, L.; Granja, C.; Pospisil, S.; Kliman, J.; Motycak, S.; Sivacek, I.

    2015-06-01

    Radon and mercury isotopes were produced in multi nucleon transfer (48Ca + 232Th) and complete fusion (48Ca + naturalNd) reactions, respectively. The isotopes with given masses were detected using two detectors: a multi-strip detector of the well-type (made in CANBERRA) and a position-sensitive quantum counting hybrid pixel detector of the TIMEPIX type. The isotopes implanted into the detectors then emit alpha- and betaparticles until reaching the long lived isotopes. The position of the isotopes, the tracks, the time and energy of beta-particles were measured and analyzed. A new software for the particle recognition and data analysis of experimental results was developed and used. It was shown that MASHA+ TIMEPIX setup is a powerful instrument for investigation of neutron-rich isotopes far from stability limits.

  7. In beam test of a transient magnetic field based g factor setup

    International Nuclear Information System (INIS)

    Saxena, Mansi; Mandal, S.; Siwal, Davinder; Kumar, Chandan; Goyal, Savi; Garg, Ritika; Khushboo; Rohilla, Aman; Kumar, Naveen; Kumar, S.; Chamoli, S.; Mandal, A.; Kumar, Rajesh; Barua, P.; Kumar, R.; Gujjar, R.; Bala, Indu; Singh, R.P.; Muralithar, S.; Rehman, Anisur; Roy, Minakshi

    2012-01-01

    Magnetic moments or g factors provide substantial information on the microscopic structure of the nuclei. Since the g factor is very different in sign and magnitude for neutrons and protons, therefore they can serve as a good indicator as to which nucleon contributes most to the wave function of that state. There are different techniques available for measuring g factors depending on the lifetime of the state involved. Using transient field technique we can measure the g factor of nuclei having a lifetime of the order of several hundreds of femto seconds. To measure the g factor of such low lifetime states we have designed and fabricated a setup based on the Transient Field Technique Measurement

  8. Study of neutron-rich $^{51−53}$ Ca isotopes via $\\beta$-decay

    CERN Multimedia

    The high Q$_\\beta$ values in certain neutron-rich regions of the chart of nuclides opens up the possibility to study states in the daughter nuclei which lie at high excitation energy, above the neutron separation threshold. We propose to perform spectroscopy of the $\\beta$-delayed neutron emission of the $^{51-53}$K isotopes to study the population of single-particle or particle-hole states both below and above the neutron separation threshold. The VANDLE neutron detector will be used in combination with the IDS tape station setup and Ge detectors.

  9. Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan

    Directory of Open Access Journals (Sweden)

    Yoshiaki Kiyanagi

    2018-03-01

    Full Text Available Neutron imaging has been recognized to be very useful to investigate inside of materials and products that cannot be seen by X-ray. New imaging methods using the pulsed structure of neutron sources based on accelerators has been developed also at compact accelerator-driven neutron sources and opened new application fields in neutron imaging. The world’s first dedicated imaging instrument at pulsed neutron sources was constructed at J-PARC in Japan owing to the development of such new methods. Then, usefulness of the compact accelerator-driven neutron sources in neutron science was recognized and such facilities were newly constructed in Japan. Now, existing and new sources have been used for neutron imaging. Traditional imaging and newly developed pulsed neutron imaging such as Bragg edge transmission have been applied to various fields by using compact and large neutron facilities. Here, compact accelerator-driven neutron sources used for imaging in Japan are introduced and some of their activities are presented.

  10. Determination of the total neutron cross section using average energy shift method for filtered neutron beam

    Directory of Open Access Journals (Sweden)

    О. О. Gritzay

    2016-12-01

    Full Text Available Development of the technique for determination of the total neutron cross sections from the measurements of sample transmission by filtered neutrons, scattered on hydrogen is described. One of the methods of the transmission determination TH52Cr from the measurements of 52Cr sample, using average energy shift method for filtered neutron beam is presented. Using two methods of the experimental data processing, one of which is presented in this paper (another in [1], there is presented a set of transmissions, obtained for different samples and for different measurement angles. Two methods are fundamentally different; therefore, we can consider the obtained processing results, using these methods as independent. In future, obtained set of transmissions is planned to be used for determination of the parameters E0, Гn and R/ of the resonance 52Cr at the energy of 50 keV.

  11. Status of the Neutron Imaging and Diffraction Instrument IMAT

    Science.gov (United States)

    Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.

    A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.

  12. Experimental setup and procedure for the measurement of the 7Be(n,p)7Li reaction at n_TOF

    Science.gov (United States)

    Barbagallo, M.; Andrzejewski, J.; Mastromarco, M.; Perkowski, J.; Damone, L. A.; Gawlik, A.; Cosentino, L.; Finocchiaro, P.; Maugeri, E. A.; Mazzone, A.; Dressler, R.; Heinitz, S.; Kivel, N.; Schumann, D.; Colonna, N.; Aberle, O.; Amaducci, S.; Audouin, L.; Bacak, M.; Balibrea, J.; Bečvář, F.; Bellia, G.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Cortés, G.; Cortés-Giraldo, M. A.; Cristallo, S.; Diakaki, M.; Dietz, M.; Domingo-Pardo, C.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Furman, V.; Göbel, K.; García, A. R.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Johnston, K.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui-Marco, J.; Lo Meo, S.; Lonsdale, S. J.; Macina, D.; Manna, A.; Marganiec, J.; Martínez, T.; Martins-Correia, J. G.; Masi, A.; Massimi, C.; Mastinu, P.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Pappalardo, A. D.; Patronis, N.; Pavlik, A.; Piscopo, M.; Porras, I.; Praena, J.; Quesada, J. M.; Radeck, D.; Rauscher, T.; Reifarth, R.; Robles, M. S.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schell, J.; Schillebeeckx, P.; Sedyshev, P.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weiss, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2018-04-01

    Following the completion of the second neutron beam line and the related experimental area (EAR2) at the n_TOF spallation neutron source at CERN, several experiments were planned and performed. The high instantaneous neutron flux available in EAR2 allows to investigate neutron induced reactions with charged particles in the exit channel even employing targets made out of small amounts of short-lived radioactive isotopes. After the successful measurement of the 7Be(n, α) α cross section, the 7Be(n,p)7Li reaction was studied in order to provide still missing cross section data of relevance for Big Bang Nucleosynthesis (BBN), in an attempt to find a solution to the cosmological Lithium abundance problem. This paper describes the experimental setup employed in such a measurement and its characterization.

  13. Neutron nuclear data measurements for criticality safety

    Directory of Open Access Journals (Sweden)

    Guber Klaus

    2017-01-01

    Full Text Available To support the US Department of Energy Nuclear Criticality Safety Program, neutron-induced cross section experiments were performed at the Geel Electron Linear Accelerator of the Joint Research Center Site Geel, European Union. Neutron capture and transmission measurements were carried out using metallic natural cerium and vanadium samples. Together with existing data, the measured data will be used for a new evaluation and will be submitted with covariances to the ENDF/B nuclear data library.

  14. neutron radiography

    International Nuclear Information System (INIS)

    Barton, J.P.

    1993-01-01

    Neutron radiography (or radiology) is a diverse filed that uses neutrons of various energies, subthermal, thermal, epithermal or fast in either steady state or pulsed mode to examine objects for industrial, medical, or other purposes, both microscopic and macroscopic. The applications include engineering design, biological studies, nondestructive inspection and materials evaluation. In the past decade, over 100 different centers in some 30 countries have published reports of pioneering activities using reactors, accelerators and isotopic neutron sources. While film transparency and electronic video are most common imaging methods for static or in motion objects respectively, there are other important data gathering techniques, including track etch, digital gauging and computed tomography. A survey of the world-wide progress shows the field to be gaining steadily in its diversity, its sophistication and its importance. (author)

  15. Studies of magnetism with inelastic scattering of cold neutrons

    International Nuclear Information System (INIS)

    Jacrot, B.

    1964-01-01

    Inelastic scattering of cold neutrons can be used to study some aspects of magnetism: spins waves, exchange integrals, vicinity of Curie point. After description of the experimental set-up, several experiments, in the fields mentioned above, are analysed. (author) [fr

  16. Recent results on neutron rich tin isotopes by laser spectroscopy

    CERN Document Server

    Roussière, B; Crawford, J E; Essabaa, S; Fedosseev, V; Geithner, W; Genevey, J; Girod, M; Huber, G; Horn, R; Kappertz, S; Lassen, J; Le Blanc, F; Lee, J K P; Le Scornet, G; Lettry, Jacques; Mishin, V I; Neugart, R; Obert, J; Oms, J; Ouchrif, A; Peru, S; Pinard, J; Ravn, H L; Sauvage, J; Verney, D

    2001-01-01

    Laser spectroscopy measurements have been performed on neutron rich tin isotopes using the COMPLIS experimental setup. The nuclear charge radii of the even-even isotopes from A=108 to 132 are compared to the results of macroscopic and microscopic calculations. The improvements and optimizations needed to perform the isotope shift measurement on $^{134}$Sn are presented.

