WorldWideScience

Sample records for neutron stars supernovae

  1. SUPERNOVAE, NEUTRON STARS, AND TWO KINDS OF NEUTRINO

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, H Y

    1962-08-15

    The role of neutrinos in the core of a star that has undergone a supernova explosion is discussed. The existence of neutron stars, the Schwarzchild singularity in general relativity, and the meaning of conservation of baryons in the neighborhood of a Schwarzchild singularity are also considered. The problem of detection of neutron stars is discussed. It is concluded that neutron stars are the most plausible alternative for the remnant of the core of a supernova. The neutrino emission processes are divided into two groups: the neutrino associated with the meson (mu) and the production of electron neutrinos. (C.E.S.)

  2. The diversity of neutron stars: Nearby thermally emitting neutron stars and the compact central objects in supernova remnants

    Science.gov (United States)

    Kaplan, David L.

    Neutron stars are invaluable tools for exploring stellar death, the physics of ultra-dense matter, and the effects of extremely strong magnetic fields. The observed population of neutron stars is dominated by the > 1000 radio pulsars, but there are distinct sub-populations that, while fewer in number, can have significant impact on our understanding of the issues mentioned above. These populations are the nearby isolated neutron stars discovered by ROSAT, and the central compact objects in supernova remnants. The studies of both of these populations have been greatly accelerated in recent years through observations with the Chandra X-ray Observatory and the XMM-Newton telescope. First, we discuss radio, optical, and X-ray observations of the nearby neutron stars aimed at determining their relation to the Galactic neutron star population and at unraveling their complex physical processes by determining the basic astronomical parameters that define the population -- instances, ages, and magnetic fields -- the uncertainties in which limit any attempt to derive basic physical parameters for these objects. We conclude that these sources are 10^6 year-old cooling neutron stars with magnetic fields above 10^13 G. Second, we describe the hollow supernova remnant problem: why many of the supernova remnants in the Galaxy have no indication central neutron stars. We have undertaken an X-ray census of neutron stars in a volume-limited sample of Galactic supernova remnants, and from it conclude that either many supernovae do not produce neutron stars contrary to expectation, or that neutron stars can have a wide range in cooling behavior that makes many sources disappear from the X-ray sky.

  3. Neutron star kicks and asymmetric supernovae

    International Nuclear Information System (INIS)

    Lai, D.

    2001-01-01

    Observational advances over the last decade have left little doubt that neutron stars received a large kick velocity (of order a few hundred to a thousand km s -1 ) at birth. The physical origin of the kicks and the related supernova asymmetry is one of the central unsolved mysteries of supernova research. We review the physics of different kick mechanisms, including hydrodynamically driven, neutrino - magnetic field driven, and electromagnetically driven kicks. The viabilities of the different kick mechanisms are directly related to the other key parameters characterizing nascent neutron stars, such as the initial magnetic field and the initial spin. Recent observational constraints on kick mechanisms are also discussed. (orig.)

  4. On neutron star/supernova remnant associations

    OpenAIRE

    Gvaramadze, V. V.

    2000-01-01

    It is pointed out that a cavity supernova (SN) explosion of a moving massive star could result in a significant offset of the neutron star (NS) birth-place from the geometrical centre of the supernova remnant (SNR). Therefore: a) the high implied transverse velocities of a number of NSs (e.g. PSR B1610-50, PSR B1757-24, SGR0525-66) could be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR; c) the circle of possibl...

  5. Neutron Stars in Supernova Remnants and Beyond

    Science.gov (United States)

    Gvaramadze, V. V.

    We discuss a concept of off-centred cavity supernova explosion as applied to neutron star/supernova remnant associations and show how this concept could be used to preclude the anti-humane decapitating the Duck (G5.4-1.2 + G5.27-0.9) and dismembering the Swan (Cygnus Loop), as well as to search for a stellar remnant associated with the supernova remnant RCW86.

  6. Neutron Stars in Supernova Remnants and Beyond

    OpenAIRE

    Gvaramadze, V. V.

    2002-01-01

    We discuss a concept of off-centred cavity supernova explosion as applied to neutron star/supernova remnant associations and show how this concept could be used to preclude the anti-humane decapitating the Duck (G5.4-1.2 + G5.27-0.9) and dismembering the Swan (Cygnus Loop), as well as to search for a stellar remnant associated with the supernova remnant RCW86.

  7. Supernova remnant S 147 and its associated neutron star(s)

    Science.gov (United States)

    Gvaramadze, V. V.

    2006-07-01

    The supernova remnant S 147 harbors the pulsar PSR J 0538+2817 whose characteristic age is more than an order of magnitude greater than the kinematic age of the system (inferred from the angular offset of the pulsar from the geometric center of the supernova remnant and the pulsar proper motion). To reconcile this discrepancy we propose that PSR J 0538+2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as its characteristic age. Our proposal implies that S 147 is the diffuse remnant of the second supernova explosion (that disrupted the binary system) and that a much younger second neutron star (not necessarily manifesting itself as a radio pulsar) should be associated with S 147. We use the existing observational data on the system to suggest that the progenitor of the supernova that formed S 147 was a Wolf-Rayet star (so that the supernova explosion occurred within a wind bubble surrounded by a massive shell) and to constrain the parameters of the binary system. We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector should not strongly deviate from the orbital plane of the binary system.

  8. Neutron Star/supernova Remnant Associations

    Science.gov (United States)

    Gvaramadze, V. V.

    We propose a new approach for studying the neutron star/supernova remnant associations, based on the idea that the (diffuse) supernova remnants (SNRs) can be products of an off-centred supernova (SN) explosion in a preexisting bubble created by the wind of a moving massive star. A cavity SN explosion of a moving star results in a considerable offset of the neutron star (NS) birth-place from the geometrical centre of the SNR. Therefore: a) the high transverse velocities inferred for a number of NSs (e.g. PSR B 1610-50, PSR B 1757-24, SGR 0525-66) through their association with SNRs can be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR. Taking into account of these two facts allow us to enlarge the circle of possible NS/SNR associations, and could significantly affect the results of previous studies of NS/SNR associations. The possibilities of our approach are illustrated with the example of the association between PSR B 1706-44 and SNR G 343.1-2.3. We show that this association could be real if both objects are the remnants of a SN exploded within a mushroom-like cavity (created by the SN progenitor wind breaking out of the parent molecular cloud and expanding into an intercloud medium of a much less density). We also show that the SN explosion sites in some middle-aged (shell-like) SNRs could be marked by (compact) nebulae of thermal X-ray emission. The possible detection of such nebulae within middle-aged SNRs could be used for the re-estimation of implied transverse velocities of known NSs or for the search of new stellar remnants possibly associated with these SNRs.

  9. Neutron star formation in theoretical supernovae. Low mass stars and white dwarfs

    International Nuclear Information System (INIS)

    Nomoto, K.

    1986-01-01

    The presupernova evolution of stars that form semi-degenerate or strongly degenerate O + Ne + Mg cores is discussed. For the 10 to 13 Msub solar stars, behavior of off-center neon flashes is crucial. The 8 to 10 m/sub solar stars do not ignite neon and eventually collapse due to electron captures. Properties of supernova explosions and neutron stars expected from these low mass progenitors are compared with the Crab nebula. The conditions for which neutron stars form from accretion-induced collapse of white dwarfs in clsoe binary systems is also examined

  10. On Neutron Star/Supernova Remnant Association

    Science.gov (United States)

    Gvaramadze, V. V.

    It is pointed out that a cavity supernova (SN) explosion of a moving massive star could result in a significant offset of the neutron star (NS) birth-place from the geometrical centre of the supernova remnant (SNR). Therefore: a) the high implied transverse velocities of a number of NSs (e.g. PSR B1610-50, PSR B1706-44, PSR B1757-24, SGR 0526-66) could be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR; c) the circle of possible NS/SNR associations could be enlarged. An observational test is discussed, which could provide a determination of the true birth-places of NSs associated with middle-aged SNRs, and thereby provide more reliable estimates of their transverse velocities.

  11. CORE-COLLAPSE SUPERNOVA EQUATIONS OF STATE BASED ON NEUTRON STAR OBSERVATIONS

    International Nuclear Information System (INIS)

    Steiner, A. W.; Hempel, M.; Fischer, T.

    2013-01-01

    Many of the currently available equations of state for core-collapse supernova simulations give large neutron star radii and do not provide large enough neutron star masses, both of which are inconsistent with some recent neutron star observations. In addition, one of the critical uncertainties in the nucleon-nucleon interaction, the nuclear symmetry energy, is not fully explored by the currently available equations of state. In this article, we construct two new equations of state which match recent neutron star observations and provide more flexibility in studying the dependence on nuclear matter properties. The equations of state are also provided in tabular form, covering a wide range in density, temperature, and asymmetry, suitable for astrophysical simulations. These new equations of state are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics with three-flavor Boltzmann neutrino transport. The results are compared with commonly used equations of state in supernova simulations of 11.2 and 40 M ☉ progenitors. We consider only equations of state which are fitted to nuclear binding energies and other experimental and observational constraints. We find that central densities at bounce are weakly correlated with L and that there is a moderate influence of the symmetry energy on the evolution of the electron fraction. The new models also obey the previously observed correlation between the time to black hole formation and the maximum mass of an s = 4 neutron star

  12. Role of pions and hyperons in neutron stars and supernovae

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1987-05-01

    Neutron stars are studied in the framework of nuclear relativistic field theory. Hyperons and pions significantly soften the equation of state of neutron star matter at moderate and high density. We conjecture that they are responsible for the softening that is found to be crucial to the bounce scenario in supernova calculations. Hyperons reduce the limiting mass of neutron stars predicted by theory by one half solar mass or more, which is a large effect compared to the range in which theories of matter predict this limit to fall. 6 refs., 2 figs

  13. Simulating pasta phases by molecular dynamics and cold atoms. Formation in supernovae and superfluid neutrons in neutron stars

    International Nuclear Information System (INIS)

    Watanabe, Gentaro

    2010-01-01

    In dense stars such as collapsing cores of supernovae and neutron stars, nuclear 'pasta' such as rod-like and slab-like nuclei are speculated to exist. However, whether or not they are actually formed in supernova cores is still unclear. Here we solve this problem by demonstrating that a lattice of rod-like nuclei is formed from a bcc lattice by compression. We also find that the formation process is triggered by an attractive force between nearest neighbor nuclei, which starts to act when their density profile overlaps, rather than the fission instability. We also discuss the connection between pasta phases in neutron star crusts and ultracold Fermi gases. (author)

  14. The Diversity of Neutron Stars

    Science.gov (United States)

    Kaplan, David L.

    2004-12-01

    Neutron stars are invaluable tools for exploring stellar death, the physics of ultra-dense matter, and the effects of extremely strong magnetic fields. The observed population of neutron stars is dominated by the >1000 radio pulsars, but there are distinct sub-populations that, while fewer in number, can have significant impact on our understanding of the issues mentioned above. These populations are the nearby, isolated neutron stars discovered by ROSAT, and the central compact objects in supernova remnants. The studies of both of these populations have been greatly accelerated in recent years through observations with the Chandra X-ray Observatory and the XMM-Newton telescope. First, we discuss radio, optical, and X-ray observations of the nearby neutron stars aimed at determining their relation to the Galactic neutron star population and at unraveling their complex physical processes by determining the basic astronomical parameters that define the population---distances, ages, and magnetic fields---the uncertainties in which limit any attempt to derive basic physical parameters for these objects. We conclude that these sources are 1e6 year-old cooling neutron stars with magnetic fields above 1e13 Gauss. Second, we describe the hollow supernova remnant problem: why many of the supernova remnants in the Galaxy have no indication of central neutron stars. We have undertaken an X-ray census of neutron stars in a volume-limited sample of Galactic supernova remnants, and from it conclude that either many supernovae do not produce neutron stars contrary to expectation, or that neutron stars can have a wide range in cooling behavior that makes many sources disappear from the X-ray sky.

  15. Intermediate-mass Elements in Young Supernova Remnants Reveal Neutron Star Kicks by Asymmetric Explosions

    Science.gov (United States)

    Katsuda, Satoru; Morii, Mikio; Janka, Hans-Thomas; Wongwathanarat, Annop; Nakamura, Ko; Kotake, Kei; Mori, Koji; Müller, Ewald; Takiwaki, Tomoya; Tanaka, Masaomi; Tominaga, Nozomu; Tsunemi, Hiroshi

    2018-03-01

    The birth properties of neutron stars (NSs) yield important information about the still-debated physical processes that trigger the explosion as well as on intrinsic neutron-star physics. These properties include the high space velocities of young neutron stars with average values of several 100 km s‑1, with an underlying “kick” mechanism that is not fully clarified. There are two competing possibilities that could accelerate NSs during their birth: anisotropic ejection of either stellar debris or neutrinos. Here we present new evidence from X-ray measurements that chemical elements between silicon and calcium in six young gaseous supernova remnants are preferentially expelled opposite to the direction of neutron star motion. There is no correlation between the kick velocities and magnetic field strengths of these neutron stars. Our results support a hydrodynamic origin of neutron-star kicks connected to asymmetric explosive mass ejection, and they conflict with neutron-star acceleration scenarios that invoke anisotropic neutrino emission caused by particle and nuclear physics in combination with very strong neutron-star magnetic fields.

  16. Supernovae, compact stars and nuclear physics

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-01-01

    We briefly review the current understanding of supernova. We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 12 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to plausibly consist of individual hadrons. We conclude that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, cannot be a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation under appropriate conditions. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 39 refs., 8 figs., 2 tabs

  17. The Final Stages of Massive Star Evolution and Their Supernovae

    Science.gov (United States)

    Heger, Alexander

    In this chapter I discuss the final stages in the evolution of massive stars - stars that are massive enough to burn nuclear fuel all the way to iron group elements in their core. The core eventually collapses to form a neutron star or a black hole when electron captures and photo-disintegration reduce the pressure support to an extent that it no longer can hold up against gravity. The late burning stages of massive stars are a rich subject by themselves, and in them many of the heavy elements in the universe are first generated. The late evolution of massive stars strongly depends on their mass, and hence can be significantly effected by mass loss due to stellar winds and episodic mass loss events - a critical ingredient that we do not know as well as we would like. If the star loses all the hydrogen envelope, a Type I supernova results, if it does not, a Type II supernova is observed. Whether the star makes neutron star or a black hole, or a neutron star at first and a black hole later, and how fast they spin largely affects the energetics and asymmetry of the observed supernova explosion. Beyond photon-based astronomy, other than the sun, a supernova (SN 1987) has been the only object in the sky we ever observed in neutrinos, and supernovae may also be the first thing we will ever see in gravitational wave detectors like LIGO. I conclude this chapter reviewing the deaths of the most massive stars and of Population III stars.

  18. Old and new neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1984-09-01

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10 38 s -1 of 10 12 eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the 10 8 old dead pulsars in the Galaxy are the most probable source for the isotropically distributed γ-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables

  19. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.

    2017-06-01

    When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .

  20. The neutrino ignition of thermonuclear carbon burning, neutron star formation and supernova explosions

    International Nuclear Information System (INIS)

    Gershtein, S.S.; Khlopov, M.Yu.; Imshennik, V.S.; Ivanova, L.N.; Chechetkin, V.M.

    1977-01-01

    Taking account of neutrino energy transport in the self-consistent hydrodynamical calculation of explosions of deo-enerated carbon stallar cores at 3x10 9 9 g/cm 3 central density leads to the core disruption with kinetic energy up to 10 51 erg (that corresponds to parameters of Supernovae of 2 type) . This mechanism leads to the formation of neutron stars with the mass M approximately 1.4M Sun at rhosub(c) > 8.4 x 10 9 g/cm 3 and to successive blow off the envelope being typical for Supernovae of 1 type

  1. Massive Stars as Progenitors of Supernovae and GRBs

    NARCIS (Netherlands)

    Langer, N.; van Marle, A.J.; Poelarends, A.J.T.; Yoon, S.C.

    2007-01-01

    The evolutionary fate of massive stars in our Milky Way is thought to be reasonably well understood: stars above ˜ 8 M_o produce neutron stars and supernovae, while those above ˜ 20...30 M_o are presumed to form black holes. At metallicities below that of the SMC, however, our knowledge becomes

  2. The Case of the Neutron Star With a Wayward Wake

    Science.gov (United States)

    2006-06-01

    A long observation with NASA's Chandra X-ray Observatory has revealed important new details of a neutron star that is spewing out a wake of high-energy particles as it races through space. The deduced location of the neutron star on the edge of a supernova remnant, and the peculiar orientation of the neutron star wake, pose mysteries that remain unresolved. "Like a kite flying in the wind, the behavior of this neutron star and its wake tell us what sort of gas it must be plowing through," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., and lead author of a paper accepted to The Astrophysical Journal. "Yet we're still not sure how the neutron star got to its present location." Animation: Sequence of images of J0617 in IC 443 Animation: Sequence of images of J0617 in IC 443 The neutron star, known as CXOU J061705.3+222127, or J0617 for short, appears to lie near the outer edge of an expanding bubble of hot gas associated with the supernova remnant IC 443. Presumably, J0617 was created at the time of the supernova -- approximately 30,000 years ago -- and propelled away from the site of the explosion at about 500,000 miles per hour. However, the neutron star's wake is oriented almost perpendicularly to the direction expected if the neutron star were moving away from the center of the supernova remnant. This apparent misalignment had previously raised doubts about the association of the speeding neutron star with the supernova remnant. Gaensler and his colleagues provide strong evidence that J0617 was indeed born in the same explosion that created the supernova remnant. First, the shape of the neutron star's wake indicates it is moving a little faster than the speed of sound in Composite Images of SNR IC 443 Composite Images of SNR IC 443 the remnant's multimillion-degree gas. The velocity that one can then calculate from this conclusion closely matches the predicted pace of the neutron star. In contrast, if the neutron

  3. Neutron stars: Observational diversity and evolution

    Science.gov (United States)

    Safi-Harb, S.

    2017-12-01

    Ever since the discovery of the Crab and Vela pulsars in their respective Supernova Remnants, our understanding of how neutron stars manifest themselves observationally has been dramatically shaped by the surge of discoveries and dedicated studies across the electromagnetic spectrum, particularly in the high-energy band. The growing diversity of neutron stars includes the highly magnetized neutron stars (magnetars) and the Central Compact Objects shining in X-rays and mostly lacking pulsar wind nebulae. These two subclasses of high-energy objects, however, seem to be characterized by anomalously high or anomalously low surface magnetic fields (thus dubbed as ‘magnetars’ and ‘anti-magnetars’, respectively), and have pulsar characteristic ages that are often much offset from their associated SNRs’ ages. In addition, some neutron stars act ‘schizophrenic’ in that they occasionally display properties that seem common to more than one of the defined subclasses. I review the growing diversity of neutron stars from an observational perspective, then highlight recent and on-going theoretical and observational work attempting to address this diversity, particularly in light of their magnetic field evolution, energy loss mechanisms, and supernova progenitors’ studies.

  4. New aspects of the QCD phase transition in proto-neutron stars and core-collapse supernovae

    International Nuclear Information System (INIS)

    Hempel, Matthias; Heinimann, Oliver; Liebendörfer, Matthias; Friedrich-Karl, Thielemann; Yudin, Andrey; Iosilevskiy, Igor

    2017-01-01

    The QCD phase transition from hadronic to deconfined quark matter is found to be a so-called “entropic” phase transition, characterized, e.g., by a negative slope of the phase transition line in the pressure-temperature phase diagram. In a first part of the present proceedings it is discussed that entropic phase transitions lead to unusual thermal properties of the equation of state (EoS). For example one finds a loss of pressure (a “softening”) of the proto-neutron star EoS with increasing entropy. This can lead to a novel, hot third family of compact stars, which exists only in the early proto-neutron star phase. Such a hot third family can trigger explosions of core-collapse supernovae. However, so far this special explosion mechanism was found to be working only for EoSs which are not compatible with the 2 M ⊙ constraint for the neutron star maximum mass. In a second part of the proceeding it is discussed which quark matter parameters could be favorable for this explosion mechanism, and have sufficiently high maximum masses at the same time. (paper)

  5. Neutron stars. [quantum mechanical processes associated with magnetic fields

    Science.gov (United States)

    Canuto, V.

    1978-01-01

    Quantum-mechanical processes associated with the presence of high magnetic fields and the effect of such fields on the evolution of neutron stars are reviewed. A technical description of the interior of a neutron star is presented. The neutron star-pulsar relation is reviewed and consideration is given to supernovae explosions, flux conservation in neutron stars, gauge-invariant derivation of the equation of state for a strongly magnetized gas, neutron beta-decay, and the stability condition for a neutron star.

  6. Neutron Stars: Laboratories for Fundamental Physics Under ...

    Indian Academy of Sciences (India)

    DEBADES BANDYOPADHYAY

    2017-09-07

    Sep 7, 2017 ... Abstract. We discuss different exotic phases and components of matter from the crust to the core of neutron stars based on theoretical models for equations of state relevant to core collapse supernova simulations and neutron star merger. Parameters of the models are constrained from laboratory ...

  7. Binary pulsars as probes of neutron star birth

    NARCIS (Netherlands)

    Wijers, R.A.M.J.; van Paradijs, J.; van den Heuvel, E.P.J.

    1992-01-01

    We discuss two issues in the physics of neutron stars and their progenitors. The first is whether a neutron star receives a velocity kick when it is formed in the supernova-explosion of a massive star, and if it does, what is the characteristic magnitude, v(0), thereof? The second concerns the fate

  8. Comparing Neutron Star Kicks to Supernova Remnant Asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Holland-Ashford, Tyler; Lopez, Laura A. [The Ohio State University Department of Astronomy, 140 W 18th Avenue, Columbus, OH 43201 (United States); Auchettl, Katie [The Ohio State University Center for Cosmology and Astro-particle Physics, 191 West Woodruff Avenue, Columbus, OH 43210 (United States); Temim, Tea [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ramirez-Ruiz, Enrico, E-mail: holland-ashford.1@osu.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2017-07-20

    Supernova explosions are inherently asymmetric and can accelerate new-born neutron stars (NSs) to hundreds of km s{sup −1}. Two prevailing theories to explain NS kicks are ejecta asymmetries (e.g., conservation of momentum between NS and ejecta) and anisotropic neutrino emission. Observations of supernova remnants (SNRs) can give us insights into the mechanism that generates these NS kicks. In this paper, we investigate the relationship between NS kick velocities and the X-ray morphologies of 18 SNRs observed with the Chandra X-ray Observatory and the Röntgen Satellite ( ROSAT ). We measure SNR asymmetries using the power-ratio method (a multipole expansion technique), focusing on the dipole, quadrupole, and octupole power ratios. Our results show no correlation between the magnitude of the power ratios and NS kick velocities, but we find that for Cas A and G292.0+1.8, whose emission traces the ejecta distribution, their NSs are preferentially moving opposite to the bulk of the X-ray emission. In addition, we find a similar result for PKS 1209–51, CTB 109, and Puppis A; however, their emission is dominated by circumstellar/interstellar material, so their asymmetries may not reflect their ejecta distributions. Our results are consistent with the theory that NS kicks are a consequence of ejecta asymmetries as opposed to anisotropic neutrino emission. In the future, additional observations to measure NS proper motions within ejecta-dominated SNRs are necessary to robustly constrain the NS kick mechanism.

  9. A debris disk around an isolated young neutron star.

    Science.gov (United States)

    Wang, Zhongxiang; Chakrabarty, Deepto; Kaplan, David L

    2006-04-06

    Pulsars are rotating, magnetized neutron stars that are born in supernova explosions following the collapse of the cores of massive stars. If some of the explosion ejecta fails to escape, it may fall back onto the neutron star or it may possess sufficient angular momentum to form a disk. Such 'fallback' is both a general prediction of current supernova models and, if the material pushes the neutron star over its stability limit, a possible mode of black hole formation. Fallback disks could dramatically affect the early evolution of pulsars, yet there are few observational constraints on whether significant fallback occurs or even the actual existence of such disks. Here we report the discovery of mid-infrared emission from a cool disk around an isolated young X-ray pulsar. The disk does not power the pulsar's X-ray emission but is passively illuminated by these X-rays. The estimated mass of the disk is of the order of 10 Earth masses, and its lifetime (> or = 10(6) years) significantly exceeds the spin-down age of the pulsar, supporting a supernova fallback origin. The disk resembles protoplanetary disks seen around ordinary young stars, suggesting the possibility of planet formation around young neutron stars.

  10. Neutron-capture nucleosynthesis in the first stars

    International Nuclear Information System (INIS)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-01-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars.

  11. Neutron Star Physics and EOS

    Directory of Open Access Journals (Sweden)

    Lattimer James M.

    2016-01-01

    Full Text Available Neutron stars are important because measurement of their masses and radii will determine the dense matter equation of state. They will constrain the nuclear matter symmetry energy, which controls the neutron star matter pressure and the interior composition, and will influence the interpretation of nuclear experiments. Astrophysical observations include pulsar timing, X-ray bursts, quiescent low-mass X-ray binaries, pulse profiles from millisecond pulsars, neutrino observations from gravitational collapse supernovae,and gravitational radiation from compact object mergers. These observations will also constrain the neutron star interior, including the properties of superfluidity there, and determine the existence of a possible QCD phase transition.

  12. Neutron rich matter, neutron stars, and their crusts

    International Nuclear Information System (INIS)

    Horowitz, C J

    2011-01-01

    Neutron rich matter is at the heart of many fundamental questions in Nuclear Physics and Astrophysics. What are the high density phases of QCD? Where did the chemical elements come from? What is the structure of many compact and energetic objects in the heavens, and what determines their electromagnetic, neutrino, and gravitational-wave radiations? Moreover, neutron rich matter is being studied with an extraordinary variety of new tools such as Facility for Rare Isotope Beams (FRIB) and the Laser Interferometer Gravitational Wave Observatory (LIGO). We describe the Lead Radius Experiment (PREX) that is using parity violation to measure the neutron radius in 208Pb. This has important implications for neutron stars and their crusts. Using large scale molecular dynamics, we model the formation of solids in both white dwarfs and neutron stars. We find neutron star crust to be the strongest material known, some 10 billion times stronger than steel. It can support mountains on rotating neutron stars large enough to generate detectable gravitational waves. Finally, we describe a new equation of state for supernova and neutron star merger simulations based on the Virial expansion at low densities, and large scale relativistic mean field calculations.

  13. NEW HYPERON EQUATIONS OF STATE FOR SUPERNOVAE AND NEUTRON STARS IN DENSITY-DEPENDENT HADRON FIELD THEORY

    Energy Technology Data Exchange (ETDEWEB)

    Banik, Sarmistha [BITS Pilani, Hyderabad Campus, Hyderabad-500078 (India); Hempel, Matthias [Departement Physik, Universität Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Bandyopadhyay, Debades [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)

    2014-10-01

    We develop new hyperon equation of state (EoS) tables for core-collapse supernova simulations and neutron stars. These EoS tables are based on a density-dependent relativistic hadron field theory where baryon-baryon interaction is mediated by mesons, using the parameter set DD2 for nucleons. Furthermore, light and heavy nuclei along with interacting nucleons are treated in the nuclear statistical equilibrium model of Hempel and Schaffner-Bielich which includes excluded volume effects. Of all possible hyperons, we consider only the contribution of Λs. We have developed two variants of hyperonic EoS tables: in the npΛφ case the repulsive hyperon-hyperon interaction mediated by the strange φ meson is taken into account, and in the npΛ case it is not. The EoS tables for the two cases encompass a wide range of densities (10{sup –12} to ∼1 fm{sup –3}), temperatures (0.1 to 158.48 MeV), and proton fractions (0.01 to 0.60). The effects of Λ hyperons on thermodynamic quantities such as free energy per baryon, pressure, or entropy per baryon are investigated and found to be significant at higher densities. The cold, β-equilibrated EoS (with the crust included self-consistently) results in a 2.1 M {sub ☉} maximum mass neutron star for the npΛφ case, whereas that for the npΛ case is 1.95 M {sub ☉}. The npΛφ EoS represents the first supernova EoS table involving hyperons that is directly compatible with the recently measured 2 M {sub ☉} neutron stars.

  14. Physics of neutron star interiors

    International Nuclear Information System (INIS)

    Blaschke, D.

    2001-01-01

    Neutron stars are the densest observable bodies in our universe. Born during the gravitational collapse of luminous stars - a birth heralded by spectacular supernova explosions - they open a window on a world where the state of the matter and the strength of the fields are anything but ordinary. This book is a collection of pedagogical lectures on the theory of neutron stars, and especially their interiors, at the forefront of current research. It adresses graduate students and researchers alike, and should be particularly suitable as a text bridging the gap between standard textbook material and the research literature

  15. The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.

  16. Neutron Stars and the Discovery of Pulsars.

    Science.gov (United States)

    Greenstein, George

    1985-01-01

    Part one recounted the story of the discovery of pulsars and examined the Crab Nebula, supernovae, and neutron stars. This part (experts from the book "Frozen Star") shows how an understanding of the nature of pulsars allowed astronomers to tie these together. (JN)

  17. Diffuse remnants of supernova explosions of moving massive stars

    Science.gov (United States)

    Gvaramadze, V. V.

    The modification of the ambient interstellar medium by the wind of massive stars (the progenitors of most of supernovae) results in that the structure and evolution of diffuse supernova remnants (SNRs) significantly deviate from those derived from standard models of SNRs based of the Sedov-Taylor solution. The stellar proper motion and the regular interstellar magnetic field affect the symmetry of the processed medium and cause the SNR to be non-spherically-symmetric. We show that taking into account these effects allows us to explain the diverse morphologies of the known SNRs (the particular attention is paid to the elongated axisymmetric SNRs and the SNRs consisting of two partially overlapping shells) and to infer the ``true" supernova explosion sites in some peculiar SNRs (therefore to search for new neutron stars associated with them).

  18. Gravitational waves from neutron stars and asteroseismology

    Science.gov (United States)

    Ho, Wynn C. G.

    2018-05-01

    Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  19. Gravitational waves from neutron stars and asteroseismology.

    Science.gov (United States)

    Ho, Wynn C G

    2018-05-28

    Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  20. CARBON NEUTRON STAR ATMOSPHERES

    International Nuclear Information System (INIS)

    Suleimanov, V. F.; Klochkov, D.; Werner, K.; Pavlov, G. G.

    2014-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in the chemical composition of their atmospheres. For example, the atmospheres of thermally emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in Cas A, a pure carbon atmosphere has recently been suggested by Ho and Heinke. To test this composition for other similar sources, a publicly available detailed grid of the carbon model atmosphere spectra is needed. We have computed this grid using the standard local thermodynamic equilibrium approximation and assuming that the magnetic field does not exceed 10 8  G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra

  1. Neutrino Emission from Supernovae

    Science.gov (United States)

    Janka, Hans-Thomas

    Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.

  2. Neutron-capture Nucleosynthesis in the First Stars

    Science.gov (United States)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-04-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and The McDonald Observatory of The University of Texas at Austin.

  3. Bubbles, Bow Shocks and B Fields: The Interplay Between Neutron Stars and Their Environments

    Science.gov (United States)

    Gaensler, Bryan M.

    2006-12-01

    Young neutron stars embody Nature's extremes: they spin incredibly rapidly, move through space at enormous velocities, and are imbued with unimaginably strong magnetic fields. Since their progenitor stars do not have any of these characteristics, these properties are presumably all imparted to a neutron star during or shortly after the supernova explosion in which it is formed. This raises two fundamental questions: how do neutron stars attain these extreme parameters, and how are their vast reservoirs of energy then dissipated? I will explain how multi-wavelength observations of the environments of neutron stars not only provide vital forensic evidence on the physics of supernova core collapse, but also spectacularly reveal the winds, jets, shocks and outflows through which these remarkable objects couple to their surroundings.

  4. Numerical models of protoneutron stars and type-II supernovae - recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Janka, H T [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1996-11-01

    The results of recent multi-dimensional simulations of type-II supernovae are reviewed. They show that convective instabilities in the collapsed stellar core might play an important role already during the first second after the formation of the supernovae shock. Convectively unstable situations occur below and near the neutrinosphere as well as in the neutrino-heated region between the nascent neutron star and the supernova shock after the latter has stalled at a radiums of typically 100-200 km. While convective overturn in the layer of neutrino energy deposition clearly helps the explosion to develop and potentially provides an explanation of strong mantle and envelope mixing, asphericities, and non-uniform {sup 56}Ni distribution observed in supernova SN 1987A, its presence and importance depends on the strength of the neutrino heating and thus on the size of the neutrino fluxes from the neutrino star. Convection in the hot-bubble region can only be developed if the growth timescale of the instabilities and the heating timescale are both shorter than the accretion timescale of the matter advected through the stagnant shock. For too small neutrino luminosities this requirement is not fulfilled and convective activity cannot develop, leading to very weak explosions or even fizzling models, just as in the one-dimensional situations. Convectively enhanced neutrino luminosities from the protoneutron star can therefore provide an essential condition for the explosion of the star. Very recent two-dimensional, self-consistent, general relativistic simulations of the cooling of a newly-formed neutron star demonstrate and confirm the possibility that Ledoux convection, driven by negative lepton number and entropy gradients, may encompass the whole protoneutron star within less than one second and can lead to an increase of the neutrino fluxes by up to a factor of two. (author) 9 figs., refs.

  5. On the Origin of Hyperfast Neutron Stars

    Science.gov (United States)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2008-05-01

    We propose an explanation for the origin of hyperfast neutron stars (e.g. PSR B1508+55, PSR B2224+65, RX J0822 4300) based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star (or its helium core) which attained its peculiar velocity (similar to that of the neutron star) in the course of a strong three- or four-body dynamical encounter in the core of a young massive star cluster. This hypothesis implies that the dense cores of star clusters (located either in the Galactic disk or near the Galactic centre) could also produce the so-called hypervelocity stars ordinary stars moving with a speed of ~ 1 000 km s-1.

  6. On the origin of hyperfast neutron stars

    NARCIS (Netherlands)

    Gvaramadze, V.V.; Gualandris, A.; Portegies Zwart, S.

    2007-01-01

    We propose an explanation for the origin of hyperfast neutron stars (e.g. PSR B1508+55, PSR B2224+65, RX J0822-4300) based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star (or its helium core) which attained its peculiar velocity

  7. Equations of state for neutron stars and core-collapse supernovae

    Science.gov (United States)

    Oertel, Micaela; Providência, Constança

    2018-04-01

    Modelling compact stars is a complex task which depends on many ingredients, among others the properties of dense matter. In this contribution models for the equation of state (EoS) of dense matter will be discussed, relevant for the description of core-collapse supernovae, compact stars and compact star mergers. Such EoS models have to cover large ranges in baryon number density, temperature and isospin asymmetry. The characteristics of matter change dramatically within these ranges, from a mixture of nucleons, nuclei, and electrons to uniform, strongly interacting matter containing nucleons, and possibly other particles such as hyperons or quarks. Some implications for compact star astrophysics will be highlighted, too.

  8. Star's death and rebirth. White dwarfs, supernovae, pulsars, black holes

    Energy Technology Data Exchange (ETDEWEB)

    Otzen Petersen, J [Copenhagen Univ. (Denmark)

    1975-01-01

    The evolution of a star from a main sequence star of approximately solar mass, first to a red giant, thereafter to a white dwarf is described in detail. The evolution of more massive stars to supernovae, neutron stars and pulsars is then discussed with special reference to the Crab Nebula. Black holes and X-ray sources are also discussed, in this case with reference to the Cygnus X-1 system. In conclusion, it is pointed out that after their active phase white dwarfs, neutron stars and black holes may exist as dead bodies in space, and only be observeable through their gravitational fields. It is possible that a great number of such bodies may exist, and contribute to the stability of galaxies, also possibly facilitating the explanation of the galaxies' red shifts by means of simple universe models.

  9. Competition of neutrino and gravitational radiation in neutron star formation

    International Nuclear Information System (INIS)

    Kazanas, D.; Schramm, D.N.

    1976-01-01

    The possibility is explored that neutrino radiation, rather than gravitational radiation, may be the dominant way by which non-radial pulsations are damped out in a collapsing star. If this is so it implies that hopes of detecting gravity waves from supernovae explosions are very optimistic. Neutron stars and black holes are probably the collapsed central remnants of a supernovae explosion. These objects presumably originate from collapse of the cores of sufficiently massive stars, following the cessation of thermonuclear burning. Although there is at present no completely consistent detailed theory as to how collapse of the core and the subsequent supernova explosion take place, a general model exists for the final stages of stellar evolution and supernovae explosions. According to this model the electrons of a sufficiently massive stellar core, due to the high density and temperature, become absorbed by the protons through the reaction p + e - → n + v. Very large numbers of neutrinos, resulting from this and other thermal processes, such as pair annihilation, plasma decay, and Bremsstrahlung, are emitted, taking away most of the gravitational energy of the collapse. These neutrinos possibly drive ejection of the overlying stellar mantle, whilst the neutron-rich core collapses further to a condensed remnant. Gravitational radiation comes into play only at very late stages of the collapse. All of this implies that neutrino radiation might contribute to the decay of the non-radial oscillations of the collapsing core and the newly formed neutron star, possibly damping out these oscillations much faster than gravitational radiation. In order to obtain a more quantitative answer to the question the effects of neutrino radiation on the non-radial oscillations are examined. The implication is that neutrino radiation, by more rapid damping of the non-radial oscillations of a newly formed neutron star in a supernova explosion, would hinder gravitational radiation and

  10. Super-AGB Stars and their Role as Electron Capture Supernova Progenitors

    Science.gov (United States)

    Doherty, Carolyn L.; Gil-Pons, Pilar; Siess, Lionel; Lattanzio, John C.