  17. NEUTRONIC REACTOR

    Science.gov (United States)

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  18. Neutron dosimeter

    International Nuclear Information System (INIS)

    Bartko, J.; Schoch, K.F. Jr.; Congedo, T.V.; Anderson, S.L. Jr.

    1989-01-01

    This patent describes a nuclear reactor. It comprises a reactor core; a thermal shield surrounding the reactor core; a pressure vessel surrounding the thermal shield; a neutron dosimeter positioned outside of the thermal shield, the neutron dosimeter comprising a layer of fissile material and a second layer made of a material having an electrical conductivity which permanently varies as a function of its cumulative ion radiation dose; and means, outside the pressure vessel and electrically connected to the layer of second material, for measuring electrical conductivity of the layer of second material

  19. Prompt gamma cold neutron activation analysis applied to biological materials

    International Nuclear Information System (INIS)

    Rossbach, M.; Hiep, N.T.

    1992-01-01

    Cold neutrons at the external neutron guide laboratory (ELLA) of the KFA Juelich are used to demonstrate their profitable application for multielement characterization of biological materials. The set-up and experimental conditions of the Prompt Gamma Cold Neutron Activation Analysis (PGCNAA) device is described in detail. Results for C, H, N, S, K, B, and Cd using synthetic standards and the 'ratio' technique for calculation are reported for several reference materials and prove the method to be reliable and complementary with respect to the elements being determined by INAA. (orig.)

  20. Thermal neutron dose calculation in synovium membrane for BNCS

    International Nuclear Information System (INIS)

    Abdalla, Khalid; Naqvi, A.A.; Maalej, N.; El-Shahat, B.

    2006-01-01

    A D(d,n) reaction based setup has been optimized for Boron Neutron Capture Synovectomy (BNCS). The polyethylene moderator and graphite reflector sizes were optimized to deliver the highest ratio of thermal to fast neutron yield. The neutron dose was calculated at various depths in a knee phantom loaded with boron to determine therapeutic ratios of synovium dose/skin dose and synovium dose/bone dose. Normalized to same boron loading in synovium, the values of the therapeutic ratios obtained in the present study are 12-30 times higher than the published values. (author)

  1. Upgrade of the ultracold neutron source at the pulsed reactor TRIGA Mainz

    Energy Technology Data Exchange (ETDEWEB)

    Kahlenberg, J.; Ross, K.U.; Beck, M.; Heil, W.; Karch, J.; Kories, F.; Kretschmer, M. [Johannes Gutenberg University, Institute of Physics, Mainz (Germany); Ries, D. [Johannes Gutenberg University, Institute of Nuclear Chemistry, Mainz (Germany); Paul Scherrer Institute (PSI), Laboratory for Particle Physics, Villigen (Switzerland); ETH Zuerich, Institute for Particle Physics, Zuerich (Switzerland); Siemensen, C.; Geppert, C.; Karpuk, S.; Reich, T.; Sobolev, Y.; Trautmann, N. [Johannes Gutenberg University, Institute of Nuclear Chemistry, Mainz (Germany); Hild, N. [Paul Scherrer Institute (PSI), Laboratory for Particle Physics, Villigen (Switzerland); ETH Zuerich, Institute for Particle Physics, Zuerich (Switzerland); Lauss, B. [Paul Scherrer Institute (PSI), Laboratory for Particle Physics, Villigen (Switzerland)

    2017-11-15

    The performance of the upgraded solid deuterium ultracold neutron source at the pulsed reactor TRIGA Mainz is described. The current configuration stage comprises the installation of a He liquefier to run UCN experiments over long-term periods, the use of stainless steel neutron guides with improved transmission as well as sputter-coated non-magnetic {sup 58}NiMo alloy at the inside walls of the thermal bridge and the converter cup. The UCN yield was measured in a ''standard'' UCN storage bottle (stainless steel) with a volume of 32 litres outside the biological shield at the experimental area yielding UCN densities of 8.5/cm{sup 3}; an increase by a factor of 3.5 compared to the former setup. The measured UCN storage curve is in good agreement with the predictions from a Monte Carlo simulation developed to model the source. The growth and formation of the solid deuterium converter during freeze-out are affected by the ortho/para ratio of the H{sub 2} premoderator. (orig.)

  2. Dose Determination using alanine detectors in a Mixed Neutron and Gamma Field for Boron Neutron Capture Therapy of Liver Malignancies

    DEFF Research Database (Denmark)

    Schmitz, T.; Blaickner, M.; Ziegner, M.

    2011-01-01

    Introduction Boron Neutron Capture Therapy for liver malignancies is being investigated at the University of Mainz. One important aim is the set-up of a reliable dosimetry system. Alanine dosimeters have previously been applied for dosimetry of mixed radiation fields in antiproton therapy, and ma...

  3. Quantitative neutron radiography using neutron absorbing honeycomb

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.

    1993-01-01

    This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)

  4. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  5. A low background pulsed neutron polyenergetic beam

    International Nuclear Information System (INIS)

    Adib, M.; Abdelkawy, A.; Habib, N.; abuelela, M.; Wahba, M.; kilany, M.; Kalebebin, S.M.

    1992-01-01

    A low background pulsed neutron polyenergetic thermal beam at ET-R R-1 is produced by a rotor and rotating collimator suspended in magnetic fields. Each of them is mounted on its mobile platform and whose centres are 66 cm apart, rotating synchronously at speeds up to 16000 rpm. It was found that the neutron burst produced by the rotor with almost 100% transmission passes through the collimator, when the rotation phase between them is 28.8 degree Moreover the background level achieved at the detector position is low, constant and free from peaks due to gamma rays and fast neutrons accompanying the reactor thermal beam.3 fig

  6. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: the EXILL campaign

    Directory of Open Access Journals (Sweden)

    de France G.

    2014-03-01

    Full Text Available A combination of germanium detectors has been installed at the PF1B neutron guide of the ILL to perform the prompt spectroscopy of neutron-rich nuclei produced in the neutron-capture induced-fission of 235U and 241Pu. In addition LaBr3 detectors from the FATIMA collaboration have been installed in complement with the EXOGAM clovers to measure lifetimes of low-lying excited states. The measured characteristics and online spectra indicate very good performances of the overall setup.

  7. Compact Neutron Generators for Medical, Home Land Security, and Planetary Exploration

    CERN Document Server

    Reijonen, Jani

    2005-01-01

    The Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory has developed various types of advanced D-D (neutron energy 2.5 MeV), D-T (14 MeV) and T-T (0 - 9 MeV) neutron generators for wide range of applications. These applications include medical (Boron Neutron Capture Therapy), homeland security (Prompt Gamma Activation Analysis, Fast Neutron Activation Analysis and Pulsed Fast Neutron Transmission Spectroscopy) and planetary exploration in form of neutron based, sub-surface hydrogen detection systems. These neutron generators utilize RF induction discharge to ionize the deuterium/tritium gas. This discharge method provides high plasma density for high output current, high atomic species from molecular gases, long life operation and versatility for various discharge chamber geometries. Three main neutron generator developments are discussed here: high neutron output co-axial neutron generator for BNCT applications, point neutron generator for security applications, compact and sub-c...

  8. Minimization of number of setups for mounting machines

    Energy Technology Data Exchange (ETDEWEB)

    Kolman, Pavel; Nchor, Dennis; Hampel, David [Department of Statistics and Operation Analysis, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, 603 00 Brno (Czech Republic); Žák, Jaroslav [Institute of Technology and Business, Okružní 517/10, 370 01 České Budejovice (Czech Republic)

    2015-03-10

    The article deals with the problem of minimizing the number of setups for mounting SMT machines. SMT is a device used to assemble components on printed circuit boards (PCB) during the manufacturing of electronics. Each type of PCB has a different set of components, which are obligatory. Components are placed in the SMT tray. The problem consists in the fact that the total number of components used for all products is greater than the size of the tray. Therefore, every change of manufactured product requires a complete change of components in the tray (i.e., a setup change). Currently, the number of setups corresponds to the number of printed circuit board type. Any production change affects the change of setup and stops production on one shift. Many components occur in more products therefore the question arose as to how to deploy the products into groups so as to minimize the number of setups. This would result in a huge increase in efficiency of production.

  9. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    The method of operating a water-cooled neutronic reactor having a graphite moderator is described which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40--60 volume percent of the mixture, in contact with the graphite moderator. 2 claims, 4 figures

  10. Neutron reflectivity

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available The specular neutron reflectivity is a technique enabling the measurement of neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5 Å up 5000 Å. It is a scattering technique that averages information on the entire surface and it is therefore not possible to obtain information within the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons makes it particularly interesting in the fields of soft matter, biophysics and magnetic thin films. This course is a basic introduction to the technique and does not address the magnetic reflectivity. It is composed of three parts describing respectively its principle and its formalism, the experimental aspects of the method (spectrometers, samples and two examples related to the materials for energy.

  11. Neutron Interferometry at the National Institute of Standards and Technology

    International Nuclear Information System (INIS)

    Huber, M. G.; Sarenac, D.; Nsofini, J.; Pushin, D. A.; Arif, M.; Wood, C. J.; Cory, D. G.; Shahi, C. B.