    2017-11-01

    We review the lives, deaths and nucleosynthetic signatures of intermediate-mass stars in the range ≈6-12 M⊙, which form super-AGB stars near the end of their lives. The critical mass boundaries both between different types of massive white dwarfs (CO, CO-Ne, ONe), and between white dwarfs and supernovae, are examined along with the relative fraction of super-AGB stars that end life either as an ONe white dwarf or as a neutron star (or an ONeFe white dwarf), after undergoing an electron capture supernova event. The contribution of the other potential single-star channel to electron-capture supernovae, that of the failed massive stars, is also discussed. The factors that influence these different final fates and mass limits, such as composition, rotation, the efficiency of convection, the nuclear reaction rates, mass-loss rates, and third dredge-up efficiency, are described. We stress the importance of the binary evolution channels for producing electron-capture supernovae. Recent nucleosynthesis calculations and elemental yield results are discussed and a new set of s-process heavy element yields is presented. The contribution of super-AGB star nucleosynthesis is assessed within a Galactic perspective, and the (super-)AGB scenario is considered in the context of the multiple stellar populations seen in globular clusters. A brief summary of recent works on dust production is included. Last, we conclude with a discussion of the observational constraints and potential future advances for study into these stars on the low mass/high mass star boundary.

  11. Gamma-Ray Bursts from Neutron Star Kicks

    Science.gov (United States)

    Huang, Y. F.; Dai, Z. G.; Lu, T.; Cheng, K. S.; Wu, X. F.

    2003-09-01

    The idea that gamma-ray bursts might be a phenomenon associated with neutron star kicks was first proposed by Dar & Plaga. Here we study this mechanism in more detail and point out that the neutron star should be a high-speed one (with proper motion larger than ~1000 km s-1). It is shown that the model agrees well with observations in many aspects, such as the energetics, the event rate, the collimation, the bimodal distribution of durations, the narrowly clustered intrinsic energy, and the association of gamma-ray bursts with supernovae and star-forming regions. We also discuss the implications of this model on the neutron star kick mechanism and suggest that the high kick speed was probably acquired as the result of the electromagnetic rocket effect of a millisecond magnetar with an off-centered magnetic dipole.

  12. ELECTROMAGNETIC EXTRACTION OF ENERGY FROM BLACK-HOLE–NEUTRON-STAR BINARIES

    International Nuclear Information System (INIS)

    McWilliams, Sean T.; Levin, Janna

    2011-01-01

    The coalescence of black-hole-neutron-star binaries is expected to be a principal source of gravitational waves for the next generation of detectors, Advanced LIGO and Advanced Virgo. For black hole masses not much larger than the neutron star mass, the tidal disruption of the neutron star by the black hole provides one avenue for generating an electromagnetic counterpart. However, in this work, we demonstrate that, for all black-hole-neutron-star binaries observable by Advanced LIGO/Virgo, the interaction of the black hole with the magnetic field of the neutron star will generate copious luminosity, comparable to supernovae and active galactic nuclei. This novel effect may have already been observed as a new class of very short gamma-ray bursts by the Swift Gamma-Ray Burst Telescope. These events may be observable to cosmological distances, so that any black-hole-neutron-star coalescence detectable with gravitational waves by Advanced LIGO/Virgo could also be detectable electromagnetically.

  13. The role of neutron star mergers in the chemical evolution of the Galactic halo

    Science.gov (United States)

    Cescutti, G.; Romano, D.; Matteucci, F.; Chiappini, C.; Hirschi, R.

    2015-05-01

    Context. The dominant astrophysical production site of the r-process elements has not yet been unambiguously identified. The suggested main r-process sites are core-collapse supernovae and merging neutron stars. Aims: We explore the problem of the production site of Eu. We also use the information present in the observed spread in the Eu abundances in the early Galaxy, and not only its average trend. Moreover, we extend our investigations to other heavy elements (Ba, Sr, Rb, Zr) to provide additional constraints on our results. Methods: We adopt a stochastic chemical evolution model that takes inhomogeneous mixing into account. The adopted yields of Eu from merging neutron stars and from core-collapse supernovae are those that are able to explain the average [Eu/Fe]-[Fe/H] trend observed for solar neighbourhood stars, the solar abundance of Eu, and the present-day abundance gradient of Eu along the Galactic disc in the framework of a well-tested homogeneous model for the chemical evolution of the Milky Way. Rb, Sr, Zr, and Ba are produced by both the s- and r-processes. The r-process yields were obtained by scaling the Eu yields described above according to the abundance ratios observed in r-process rich stars. The s-process contribution by spinstars is the same as in our previous papers. Results: Neutron star binaries that merge in less than 10 Myr or neutron star mergers combined with a source of r-process generated by massive stars can explain the spread of [Eu/Fe] in the Galactic halo. The combination of r-process production by neutron star mergers and s-process production by spinstars is able to reproduce the available observational data for Sr, Zr, and Ba. We also show the first predictions for Rb in the Galactic halo. Conclusions: We confirm previous results that either neutron star mergers on a very short timescale or both neutron star mergers and at least a fraction of Type II supernovae have contributed to the synthesis of Eu in the Galaxy. The r

  14. THE UNREASONABLE WEAKNESS OF R -PROCESS COSMIC RAYS IN THE NEUTRON-STAR-MERGER NUCLEOSYNTHESIS SCENARIO

    Energy Technology Data Exchange (ETDEWEB)

    Kyutoku, Koutarou [Interdisciplinary Theoretical Science (iTHES) Research Group, RIKEN, Wako, Saitama 351-0198 (Japan); Ioka, Kunihito, E-mail: koutarou.kyutoku@riken.jp [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502 (Japan)

    2016-08-10

    We reach the robust conclusion that, by combining the observed cosmic rays of r -process elements with the fact that the velocity of the neutron-star-merger ejecta is much higher than that of the supernova ejecta, either (1) the reverse shock in the neutron-star-merger ejecta is a very inefficient accelerator that converts less than 0.003% of the ejecta kinetic energy to the cosmic-ray energy or (2) the neutron star merger is not the origin of the Galactic r -process elements. We also find that the acceleration efficiency should be less than 0.1% for the reverse shock of the supernova ejecta with observed cosmic rays lighter than the iron.

  15. Physics of dense matter, neutron stars, and supernova

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-02-01

    Nuclear and astrophysical evidence on the equation of state of dense matter is examined. The role of hyperonization of matter in the development of proto-neutron stars is briefly discussed. 7 refs., 4 figs

  16. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  17. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    International Nuclear Information System (INIS)

    Janka, H.T.

    1996-01-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson's neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs

  18. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Janka, H T [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1996-11-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson`s neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs.

  19. Fallback accretion onto magnetized neutron stars and the hidden magnetic field model

    International Nuclear Information System (INIS)

    Torres, A; Cerdá-Durán, P; Font, J A

    2015-01-01

    The observation of several neutron stars with relatively low values of the surface magnetic field found in supernova remnants has led in recent years to controversial interpretations. A possible explanation is the slow rotation of the proto-neutron star at birth which is unable to amplify its magnetic field to typical pulsar levels. An alternative possibility, the hidden magnetic field scenario, seems to be favoured over the previous one due to the observation of three low magnetic field magnetars. This scenario considers the accretion of the fallback of the supernova debris onto the neutron star as the responsible for the observed low magnetic field. In this work, we have studied under which conditions the magnetic field of a neutron star can be buried into the crust due to an accreting fluid. We have considered a simplified toy model in general relativity to estimate the balance between the incoming accretion flow an the magnetosphere. We conclude that the burial is possible for values of the surface magnetic field below 10 13 G. The preliminary results reported in this paper for simplified polytropic models should be confirmed using a more realistic thermodynamical setup. (paper)

  20. Presupernova models and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, D [Tokyo Univ. (Japan). Dept. of Earth Science and Astronomy; Nomoto, K I [Ibaraki Univ., Mito (Japan). Dept. of Physics

    1980-02-01

    Present status of the theories for presupernova evolution and triggering mechanisms of supernova explosions are summarized and discussed from the standpoint of the theory of stellar structure and evolution. It is not intended to collect every detail of numerical results thus far obtained, but to extract physically clear-cut understanding from complexities of the numerical stellar models. For this purpose the evolution of stellar cores is discussed in a generalized fashion. The following types of the supernova explosions are discussed. The carbon deflagration supernova of intermediate mass star which results in the total disruption of the star. Massive star evolves into a supernova triggered by photo-dissociation of iron nuclei which results in a formation of a neutron star or a black hole depending on its mass. These two are typical types of the supernova. Between them there remains a range of mass for which collapse of the stellar core is triggered by electron captures, which has been recently shown to leave a neutron star despite oxygen deflagration competing with the electron captures. Also discussed are combustion and detonation of helium or carbon which take place in accreting white dwarfs, and the collapse which is triggered by electron-pair creation in very massive stars.

  1. Hot neutron stars at birth and energy release

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki

    1994-01-01

    For the discussion of hot neutron stars at birth, it is necessary to calculate the equation of state for a so-called 'supernova matter' consisting of a neutron-rich nuclear matter and degenerated leptons. One of the aims of this paper is to obtain the realistic results for the equation of state. In 10-20s after the birth, new born hot neutron stars are cooled down by neutrino diffusion process, and gradually contract to usual cold neutron starts. It is another aim of this paper to determine how much energy is released during this cooling stage. The points to which attention was paid are explained. A three-nucleon interaction was introduced phenomenologically, as a two-nucleon interaction is insufficient to satisfy the empirical saturation property of symmetric nuclear matters. The separation of uncertain part from well-known part has the merit to clarify the dependence of the results on the present theoretical uncertainties. The validity of the simplified calculation as an approximation for the exact calculation is discussed. The results by both calculations were compared for the case of hot symmetric nuclear matters. The comparison of the density profiles for a hot neutron star and a cold neutron star is shown. The binding energy for hot and cold neutron stars was plotted. These results are examined. (K.I.)

  2. Supernovae from Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1986-01-01

    Wolf-Rayet stars are known to originate from the most massive stars. Under the assumption that these stripped stars explode at the end of their evolution through the same instability mechanism as type II supernovae, we calculate their light curve. The latter is found to be quite similar to the typical SN I light curves but is fainter by about 2 magnitudes. A detailed study of its shape leads to identify the WR supernovae with the SNIp (or SNIb) subclass. The more massive WR stars should explode via the e + e - pair production mechanism, with negligible 56 Ni formation. Their rather dim light curve is predicted to have a ∼ 2 month plateau and afterwards a very sharp decline. A delayed manifestation of such an event might be the Cas A remnant

  3. Supernova remnants, pulsar wind nebulae and their interaction

    NARCIS (Netherlands)

    Swaluw, E. van der

    2001-01-01

    A supernova explosion marks the end of the evolution of a massive star. What remains of the exploded star is a high density neutron star or a black hole. The material which has been ejected by the supernova explosion will manifest itself as a supernova remnant: a hot bubble of gas expanding in the

  4. How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke-Jung [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Whalen, Daniel J. [Institute of Cosmology and Gravitation, Portsmouth University, Portsmouth (United Kingdom); Wollenberg, Katharina M. J.; Glover, Simon C. O.; Klessen, Ralf S., E-mail: ken.chen@nao.ac.jp [Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg (Germany)

    2017-08-01

    Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.

  5. ON THE MASS DISTRIBUTION AND BIRTH MASSES OF NEUTRON STARS

    International Nuclear Information System (INIS)

    Özel, Feryal; Psaltis, Dimitrios; Santos Villarreal, Antonio; Narayan, Ramesh

    2012-01-01

    We investigate the distribution of neutron star masses in different populations of binaries, employing Bayesian statistical techniques. In particular, we explore the differences in neutron star masses between sources that have experienced distinct evolutionary paths and accretion episodes. We find that the distribution of neutron star masses in non-recycled eclipsing high-mass binaries as well as of slow pulsars, which are all believed to be near their birth masses, has a mean of 1.28 M ☉ and a dispersion of 0.24 M ☉ . These values are consistent with expectations for neutron star formation in core-collapse supernovae. On the other hand, double neutron stars, which are also believed to be near their birth masses, have a much narrower mass distribution, peaking at 1.33 M ☉ , but with a dispersion of only 0.05 M ☉ . Such a small dispersion cannot easily be understood and perhaps points to a particular and rare formation channel. The mass distribution of neutron stars that have been recycled has a mean of 1.48 M ☉ and a dispersion of 0.2 M ☉ , consistent with the expectation that they have experienced extended mass accretion episodes. The fact that only a very small fraction of recycled neutron stars in the inferred distribution have masses that exceed ∼2 M ☉ suggests that only a few of these neutron stars cross the mass threshold to form low-mass black holes.

  6. Supernovae

    International Nuclear Information System (INIS)

    Petschek, A.

    1990-01-01

    This book offers papers incorporating the latest results and understanding about supernovae, including SN1987A. There are several chapters reviewing all the radio through infrared, visible, and ultraviolet to X-rays and gamma-rays but also neutrinos. Other chapters deal with the classification of supernovae, depending on their spectra and light curves. Three chapters treat supernovae theory, including an idea of a fractal burning front and another on the behavior of neutron stars

  7. Gravitational collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.

    1989-01-01

    The collapse of the core of a massive star and the subsequent birth of a neutron star in a supernova explosion are discussed, and a model of the supernova mechanism is developed. The basic theory is then compared with the particular case of SN1987A, whose emitted neutrinos permitted the first direct test of the model. (author)

  8. Testing the Young Neutron Star Scenario with Persistent Radio Emission Associated with FRB 121102

    International Nuclear Information System (INIS)

    Kashiyama, Kazumi; Murase, Kohta

    2017-01-01

    Recently a repeating fast radio burst (FRB) 121102 has been confirmed to be an extragalactic event and a persistent radio counterpart has been identified. While other possibilities are not ruled out, the emission properties are broadly consistent with Murase et al. that theoretically proposed quasi-steady radio emission as a counterpart of both FRBs and pulsar-driven supernovae. Here, we constrain the model parameters of such a young neutron star scenario for FRB 121102. If the associated supernova has a conventional ejecta mass of M ej ≳ a few M ⊙ , a neutron star with an age of t age ∼ 10–100 years, an initial spin period of P i ≲ a few ms, and a dipole magnetic field of B dip ≲ a few × 10 13 G can be compatible with the observations. However, in this case, the magnetically powered scenario may be favored as an FRB energy source because of the efficiency problem in the rotation-powered scenario. On the other hand, if the associated supernova is an ultra-stripped one or the neutron star is born by the accretion-induced collapse with M ej ∼ 0.1 M ⊙ , a younger neutron star with t age ∼ 1–10 years can be the persistent radio source and might produce FRBs with the spin-down power. These possibilities can be distinguished by the decline rate of the quasi-steady radio counterpart.

  9. Testing the Young Neutron Star Scenario with Persistent Radio Emission Associated with FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Kashiyama, Kazumi [Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Murase, Kohta [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-04-10

    Recently a repeating fast radio burst (FRB) 121102 has been confirmed to be an extragalactic event and a persistent radio counterpart has been identified. While other possibilities are not ruled out, the emission properties are broadly consistent with Murase et al. that theoretically proposed quasi-steady radio emission as a counterpart of both FRBs and pulsar-driven supernovae. Here, we constrain the model parameters of such a young neutron star scenario for FRB 121102. If the associated supernova has a conventional ejecta mass of M {sub ej} ≳ a few M {sub ⊙}, a neutron star with an age of t {sub age} ∼ 10–100 years, an initial spin period of P{sub i} ≲ a few ms, and a dipole magnetic field of B {sub dip} ≲ a few × 10{sup 13} G can be compatible with the observations. However, in this case, the magnetically powered scenario may be favored as an FRB energy source because of the efficiency problem in the rotation-powered scenario. On the other hand, if the associated supernova is an ultra-stripped one or the neutron star is born by the accretion-induced collapse with M {sub ej} ∼ 0.1 M {sub ⊙}, a younger neutron star with t {sub age} ∼ 1–10 years can be the persistent radio source and might produce FRBs with the spin-down power. These possibilities can be distinguished by the decline rate of the quasi-steady radio counterpart.

  10. Electromagnetic pulse from supernovae. [model for old low-mass stars

    Science.gov (United States)

    Colgate, S. A.

    1975-01-01

    Upper and lower limits to the radiated electromagnetic pulse from a supernova are calculated assuming that the mass fraction of the matter expanding inside the dipole magnetic field shares energy and maintains the pressure balance in the process. A supernova model is described in which the explosion occurs in old low-mass stars containing less than 10% hydrogen in their ejecta and a remnant neutron star is produced. The analysis indicates that although the surface layer of a star of 1 g/cu thickness may be shock-accelerated to an energy factor of about 100 and may expand into the vacuum with an energy factor approaching 10,000, the equatorial magnetic field will retard this expansion so that the inner, more massive ejecta layers will effectively accelerate the presumed canonical dipole magnetic field to greater velocities than would the surface layer alone. A pulse of 10 to the 46th power ergs in a width of about 150 cm will result which will not be affected by circumstellar matter or electron self-radiation effects. It is shown that interstellar matter will attenuate the pulse, but that charge separation may reduce the attenuation and allow a larger pulse to escape.

  11. Distinguishing Newly Born Strange Stars from Neutron Stars with g-Mode Oscillations

    International Nuclear Information System (INIS)

    Fu Weijie; Wei Haiqing; Liu Yuxin

    2008-01-01

    The gravity-mode (g-mode) eigenfrequencies of newly born strange quark stars (SQSs) and neutron stars (NSs) are studied. It is found that the eigenfrequencies in SQSs are much lower than those in NSs by almost 1 order of magnitude, since the components of a SQS are all extremely relativistic particles while nucleons in a NS are nonrelativistic. We therefore propose that newly born SQSs can be distinguished from the NSs by detecting the eigenfrequencies of the g-mode pulsations of supernovae cores through gravitational radiation by LIGO-class detectors

  12. The origin of the Crab Nebula and the electron capture supernova in 8-10 M solar mass stars

    Science.gov (United States)

    Nomoto, K.

    1981-01-01

    The chemical composition of the Crab Nebula is compared with several presupernova models. The small carbon and oxygen abundances in the helium-rich nebula are consistent with only the presupernova model of the star whose main sequence mass was MMS approximately 8-9.5 M. More massive stars contain too much carbon in the helium layer and smaller mass stars do not leave neutron stars. The progenitor star of the Crab Nebula lost appreciable part of the hydrogen-rich envelope before the hydrogen-rich and helium layers were mixed by convection. Finally it exploded as the electron capture supernova; the O+Ne+Mg core collapsed to form a neutron star and only the extended helium-rich envelope was ejected by the weak shock wave.

  13. Neutron stars, fast pulsars, supernovae and the equation of state of dense matter

    International Nuclear Information System (INIS)

    Glendening, N.K.

    1989-01-01

    We discuss the prospects for obtaining constraints on the equation of state from astrophysical sources. Neutron star masses although few are known at present, provide a very direct constraint in as much as the connection to the equation of state involves only the assumption that Einstein's general theory of relativity is correct at the macroscopic scale. If the millisecond pulses briefly observed in the remnant of SN1987A can be attributed to uniform rotation of a pulsar, then a very severe constraint is placed on the equation of state. The theory again is very secure. The precise nature of the constraint is not yet understood, but it appears that the equation of state must be neither too soft nor stiff, and it may be that there is information not only on the stiffness of the equation of state but on its shape. Supernovae simulations involve such a plethora of physical processes including those involved in the evolution of the precollapse configuration, not all of them known or understood, that they provide no constraint at the present time. Not even the broad category of mechanism for the explosion is agreed upon (prompt shock, delayed shock, or nuclear explosion). In connection with very fast pulsars, we include some speculations on pure quark matter stars, and on possible scenarios for understanding the disappearance of the fast pulsar in SN1987A. 47 refs., 16 figs., 1 tab

  14. Neutron stars, fast pulsars, supernovae and the equation of state of dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Glendening, N.K.

    1989-06-01

    We discuss the prospects for obtaining constraints on the equation of state from astrophysical sources. Neutron star masses although few are known at present, provide a very direct constraint in as much as the connection to the equation of state involves only the assumption that Einstein's general theory of relativity is correct at the macroscopic scale. If the millisecond pulses briefly observed in the remnant of SN1987A can be attributed to uniform rotation of a pulsar, then a very severe constraint is placed on the equation of state. The theory again is very secure. The precise nature of the constraint is not yet understood, but it appears that the equation of state must be neither too soft nor stiff, and it may be that there is information not only on the stiffness of the equation of state but on its shape. Supernovae simulations involve such a plethora of physical processes including those involved in the evolution of the precollapse configuration, not all of them known or understood, that they provide no constraint at the present time. Not even the broad category of mechanism for the explosion is agreed upon (prompt shock, delayed shock, or nuclear explosion). In connection with very fast pulsars, we include some speculations on pure quark matter stars, and on possible scenarios for understanding the disappearance of the fast pulsar in SN1987A. 47 refs., 16 figs., 1 tab.

  15. The Structure and Signals of Neutron Stars, from Birth to Death

    CERN Document Server

    2014-01-01

    This conference aims at bringing together people working in astrophysics of neutron stars, both on the theoretical and observational aspects. The following topics will be discussed : - Equation of state of dense matter, including hyperon, kaon and quark degrees of freedom - Neutrino emission and cooling of compact stars - Superconductivity-superfluidity - Constraints from EM observations - Transients - Gravitational wave emission - Models for Supernovae and for Gamma Ray Bursts - Magnetars. This conference is supported in part by the European network CompStar (MPNS COST Action MP1304 - Exploring fundamental physics with compact stars)

  16. Supernova neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In the first part of his in-depth article on the 1987 supernova, David Schramm of the University of Chicago and the NASA/Fermilab Astrophysics Centre reviewed the background to supernovae, the composition of massive stars and the optical history of SN 1987A, and speculated on what the 1987 remnant might be. In such a Type II supernova, gravitational pressure crushes the atoms of the star's interior producing neutron matter, or even a black hole, and releasing an intense burst of neutrinos. 1987 was the first time that physicists were equipped (but not entirely ready!) to intercept these particles, and in the second part of his article, David Schramm covers the remarkable new insights from the science of supernova neutrino astronomy, born on 23 February 1987

  17. Detection of supernova neutrinos at spallation neutron sources

    Science.gov (United States)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2016-07-01

    After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)

  18. The Mystery of the Lonely Neutron Star

    Science.gov (United States)

    2000-09-01

    The VLT Reveals Bowshock Nebula around RX J1856.5-3754 Deep inside the Milky Way, an old and lonely neutron star plows its way through interstellar space. Known as RX J1856.5-3754 , it measures only ~ 20 km across. Although it is unusually hot for its age, about 700,000 °C, earlier observations did not reveal any activity at all, contrary to all other neutron stars known so far. In order to better understand this extreme type of object, a detailed study of RX J1856.5-3754 was undertaken by Marten van Kerkwijk (Institute of Astronomy of the University of Utrecht, The Netherlands) and Shri Kulkarni (California Institute of Technology, Pasadena, California, USA). To the astronomers' delight and surprise, images and spectra obtained with the ESO Very Large Telescope (VLT) now show a small nearby cone-shaped ("bowshock") nebula. It shines in the light from hydrogen atoms and is obviously a product of some kind of interaction with this strange star. Neutron stars - remnants of supernova explosions Neutron stars are among the most extreme objects in the Universe. They are formed when a massive star dies in a "supernova explosion" . During this dramatic event, the core of the star suddenly collapses under its own weight and the outer parts are violently ejected into surrounding space. One of the best known examples is the Crab Nebula in the constellation Taurus (The Bull). It is the gaseous remnant of a star that exploded in the year 1054 and also left behind a pulsar , i.e., a rotating neutron star [1]. A supernova explosion is a very complex event that is still not well understood. Nor is the structure of a neutron star known in any detail. It depends on the extreme properties of matter that has been compressed to incredibly high densities, far beyond the reach of physics experiments on Earth [2]. The ultimate fate of a neutron star is also unclear. From the observed rates of supernova explosions in other galaxies, it appears that several hundred million neutron stars

  19. Supernova explosion in a very massive star

    International Nuclear Information System (INIS)

    El Eid, M.F.

    1986-07-01

    We describe the final evolution of a 100 solar mass following an evolutionary scenario during which the star evolves from a Wolf-Rayet stage through the electron- positron pair creation supernova. We find that the star is completely disrupted by explosive oxygen burning, and this type of explosion as a possible scenario for the Cassiopeia A remnant. This scenario seems to be also applicable to the supernova 1985f according to the recent observations of this object

  20. Neutron Stars and NuSTAR

    Science.gov (United States)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  1. Supernova remnant S147 and its associated neutron star(s)

    OpenAIRE

    Gvaramadze, V. V.

    2005-01-01

    The supernova remnant S147 harbors the pulsar PSR J0538+2817 whose characteristic age is more than an order of magnitude greater than the kinematic age of the system (inferred from the angular offset of the pulsar from the geometric center of the supernova remnant and the pulsar proper motion). To reconcile this discrepancy we propose that PSR J0538+2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as its characteristic...

  2. Neutron stars interiors: Theory and reality

    International Nuclear Information System (INIS)

    Stone, J.R.

    2016-01-01

    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation. (orig.)

  3. Neutron stars interiors: Theory and reality

    Science.gov (United States)

    Stone, J. R.

    2016-03-01

    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation.

  4. Neutron stars interiors: Theory and reality

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.R. [University of Oxford, Department of Physics, Oxford (United Kingdom); University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States)

    2016-03-15

    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation. (orig.)

  5. Initial Parameters of Neutron Stars

    Science.gov (United States)

    Popov, S. B.; Turolla, R.

    2012-12-01

    A subpopulation of neutron stars (NSs), known as central compact objects (CCOs) in supernova remnants, are suspected to be low-field objects basing on P - ṗ measurements for three of them. The birth rate of low-field NSs is probably comparable with the birth rate of normal radio pulsars. However, among compact objects in High-Mass X-ray Binaries (HMXBs) we do not see robust candidates for low-field NSs. We propose that this contradiction can be solved if magnetic fields of CCOs was buried due to strong fall-back, and then the field emerges on the time scale 104 -105 yrs.

  6. Evolution of massive close binaries and formation of neutron stars and black holes

    International Nuclear Information System (INIS)

    Massevitch, A.G.; Tutukov, A.V.; Yungelson, L.R.

    1976-01-01

    Main results of computations of evolution for massive close binaries (10 M(Sun)+9.4 M(Sun), 16 M(Sun)+15 M(Sun), 32 M(Sun)+30 M(Sun), 64 M(Sun)+60 M(Sun)) up to oxygen exhaustion in the core are described. Mass exchange starting in core hydrogen, shell hydrogen and core helium burning stages was studied. Computations were performed assuming both the Ledoux and Schwarzschild stability criteria for semiconvection. The influence of UFI-neutrino emission on evolution of close binaries was investigated. The results obtained allow to outline the following evolutionary chain: two detached Main-Sequence stars - mass exchange - Wolf-Rayet star or blue supergiant plus main sequence star - explosion of the initially more massive star appearing as a supernova event - collapsed or neutron star plus Main-Sequence star, that may be observed as a 'runaway star' - mass exchange leading to X-rays emission - collapsed or neutron star plus WR-star or blue supergiant - second explosion of supernova that preferentially disrupts the system and gives birth to two single high spatial velocity pulsars. Numerical estimates concerning the number and properties of WR-stars, pulsars and X-ray sources are presented. The results are in favour of the existence of UFI-neutrino and of the Ledoux criterion for describing semiconvection. Properties of several well-known X-ray sources and the binary pulsar are discussed on base of evolutionary chain of close binaries. (Auth.)

  7. Neutrino astronomy with supernova neutrinos

    Science.gov (United States)

    Brdar, Vedran; Lindner, Manfred; Xu, Xun-Jie

    2018-04-01

    Modern neutrino facilities will be able to detect a large number of neutrinos from the next Galactic supernova. We investigate the viability of the triangulation method to locate a core-collapse supernova by employing the neutrino arrival time differences at various detectors. We perform detailed numerical fits in order to determine the uncertainties of these time differences for the cases when the core collapses into a neutron star or a black hole. We provide a global picture by combining all the relevant current and future neutrino detectors. Our findings indicate that in the scenario of a neutron star formation, supernova can be located with precision of 1.5 and 3.5 degrees in declination and right ascension, respectively. For the black hole scenario, sub-degree precision can be reached.

  8. KamLAND Sensitivity to Neutrinos from Pre-supernova Stars

    Science.gov (United States)

    Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; Koga, M.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obara, S.; Oura, T.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Tachibana, H.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Fushimi, K.; Piepke, A.; Banks, T. I.; Berger, B. E.; Fujikawa, B. K.; O'Donnell, T.; Learned, J. G.; Maricic, J.; Matsuno, S.; Sakai, M.; Winslow, L. A.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.; KamLAND Collaboration

    2016-02-01

    In the late stages of nuclear burning for massive stars (M > 8 M⊙), the production of neutrino-antineutrino pairs through various processes becomes the dominant stellar cooling mechanism. As the star evolves, the energy of these neutrinos increases and in the days preceding the supernova a significant fraction of emitted electron anti-neutrinos exceeds the energy threshold for inverse beta decay on free hydrogen. This is the golden channel for liquid scintillator detectors because the coincidence signature allows for significant reductions in background signals. We find that the kiloton-scale liquid scintillator detector KamLAND can detect these pre-supernova neutrinos from a star with a mass of 25 M⊙ at a distance less than 690 pc with 3σ significance before the supernova. This limit is dependent on the neutrino mass ordering and background levels. KamLAND takes data continuously and can provide a supernova alert to the community.

  9. Research in nuclear astrophysics: Stellar collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1991-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. We are actively researching the astrophysics of gravitational collapse, neutron star birth and neutrino emission, and neutron star cooling, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and supernova and neutron star phenomenon; some nuclear matter properties might be best delineated by astrophysical considerations. Our research has focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. We are modifying our hydrodynamical code to use implicit differencing and to include multi-group neutrino diffusion and general relativity. In parallel, we are extending calculations of core collapse supernovae to long times after collapse by using a hybrid explicit-implicit hydrodynamical code and by using simplified neutrino transport. We hope to establish the existence or non-existence of the so-called long-term supernova mechanism. We are also extending models of the neutrino emission and cooling of neutron stars to include the effects of rotation and the direct Urca process that we recently discovered to be crucial. We have developed a rapid version of the dense matter equation of state for use in hydrodynamic codes that retains essentially all the physics of earlier, more detailed equations of state. This version also has the great advantage that nuclear physics inputs, such as the nuclear incompressibility, symmetry, energy, and specific heat, can be specified

  10. Neutron star accretion and the neutrino fireball

    International Nuclear Information System (INIS)

    Colgate, S.A.; Herant, M.E.; Benz, W.

    1991-01-01

    The mixing necessary to explain the ''Fe'' line widths and possibly the observed red shifts of 1987A is explained in terms of large scale, entropy conserving, up and down flows (calculated with a smooth particle 2-D code) taking place between the neutron star and the explosion shock wave due to the gravity and neutrino deposition. Depending upon conditions of entropy and mass flux further accretion takes place in single events, similar to relaxation oscillator, fed by the downward flows of low entropy matter. The shock, in turn, is driven by the upflow of the buoyant high entropy bubbles. Some accretion events will reach a temperature high enough to create a neutrino ''fireball,'' a region hot enough, 11 Mev, so as to be partially opaque to its own (neutrino) radiation. The continuing neutrino deposition drives the explosion shock until the entropy of matter flowing downwards onto the neutron star is high enough to prevent further accretion. This process should result in a robust supernova explosion

  11. Life of a star

    International Nuclear Information System (INIS)

    Henbest, Nigel.

    1988-01-01

    The paper concerns the theory of stellar evolution. A description is given of:- how a star is born, main sequence stars, red giants, white dwarfs, supernovae, neutron stars and black holes. A brief explanation is given of how the death of a star as a supernova can trigger off the birth of a new generation of stars. Classification of stars and the fate of our sun, are also described. (U.K.)

  12. Nucleosynthesis in neutrino-driven, aspherical supernova explosion of a massive star

    International Nuclear Information System (INIS)

    Fujimoto, S.; Hashimoto, M.; Ono, M.; Kotake, K.; Ohnishi, N.

    2011-01-01

    We examine explosive nucleosynthesis of p-nuclei during a delayed neutrino-driven, aspherical supernova explosion aided by standing accretion shock instability, based on two-dimensional hydrodynamic simulations of the explosion of a 15M · star. We find that p-nuclei are mainly produced through γ-processes, and that the nuclei lighter than 92 Mo are abundantly synthesized in slightly neutron-rich bubbles with electron fractions of Y e ≤0.48. 94 Mo, 96 Ru, and 98 Ru, are underproduced compared with the solar system, as in the spherical model.

  13. Supernovae and neutrinos

    International Nuclear Information System (INIS)

    Totsuka, Y.

    1991-01-01

    On February 25, 1987, a sheet of telefax came to us from S. A. Bludman, saying Supernova went off in Large Magellanic Clouds. Can you see it? This is what we have been waiting 350 years for exclamation point In few hours, more information arrived. But it was still too early to definitely identify the supernova as type I or type II. This paper reports that the type I supernova is an explosion of a complete star due to uncontrolled nuclear fusion, while the type II supernova is triggered by gravitational collapse of the Fe core of a massive star (≥8 solar mass). It is this type II supernova that would leave a neutron star or a black hole after the liberation of an enormous amount of energy (3 x 10 53 erg) in the form of neutrinos. Therefore only the type II supernova is a relevant place to look for neutrino signals. It was also frustrating that the time when the stellar collapse actually took place was not definitely determined, because it was believed that the supernova brightened up about a day after the collapse and there was an ambiguity in a time lag of the optical observation. There was a possibility that it had happened well before February 24

  14. Research in nuclear astrophysics: Stellar collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1990-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics has been examined. We have been actively researching both the astrophysics of gravitational collapse, neutron star birth, and the emission of neutrinos from supernovae, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and supernova and neutron star phenomenon; in fact, nuclear matter properties, especially supernuclear densities, might be best delineated by astrophysical considerations. Our research has also focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. The recent observations of neutrinos from SN 1987A proved to be in remarkable agreement with models we pioneered prior to its explosion. We have also developed a novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity. We have also extended models of the neutrino emission and cooling of neutron stars to include the effects of rotation. The Lattimer compressible liquid drop model is the basis of our equation of state. We have developed a rapid version for use in hydrodynamic codes that retains essentially all the physics of earlier, more detailed equations of state. We have also focused on the nuclei-nuclear matter phase transition just below nuclear matter density, including the probable nuclear deformations and the possible ''inside-out'' phase of bubbles, which could be of major importance in supernovae models. Work also progressed toward understanding the origin of the r-process elements, through focusing on the neutron star decompression model

  15. Studies of Neutron Stars at Optical/IR Wavelengths

    OpenAIRE

    Mignani, R. P.; Bagnulo, S.; De Luca, A.; Israel, G. L.; Curto, G. Lo; Motch, C.; Perna, R.; Rea, N.; Turolla, R.; Zane, S.

    2006-01-01

    In the last years, optical studies of Isolated Neutron Stars (INSs) have expanded from the more classical rotation-powered ones to other categories, like the Anomalous X-ray Pulsars (AXPs) and the Soft Gamma-ray Repeaters (SGRs), which make up the class of the magnetars, the radio-quiet INSs with X-ray thermal emission and, more recently, the enigmatic Compact Central Objects (CCOs) in supernova remnants. Apart from 10 rotation-powered pulsars, so far optical/IR counterparts have been found f...

  16. Gamow's calculation of the neutron star's critical mass revised

    International Nuclear Information System (INIS)

    Ludwig, Hendrik; Ruffini, Remo

    2014-01-01

    It has at times been indicated that Landau introduced neutron stars in his classic paper of 1932. This is clearly impossible because the discovery of the neutron by Chadwick was submitted more than one month after Landau's work. Therefore, and according to his calculations, what Landau really did was to study white dwarfs, and the critical mass he obtained clearly matched the value derived by Stoner and later by Chandrasekhar. The birth of the concept of a neutron star is still today unclear. Clearly, in 1934, the work of Baade and Zwicky pointed to neutron stars as originating from supernovae. Oppenheimer in 1939 is also well known to have introduced general relativity (GR) in the study of neutron stars. The aim of this note is to point out that the crucial idea for treating the neutron star has been advanced in Newtonian theory by Gamow. However, this pioneering work was plagued by mistakes. The critical mass he should have obtained was 6.9 M, not the one he declared, namely, 1.5 M. Probably, he was taken to this result by the work of Landau on white dwarfs. We revise Gamow's calculation of the critical mass regarding calculational and conceptual aspects and discuss whether it is justified to consider it the first neutron-star critical mass. We compare Gamow's approach to other early and modern approaches to the problem.

  17. Introduction to neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Lattimer, James M. [Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  18. Realistic electrostatic potentials in a neutron star crust

    International Nuclear Information System (INIS)

    Ebel, Claudio; Mishustin, Igor; Greiner, Walter

    2015-01-01

    We study the electrostatic properties of inhomogeneous nuclear matter which can be formed in the crusts of neutron stars or in supernova explosions. Such matter is represented by Wigner–Seitz cells of different geometries (spherical, cylindrical, cartesian), which contain nuclei, free neutrons and electrons under the conditions of electrical neutrality. Using the Thomas–Fermi approximation, we have solved the Poisson equation for the electrostatic potential and calculated the corresponding electron density distributions in individual cells. The calculations are done for different shapes and sizes of the cells and different average baryon densities. The electron-to-baryon fraction was fixed at 0.3. Using realistic electron distributions leads to a significant reduction in electrostatic energy and electron chemical potential. (paper)

  19. Neutron stars as cosmic neutron matter laboratories

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    Recent developments which have radically changed our understanding of the dynamics of neutron star superfluids and the free precession of neutron stars are summarized, and the extent to which neutron stars are cosmic neutron matter laboratories is discussed. 17 refs., 1 tab

  20. A reconnaissance of the possible donor stars to the Kepler supernova

    International Nuclear Information System (INIS)

    Kerzendorf, Wolfgang E.; Childress, Michael; Schmidt, Brian P.; Scharwächter, Julia; Do, Tuan

    2014-01-01

    The identity of Type Ia supernova progenitors remains a mystery, with various lines of evidence pointing toward either accretion from a nondegenerate companion or the rapid merger of two degenerate stars leading to the thermonuclear destruction of a white dwarf. In this paper, we spectroscopically scrutinize 24 of the brightest stars residing in the central 38'' × 38'' of the SN 1604 (Kepler) supernova remnant to search for a possible surviving companion star. We can rule out, with high certainty, a red giant companion star—a progenitor indicated by some models of the supernova remnant. Furthermore, we find no star that exhibits properties uniquely consistent with those expected of a donor star down to L > 10 L ☉ . While the distribution of star properties toward the remnant are consistent with unrelated stars, we identify the most promising candidates for further astrometric and spectroscopic follow up. Such a program would either discover the donor star or place strong limits on progenitor systems to luminosities with L << L ☉ .

  1. Realistic fission models, new beta-decay half-lives and the r-process in neutron star mergers

    International Nuclear Information System (INIS)

    Shibagaki, S.; Kajino, T.; Chiba, S.; Lorusso, G.; Nishimura, S.; Mathews, G. J.

    2014-01-01

    Almost half of heavy nuclei beyond iron are considered to be produced by rapid neutron capture process (r-process). This process occurs in the neutron-rich environment such as core-collapse supernovae or neutron star mergers, but the main production site is still unknown. In the r-process of neutron star mergers, nuclear fission reactions play an important role. Also beta-decay half-lives of magic nuclei are crucial for the r-process. We have carried out r-process nucleosynthesis calculations based upon new theoretical estimates of fission fragment distributions and new beta-decay half-lives for N=82 nuclei measured at RIBF-RIKEN. We investigate the effect of nuclear fission on abundance patterns in the matter ejected from neutron star mergers with two different fission fragment mass distributions. We also discuss how the new experimental beta-decay half-lives affect the r-process

  2. Neutron Star Mergers and the R process

    Science.gov (United States)

    Joniak, Ronald; Ugalde, Claudio

    2017-09-01

    About half of the elements of the periodic table that are present today in the Solar System were synthesized before the formation of the Sun via a rapid neutron capture process (r process). However, the astrophysical site of the r process is a longstanding problem that has captivated both experimental and theoretical astrophysicists. Up to date, two possible scenarios for the site of the r process have been suggested: the first involves the high entropy wind of core collapse supernovae, and the second corresponds to the merger of two compact stellar objects such as neutron stars. We will study the robustness of the nucleosynthesis abundance pattern between the second and third r process peaks as produced by neutron star mergers with r process-like neutron exposures. First, we will vary parameters to obtain an understanding of the astrophysical mechanisms that create the r process. Next, we will create a program to obtain the best possible parameters based on a chi-squared test. Once we have the best fits, we will test the effect of fission in the overall isotope abundance pattern distribution. Later on, we will vary the ratio of masses of the two fission fragments and study its effect on elemental abundances. This research was supported by the UIC College of Liberal Arts and Sciences Undergraduate Research Initiative (LASURI).

  3. Fast pulsars, strange stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1990-02-01

    The initial motivation for this work was the reported discovery in January 1989 of a 1/2 millisecond pulsar in the remnant of the spectacular supernova, 1987A. The status of this discovery has come into grave doubt as of data taken by the same group in February, 1990. At this time we must consider that the millisecond signal does not belong to the pulsar. The existence of a neutron star in remnant of the supernova is suspected because of recent observations on the light curve of the remnant, and of course by the neutrino burst that announced the supernova. However its frequency is unknown. I can make a strong case that a pulsar rotation period of about 1 ms divides those that can be understood quite comfortably as neutron stars, and those that cannot. What we will soon learn is whether there is an invisible boundary below which pulsar periods do not fall, in which case, all are presumable neutron stars, or whether there exist sub- millisecond pulsars, which almost certainly cannot be neutron stars. Their most plausible structure is that of a self-bound star, a strange-quark-matter star. The existence of such stars would imply that the ground state of the strong interaction is not, as we usually assume, hadronic matter, but rather strange quark matter. Let us look respectively at stars that are bound only by gravity, and hypothetical stars that are self-bound, for which gravity is so to speak, icing on the cake

  4. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    Science.gov (United States)

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  5. Observational evidence for supernova-induced star formation: Canis Major R1

    International Nuclear Information System (INIS)

    Herbst, W.; Assousa, G.E.

    1977-01-01

    The R association CMa R1, which contains two classical Herbig emission stars (Z CMa and HD 53367) and several other extremely young stellar objects, is found to lie at the edge of a large-scale ring of emission nebulosity. The form of the ring, which is also seen at radio wavelengths, and the absence of luminous stellar objects at its center suggest that it may be a relatively old supernova remnant (SNR). This suggestion is greatly strengthened by the discovery of an expanding H I shell coincident with the optical feature and the discovery of a runaway star, HD 54662, in CMa OB1. An age of order 5 x 10 5 years is derived for the SNR by comparing its properties with theoretical expectation based on models of SNRs evolving in a uniform medium. The close agreement between the likely ages of the stars and the age of the SNR, as well as the location of the recently formed objects with respect to the supernova shell, strongly support the hypothesis that a supernova event triggered star formation in CMa R1. Several other cases where evidence exists for supernova-induced star formation are briefly discussed, the most interesting being the Orion region where the hypothesis may provide a simple explanation for such diverse features as the runaway stars, Barnard's loop, and the gas kinematics and recent star formation in the Trapezium region

  6. CONSTRAINING THE R-MODE SATURATION AMPLITUDE FROM A HYPOTHETICAL DETECTION OF R-MODE GRAVITATIONAL WAVES FROM A NEWBORN NEUTRON STAR: SENSITIVITY STUDY

    International Nuclear Information System (INIS)

    Mytidis, Antonis; Whiting, Bernard; Coughlin, Michael

    2015-01-01

    This paper consists of two related parts: in the first part we derive an expression of the moment of inertia (MOI) of a neutron star as a function of observables from a hypothetical r-mode gravitational-wave detection. For a given r-mode detection we show how the value of the MOI of a neutron star constrains the equation of state (EOS) of the matter in the core of the neutron star. Subsequently, for each candidate EOS, we derive a possible value of the saturation amplitude, α, of the r-mode oscillations on the neutron star. Additionally, we argue that an r-mode detection will provide clues about the cooling rate mechanism of the neutron star. The above physics that can be derived from a hypothetical r-mode detection constitutes our motivation for the second part of the paper. In that part we present a detection strategy to efficiently search for r-modes in gravitational-wave data. R-mode signals were injected into simulated noise colored with the advanced LIGO (aLIGO) and Einstein Telescope (ET) sensitivity curves. The r-mode waveforms used are those predicted by early theories based on polytropic EOS neutron star matter. In our best case scenario (α of order 10 −1 ), the maximum detection distance when using the aLIGO sensitivity curve is ∼1 Mpc (supernova event rate of 3–4 per century) while the maximum detection distance when using the ET sensitivity curve is ∼10 Mpc (supernova event rate of 1–2 per year)

  7. Handbook of supernovae

    CERN Document Server

    Murdin, Paul

    2017-01-01

    This reference work gathers all of the latest research in the supernova field areas to create a definitive source book on supernovae, their remnants and related topics. It includes each distinct subdiscipline, including stellar types, progenitors, stellar evolution, nucleosynthesis of elements, supernova types, neutron stars and pulsars, black holes, swept up interstellar matter, cosmic rays, neutrinos from supernovae, supernova observations in different wavelengths, interstellar molecules and dust. While there is a great deal of primary and specialist literature on supernovae, with a great many scientific groups around the world focusing on the phenomenon and related subdisciplines, nothing else presents an overall survey. This handbook closes that gap at last. As a comprehensive and balanced collection that presents the current state of knowledge in the broad field of supernovae, this is to be used as a basis for further work and study by graduate students, astronomers and astrophysicists working in close/r...

  8. Neutron star/red giant encounters in globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.

    1988-01-01

    The author presents a simple expression for the amount by which xsub(crit) is diminished as a star evolves xsub(crit) Rsub(crit)/R*, where Rsub(crit) is the maximum distance of closest approach between two stars for which the tidal energy is sufficient to bind the system, and R* is the radius of the star on which tides are being raised. Also it is concluded that tidal capture of giants by neutron stars resulting in binary systems is unlikely in globular clusters. However, collisions between neutron stars and red giants, or an alternative process involving tidal capture of a main-sequence star into an initially detached binary system, may result either in rapidly rotating neutron stars or in white dwarf/neutron star binaries. (author)

  9. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  10. The Universality of the Rapid Neutron-capture Process Revealed by a Possible Disrupted Dwarf Galaxy Star

    Science.gov (United States)

    Casey, Andrew R.; Schlaufman, Kevin C.

    2017-12-01

    The rapid neutron-capture or r-process is thought to produce the majority of the heavy elements (Z> 30) in extremely metal-poor stars. The same process is also responsible for a significant fraction of the heavy elements in the Sun. This universality of the r-process is one of its characteristic features, as well as one of the most important clues to its astrophysical origin. We report the discovery of an extremely metal-poor field giant with [{Sr},{Ba}/{{H}}]≈ -6.0 and [{Sr},{Ba}/{Fe}]≈ -3.0, the lowest abundances of strontium and barium relative to iron ever observed. Despite its low abundances, the star 2MASS J151113.24-213003.0 has [{Sr}/{Ba}]=-0.11+/- 0.14, therefore its neutron-capture abundances are consistent with the main solar r-process pattern that has [{Sr}/{Ba}]=-0.25. It has been suggested that extremely low neutron-capture abundances are a characteristic of dwarf galaxies, and we find that this star is on a highly eccentric orbit with an apocenter ≳100 kpc that lies in the disk of satellites in the halo of the Milky Way. We show that other extremely metal-poor stars with low [Sr, Ba/H] and [Sr, Ba/Fe] plus solar [Sr/Ba] tend to have orbits with large apocenters, consistent with a dwarf galaxy origin for this class of object. The nucleosynthesis event that produced the neutron-capture elements in 2MASS J151113.24-213003.0 must produce both strontium and barium together in the solar ratio. We exclude contributions from the s-process in intermediate-mass asymptotic giant branch or fast-rotating massive metal-poor stars, pair-instability supernovae, the weak r-process, and neutron-star mergers. We argue that the event was a Pop III or extreme Pop II core-collapse supernova explosion. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  11. Nucleosynthesis in Supernovae

    Science.gov (United States)

    Thielemann, Friedrich-Karl; Isern, Jordi; Perego, Albino; von Ballmoos, Peter

    2018-04-01

    We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in β+-decays, as e.g. from ^{26}Al, ^{44}Ti, ^{56,57}Ni and possibly further isotopes of their decay chains (in competition with the production of e+e- pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the ^{55}Mn puzzle), plus (d) further constraints from galactic evolution, γ-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.

  12. Neutrino radiation-hydrodynamics. General relativistic versus multidimensional supernova simulations

    International Nuclear Information System (INIS)

    Liebendoerfer, Matthias; Fischer, Tobias; Hempel, Matthias

    2010-01-01

    Recently, simulations of the collapse of massive stars showed that selected models of the QCD phase transitions to deconfined quarks during the early postbounce phase can trigger the supernova explosion that has been searched for over many years in spherically symmetric supernova models. Using sophisticated general relativistic Boltzmann neutrino transport, it was found that a characteristic neutrino signature is emitted that permits to falsify or identify this scenario in the next Galactic supernova event. On the other hand, more refined observations of past supernovae and progressing theoretical research in different supernova groups demonstrated that the effects of multidimensional fluid instabilities cannot be neglected in global models of the explosions of massive stars. We point to different efforts where neutrino transport and general relativistic effects are combined with multidimensional fluid instabilities in supernovae. With those, it will be possible to explore the gravitational wave emission as a potential second characteristic observable of the presence of quark matter in new-born neutron stars. (author)

  13. Neutron matter, symmetry energy and neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, Gandolfi [Los Alamos National Laboratory (LANL); Steiner, Andrew W [ORNL

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  14. Evolution of massive close binary stars

    International Nuclear Information System (INIS)

    Masevich, A.G.; Tutukov, A.V.

    1982-01-01

    Some problems of the evolution of massive close binary stars are discussed. Most of them are nonevolutionized stars with close masses of components. After filling the Roche cavity and exchange of matter between the components the Wolf-Rayet star is formed. As a result of the supernovae explosion a neutron star or a black hole is formed in the system. The system does not disintegrate but obtains high space velocity owing to the loss of the supernovae envelope. The satellite of the neutron star or black hole - the star of the O or B spectral class loses about 10 -6 of the solar mass for a year. Around the neighbouring component a disc of this matter is formed the incidence of which on a compact star leads to X radiation appearance. The neutron star cannot absorb the whole matter of the widening component and the binary system submerges into the common envelope. As a result of the evolution of massive close binary systems single neutron stars can appear which after the lapse of some time become radiopulsars. Radiopulsars with such high space velocities have been found in our Galaxy [ru

  15. Neutron Star Science with the NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  16. Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae

    Science.gov (United States)

    Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.

    2018-01-01

    Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.

  17. What stars become supernovae

    International Nuclear Information System (INIS)

    Tinsley, B.M.

    1975-01-01

    A variety of empirical lines of evidence is assembled on the masses and stellar population types of stars that trigger supernova (SN) explosions. The main theoretical motivations are to determine whether type I supernovae (SN I) can have massive precursors, and whether there is an interval of stellar mass, between the masses of precursors of pulsars and white dwarfs, that is disrupted by carbon detonation. Statistical and other uncertainties in the empirical arguments are given particular attention, and are found to be more important than generally realized. Relatively secure conclusions include the following. Statistics of stellar birthrates, SN, pulsars, and SN remnants in the Galaxy show that SN II (or all SN) could arise from stars with masses greater than M/sub s/ where M/sub s/ approximately 49 to 12 M solar mass; the precursor mass range cannot be more closely defined from present data; nor can it be said whether all SN leave pulsars and/or extended radio remnants. Several methods of estimating the masses of stars that become white dwarfs are consistent with a lower limit, M/sub s/ greater than or equal to 5 M solar mass, so carbon detonation may indeed be avoided, although this conclusion is not secure. Studies of the properties of galaxies in which SN occur, and their distributions within galaxies, support the usual views that SN I have low-mass precursors (less than or equal to 5 M solar mass and typically less than or equal to 1 M solar mass) and SN II have massive precursors (greater than or equal to 5 M solar mass); the restriction of known SN II to Sc and Sb galaxies, to date, is shown to be consistent, statistically, with massive stars in other galaxies also dying as SN II. Possible implications of the peculiarities of some SN-producing galaxies are discussed. Suggestions are made for observational and theoretical studies that would help answer important remaining questions on the nature of SN precursors

  18. The Magnetar Model of the Superluminous Supernova GAIA16apd and the Explosion Jet Feedback Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Soker, Noam, E-mail: soker@physics.technion.ac.il [Department of Physics, Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2017-04-10

    Under the assumption that jets explode core collapse supernovae (CCSNe) in a negative jet feedback mechanism (JFM), this paper shows that rapidly rotating neutron stars are likely to be formed when the explosion is very energetic. Under the assumption that an accretion disk or an accretion belt around the just-formed neutron star launch jets and that the accreted gas spins-up the just-formed neutron star, I derive a crude relation between the energy that is stored in the spinning neutron star and the explosion energy. This relation is ( E {sub NS-spin}/ E {sub exp}) ≈ E {sub exp}/10{sup 52} erg; It shows that within the frame of the JFM explosion model of CCSNe, spinning neutron stars, such as magnetars, might have significant energy in super-energetic explosions. The existence of magnetars, if confirmed, such as in the recent super-energetic supernova GAIA16apd, further supports the call for a paradigm shift from neutrino-driven to jet-driven CCSN mechanisms.

  19. THE LANDSCAPE OF THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVAE: NEUTRON STAR AND BLACK HOLE MASS FUNCTIONS, EXPLOSION ENERGIES, AND NICKEL YIELDS

    International Nuclear Information System (INIS)

    Pejcha, Ondřej; Thompson, Todd A.

    2015-01-01

    If the neutrino luminosity from the proto-neutron star formed during a massive star core collapse exceeds a critical threshold, a supernova (SN) results. Using spherical quasi-static evolutionary sequences for hundreds of progenitors over a range of metallicities, we study how the explosion threshold maps onto observables, including the fraction of successful explosions, the neutron star (NS) and black hole (BH) mass functions, the explosion energies (E SN ) and nickel yields (M Ni ), and their mutual correlations. Successful explosions are intertwined with failures in a complex pattern that is not simply related to initial progenitor mass or compactness. We predict that progenitors with initial masses of 15 ± 1, 19 ± 1, and ∼21-26 M ☉ are most likely to form BHs, that the BH formation probability is non-zero at solar-metallicity and increases significantly at low metallicity, and that low luminosity, low Ni-yield SNe come from progenitors close to success/failure interfaces. We qualitatively reproduce the observed E SN -M Ni correlation, we predict a correlation between the mean and width of the NS mass and E SN distributions, and that the means of the NS and BH mass distributions are correlated. We show that the observed mean NS mass of ≅ 1.33 M ☉ implies that the successful explosion fraction is higher than 0.35. Overall, we show that the neutrino mechanism can in principle explain the observed properties of SNe and their compact objects. We argue that the rugged landscape of progenitors and outcomes mandates that SN theory should focus on reproducing the wide ranging distributions of observed SN properties

  20. Nuclear reactions in ultra-magnetized supernovae

    International Nuclear Information System (INIS)

    Kondratyev, V.N.

    2002-06-01

    The statistical model is employed to investigate nuclear reactions in ultrastrong magnetic fields relevant for supernovae and neutron stars. For radiative capture processes the predominant mechanisms are argued to correspond to modifications of nuclear level densities, and γ-transition energies due to interactions of the field with magnetic moments of nuclei. The density of states reflects the nuclear structure and results in oscillations of reaction cross sections as a function of field strength, while magnetic interaction energy enhances radiative neutron capture process. Implications in the synthesis of r-process nuclei in supernova site are discussed. (author)

  1. Supernova hydrodynamics

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1981-01-01

    The explosion of a star supernova occurs at the end of its evolution when the nuclear fuel in its core is almost, or completely, consumed. The star may explode due to a small residual thermonuclear detonation, type I SN or it may collapse, type I and type II SN leaving a neutron star remnant. The type I progenitor should be thought to be an old accreting white dwarf, 1.4 M/sub theta/, with a close companion star. A type II SN is thought to be a massive young star 6 to 10 M/sub theta/. The mechanism of explosion is still a challenge to our ability to model the most extreme conditions of matter and hydrodynamics that occur presently and excessively in the universe. 39 references

  2. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  3. Moments of inertia of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Svenja Kim; Hebeler, Kai; Schwenk, Achim [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2016-07-01

    Neutron stars are unique laboratories for matter at extreme conditions. While nuclear forces provide systematic constraints on properties of neutron-rich matter up to around nuclear saturation density, the composition of matter at high densities is still unknown. Recent precise observations of 2 M {sub CircleDot} neutron stars made it possible to derive systematic constraints on the equation of state at high densities and also neutron star radii. Further improvements of these constraints require the observation of even heavier neutron stars or a simultaneous measurement of mass and radius of a single neutron star. Since the precise measurement of neutron star radii is an inherently difficult problem, the observation of moment of inertia of neutron stars provides a promising alternative, since they can be measured by pulsar timing experiments. We present a theoretical framework that allows to calculate moments of inertia microscopically, we show results based on state of the art equations of state and illustrate how future measurements of moments of inertia allow to constrain the equation of state and other properties of neutron stars.

  4. Hyperon-mixed neutron stars

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki

    2004-01-01

    Hyperon mixing in neutron star matter is investigated by the G-matrix-based effective interaction approach under the attention to use the YN and the YY potentials compatible with hypernuclear data and is shown to occur at densities relevant to neutron star cores, together with discussions to clarify the mechanism of hyperon contamination. It is remarked that developed Y-mixed phase causes a dramatic softening of the neutron star equation of state and leads to the serious problem that the resulting maximum mass M max for neutron star model contradicts the observed neutron star mass (M max obs = 1.44 M Θ ), suggesting the necessity of some extra repulsion'' in hypernuclear system. It is shown that the introduction of three-body repulsion similar to that in nuclear system can resolve the serious situation and under the consistency with observation (M max > M obs ) the threshold densities for Λ and Σ - are pushed to higher density side, from 2ρ 0 to ∼ 4ρ 0 (ρ 0 being the nuclear density). On the basis of a realistic Y-mixed neutron star model, occurrence of Y-superfluidity essential for ''hyperon cooling'' scenario is studied and both of Λ- and Σ - -superfluids are shown to be realized with their critical temperatures 10 8-9 K, meaning that the hyperon cooling'' is a promising candidate for a fast non-standard cooling demanded for some neutron stars with low surface temperature. A comment is given as to the consequence of less attractive ΛΛ interaction suggested by the ''NAGARA event'' ΛΛ 6 He. (author)

  5. The Magnetar Model of the Superluminous Supernova GAIA16apd and the Explosion Jet Feedback Mechanism

    International Nuclear Information System (INIS)

    Soker, Noam

    2017-01-01

    Under the assumption that jets explode core collapse supernovae (CCSNe) in a negative jet feedback mechanism (JFM), this paper shows that rapidly rotating neutron stars are likely to be formed when the explosion is very energetic. Under the assumption that an accretion disk or an accretion belt around the just-formed neutron star launch jets and that the accreted gas spins-up the just-formed neutron star, I derive a crude relation between the energy that is stored in the spinning neutron star and the explosion energy. This relation is ( E _N_S_-_s_p_i_n/ E _e_x_p) ≈ E _e_x_p/10"5"2 erg; It shows that within the frame of the JFM explosion model of CCSNe, spinning neutron stars, such as magnetars, might have significant energy in super-energetic explosions. The existence of magnetars, if confirmed, such as in the recent super-energetic supernova GAIA16apd, further supports the call for a paradigm shift from neutrino-driven to jet-driven CCSN mechanisms.

  6. Research in nuclear astrophysics: stellar collapse and supernovae: Annual performance report, December 1, 1987--November 30, 1988

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1988-01-01

    This annual performance report summarizes the activity in the nuclear astrophysics research program in the Earth and Space Scienes Department at Stony Brook. The central themes in the projects that comprise this program are supernovae, neutron star formation, and the equation of state of hot, dense metter. There is a close coupling between the physics of nuclear matter and weak interactions on the one hand, and supernovae and neutron stars on the other. The properties of nuclear matter might at present best be delineated by astrophysical considerations. We have been active in researching both the nuclear physics of the equation of state and the astrophysics of stellar collapse, neutrino emission, and neutron star formation. 11 refs

  7. Neutron star formation and the weak interaction

    International Nuclear Information System (INIS)

    Burrows, A.

    1986-01-01

    The only known direct diagnostic of the central event is its neutrino emission. The imprint of the entire internal evolution is stamped on the spectrum, mix of flavors, luminosities, and features of the accompanying neutrino burst. Detection and scrutiny of this neutrino signal will test theories concerning stellar collapse, type II supernovae, and the formation of neutron stars in ways impossible by other means. Despite the fact that an incredible 3x10 53 ergs may be emitted in neutrinos after the initiation of collapse, the very weakness of the neutrino/matter interaction that allows them to penetrate the stellar envelope and escape makes their detection at the Earth very difficult. Though neutrino astronomy is not yet a mature discipline, the physical theories of collapse have progressed to a sufficient degree that specific and detailed predictions can be made about the neutrino emissions that with future detector technology might be tested. The time seems propitious to summarize and review what is known and suspected about the neutrino signature of collapse, the potential for its detection, and how it can be used to test our ideas about the death of massive stars and the birth of neutrino stars. (orig./BBOE)

  8. Evolution of Supernova Remnants Near the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Yalinewich, A.; Piran, T.; Sari, R. [Racah Institute of Physics, the Hebrew University, 91904, Jerusalem (Israel)

    2017-03-20

    Supernovae near the Galactic center (GC) evolve differently from regular Galactic supernovae. This is mainly due to the environment into which the supernova remnants (SNRs) propagate. SNRs near the GC propagate into a wind swept environment with a velocity directed away from the GC, and a graded density profile. This causes these SNRs to be non-spherical, and to evolve faster than their Galactic counterparts. We develop an analytic theory for the evolution of explosions within a stellar wind, and verify it using a hydrodynamic code. We show that such explosions can evolve in one of three possible morphologies. Using these results we discuss the association between the two SNRs (SGR East and SGR A’s bipolar radio/X-ray lobes) and the two neutron stars (the Cannonball and SGR J1745-2900) near the GC. We show that, given the morphologies of the SNR and positions of the neutron stars, the only possible association is between SGR A’s bipolar radio/X-ray lobes and SGR J1745-2900. If a compact object was created in the explosion of SGR East, it remains undetected, and the SNR of the supernova that created the Cannonball has already disappeared.

  9. Interacting supernovae and supernova impostors

    Science.gov (United States)

    Tartaglia, Leonardo

    2016-02-01

    Massive stars are thought to end their lives with spectacular explosions triggered by the gravitational collapse of their cores. Interacting supernovae are generally attributed to supernova explosions occurring in dense circumstellar media, generated through mass-loss which characterisie the late phases of the life of their progenitors. In the last two decades, several observational evidences revealed that mass-loss in massive stars may be related to violent eruptions involving their outer layers, such as the luminous blue variables. Giant eruptions of extragalactic luminous blue variables, similar to that observed in Eta Car in the 19th century, are usually labelled 'SN impostors', since they mimic the behaviour of genuine SNe, but are not the final act of the life of the progenitor stars. The mechanisms producing these outbursts are still not understood, although the increasing number of observed cases triggered the efforts of the astronomical community to find possible theoretical interpretations. More recently, a number of observational evidences suggested that also lower-mass stars can experience pre-supernova outbursts, hence becoming supernova impostors. Even more interestingly, there is growing evidence of a connection among massive stars, their outbursts and interacting supernovae. All of this inspired this research, which has been focused in particular on the characterisation of supernova impostors and the observational criteria that may allow us to safely discriminate them from interacting supernovae. Moreover, the discovery of peculiar transients, motivated us to explore the lowest range of stellar masses that may experience violent outbursts. Finally, the quest for the link among massive stars, their giant eruptions and interacting supernovae, led us to study the interacting supernova LSQ13zm, which possibly exploded a very short time after an LBV-like major outburst.

  10. Quark Deconfinement in Rotating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Richard D. Mellinger

    2017-01-01

    Full Text Available In this paper, we use a three flavor non-local Nambu–Jona-Lasinio (NJL model, an improved effective model of Quantum Chromodynamics (QCD at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular emphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars. In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in, the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.

  11. Supernova 1987A: 18 Months later

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1989-01-01

    An overview of the significance for physics of the closest visual supernova in almost 400 years is presented. The supernova occurred in the Large Magellanic Cloud (LMC), /approximately/50 kpc away. The supernova star was a massive star of /approximately/15--20M. Observations now show that it was once a red-giant but lost its outer envelope. The lower than standard luminosity and higher observed velocities are a natural consequence of the pre-supernova star being a blue rather than a red [supergiant]. Of particular importance to physicists is the detection of neutrinos from the event by detectors in the United States and Japan. Not only did this establish extra-solar system neutrino astronomy, but it also constrained the properties of neutrino. It is shown that the well established Kamioka-IMB neutrino burst experimentally implies an event with about 2--4 /times/ 10/sup 53/ergs emitted in neutrinos and a temperature, T/sub /bar /nu/e//, of between 4 and 4.5 MeV. This event is in excellent agreement with what one would expect from the gravitational core collapse of a massive star. A neutrino detection, such as that reported earlier in Mt. Blanc, would require more than the rest mass energy of a neutron star to be converted to neutrinos, if it were to have its origin in the LMC. Thus it is probably unrelated to the supernova. The anticipated frequency of collapse events in our Galaxy, will also be discussed with a rate as high as 1/10 year shown to be not unreasonable. 61 refs

  12. Neutron Star Kicks by the Gravitational Tug-boat Mechanism in Asymmetric Supernova Explosions: Progenitor and Explosion Dependence

    Energy Technology Data Exchange (ETDEWEB)

    Janka, Hans-Thomas [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

    2017-03-01

    Asymmetric mass ejection in the early phase of supernova (SN) explosions can impart a kick velocity to the new-born neutron star (NS). For neutrino-driven explosions the NS acceleration has been shown to be mainly caused by the gravitational attraction of the anisotropically expelled inner ejecta, while hydrodynamic forces contribute on a subdominant level, and asymmetric neutrino emission plays only a secondary role. Two- and three-dimensional hydrodynamic simulations have demonstrated that this gravitational tug-boat mechanism can explain the observed space velocities of young NSs up to more than 1000 km s{sup −1}. Here, we discuss how the NS kick depends on the energy, ejecta mass, and asymmetry of the SN explosion, and what role the compactness of the pre-collapse stellar core plays for the momentum transfer to the NS. We also provide simple analytic expressions for the NS velocity in terms of these quantities. Referring to results of hydrodynamic simulations in the literature, we argue why, within the discussed scenario of NS acceleration, electron-capture SNe, low-mass Fe-core SNe, and ultra-stripped SNe can be expected to have considerably lower intrinsic NS kicks than core-collapse SNe of massive stellar cores. Our basic arguments also remain valid if progenitor stars possess large-scale asymmetries in their convective silicon and oxygen burning layers. Possible scenarios for spin-kick alignment are sketched. Much of our discussion stays on a conceptual and qualitative level, and more work is necessary on the numerical modeling side to determine the dependences of involved parameters, whose prescriptions will be needed for recipes that can be used to better describe NS kicks in binary evolution and population synthesis studies.

  13. Neutron Skins and Neutron Stars

    OpenAIRE

    Piekarewicz, J.

    2013-01-01

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ("PREX") at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in 208Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron be...

  14. Interacting supernovae from photoionization-confined shells around red supergiant stars

    Science.gov (United States)

    Mackey, Jonathan; Mohamed, Shazrene; Gvaramadze, Vasilii V.; Kotak, Rubina; Langer, Norbert; Meyer, Dominique M.-A.; Moriya, Takashi J.; Neilson, Hilding R.

    2014-08-01

    Betelgeuse, a nearby red supergiant, is a fast-moving star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse's wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have much more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova light curve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.

  15. Hyperon-mixed neutron star matter and neutron stars

    International Nuclear Information System (INIS)

    Nishizaki, Shigeru; Takatsuka, Tatsuyuki; Yamamoto, Yasuo

    2002-01-01

    Effective Σ - n and Σ - Σ - interactions are derived from the G-matrix calculations for {n+Σ - } matter and employed in the investigation of hyperon mixing in neutron star matter. The threshold densities ρ t (Y) at which hyperons start to appear are between 2ρ 0 and 3ρ 0 (where ρ 0 is the normal nuclear density) for both Λ and Σ - , and their fractions increase rapidly with baryon density, reaching 10% already for ρ≅ρ t + ρ 0 . The mechanism of hyperon mixing and single-particle properties, such as the effective mass and the potential depth, are analyzed taking into account the roles of YN and NN interactions. The resulting equation of state is found to be too soft to sustain the observed neutron star mass M obs =1.44(solar mass). We discuss the reason for this and stress the necessity of the ''extra repulsion'' for YN and YY interactions to resolve this crucial problem. It is remarked that ρ t (Y) would be as large as 4ρ 0 for neutron stars compatible with M obs . A comment is given regarding the effects on the Y-mixing problem from a less attractive ΛΛ interaction, newly suggested by the NAGARA event. (author)

  16. White dwarf models of supernovae and cataclysmic variables

    International Nuclear Information System (INIS)

    Nomoto, K.; Hashimoto, M.

    1986-01-01

    If the accreting white dwarf increases its mass to the Chandrasekhar mass, it will either explode as a Type I supernova or collapse to form a neutron star. In fact, there is a good agreement between the exploding white dwarf model for Type I supernovae and observations. We describe various types of evolution of accreting white dwarfs as a function of binary parameters (i.e,. composition, mass, and age of the white dwarf, its companion star, and mass accretion rate), and discuss the conditions for the precursors of exploding or collapsing white dwarfs, and their relevance to cataclysmic variables. Particular attention is given to helium star cataclysmics which might be the precursors of some Type I supernovae or ultrashort period x-ray binaries. Finally we present new evolutionary calculations using the updated nuclear reaction rates for the formation of O+Ne+Mg white dwarfs, and discuss the composition structure and their relevance to the model for neon novae. 61 refs., 14 figs

  17. Neutron star evolution and emission

    Science.gov (United States)

    Epstein, R. I.; Edwards, B. C.; Haines, T. J.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors investigated the evolution and radiation characteristics of individual neutron stars and stellar systems. The work concentrated on phenomena where new techniques and observations are dramatically enlarging the understanding of stellar phenomena. Part of this project was a study of x-ray and gamma-ray emission from neutron stars and other compact objects. This effort included calculating the thermal x-ray emission from young neutron stars, deriving the radio and gamma-ray emission from active pulsars and modeling intense gamma-ray bursts in distant galaxies. They also measured periodic optical and infrared fluctuations from rotating neutron stars and search for high-energy TeV gamma rays from discrete celestial sources.

  18. The Dark Side of Neutron Stars

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos

    2013-01-01

    We review severe constraints on asymmetric bosonic dark matter based on observations of old neutron stars. Under certain conditions, dark matter particles in the form of asymmetric bosonic WIMPs can be eectively trapped onto nearby neutron stars, where they can rapidly thermalize and concentrate...... in the core of the star. If some conditions are met, the WIMP population can collapse gravitationally and form a black hole that can eventually destroy the star. Based on the existence of old nearby neutron stars, we can exclude certain classes of dark matter candidates....

  19. The cosmic merger rate of neutron stars and black holes

    Science.gov (United States)

    Mapelli, Michela; Giacobbo, Nicola

    2018-06-01

    Six gravitational wave detections have been reported so far, providing crucial insights on the merger rate of double compact objects. We investigate the cosmic merger rate of double neutron stars (DNSs), neutron star-black hole binaries (NSBHs) and black hole binaries (BHBs) by means of population-synthesis simulations coupled with the Illustris cosmological simulation. We have performed six different simulations, considering different assumptions for the efficiency of common envelope (CE) ejection and exploring two distributions for the supernova (SN) kicks. The current BHB merger rate derived from our simulations spans from ˜150 to ˜240 Gpc-3 yr-1 and is only mildly dependent on CE efficiency. In contrast, the current merger rates of DNSs (ranging from ˜20 to ˜600 Gpc-3 yr-1) and NSBHs (ranging from ˜10 to ˜100 Gpc-3 yr-1) strongly depend on the assumptions on CE and natal kicks. The merger rate of DNSs is consistent with the one inferred from the detection of GW170817 only if a high efficiency of CE ejection and low SN kicks (drawn from a Maxwellian distribution with one dimensional root mean square σ = 15 km s-1) are assumed.