    2015-01-01

    Neutron interferometry has proved to be a very precise technique for measuring the quantum mechanical phase of a neutron caused by a potential energy difference between two spatially separated neutron paths inside interferometer. The path length inside the interferometer can be many centimeters (and many centimeters apart) making it very practical to study a variety of samples, fields, potentials, and other macroscopic medium and quantum effects. The precision of neutron interferometry comes at a cost; neutron interferometers are very susceptible to environmental noise that is typically mitigated with large, active isolated enclosures. With recent advances in quantum information processing especially quantum error correction (QEC) codes we were able to demonstrate a neutron interferometer that is insensitive to vibrational noise. A facility at NIST’s Center for Neutron Research (NCNR) has just been commissioned with higher neutron flux than the NCNR’s older interferometer setup. This new facility is based on QEC neutron interferometer, thus improving the accessibility of neutron interferometry to the greater scientific community and expanding its applications to quantum computing, gravity, and material research

  12. Radiography and tomography using fission neutrons at FRM-II

    International Nuclear Information System (INIS)

    Buecherl, T.; Lierse von Gostomski, Ch.

    2004-01-01

    Fission neutrons offer complementary information in radiography and tomography compared to the well established techniques using X-rays, gamma-rays, thermal or cold neutrons. They penetrate thick layers of high density materials with only little attenuation, while for light, specially for hydrogen containing materials, their attenuation is high. In the past, fast neutrons for NDT (non-destructive testing) were only available at accelerator driven systems. These high energy neutrons have to be moderated to achieve acceptable detection efficiencies thus drastically reducing the available neutron intensities and either resulting in a high beam divergence or in additional losses in neutron intensities due to beam collimation. The recently installed neutron computerized tomography and radiography system NECTAR at the Forschungsreaktor Muenchen-II (FRM-II) overcomes these disadvantages by using fission neutrons of about 1.7 MeV mean energy created in two converter plates set-up of highly enriched uranium. The beam quality, i.e. the neutron divergence can be adapted to the object to be measured by using different collimators, resulting in L/D-values up to 300. The available neutron beam intensity at the measuring position is up to 1.7E+08 cm -2 s -1 for a maximum beam area of 40 cm x 40 cm. For conventional imaging a two-dimensional detector system based on a CCD-camera is used, other more specialised systems are available. (author)

  13. Radiography and tomography using fission neutrons at FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T.; Lierse von Gostomski, Ch. [Inst. fuer Radiochemie, TU-Muenchen, Garching (Germany)

    2004-07-01

    Fission neutrons offer complementary information in radiography and tomography compared to the well established techniques using X-rays, gamma-rays, thermal or cold neutrons. They penetrate thick layers of high density materials with only little attenuation, while for light, specially for hydrogen containing materials, their attenuation is high. In the past, fast neutrons for NDT (non-destructive testing) were only available at accelerator driven systems. These high energy neutrons have to be moderated to achieve acceptable detection efficiencies thus drastically reducing the available neutron intensities and either resulting in a high beam divergence or in additional losses in neutron intensities due to beam collimation. The recently installed neutron computerized tomography and radiography system NECTAR at the Forschungsreaktor Muenchen-II (FRM-II) overcomes these disadvantages by using fission neutrons of about 1.7 MeV mean energy created in two converter plates set-up of highly enriched uranium. The beam quality, i.e. the neutron divergence can be adapted to the object to be measured by using different collimators, resulting in L/D-values up to 300. The available neutron beam intensity at the measuring position is up to 1.7E+08 cm{sup -2} s{sup -1} for a maximum beam area of 40 cm x 40 cm. For conventional imaging a two-dimensional detector system based on a CCD-camera is used, other more specialised systems are available. (author)

  14. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  15. Neutron stars as cosmic neutron matter laboratories

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    Recent developments which have radically changed our understanding of the dynamics of neutron star superfluids and the free precession of neutron stars are summarized, and the extent to which neutron stars are cosmic neutron matter laboratories is discussed. 17 refs., 1 tab

  16. Evaluation of neutron techniques for illicit substance detection

    International Nuclear Information System (INIS)

    Fink, C.L.; Micklich, B.J.; Yule, T.J.; Humm, P.; Sagalovsky, L.; Martin, M.M.

    1995-01-01

    We are studying inspection systems based on the use of fast neutrons for detecting illicit substances such as explosives and drugs in luggage and cargo containers. Fast-neutron techniques can determine the quantities of light elements such as carbon, nitrogen, and oxygen in a volume element. Illicit substances containing these elements are characterized by distinctive elemental densities or density ratios. We discuss modeling and tomographic reconstruction studies for fast-neutron transmission spectroscopy. (orig.)

  17. Evaluation of neutron techniques for illicit substance detection

    International Nuclear Information System (INIS)

    Fink, C.L.; Micklich, B.J.; Yule, T.J.; Humm, P.; Sagalovsky, L.; Martin, M.M.

    1994-01-01

    The authors are studying inspection systems based on the use of fast neutrons for detecting illicit substances such as explosives and drugs in luggage and cargo containers. Fast neutron techniques can determine the quantities of light elements such as carbon, nitrogen, and oxygen in a volume element. Illicit substances containing these elements are characterized by distinctive elemental densities or density ratios. They discuss modeling and tomographic reconstruction studies for fast-neutron transmission spectroscopy

  18. Development of a new deuterium-deuterium (D-D) neutron generator for prompt gamma-ray neutron activation analysis.

    Science.gov (United States)

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    A new deuterium-deuterium (D-D) neutron generator has been developed by Adelphi Technology for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA), and fast neutron radiography. The generator makes an excellent fast, intermediate, and thermal neutron source for laboratories and industrial applications that require the safe production of neutrons, a small footprint, low cost, and small regulatory burden. The generator has three major components: a Radio Frequency Induction Ion Source, a Secondary Electron Shroud, and a Diode Accelerator Structure and Target. Monoenergetic neutrons (2.5MeV) are produced with a yield of 10(10)n/s using 25-50mA of deuterium ion beam current and 125kV of acceleration voltage. The present study characterizes the performance of the neutron generator with respect to neutron yield, neutron production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. In addition the Monte Carlo N-Particle Transport (MCNP) simulation code was used to optimize the setup with respect to thermal flux and radiation protection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Estimation of functional preparedness of young handballers in setup time

    Directory of Open Access Journals (Sweden)

    Favoritоv V.N.

    2012-11-01

    Full Text Available The dynamics of level of functional preparedness of young handballers in setup time is shown. It was foreseen to make alteration in educational-training process with the purpose of optimization of their functional preparedness. 11 youths were plugged in research, calendar age 14 - 15 years. For determination of level of their functional preparedness the computer program "SVSM" was applied. It is set that at the beginning of setup time of 18,18% of all respondent functional preparedness is characterized by a "middle" level, 27,27% - below the "average", 54,54% - "above" the average. At the end of setup time among sportsmen representatives prevailed with the level of functional preparedness "above" average - 63,63%, with level "high" - 27,27%, sportsmen with level below the average were not observed. Efficiency of the offered system of trainings employments for optimization of functional preparedness of young handballers is well-proven.

  20. Eye-in-Hand Manipulation for Remote Handling: Experimental Setup

    Science.gov (United States)

    Niu, Longchuan; Suominen, Olli; Aref, Mohammad M.; Mattila, Jouni; Ruiz, Emilio; Esque, Salvador

    2018-03-01

    A prototype for eye-in-hand manipulation in the context of remote handling in the International Thermonuclear Experimental Reactor (ITER)1 is presented in this paper. The setup consists of an industrial robot manipulator with a modified open control architecture and equipped with a pair of stereoscopic cameras, a force/torque sensor, and pneumatic tools. It is controlled through a haptic device in a mock-up environment. The industrial robot controller has been replaced by a single industrial PC running Xenomai that has a real-time connection to both the robot controller and another Linux PC running as the controller for the haptic device. The new remote handling control environment enables further development of advanced control schemes for autonomous and semi-autonomous manipulation tasks. This setup benefits from a stereovision system for accurate tracking of the target objects with irregular shapes. The overall environmental setup successfully demonstrates the required robustness and precision that remote handling tasks need.

  1. Characterization of textile electrodes and conductors using standardized measurement setups

    International Nuclear Information System (INIS)

    Beckmann, L; Neuhaus, C; Medrano, G; Walter, M; Leonhardt, S; Jungbecker, N; Gries, T

    2010-01-01

    Textile electrodes and conductors are being developed and used in different monitoring scenarios, such as ECG or bioimpedance spectroscopy measurements. Compared to standard materials, conductive textile materials offer improved wearing comfort and enable long-term measurements. Unfortunately, the development and investigation of such materials often suffers from the non-reproducibility of the test scenarios. For example, the materials are generally tested on human skin which is difficult since the properties of human skin differ for each person and can change within hours. This study presents two test setups which offer reproducible measurement procedures for the systematic analysis of textile electrodes and conductors. The electrode test setup was designed with a special skin dummy which allows investigation of not only the electrical properties of textile electrodes but also the contact behavior between electrode and skin. Using both test setups, eight textile electrodes and five textile conductors were analyzed and compared

  2. Transcending Transmission

    DEFF Research Database (Denmark)

    Schoeneborn, Dennis; Trittin, Hannah

    2013-01-01

    Purpose – Extant research on corporate social responsibility (CSR) communication primarily relies on a transmission model of communication that treats organizations and communication as distinct phenomena. This approach has been criticized for neglecting the formative role of communication...... in the emergence of organizations. This paper seeks to propose to reconceptualize CSR communication by drawing on the “communication constitutes organizations” (CCO) perspective. Design/methodology/approach – This is a conceptual paper that explores the implications of switching from an instrumental...... to a constitutive notion of communication. Findings – The study brings forth four main findings: from the CCO view, organizations are constituted by several, partly dissonant, and potentially contradictory communicative practices. From that viewpoint, the potential impact of CSR communication becomes a matter...

  3. Basic of Neutron NDA

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    The objectives of this presentation are to introduce the basic physics of neutron production, interactions and detection; identify the processes that generate neutrons; explain the most common neutron mechanism, spontaneous and induced fission and (a,n) reactions; describe the properties of neutron from different sources; recognize advantages of neutron measurements techniques; recognize common neutrons interactions; explain neutron cross section measurements; describe the fundamental of 3He detector function and designs; and differentiate between passive and active assay techniques.

  4. New experimental possibility to search for the ratio of a possible T-violating amplitude to the weak-interaction amplitude in polarized neutron transmission through a polarized nuclear target

    CERN Document Server

    Lukashevich, V V; Dallman, David

    2011-01-01

    This paper considers a spin-dependent neutron interaction with optical potentials (fields) from the strong interaction, the weak interaction, and an assumed T-violating interaction. The vector sum of these fields and their interferences determines an effective field of the target with an angular position in space due to polar and azimuthal angles. The phase of the azimuthal component is found to be the sum of two angles. The tangent of the first angle is equal to the ratio of the T-violating forward-scattering amplitude D to the weak-interaction amplitude C. The quantity is of interest. The tangent of the second angle depends on the spin rotation in the residual pseudomagnetic field of the target, and it can be treated as a background effect. This paper shows that the second angle has different signs in measurements with polarized and unpolarized neutrons; thus, two measurements allow it to be compensated for. In addition, the use of the Ramsey method of separated oscillatory fields for measurement of the neu...

  5. Why IV Setup for Stream Ciphers is Difficult

    DEFF Research Database (Denmark)

    Zenner, Erik

    2007-01-01

    In recent years, the initialization vector (IV) setup has proven to be the most vulnerable point when designing secure stream ciphers. In this paper, we take a look at possible reasons why this is the case, identifying numerous open research problems in cryptography.......In recent years, the initialization vector (IV) setup has proven to be the most vulnerable point when designing secure stream ciphers. In this paper, we take a look at possible reasons why this is the case, identifying numerous open research problems in cryptography....

  6. New attacks on Wi-Fi Protected Setup

    OpenAIRE

    Hamed Mohtadi; Alireza Rahimi

    2015-01-01

    Wi-Fi Protected Setup (WPS) is a network security standard that is used to secure networks in home and office, introduced in 2006 by the Wi-Fi Alliance. It provides easier configuration setup and is used in almost all recent Wi-Fi devices. In this paper we propose two attacks on this standard. The first attack is an offline brute force attack that uses imbalance on registration protocol. This attack needs user action, but it is more efficient than previous attacks. The second attack uses weak...

  7. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    International Nuclear Information System (INIS)

    Wehring, B.W.; Uenlue, K.

    1995-01-01

    Funds were received for the first year of a three year DOE Nuclear Engineering Research Grant, ''Study of Neutron Focusing at the Texas Cold Neutron Source'' (FGO2-92ER75711). The purpose of this three year study was to develop a neutron focusing system to be used with the Texas Cold Neutron Source (TCNS) to produce an intense beam of neutrons. A prompt gamma activation analysis (PGAA) facility was also to be designed, setup, and tested under the three year project. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which we wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, we obtained gains of 3 to 5 for the neutron flux averaged over an area of 1 x 1 cm

  8. Dynamically polarized samples for neutron protein crystallography at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Zhao, Jinkui; Pierce, Josh; Robertson, J. L.; Herwig, Kenneth W.; Myles, Dean; Cuneo, Matt; Li, Le; Meilleur, Flora; Standaert, Bob

    2016-01-01

    To prepare for the next generation neutron scattering instruments for the planned second target station at the Spallation Neutron Source (SNS) and to broaden the scientific impact of neutron protein crystallography at the Oak Ridge National Laboratory, we have recently ramped up our efforts to develop a dynamically polarized target for neutron protein crystallography at the SNS. Proteins contain a large amount of hydrogen which contributes to incoherent diffraction background and limits the sensitivity of neutron protein crystallography. This incoherent background can be suppressed by using polarized neutron diffraction, which in the same time also improves the coherent diffraction signal. Our plan is to develop a custom Dynamic Nuclear Polarization (DNP) setup tailored to neutron protein diffraction instruments. Protein crystals will be polarized at a magnetic field of 5 T and temperatures of below 1 K. After the dynamic polarization process, the sample will be brought to a frozen-spin mode in a 0.5 T holding field and at temperatures below 100 mK. In a parallel effort, we are also investigating various ways of incorporating polarization agents needed for DNP, such as site specific spin labels, into protein crystals. (paper)

  9. Neutron Stars and NuSTAR

    Science.gov (United States)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  10. Critical opalescence of neutrons in nonuniform liquid in the gravitational field

    International Nuclear Information System (INIS)

    Sugakov, V.I.; Chalyj, A.V.; Chernenko, L.M.

    1990-01-01

    The altitude dependence of the refractive index and refractive angle of the neutron beam in a nonuniform liquid near the critical point is investigated. The neutron wave function in a passing beam as well as monochromatic transmission and reflection coefficients of neutrons are found

  11. Optimising neutron polarizers--measuring the flipping ratio and related quantities

    CERN Document Server

    Goossens, D J

    2002-01-01

    The continuing development of gaseous spin polarized sup 3 He transmission filters for use as neutron polarizers makes the choice of optimum thickness for these filters an important consideration. The 'quality factors' derived for the optimisation of transmission filters for particular measurements are general to all neutron polarizers. In this work optimisation conditions for neutron polarizers are derived and discussed for the family of studies related to measuring the flipping ratio from samples. The application of the optimisation conditions to sup 3 He transmission filters and other types of neutron polarizers is discussed. Absolute comparisons are made between the effectiveness of different types of polarizers for this sort of work.

  12. Realistic modeling of radiation transmission inspection systems

    International Nuclear Information System (INIS)

    Sale, K.E.

    1993-01-01

    We have applied Monte Carlo particle transport methods to assess a proposed neutron transmission inspection system for checked luggage. The geometry of the system and the time, energy and angle dependence of the source have been modeled in detail. A pulsed deuteron beam incident on a thick Be target generates a neutron pulse with a very broad energy spectrum which is detected after passage through the luggage item by a plastic scintillator detector operating in current mode (as opposed to pulse counting mode). The neutron transmission as a function of time information is used to infer the densities of hydrogen, carbon, oxygen and nitrogen in the volume sampled. The measured elemental densities can be compared to signatures for explosives or other contraband. By using such computational modeling it is possible to optimize many aspects of the design of an inspection system without costly and time consuming prototyping experiments or to determine that a proposed scheme will not work. The methods applied here can be used to evaluate neutron or photon schemes based on transmission, scattering or reaction techniques

  13. X-ray phase scanning setup for non-destructive testing using Talbot-Lau interferometer

    Science.gov (United States)

    Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A.

    2016-09-01

    X-ray grating interferometry has a great potential for X-ray phase imaging over conventional X-ray absorption imaging which does not provide significant contrast for weakly absorbing objects and soft biological tissues. X-ray Talbot and Talbot-Lau interferometers which are composed of transmission gratings and measure the differential X-ray phase shifts have gained popularity because they operate with polychromatic beams. In X-ray radiography, especially for nondestructive testing in industrial applications, the feasibility of continuous sample scanning is not yet completely revealed. A scanning setup is frequently advantageous when compared to a direct 2D static image acquisition in terms of field of view, exposure time, illuminating radiation, etc. This paper demonstrates an efficient scanning setup for grating-based Xray phase imaging using laboratory-based X-ray source. An apparatus consisting of an X-ray source that emits X-rays vertically, optical gratings and a photon-counting detector was used with which continuously moving objects across the field of view as that of conveyor belt system can be imaged. The imaging performance of phase scanner was tested by scanning a long continuous moving sample at a speed of 5 mm/s and absorption, differential-phase and visibility images were generated by processing non-uniform moire movie with our specially designed phase measurement algorithm. A brief discussion on the feasibility of phase scanner with scanning setup approach including X-ray phase imaging performance is reported. The successful results suggest a breakthrough for scanning objects those are moving continuously on conveyor belt system non-destructively using the scheme of X-ray phase imaging.

  14. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2013-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)

  15. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2012-01-01

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  16. Pulsed neutron generator

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Bykovskii, Yu.A.; Vergun, I.I.; Kozlovskii, K.I.; Kozyrev, Yu.P.; Leonov, R.K.; Simagin, B.I.; Tsybin, A.S.; Shikanov, A.Ie.