  20. Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes

    International Nuclear Information System (INIS)

    Shibata, Masaru

    2003-01-01

    We report a new implementation for axisymmetric simulation in full general relativity. In this implementation, the Einstein equations are solved using the Nakamura-Shibata formulation with the so-called cartoon method to impose an axisymmetric boundary condition, and the general relativistic hydrodynamic equations are solved using a high-resolution shock-capturing scheme based on an approximate Riemann solver. As tests, we performed the following simulations: (i) long-term evolution of nonrotating and rapidly rotating neutron stars, (ii) long-term evolution of neutron stars of a high-amplitude damping oscillation accompanied with shock formation, (iii) collapse of unstable neutron stars to black holes, and (iv) stellar collapses to neutron stars. Tests (i)-(iii) were carried out with the Γ-law equation of state, and test (iv) with a more realistic parametric equation of state for high-density matter. We found that this new implementation works very well: It is possible to perform the simulations for stable neutron stars for more than 10 dynamical time scales, to capture strong shocks formed at stellar core collapses, and to accurately compute the mass of black holes formed after the collapse and subsequent accretion. In conclusion, this implementation is robust enough to apply to astrophysical problems such as stellar core collapse of massive stars to a neutron star, and black hole, phase transition of a neutron star to a high-density star, and accretion-induced collapse of a neutron star to a black hole. The result for the first simulation of stellar core collapse to a neutron star started from a realistic initial condition is also presented

  1. Neutron star structure from QCD

    CERN Document Server

    Fraga, Eduardo S; Vuorinen, Aleksi

    2016-01-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  2. Transition density and pressure in hot neutron stars

    International Nuclear Information System (INIS)

    Xu Jun; Chen Liewen; Ko, Che Ming; Li Baoan

    2010-01-01

    Using the momentum-dependent effective interaction (MDI) for nucleons, we have studied the transition density and pressure at the boundary between the inner crust and the liquid core of hot neutron stars. We find that their values are larger in neutrino-trapped neutron stars than in neutrino-free neutron stars. Furthermore, both are found to decrease with increasing temperature of a neutron star as well as increasing slope parameter of the nuclear symmetry energy, except that the transition pressure in neutrino-trapped neutron stars for the case of small symmetry energy slope parameter first increases and then decreases with increasing temperature. We have also studied the effect of the nuclear symmetry energy on the critical temperature above which the inner crust in a hot neutron star disappears and found that with increasing value of the symmetry energy slope parameter, the critical temperature decreases slightly in neutrino-trapped neutron stars but first decreases and then increases in neutrino-free neutron stars.

  3. Theory of neutron star magnetospheres

    CERN Document Server

    Curtis Michel, F

    1990-01-01

    An incomparable reference for astrophysicists studying pulsars and other kinds of neutron stars, "Theory of Neutron Star Magnetospheres" sums up two decades of astrophysical research. It provides in one volume the most important findings to date on this topic, essential to astrophysicists faced with a huge and widely scattered literature. F. Curtis Michel, who was among the first theorists to propose a neutron star model for radio pulsars, analyzes competing models of pulsars, radio emission models, winds and jets from pulsars, pulsating X-ray sources, gamma-ray burst sources, and other neutron-star driven phenomena. Although the book places primary emphasis on theoretical essentials, it also provides a considerable introduction to the observational data and its organization. Michel emphasizes the problems and uncertainties that have arisen in the research as well as the considerable progress that has been made to date.

  4. Observational Evidence for High Neutronization in Supernova Remnants: Implications for Type Ia Supernova Progenitors

    International Nuclear Information System (INIS)

    Martínez-Rodríguez, Héctor; Badenes, Carles; Andrews, Brett; Yamaguchi, Hiroya; Bravo, Eduardo; Timmes, F. X.; Miles, Broxton J.; Townsley, Dean M.; Piro, Anthony L.; Mori, Hideyuki; Park, Sangwook

    2017-01-01

    The physical process whereby a carbon–oxygen white dwarf explodes as a Type Ia supernova (SN Ia) remains highly uncertain. The degree of neutronization in SN Ia ejecta holds clues to this process because it depends on the mass and the metallicity of the stellar progenitor, and on the thermodynamic history prior to the explosion. We report on a new method to determine ejecta neutronization using Ca and S lines in the X-ray spectra of Type Ia supernova remnants (SNRs). Applying this method to Suzaku data of Tycho, Kepler , 3C 397, and G337.2−0.7 in the Milky Way, and N103B in the Large Magellanic Cloud, we find that the neutronization of the ejecta in N103B is comparable to that of Tycho and Kepler , which suggests that progenitor metallicity is not the only source of neutronization in SNe Ia. We then use a grid of SN Ia explosion models to infer the metallicities of the stellar progenitors of our SNRs. The implied metallicities of 3C 397, G337.2−0.7, and N103B are major outliers compared to the local stellar metallicity distribution functions, indicating that progenitor metallicity can be ruled out as the origin of neutronization for these SNRs. Although the relationship between ejecta neutronization and equivalent progenitor metallicity is subject to uncertainties stemming from the 12 C + 16 O reaction rate, which affects the Ca/S mass ratio, our main results are not sensitive to these details.

  5. Observational Evidence for High Neutronization in Supernova Remnants: Implications for Type Ia Supernova Progenitors

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Rodríguez, Héctor; Badenes, Carles; Andrews, Brett [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Yamaguchi, Hiroya [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Bravo, Eduardo [E.T.S. Arquitectura del Vallès, Universitat Politècnica de Catalunya, Carrer Pere Serra 1-15, E-08173 Sant Cugat del Vallès (Spain); Timmes, F. X. [The Joint Institute for Nuclear Astrophysics (United States); Miles, Broxton J.; Townsley, Dean M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States); Piro, Anthony L. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Mori, Hideyuki [CRESST and X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 602, Greenbelt, MD 20771 (United States); Park, Sangwook, E-mail: hector.mr@pitt.edu [Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX 76019 (United States)

    2017-07-01

    The physical process whereby a carbon–oxygen white dwarf explodes as a Type Ia supernova (SN Ia) remains highly uncertain. The degree of neutronization in SN Ia ejecta holds clues to this process because it depends on the mass and the metallicity of the stellar progenitor, and on the thermodynamic history prior to the explosion. We report on a new method to determine ejecta neutronization using Ca and S lines in the X-ray spectra of Type Ia supernova remnants (SNRs). Applying this method to Suzaku data of Tycho, Kepler , 3C 397, and G337.2−0.7 in the Milky Way, and N103B in the Large Magellanic Cloud, we find that the neutronization of the ejecta in N103B is comparable to that of Tycho and Kepler , which suggests that progenitor metallicity is not the only source of neutronization in SNe Ia. We then use a grid of SN Ia explosion models to infer the metallicities of the stellar progenitors of our SNRs. The implied metallicities of 3C 397, G337.2−0.7, and N103B are major outliers compared to the local stellar metallicity distribution functions, indicating that progenitor metallicity can be ruled out as the origin of neutronization for these SNRs. Although the relationship between ejecta neutronization and equivalent progenitor metallicity is subject to uncertainties stemming from the {sup 12}C + {sup 16}O reaction rate, which affects the Ca/S mass ratio, our main results are not sensitive to these details.

  6. RUNAWAY DWARF CARBON STARS AS CANDIDATE SUPERNOVA EJECTA

    Energy Technology Data Exchange (ETDEWEB)

    Plant, Kathryn A.; Margon, Bruce; Guhathakurta, Puragra; Cunningham, Emily C.; Toloba, Elisa [Department of Astronomy and Astrophysics and University of California Observatories, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Munn, Jeffrey A., E-mail: kaplant@ucsc.edu [US Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86005-8521 (United States)

    2016-12-20

    The dwarf carbon (dC) star SDSS J112801.67+004034.6 has an unusually high radial velocity, 531 ± 4 km s{sup −1}. We present proper motion and new spectroscopic observations which imply a large Galactic rest frame velocity, 425 ± 9 km s{sup −1}. Several other SDSS dC stars are also inferred to have very high galactocentric velocities, again each based on both high heliocentric radial velocity and also confidently detected proper motions. Extreme velocities and the presence of C {sub 2} bands in the spectra of dwarf stars are both rare. Passage near the Galactic center can accelerate stars to such extreme velocities, but the large orbital angular momentum of SDSS J1128 precludes this explanation. Ejection from a supernova in a binary system or disruption of a binary by other stars are possibilities, particularly as dC stars are thought to obtain their photospheric C {sub 2} via mass transfer from an evolved companion.

  7. Cooling of Accretion-Heated Neutron Stars

    Science.gov (United States)

    Wijnands, Rudy; Degenaar, Nathalie; Page, Dany

    2017-09-01

    We present a brief, observational review about the study of the cooling behaviour of accretion-heated neutron stars and the inferences about the neutron-star crust and core that have been obtained from these studies. Accretion of matter during outbursts can heat the crust out of thermal equilibrium with the core and after the accretion episodes are over, the crust will cool down until crust-core equilibrium is restored. We discuss the observed properties of the crust cooling sources and what has been learned about the physics of neutron-star crusts. We also briefly discuss those systems that have been observed long after their outbursts were over, i.e, during times when the crust and core are expected to be in thermal equilibrium. The surface temperature is then a direct probe for the core temperature. By comparing the expected temperatures based on estimates of the accretion history of the targets with the observed ones, the physics of neutron-star cores can be investigated. Finally, we discuss similar studies performed for strongly magnetized neutron stars in which the magnetic field might play an important role in the heating and cooling of the neutron stars.

  8. Neutron stars velocities and magnetic fields

    Science.gov (United States)

    Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.

    2018-01-01

    We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.

  9. High energy neutrinos from gamma-ray bursts with precursor supernovae.

    Science.gov (United States)

    Razzaque, Soebur; Mészáros, Peter; Waxman, Eli

    2003-06-20

    The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.

  10. Multi-Wavelength Polarimetry of Isolated Neutron Stars

    Directory of Open Access Journals (Sweden)

    Roberto P. Mignani

    2018-03-01

    Full Text Available Isolated neutron stars are known to be endowed with extreme magnetic fields, whose maximum intensity ranges from 10 12 – 10 15 G, which permeates their magnetospheres. Their surrounding environment is also strongly magnetized, especially in the compact nebulae powered by the relativistic wind from young neutron stars. The radiation from isolated neutron stars and their surrounding nebulae is, thus, supposed to bring a strong polarization signature. Measuring the neutron star polarization brings important information about the properties of their magnetosphere and of their highly magnetized environment. Being the most numerous class of isolated neutron stars, polarization measurements have been traditionally carried out for radio pulsars, hence in the radio band. In this review, I summarize multi-wavelength linear polarization measurements obtained at wavelengths other than radio both for pulsars and other types of isolated neutron stars and outline future perspectives with the upcoming observing facilities.

  11. Evolution of Neutron Stars and Observational Constraints

    Directory of Open Access Journals (Sweden)

    Lattimer J.

    2010-10-01

    Full Text Available The structure and evolution of neutron stars is discussed with a view towards constraining the properties of high density matter through observations. The structure of neutron stars is illuminated through the use of several analytical solutions of Einstein’s equations which, together with the maximally compact equation of state, establish extreme limits for neutron stars and approximations for binding energies, moments of inertia and crustal properties as a function of compactness. The role of the nuclear symmetry energy is highlighted and constraints from laboratory experiments such as nuclear masses and heavy ion collisions are presented. Observed neutron star masses and radius limits from several techniques, such as thermal emissions, X-ray bursts, gammaray flares, pulsar spins and glitches, spin-orbit coupling in binary pulsars, and neutron star cooling, are discussed. The lectures conclude with a discusson of proto-neutron stars and their neutrino signatures.

  12. KAON CONDENSATION IN NEUTRON STARS

    International Nuclear Information System (INIS)

    RAMOS, A.; SCHAFFNER-BIELICH, J.; WAMBACH, J.

    2001-01-01

    We discuss the kaon-nucleon interaction and its consequences for the change of the properties of the kaon in the medium. The onset of kaon condensation in neutron stars under various scenarios as well its effects for neutron star properties are reviewed

  13. Delta isobars in neutron stars

    Directory of Open Access Journals (Sweden)

    Pagliara Giuseppe

    2015-01-01

    Full Text Available The appearance of delta isobars in beta-stable matter is regulated by the behavior of the symmetry energy at densities larger than saturation density. We show that by taking into account recent constraints on the density derivative of the symmetry energy and the theoretical and experimental results on the excitations of delta isobars in nuclei, delta isobars are necessary ingredients for the equations of state used for studying neutron stars. We analyze the effect of the appearance of deltas on the structure of neutron stars: as in the case of hyperons, matter containing delta is too soft for allowing the existence of 2M⊙ neutron stars. Quark stars on the other hand, could reach very massive configurations and they could form from a process of conversion of hadronic stars in which an initial seed of strangeness appears through hyperons.

  14. Predicting supernova associated to gamma-ray burst 130427a

    Science.gov (United States)

    Wang, Y.; Ruffini, R.; Kovacevic, M.; Bianco, C. L.; Enderli, M.; Muccino, M.; Penacchioni, A. V.; Pisani, G. B.; Rueda, J. A.

    2015-07-01

    Binary systems constituted by a neutron star and a massive star are not rare in the universe. The Induced Gravitational Gamma-ray Burst (IGC) paradigm interprets Gamma-ray bursts as the outcome of a neutron star that collapses into a black hole due to the accretion of the ejecta coming from its companion massive star that underwent a supernova event. GRB 130427A is one of the most luminous GRBs ever observed, of which isotropic energy exceeds 1054 erg. And it is within one of the few GRBs obtained optical, X-ray and GeV spectra simultaneously for hundreds of seconds, which provides an unique opportunity so far to understand the multi-wavelength observation within the IGC paradigm, our data analysis found low Lorentz factor blackbody emission in the Episode 3 and its X-ray light curve overlaps typical IGC Golden Sample, which comply to the IGC mechanisms. We consider these findings as clues of GRB 130427A belonging to the IGC GRBs. We predicted on GCN the emergence of a supernova on May 2, 2013, which was later successfully detected on May 13, 2013.

  15. Research in nuclear astrophysics: stellar collapse and supernovae. Progress report

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Yahil, A.

    1984-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. The chief emphasis of our program is on stellar collapse, supernovae and neutron star formation. Central to these topics are the parallel development of the equation of state of hot, dense matter and a novel type of hydrodynamical code. The LLPR compressible liquid drop model forms the basis for the former, and we propose to further refine it by including curvature corrections to the surface energy and by considering other nuclear force parameters which are in better agreement with experimentally determined quantities. The development of the equation of state has another bonus - it can be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. The hydrodynamical code includes detailed neutrino transport and a fast, but accurate, approximation to the complete LLPR equation of state, which is necessary for numerical use. We propose to model not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling stages of the nascent neutron star. Our detailed studies of the role of neutrinos in stellar collapse and neutron star formation concentrate on their detectability and signatures - after all, neutrinos are the only direct method of observationally checking supernova theory. Complementary studies include modelling both mass accretion in the nuclei of galaxies (which is probably responsible for the quasar phenomenon) and investigations of galaxy clustering and the large scale structure of the universe

  16. A weight limit emerges for neutron stars

    Science.gov (United States)

    Cho, Adrian

    2018-02-01

    Astrophysicists have long wondered how massive a neutron star—the corpse of certain exploding stars—could be without collapsing under its own gravity to form a black hole. Now, four teams have independently deduced a mass limit for neutron stars of about 2.2 times the mass of the sun. To do so, all four groups analyzed last year's blockbuster observations of the merger of two neutron stars, spied on 17 September 2017 by dozens of observatories. That approach may seem unpromising, as it might appear that the merging neutron stars would have immediately produced a black hole. However, the researchers argue that the merger first produced a spinning, overweight neutron star momentarily propped up by centrifugal force. They deduce that just before it collapsed, the short-lived neutron star had to be near the maximum mass for one spinning as a solid body. That inference allowed them to use a scaling relationship to estimate the maximum mass of a nonrotating, stable neutron star, starting from the total mass of the original pair and the amount of matter spewed into space.

  17. Neutron star pulsations and instabilities

    International Nuclear Information System (INIS)

    Lindblom, L.

    2001-01-01

    Gravitational radiation (GR) drives an instability in certain modes of rotating stars. This instability is strong enough in the case of the r-modes to cause their amplitudes to grow on a timescale of tens of seconds in rapidly rotating neutron stars. GR emitted by these modes removes angular momentum from the star at a rate which would spin it down to a relatively small angular velocity within about one year, if the dimensionless amplitude of the mode grows to order unity. A pedagogical level discussion is given here on the mechanism of GR instability in rotating stars, on the relevant properties of the r-modes, and on our present understanding of the dissipation mechanisms that tend to suppress this instability in neutron stars. The astrophysical implications of this GR driven instability are discussed for young neutron stars, and for older systems such as low mass x-ray binaries. Recent work on the non-linear evolution of the r-modes is also presented. (author)

  18. Velocity Distributions of Runaway Stars Produced by Supernovae in ...

    Indian Academy of Sciences (India)

    J. Astrophys. Astr. (2016) 37: 22. DOI: 10.1007/s12036-016-9400-2. Velocity Distributions of Runaway Stars Produced by Supernovae in the Galaxy. Abudusaimaitijiang Yisikandeer. ∗. , Chunhua Zhu, Zhaojun Wang. & Guoliang Lü. School of Physical Science and Technology, Xinjiang University, Urumqi, 830046, China. ∗.

  19. Gravitational waves from remnant massive neutron stars of binary neutron star merger: Viscous hydrodynamics effects

    Science.gov (United States)

    Shibata, Masaru; Kiuchi, Kenta

    2017-06-01

    Employing a simplified version of the Israel-Stewart formalism of general-relativistic shear-viscous hydrodynamics, we explore the evolution of a remnant massive neutron star of binary neutron star merger and pay special attention to the resulting gravitational waveforms. We find that for the plausible values of the so-called viscous alpha parameter of the order 10-2 the degree of the differential rotation in the remnant massive neutron star is significantly reduced in the viscous time scale, ≲5 ms . Associated with this, the degree of nonaxisymmetric deformation is also reduced quickly, and as a consequence, the amplitude of quasiperiodic gravitational waves emitted also decays in the viscous time scale. Our results indicate that for modeling the evolution of the merger remnants of binary neutron stars we would have to take into account magnetohydrodynamics effects, which in nature could provide the viscous effects.

  20. Limiting rotational period of neutron stars

    Science.gov (United States)

    Glendenning, Norman K.

    1992-11-01

    We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a M=1.442Msolar neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars.

  1. Limiting rotational period of neutron stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1992-01-01

    We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a M=1.442M circle-dot neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars

  2. Cracking on anisotropic neutron stars

    Science.gov (United States)

    Setiawan, A. M.; Sulaksono, A.

    2017-07-01

    We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.

  3. GRAVITATIONAL FIELD SHIELDING AND SUPERNOVA EXPLOSIONS

    International Nuclear Information System (INIS)

    Zhang, T. X.

    2010-01-01

    A new mechanism for supernova explosions called gravitational field shielding is proposed, in accord with a five-dimensional fully covariant Kaluza-Klein theory with a scalar field that unifies the four-dimensional Einsteinian general relativity and Maxwellian electromagnetic theory. It is shown that a dense compact collapsing core of a star will suddenly turn off or completely shield its gravitational field when the core collapses to a critical density, which is inversely proportional to the square of mass of the core. As the core suddenly turns off its gravity, the extremely large pressure immediately stops the core collapse and pushes the mantle material of supernova moving outward. The work done by the pressure in the expansion can be the order of energy released in a supernova explosion. The gravity will resume and stop the core from a further expansion when the core density becomes less than the critical density. Therefore, the gravitational field shielding leads a supernova to impulsively explode and form a compact object such as a neutron star as a remnant. It works such that a compressed spring will shoot the oscillator out when the compressed force is suddenly removed.

  4. Research in astrophysics: Stellar collapse and supernovae: Termination report, August 1, 1980-November 30, 1986

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Mazurek, T.J.; Yahil, A.

    1987-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics has been examined. The chief emphasis of the program was on stellar collapse, Type II supernovae and neutron star formation. Central to these topics are the development of an equation of state of hot, dense matter and numerical simulations of gravitational collapse and neutron star birth. The LLPR compressible liquid drop model is the basis of the former. It has been refined to include curvature corrections to the surface energy and nuclear force parameters which are in better agreement with experimental quantities. Numerically optimized versions were used in supernova simulations. Such studies of the equation of state can also be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. A novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity was developed. We modeled not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling of the nascent neutron star. For the latter evolution we also used a hydrostatic code with detailed neutrino transport. Our studies of neutrinos in stellar collapse and neutron star formation concentrated on their detectability and signatures, as neutrinos are the only direct probe of collapse and early supernova dynamics. The neutrino signatures seen from SN1987a are in complete accord with the predictions our group has been making since 1982. Complementary studies included modeling nucleosynthesis and the accretion process in quasars, and investigating the influence of galaxy clustering on the large scale structure of the universe. The last study might impose constraints on high energy theories, such as those of inflation and GUT, which can now only be tested astrophysically. 38 refs

  5. Supernovae theory: study of electro-weak processes during gravitational collapse of massive stars

    International Nuclear Information System (INIS)

    Fantina, A.F.

    2010-01-01

    The physics of supernova requires the understanding of both the complex hydrodynamical phenomena (such as transfer of energy, neutrino transport, shock) as well as the microphysics related to the dense and hot matter. In the framework of type II Supernovae theory, currently most of numerical simulations that simulate the supernova core collapse up to the formation and propagation of the shock wave fail to reproduce the observed explosion of the outer layers of massive stars. The reason for that could be due both to hydrodynamical phenomena such as rotation, convection, and general relativity, and to some micro-physical processes involved in the picture and not yet completely understood. The aim of this work is to investigate some of these micro-physical inputs, namely the electro-weak processes, that play a crucial role during the gravitational collapse and to analyse their effects by means of hydrodynamical simulations. Among nuclear processes which occur in core-collapse supernova, the most important electro-weak process taking place during the collapse is the electron capture; it occurs both on free protons and on protons bound in nuclei. This capture is essential to determine the evolution of the lepton fraction of the core during the neutronization phase. It affects the efficiency of the bounce and, as a consequence, the strength of the shock wave. Moreover, both the equation of state of supernova matter and electron capture rates in nuclei are modified by the effective mass of nucleons in nuclei, induced by many-body correlations in the dense medium, and its temperature dependence. In the first part of the thesis, a nuclear model aimed at studying the nuclear effective mass is presented. We show how we have included in a energy density functional (EDF) approach a surface-peaked nucleon effective mass to mimic some effects beyond Hartree-Fock. We have added a term to the Skyrme functional, in order to reproduce the enhancement of the effective mass at the

  6. BPS Skyrmions as neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C., E-mail: adam@fpaxp1.usc.es [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Naya, C.; Sanchez-Guillen, J.; Vazquez, R. [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Reymonta 4, Kraków (Poland)

    2015-03-06

    The BPS Skyrme model has been demonstrated already to provide a physically intriguing and quantitatively reliable description of nuclear matter. Indeed, the model has both the symmetries and the energy–momentum tensor of a perfect fluid, and thus represents a field theoretic realization of the “liquid droplet” model of nuclear matter. In addition, the classical soliton solutions together with some obvious corrections (spin–isospin quantization, Coulomb energy, proton-neutron mass difference) provide an accurate modeling of nuclear binding energies for heavier nuclei. These results lead to the rather natural proposal to try to describe also neutron stars by the BPS Skyrme model coupled to gravity. We find that the resulting self-gravitating BPS Skyrmions provide excellent results as well as some new perspectives for the description of bulk properties of neutron stars when the parameter values of the model are extracted from nuclear physics. Specifically, the maximum possible mass of a neutron star before black-hole formation sets in is a few solar masses, the precise value of which depends on the precise values of the model parameters, and the resulting neutron star radius is of the order of 10 km.

  7. Multimessengers from Core-Collapse Supernovae: Multidimensionality as a Key to Bridge Theory and Observation

    Directory of Open Access Journals (Sweden)

    Kei Kotake

    2012-01-01

    Full Text Available Core-collapse supernovae are dramatic explosions marking the catastrophic end of massive stars. The only means to get direct information about the supernova engine is from observations of neutrinos emitted by the forming neutron star, and through gravitational waves which are produced when the hydrodynamic flow or the neutrino flux is not perfectly spherically symmetric. The multidimensionality of the supernova engine, which breaks the sphericity of the central core such as convection, rotation, magnetic fields, and hydrodynamic instabilities of the supernova shock, is attracting great attention as the most important ingredient to understand the long-veiled explosion mechanism. Based on our recent work, we summarize properties of gravitational waves, neutrinos, and explosive nucleosynthesis obtained in a series of our multidimensional hydrodynamic simulations and discuss how the mystery of the central engines can be unraveled by deciphering these multimessengers produced under the thick veils of massive stars.

  8. Lightweight Double Neutron Star Found

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    More than forty years after the first discovery of a double neutron star, we still havent found many others but a new survey is working to change that.The Hunt for PairsThe observed shift in the Hulse-Taylor binarys orbital period over time as it loses energy to gravitational-wave emission. [Weisberg Taylor, 2004]In 1974, Russell Hulse and Joseph Taylor discovered the first double neutron star: two compact objects locked in a close orbit about each other. Hulse and Taylors measurements of this binarys decaying orbit over subsequent years led to a Nobel prize and the first clear evidence of gravitational waves carrying energy and angular momentum away from massive binaries.Forty years later, we have since confirmed the existence of gravitational waves directly with the Laser Interferometer Gravitational-Wave Observatory (LIGO). Nonetheless, finding and studying pre-merger neutron-star binaries remains a top priority. Observing such systems before they merge reveals crucial information about late-stage stellar evolution, binary interactions, and the types of gravitational-wave signals we expect to find with current and future observatories.Since the Hulse-Taylor binary, weve found a total of 16 additional double neutron-star systems which represents only a tiny fraction of the more than 2,600 pulsars currently known. Recently, however, a large number of pulsar surveys are turning their eyes toward the sky, with a focus on finding more double neutron stars and at least one of them has had success.The pulse profile for PSR J1411+2551 at 327 MHz. [Martinez et al. 2017]A Low-Mass DoubleConducted with the 1,000-foot Arecibo radio telescope in Puerto Rico, the Arecibo 327 MHz Drift Pulsar Survey has enabled the recent discovery of dozens of pulsars and transients. Among them, as reported by Jose Martinez (Max Planck Institute for Radio Astronomy) and coauthors in a recent publication, is PSR J1411+2551: a new double neutron star with one of the lowest masses ever measured

  9. Study of Neutrino-Induced Neutrons in Dark Matter Detectors for Supernova Burst Neutrinos

    Science.gov (United States)

    Kwan, Newton; Scholberg, Kate

    2017-09-01

    When supernova burst neutrinos (1-50 MeV) pass through the Earth, they occasionally interact with the passive shielding surrounding dark matter detectors. When the neutrinos interact, one or two roughly 2 MeV neutrons are scattered isotropically and uniformly, often leaving undetected. Occasionally, these neutrino-induced neutrons (NINs) interact with the detector and leave a background signal similar to a WIMP. The purpose of this study is to understand the effects of NINs on active dark matter detectors during a supernova burst.

  10. Supernova neutrinos, giant resonances, and nucleosynthesis

    International Nuclear Information System (INIS)

    Haxton, W.

    1990-01-01

    Almost all of the 3·10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. The neutrinos can excite nuclei in the mantle of the star by their neutral and charged current reactions. I argue that the resulting spallation reactions are an important nucleosynthesis mechanism that may be responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, 180 Ta, and approximately a dozen other light nuclei. 18 refs., 1 fig., 1 tab

  11. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    Energy Technology Data Exchange (ETDEWEB)

    D' Andrea, Chris B. [Univ. of Pennsylvania, Philadelphia, PA (United States); et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  12. Transport coefficients in superfluid neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Tolos, Laura [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Frankfurt Institute for Advances Studies. Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Manuel, Cristina [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Sarkar, Sreemoyee [Tata Institute of Fundamental Research, Homi Bhaba Road, Mumbai-400005 (India); Tarrus, Jaume [Physik Department, Technische Universität München, D-85748 Garching (Germany)

    2016-01-22

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  13. Neutron stars, magnetic fields, and gravitational waves

    International Nuclear Information System (INIS)

    Lamb, F.K.

    2001-01-01

    The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the

  14. POPULATION SYNTHESIS OF YOUNG ISOLATED NEUTRON STARS: THE EFFECT OF FALLBACK DISK ACCRETION AND MAGNETIC FIELD EVOLUTION

    International Nuclear Information System (INIS)

    Fu, Lei; Li, Xiang-Dong

    2013-01-01

    The spin evolution of isolated neutron stars (NSs) is dominated by their magnetic fields. The measured braking indices of young NSs show that the spin-down mechanism due to magnetic dipole radiation with constant magnetic fields is inadequate. Assuming that the NS magnetic field is buried by supernova fallback matter and re-emerges after accretion stops, we carry out a Monte Carlo simulation of the evolution of young NSs, and show that most of the pulsars have braking indices ranging from –1 to 3. The results are compatible with the observational data of NSs associated with supernova remnants. They also suggest that the initial spin periods of NSs might occupy a relatively wide range

  15. Rapid Neutron Capture Process in Supernovae and Chemical ...

    Indian Academy of Sciences (India)

    A ≻ 70 and all of the actinides in the solar system are believed to have been produced in the r-process. ... mass type II supernovae being the r-process sites. In the usual picture the r- .... critically on the ambient neutron flux. λn > λβ(τn < τβ). (1).

  16. Gravitational waves from freely precessing neutron stars

    International Nuclear Information System (INIS)

    Jones, D.I.

    2001-01-01

    The purpose of this study is to assess the likely detectability of gravitational waves from freely precessing neutron stars. We begin by presenting a neutron star model of sufficient complexity to take into account both the elasticity and fluidity of a realistic neutron star. We then examine the effect of internal dissipation (i.e. heat generation within the star) and gravitational radiation reaction on the wobble. This is followed by an examination of various astrophysical scenarios where some mechanism might pump the precessional motion. We estimate the gravitational wave amplitude in these situations. Finally, we conclude that gravitational radiation from freely precessing neutron stars is almost certainly limited to a level undetectable by a LIGO II detector by internal dissipation. (author)

  17. Towards New Constraints in Extended Theories of Gravity: Cosmography and Gravitational-Wave Signals from Neutron Stars

    Directory of Open Access Journals (Sweden)

    Álvaro de la Cruz Dombriz

    2018-02-01

    Full Text Available Combined cosmological, astrophysical and numerical tests may shed some light on the viability of theories of gravity beyond Einsteinian relativity. In this letter, we present two different techniques providing complementary ways of testing new physics beyond the Λ CDM cosmological paradigm. First, we shall present some of the latest progress and shortcomings in the cosmographic model-independent approach for several modified gravity theories using supernovae catalogues, baryonic acoustic oscillation data and H ( z differential age compilations. Second, we shall show how once the Einsteinian paradigm is abandoned, the phenomenology of neutron stars changes dramatically since neutron-star masses can be much larger than their General Relativity counterparts. Consequently, the total energy available for radiating gravitational waves could be of the order of several solar masses, and thus a merger of these stars constitutes a privileged wave source. Unfortunately at the present time our persisting lack of understanding in the strong interaction sector does not allow to distinguish the alternative theories from the usual General Relativity predictions.

  18. X-rays from neutron stars

    International Nuclear Information System (INIS)

    Boerner, G.

    1979-08-01

    The basic theoretical in the models of regularly pulsating X-ray sources are discussed, and put in relation to the observations. The topics covered include physics of the magnetosphere of an accreting neutron star, hydrodynamics of the accretion column, physical processes close to the surface of the neutron star such as proton-electron collisions, photon-electron interactions. (orig.)

  19. Neutrino-induced nucleosynthesis in core-collapse supernovae

    International Nuclear Information System (INIS)

    Hartmann, D.H.; Haxton, W.C.; Hoffman, R.D.; Woosley, S.E.; California Univ., Santa Cruz, CA

    1990-01-01

    Almost all of the 3·10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. The neutrinos can excite nuclei in the mantle of the star by their neutral and charged current reactions. The resulting spallation reactions are an important nuleosynthesis mechanism that may be responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, 180 Ta, and number of other nuclei. 10 refs., 1 fig., 1 tab

  20. Production of unstable heavy neutrinos in proto-neutron stars

    Directory of Open Access Journals (Sweden)

    C. Albertus

    2015-12-01

    Full Text Available We discuss the production of a class of heavy sterile neutrinos νh in proto-neutron stars. The neutrinos, of mass around 50 MeV, have a negligible mixing with the active species but relatively large dimension-5 electromagnetic couplings. In particular, a magnetic dipole moment μ≈10−6 GeV−1 implies that they are thermally produced through e+e−→ν¯hνh in the early phase of the core collapse, whereas a heavy–light transition moment μtr≈10−8 GeV−1 allows their decay νh→νiγ with a lifetime around 10−3 s. This type of electromagnetic couplings has been recently proposed to explain the excess of electron-like events in baseline experiments. We show that the production and decay of these heavy neutrinos would transport energy from the central regions of the star to distances d≈400 km, providing a very efficient mechanism to enhance the supernova shock front and heat the material behind it.

  1. Neutron star structure: Theory, observation, and speculation

    International Nuclear Information System (INIS)

    Pandharipande, V.R.; Pines, D.; Smith, R.A.

    1976-01-01

    The broad physical aspects of the neutron-neutron interaction in dense matter are reviewed, and an examination is made of the extent to which the equation of state of neutron star matter is influenced by phase transitions which have been proposed for the high-density regime. The dependence of the maximum neutron star mass and the stellar structure on the neutron-neutron interaction is studied through calculations of the equation of state of neutron matter based on four different models for this interaction: the Reid (R) and Bethe-Johnson (BJ) models, a tensor-interaction (TI) model which assumes that the attraction between nucleons comes from the higher order contribution of the pion-exchange tensor interaction, and a mean field (MF) model which assumes that all the attraction between nucleons is due to the exchange of an effective scalar meson. It is shown that the harder equations of state which result from the BJ, TI, and MF models give rise to significant modifications in the structure of neutron stars; heavy neutron stars (approximately-greater-than1 M/sub sun/) have both larger radii and thicker crusts than were predicted using the R model.These stars are used as a basis for comparing theory with observation for the mass and structure of neutron stars such as the Crab and Vela pulsars, and the compact X-ray sources Her X-1 and Vela X-1. We find that both theory and observation tend to favor an equation of state that is stiff in the region of 10 14 --10 15 g cm -3 and that a neutron star such as Her X-1 (Mapprox.1.3 M/sub sun/) has a radius of the order of 15 km with a crust thickness of order 5 km. Based on starquake theory, it is concluded that the Crab pulsar could have a mass as large as 1.3 M/sub sun/, with a critical strain angle approx.10 -3 , comparable to that suggested for Her X-1. The possibility of solid-core neutron stars and some of their observational consequences is discussed

  2. Is the Link Between the Observed Velocities of Neutron Stars and their Progenitors a Simple Mass Relationship?

    Science.gov (United States)

    Bray, J. C.

    2017-11-01

    While the imparting of velocity `kicks' to compact remnants from supernovae is widely accepted, the relationship of the `kick' to the progenitor is not. We propose the `kick' is predominantly a result of conservation of momentum between the ejected and compact remnant masses. We propose the `kick' velocity is given by v kick = α(M ejecta/M remnant)+β, where α and β are constants we wish to determine. To test this we use the BPASS v2 (Binary Population and Spectral Synthesis) code to create stellar populations from both single star and binary star evolutionary pathways. We then use our Remnant Ejecta and Progenitor Explosion Relationship (REAPER) code to apply `kicks' to neutron stars from supernovae in these models using a grid of α and β values, (from 0 to 200 km s-1 in steps of 10 km s-1), in three different `kick' orientations, (isotropic, spin-axis aligned and orthogonal to spin-axis) and weighted by three different Salpeter initial mass functions (IMF's), with slopes of -2.0, -2.35 and -2.70. We compare our synthetic 2D and 3D velocity probability distributions to the distributions provided by Hobbs et al. (1995).

  3. Physics of Neutron Star Crusts

    Directory of Open Access Journals (Sweden)

    Chamel Nicolas

    2008-12-01

    Full Text Available The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  4. Magnetohydrodynamics of neutron star interiors

    International Nuclear Information System (INIS)

    Easson, I.; Pethick, C.J.

    1979-01-01

    Magnetohydrodynamic equations for the charged particles in the fluid interior of a neutron star are derived from the Landau-Boltzmann kinetic equations. It is assumed that the protons are normal and the neutrons are superfluid. The dissipative processes associated with the weak interactions are shown to be negligible except in very hot neutron stars; we neglect them here. Among the topics discussed are: the influence of the neutron-proton nuclear force (Fermi liquid corrections) on the magnetohydrodynamics; the effects of the magnetic field on the pressure, viscosity, and heat conductivity tensors; the plasma equation of state; and the form of the generalized Ohm's law

  5. Neutron Skins and Neutron Stars in the Multimessenger Era

    Science.gov (United States)

    Fattoyev, F. J.; Piekarewicz, J.; Horowitz, C. J.

    2018-04-01

    The historical first detection of a binary neutron star merger by the LIGO-Virgo Collaboration [B. P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017), 10.1103/PhysRevLett.119.161101] is providing fundamental new insights into the astrophysical site for the r process and on the nature of dense matter. A set of realistic models of the equation of state (EOS) that yield an accurate description of the properties of finite nuclei, support neutron stars of two solar masses, and provide a Lorentz covariant extrapolation to dense matter are used to confront its predictions against tidal polarizabilities extracted from the gravitational-wave data. Given the sensitivity of the gravitational-wave signal to the underlying EOS, limits on the tidal polarizability inferred from the observation translate into constraints on the neutron-star radius. Based on these constraints, models that predict a stiff symmetry energy, and thus large stellar radii, can be ruled out. Indeed, we deduce an upper limit on the radius of a 1.4 M⊙ neutron star of R⋆1.4Pb 208 to the symmetry energy, albeit at a lower density, we infer a corresponding upper limit of about Rskin208≲0.25 fm . However, if the upcoming PREX-II experiment measures a significantly thicker skin, this may be evidence of a softening of the symmetry energy at high densities—likely indicative of a phase transition in the interior of neutron stars.