    1986-03-01

    The paper describes a new device for generating pulsed neutron fields, utilized in nuclear geophysics for carrying out pulsed neutron logging and activation analysis under field conditions. The invention employs a sealed-off neutron tube with a laser ion source which increases neutron yield to the level of 10 neutrons per second or higher. 2 refs., 1 fig

  17. Neutron scattering

    International Nuclear Information System (INIS)

    1991-02-01

    The annual report on hand gives an overview of the research work carried out in the Laboratory for Neutron Scattering (LNS) of the ETH Zuerich in 1990. Using the method of neutron scattering, it is possible to examine in detail the static and dynamic properties of the condensed material. In accordance with the multidisciplined character of the method, the LNS has for years maintained a system of intensive co-operation with numerous institutes in the areas of biology, chemistry, solid-state physics, crystallography and materials research. In 1990 over 100 scientists from more than 40 research groups both at home and abroad took part in the experiments. It was again a pleasure to see the number of graduate students present, who were studying for a doctorate and who could be introduced into the neutron scattering during their stay at the LNS and thus were in the position to touch on central ways of looking at a problem in their dissertation using this modern experimental method of solid-state research. In addition to the numerous and interesting ways of formulating the questions to explain the structure, nowadays the scientific programme increasingly includes particularly topical studies in connection with high temperature-supraconductors and materials research

  18. Neutron radiotherapy

    International Nuclear Information System (INIS)

    Thomas, F.J.

    1987-01-01

    The rationale for the application of neutron radiation for the treatment of malignancies is well established based on radiobiological studies. These factors include the presence of tissue hypoxia, radiation response as a function of cell cycle kinetics, the repair capacity of the malignant cells and the regeneration of malignant cells during a fractionated course of radiation. Despite the constraints under which the clinical trials to date have been conducted, promising results have been obtained. Randomized trials have demonstrated that neutron therapy is the treatment of choice for inoperable salivary gland carcinomas. A randomized trial of the RTOG has demonstrated a probable advantage for neutron radiation in the treatment of advanced prostate carcinomas but is yet to be confirmed. An improvement in local control has also been observed for selected sarcomas. Equivocal or contradictory results have been obtained for squamous cell carcinomas of the head and neck, bronchogenic carcinomas, advanced rectal, transitional cell carcinomas of the bladder and cervical carcinomas. The practical consequences of these radiobiological and clinical observations on the current generation of clinical trials is discussed

  19. Pros and cons of characterising an optical translocation setup

    CSIR Research Space (South Africa)

    Maphanga, Charles

    2017-02-01

    Full Text Available an optical translocation setup Charles Maphanga 1, 2 , Rudzani Malabi 1, 2 , Saturnin Ombinda-Lemboumba 1 , Malik Maaza 2 , Patience Mthunzi-Kufa 1, 2* 1 Council for Scientific and Industrial Research, National Laser Centre, P O BOX 395, Pretoria...

  20. Four point bending setup for characterization of semiconductor piezoresistance

    DEFF Research Database (Denmark)

    Richter, Jacob; Arnoldus, Morten Berg; Hansen, Ole

    2008-01-01

    bending fixture is manufactured in polyetheretherketon and a dedicated silicon chip with embedded piezoresistors fits in the fixture. The fixture is actuated by a microstepper actuator and a high sensitivity force sensor measures the applied force on the fixture and chip. The setup includes heaters...

  1. View of the WA10 set-up

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The WA10 experiment by the Geneva-Lausanne Collaboration was set-up in the H5 beam (unseparated, up to 50 GeV/c) to study K+-p --> K0pi+-p and other reactions of similar topology, and the energy dependence of resonance production.

  2. An evaluation of different setups for simulating lighting characteristics

    Science.gov (United States)

    Salters, Bart; Murdoch, Michael; Sekulovksi, Dragan; Chen, Shih-Han; Seuntiens, Pieter

    2012-03-01

    The advance of technology continuously enables new luminaire designs and concepts. Evaluating such designs has traditionally been done using actual prototypes, in a real environment. The iterations needed to build, verify, and improve luminaire designs incur substantial costs and slow down the design process. A more attractive way is to evaluate designs using simulations, as they can be made cheaper and quicker for a wider variety of prototypes. However, the value of such simulations is determined by how closely they predict the outcome of actual perception experiments. In this paper, we discuss an actual perception experiment including several lighting settings in a normal office environment. The same office environment also has been modeled using different software tools, and photo-realistic renderings have been created of these models. These renderings were subsequently processed using various tonemapping operators in preparation for display. The total imaging chain can be considered a simulation setup, and we have executed several perception experiments on different setups. Our real interest is in finding which imaging chain gives us the best result, or in other words, which of them yields the closest match between virtual and real experiment. To answer this question, first of all an answer has to be found to the question, "which simulation setup matches the real world best?" As there is no unique, widely accepted measure to describe the performance of a certain setup, we consider a number of options and discuss the reasoning behind them along with their advantages and disadvantages.

  3. Formula student suspension setup and laptime simulation tool

    NARCIS (Netherlands)

    van den Heuvel, E.; Besselink, I.J.M.; Nijmeijer, H.

    2013-01-01

    In motorsports time is usually limited. With use of dedicated tools for measuring wheel alignment, camber, ride heights etc. setting up the car can be done fast and consistent. With the setup sequence and tools described in this report, progress has been made in the time it takes to set up the car.

  4. A Magnetic Set-Up to Help Teach Newton's Laws

    Science.gov (United States)

    Panijpan, Bhinyo; Sujarittham, Thanida; Arayathanitkul, Kwan; Tanamatayarat, Jintawat; Nopparatjamjomras, Suchai

    2009-01-01

    A set-up comprising a magnetic disc, a solenoid and a mechanical balance was used to teach first-year physics students Newton's third law with the help of a free body diagram. The image of a floating magnet immobilized by the solenoid's repulsive force should help dispel a common misconception of students as regards the first law: that stationary…

  5. The setup of a mobile mobility panel for the Netherlands

    NARCIS (Netherlands)

    Geurs, Karst Teunis; Veenstra, Sander; Thomas, Tom

    2013-01-01

    This paper describes the setup of the Dutch Mobile Mobility Panel project, in which GPS-enabled mobile phones (smartphones) are used as a passive multiple-week and multiple-year travel behaviour data collection tool. The data collection methodology used in the Dutch Mobile Mobility Panel comprised

  6. Estimating setup of driven piles into Louisiana clayey soils.

    Science.gov (United States)

    2010-11-15

    Two types of mathematical models for pile setup prediction, the Skov-Denver model and the newly developed rate-based model, have been established from all the dynamic and static testing data, including restrikes of the production piles, restrikes, st...

  7. Test Setup for Axially Loaded Piles in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina

    The test setup for testing axially static and cyclic loaded piles in sand is described in the following. The purpose for the tests is to examine the tensile capacity of axially loaded piles in dense fully saturated sand. The pile dimensions are chosen to resemble full scale dimension of piles used...... in offshore pile foundations today....

  8. MATLAB simulation for an experimental setup of digital feedback control

    International Nuclear Information System (INIS)

    Zheng Lifang; Liu Songqiang

    2005-01-01

    This paper describes the digital feedback simulation using MATLAB for an experimental accelerator control setup. By analyzing the plant characteristic in time-domain and frequency-domain, a guideline for design of digital filter and PID controller is derived. (authors)

  9. IBM PC based automatic drive system for Bulat setup

    International Nuclear Information System (INIS)

    Luchaninov, A.A.; Tolok, V.T.

    1999-01-01

    Non-expensive computer drive system for Bulat setup is described. System's hardware consists of IBM PC and conjunction block, providing 12 output channels, Software includes the main program, utilities and technology processes database. System may be used at surface modification processes, especially multilayer multicomponent coatings deposition

  10. Automotive RF immunity test set-up analysis

    NARCIS (Netherlands)

    Coenen, M.J.; Pues, H.; Bousquet, T.; Gillon, R.; Gielen, G.; Baric, A.

    2011-01-01

    Though the automotive RF emission and RF immunity requirements are highly justifiable, the application of those requirements in an non-intended manner leads to false conclusions and unnecessary redesigns for the electronics involved. When the test results become too dependent upon the test set-up

  11. Setup of a testing environment for mission planning in mining

    NARCIS (Netherlands)

    Groenen, J.P.J.; Steinbuch, M.

    2013-01-01

    Mission planning algorithms for surface mining applications are difficult to test as a result of the large scale tasks. To validate these algorithms, a scaled setup is created where the mining excavator is mimicked by an industrial robot. This report discusses the development of a software

  12. Off-line software for large experimental setups

    International Nuclear Information System (INIS)

    Bruyant, F.

    1983-07-01

    The purpose of this report is to emphasize the importance of Off-line software for large experimental setups in High Energy Physics. Simple notions of program structuring, data structuring and software organization are discussed in the context of the software developped for the European Hybrid Spectrometer. (author)

  13. Seminar | Development of a PET Cyclotron Based Irradiation Setup for Proton Radiobiology | 25 June

    CERN Multimedia

    2015-01-01

    Sharif Hasan Mahmoud Ghithan, a Palestinian postdoctoral researcher at the Laboratory of Instrumentation and Experimental Particle Physics (Portugal), will discuss the development of an out-of-yoke irradiation setup using the proton beam from a cyclotron that ordinarily produces radioisotopes for Positron Emission Tomography (PET). The speaker will also discuss possible future use of the results of this research for CERN’s new LEIR biomedical facility. The seminar will be proposed in the framework of a meeting of the CERN Medical Applications Study Group.   25 June, 2 p.m. to 3 p.m. Room 13-2-005 ABSTRACT: In this new irradiation setup, the current from a 20 mm thick aluminum transmission foil is read out by homemade transimpedance electronics, providing online dose information. The main monitoring variables, delivered in real-time, include beam current, integrated charge and dose rate. Hence the dose and integrated current delivered at a given instant to an experimental setu...

  14. Couch height–based patient setup for abdominal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ohira, Shingo [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita (Japan); Ueda, Yoshihiro [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita (Japan); Nishiyama, Kinji [Department of Radiation Oncology, Yao Municipal Hospital, Yao (Japan); Miyazaki, Masayoshi; Isono, Masaru; Tsujii, Katsutomo [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Takashina, Masaaki; Koizumi, Masahiko [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita (Japan); Kawanabe, Kiyoto [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Teshima, Teruki, E-mail: teshima-te@mc.pref.osaka.jp [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan)

    2016-04-01

    There are 2 methods commonly used for patient positioning in the anterior-posterior (A-P) direction: one is the skin mark patient setup method (SMPS) and the other is the couch height–based patient setup method (CHPS). This study compared the setup accuracy of these 2 methods for abdominal radiation therapy. The enrollment for this study comprised 23 patients with pancreatic cancer. For treatments (539 sessions), patients were set up by using isocenter skin marks and thereafter treatment couch was shifted so that the distance between the isocenter and the upper side of the treatment couch was equal to that indicated on the computed tomographic (CT) image. Setup deviation in the A-P direction for CHPS was measured by matching the spine of the digitally reconstructed radiograph (DRR) of a lateral beam at simulation with that of the corresponding time-integrated electronic portal image. For SMPS with no correction (SMPS/NC), setup deviation was calculated based on the couch-level difference between SMPS and CHPS. SMPS/NC was corrected using 2 off-line correction protocols: no action level (SMPS/NAL) and extended NAL (SMPS/eNAL) protocols. Margins to compensate for deviations were calculated using the Stroom formula. A-P deviation > 5 mm was observed in 17% of SMPS/NC, 4% of SMPS/NAL, and 4% of SMPS/eNAL sessions but only in one CHPS session. For SMPS/NC, 7 patients (30%) showed deviations at an increasing rate of > 0.1 mm/fraction, but for CHPS, no such trend was observed. The standard deviations (SDs) of systematic error (Σ) were 2.6, 1.4, 0.6, and 0.8 mm and the root mean squares of random error (σ) were 2.1, 2.6, 2.7, and 0.9 mm for SMPS/NC, SMPS/NAL, SMPS/eNAL, and CHPS, respectively. Margins to compensate for the deviations were wide for SMPS/NC (6.7 mm), smaller for SMPS/NAL (4.6 mm) and SMPS/eNAL (3.1 mm), and smallest for CHPS (2.2 mm). Achieving better setup with smaller margins, CHPS appears to be a reproducible method for abdominal patient setup.

  15. Storage of cold and thermal neutrons with perfect crystals at the pulsed source

    International Nuclear Information System (INIS)

    Jericha, E.

    1996-12-01

    The possibility of storing cold neutrons by sequential Bragg reflections between two parallel perfect crystal plates in backscattering geometry has been implemented as the parasitic instrument VESTA at the pulsed neutron source ISIS. Filling the neutrons into and releasing them from the storage cavity is accomplished by applying a short-pulsed magnetic field at the crystal plates. The method takes advantage of the conservation of the axial component of the neutron wave vector after Bragg reflection and its Zeeman shift in a magnetic field. The setup at ISIS is presented where a monochromatic neutron beam with wavelength 6.27 A and 2.9 x 10 4 n/scm 2 flux is taken out of the neutron guide leading to the IRIS backscattering spectrometer by a pyrolytic graphite crystal monochromator. The longest storage period obtained with the setup was 2.655 s which corresponds to 1574 consecutive Bragg reflections and a distance traveled of 1675 n. The measurements are analyzed by heuristic methods developed for neutron storage experiments. The apparatus is seen as a passive resonator system and characteristics like stored neutron intensity, the efficiency of the storage process, the probability to remain in the system, the mirror reflectivity, the dispersion of the stored distribution, the penetration depth of a neutron into a crystal mirror and the figure of merit of the resonator system are discussed. Monte Carlo simulations of the extracted beam and of the stored neutron distribution were performed to deepen the understanding of the experimental results. (author)

  16. Setup verification in stereotactic radiotherapy using digitally reconstructed radiograph (DRR)

    International Nuclear Information System (INIS)

    Cho, Byung Chul; Oh, Do Hoon; Bae, Hoon Sik

    1999-01-01

    To develop a method for verifying a treatment setup in stereotactic radiotherapy by matching portal images to DRRs. Four pairs of orthogonal portal images of one patient immobilized by a thermoplastic mast frame for fractionated stereotactic radiotherapy were compared with DRRs. Portal images are obtained in AP (anterior/posterior) and lateral directions with a target localizer box containing fiducial markers attached to a stereotactic frame. DRRs superimposed over a planned isocenter and fiducial markers are printed out on transparent films. And then, they were overlaid over orthogonal portal images by matching anatomical structures. From three different kind of objects (isocenter, fiducial markers, anatomical structure) on DRRs and portal images, the displacement error between anatomical structure and isocenters (overall setup error), and the displacement error between fiducial markers and isocenters (localization error)were measured. Localization errors were 1.5±0.3 mm (lateral), and immobilization errors were 1.9±0.5 mm (AP), 1.9±0.4 mm (lateral). In addition, overall setup errors were 1.6±0.9 mm (AP), 1.3±0.4 mm(lateral). From these orthogonal displacement errors, maximum 3D displacement errors(√(ΔAP) 2 +(ΔLat) 2 ) were found to be 1.7±0.4 mm for localization, 2.6±0.6 mm for immobilization, and 2.3±0.7 mm for overall treatment setup. By comparing orthogonal portal images with DRRs, we find out that it is possible to verify treatment setup directly in stereotactic radiotherapy

  17. Radiotherapy for breast cancer: respiratory and set-up uncertainties

    International Nuclear Information System (INIS)

    Saliou, M.G.; Giraud, P.; Simon, L.; Fournier-Bidoz, N.; Fourquet, A.; Dendale, R.; Rosenwald, J.C.; Cosset, J.M.

    2005-01-01

    Adjuvant Radiotherapy has been shown to significantly reduce locoregional recurrence but this advantage is associated with increased cardiovascular and pulmonary morbidities. All uncertainties inherent to conformal radiation therapy must be identified in order to increase the precision of treatment; misestimation of these uncertainties increases the potential risk of geometrical misses with, as a consequence, under-dosage of the tumor and/or overdosage of healthy tissues. Geometric uncertainties due to respiratory movements or set-up errors are well known. Two strategies have been proposed to limit their effect: quantification of these uncertainties, which are then taken into account in the final calculation of safety margins and/or reduction of respiratory and set-up uncertainties by an efficient immobilization or gating systems. Measured on portal films with two tangential fields. CLD (central lung distance), defined as the distance between the deep field edge and the interior chest wall at the central axis, seems to be the best predictor of set-up uncertainties. Using CLD, estimated mean set-up errors from the literature are 3.8 and 3.2 mm for the systematic and random errors respectively. These depend partly on the type of immobilization device and could be reduced by the use of portal imaging systems. Furthermore, breast is mobile during respiration with motion amplitude as high as 0.8 to 10 mm in the anteroposterior direction. Respiratory gating techniques, currently on evaluation, have the potential to reduce effect of these movements. Each radiotherapy department should perform its own assessments and determine the geometric uncertainties with respect of the equipment used and its particular treatment practices. This paper is a review of the main geometric uncertainties in breast treatment, due to respiration and set-up, and solutions proposed to limit their impact. (author)

  18. Modeling of Viral Aerosol Transmission and Detection

    KAUST Repository

    Khalid, Maryam; Amin, Osama; Ahmed, Sajid; Alouini, Mohamed-Slim

    2018-01-01

    The objective of this work is to investigate the spread mechanism of diseases in the atmosphere as an engineering problem. Among the viral transmission mechanisms that do not include physical contact, aerosol transmission is the most significant mode of transmission where virus-laden droplets are carried over long distances by wind. In this work, we focus on aerosol transmission of virus and introduce the idea of viewing virus transmission through aerosols and their transport as a molecular communication problem, where one has no control over transmission source but a robust receiver can be designed using nano-biosensors. To investigate this idea, a complete system is presented and end-toend mathematical model for the aerosol transmission channel is derived under certain constraints and boundary conditions. In addition to transmitter and channel, a receiver architecture composed of air sampler and Silicon Nanowire field effect transistor is also discussed. Furthermore, a detection problem is formulated for which maximum likelihood decision rule and the corresponding missed detection probability is discussed. At the end, simulation results are presented to investigate the parameters that affect the performance and justify the feasibility of proposed setup in related applications.