  6. Neutron star moments of inertia

    Science.gov (United States)

    Ravenhall, D. G.; Pethick, C. J.

    1994-01-01

    An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.

  7. Probing the Physics of Core-Collapse Supernovae and Ultra-Relativistic Outflows using Pulsar Wind Nebulae

    Science.gov (United States)

    Gelfand, Joseph

    Core-collapse supernovae, the powerful explosions triggered by the gravitational collapse of massive stars, play an important role in evolution of star-forming galaxies like our Milky Way. Not only do these explosions eject the outer envelope of the progenitor star with extremely high velocities, creating a supernova remnant (SNR), the rotational energy of the resultant neutron star powers an ultra-relativistic outflow called a pulsar wind which creates a pulsar wind nebula (PWN) as it expands into its surroundings. Despite almost a century of study, many fundamental questions remain, including: How is a neutron star formed during a core-collapse supernova? How are particles created in the neutron star magnetosphere? How are particles accelerated to the PeV energies inside PWNe? Answering these questions requires measuring the properties of the progenitor star and pulsar wind for a diverse collection of neutron stars. Currently, this is best done by studying those PWNe inside a SNR, since their evolution is very sensitive to the initial spin period of the neutron star, the mass and initial kinetic energy of the supernova ejecta, and the magnetization and particle spectrum of the pulsar wind - quantities critical for answering the above questions. To this end, we propose to measure these properties for 17 neutron stars whose spin-down inferred dipole surface magnetic field strengths and characteristic ages differ by 1.5 orders of magnitude by fitting the broadband spectral energy distribution (SED) and dynamical properties of their associated PWNe with a model for the dynamical and spectral evolution of a PWN inside SNR. To do so, we will first re-analyze all archival X-ray (e.g., XMM, Chandra, INTEGRAL, NuSTAR) and gamma-ray (e.g., Fermi-LAT Pass 8) data on each PWN to ensure consistent measurements of the volume-integrated properties (e.g., X-ray photon index and unabsorbed flux, GeV spectrum) needed for this analysis. Additionally, we will use a Markoff Chain

  8. Anomalous hydrodynamics kicks neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Matthias, E-mail: mski@ua.edu [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2 (Canada); Uhlemann, Christoph F. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Bleicher, Marcus [Frankfurt Institute for Advanced Studies, Goethe-Universität Frankfurt (Germany); Institut für Theoretische Physik, Goethe Universität Frankfurt (Germany); Schaffner-Bielich, Jürgen [Institut für Theoretische Physik, Goethe Universität Frankfurt (Germany)

    2016-09-10

    Observations show that, at the beginning of their existence, neutron stars are accelerated briskly to velocities of up to a thousand kilometers per second. We argue that this remarkable effect can be explained as a manifestation of quantum anomalies on astrophysical scales. To theoretically describe the early stage in the life of neutron stars we use hydrodynamics as a systematic effective-field-theory framework. Within this framework, anomalies of the Standard Model of particle physics as underlying microscopic theory imply the presence of a particular set of transport terms, whose form is completely fixed by theoretical consistency. The resulting chiral transport effects in proto-neutron stars enhance neutrino emission along the internal magnetic field, and the recoil can explain the order of magnitude of the observed kick velocities.

  9. Are some of the luminous high-latitude stars accretion-powered runaways?

    International Nuclear Information System (INIS)

    Leonard, P.J.T.; Hills, J.G.; Dewey, R.J.

    1992-01-01

    It is well known that (1) runaway stars can be produced via supernova explosions in close binary systems, (2) most of such runaways should possess neutron star companions, and (3) neutron stars receive randomly oriented kicks of ≅ 100 to 200 km s -1 at birth. We find that this kick sometimes has the right amplitude and direction to make the neutron star fall into the runaway. Accretion onto a neutron star is a source of energy that is roughly an order of magnitude more mass efficient than nuclear burning. Thus, runaways containing neutron stars may live much longer than would normally be expected, which would allow them to travel great distances from their birthplaces during their lifetimes. Some of the early B-type stars far from the Galactic plane and the high-latitude F and G-type supergiants may be accretion-powered runaway stars

  10. The neutrino opacity of neutron rich matter

    Energy Technology Data Exchange (ETDEWEB)

    Alcain, P.N., E-mail: pabloalcain@gmail.com [Departamento de Física, FCEyN, UBA and IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); IFIBA-CONICET (Argentina); Dorso, C.O. [Departamento de Física, FCEyN, UBA and IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); IFIBA-CONICET (Argentina)

    2017-05-15

    The study of neutron rich matter, present in neutron star, proto-neutron stars and core-collapse supernovae, can lead to further understanding of the behavior of nuclear matter in highly asymmetric nuclei. Heterogeneous structures are expected to exist in these systems, often referred to as nuclear pasta. We have carried out a systematic study of neutrino opacity for different thermodynamic conditions in order to assess the impact that the structure has on it. We studied the dynamics of the neutrino opacity of the heterogeneous matter at different thermodynamic conditions with semiclassical molecular dynamics model already used to study nuclear multifragmentation. For different densities, proton fractions and temperature, we calculate the very long range opacity and the cluster distribution. The neutrino opacity is of crucial importance for the evolution of the core-collapse supernovae and the neutrino scattering.

  11. The unusual gamma-ray burst GRB 101225A explained as a minor body falling onto a neutron star.

    Science.gov (United States)

    Campana, S; Lodato, G; D'Avanzo, P; Panagia, N; Rossi, E M; Della Valle, M; Tagliaferri, G; Antonelli, L A; Covino, S; Ghirlanda, G; Ghisellini, G; Melandri, A; Pian, E; Salvaterra, R; Cusumano, G; D'Elia, V; Fugazza, D; Palazzi, E; Sbarufatti, B; Vergani, S D

    2011-11-30

    The tidal disruption of a solar-mass star around a supermassive black hole has been extensively studied analytically and numerically. In these events, the star develops into an elongated banana-shaped structure. After completing an eccentric orbit, the bound debris falls into the black hole, forming an accretion disk and emitting radiation. The same process may occur on planetary scales if a minor body passes too close to its star. In the Solar System, comets fall directly into our Sun or onto planets. If the star is a compact object, the minor body can become tidally disrupted. Indeed, one of the first mechanisms invoked to produce strong gamma-ray emission involved accretion of comets onto neutron stars in our Galaxy. Here we report that the peculiarities of the 'Christmas' gamma-ray burst (GRB 101225A) can be explained by a tidal disruption event of a minor body around an isolated Galactic neutron star. This would indicate either that minor bodies can be captured by compact stellar remnants more frequently than occurs in the Solar System or that minor-body formation is relatively easy around millisecond radio pulsars. A peculiar supernova associated with a gamma-ray burst provides an alternative explanation.

  12. Starquakes, Heating Anomalies, and Nuclear Reactions in the Neutron Star Crust

    Science.gov (United States)

    Deibel, Alex Thomas

    When the most massive stars perish, their cores may remain intact in the form of extremely dense and compact stars. These stellar remnants, called neutron stars, are on the cusp of becoming black holes and reach mass densities greater than an atomic nucleus in their centers. Although the interiors of neutron stars were difficult to investigate at the time of their discovery, the advent of modern space-based telescopes (e.g., Chandra X-ray Observatory) has pushed our understanding of the neutron star interior into exciting new realms. It has been shown that the neutron star interior spans an enormous range of densities and contains many phases of matter, and further theoretical progress must rely on numerical calculations of neutron star phenomena built with detailed nuclear physics input. To further investigate the properties of the neutron star interior, this dissertation constructs numerical models of neutron stars, applies models to various observations of neutron star high-energy phenomena, and draws new conclusions about the neutron star interior from these analyses. In particular, we model the neutron star's outermost ? 1 km that encompasses the neutron star's envelope, ocean, and crust. The model must implement detailed nuclear physics to properly simulate the hydrostatic and thermal structure of the neutron star. We then apply our model to phenomena that occur in these layers, such as: thermonuclear bursts in the envelope, g-modes in the ocean, torsional oscillations of the crust, and crust cooling of neutron star transients. A comparison of models to observations provides new insights on the properties of dense matter that are often difficult to probe through terrestrial experiments. For example, models of the quiescent cooling of neutron stars, such as the accreting transient MAXI J0556-332, at late times into quiescence probe the thermal transport properties of the deep neutron star crust. This modeling provides independent data from astronomical

  13. Neutron star news and puzzles

    International Nuclear Information System (INIS)

    Prakash, Madappa

    2014-01-01

    Gerry Brown has had the most influence on my career in Physics, and my life after graduate studies. This article gives a brief account of some of the many ways in which Gerry shaped my research. Focus is placed on the significant strides on neutron star research made by the group at Stony Brook, which Gerry built from scratch. Selected puzzles about neutron stars that remain to be solved are noted

  14. On neutron stars and gravitation

    International Nuclear Information System (INIS)

    Castagnino, M.A.

    1987-01-01

    From the variational principle for the total internal energy of a neutron star and some restrictions of the form of the metric coefficients, equations of structure which are valid for every metric theory of gravitation have been found. Some simple solutions of the structure equations to find the maximum mass of a neutron star are also presented. Finally it is studied this problem using a post post-Newtonian parametrization

  15. Burst Oscillations: A New Spin on Neutron Stars

    Science.gov (United States)

    Strohmayer, Tod

    2007-01-01

    Observations with NASA's Rossi X-ray Timing Explorer (RXTE) have shown that the X-ray flux during thermonuclear X-ray bursts fr-om accreting neutron stars is often strongly pulsed at frequencies as high as 620 Hz. We now know that these oscillations are produced by spin modulation of the thermonuclear flux from the neutron star surface. In addition to revealing the spin frequency, they provide new ways to probe the properties and physics of accreting neutron stars. I will briefly review our current observational and theoretical understanding of these oscillations and discuss what they are telling us about neutron stars.

  16. On the illumination of neutron star accretion discs

    Science.gov (United States)

    Wilkins, D. R.

    2018-03-01

    The illumination of the accretion disc in a neutron star X-ray binary by X-rays emitted from (or close to) the neutron star surface is explored through general relativistic ray tracing simulations. The applicability of the canonical suite of relativistically broadened emission line models (developed for black holes) to discs around neutron stars is evaluated. These models were found to describe well emission lines from neutron star accretion discs unless the neutron star radius is larger than the innermost stable orbit of the accretion disc at 6 rg or the disc is viewed at high inclination, above 60° where shadowing of the back side of the disc becomes important. Theoretical emissivity profiles were computed for accretion discs illuminated by hotspots on the neutron star surfaces, bands of emission and emission by the entirety of the hot, spherical star surface and in all cases, the emissivity profile of the accretion disc was found to be well represented by a single power law falling off slightly steeper than r-3. Steepening of the emissivity index was found where the emission is close to the disc plane and the disc can appear truncated when illuminated by a hotspot at high latitude. The emissivity profile of the accretion disc in Serpens X-1 was measured and found to be consistent with a single unbroken power law with index q=3.5_{-0.4}^{+0.3}, suggestive of illumination by the boundary layer between the disc and neutron star surface.

  17. On Fallback Disks around Young Neutron Stars

    Science.gov (United States)

    Alpar, M. Ali; Ertan, Ü.; Erkut, M. H.

    2006-08-01

    Some bound matter in the form of a fallback disk may be an initial parameter of isolated neutron stars at birth, which, along with the initial rotation rate and dipole (and higher multipole) magnetic moments, determines the evolution of neutron stars and the categories into which they fall. This talk reviews the possibilities of fallback disk models in explaining properties of isolated neutron stars of different categories. Recent observations of a fallback disk and observational limits on fallback disks will also be discussed.

  18. Electromagnetic damping of neutron star oscillations

    International Nuclear Information System (INIS)

    McDermott, P.N.; Savedoff, M.P.; Van Horn, H.M.; Zweibel, E.G.; Hansen, C.J.

    1984-01-01

    Nonradial pulsations of a neutron star with a strong dipole magnetic field cause emission of electromagnetic radiation. Here we compute the power radiated to vacuum by neutron star g-mode pulsations and by torsional oscillations of the neutron star crust. For the low-order quadrupole fluid g-modes we have considered, we find electromagnetic damping to be considerably more effective than gravitational radiation. For example, a 0.5 M/sub sun/ neutron star with a core temperature approx.10 7 K has a g 1 -mode period of 371 ms; for this mode were find the electromagnetic damping time to be tau/sub FM/approx.0.3 s, assuming the surface magnetic field strength of the neutron star to be B 0 approx.10 12 gauss. This is considerably less than the corresponding gravitational radiation time tau/sub GR/approx.3 x 10 17 yr. For dipole g-mode oscillations, there is no gravitational radiation, but electromagnetic damping and ohmic dissipation are efficient damping mechanisms. For dipole torsional oscillations, we find that electromagnetic damping again dominates, with tau/sub EM/approx.5 yr. Among the cases we have studied, quadrupole torsional oscillations appear to be dominated by gravitational radiation damping, with tau/sub GR/approx.10 4 yr, as compared with tau/sub EM/approx.2 x 10 7 yr

  19. How Massive Single Stars End Their Life

    Science.gov (United States)

    Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H.

    2003-01-01

    How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.

  20. Tidal Love Numbers of Neutron Stars

    International Nuclear Information System (INIS)

    Hinderer, Tanja

    2008-01-01

    For a variety of fully relativistic polytropic neutron star models we calculate the star's tidal Love number k 2 . Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n ∼ 0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l = 2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second-order differential equation for the perturbation to the metric coefficient g tt and matching the exterior solution to the asymptotic expansion of the metric in the star's local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to ∼24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron stars.

  1. Lev Landau and the concept of neutron stars

    International Nuclear Information System (INIS)

    Yakovlev, Dmitrii G; Haensel, Pawel; Baym, Gordon; Pethick, Christopher

    2013-01-01

    We review Lev Landau's role in the history of neutron star physics in the 1930s. According to the recollections of Rosenfeld (Proc. 16th Solvay Conference on Physics, 1974, p. 174), Landau improvised the concept of neutron stars in a discussion with Bohr and Rosenfeld just after the news of the discovery of the neutron reached Copenhagen in February 1932. We present arguments that the discussion must have taken place in March 1931, before the discovery of the neutron, and that they, in fact, discussed the paper written by Landau in Zurich in February 1931 but not published until February 1932 (Phys. Z. Sowjetunion 1, 285). In this paper, Landau mentioned the possible existence of dense stars that look like one giant nucleus; this could be regarded as an early theoretical prediction or anticipation of neutron stars, albeit prior to the discovery of the neutron. The coincidence of the dates of the neutron discovery and the publication of the paper has led to an erroneous association of Landau's paper with the discovery of the neutron. In passing, we outline Landau's contribution to the theory of white dwarfs and to the hypothesis of stars with neutron cores. (from the history of physics)

  2. Hyperon-mixed neutron star matter and neutron stars

    CERN Document Server

    Nishizaki, S; Yamamoto, Y

    2002-01-01

    Effective SIGMA sup - n and SIGMA sup -SIGMA sup - interactions are derived from the G-matrix calculations for left brace n+SIGMA sup -right brace matter and employed in the investigation of hyperon mixing in neutron star matter. The threshold densities rho sub t (Y) at which hyperons start to appear are between 2 rho sub 0 and 3 rho sub 0 (where rho sub 0 is the normal nuclear density) for both LAMBDA and SIGMA sup - , and their fractions increase rapidly with baryon density, reaching 10% already for rho approx = rho sub t + rho sub 0. The mechanism of hyperon mixing and single-particle properties, such as the effective mass and the potential depth, are analyzed taking into account the roles of YN and NN interactions. The resulting equation of state is found to be too soft to sustain the observed neutron star mass M sub o sub b sub s =1.44(solar mass). We discuss the reason for this and stress the necessity of the ''extra repulsion'' for YN and YY interactions to resolve this crucial problem. It is remarked ...

  3. AN X-RAY UPPER LIMIT ON THE PRESENCE OF A NEUTRON STAR FOR THE SMALL MAGELLANIC CLOUD SUPERNOVA REMNANT 1E0102.2-7219

    International Nuclear Information System (INIS)

    Rutkowski, M. J.; Windhorst, R. A.; Schlegel, E. M.; Keohane, J. W.

    2010-01-01

    We present Chandra X-ray Observatory archival observations of the supernova remnant 1E0102.2-7219, a young oxygen-rich remnant in the Small Magellanic Cloud. Combining 28 ObsIDs for 324 ks of total exposure time, we present an Advanced CCD Imaging Spectrometer image with an unprecedented signal-to-noise ratio (mean S/N ≅√S∼ 6; maximum S/N > 35). We search within the remnant, using the source detection software WAVDETECT, for point sources which may indicate a compact object. Despite finding numerous detections of high significance in both broad and narrowband images of the remnant, we are unable to satisfactorily distinguish whether these detections correspond to emission from a compact object. We also present upper limits to the luminosity of an obscured compact stellar object which were derived from an analysis of spectra extracted from the high signal-to-noise image. We are able to further constrain the characteristics of a potential neutron star for this remnant with the results of the analysis presented here, though we cannot confirm the existence of such an object for this remnant.

  4. Supernova SN1961v - an explosion of a very massive star

    International Nuclear Information System (INIS)

    Utrobin, V.P.

    1983-01-01

    An investigation of the outburst of the unique supernova SN1961v in the galaxy NGC 1058 is carried out. An analysis of hydrodynamical models of supernoVa outbursts and a comparison with a considerable body of observational data on SN1961v clearly show that the SN1961v phenomenon is an explosion of a very massive star-with the mass of 2000 M and radiUs of about 100 R that results in expelling the envelope with the kinetic energy of 1.8x10 52 erg. The light curve of SN1961v furnishes direct evidence for a heterogeneity of the presupernova interior. The chemical composition produced during the evolution of the very massive star and in the final eXplosion must have a number of the essential features. In particular, hydrogen has to be underabundant relative to the solar content and distributed in the specific manner through the star. At late stages from February 1963 to February 1967, the light curve of SN1961v may be accoUnted for as interaction of the expelled envelope with the stellar wind of presupernova

  5. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star.

    Science.gov (United States)

    Howell, D Andrew; Sullivan, Mark; Nugent, Peter E; Ellis, Richard S; Conley, Alexander J; Le Borgne, Damien; Carlberg, Raymond G; Guy, Julien; Balam, David; Basa, Stephane; Fouchez, Dominique; Hook, Isobel M; Hsiao, Eric Y; Neill, James D; Pain, Reynald; Perrett, Kathryn M; Pritchet, Christopher J

    2006-09-21

    The accelerating expansion of the Universe, and the need for dark energy, were inferred from observations of type Ia supernovae. There is a consensus that type Ia supernovae are thermonuclear explosions that destroy carbon-oxygen white dwarf stars that have accreted matter from a companion star, although the nature of this companion remains uncertain. These supernovae are thought to be reliable distance indicators because they have a standard amount of fuel and a uniform trigger: they are predicted to explode when the mass of the white dwarf nears the Chandrasekhar mass of 1.4 solar masses (M(o)). Here we show that the high-redshift supernova SNLS-03D3bb has an exceptionally high luminosity and low kinetic energy that both imply a super-Chandrasekhar-mass progenitor. Super-Chandrasekhar-mass supernovae should occur preferentially in a young stellar population, so this may provide an explanation for the observed trend that overluminous type Ia supernovae occur only in 'young' environments. As this supernova does not obey the relations that allow type Ia supernovae to be calibrated as standard candles, and as no counterparts have been found at low redshift, future cosmology studies will have to consider possible contamination from such events.

  6. Supercritical accretion in the evolution of neutron star binaries and its implications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Hwan, E-mail: clee@pusan.ac.kr; Cho, Hee-Suk

    2014-08-15

    Recently ∼2M{sub ⊙} neutron stars PSR J1614-2230 and PSR J0348+0432 have been observed in neutron star-white dwarf binaries. These observations ruled out many neutron star equations of states with which the maximum neutron star mass becomes less than 2M{sub ⊙}. On the other hand, all well-measured neutron star masses in double neutron star binaries are still less than 1.5M{sub ⊙}. In this article we suggest that 2M{sub ⊙} neutron stars in neutron star-white dwarf binaries are the result of the supercritical accretion onto the first-born neutron star during the evolution of the binary progenitors.

  7. Neutrino Processes in Neutron Stars

    Directory of Open Access Journals (Sweden)

    Kolomeitsev E.E.

    2010-10-01

    Full Text Available The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities. The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong

  8. Masses of supernova progenitors

    International Nuclear Information System (INIS)

    Tinsley, B.M.

    1977-01-01

    The possible nature and masses of supernovae progenitors, and the bearing of empirical results on some unsolved theoretical problems concerning the origin of supernovae, are discussed. The author concentrates on two main questions: what is the lower mass limit for stars to die explosively and what stars initiate type I supernovae. The evidence considered includes local supernova rates, empirical estimates of msub(w) (the upper mass limit for death as a white dwarf), the distributions of supernovae among stellar populations in galaxies and the colors of supernova producing galaxies. (B.D.)

  9. Systematic thermal reduction of neutronization in core-collapse supernovae

    International Nuclear Information System (INIS)

    Fantina, A.F.; Donati, P.; Pizzochero, P.M.

    2009-01-01

    We investigate to what extent the temperature dependence of the nuclear symmetry energy can affect the neutronization of the stellar core prior to neutrino trapping during gravitational collapse. To this end, we implement a one-zone simulation to follow the collapse until β-equilibrium is reached and the lepton fraction remains constant. Since the strength of electron capture on the neutron-rich nuclei associated to the supernova scenario is still an open issue, we keep it as a free parameter. We find that the temperature dependence of the symmetry energy consistently yields a small reduction of deleptonization, which corresponds to a systematic effect on the shock wave energetics: the gain in dissociation energy of the shock has a small yet non-negligible value of about 0.4 foe (1 foe=10 51 erg) and this result is almost independent from the strength of nuclear electron capture. The presence of such a systematic effect and its robustness under changes of the parameters of the one-zone model are significant enough to justify further investigations with detailed numerical simulations of supernova explosions.

  10. Observational constraints on neutron star masses and radii

    Energy Technology Data Exchange (ETDEWEB)

    Coleman Miller, M. [University of Maryland, Department of Astronomy and Joint Space-Science Institute, College Park, MD (United States); Lamb, Frederick K. [University of Illinois at Urbana-Champaign, Center for Theoretical Astrophysics and Department of Physics, Urbana, IL (United States); University of Illinois at Urbana-Champaign, Department of Astronomy, Urbana, IL (United States)

    2016-03-15

    Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. Several different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star - black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method. (orig.)

  11. From hadrons to quarks in neutron stars: a review

    Science.gov (United States)

    Baym, Gordon; Hatsuda, Tetsuo; Kojo, Toru; Powell, Philip D.; Song, Yifan; Takatsuka, Tatsuyuki

    2018-05-01

    In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. At the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors. We review here the equation of state of matter in neutron stars from the solid crust through the liquid nuclear matter interior to the quark regime at higher densities. We focus in detail on the question of how quark matter appears in neutron stars, and how it affects the equation of state. After discussing the crust and liquid nuclear matter in the core we briefly review aspects of microscopic quark physics relevant to neutron stars, and quark models of dense matter based on the Nambu–Jona–Lasinio framework, in which gluonic processes are replaced by effective quark interactions. We turn then to describing equations of state useful for interpretation of both electromagnetic and gravitational observations, reviewing the emerging picture of hadron-quark continuity in which hadronic matter turns relatively smoothly, with at most only a weak first order transition, into quark matter with increasing density. We review construction of unified equations of state that interpolate between the reasonably well

  12. On the evolution of stars

    International Nuclear Information System (INIS)

    Kippenhahn, R.

    1989-01-01

    A popular survey is given of the present knowledge on evolution and ageing of stars. Main sequence stars, white dwarf stars, and red giant stars are classified in the Hertzsprung-Russell (HR)-diagram by measurable quantities: surface temperature and luminosity. From the HR-diagram it can be concluded to star mass and age. Star-forming processes in interstellar clouds as well as stellar burning processes are illustrated. The changes occurring in a star due to the depletion of the nuclear energy reserve are described. In this frame the phenomena of planetary nebulae, supernovae, pulsars, neutron stars as well as of black holes are explained

  13. The R-process: supernovae and other sources of the heaviest elements

    International Nuclear Information System (INIS)

    Thielemann, F.-K.; Moceli, D.; Panov, I.

    2007-01-01

    Rapid neutron capture in stellar explosions is responsible for the heaviest elements in nature, up to Th, U and beyond. This nucleosynthesis process, the r-process, is unique in the sense that a combination of nuclear physics far from stability (masses, half-lives, neutron-capture and photodisintegration, neutron-induced and beta-delayed fission and last but not least neutrino-nucleus interactions) is intimately linked to ejecta from astrophysical explosions (core collapse supernovae or other neutron star related events). The astrophysics and nuclear physics involved still harbor many uncertainties, either in the extrapolation of nuclear properties far beyond present experimental explorations or in the modeling of multidimensional, general relativistic (neutrino-radiation) hydrodynamics with rotation and possibly required magnetic fields. Observational clues about the working of the r-process are mostly obtained from solar abundances and from the abundance evolution of the heaviest elements as a function of galactic age, as witnessed in old extremely metal-poor stars. They contain information whether the r-process is identical for all stellar events, how abundance features develop with galactic time and whether the frequency of r-process events is comparable to that of average core collapse supernovae - producing oxygen through titanium, as well as iron-group nuclei. The theoretical modeling of the r-process has advanced from simple approaches, where the use of static neutron densities and temperatures can aid to test the influence of nuclear properties far from stability on abundance features, to more realistic expansions with a given entropy, global neutron/proton ratio and expansion timescales, as expected from explosive astrophysical events. The direct modeling in astrophysical events such as supernovae still faces the problem whether the required conditions can be met. (author)

  14. Stellar core collapse and supernova

    International Nuclear Information System (INIS)

    Wilson, J.R.; Mayle, R.; Woosley, S.E.; Weaver, T.

    1985-04-01

    Massive stars that end their stable evolution as their iron cores collapse to a neutron star or black hole long been considered good candidates for producing Type II supernovae. For many years the outward propagation of the shock wave produced by the bounce of these iron cores has been studied as a possible mechanism for the explosion. For the most part, the results of these studies have not been particularly encouraging, except, perhaps, in the case of very low mass iron cores or very soft nuclear equations of state. The shock stalls, overwhelmed by photodisintegration and neutrino losses, and the star does not explode. More recently, slow late time heating of the envelope of the incipient neutron star has been found to be capable of rejuvenating the stalled shock and producing an explosion after all. The present paper discusses this late time heating and presents results from numerical calculations of the evolution, core collapse, and subsequent explosion of a number of recent stellar models. For the first time they all, except perhaps the most massive, explode with reasonable choices of input physics. 39 refs., 17 figs., 1 tab

  15. Simulation of merging neutron stars in full general relativity

    International Nuclear Information System (INIS)

    Shibata, M.

    2001-01-01

    We have performed 3D numerical simulations for merger of equal mass binary neutron stars in full general relativity. We adopt a Γ-law equation of state in the form P = (Γ - 1)ρε where P, ρ, ε and Γ are the pressure, rest mass density, specific internal energy, and the adiabatic constant. As initial conditions, we adopt models of irrotational binary neutron stars in a quasiequilibrium state. Simulations have been carried out for a wide range of Γ and compactness of neutron stars, paying particular attention to the final product and gravitational waves. We find that the final product depends sensitively on the initial compactness of the neutron stars: In a merger between sufficiently compact neutron stars, a black hole is formed in a dynamical timescale. As the compactness is decreased, the formation timescale becomes longer and longer. It is also found that a differentially rotating massive neutron star is formed instead of a black hole for less compact binary cases. In the case of black hole formation, the disk mass around the black hole appears to be very small; less than 1% of the total rest mass. It is indicated that waveforms of high-frequency gravitational waves after merger depend strongly on the compactness of neutron stars before the merger. We point out importance of detecting such gravitational waves of high frequency to constrain the maximum allowed mass of neutron stars. (author)

  16. Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction

    Science.gov (United States)

    Zapartas, E.; de Mink, S. E.; Izzard, R. G.; Yoon, S.-C.; Badenes, C.; Götberg, Y.; de Koter, A.; Neijssel, C. J.; Renzo, M.; Schootemeijer, A.; Shrotriya, T. S.

    2017-05-01

    Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that a significant fraction, %, of core-collapse supernovae are "late", that is, they occur 50-200 Myr after birth, when all massive single stars have already exploded. These late events originate predominantly from binary systems with at least one, or, in most cases, with both stars initially being of intermediate mass (4-8 M⊙). The main evolutionary channels that contribute often involve either the merging of the initially more massive primary star with its companion or the engulfment of the remaining core of the primary by the expanding secondary that has accreted mass at an earlier evolutionary stage. Also, the total number of core-collapse supernovae increases by % because of binarity for the same initial stellar mass. The high rate implies that we should have already observed such late core-collapse supernovae, but have not recognized them as such. We argue that φ Persei is a likely progenitor and that eccentric neutron star - white dwarf systems are likely descendants. Late events can help explain the discrepancy in the delay-time distributions derived from supernova remnants in the Magellanic Clouds and extragalactic type Ia events, lowering the contribution of prompt Ia events. We discuss ways to test these predictions and speculate on the implications for supernova feedback in simulations of galaxy evolution.

  17. What stars become peculiar type I supernovae?

    International Nuclear Information System (INIS)

    Uomoto, A.

    1986-01-01

    Hot hydrogen-deficient binaries such as Upsilon Sgr and KS Per are suggested as the stars most likely to become Type Ib supernovae. These systems satisfy the preexplosion constraints imposed by Type Ib observations by not having any hydrogen in their atmospheres (explaining their spectra), being truncated at the Roche lobe (explaining their light curves), and having large main-sequence masses (explaining their presence in extreme Population I locations). Although none of those known seems to be in danger of exploding, a system with a current primary mass of about solar masses may do so by core collapse. 36 references

  18. A spin-down mechanism for accreting neutron stars

    International Nuclear Information System (INIS)

    Illarionov, A.F.; AN SSSR, Moscow. Fizicheskij Inst.); Kompaneets, D.A.

    1990-01-01

    We propose a new spin-down mechanism for accreting neutron stars that explains the existence of a number of long-period (p≅100-1000 s) X-ray pulsars in wide binaries with OB-stars. The spin-down is a result of efficient angular momentum transfer from the rotating magnetosphere of the accreting star to an outflowing stream of magnetized matter. The outflow is formed within a limited solid angle, and the outflow rate is less than the accretion rate. The outflow formation is connected with the anisotropy and intensity of the hard X-ray emission of the neutron star. X-rays from the pulsar heat through Compton scattering the accreting matter anisotropically. The heated matter has a lower density than the surrounding accreting matter and flows up by the action of the buoyancy force. We find the criterion for the outflow to form deep in the accretion flow (i.e., close to the neutron star magnetosphere). The neutron star loses angular momentum when the outflow forms so deep as to capture the magnetic field lines from the rotating magnetosphere. The balance between angular momentum gain by accreting gas and loss by outflowing matter takes place at a particular value of the period of the spinning neutron star. (orig.)

  19. Quark phases in neutron stars and a third family of compact stars as signature for phase transitions

    International Nuclear Information System (INIS)

    Schertler, K.; Greiner, C.; Schaffner-Bielich, J.; Thoma, M.H.

    2000-01-01

    The appearance of quark phases in the dense interior of neutron stars provides one possibility to soften the equation of state (EOS) of neutron star matter at high densities. This softening leads to more compact equilibrium configurations of neutron stars compared to pure hadronic stars of the same mass. We investigate the question to which amount the compactness of a neutron star can be attributed to the presence of a quark phase. For this purpose we employ several hadronic EOS in the framework of the relativistic mean-field (RMF) model and an extended MIT bag model to describe the quark phase. We find that -- almost independent of the model parameters -- the radius of a pure hadronic neutron star gets typically reduced by 20-30% if a pure quark phase in the center of the star does exist. For some EOS we furthermore find the possibility of a third family of compact stars which may exist besides the two known families of white dwarfs and neutron stars. We show how an experimental proof of the existence of a third family by mass and radius measurements may provide a unique signature for a phase transition inside neutron stars

  20. THE COOLING OF THE CASSIOPEIA A NEUTRON STAR AS A PROBE OF THE NUCLEAR SYMMETRY ENERGY AND NUCLEAR PASTA

    Energy Technology Data Exchange (ETDEWEB)

    Newton, William G.; Hooker, Joshua; Li, Bao-An [Department of Physics and Astronomy, Texas A and M University-Commerce, Commerce, TX 75429-3011 (United States); Murphy, Kyleah [Umpqua Community College, Roseburg, OR 97470 (United States)

    2013-12-10

    X-ray observations of the neutron star (NS) in the Cas A supernova remnant over the past decade suggest the star is undergoing a rapid drop in surface temperature of ≈2%-5.5%. One explanation suggests the rapid cooling is triggered by the onset of neutron superfluidity in the core of the star, causing enhanced neutrino emission from neutron Cooper pair breaking and formation (PBF). Using consistent NS crust and core equations of state (EOSs) and compositions, we explore the sensitivity of this interpretation to the density dependence of the symmetry energy L of the EOS used, and to the presence of enhanced neutrino cooling in the bubble phases of crustal ''nuclear pasta''. Modeling cooling over a conservative range of NS masses and envelope compositions, we find L ≲ 70 MeV, competitive with terrestrial experimental constraints and other astrophysical observations. For masses near the most likely mass of M ≳ 1.65 M {sub ☉}, the constraint becomes more restrictive 35 ≲ L ≲ 55 MeV. The inclusion of the bubble cooling processes decreases the cooling rate of the star during the PBF phase, matching the observed rate only when L ≲ 45 MeV, taking all masses into consideration, corresponding to NS radii ≲ 11 km.

  1. Double white dwarfs as progenitors of R coronae borealis stars and type I supernovae

    International Nuclear Information System (INIS)

    Webbink, R.F.

    1984-01-01

    Close double white dwarfs should arise from the second phase of mass exchagne in close binaries which first encountered mass exchange while the more massive star was crossing the Hertzprung gap. Tidal mass transfer in these double degenerate systems is explored. The sequence of double white dwarf divides naturally into three segments. (1) Low-mass helium/helium pairs are unstable to dynamical time-scale mass transfer and probably coalesce to form helium-burning sdO stars. (2) In helium/carbon-oxygen pairs, mass transfer occurs on the time scale for gravitational radiation losses (approx.10 -4 M/sub sun/ yr -1 ); the accreted helium is quickly ignited, and the accretor expands to dimensions characteristic of R CrB stars, engulfing its companion star. (3) Carbon-oxygen/carbon-oxygen pairs are again unstable to dynamical time-scale mass transfer and, since their total masses exceed the Chandrasekhar limit, are destined to become supernovae. Inactive lifetimes in these latter systems between creation and interaction can exceed 10 10 years. Birthrates of R CrB stars and Type I supernovae by evolution of double white dwarfs are in reasonable agreement with observational estimates

  2. Magnetic collapse of a neutron gas: Can magnetars indeed be formed?

    International Nuclear Information System (INIS)

    Martinez, A. Perez; Rojas, H. Perez; Cuesta, H.J.M.

    2003-01-01

    A relativistic degenerate neutron gas in equilibrium with a background of electrons and protons in a magnetic field exerts its pressure anisotropically, having a smaller value perpendicular to than along the magnetic field. For critical fields the magnetic pressure may produce the vanishing of the equatorial pressure of the neutron gas. Taking this as a model for neutron stars, the outcome could be a transverse collapse of the star. This fixes a limit to the fields to be observable in stable neutron star pulsars as a function of their density. The final structure left over after the implosion might be a mixed phase of nucleons and a meson condensate, a strange star, or a highly distorted black hole or black ''cigar'', but not a magnetar, if viewed as a superstrongly magnetized neutron star. However, we do not exclude the possibility of superstrong magnetic fields arising in supernova explosions which lead directly to strange stars. In other words, if any magnetars exist, they cannot be neutron stars. (orig.)

  3. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers

    Science.gov (United States)

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-01

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  4. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.

    Science.gov (United States)

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-16

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  5. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    International Nuclear Information System (INIS)

    Medin, Zach; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.; Steinkirch, Marina von; Calder, Alan C.

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  6. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Medin, Zach; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Steinkirch, Marina von; Calder, Alan C. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2016-12-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  7. Lupus Loop: a possible case of star formation induced by a supernova event

    Energy Technology Data Exchange (ETDEWEB)

    Arnal, M; Dubner, G

    1986-02-01

    Expanding shock waves like those arising from supernova remnants and strong stellar winds are usually proposed as a triggering mechanism for star formation, through the interaction between the expanding shock wave and dense surrounding clouds. Neutral hydrogen observations at 21cm carried out towards the Lupus Loop SNR (Colomb and Dubner 1982) have clearly shown the existence of two concentration cold shells around the radio-remnant, the outer one probably formed by the stellar wind of an early-type star (probable SN progenitor.), whilst the inner one is likely to be associated with the supernova event itself. Because a statistically significant excess of early-type stars is noticed in the outskirts of the expanding shells, a UBV-photometric study of nearly 150 stars earlier than A5 has been carried out using the Lowell 0.6m telescope of CTIO. The ultimate goal of this investigation is to establish whether or not a genetic link between the expanding shells and the early-type stars can exist. The following preliminary results were obtained: (1) a real grouping of early-type stars does exist projected against the south-eastern border of the outer cold shell, where the HI column density contours show the steepest gradient; (2) assuming that all the member stars are main sequence ones, and using the mean evolution deviation curve method, a distance of (870 +/- 80) pc is derived for the group. The obtained results favor the existence of a physical relationship between the outer expanding shell and the early-type stars grouping. 1 reference.