  19. The set-up for forward scattered particle detection at the external microbeam facility of the INFN-LABEC laboratory in Florence

    International Nuclear Information System (INIS)

    Giuntini, L.; Massi, M.; Calusi, S.; Gelli, N.; Castelli, L.; Carraresi, L.; Czelusniak, C.; Fedi, M.E.; Gueli, A.M.; Liccioli, L.; Mandò, P.A.; Mazzinghi, A.; Palla, L.

    2015-01-01

    In the last few years some new implementations and upgrades have been made to the external scanning microbeam of INFN-LABEC laboratory in Florence, enriching the existing PIXE, PIGE, BS, IBIL set-up with complementary techniques, when possible allowing for simultaneous multi-technique analyses. We developed a system, compatible with the existing set-up, for the out-of-vacuum detection of the forward scattered particles. This system makes feasible the external-STIM (Scanning Transmission Ion Microscopy) and external-FS (Forward Scattering), now both available at our beamline. Test measurements are shortly presented

  20. Radiography studies with gamma rays produced by 14-MeV fusion neutrons

    International Nuclear Information System (INIS)

    Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-01-01

    Oxygen contained in pure water has been activated via the 16 O(n, p) 16 N reaction using 14-MeV neutrons produced at a neutron generator with the 3 H(d,n) 4 He source. Photons of 6.129 and 7.115 MeV, generated by the decay of 7.13-second 16 N, were then used to demonstrate the feasibility of employing highly penetrating, nearly monoenergetic gamma rays for radiography studies of thick, dense objects composed of elements with medium to relatively high atomic numbers. A simple radiography apparatus was constructed by circulating water continuously between a position near the target of the neutron generator and a remote location where photon transmission measurements were conducted. A sodium iodide scintillator was employed to detect the photons. Pulses equivalent to photon energies smaller than 2.506 MeV (corresponding to the cascade sum of 1.333- and 1.173-MeV gamma rays from the decay of 5.271-year 60 Co) were rejected by the electronics settings in order to reduce background and improve the signal-to-noise (S/N) ratio. Respectable S/N ratios on the order of 20-to-1 were achieved with this setup. Most of the background (N) could be attributed to ambient environmental radiation and cosmic-ray interactions with the lead shielding and detector. Four representative objects were examined by photon radiography in this study. This demonstrated how such - interesting features as hidden holes and discontinuities in atomic number could be easily identified from observed variations in the intensity of transmitted photons. Some advantages of this technique are described, and potential applications are suggested for a future scenario where fusion reactors are used to generate electric power and very intense sources of high-energy photons from 16 N decay are continuously available as a byproduct of the reactor cooling process

  1. Cone beam CT with zonal filters for simultaneous dose reduction, improved target contrast and automated set-up in radiotherapy

    International Nuclear Information System (INIS)

    Moore, C J; Marchant, T E; Amer, A M

    2006-01-01

    Cone beam CT (CBCT) using a zonal filter is introduced. The aims are reduced concomitant imaging dose to the patient, simultaneous control of body scatter for improved image quality in the tumour target zone and preserved set-up detail for radiotherapy. Aluminium transmission diaphragms added to the CBCT x-ray tube of the Elekta Synergy TM linear accelerator produced an unattenuated beam for a central 'target zone' and a partially attenuated beam for an outer 'set-up zone'. Imaging doses and contrast noise ratios (CNR) were measured in a test phantom for transmission diaphragms 12 and 24 mm thick, for 5 and 10 cm long target zones. The effect on automatic registration of zonal CBCT to conventional CT was assessed relative to full-field and lead-collimated images of an anthropomorphic phantom. Doses along the axis of rotation were reduced by up to 50% in both target and set-up zones, and weighted dose (two thirds surface dose plus one third central dose) was reduced by 10-20% for a 10 cm long target zone. CNR increased by up to 15% in zonally filtered CBCT images compared to full-field images. Automatic image registration remained as robust as that with full-field images and was superior to CBCT coned down using lead-collimation. Zonal CBCT significantly reduces imaging dose and is expected to benefit radiotherapy through improved target contrast, required to assess target coverage, and wide-field edge detail, needed for robust automatic measurement of patient set-up error

  2. Pyrolytic Graphite as a Selective Neutron Filter

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Fathalla, M.

    2006-01-01

    The transmission of neutrons through pyrolytic graphite (PG) crystals, set at different angles with respect to incident beam, were calculated using an additive formula. A computer program HOPG was developed to provide the required calculation. An overall agreement between the calculated neutron transmissions through a slab of 1,85 mm thick PG crystal with an angular spread of c-axes of 0,4 degree, set at different angles to the incident beam, and the available experimental ones in the wavelength range from (0,02 to 1,4) nm were obtained. A feasibility study for use of PG crystal as an efficient second-order neutron filter is detailed in terms of crystal thickness, angular spread of c-axes and its operation with respect to the neutron beam. It was shown that a PG crystal with an angular spread of c-axes and its orientation with respect to the neutron beam. It was shown that a PG crystal with an angular spread of 0,8 degree is sufficient for optimum scattering of second-order neutrons in the wavelength band (0,384-0,183) nm, by adjusting the filter in an appropriate orientation

  3. ANS - the analysis of the neutron spectra

    International Nuclear Information System (INIS)

    Ivanov, B.I.; Rosek, J.

    1991-01-01

    The program ANS which is the graphical user friendly program to process evaluated neutron data files for interpretation of transmission experiments. The ANS program was written in the Turbo Pascal v. 5 language and may work on the IBM AT with Math CoProcessor. 3 refs.; 1 fig

  4. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  5. Neutron therapy coupling brachytherapy and boron neutron capture therapy (BNCT) techniques

    International Nuclear Information System (INIS)

    Chaves, Iara Ferreira.

    1994-12-01

    In the present dissertation, neutron radiation techniques applied into organs of the human body are investigated as oncologic radiation therapy. The proposal treatment consists on connecting two distinct techniques: Boron Neutron Capture Therapy (BNCT) and irradiation by discrete sources of neutrons, through the brachytherapy conception. Biological and radio-dosimetrical aspects of the two techniques are considered. Nuclear aspects are discussed, presenting the nuclear reactions occurred in tumoral region, and describing the forms of evaluating the dose curves. Methods for estimating radiation transmission are reviewed through the solution of the neutron transport equation, Monte Carlo methodology, and simplified analytical calculation based on diffusion equation and numerical integration. The last is computational developed and presented as a quickly way to neutron transport evaluation in homogeneous medium. The computational evaluation of the doses for distinct hypothetical situations is presented, applying the coupled techniques BNTC and brachytherapy as an possible oncologic treatment. (author). 78 refs., 61 figs., 21 tabs

  6. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  7. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  8. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  9. Malaysia: Overview of activities on Neutron Imaging (NI) and Cultural Heritage (CH) studies

    International Nuclear Information System (INIS)

    Muhammad Rawi Mohamed Zin

    2012-01-01

    Inspection of cultural heritage artifact by neutron imaging becoming interesting and important research area since its able to sees internal structure non-destructively. Therefore advanced neutron imaging capability to conduct this kind of inspection is needed. Associated with this needs, TRIGA MARK II PUSPATI reactor has neutron imaging facility, NUR-2 which capable for radiography and tomography usage. Details parameters of current set up is given. Neutron radiography capability at this facility has been relied on direct method technique by the usage of SR-45 KODAK film technology. Current set-up has been used by university student through-out the country to conduct their research in various levels of educations

  10. Simulation and prototyping of 2 m long resistive plate chambers for detection of fast neutrons and multi-neutron event identification

    Energy Technology Data Exchange (ETDEWEB)

    Elekes, Z., E-mail: z.elekes@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Aumann, T. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Technische Universität Darmstadt, Darmstadt (Germany); Bemmerer, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Boretzky, K. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Caesar, C. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Technische Universität Darmstadt, Darmstadt (Germany); Cowan, T.C. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universität Dresden, Dresden (Germany); Hehner, J.; Heil, M. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Kempe, M. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Rossi, D. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Röder, M. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universität Dresden, Dresden (Germany); Simon, H. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Sobiella, M.; Stach, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Reinhardt, T. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universität Dresden, Dresden (Germany); Wagner, A.; Yakorev, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Zilges, A. [Universität zu Köln, Köln (Germany); Zuber, K. [Technische Universität Dresden, Dresden (Germany)

    2013-02-11

    Resistive plate chamber (RPC) prototypes of 2 m length were simulated and built. The experimental tests using a 31 MeV electron beam, discussed in details, showed an efficiency higher than 90% and an excellent time resolution of around σ=100ps. Furthermore, comprehensive simulations were performed by GEANT4 toolkit in order to study the possible use of these RPCs for fast neutron (200 MeV–1 GeV) detection and multi-neutron event identification. The validation of simulation parameters was carried out via a comparison to experimental data. A possible setup for invariant mass spectroscopy of multi-neutron emission is presented and the characteristics are discussed. The results show that the setup has a high detection efficiency. Its capability of determining the momentum of the outgoing neutrons and reconstructing the relative energy between the fragments from nuclear reactions is demonstrated for different scenarios.

  11. Discrimination methods between neutron and gamma rays for boron loaded plastic scintillators

    CERN Document Server

    Normand, S; Haan, S; Louvel, M

    2002-01-01

    Boron loaded plastic scintillators exhibit interesting properties for neutron detection in nuclear waste management and especially in investigating the amount of fissile materials when enclosed in waste containers. Combining a high thermal neutron efficiency and a low mean neutron lifetime, they are suitable in neutron multiplicity counting. However, due to their high sensitivity to gamma rays, pulse shape discrimination methods need to be developed in order to optimize the passive neutron assay measurement. From the knowledge of their physical properties, it is possible to separate the three kinds of particles that have interacted in the boron loaded plastic scintillator (gamma, fast neutron and thermal neutron). For this purpose, we have developed and compared the two well known discrimination methods (zero crossing and charge comparison) applied for the first time to boron loaded plastic scintillator. The setup for the zero crossing discrimination method and the charge comparison methods is thoroughly expl...

  12. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  13. A new neutron interferometry approach in the determination of the neutron-electron interaction amplitude

    CERN Document Server

    Ioffe, A

    2002-01-01

    A new experimental approach in the determination of the neutron-electron interaction amplitude is proposed. The main idea of this approach is to use a perfect-crystal neutron interferometer as both a sample and a device for the measurement of the extra phase shift caused by the neutron interaction with atoms of Si. Indeed, such a sample (an interferometer blade) has a well-known atomic density and is a priori perfectly aligned with respect to the crystal lattice of the interferometer crystal. This results in the minimization of systematic errors caused by sample alignment and increases the overall experimental accuracy. Some theoretic estimations and details of an experimental setup are discussed. (orig.)

  14. Integrated Transmission Electron and Single-Molecule Fluorescence Microscopy Correlates Reactivity with Ultrastructure in a Single Catalyst Particle

    NARCIS (Netherlands)

    Hendriks, Frank C.|info:eu-repo/dai/nl/412642697; Mohammadian, Sajjad|info:eu-repo/dai/nl/374721327; Ristanovic, Zoran|info:eu-repo/dai/nl/328233005; Kalirai, Samanbir; Meirer, Florian; Vogt, Eelco T. C.|info:eu-repo/dai/nl/073717398; Bruijnincx, Pieter C. A.|info:eu-repo/dai/nl/33799529X; Gerritsen, Hans|info:eu-repo/dai/nl/071548777; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2018-01-01

    Establishing structure–activity relationships in complex, hierarchically structured nanomaterials, such as fluid catalytic cracking (FCC) catalysts, requires characterization with complementary, correlated analysis techniques. An integrated setup has been developed to perform transmission electron

  15. Calculations of neutron spectra after neutron-neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, B E [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Stephenson, S L [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Howell, C R [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G E [North Carolina State University, Raleigh, NC 27695-8202 (United States); Tornow, W [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Furman, W I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lychagin, E V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Muzichka, A Yu [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nekhaev, G V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Strelkov, A V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Sharapov, E I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shvetsov, V N [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2004-09-01

    A direct neutron-neutron scattering length, a{sub nn}, measurement with the goal of 3% accuracy (0.5 fm) is under preparation at the aperiodic pulsed reactor YAGUAR. A direct measurement of a{sub nn} will not only help resolve conflicting results of a{sub nn} by indirect means, but also in comparison to the proton-proton scattering length, a{sub pp}, shed light on the charge-symmetry of the nuclear force. We discuss in detail the analysis of the nn-scattering data in terms of a simple analytical expression. We also discuss calibration measurements using the time-of-flight spectra of neutrons scattered on He and Ar gases and the neutron activation technique. In particular, we calculate the neutron velocity and time-of-flight spectra after scattering neutrons on neutrons and after scattering neutrons on He and Ar atoms for the proposed experimental geometry, using a realistic neutron flux spectrum-Maxwellian plus epithermal tail. The shape of the neutron spectrum after scattering is appreciably different from the initial spectrum, due to collisions between thermal-thermal and thermal-epithermal neutrons. At the same time, the integral over the Maxwellian part of the realistic scattering spectrum differs by only about 6 per cent from that of a pure Maxwellian nn-scattering spectrum.

  16. Diamondlike carbon can replace beryllium in physics with ultracold neutrons

    International Nuclear Information System (INIS)

    Atchison, F.; Blau, B.; Daum, M.; Fierlinger, P.; Foelske, A.; Geltenbort, P.; Gupta, M.; Henneck, R.; Heule, S.; Kasprzak, M.; Kuzniak, M.; Kirch, K.; Meier, M.; Pichlmaier, A.; Plonka, Ch.; Reiser, R.; Theiler, B.; Zimmer, O.; Zsigmond, G.

    2006-01-01

    To complete our study of ultracold neutron (UCN) storage-vessel coatings, we have measured the Fermi potential for neutrons on diamondlike carbon coatings produced by laser induced vacuum arc deposition. A sample with an sp 3 content of 0.45, measured using, for the first time, neutron transmission had a Fermi potential of (249+/-14)neV. A second sample with an sp 3 fraction of 0.67, measured using cold neutron reflectometry, gave (271+/-13)neV. These values complete the demonstration that there is a viable alternative to Be in UCN physics

  17. Coupling of discrete ordinates methods by transmission of boundary conditions in solving the neutron transport equation in slab geometry; Couplage de discretisations aux ordonnees discretes d`equations de transport 1D par passage de conditions frontieres

    Energy Technology Data Exchange (ETDEWEB)

    Bal, G. [Departement MMN, Service IMA, Direction des Etudes et Recherches, Electricite de France (EDF), 92 - Clamart (France)

    1995-10-01

    Neutron transport in nuclear reactors is quite well modelled by the linear Boltzmann transport equation. Its solution is relatively easy, but unfortunately too expensive to achieve whole core computations. Thus, we have to simplify it, for example by homogenizing some physical characteristics. However, the solution may then be inaccurate. Moreover, in strongly homogeneous areas, the error may be too big. Then we would like to deal with such an inconvenient by solving the equation accurately on this area, but more coarsely away from it, so that the computation is not too expensive. This problem is the subject of a thesis. We present here some results obtained for slab geometry. The couplings between the fine and coarse discretization regions could be conceived in a number of approaches. Here, we only deal with the coupling at crossing the interface between two sub-domains. In the first section, we present the coupling of discrete ordinate methods for solving the homogeneous, isotropic and mono-kinetic equation. Coupling operators are defined and shown to be optimal. The second and the third sections are devoted to an extension of the previous results when the equation is non-homogeneous, anisotropic and multigroup (under some restrictive assumptions). Some numerical results are given in the case of isotropic and mono-kinetic equations. (author) 15 refs.

  18. Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source

    CERN Document Server

    Hannaske, Roland; Beyer, Roland; Junghans, Arnd; Bemmerer, Daniel; Birgersson, Evert; Ferrari, Anna; Grosse, Eckart; Kempe, Mathias; Kögler, Toni; Marta, Michele; Massarczyk, Ralph; Matic, Andrija; Schramm, Georg; Schwengner, Ronald; Wagner, Andreas

    2014-01-01

    Neutron total cross sections of 197 Au and nat Ta have been measured at the nELBE photoneutron source in the energy range from 0.1 - 10 MeV with a statistical uncertainty of up to 2 % and a total systematic uncertainty of 1 %. This facility is optimized for the fast neutron energy range and combines an excellent t ime structure of the neutron pulses (electron bunch width 5 ps) with a short flight path of 7 m. Because of the low instantaneous neutron flux transmission measurements of neutron total cross sections are possible, that exhibit very different beam and back ground conditions than found at other neutron sources.

  19. Accelerator requirements for fast-neutron interrogation of luggage and cargo

    International Nuclear Information System (INIS)

    Micklich, B.J.; Fink, C.L.; Yule, T.J.

    1995-01-01

    Several different fast-neutron based techniques are being studied for the detection of contraband substances in luggage and cargo containers. The present work discusses the accelerator requirements for fast-neutron transmission spectroscopy (FNTS), pulsed fast-neutron analysis (PFNA), and 14-MeV neutron interrogation. These requirements are based on the results of Monte-Carlo simulations of neutron or gamma detection rates. Accelerator requirements are driven by count-rate considerations, spatial resolution and acceptable uncertainties in elemental compositions. The authors have limited their analyses to luggage inspection with FNTS and to cargo inspection with PFNA or 14-MeV neutron interrogation

  20. Bulk hydrogen analysis, using neutrons. Final report of the first research co-ordination meeting

    International Nuclear Information System (INIS)

    1997-07-01

    There are many situations when hydrogen is required to be measured in a bulk medium. For this reason neutrons are used due to their high penetrating power in dense material. In addition, the mass attenuation coefficient for neutrons in hydrogen is significantly larger than for all other elements, meaning that neutrons have a higher probability of interacting with hydrogen than with other elements in the sample matrix. This CRP was recommended for further development of the techniques and new applications in the following areas: Fast Neutron/Gamma Transmission Technique; Digital Neutron Imaging; Hydrogen Detection by Epithermal Neutrons; Microscopic Behaviour of Hydrogen in Bulk Materials