  8. NEW EQUATIONS OF STATE IN SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Hempel, M.; Liebendörfer, M.; Fischer, T.; Schaffner-Bielich, J.

    2012-01-01

    We discuss three new equations of state (EOS) in core-collapse supernova simulations. The new EOS are based on the nuclear statistical equilibrium model of Hempel and Schaffner-Bielich (HS), which includes excluded volume effects and relativistic mean-field (RMF) interactions. We consider the RMF parameterizations TM1, TMA, and FSUgold. These EOS are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics and three-flavor Boltzmann neutrino transport. The results obtained for the new EOS are compared with the widely used EOS of H. Shen et al. and Lattimer and Swesty. The systematic comparison shows that the model description of inhomogeneous nuclear matter is as important as the parameterization of the nuclear interactions for the supernova dynamics and the neutrino signal. Furthermore, several new aspects of nuclear physics are investigated: the HS EOS contains distributions of nuclei, including nuclear shell effects. The appearance of light nuclei, e.g., deuterium and tritium, is also explored, which can become as abundant as alphas and free protons. In addition, we investigate the black hole formation in failed core-collapse supernovae, which is mainly determined by the high-density EOS. We find that temperature effects lead to a systematically faster collapse for the non-relativistic LS EOS in comparison with the RMF EOS. We deduce a new correlation for the time until black hole formation, which allows the determination of the maximum mass of proto-neutron stars, if the neutrino signal from such a failed supernova would be measured in the future. This would give a constraint for the nuclear EOS at finite entropy, complementary to observations of cold neutron stars.

  9. Magnetorotational Explosions of Core-Collapse Supernovae

    Directory of Open Access Journals (Sweden)

    Gennady S. Bisnovatyi-Kogan

    2014-12-01

    Full Text Available Core-collapse supernovae are accompanied by formation of neutron stars. The gravitation energy is transformed into the energy of the explosion, observed as SN II, SN Ib,c type supernovae. We present results of 2-D MHD simulations, where the source of energy is rotation, and magnetic eld serves as a "transition belt" for the transformation of the rotation energy into the energy of the explosion. The toroidal part of the magnetic energy initially grows linearly with time due to dierential rotation. When the twisted toroidal component strongly exceeds the poloidal eld, magneto-rotational instability develops, leading to a drastic acceleration in the growth of magnetic energy. Finally, a fast MHD shock is formed, producing a supernova explosion. Mildly collimated jet is produced for dipole-like type of the initial field. At very high initial magnetic field no MRI development was found.

  10. Supernova models

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the 56 Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed

  11. Model Atmospheres for X-ray Bursting Neutron Stars

    OpenAIRE

    Medin, Zach; von Steinkirch, Marina; Calder, Alan C.; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of t...

  12. Rapidly Rising Optical Transients from the Birth of Binary Neutron Stars

    Science.gov (United States)

    Hotokezaka, Kenta; Kashiyama, Kazumi; Murase, Kohta

    2017-11-01

    We study optical counterparts of a new-born pulsar in a double neutron star system like PSR J0737-3039A/B. This system is believed to have ejected a small amount of mass of { O }(0.1 {M}⊙ ) at the second core-collapse supernova. We argue that the initial spin of the new-born pulsar can be determined by the orbital period at the time when the second supernova occurs. The spin angular momentum of the progenitor is expected to be similar to that of the He-burning core, which is tidally synchronized with the orbital motion, and then the second remnant may be born as a millisecond pulsar. If the dipole magnetic field strength of the nascent pulsar is comparable with that inferred from the current spin-down rate of PSR J0737-3039B, the initial spin-down luminosity is comparable to the luminosity of super-luminous supernovae. We consider thermal emission arising from the supernova ejecta driven by the relativistic wind from such a new-born pulsar. The resulting optical light curves have a rise time of ˜10 days and a peak luminosity of ˜1044 erg s-1. The optical emission may last for a month to several months, due to the reprocessing of X-rays and UV photons via photoelectric absorption. These features are broadly consistent with those of the rapidly rising optical transients. The high spin-down luminosity and small ejecta mass are favorable for the progenitor of the repeating fast radio burst, FRB 121102. We discuss a possible connection between new-born double pulsars and fast radio bursts.

  13. How neutron stars constrain the nuclear equation of state

    Directory of Open Access Journals (Sweden)

    Hell Thomas

    2014-03-01

    Full Text Available Recent neutron star observations set new constraints for the equation of state of baryonic matter. A chiral effective field theory approach is used for the description of neutron-dominated nuclear matter present in the outer core of neutron stars. Possible hybrid stars with quark matter in the inner core are discussed using a three-flavor Nambu–Jona-Lasinio model.

  14. Neutron stars in non-linear coupling models

    International Nuclear Information System (INIS)

    Taurines, Andre R.; Vasconcellos, Cesar A.Z.; Malheiro, Manuel; Chiapparini, Marcelo

    2001-01-01

    We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, ∼ 0.72M s un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)

  15. Neutron stars in non-linear coupling models

    Energy Technology Data Exchange (ETDEWEB)

    Taurines, Andre R.; Vasconcellos, Cesar A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil); Malheiro, Manuel [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Chiapparini, Marcelo [Universidade do Estado, Rio de Janeiro, RJ (Brazil)

    2001-07-01

    We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, {approx} 0.72M{sub s}un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)

  16. Cyclotron Lines in Accreting Neutron Star Spectra

    Science.gov (United States)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  17. Rotating neutron stars with exotic cores: masses, radii, stability

    Energy Technology Data Exchange (ETDEWEB)

    Haensel, P.; Bejger, M.; Fortin, M.; Zdunik, L. [Polish Academy of Sciences, N. Copernicus Astronomical Center, Warszawa (Poland)

    2016-03-15

    A set of theoretical mass-radius relations for rigidly rotating neutron stars with exotic cores, obtained in various theories of dense matter, is reviewed. Two basic observational constraints are used: the largest measured rotation frequency (716Hz) and the maximum measured mass (2M {sub CircleDot}). The present status of measuring the radii of neutron stars is described. The theory of rigidly rotating stars in general relativity is reviewed and limitations of the slow rotation approximation are pointed out. Mass-radius relations for rotating neutron stars with hyperon and quark cores are illustrated using several models. Problems related to the non-uniqueness of the crust-core matching are mentioned. Limits on rigid rotation resulting from the mass-shedding instability and the instability with respect to the axisymmetric perturbations are summarized. The problem of instabilities and of the back-bending phenomenon are discussed in detail. Metastability and instability of a neutron star core in the case of a first-order phase transition, both between pure phases, and into a mixed-phase state, are reviewed. The case of two disjoint families (branches) of rotating neutron stars is discussed and generic features of neutron-star families and of core-quakes triggered by the instabilities are considered. (orig.)

  18. Structure of neutron stars

    International Nuclear Information System (INIS)

    Cheong, C.K.

    1974-01-01

    Structure of neutron stars consisting of a cold and catalyzed superdense matter were investigated by integrating the equations for hydrostatic equilibrium based on the General Relativity theory. The equations of state were obtained with the help of semiempirical nuclear mass formulae. A large phase transition was found between the nuclear and subnuclear density regions. The density phase transition points were calculated as 6.2 x 10 11 and 3.8 x 10 13 g/cm 3 . Due to such a large phase transition, the equation of state practically consists of two parts: The nuclear and subnuclear phases wich are in contact under the thermodynamical equilibrium at the corresponding pressure. Some macroscopic properties of neutron stars are discussed. (Author) [pt

  19. Research in nuclear astrophysics: stellar collapse and supernovae. Progress report

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Yahil, A.

    1986-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. The chief emphasis of our program is on stellar collapse, supernovae and neutron star formation. Central to these topics are the parallel development of both an equation of state of hot, dense matter and a novel type of hydrodynamical code. The LLPR compressible liquid drop model is the basis of the former. We are refining it to include both curvature corrections to the surface energy nuclear force parameters which are in better agreement with recently determined experimental quantities. Our study of the equation of state has the added bonus that our results can be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. The hydrodynamical code includes a fast, but accurate, approximation to the complete LLPR equation of state. We model not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling stages of the nascent neutron star. Our detailed studies of the role of neutrinos in stellar collapse and neutron star formation concentrate on their detectability and signatures. Complementary studies include modelling both mass accretion in the nuclei of galaxies and investigating both galaxy clustering and the large scale structure of the universe. These studies are intended to shed light on the early history of the universe, in which both nuclear and elementary particle physics play a crucial role

  20. Supernova research with VLBI

    Science.gov (United States)

    Bartel, Norbert; Bietenholz, Michael F.

    2016-06-01

    Core-collapse supernovae have been monitored with VLBI from shortly after the explosion to many years thereafter. Radio emission is produced as the ejecta hit the stellar wind left over from the dyingstar. Images show the details of the interaction as the shock front expands into the circumstellar medium. Measurements of the velocity and deceleration of the expansion provide information on both the ejecta and the circumstellar medium. VLBI observations can also search for the stellar remnant of the explosion, a neutron star or a black hole. Combining the transverse expansion rate with the radial expansion rate from optical spectra allows a geometric determination of the distance to the host galaxy. We will present results from recent VLBI observations, focus on their interpretations, and show updated movies of supernovae from soon after their explosion to the present.

  1. High-entropy ejections from magnetized proto-neutron star winds: implications for heavy element nucleosynthesis

    Science.gov (United States)

    Thompson, Todd A.; ud-Doula, Asif

    2018-06-01

    Although initially thought to be promising for production of the r-process nuclei, standard models of neutrino-heated winds from proto-neutron stars (PNSs) do not reach the requisite neutron-to-seed ratio for production of the lanthanides and actinides. However, the abundance distribution created by the r-, rp-, or νp-processes in PNS winds depends sensitively on the entropy and dynamical expansion time-scale of the flow, which may be strongly affected by high magnetic fields. Here, we present results from magnetohydrodynamic simulations of non-rotating neutrino-heated PNS winds with strong dipole magnetic fields from 1014 to 1016 G, and assess their role in altering the conditions for nucleosynthesis. The strong field forms a closed zone and helmet streamer configuration at the equator, with episodic dynamical mass ejections in toroidal plasmoids. We find dramatically enhanced entropy in these regions and conditions favourable for third-peak r-process nucleosynthesis if the wind is neutron-rich. If instead the wind is proton-rich, the conditions will affect the abundances from the νp-process. We quantify the distribution of ejected matter in entropy and dynamical expansion time-scale, and the critical magnetic field strength required to affect the entropy. For B ≳1015 G, we find that ≳10-6 M⊙ and up to ˜10-5 M⊙ of high-entropy material is ejected per highly magnetized neutron star birth in the wind phase, providing a mechanism for prompt heavy element enrichment of the universe. Former binary companions identified within (magnetar-hosting) supernova remnants, the remnants themselves, and runaway stars may exhibit overabundances. We provide a comparison with a semi-analytic model of plasmoid eruption and discuss implications and extensions.

  2. REVIVAL OF THE STALLED CORE-COLLAPSE SUPERNOVA SHOCK TRIGGERED BY PRECOLLAPSE ASPHERICITY IN THE PROGENITOR STAR

    International Nuclear Information System (INIS)

    Couch, Sean M.; Ott, Christian D.

    2013-01-01

    Multi-dimensional simulations of advanced nuclear burning stages of massive stars suggest that the Si/O layers of presupernova stars harbor large deviations from the spherical symmetry typically assumed for presupernova stellar structure. We carry out three-dimensional core-collapse supernova simulations with and without aspherical velocity perturbations to assess their potential impact on the supernova hydrodynamics in the stalled-shock phase. Our results show that realistic perturbations can qualitatively alter the postbounce evolution, triggering an explosion in a model that fails to explode without them. This finding underlines the need for a multi-dimensional treatment of the presupernova stage of stellar evolution

  3. REVIVAL OF THE STALLED CORE-COLLAPSE SUPERNOVA SHOCK TRIGGERED BY PRECOLLAPSE ASPHERICITY IN THE PROGENITOR STAR

    Energy Technology Data Exchange (ETDEWEB)

    Couch, Sean M. [Flash Center for Computational Science, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Ott, Christian D., E-mail: smc@flash.uchichago.edu, E-mail: cott@tapir.caltech.edu [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-11-20

    Multi-dimensional simulations of advanced nuclear burning stages of massive stars suggest that the Si/O layers of presupernova stars harbor large deviations from the spherical symmetry typically assumed for presupernova stellar structure. We carry out three-dimensional core-collapse supernova simulations with and without aspherical velocity perturbations to assess their potential impact on the supernova hydrodynamics in the stalled-shock phase. Our results show that realistic perturbations can qualitatively alter the postbounce evolution, triggering an explosion in a model that fails to explode without them. This finding underlines the need for a multi-dimensional treatment of the presupernova stage of stellar evolution.

  4. Slowly braked, rotating neutron stars

    Science.gov (United States)

    Sato, H.

    1975-01-01

    A slowly braked, rotating neutron star is believed to be a star which rapidly rotates, has no nebula, is nonpulsing, and has a long initial braking time of ten thousand to a million years because of a low magnetic field. Such an object might be observable as an extended weak source of infrared or radio wave radiation due to the scattering of low-frequency strong-wave photons by accelerated electrons. If these objects exist abundantly in the Galaxy, they would act as sources of relatively low-energy cosmic rays. Pulsars (rapidly braked neutron stars) are shown to have difficulties in providing an adequate amount of cosmic-ray matter, making these new sources seem necessary. The possibility that the acceleration mechanism around a slowly braked star may be not a direct acceleration by the strong wave but an acceleration due to plasma turbulence excited by the strong wave is briefly explored. It is shown that white dwarfs may also be slowly braked stars with braking times longer than 3.15 million years.

  5. Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars

    Science.gov (United States)

    Wambach, J.; Anisworth, T. L.; Pines, D.

    1993-01-01

    A microscopic model for the quaisiparticle interaction in neutron matter is presented. Both particle-particle (pp) and particle-hole (ph) correlation are are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for the particle hole interaction and the scattering amplitude on the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the S-1 gap parameter for neutron superfluidity and comment briefly on neutron-star implications.

  6. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, Jason; Kasen, Daniel, E-mail: jdexter@berkeley.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2013-07-20

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  7. Neutrino nucleosynthesis in supernovae: Shell model predictions

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1989-01-01

    Almost all of the 3 · 10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. I will argue that these neutrinos interact with nuclei in the ejected shells of the supernovae to produce new elements. It appears that this nucleosynthesis mechanism is responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, and 180 Ta, and contributes significantly to the abundances of about 15 other light nuclei. I discuss shell model predictions for the charged and neutral current allowed and first-forbidden responses of the parent nuclei, as well as the spallation processes that produce the new elements. 18 refs., 1 fig., 1 tab

  8. Pion condensation in cold dense matter and neutron stars

    International Nuclear Information System (INIS)

    Haensel, P.; Proszynski, M.

    1982-01-01

    We study possible influence, on the neutron star structure, of a pion condensation occurring in cold dense matter. Several equations of state with pion-condensed phase are considered. The models of neutron stars are calculated and confronted with existing observational data on pulsars. Such a confrontation appears to rule out the models of dense matter with an abnormal self-bound state, and therefore it seems to exclude the possibility of the existence of abnormal superheavy neutron nuclei and abnormal neutron stars with a liquid pion-condensed surface

  9. Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Masaru

    2016-12-15

    Late inspiral and merger phases of binary neutron stars are the valuable new experimental fields for exploring nuclear physics because (i) gravitational waves from them will bring information for the neutron-star equation of state and (ii) the matter ejected after the onset of the merger could be the main site for the r-process nucleosynthesis. We will summarize these aspects of the binary neutron stars, describing the current understanding for the merger process of binary neutron stars that has been revealed by numerical-relativity simulations.

  10. SPIN-PRECESSION: BREAKING THE BLACK HOLE-NEUTRON STAR DEGENERACY

    Energy Technology Data Exchange (ETDEWEB)

    Chatziioannou, Katerina; Cornish, Neil; Klein, Antoine; Yunes, Nicolás [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2015-01-01

    Mergers of compact stellar remnants are prime targets for the LIGO/Virgo gravitational wave detectors. The gravitational wave signals from these merger events can be used to study the mass and spin distribution of stellar remnants, and provide information about black hole horizons and the material properties of neutron stars. However, it has been suggested that degeneracies in the way that the star's mass and spin are imprinted in the waveforms may make it impossible to distinguish between black holes and neutron stars. Here we show that the precession of the orbital plane due to spin-orbit coupling breaks the mass-spin degeneracy, and allows us to distinguish between standard neutron stars and alternative possibilities, such as black holes or exotic neutron stars with large masses and spins.

  11. Dynamics of supernova remnants in the Galactic centre.

    Science.gov (United States)

    Bortolas, E.; Mapelli, M.; Spera, M.

    The Galactic centre (GC) is a unique place to study the extreme dynamical processes occurring near a super-massive black hole (SMBH). Here we simulate a large set of binaries orbiting the SMBH while the primary member undergoes a supernova (SN) explosion, in order to study the impact of SN kicks on the orbits of stars and dark remnants in the GC. We find that SN explosions are efficient in scattering neutron stars and other light stars on new (mostly eccentric) orbits, while black holes (BHs) tend to retain memory of the orbit of their progenitor star. SN kicks are thus unable to eject BHs from the GC: a cusp of dark remnants may be lurking in the central parsec of our Galaxy.

  12. Discriminating strange star mergers from neutron star mergers by gravitational-wave measurements

    International Nuclear Information System (INIS)

    Bauswein, A.; Oechslin, R.; Janka, H.-T.

    2010-01-01

    We perform three-dimensional relativistic hydrodynamical simulations of the coalescence of strange stars and explore the possibility to decide on the strange matter hypothesis by means of gravitational-wave measurements. Self-binding of strange quark matter and the generally more compact stars yield features that clearly distinguish strange star from neutron star mergers, e.g. hampering tidal disruption during the plunge of quark stars. Furthermore, instead of forming dilute halo structures around the remnant as in the case of neutron star mergers, the coalescence of strange stars results in a differentially rotating hypermassive object with a sharp surface layer surrounded by a geometrically thin, clumpy high-density strange quark matter disk. We also investigate the importance of including nonzero temperature equations of state in neutron star and strange star merger simulations. In both cases we find a crucial sensitivity of the dynamics and outcome of the coalescence to thermal effects, e.g. the outer remnant structure and the delay time of the dense remnant core to black hole collapse depend on the inclusion of nonzero temperature effects. For comparing and classifying the gravitational-wave signals, we use a number of characteristic quantities like the maximum frequency during inspiral or the dominant frequency of oscillations of the postmerger remnant. In general, these frequencies are higher for strange star mergers. Only for particular choices of the equation of state the frequencies of neutron star and strange star mergers are similar. In such cases additional features of the gravitational-wave luminosity spectrum like the ratio of energy emitted during the inspiral phase to the energy radiated away in the postmerger stage may help to discriminate coalescence events of the different types. If such characteristic quantities could be extracted from gravitational-wave signals, for instance with the upcoming gravitational-wave detectors, a decision on the

  13. Probing thermonuclear burning on accreting neutron stars

    Science.gov (United States)

    Keek, L.

    2008-12-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes thermonuclear burning in the neutron star envelope, creating carbon and heavier elements. The fusion process may proceed in an unstable manner, resulting in a thermonuclear runaway. Within one second the entire surface is burned, which is observable as a sharp rise in the emitted X-ray flux: a type I X-ray burst. Afterwards the neutron star surface cools down on a timescale of ten to one hundred seconds. During these bursts the surface of an accreting neutron star can be observed directly, which makes them instrumental for studying this type of stars. We have studied rare kinds of X-ray bursts. One such rare burst is the superburst, which lasts a thousand times longer than an ordinary burst. Superbursts are thought to result from the explosive burning of a thick carbon layer, which lies deeper inside the neutron star, close to a layer known as the crust. A prerequisite for the occurrence of a superburst is a high enough temperature, which is set by the temperature of the crust and the heat conductivity of the envelope. The latter is lowered by the presence of heavy elements that are produced during normal X-ray bursts. Using a large set of observations from the Wide Field Camera's onboard the BeppoSAX satellite, we find that, at high accretion rate, sources which do not exhibit normal bursts likely have a longer superburst recurrence time, than the observed superburst recurrence time of one burster. We analyze in detail the first superburst from a transient source, which went into outburst only 55 days before the superburst. Recent models of the neutron star crust predict that this is too small a time to heat the crust sufficiently for superburst ignition, indicating

  14. Neutron stars structure in the context of massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H.; Bordbar, G.H.; Panah, B. Eslam; Panahiyan, S., E-mail: hendi@shirazu.ac.ir, E-mail: ghbordbar@shirazu.ac.ir, E-mail: behzad.eslampanah@gmail.com, E-mail: sh.panahiyan@gmail.com [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2017-07-01

    Motivated by the recent interests in spin−2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  15. Neutron stars structure in the context of massive gravity

    Science.gov (United States)

    Hendi, S. H.; Bordbar, G. H.; Eslam Panah, B.; Panahiyan, S.

    2017-07-01

    Motivated by the recent interests in spin-2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  16. Neutron stars structure in the context of massive gravity

    International Nuclear Information System (INIS)

    Hendi, S.H.; Bordbar, G.H.; Panah, B. Eslam; Panahiyan, S.

    2017-01-01

    Motivated by the recent interests in spin−2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  17. Accreting neutron stars, black holes, and degenerate dwarf stars.

    Science.gov (United States)

    Pines, D

    1980-02-08

    During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.

  18. Ultra-dense neutron star matter, strange quark stars, and the nuclear equation of state

    International Nuclear Information System (INIS)

    Weber, F.; Meixner, M.; Negreiros, R.P.; Malheiro, M.

    2007-01-01

    With central densities way above the density of atomic nuclei, neutron stars contain matter in one of the densest forms found in the universe. Depending of the density reached in the cores of neutron stars, they may contain stable phases of exotic matter found nowhere else in space. This article gives a brief overview of the phases of ultra-dense matter predicted to exist deep inside neutron stars and discusses the equation of state (EoS) associated with such matter. (author)

  19. Limits on Self-Interacting Dark Matter from Neutron Stars

    DEFF Research Database (Denmark)

    Kouvaris, C.

    2012-01-01

    We impose new severe constraints on the self-interactions of fermionic asymmetric dark matter based on observations of nearby old neutron stars. Weakly interacting massive particle (WIMP) self-interactions mediated by Yukawa-type interactions can lower significantly the number of WIMPs necessary...... for gravitational collapse of the WIMP population accumulated in a neutron star. Even nearby neutron stars located at regions of low dark matter density can accrete a sufficient number of WIMPs that can potentially collapse, form a mini black hole, and destroy the host star. Based on this, we derive constraints...

  20. Baryon superfluidity and neutrino emissivity of neutron stars

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki; Tamagaki, Ryozo

    2004-01-01

    For neutron stars with hyperon-mixed cores, neutrino emissivity is studied using the properties of neutron star matter determined under the equation of state, which is obtained by introducing a repulsive three-body force universal for all the baryons so as to assure the maximum mass of neutron stars compatible with observations. The case without a meson condensate is treated. We choose the inputs provided by nuclear physics, with a reliable allowance. Paying attention to the density dependence of the critical temperatures of the baryon superfluids, which reflect the nature of the baryon-baryon interaction and control neutron star cooling, we show what neutrino emission processes are efficient in regions both with and without hyperon mixing. By comparing the calculated emissivities with respect to densities, we can conclude that at densities lower than about 4 times the nuclear density, the Cooper-pair process arising from the neutron 3 P 2 superfluid dominates, while at higher densities the hyperon direct Urca process dominates. For the hyperon direct Urca process to be a candidate responsible for rapid cooling compatible with observations, a moderately large energy gap of the Λ-particle 1 S 0 superfluid is required to suppress its large emissivity. The implications of these results are discussed in the relation to thermal evolution of neutron stars. (author)

  1. Breaking strain of neutron star crust and gravitational waves.

    Science.gov (United States)

    Horowitz, C J; Kadau, Kai

    2009-05-15

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of the neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Because of the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gravitational wave radiation could limit the spin periods of some stars and might be detectable in large-scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in magnetar giant flares and microflares.

  2. A relativistic type Ibc supernova without a detected gamma-ray burst.

    Science.gov (United States)

    Soderberg, A M; Chakraborti, S; Pignata, G; Chevalier, R A; Chandra, P; Ray, A; Wieringa, M H; Copete, A; Chaplin, V; Connaughton, V; Barthelmy, S D; Bietenholz, M F; Chugai, N; Stritzinger, M D; Hamuy, M; Fransson, C; Fox, O; Levesque, E M; Grindlay, J E; Challis, P; Foley, R J; Kirshner, R P; Milne, P A; Torres, M A P

    2010-01-28

    Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.

  3. A relativistic type Ibc supernova without a detected γ-ray burst

    Science.gov (United States)

    Soderberg, A. M.; Chakraborti, S.; Pignata, G.; Chevalier, R. A.; Chandra, P.; Ray, A.; Wieringa, M. H.; Copete, A.; Chaplin, V.; Connaughton, V.; Barthelmy, S. D.; Bietenholz, M. F.; Chugai, N.; Stritzinger, M. D.; Hamuy, M.; Fransson, C.; Fox, O.; Levesque, E. M.; Grindlay, J. E.; Challis, P.; Foley, R. J.; Kirshner, R. P.; Milne, P. A.; Torres, M. A. P.

    2010-01-01

    Long duration γ-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of γ-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their γ-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.

  4. Positrons from supernova and the origin of the galactic-center positron-annihilation radiation

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1983-01-01

    The emission of positrons from supernova ejecta is dicussed in terms of the galactic-center annihilation radiation. The positrons from the radioactive sequences 56 Ni→ 56 Co→ 56 Fe are the most numerous source from supernova. Only type I supernova will allow a significant fraction to escape the expanding ejecta. For a neutron star model of a type I SN a fraction 4 x 10 -3 of the escaped positron is enough to create the observed several year fluctuation of the annihilation radiation. The likelihood of this model is discussed in terms of other astrophysical evidence as well as the type I SN light curve

  5. Spectral representations of neutron-star equations of state

    International Nuclear Information System (INIS)

    Lindblom, Lee

    2010-01-01

    Methods are developed for constructing spectral representations of cold (barotropic) neutron-star equations of state. These representations are faithful in the sense that every physical equation of state has a representation of this type and conversely every such representation satisfies the minimal thermodynamic stability criteria required of any physical equation of state. These spectral representations are also efficient, in the sense that only a few spectral coefficients are generally required to represent neutron-star equations of state quiet accurately. This accuracy and efficiency is illustrated by constructing spectral fits to a large collection of 'realistic' neutron-star equations of state.

  6. Topics in the theory of neutron star cooling

    International Nuclear Information System (INIS)

    Duncan, R.C. Jr.

    1986-01-01

    The author calculates the neutrino emissivity of interacting, degenerate quark matter, which may make up the dense cores of neutron stars. QCD interactions between quarks are included to first order. The author shows that when massive s-quarks are present in cold quark matter, electrons are not present in equilibrium at densities above a threshold electron extinction density n/sub ex/. This results in a much lower neutrino emissivity epsilon/sub nu/ at high densities than has been previously calculated. Dependences of epsilon/sub nu/ on the strange quark mass m/sub s/ and the QCD coupling constant a/sub c/ are determined for a quark liquid in β-equilibrium. Implications of these calculations for neutron-star cooling are briefly discussed. Eventually, it is shown that neutrino momentum effects may be ignored in neutron star cooling calculations without significant error, even when high-density quark-matter cores are present. Finally considered is the very early cooling epoch, lasting up to ∼1 minutes after formation, when a neutron star is optically thick to neutrinos. It is shown that the coupled equations of neutrino and photon transport in the atmosphere of a sufficiently hot, nascent neutron star do not admit hydrostatic solutions

  7. Presupernova evolution of massive stars

    International Nuclear Information System (INIS)

    Weaver, T.A.; Zimmerman, G.B.; Woosley, S.E.

    1977-01-01

    Population I stars of 15 M/sub mass/ and 25 M/sub mass/ have been evolved from the zero-age main sequence through iron core collapse utilizing a numerical model that incorporates both implicit hydrodynamics and a detailed treatment of nuclear reactions. The stars end their presupernova evolution as red supergiants with photospheric radii of 3.9 x 10 13 cm and 6.7 x 10 13 cm, respectively, and density structures similar to those invoked to explain Type II supernova light curves on a strictly hydrodynamic basis. Both stars are found to form substantially neutronized ''iron'' cores of 1.56 M/sub mass/ and 1.61 M/sub mass/, and central electron abundances of 0.427 and 0.439 moles/g, respectively, during hydrostatic silicon burning. Just prior to collapse, the abundances of the elements in the 25 M/sub mass/ star (excluding the neutronized iron core) have ratios strikingly close to their solar system values over the mass range from oxygen to calcium, while the 15 M/sub mass/ star is characterized by large enhancements of Ne, Mg, and Si. It is pointed out on nucleosynthetic grounds that the mass of the neutronized core must represent a lower limit to the mass of the neutron star or black hole remnant that stars in this mass range can normally produce

  8. Hot and dense matter in compact stars - from nuclei to quarks

    International Nuclear Information System (INIS)

    Hempel, Matthias

    2010-01-01

    This dissertation deals with the equation of state of hot and dense matter in compact stars, with special focus on first order phase transitions. A general classification of first order phase transitions is given and the properties of mixed phases are discussed. Aspects of nucleation and the role of local constraints are investigated. The derived theoretical concepts are applied to matter in neutron stars and supernovae, in the hadron-quark and the liquid-gas phase transition. For the detailed description of the liquid-gas phase transition a new nuclear statistical equilibrium model is developed. It is based on a thermodynamic consistent implementation of relativistic mean-field interactions and excluded volume effects. With this model different equation of state tables are calculated and the composition and thermodynamic properties of supernova matter are analyzed. As a first application numerical simulations of core-collapse supernovae are presented. For the hadron-quark phase transition two possible scenarios are studied in more detail. First the appearance of a new mixed phase in a proto neutron star and the implications on its evolution. In the second scenario the consequences of the hadron-quark transition in corecollapse supernovae are investigated. Simulations show that the appearance of quark matter has clear observable signatures and can even lead to the generation of an explosion. (orig.)

  9. Hot and dense matter in compact stars - from nuclei to quarks

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Matthias

    2010-10-19

    This dissertation deals with the equation of state of hot and dense matter in compact stars, with special focus on first order phase transitions. A general classification of first order phase transitions is given and the properties of mixed phases are discussed. Aspects of nucleation and the role of local constraints are investigated. The derived theoretical concepts are applied to matter in neutron stars and supernovae, in the hadron-quark and the liquid-gas phase transition. For the detailed description of the liquid-gas phase transition a new nuclear statistical equilibrium model is developed. It is based on a thermodynamic consistent implementation of relativistic mean-field interactions and excluded volume effects. With this model different equation of state tables are calculated and the composition and thermodynamic properties of supernova matter are analyzed. As a first application numerical simulations of core-collapse supernovae are presented. For the hadron-quark phase transition two possible scenarios are studied in more detail. First the appearance of a new mixed phase in a proto neutron star and the implications on its evolution. In the second scenario the consequences of the hadron-quark transition in corecollapse supernovae are investigated. Simulations show that the appearance of quark matter has clear observable signatures and can even lead to the generation of an explosion. (orig.)

  10. Outer crust of nonaccreting cold neutron stars

    International Nuclear Information System (INIS)

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen

    2006-01-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars

  11. UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR-BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, E.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, E.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderon Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Chen, Y; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, E.; Clark, J. A.; Cleva, E.; Coccia, E.; Cohadon, P. -E; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garunfi, E.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, R.G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jimenez-Forteza, E.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kusunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Namjun; Kim, W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzar, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Luck, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, E.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, E.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A. L.; Miller, B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Deill, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, E.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passahieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Proxhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Purrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, E. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, D.M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Rudiger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schonbecx, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shaltevi, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Toxmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.G.; van den Brand, J. E. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heuningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, E.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yablong, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    We report here the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave

  12. Hard X ray lines from neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; La Padula, C.; Ubertini, P.

    1982-01-01

    Experimental evidence is presented and evaluated concerning the features of the hard X-ray spectra detected in a number of cosmic X-ray sources which contain a neutron star. The strong emission line at cyclotron resonance detected in the spectrum of Her XI at an energy of 58 keV is evaluated and the implications of this finding are discussed. Also examined is the presence of spectral features in the energy range 20-80 keV found in the spectra of gamma-ray bursts, which have been interpreted as cyclotron resonance from interstellar-gas-accreting neutron stars. The less understood finding of a variable emission line at approximately 70 keV in the spectrum of the Crab Pulsar is considered. It is determined that several features varying with time are present in the spectra of cosmic X-ray sources associated with neutron stars. If these features are due to cyclotron resonance, it is suggested that they provide a direct measurement of neutron star magnetic fields on the order of 10 to the 11th-10 to the 13th Gauss. However, the physical condition of the emitting region and its geometry are still quite obscure.

  13. EXPLOSIVE NUCLEOSYNTHESIS IN THE NEUTRINO-DRIVEN ASPHERICAL SUPERNOVA EXPLOSION OF A NON-ROTATING 15 Msun STAR WITH SOLAR METALLICITY

    International Nuclear Information System (INIS)

    Fujimoto, Shin-ichiro; Kotake, Kei; Hashimoto, Masa-aki; Ono, Masaomi; Ohnishi, Naofumi

    2011-01-01

    We investigate explosive nucleosynthesis in a non-rotating 15 M sun star with solar metallicity that explodes by a neutrino-heating supernova (SN) mechanism aided by both standing accretion shock instability (SASI) and convection. To trigger explosions in our two-dimensional hydrodynamic simulations, we approximate the neutrino transport with a simple light-bulb scheme and systematically change the neutrino fluxes emitted from the protoneutron star. By a post-processing calculation, we evaluate abundances and masses of the SN ejecta for nuclei with a mass number ≤70, employing a large nuclear reaction network. Aspherical abundance distributions, which are observed in nearby core-collapse SN remnants, are obtained for the non-rotating spherically symmetric progenitor, due to the growth of a low-mode SASI. The abundance pattern of the SN ejecta is similar to that of the solar system for models whose masses range between (0.4-0.5) M sun of the ejecta from the inner region (≤10, 000 km) of the precollapse core. For the models, the explosion energies and the 56 Ni masses are ≅ 10 51 erg and (0.05-0.06) M sun , respectively; their estimated baryonic masses of the neutron star are comparable to the ones observed in neutron-star binaries. These findings may have little uncertainty because most of the ejecta is composed of matter that is heated via the shock wave and has relatively definite abundances. The abundance ratios for Ne, Mg, Si, and Fe observed in the Cygnus loop are reproduced well with the SN ejecta from an inner region of the 15 M sun progenitor.

  14. Type-I superconductivity and neutron star precession

    International Nuclear Information System (INIS)

    Sedrakian, Armen

    2005-01-01

    Type-I proton superconducting cores of neutron stars break up in a magnetic field into alternating domains of superconducting and normal fluids. We examine two channels of superfluid-normal fluid friction where (i) rotational vortices are decoupled from the nonsuperconducting domains and the interaction is due to the strong force between protons and neutrons; (ii) the nonsuperconducting domains are dynamically coupled to the vortices and the vortex motion generates transverse electric fields within them, causing electronic current flow and Ohmic dissipation. The obtained dissipation coefficients are consistent with the Eulerian precession of neutron stars

  15. Searching for dark matter with neutron star mergers and quiet kilonovae

    Science.gov (United States)

    Bramante, Joseph; Linden, Tim; Tsai, Yu-Dai

    2018-03-01

    We identify new astrophysical signatures of dark matter that implodes neutron stars (NSs), which could decisively test whether NS-imploding dark matter is responsible for missing pulsars in the Milky Way galactic center, the source of some r -process elements, and the origin of fast-radio bursts. First, NS-imploding dark matter forms ˜10-10 solar mass or smaller black holes inside neutron stars, which proceed to convert neutron stars into ˜1.5 solar mass black holes (BHs). This decreases the number of neutron star mergers seen by LIGO/Virgo (LV) and associated merger kilonovae seen by telescopes like DES, BlackGEM, and ZTF, instead producing a population of "black mergers" containing ˜1.5 solar mass black holes. Second, dark matter-induced neutron star implosions may create a new kind of kilonovae that lacks a detectable, accompanying gravitational signal, which we call "quiet kilonovae." Using DES data and the Milky Way's r-process abundance, we constrain quiet kilonovae. Third, the spatial distribution of neutron star merger kilonovae and quiet kilonovae in galaxies can be used to detect dark matter. NS-imploding dark matter destroys most neutron stars at the centers of disc galaxies, so that neutron star merger kilonovae would appear mostly in a donut at large radii. We find that as few as ten neutron star merger kilonova events, located to ˜1 kpc precision could validate or exclude dark matter-induced neutron star implosions at 2 σ confidence, exploring dark matter-nucleon cross-sections 4-10 orders of magnitude below current direct detection experimental limits. Similarly, NS-imploding dark matter as the source of fast radio bursts can be tested at 2 σ confidence once 20 bursts are located in host galaxies by radio arrays like CHIME and HIRAX.

  16. Neutron star natal kicks and the long-term survival of star clusters

    Science.gov (United States)

    Contenta, Filippo; Varri, Anna Lisa; Heggie, Douglas C.

    2015-04-01

    We investigate the dynamical evolution of a star cluster in an external tidal field by using N-body simulations, with focus on the effects of the presence or absence of neutron star natal velocity kicks. We show that, even if neutron stars typically represent less than 2 per cent of the total bound mass of a star cluster, their primordial kinematic properties may affect the lifetime of the system by up to almost a factor of 4. We interpret this result in the light of two known modes of star cluster dissolution, dominated by either early stellar evolution mass-loss or two-body relaxation. The competition between these effects shapes the mass-loss profile of star clusters, which may either dissolve abruptly (`jumping'), in the pre-core-collapse phase, or gradually (`skiing'), after having reached core collapse.

  17. An accurate metric for the spacetime around neutron stars

    OpenAIRE

    Pappas, George

    2016-01-01

    The problem of having an accurate description of the spacetime around neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a neutron star. Furthermore, an accurate appropriately parameterised metric, i.e., a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to inf...

  18. Neutron stars with spin polarized self-interacting dark matter

    OpenAIRE

    Rezaei, Zeinab

    2018-01-01

    Dark matter, one of the important portion of the universe, could affect the visible matter in neutron stars. An important physical feature of dark matter is due to the spin of dark matter particles. Here, applying the piecewise polytropic equation of state for the neutron star matter and the equation of state of spin polarized self-interacting dark matter, we investigate the structure of neutron stars which are influenced by the spin polarized self-interacting dark matter. The behavior of the...

  19. Constraining the mass and radius of neutron stars in globular clusters

    Science.gov (United States)

    Steiner, A. W.; Heinke, C. O.; Bogdanov, S.; Li, C. K.; Ho, W. C. G.; Bahramian, A.; Han, S.

    2018-05-01

    We analyse observations of eight quiescent low-mass X-ray binaries in globular clusters and combine them to determine the neutron star mass-radius curve and the equation of state of dense matter. We determine the effect that several uncertainties may have on our results, including uncertainties in the distance, the atmosphere composition, the neutron star maximum mass, the neutron star mass distribution, the possible presence of a hotspot on the neutron star surface, and the prior choice for the equation of state of dense matter. The distance uncertainty is implemented in a new Gaussian blurring method that can be directly applied to the probability distribution over mass and radius. We find that the radius of a 1.4 solar mass neutron star is most likely from 10 to 14 km and that tighter constraints are only possible with stronger assumptions about the nature of the neutron stars, the systematics of the observations, or the nature of dense matter. Strong phase transitions in the equation of state are preferred, and in this case, the radius is likely smaller than 12 km. However, radii larger than 12 km are preferred if the neutron stars have uneven temperature distributions.

  20. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S. E-mail: kubis@alf.ifj.edu.pl; Kutschera, M

    2003-06-02

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.

  1. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    2003-01-01

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists

  2. Escape of charged particles from a neutron star

    International Nuclear Information System (INIS)

    Pelizzari, M.A.

    1976-01-01

    The theory of particle trajectories in an axisymmetric magnetic field, formulated by C. Stormer, can be extended to cover conservative force fields as well. As such, it is an ideal tool to study the escape of charged particles from a rapidly rotating neutron star, enabling one to determine the maximum range of their trajectories in space. With the aid of this theory, it is shown that a neutron star, rotating in a vacuum with rotation and magnetic axes aligned, will not evolve a perfectly conducting magnetosphere if the neutron star is the only source of charge. The sign of charge accelerated from the equatorial regions will be magnetically trapped to a toroidal region very near the star, and the opposite sign of charge, emerging from the polar regions, will escape from the magnetosphere until a critical stellar charge is reached, after which polar charges will be electrostatically bound to the magnetosphere. This selective magnetic trapping of one sign of charge, which prevents the formation of a stellar wind, is a consequence of the magnetic field's orientation relative to the internal charge density of the neutron star

  3. SN 2008jb: A 'LOST' CORE-COLLAPSE SUPERNOVA IN A STAR-FORMING DWARF GALAXY AT ∼10 Mpc

    International Nuclear Information System (INIS)

    Prieto, J. L.; Lee, J. C.; Drake, A. J.; Djorgovski, S. G.; McNaught, R.; Garradd, G.; Beacom, J. F.; Beshore, E.; Catelan, M.; Pojmanski, G.; Stanek, K. Z.; Szczygieł, D. M.

    2012-01-01

    We present the discovery and follow-up observations of SN 2008jb, a core-collapse supernova in the southern dwarf irregular galaxy ESO 302–14 (M B = –15.3 mag) at 9.6 Mpc. This nearby transient was missed by galaxy-targeted surveys and was only found in archival optical images obtained by the Catalina Real-time Transient Survey and the All-Sky Automated Survey. The well-sampled archival photometry shows that SN 2008jb was detected shortly after explosion and reached a bright optical maximum, V max ≅ 13.6 mag (M V,max ≅ –16.5). The shape of the light curve shows a plateau of ∼100 days, followed by a drop of ∼1.4 mag in the V band to a slow decline with an approximate 56 Co decay slope. The late-time light curve is consistent with 0.04 ± 0.01 M ☉ of 56 Ni synthesized in the explosion. A spectrum of the supernova obtained two years after explosion shows a broad, boxy Hα emission line, which is unusual for normal Type II-Plateau supernovae at late times. We detect the supernova in archival Spitzer and WISE images obtained 8-14 months after explosion, which show clear signs of warm (600-700 K) dust emission. The dwarf irregular host galaxy, ESO 302–14, has a low gas-phase oxygen abundance, 12 + log(O/H) = 8.2 (∼1/5 Z ☉ ), similar to those of the Small Magellanic Cloud and the hosts of long gamma-ray bursts and luminous core-collapse supernovae. This metallicity is one of the lowest among local (∼ 5 M ☉ for the star formation complex, assuming a single-age starburst. These properties are consistent with the expanding Hα supershells observed in many well-studied nearby dwarf galaxies, which are tell-tale signs of feedback from the cumulative effect of massive star winds and supernovae. The age estimated for the star-forming region where SN 2008jb exploded suggests a relatively high-mass progenitor star with an initial mass M ∼ 20 M ☉ and warrants further study. We discuss the implications of these findings in the study of core

  4. Neutron stars at the dark matter direct detection frontier

    Science.gov (United States)

    Raj, Nirmal; Tanedo, Philip; Yu, Hai-Bo

    2018-02-01

    Neutron stars capture dark matter efficiently. The kinetic energy transferred during capture heats old neutron stars in the local galactic halo to temperatures detectable by upcoming infrared telescopes. We derive the sensitivity of this probe in the framework of effective operators. For dark matter heavier than a GeV, we find that neutron star heating can set limits on the effective operator cutoff that are orders of magnitude stronger than possible from terrestrial direct detection experiments in the case of spin-dependent and velocity-suppressed scattering.

  5. A binary neutron star GRB model

    International Nuclear Information System (INIS)

    Wilson, J.R.; Salmonson, J.D.; Wilson, J.R.; Mathews, G.J.

    1998-01-01

    In this paper we present the preliminary results of a model for the production of gamma-ray bursts (GRBs) through the compressional heating of binary neutron stars near their last stable orbit prior to merger. Recent numerical studies of the general relativistic (GR) hydrodynamics in three spatial dimensions of close neutron star binaries (NSBs) have uncovered evidence for the compression and heating of the individual neutron stars (NSs) prior to merger 12. This effect will have significant effect on the production of gravitational waves, neutrinos and, ultimately, energetic photons. The study of the production of these photons in close NSBs and, in particular, its correspondence to observed GRBs is the subject of this paper. The gamma-rays arise as follows. Compressional heating causes the neutron stars to emit neutrino pairs which, in turn, annihilate to produce a hot electron-positron pair plasma. This pair-photon plasma expands rapidly until it becomes optically thin, at which point the photons are released. We show that this process can indeed satisfy three basic requirements of a model for cosmological gamma-ray bursts: (1) sufficient gamma-ray energy release (>10 51 ergs) to produce observed fluxes, (2) a time-scale of the primary burst duration consistent with that of a 'classical' GRB (∼10 seconds), and (3) the peak of the photon number spectrum matches that of 'classical' GRB (∼300 keV). copyright 1998 American Institute of Physics

  6. Confronting Models of Massive Star Evolution and Explosions with Remnant Mass Measurements

    Science.gov (United States)

    Raithel, Carolyn A.; Sukhbold, Tuguldur; Özel, Feryal

    2018-03-01

    The mass distribution of compact objects provides a fossil record that can be studied to uncover information on the late stages of massive star evolution, the supernova explosion mechanism, and the dense matter equation of state. Observations of neutron star masses indicate a bimodal Gaussian distribution, while the observed black hole mass distribution decays exponentially for stellar-mass black holes. We use these observed distributions to directly confront the predictions of stellar evolution models and the neutrino-driven supernova simulations of Sukhbold et al. We find strong agreement between the black hole and low-mass neutron star distributions created by these simulations and the observations. We show that a large fraction of the stellar envelope must be ejected, either during the formation of stellar-mass black holes or prior to the implosion through tidal stripping due to a binary companion, in order to reproduce the observed black hole mass distribution. We also determine the origins of the bimodal peaks of the neutron star mass distribution, finding that the low-mass peak (centered at ∼1.4 M ⊙) originates from progenitors with M ZAMS ≈ 9–18 M ⊙. The simulations fail to reproduce the observed peak of high-mass neutron stars (centered at ∼1.8 M ⊙) and we explore several possible explanations. We argue that the close agreement between the observed and predicted black hole and low-mass neutron star mass distributions provides new, promising evidence that these stellar evolution and explosion models capture the majority of relevant stellar, nuclear, and explosion physics involved in the formation of compact objects.

  7. NUCLEOSYNTHESIS AND EVOLUTION OF MASSIVE METAL-FREE STARS

    International Nuclear Information System (INIS)

    Heger, Alexander; Woosley, S. E.

    2010-01-01

    The evolution and explosion of metal-free stars with masses 10-100 M sun are followed, and their nucleosynthetic yields, light curves, and remnant masses determined. Such stars would have been the first to form after the big bang and may have left a distinctive imprint on the composition of the early universe. When the supernova yields are integrated over a Salpeter initial mass function (IMF), the resulting elemental abundance pattern is qualitatively solar, but with marked deficiencies of odd-Z elements with 7 ≤ Z ≤ 13. Neglecting the contribution of the neutrino wind from the neutron stars that they form, no appreciable abundances are made for elements heavier than germanium. The computed pattern compares favorably with what has been observed in metal-deficient stars with [Z] ∼ sun ; where 1 B = 1 Bethe = 10 51 erg) for a Salpeter IMF, and may have played a role in reionizing the universe. Neglecting rotation, most of the stars end their lives as blue supergiants and form supernovae with distinctive light curves resembling SN 1987A, but some produce primary nitrogen due to dredge-up and become red supergiants. These make brighter supernovae like typical Type IIp's. For the lower mass supernovae considered, the distribution of remnant masses clusters around typical modern neutron star masses, but above 20-30 M sun , with the value depending on explosion energy, black holes are copiously formed by fallback, with a maximum hole mass of ∼40 M sun . A novel automated fitting algorithm is developed for determining optimal combinations of explosion energy, mixing, and IMF in the large model database to agree with specified data sets. The model is applied to the low-metallicity sample of Cayrel et al. and the two ultra-iron-poor stars HE0107-5240 and HE1327-2326. Best agreement with these very low metallicity stars is achieved with very little mixing, and none of the metal-deficient data sets considered show the need for a high-energy explosion component. In

  8. Searching for X-ray Pulsations from Neutron Stars Using NICER

    Science.gov (United States)

    Ray, Paul S.; Arzoumanian, Zaven; Gendreau, Keith C.; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Chakrabarty, Deepto; Guillot, Sebastien; Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick; Mahmoodifar, Simin; Miller, Cole; Strohmayer, Tod; Wilson-Hodge, Colleen; Wolff, Michael T.; NICER Science Team Working Group on Pulsation Searches and Multiwavelength Coordination

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We present our science plan and initial results from the first months of the NICER mission.

  9. Non-Identical Neutron Star Twins

    OpenAIRE

    Glendenning, Norman K.; Kettner, Christiane

    1998-01-01

    The work of J. A. Wheeler in the mid 1960's showed that for smooth equations of state no stable stellar configurations with central densities above that corresponding to the limiting mass of ``neutron stars'' (in the generic sense) were stable against acoustical vibrational modes. A perturbation would cause any such star to collapse to a black hole or explode. Accordingly, there has been no reason to expect that a stable degenerate family of stars with higher density than the known white dwar...

  10. Evolution of Neutron Star Magnetic Fields

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    in nuclei. The neutrons are expected to form a 3P superfluid and the protons a 1S ... crust are expected to form a lattice; the electrons are free and highly degenerate, .... the reduced magnetic fields in neutron stars processed in binaries,.

  11. Neutron stars with kaon condensation in relativistic effective model

    International Nuclear Information System (INIS)

    Wu, Chen; Ma, Yugang; Qian, Weiliang; Yang, Jifeng

    2013-01-01

    Relativistic mean-field theory with parameter sets FSUGold and IU-FSU is extended to study the properties of neutron star matter in β equilibrium by including Kaon condensation. The mixed phase of normal baryons and Kaon condensation cannot exist in neutron star matter for the FSUGold model and the IU-FSU model. In addition, it is found that when the optical potential of the K - in normal nuclear matter U K ≳ -100 MeV, the Kaon condensation phase is absent in the inner cores of the neutron stars. (author)

  12. Electromagnetic activity of a pulsating paramagnetic neutron star

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Podgainy, D.V.; Yang, J.; Weber, F.

    2002-01-01

    The fact that neutron star matter possesses the capability of maintaining a highly intense magnetic field has been and still is among the most debatable issues in pulsar astrophysics. Over the years, there were several independent suggestions that the dominant source of pulsar magnetism is either the field-induced or the spontaneous magnetic polarization of the baryon material. The Pauli paramagnetism of degenerate neutron matter is one of the plausible and comprehensive mechanisms of the magnetic ordering of neutron magnetic moments, promoted by a seed magnetic field inherited by the neutron star from a massive progenitor and amplified by its implosive contraction due to the magnetic flux conservation. Adhering to this attitude and based on the equations of magnetoelastic dynamics underlying continuum mechanics of single-axis magnetic insulators, we investigate electrodynamics of a paramagnetic neutron star undergoing nonradial pulsations. We show that the suggested approach regains a recent finding of Akhiezer et al. that the spin-polarized neutron matter can transmit perturbations by low-frequency transverse magnetoelastic waves. We found that nonradial torsional magnetoelastic pulsations of a paramagnetic neutron star can serve as a powerful generator of a highly intense electric field producing the magnetospheric polarization charge whose acceleration along the open magnetic field lines leads to the synchrotron and curvature radiation. Analytic and numerical estimates for periods of nonradial torsional magnetoelastic modes are presented and are followed by a discussion of their possible manifestation in currently monitored activity of pulsars and magnetars

  13. The Origin of Runaway Stars

    Science.gov (United States)

    Hoogerwerf, R.; de Bruijne, J. H. J.; de Zeeuw, P. T.

    2000-12-01

    Milliarcsecond astrometry provided by Hipparcos and by radio observations makes it possible to retrace the orbits of some of the nearest runaway stars and pulsars to determine their site of origin. The orbits of the runaways AE Aurigae and μ Columbae and of the eccentric binary ι Orionis intersected each other ~2.5 Myr ago in the nascent Trapezium cluster, confirming that these runaways were formed in a binary-binary encounter. The path of the runaway star ζ Ophiuchi intersected that of the nearby pulsar PSR J1932+1059, ~1 Myr ago, in the young stellar group Upper Scorpius. We propose that this neutron star is the remnant of a supernova that occurred in a binary system that also contained ζ Oph and deduce that the pulsar received a kick velocity of ~350 km s-1 in the explosion. These two cases provide the first specific kinematic evidence that both mechanisms proposed for the production of runaway stars, the dynamical ejection scenario and the binary-supernova scenario, operate in nature.

  14. Strange-quark-matter stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-11-01

    We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 13 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to consist of individual hadrons. We conclude that it is implausible that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, is a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation if strange matter is stable at an energy density exceeding about 5.4 times that of nuclear matter. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 34 refs., 10 figs., 1 tab

  15. Gravitational waves from rotating strained neutron stars

    International Nuclear Information System (INIS)

    Jones, D I

    2002-01-01

    In this review we examine the dynamics and gravitational wave detectability of rotating strained neutron stars. The discussion is divided into two halves: triaxial stars and precessing stars. We summarize recent studies on how crustal strains and magnetic fields can sustain triaxiality, and suggest that Magnus forces connected with pinned superfluid vortices might contribute to deformation also. The conclusions that could be drawn following the successful gravitational wave detection of a triaxial star are discussed, and areas requiring further study identified. The latest ideas regarding free precession are then outlined, and the recent suggestion of Middleditch et al (Middleditch et al 2000 New Astronomy 5 243; 2000 Preprint astro-ph/0010044) that the remnant of SN1987A contains a freely precessing star, spinning down by gravitational wave energy loss, is examined critically. We describe what we would learn about neutron stars should the gravitational wave detectors prove this hypothesis to be correct

  16. Explosion of a low mass neutron star

    International Nuclear Information System (INIS)

    Blinnikov, S.I.; Imshennik, V.S.; Nadyozhin, D.K.; Novikov, I.D.; Polnarev, A.G.; AN SSSR, Moscow. Fizicheskij Inst.); Perevodchikova, T.V.

    1990-01-01

    The hydrodynamical disruption of a low mass neutron star is investigated for the case when the stellar mass becomes smaller than the minimum value, M min ≅0.1 M sun . The final phase of the process is shown to proceed explosively, leading to an expansion of all the star, with a kinetic energy of 4.8 MeV per nucleon. The results of calculations are virtually independent of the way in which the neutron star mass goes down below M min (mass exchange in a close binary stellar system, nucleon decay, or some effective mass loss due to a hypothetical decrease of the gravitational constant). The neutron star disruption is followed by a short (0.01-0.1 s) burst of thermal hard X-rays and soft gamma-rays (kT=10-100 keV) with a subsequent much more prolonged tail of radiation induced by decays of long-lived radioactive nuclides. Some fraction of the explosion energy may be emitted in the form of neutrinos. (orig.)

  17. Nuclear astrophysics of supernovae

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1988-01-01

    In this paper, I'll give a general introduction to Supernova Theory, beginning with the presupernova evolution and ending with the later stages of the explosion. This will be distilled from a colloquium type of talk. It is necessary to have the whole supernova picture in one's mind's eye when diving into some of its nooks and crannies, as it is quite a mess of contradictory ingredients. We will have some discussion of supernova 1987a, but will keep our discussion more general. Second, we'll look at the infall and bounce of the star, seeing why it goes unstable, what dynamics it follows as it collapses, and how and why it bounces back. From there, we will go on to look at the equation of state (EOS) in more detail. We'll consider the cases T = 0 and T > 0. We'll focus on /rho/ 0 , and then /rho/ > /rho/ 0 and the EOS of neutron stars, and whether or not they contain cores of strange matter. There are many things we could discuss here and not enough time. If I had more lectures, the remaining time would focus on two more questions of special interest to nuclear physicists: the electron capture reactions and neutrino transport. If time permitted, we'd have some discussion of the nucleosynthetic reactions in the explosion's debris as well. However, we cannot cover such material adequately, and I have chosen these topics because they are analytically tractable, pedagogically useful, and rather important. 23 refs., 14 figs., 3 tabs

  18. PSR J0538+2817 As The Remnant Of The First Supernova Explosion in a Massive Binary

    Science.gov (United States)

    Gvaramadze, V. V.

    2006-08-01

    It is generally accepted that the radio pulsar PSR J0538+2817 is associated with the supernova remnant (SNR) S147. The only problem for the association is the obvious discrepancy (Kramer et al. 2003) between the kinematic age of the system of ~30 kyr (estimated from the angular offset of the pulsar from the geometric center of the SNR and pulsar's proper motion) and the characteristic age of the pulsar of ~600 kyr. To reconcile these ages one can assume that the pulsar was born with a spin period close to the present one (Kramer et al. 2003; Romani & Ng 2003). We propose an alternative explanation of the age discrepancy based on the fact that PSR J0538+2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as indicated by its characteristic age. Our proposal implies that S147 is the diffuse remnant of the second supernova explosion (that disrupted the binary system) and that a much younger second neutron star (not necessarily manifesting itself as a radio pulsar) should be associated with S147. We use the existing observational data on the system PSR J0538+2817/SNR S147 to suggest that the progenitor of the supernova that formed S147 was a Wolf-Rayet star (so that the supernova explosion occurred within a wind bubble surrounded by a massive shell) and to constrain the parameters of the binary system. We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector should not strongly deviate from the orbital plane of the binary system.

  19. Oscillation effects and time variation of the supernova neutrino signal

    Science.gov (United States)

    Kneller, James P.; McLaughlin, Gail C.; Brockman, Justin

    2008-02-01

    The neutrinos detected from the next galactic core-collapse supernova will contain valuable information on the internal dynamics of the explosion. One mechanism leading to a temporal evolution of the neutrino signal is the variation of the induced neutrino flavor mixing driven by changes in the density profile. With one and two-dimensional hydrodynamical simulations we identify the behavior and properties of prominent features of the explosion. Using these results we demonstrate the time variation of the neutrino crossing probabilities due to changes in the Mikheyev-Smirnov-Wolfenstein (MSW) neutrino transformations as the star explodes by using the S-matrix—Monte Carlo—approach to neutrino propagation. After adopting spectra for the neutrinos emitted from the proto-neutron star we calculate for a galactic supernova the evolution of the positron spectra within a water Cerenkov detector and find that this signal allows us to probe of a number of explosion features.

  20. On the fate of superheavy magnetic monopoles in a neutron star

    International Nuclear Information System (INIS)

    Kuzmin, V.A.; Rubakov, V.A.; AN SSSR, Moscow. Inst. Yadernykh Issledovanij)

    1983-02-01

    We propose two possible scenarios of the behaviour of superheavy magnetic monopoles in a neutron star, in which the monopole-antimonopole annihilation rate is sufficiently large to prevent the enormous heating of a neutron star due to the monopole induced neutron decays. We find that the galactic monopole flux of order 10 -16 cm -2 s -1 ster -1 can be compatible with the observational limit on the X-ray luminosity of neutron stars. (author)

  1. Relativistic Processes and the Internal Structure of Neutron Stars

    International Nuclear Information System (INIS)

    Alvarez-Castillo, D. E.; Kubis, S.

    2011-01-01

    Models for the internal composition of Dense Compact Stars are reviewed as well as macroscopic properties derived by observations of relativistic processes. Modeling of pure neutron matter Neutron Stars is presented and crust properties are studied by means of a two fluid model.

  2. Constraining neutron-star tidal Love numbers with gravitational-wave detectors

    International Nuclear Information System (INIS)

    Flanagan, Eanna E.; Hinderer, Tanja

    2008-01-01

    Ground-based gravitational wave detectors may be able to constrain the nuclear equation of state using the early, low frequency portion of the signal of detected neutron star-neutron star inspirals. In this early adiabatic regime, the influence of a neutron star's internal structure on the phase of the waveform depends only on a single parameter λ of the star related to its tidal Love number, namely, the ratio of the induced quadrupole moment to the perturbing tidal gravitational field. We analyze the information obtainable from gravitational wave frequencies smaller than a cutoff frequency of 400 Hz, where corrections to the internal-structure signal are less than 10%. For an inspiral of two nonspinning 1.4M · neutron stars at a distance of 50 Megaparsecs, LIGO II detectors will be able to constrain λ to λ≤2.0x10 37 g cm 2 s 2 with 90% confidence. Fully relativistic stellar models show that the corresponding constraint on radius R for 1.4M · neutron stars would be R≤13.6 km (15.3 km) for a n=0.5 (n=1.0) polytrope with equation of state p∝ρ 1+1/n

  3. White Dwarfs, Neutron Stars and Black Holes

    Science.gov (United States)

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  4. Asymmetric core collapse of rapidly rotating massive star

    Science.gov (United States)

    Gilkis, Avishai

    2018-02-01

    Non-axisymmetric features are found in the core collapse of a rapidly rotating massive star, which might have important implications for magnetic field amplification and production of a bipolar outflow that can explode the star, as well as for r-process nucleosynthesis and natal kicks. The collapse of an evolved rapidly rotating MZAMS = 54 M⊙ star is followed in three-dimensional hydrodynamic simulations using the FLASH code with neutrino leakage. A rotating proto-neutron star (PNS) forms with a non-zero linear velocity. This can contribute to the natal kick of the remnant compact object. The PNS is surrounded by a turbulent medium, where high shearing is likely to amplify magnetic fields, which in turn can drive a bipolar outflow. Neutron-rich material in the PNS vicinity might induce strong r-process nucleosynthesis. The rapidly rotating PNS possesses a rotational energy of E_rot ≳ 10^{52} erg. Magnetar formation proceeding in a similar fashion will be able to deposit a portion of this energy later on in the supernova ejecta through a spin-down mechanism. These processes can be important for rare supernovae generated by rapidly rotating progenitors, even though a complete explosion is not simulated in the present study.

  5. An origin for short gamma-ray bursts unassociated with current star formation.

    Science.gov (United States)

    Barthelmy, S D; Chincarini, G; Burrows, D N; Gehrels, N; Covino, S; Moretti, A; Romano, P; O'Brien, P T; Sarazin, C L; Kouveliotou, C; Goad, M; Vaughan, S; Tagliaferri, G; Zhang, B; Antonelli, L A; Campana, S; Cummings, J R; D'Avanzo, P; Davies, M B; Giommi, P; Grupe, D; Kaneko, Y; Kennea, J A; King, A; Kobayashi, S; Melandri, A; Meszaros, P; Nousek, J A; Patel, S; Sakamoto, T; Wijers, R A M J

    2005-12-15

    Two short (gamma-ray bursts (GRBs) have recently been localized and fading afterglow counterparts detected. The combination of these two results left unclear the nature of the host galaxies of the bursts, because one was a star-forming dwarf, while the other was probably an elliptical galaxy. Here we report the X-ray localization of a short burst (GRB 050724) with unusual gamma-ray and X-ray properties. The X-ray afterglow lies off the centre of an elliptical galaxy at a redshift of z = 0.258 (ref. 5), coincident with the position determined by ground-based optical and radio observations. The low level of star formation typical for elliptical galaxies makes it unlikely that the burst originated in a supernova explosion. A supernova origin was also ruled out for GRB 050709 (refs 3, 31), even though that burst took place in a galaxy with current star formation. The isotropic energy for the short bursts is 2-3 orders of magnitude lower than that for the long bursts. Our results therefore suggest that an alternative source of bursts--the coalescence of binary systems of neutron stars or a neutron star-black hole pair--are the progenitors of short bursts.

  6. NASA's Swift Satellite Catches First Supernova in The Act of Exploding

    Science.gov (United States)

    2008-05-01

    GREENBELT, Md.- Thanks to a fortuitous observation with NASA’s Swift satellite, astronomers for the first time have caught a star in the act of exploding. Astronomers have previously observed thousands of stellar explosions, known as supernovae, but they have always seen them after the fireworks were well underway. "For years we have dreamed of seeing a star just as it was exploding, but actually finding one is a once in a lifetime event," says team leader Alicia Soderberg, a Hubble and Carnegie-Princeton Fellow at Princeton University in Princeton, N.J. "This newly born supernova is going to be the Rosetta stone of supernova studies for years to come." A typical supernova occurs when the core of a massive star runs out of nuclear fuel and collapses under its own gravity to form an ultradense object known as a neutron star. The newborn neutron star compresses and then rebounds, triggering a shock wave that plows through the star’s gaseous outer layers and blows the star to smithereens. Astronomers thought for nearly four decades that this shock "break-out" will produce bright X-ray emission lasting a few minutes. X-ray Image X-ray Images But until this discovery, astronomers have never observed this signal. Instead, they have observed supernovae brightening days or weeks later, when the expanding shell of debris is energized by the decay of radioactive elements forged in the explosion. "Seeing the shock break-out in X-rays can give a direct view of the exploding star in the last minutes of its life and also provide a signpost to which astronomers can quickly point their telescopes to watch the explosion unfold," says Edo Berger, a Carnegie-Princeton Fellow at Princeton University. Soderberg's discovery of the first shock breakout can be attributed to luck and Swift's unique design. On January 9, 2008, Soderberg and Berger were using Swift to observe a supernova known as SN 2007uy in the spiral galaxy NGC 2770, located 90 million light-years from Earth in the

  7. Final Report for DOE Grant DE-FG02-00ER41149 ''Nuclear Physics of Core-Collapse Supernovae''

    International Nuclear Information System (INIS)

    Yong-Zhong Qian

    2004-01-01

    During the funding period from August 15, 2000 to August 14, 2004, the main foci of my research have been implications of abundances in metal-poor stars for nucleosynthetic yields of supernovae and chemical evolution of the universe, effects of neutrino oscillations and neutrino-nucleus interactions on r-process nucleosynthesis, physical conditions in neutrino-driven winds from proto-neutron stars, neutrino driven mechanism of supernova explosion, supernova neutrino signals in terrestrial detectors, and constraints on variations of fundamental couplings and astrophysical conditions from properties of nuclear reactions. Personnel (three graduate students and a postdoctoral research associate) involved in my research are listed in section 2. Completed research projects are discussed in section 3. Publications during the funding period are listed in section 4 and oral presentations in section 5. Remarks about the budget are given in section 6

  8. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  9. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    International Nuclear Information System (INIS)

    Bastrukov, S I; Yang, J; Podgainy, D V; Weber, F

    2003-01-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameters taken from early and current works on transport coefficients of dense matter. It is found that the effect of viscosity is crucial for the lifetime of magneto-torsion vibrations but it does not appreciably affect the periods of this seismic mode which fall in the realm of periods of pulsed emission of soft gamma-ray repeaters and anomalous x-ray pulsars - young super-magnetized neutron stars, radiating, according to the magnetar model, at the expense of the magnetic energy release. Finally, we present arguments that the long periodic pulsed emission of these stars in a quiescent regime of radiation can be interpreted as a manifestation of weakly damped seismic magneto-torsion vibrations exhibiting the field induced spin polarization of baryon matter

  10. Accreting Millisecond Pulsars: Neutron Star Masses and Radii

    Science.gov (United States)

    Strohmayer, Tod

    2004-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  11. IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae

    Science.gov (United States)

    Stamatikos, M.; Abbasi, R.; Berghaus, P.; Chirkin, D.; Desiati, P.; Diaz-Velez, J.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Hanson, K.; hide

    2012-01-01

    This paper describes the response of the IceCube neutrino telescope located at the geographic South Pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of approx. 1 cu km in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.

  12. PALFA Discovers Neutron Stars on a Collision Course

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    Got any plans in 46 million years? If not, you should keep an eye out for PSR J1946+2052 around that time this upcoming merger of two neutron stars promises to be an exciting show!Survey SuccessAverage profile for PSR J1946+2052 at 1.43 GHz from a 2 hr observation from the Arecibo Observatory. [Stovall et al. 2018]It seems like we just wrote about the dearth of known double-neutron-star systems, and about how new surveys are doing their best to find more of these compact binaries. Observing these systems improves our knowledge of how pairs of evolved stars behave before they eventually spiral in, merge, and emit gravitational waves that detectors like the Laser Interferometer Gravitational-wave Observatory might observe.Todays study, led by Kevin Stovall (National Radio Astronomy Observatory), goes to show that these surveys are doing a great job so far! Yet another double-neutron-star binary, PSR J1946+2052, has now been discovered as part of the Arecibo L-Band Feed Array pulsar (PALFA) survey. This one is especially unique due to the incredible speed with which these neutron stars orbit each other and their correspondingly (relatively!) short timescale for merger.An Extreme ExampleThe PALFA survey, conducted with the enormous 305-meter radio dish at Arecibo, has thus far resulted in the discovery of 180 pulsars including two double-neutron-star systems. The most recent discovery by Stovall and collaborators brings that number up to three, for a grand total of 16 binary-neutron-star systems (confirmed and unconfirmed) known to date.The 305-m Arecibo Radio Telescope, built into the landscape at Arecibo, Puerto Rico. [NOAO/AURA/NSF/H. Schweiker/WIYN]The newest binary in this collection, PSR J1946+2052, exhibits a pulsar with a 17-millisecond spin period thatwhips around its compact companion at a terrifying rate: the binary period is just 1.88 hours. Follow-up observations with the Jansky Very Large Array and other telescopes allowed the team to identify the binarys

  13. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-02

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. Combining the recent experimental constraints on θ{sub 13} with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our method suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  14. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. Combining the recent experimental constraints on θ13 with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our method suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  15. R -process Element Cosmic Rays from Neutron Star Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Komiya, Yutaka; Shigeyama, Toshikazu [Research Center for the Early Universe, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033, Tokyo (Japan)

    2017-09-10

    Neutron star mergers (NSMs) are one of the most plausible sources of r -process elements in the universe. Therefore, NSMs can also be a major source of ultra-heavy elements in cosmic rays. In this paper, we first estimate the contribution of r -process elements synthesized in NSMs to the ultra-heavy element cosmic rays (UHCRs) by calculating transport equations that take into account energy loss processes and spallations. We show that the flux of UHCRs accelerated by the NSMs themselves fluctuates by many orders of magnitude on a timescale of several million years and can overwhelm UHCRs accelerated by supernova remnants (SNRs) after an NSM takes place within a few kiloparsec from the solar system. Experiments with very long exposure times using meteorites as UHCR detectors can detect this fluctuation. As a consequence, we show that if NSMs are the primary source of UHCRs, future experiments using meteorites may be able to reveal the event history of NSMs in the solar vicinity. We also describe a possible difference in the abundance pattern and energy spectrum of UHCRs between NSM and SNR accelerations.

  16. Constraints on the symmetry energy from neutron star observations

    International Nuclear Information System (INIS)

    Newton, W G; Gearheart, M; Wen, De-Hua; Li, Bao-An

    2013-01-01

    The modeling of many neutron star observables incorporates the microphysics of both the stellar crust and core, which is tied intimately to the properties of the nuclear matter equation of state (EoS). We explore the predictions of such models over the range of experimentally constrained nuclear matter parameters, focusing on the slope of the symmetry energy at nuclear saturation density L. We use a consistent model of the composition and EoS of neutron star crust and core matter to model the binding energy of pulsar B of the double pulsar system J0737-3039, the frequencies of torsional oscillations of the neutron star crust and the instability region for r-modes in the neutron star core damped by electron-electron viscosity at the crust-core interface. By confronting these models with observations, we illustrate the potential of astrophysical observables to offer constraints on poorly known nuclear matter parameters complementary to terrestrial experiments, and demonstrate that our models consistently predict L < 70 MeV.

  17. NICER observations of highly magnetized neutron stars: Initial results

    Science.gov (United States)

    Enoto, Teruaki; Arzoumanian, Zaven; Gendreau, Keith C.; Nynka, Melania; Kaspi, Victoria; Harding, Alice; Guver, Tolga; Lewandowska, Natalia; Majid, Walid; Ho, Wynn C. G.; NICER Team

    2018-01-01

    The Neutron star Interior Composition Explorer (NICER) was launched on June 3, 2017, and attached to the International Space Station. The large effective area of NICER in soft X-rays makes it a powerful tool not only for its primary science objective (diagnostics of the nuclear equation state) but also for studying neutron stars of various classes. As one of the NICER science working groups, the Magnetars and Magnetospheres (M&M) team coordinates monitoring and target of opportunity (ToO) observations of magnetized neutron stars, including magnetars, high-B pulsars, X-ray dim isolated neutron stars, and young rotation-powered pulsars. The M&M working group has performed simultaneous X-ray and radio observations of the Crab and Vela pulsars, ToO observations of the active anomalous X-ray pulsar 4U 0142+61, and a monitoring campaign for the transient magnetar SGR 0501+4516. Here we summarize the current status and initial results of the M&M group.

  18. Role of strangeness to the neutron star mass and cooling

    Science.gov (United States)

    Lee, Chang-Hwan; Lim, Yeunhwan; Hyun, Chang Ho; Kwak, Kyujin

    2018-01-01

    Neutron star provides unique environments for the investigation of the physics of extreme dense matter beyond normal nuclear saturation density. In such high density environments, hadrons with strange quarks are expected to play very important role in stabilizing the system. Kaons and hyperons are the lowest mass states with strangeness among meson and bayron families, respectively. In this work, we investigate the role of kaons and hyperons to the neutron star mass, and discuss their role in the neutron star cooling.

  19. On the Fifth Force and the Structure of Neutron Star

    Directory of Open Access Journals (Sweden)

    D. J. Song

    1994-06-01

    Full Text Available In the framework of Thomas-Fermi equation, we have examined the properties of neutron star by assuming the existence of a new intermediate force which is composition dependent. We have found that the structure, size and mass of neutron star are affected by the strength and range of this new force. In the ultrarelativistic limit, we have also confirmed that Chandrasekhar mass, Mch-(1-α^(- 3/2 (m_pl^3/m^2 is determined by the constants of classical physical laws, which take part in the selfgravitating processes on neutron star as well as the constant of hypothetical fifth force. In the experimental limits of the fifth force, the changes of size and mass of a neutron star are in the order of strength parameter α.

  20. Magneto–Thermal Evolution of Neutron Stars with Emphasis to ...

    Indian Academy of Sciences (India)

    The magnetic and thermal evolution of neutron stars is a very complex process with many non-linear interactions. For a decent understanding of neutron star physics, these evolutions cannot be considered isolated. A brief overview is presented, which describes the main magneto–thermal interactions that determine the fate ...

  1. The Neutron Star Interior Composition Explorer (NICER)

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Gendreau, K.; Arzoumanian, Z.

    2014-01-01

    The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear-physics environments embodied by neutron stars. Scheduled to be launched in 2016 as an International Space Station payload, NICER will explore the exotic states of matter, using rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft (0.2-12 keV) X-ray band. Grazing-incidence "concentrator" optics coupled with silicon drift detectors, actively pointed for a full hemisphere of sky coverage, will provide photon-counting spectroscopy and timing registered to GPS time and position, with high throughput and relatively low background. The NICER project plans to implement a Guest Observer Program, which includes competitively selected user targets after the first year of flight operations. I will describe NICER and discuss ideas for potential Be/X-ray binary science.

  2. Isolated Neutron Stars: From the Surface to the Interior

    CERN Document Server

    Zane, Silvia; Page, Dany

    2007-01-01

    This book collects the contributions presented at the conference Isolated Neutron Stars: From the Surface to the Interior, held in London in April 2006. Forty years after the discovery of radio pulsars it presents an up-to-date description of the new vision of isolated neutron stars that has emerged in recent years with the advance of multi-wavelength observations. The great variety of isolated neutron stars, from pulsars to magnetars, some of them discovered very recently and many of them not detectable in radio wavelengths, is amply covered by descriptions of recent observational results and presentations of the latest theoretical interpretation of these data.

  3. Role of strangeness to the neutron star mass and cooling

    Directory of Open Access Journals (Sweden)

    Lee Chang-Hwan

    2018-01-01

    Full Text Available Neutron star provides unique environments for the investigation of the physics of extreme dense matter beyond normal nuclear saturation density. In such high density environments, hadrons with strange quarks are expected to play very important role in stabilizing the system. Kaons and hyperons are the lowest mass states with strangeness among meson and bayron families, respectively. In this work, we investigate the role of kaons and hyperons to the neutron star mass, and discuss their role in the neutron star cooling.

  4. Matter and Radiation in Strong Magnetic Fields of Neutron Stars

    International Nuclear Information System (INIS)

    Lai, D

    2006-01-01

    Neutron stars are found to possess magnetic fields ranging from 10 8 G to 10 15 G, much larger than achievable in terrestrial laboratories. Understanding the properties of matter and radiative transfer in strong magnetic fields is essential for the proper interpretation of various observations of magnetic neutron stars, including radio pulsars and magnetars. This paper reviews the atomic/molecular physics and condensed matter physics in strong magnetic fields, as well as recent works on modeling radiation from magnetized neutron star atmospheres/surface layers

  5. Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields

    Science.gov (United States)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-01-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  6. Electromagnetic Chirps from Neutron Star-Black Hole Mergers

    Science.gov (United States)

    Schnittman, Jeremy D.; Dal Canton, Tito; Camp, Jordan B.; Tsang, David; Kelly, Bernard J.

    2018-01-01

    We calculate the electromagnetic signal of a gamma-ray flare coming from the surface of a neutron star shortly before merger with a black hole companion. Using a new version of the Monte Carlo radiation transport code Pandurata that incorporates dynamic spacetimes, we integrate photon geodesics from the neutron star surface until they reach a distant observer or are captured by the black hole. The gamma-ray light curve is modulated by a number of relativistic effects, including Doppler beaming and gravitational lensing. Because the photons originate from the inspiraling neutron star, the light curve closely resembles the corresponding gravitational waveform: a chirp signal characterized by a steadily increasing frequency and amplitude. We propose to search for these electromagnetic chirps using matched filtering algorithms similar to those used in LIGO data analysis.

  7. Neutron-Star Radius from a Population of Binary Neutron Star Mergers.

    Science.gov (United States)

    Bose, Sukanta; Chakravarti, Kabir; Rezzolla, Luciano; Sathyaprakash, B S; Takami, Kentaro

    2018-01-19

    We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realistic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies, we utilize analytical fits to postmerger numerical relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasiuniversal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy. We also give error estimates for the Einstein Telescope.

  8. A Search for Black Holes and Neutron Stars in the Kepler Field

    Science.gov (United States)

    Orosz, Jerome; Short, Donald; Welsh, William; Windmiller, Gur; Dabney, David

    2018-01-01

    Black holes and neutron stars represent the final evolutionary stages of the most massive stars. In addition to their use as probes into the evolution of massive stars, black holes and neutron stars are ideal laboratories to test General Relativity in the strong field limit. The number of neutron stars and black holes in the Milky Way is not precisely known, but there are an estimated one billion neutron stars in the galaxy based on the observed numbers of radio pulsars. The number of black holes is about 100 million, based on the behavior of the Initial Mass Function at high stellar masses.All of the known steller-mass black holes (and a fair number of neutron stars) are in ``X-ray binaries'' that were discovered because of their luminous X-ray emission. The requirement to be in an X-ray-emitting binary places a strong observational bias on the discovery of stellar-mass black holes. Thus the 21 known black hole binaries represent only the very uppermost tip of the population iceberg.We have conducted an optical survey using Kepler data designed to uncover black holes and neutron stars in both ``quiescent'' X-ray binaries and ``pre-contact'' X-ray binaries. We discuss how the search was conducted, including how potentially interesting light curves were classified and the how variability types were identified. Although we did not find any convincing candidate neutron star or black hole systems, we did find a few noteworthy binary systems, including two binaries that contain low-mass stars with unusually low albedos.

  9. Constraints on gamma-ray burst and supernova progenitors through circumstellar absorption lines : II. Post-LBV Wolf-Rayet stars

    NARCIS (Netherlands)

    Marle, A.J.; Langer, N.; Garcia-Segura, G.

    2007-01-01

    Van Marle et al. (2005) showed that circumstellar absorption lines in early Type Ib/c supernova and gamma-ray burst afterglow spectra may reveal the progenitor evolution of the exploding Wolf-Rayet star. While the quoted paper deals with Wolf-Rayet stars which evolved through a red supergiant stage,

  10. SPINDOWN OF ISOLATED NEUTRON STARS: GRAVITATIONAL WAVES OR MAGNETIC BRAKING?

    International Nuclear Information System (INIS)

    Staff, Jan E.; Jaikumar, Prashanth; Chan, Vincent; Ouyed, Rachid

    2012-01-01

    We study the spindown of isolated neutron stars from initially rapid rotation rates, driven by two factors: (1) gravitational wave emission due to r-modes and (2) magnetic braking. In the context of isolated neutron stars, we present the first study including self-consistently the magnetic damping of r-modes in the spin evolution. We track the spin evolution employing the RNS code, which accounts for the rotating structure of neutron stars for various equations of state. We find that, despite the strong damping due to the magnetic field, r-modes alter the braking rate from pure magnetic braking for B ≤ 10 13 G. For realistic values of the saturation amplitude α sat , the r-mode can also decrease the time to reach the threshold central density for quark deconfinement. Within a phenomenological model, we assess the gravitational waveform that would result from r-mode-driven spindown of a magnetized neutron star. To contrast with the persistent signal during the spindown phase, we also present a preliminary estimate of the transient gravitational wave signal from an explosive quark-hadron phase transition, which can be a signal for the deconfinement of quarks inside neutron stars.

  11. Testing the Formation Scenarios of Binary Neutron Star Systems with Measurements of the Neutron Star Moment of Inertia

    Science.gov (United States)

    Newton, William G.; Steiner, Andrew W.; Yagi, Kent

    2018-03-01

    Two low-mass (M slope of the nuclear symmetry energy L. We find that, if either J0737-3039B or the J1756-2251 companion were formed in a US-SN, no more than 0.06 M ⊙ could have been lost from the progenitor core. Furthermore, a measurement of the moment of inertia of J0737-3039A to within 10% accuracy can discriminate between formation scenarios and, given current constraints on the predicted core mass loss, potentially rule them out. Advanced LIGO can potentially measure the neutron star tidal polarizability to equivalent accuracy which, using the I-Love-Q relations, would obtain similar constraints on the formation scenarios. Such information would help constrain important aspects of binary evolution used for population synthesis predictions of the rate of binary neutron star mergers and resulting electromagnetic and gravitational wave signals. Further progress needs to be made in modeling the core-collapse process that leads to low-mass neutron stars, particularly in making robust predictions for the mass loss from the progenitor core.

  12. A physical model of mass ejection in failed supernovae

    Science.gov (United States)

    Coughlin, Eric R.; Quataert, Eliot; Fernández, Rodrigo; Kasen, Daniel

    2018-06-01

    During the core collapse of massive stars, the formation of the proto-neutron star is accompanied by the emission of a significant amount of mass energy (˜0.3 M⊙) in the form of neutrinos. This mass-energy loss generates an outward-propagating pressure wave that steepens into a shock near the stellar surface, potentially powering a weak transient associated with an otherwise-failed supernova. We analytically investigate this mass-loss-induced wave generation and propagation. Heuristic arguments provide an accurate estimate of the amount of energy contained in the outgoing sound pulse. We then develop a general formalism for analysing the response of the star to centrally concentrated mass loss in linear perturbation theory. To build intuition, we apply this formalism to polytropic stellar models, finding qualitative and quantitative agreement with simulations and heuristic arguments. We also apply our results to realistic pre-collapse massive star progenitors (both giants and compact stars). Our analytic results for the sound pulse energy, excitation radius, and steepening in the stellar envelope are in good agreement with full time-dependent hydrodynamic simulations. We show that prior to the sound pulses arrival at the stellar photosphere, the photosphere has already reached velocities ˜ 20-100 per cent of the local sound speed, thus likely modestly decreasing the stellar effective temperature prior to the star disappearing. Our results provide important constraints on the physical properties and observational appearance of failed supernovae.

  13. Constructing neutron stars with a gravitational Higgs mechanism

    Science.gov (United States)

    Franchini, Nicola; Coates, Andrew; Sotiriou, Thomas P.

    2018-03-01

    In scalar-tensor theories, spontaneous scalarization is a phase transition that can occur in ultradense environments such as neutron stars. The scalar field develops a nontrivial configuration once the stars exceeds a compactness threshold. We recently pointed out that, if the scalar exhibits some additional coupling to matter, it could give rise to significantly different microphysics in these environments. In this work we study, at the nonperturbative level, a toy model in which the photon is given a large mass when spontaneous scalarization occurs. Our results demonstrate clearly the effectiveness of spontaneous scalarization as a Higgs-like mechanism in neutron stars.

  14. Chandra Observations of Neutron Stars: An Overview

    Science.gov (United States)

    Weisskopf, Martin C.; Karovska, M.; Pavlov, G. G.; Zavlin, V. E.; Clarke, Tracy

    2006-01-01

    We present a brief review of Chandra X-ray Observatory observations of neutron stars. The outstanding spatial and spectral resolution of this great observatory have allowed for observations of unprecedented clarity and accuracy. Many of these observations have provided new insights into neutron star physics. We present an admittedly biased and overly brief overview of these observations, highlighting some new discoveries made possible by the Observatory's unique capabilities. We also include our analysis of recent multiwavelength observations of the putative pulsar and its pulsar-wind nebula in the IC 443 SNR.

  15. Neutron Star Population Dynamics. II. Three-dimensional Space Velocities of Young Pulsars

    Science.gov (United States)

    Cordes, J. M.; Chernoff, David F.

    1998-09-01

    be underrepresented (in the observed sample) by a factor ~2.3 owing to selection effects in pulsar surveys. The estimates of scale height and velocity parameters are insensitive to the explicit relation of chronological and spindown ages. A further analysis starting from our inferred velocity distribution allows us to test spindown laws and age estimates. There exist comparably good descriptions of the data involving different combinations of braking index and torque decay timescale. We find that a braking index of 2.5 is favored if torque decay occurs on a timescale of ~3 Myr, while braking indices ~4.5 +/- 0.5 are preferred if there is no torque decay. For the sample as a whole, the most probable chronological ages are typically smaller than conventional spindown ages by factors as large as 2. We have also searched for correlations between three-dimensional speeds of individual pulsars and combinations of spin period and period derivative. None appears to be significant. We argue that correlations identified previously between velocity and (apparent) magnetic moment reflect the different evolutionary paths taken by young, isolated (nonbinary), high-field pulsars and older, low-field pulsars that have undergone accretion-driven spinup. We conclude that any such correlation measures differences in spin and velocity selection in the evolution of the two populations and is not a measure of processes taking place in the core collapse that produces neutron stars in the first place. We assess mechanisms for producing high-velocity neutron stars, including disruption of binary systems by symmetric supernovae and neutrino, baryonic, or electromagnetic rocket effects during or shortly after the supernova. The largest velocities seen (~1600 km s-1), along with the paucity of low-velocity pulsars, suggest that disruption of binaries by symmetric explosions is insufficient. Rocket effects appear to be a necessary and general phenomenon. The required kick amplitudes and the

  16. Neutron matter, neutron pairing, and neutron drops based on chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Thomas

    2016-10-19

    The physics of neutron-rich systems is of great interest in nuclear and astrophysics. Precise knowledge of the properties of neutron-rich nuclei is crucial for understanding the synthesis of heavy elements. Infinite neutron matter determines properties of neutron stars, a final stage of heavy stars after a core-collapse supernova. It also provides a unique theoretical laboratory for nuclear forces. Strong interactions are determined by quantum chromodynamics (QCD). However, QCD is non-perturbative at low energies and one presently cannot directly calculate nuclear forces from it. Chiral effective field theory circumvents these problems and connects the symmetries of QCD to nuclear interactions. It naturally and systematically includes many-nucleon forces and gives access to uncertainty estimates. We use chiral interactions throughout all calculation in this thesis. Neutron stars are very extreme objects. The densities in their interior greatly exceed those in nuclei. The exact composition and properties of neutron stars is still unclear but they consist mainly of neutrons. One can explore neutron stars theoretically with calculations of neutron matter. In the inner core of neutron stars exist very high densities and thus maybe exotic phases of matter. To investigate whether there exists a phase transition to such phases even at moderate densities we study the chiral condensate in neutron matter, the order parameter of chiral symmetry breaking, and find no evidence for a phase transition at nuclear densities. We also calculate the more extreme system of spin-polarised neutron matter. With this we address the question whether there exists such a polarised phase in neutron stars and also provide a benchmark system for lattice QCD. We find spin-polarised neutron matter to be an almost non-interacting Fermi gas. To understand the cooling of neutron stars neutron pairing is of great importance. Due to the high densities especially triplet pairing is of interest. We

  17. Supernova Driving. IV. The star-formation rate of molecular clouds

    DEFF Research Database (Denmark)

    Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke

    2017-01-01

    We compute the star-formation rate (SFR) in molecular clouds (MCs) that originate ab initio in a new, higher-resolution simulation of supernova-driven turbulence. Because of the large number of well-resolved clouds with self-consistent boundary and initial conditions, we obtain a large range...... of cloud physical parameters with realistic statistical distributions, which is an unprecedented sample of star-forming regions to test SFR models and to interpret observational surveys. We confirm the dependence of the SFR per free-fall time, SFRff, on the virial parameter, αvir, found in previous...... MCs and in clouds near the Galactic center. Although not explicitly modeled by the theory, the scatter is consistent with the physical assumptions of our revised model and may also result in part from a lack of statistical equilibrium of the turbulence, due to the transient nature of MCs....

  18. Supernovae from massive stars with extended tenuous envelopes

    Science.gov (United States)

    Dessart, Luc; Yoon, Sung-Chul; Livne, Eli; Waldman, Roni

    2018-04-01

    Massive stars with a core-halo structure are interesting objects for stellar physics and hydrodynamics. Using simulations for stellar evolution, radiation hydrodynamics, and radiative transfer, we study the explosion of stars with an extended and tenuous envelope (i.e. stars in which 95% of the mass is contained within 10% or less of the surface radius). We consider both H-rich supergiant and He-giant progenitors resulting from close-binary evolution and dying with a final mass of 2.8-5 M⊙. An extended envelope causes the supernova (SN) shock to brake and a reverse shock to form, sweeping core material into a dense shell. The shock-deposited energy, which suffers little degradation from expansion, is trapped in ejecta layers of moderate optical depth, thereby enhancing the SN luminosity at early times. With the delayed 56Ni heating, we find that the resulting optical and near-IR light curves all exhibit a double-peak morphology. We show how an extended progenitor can explain the blue and featureless optical spectra of some Type IIb and Ib SNe. The dense shell formed by the reverse shock leads to line profiles with a smaller and near-constant width. This ejecta property can explain the statistically narrower profiles of Type IIb compared to Type Ib SNe, as well as the peculiar Hα profile seen in SN 1993J. At early times, our He-giant star explosion model shows a high luminosity, a blue colour, and featureless spectra reminiscent of the Type Ib SN 2008D, suggesting a low-mass progenitor.

  19. Rapid Cooling of the Neutron Star in Cassiopeia A Triggered by Neutron Superfluidity in Dense Matter

    International Nuclear Information System (INIS)

    Page, Dany; Prakash, Madappa; Lattimer, James M.; Steiner, Andrew W.

    2011-01-01

    We propose that the observed cooling of the neutron star in Cassiopeia A is due to enhanced neutrino emission from the recent onset of the breaking and formation of neutron Cooper pairs in the 3 P 2 channel. We find that the critical temperature for this superfluid transition is ≅0.5x10 9 K. The observed rapidity of the cooling implies that protons were already in a superconducting state with a larger critical temperature. This is the first direct evidence that superfluidity and superconductivity occur at supranuclear densities within neutron stars. Our prediction that this cooling will continue for several decades at the present rate can be tested by continuous monitoring of this neutron star.

  20. Tidal Love numbers of neutron and self-bound quark stars

    International Nuclear Information System (INIS)

    Postnikov, Sergey; Prakash, Madappa; Lattimer, James M.

    2010-01-01

    Gravitational waves from the final stages of inspiraling binary neutron stars are expected to be one of the most important sources for ground-based gravitational wave detectors. The masses of the components are determinable from the orbital and chirp frequencies during the early part of the evolution, and large finite-size (tidal) effects are measurable toward the end of inspiral, but the gravitational wave signal is expected to be very complex at this time. Tidal effects during the early part of the evolution will form a very small correction, but during this phase the signal is relatively clean. The accumulated phase shift due to tidal corrections is characterized by a single quantity related to a star's tidal Love number. The Love number is sensitive, in particular, to the compactness parameter M/R and the star's internal structure, and its determination could provide an important constraint to the neutron star radius. We show that Love numbers of self-bound strange quark matter stars are qualitatively different from those of normal neutron stars. Observations of the tidal signature from coalescing compact binaries could therefore provide an important, and possibly unique, way to distinguish self-bound strange quark stars from normal neutron stars. Tidal signatures from self-bound strange quark stars with masses smaller than 1M · are substantially smaller than those of normal stars owing to their smaller radii. Thus tidal signatures of stars less massive than 1M · are probably not detectable with Advanced LIGO. For stars with masses in the range 1-2M · , the anticipated efficiency of the proposed Einstein telescope would be required for the detection of tidal signatures.

  1. Chandra Maps Vital Elements From Supernova

    Science.gov (United States)

    1999-12-01

    A team of astronomers led by Dr. John Hughes of Rutgers University in Piscataway, NJ has used observations from NASA's orbital Chandra X-ray Observatory to make an important new discovery that sheds light on how silicon, iron, and other elements were produced in supernova explosions. An X-ray image of Cassiopeia A (Cas A), the remnant of an exploded star, reveals gaseous clumps of silicon, sulfur, and iron expelled from deep in the interior of the star. The findings appear online in the Astrophysical Journal Letters at http://www.journals.uchicago.edu/ and are slated for print publication on Jan. 10, 2000. Authors of the paper, "Nucleosynthesis and Mixing in Cassiopeia A", are Hughes, Rutgers graduate student Cara Rakowski, Dr. David Burrows of the Pennsylvania State University, University Park, PA and Dr. Patrick Slane of the Harvard-Smithsonian Center for Astrophysics, Cambridge, MA. According to Hughes, one of the most profound accomplishments of twentieth century astronomy is the realization that nearly all of the elements other than hydrogen and helium were created in the interiors of stars. "During their lives, stars are factories that take the simplest element, hydrogen, and convert it into heavier ones," he said. "After consuming all the hydrogen in their cores, stars begin to evolve rapidly, until they finally run out of fuel and begin to collapse. In stars ten times or so more massive than our Sun, the central parts of the collapsing star may form a neutron star or a black hole, while the rest of the star is blown apart in a tremendous supernova explosion." Supernovae are rare, occurring only once every 50 years or so in a galaxy like our own. "When I first looked at the Chandra image of Cas A, I was amazed by the clarity and definition," said Hughes. "The image was much sharper than any previous one and I could immediately see lots of new details." Equal in significance to the image clarity is the potential the Chandra data held for measuring the

  2. Supersoft Symmetry Energy Encountering Non-Newtonian Gravity in Neutron Stars

    International Nuclear Information System (INIS)

    Wen Dehua; Li Baoan; Chen Liewen

    2009-01-01

    Considering the non-Newtonian gravity proposed in grand unification theories, we show that the stability and observed global properties of neutron stars cannot rule out the supersoft nuclear symmetry energies at suprasaturation densities. The degree of possible violation of the inverse-square law of gravity in neutron stars is estimated using an equation of state of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.

  3. Compact stars and the evolution of binary systems

    NARCIS (Netherlands)

    van den Heuvel, E.P.J.

    2011-01-01

    The Chandrasekhar limit is of key importance for the evolution of white dwarfs in binary systems and for the formation of neutron stars and black holes in binaries. Mass transfer can drive a white dwarf in a binary over the Chandrasekhar limit, which may lead to a Type Ia supernova (in case of a CO

  4. An accurate metric for the spacetime around rotating neutron stars

    Science.gov (United States)

    Pappas, George

    2017-04-01

    The problem of having an accurate description of the spacetime around rotating neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a rotating neutron star. Furthermore, an accurate appropriately parametrized metric, I.e. a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to infer the properties of the structure of a neutron star from astrophysical observations. In this work, we present such an approximate stationary and axisymmetric metric for the exterior of rotating neutron stars, which is constructed using the Ernst formalism and is parametrized by the relativistic multipole moments of the central object. This metric is given in terms of an expansion on the Weyl-Papapetrou coordinates with the multipole moments as free parameters and is shown to be extremely accurate in capturing the physical properties of a neutron star spacetime as they are calculated numerically in general relativity. Because the metric is given in terms of an expansion, the expressions are much simpler and easier to implement, in contrast to previous approaches. For the parametrization of the metric in general relativity, the recently discovered universal 3-hair relations are used to produce a three-parameter metric. Finally, a straightforward extension of this metric is given for scalar-tensor theories with a massless scalar field, which also admit a formulation in terms of an Ernst potential.

  5. HD271791: dynamical versus binary-supernova ejection scenario

    Science.gov (United States)

    Gvaramadze, V. V.

    2009-05-01

    The atmosphere of the extremely high-velocity (530-920kms-1) early B-type star HD271791 is enriched in α-process elements, which suggests that this star is a former secondary component of a massive tight binary system and that its surface was polluted by the nucleosynthetic products after the primary star exploded in a supernova. It was proposed that the (asymmetric) supernova explosion unbind the system and that the secondary star (HD271791) was released at its orbital velocity in the direction of Galactic rotation. In this Letter, we show that to explain the Galactic rest-frame velocity of HD271791 within the framework of the binary-supernova scenario, the stellar remnant of the supernova explosion (a =750-1200kms-1. We therefore consider the binary-supernova scenario as highly unlikely and instead propose that HD271791 attained its peculiar velocity in the course of a strong dynamical three- or four-body encounter in the dense core of the parent star cluster. Our proposal implies that by the moment of encounter HD271791 was a member of a massive post-supernova binary.

  6. Sensitivity studies for supernovae type Ia

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thien Tam; Goebel, Kathrin; Reifarth, Rene [Goethe University Frankfurt am Main (Germany); Calder, Alan [SUNY - Department of Physics and Astronomy, New York (United States); Pignatari, Marco [Konkoly Observatory of the Hungarian Academy of Sciences (Hungary); Townsley, Dean [The University of Alabama (United States); Travaglio, Claudia [INAF - Astrophysical Observatory, Turin (Italy); Collaboration: NuGrid collaboration

    2016-07-01

    The NuGrid research platform provides a simulation framework to study the nucleosynthesis in multi-dimensional Supernovae Type Ia models. We use a large network of over 5,000 isotopes and more than 60,000 reactions. The nucleosynthesis is investigated in post-processing simulations with temperature and density profiles, initial abundance distributions and a set of reaction rates as input. The sensitivity of the isotopic abundances to α-, proton-, and neutron-capture reaction, their inverse reactions, as well as fusion reactions were investigated. First results have been achieved for different mass coordinates of the exploding star.

  7. Physics of supernovae

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1985-01-01

    Presupernova models of massive stars are presented and their explosion by ''delayed neutrino transport'' examined. A new form of long duration Type II supernova model is also explored based upon repeated encounter with the electron-positron pair instability in stars heavier than about 60 Msub solar. Carbon deflagration in white dwarfs is discussed as the probable explanation of Type I supernovae and special attention is paid to the physical processes whereby a nuclear flame propagates through degenerate carbon. 89 refs., 12 figs

  8. Nuclear symmetry energy and stability of matter in neutron stars

    International Nuclear Information System (INIS)

    Kubis, Sebastian

    2007-01-01

    It is shown that the nuclear symmetry energy is the key quantity in the stability consideration in neutron star matter. The symmetry energy controls the position of crust-core transition and also may lead to new effects in the inner core of neutron star

  9. Neutron star evolution and the structure of matter at high density

    International Nuclear Information System (INIS)

    Soyeur, Madeleine.

    1981-09-01

    The structure and properties of neutron stars are determined by the state of cold nuclear matter at high density. In order to investigate the behavior of matter inside neutron stars, observables sensitive to their internal structure have to be calculated and confronted to observations. The thermal radiation of neutron stars seems to be a good candidate to be such observable. It can be shown that the neutrino luminosity of neutron stars, responsible for their cooling in the early stages of their evolution is strongly dependent on possible phase transitions to superfluid nucleons, to pion condensation or to quark matter. The specific heat of matter is also not the same in the various phases expected at high density and is particularly sensitive to the nucleon superfluidity. At present, both the theoretical estimates and the observations of the thermal properties of neutron stars are still quite preliminary. In particular, large uncertainties due to possible reheating mechanisms and magnetic field effects make the theoretical interpretation of the steady radiation of pulsars quite difficult

  10. The effect of the scalar-isovector meson field on hyperon-rich neutron star matter

    International Nuclear Information System (INIS)

    Mi, Aijun; Zuo, Wei; Li, Ang

    2008-01-01

    We investigate the effect of the scalar-isovector δ-meson field on the equation of state (EOS) and composition of hyperonic neutron star matter, and the properties of hyperonic neutron stars within the framework of the relativistic mean field theory. The influence of the δ-field turns out to be quite different and generally weaker for hyperonic neutron star matter as compared to that for npeμ neutron star matter. We find that inclusion of the δ-field enhances the strangeness content slightly and consequently moderately softens the EOS of neutron star matter in its hyperonic phase. As for the composition of hyperonic star matter, the effect of the δ-field is shown to shift the onset of the negatively-charged (positively-charged) hyperons to slightly lower (higher) densities and to enhance (reduce) their abundances. The influence of the δ-field on the maximum mass of hyperonic neutron stars is found to be fairly weak, whereas inclusion of the δ-field turns out to enhance sizably both the radii and the moments of inertia of neutron stars with given masses. It is also shown that the effects of the δ-field on the properties of hyperonic neutron stars remain similar in the case of switching off the Σ hyperons. (author)

  11. Extreme neutron stars from Extended Theories of Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [I. Kant Baltic Federal University, Institute of Physics and Technology, Nevskogo st. 14, Kaliningrad, 236041 (Russian Federation); Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Via Cinthia, 9, Napoli, I-80126 Italy (Italy); Odintsov, Sergei D., E-mail: artyom.art@gmail.com, E-mail: capozziello@na.infn.it, E-mail: odintsov@ieec.uab.es [Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain)

    2015-01-01

    We discuss neutron stars with strong magnetic mean fields in the framework of Extended Theories of Gravity. In particular, we take into account models derived from f(R) and f(G) extensions of General Relativity where functions of the Ricci curvature invariant R and the Gauss-Bonnet invariant G are respectively considered. Dense matter in magnetic mean field, generated by magnetic properties of particles, is described by assuming a model with three meson fields and baryons octet. As result, the considerable increasing of maximal mass of neutron stars can be achieved by cubic corrections in f(R) gravity. In principle, massive stars with M > 4M{sub ☉} can be obtained. On the other hand, stable stars with high strangeness fraction (with central densities ρ{sub c} ∼ 1.5–2.0 GeV/fm{sup 3}) are possible considering quadratic corrections of f(G) gravity. The magnetic field strength in the star center is of order 6–8 × 10{sup 18} G. In general, we can say that other branches of massive neutron stars are possible considering the extra pressure contributions coming from gravity extensions. Such a feature can constitute both a probe for alternative theories and a way out to address anomalous self-gravitating compact systems.

  12. Aspherical supernovae

    International Nuclear Information System (INIS)

    Kasen, Daniel Nathan

    2004-01-01

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  13. Insight into star death

    International Nuclear Information System (INIS)

    Talcott, R.

    1988-01-01

    Nineteen neutrinos, formed in the center of a supernova, became a theorist's dream. They came straight from the heart of supernova 1987A and landed in two big underground tanks of water. Suddenly a new chapter in observational astronomy opened as these two neutrino telescopes gave astronomers their first look ever into the core of a supernova explosion. But the theorists' dream almost turned into a nightmare. Observations of the presupernova star showed conclusively that the star was a blue supergiant, but theorists have long believed only red supergiant stars could explode as supernovae. Do astronomers understand supernovae better now than when supernova 1987A exploded in the Large Magellanic Cloud (LMC) one year ago? Yes. The observations of neutrinos spectacularly confirmed a vital aspect of supernova theory. But the observed differences between 1987A and other supernovae have illuminated and advanced our perception of how supernovae form. By working together, observers and theorists are continuing to hone their ideas about how massive stars die and how the subsequent supernovae behave

  14. Hadron physics and the structure of neutron stars

    International Nuclear Information System (INIS)

    Kutschera, M.

    1996-09-01

    The equation of state of hadronic matter in neutron stars is briefly reviewed. Uncertainties regarding the stiffness and composition of hadronic matter are discussed. Importance of poorly known short range interactions of nucleons and hyperons is emphasized. Condensation of meson fields and the role of subhadronic degrees of freedom is considered. Empirical constraints on the equation of state emerging from observations of neutron stars are discussed. The nature of the remnant of SN1987A is considered. (author)

  15. Superconducting superfluids in neutron stars

    International Nuclear Information System (INIS)

    Carter, B.

    2002-01-01

    For treatment of the layers below the crust of a neutron star it is useful to employ a relativistic model involving three independently moving constituents, representing superfluid neutrons, superfluid protons, and degenerate negatively charged leptons. A Kalb-Ramond type formulation is used here to develop such a model for the specific purpose of application at the semi macroscopic level characterised by lengthscales that are long compared with the separation between the highly localised and densely packed proton vortices of the Abrikosov type lattice that carries the main part of the magnetic flux, but that are short compared with the separation between the neutron vortices. (orig.)

  16. NEUTRON STAR MASS–RADIUS CONSTRAINTS USING EVOLUTIONARY OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A. L.; Morsink, S. M. [Department of Physics, University of Alberta, 4-183 CCIS, Edmonton, AB, T6G 2E1 (Canada); Fiege, J. D. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada); Leahy, D. A. [Department of Physics, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4 (Canada)

    2016-12-20

    The equation of state of cold supra-nuclear-density matter, such as in neutron stars, is an open question in astrophysics. A promising method for constraining the neutron star equation of state is modeling pulse profiles of thermonuclear X-ray burst oscillations from hot spots on accreting neutron stars. The pulse profiles, constructed using spherical and oblate neutron star models, are comparable to what would be observed by a next-generation X-ray timing instrument like ASTROSAT , NICER , or a mission similar to LOFT . In this paper, we showcase the use of an evolutionary optimization algorithm to fit pulse profiles to determine the best-fit masses and radii. By fitting synthetic data, we assess how well the optimization algorithm can recover the input parameters. Multiple Poisson realizations of the synthetic pulse profiles, constructed with 1.6 million counts and no background, were fitted with the Ferret algorithm to analyze both statistical and degeneracy-related uncertainty and to explore how the goodness of fit depends on the input parameters. For the regions of parameter space sampled by our tests, the best-determined parameter is the projected velocity of the spot along the observer’s line of sight, with an accuracy of ≤3% compared to the true value and with ≤5% statistical uncertainty. The next best determined are the mass and radius; for a neutron star with a spin frequency of 600 Hz, the best-fit mass and radius are accurate to ≤5%, with respective uncertainties of ≤7% and ≤10%. The accuracy and precision depend on the observer inclination and spot colatitude, with values of ∼1% achievable in mass and radius if both the inclination and colatitude are ≳60°.

  17. Bounds on the moment of inertia of nonrotating neutron stars

    International Nuclear Information System (INIS)

    Sabbadini, A.G.; Hartle, J.B.

    1977-01-01

    Upper and lower bounds are placed on the moments of inertia of relativistic, spherical, perfect fluid neutron stars assuming that the pressure p and density p are positive and that (dp/drho) is positive. Bounds are obtained (a) for the moment of inertia of a star with given mass and radius, (b) for the moment of inertia of neutron stars for which the equation of state is known below a given density rho/sub omicron/and (c) for the mass-moment of inertia relation for stars whose equation of state is known below a given density rho/sub omicron/The bounds are optimum ones in the sense that there always exists a configuration consistent with the assumptions having a moment of inertia equal to that of the bound. The implications of the results for the maximum mass of slowly rotating neutron stars are discussed

  18. The historical supernovae

    CERN Document Server

    Clark, David H

    1977-01-01

    The Historical Supernovae is an interdisciplinary study of the historical records of supernova. This book is composed of 12 chapters that particularly highlight the history of the Far East. The opening chapter briefly describes the features of nova and supernova, stars which spontaneously explode with a spectacular and rapid increase in brightness. The succeeding chapter deals with the search for the historical records of supernova from Medieval European monastic chronicles, Arabic chronicles, astrological works etc., post renaissance European scientific writings, and Far Eastern histories and

  19. Black Hole - Neutron Star Binary Mergers

    Data.gov (United States)

    National Aeronautics and Space Administration — Gravitational radiation waveforms for black hole-neutron star coalescence calculations. The physical input is Newtonian physics, an ideal gas equation of state with...

  20. Early Results from NICER Observations of Accreting Neutron Stars

    Science.gov (United States)

    Chakrabarty, Deepto; Ozel, Feryal; Arzoumanian, Zaven; Gendreau, Keith C.; Bult, Peter; Cackett, Ed; Chenevez, Jerome; Fabian, Andy; Guillot, Sebastien; Guver, Tolga; Homan, Jeroen; Keek, Laurens; Lamb, Frederick; Ludlam, Renee; Mahmoodifar, Simin; Markwardt, Craig B.; Miller, Jon M.; Psaltis, Dimitrios; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael T.

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) offers significant new capabilities for the study of accreting neuton stars relative to previous X-ray missions including large effective area, low background, and greatly improved low-energy response. The NICER Burst and Accretion Working Group has designed a 2 Ms observation program to study a number of phenomena in accreting neutron stars including type-I X-ray bursts, superbursts, accretion-powered pulsations, quasi-periodic oscillations, and accretion disk reflection spectra. We present some early results from the first six months of the NICER mission.

  1. A two-solar-mass neutron star measured using Shapiro delay

    NARCIS (Netherlands)

    Demorest, P.B.; Pennucci, T.; Ransom, S.M.; Roberts, M.S.E.; Hessels, J.W.T.

    2010-01-01

    Neutron stars are composed of the densest form of matter known to exist in our Universe, the composition and properties of which are still theoretically uncertain. Measurements of the masses or radii of these objects can strongly constrain the neutron star matter equation of state and rule out

  2. Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State

    Science.gov (United States)

    Annala, Eemeli; Gorda, Tyler; Kurkela, Aleksi; Vuorinen, Aleksi

    2018-04-01

    The detection of gravitational waves originating from a neutron-star merger, GW170817, by the LIGO and Virgo Collaborations has recently provided new stringent limits on the tidal deformabilities of the stars involved in the collision. Combining this measurement with the existence of two-solar-mass stars, we generate a generic family of neutron-star-matter equations of state (EOSs) that interpolate between state-of-the-art theoretical results at low and high baryon density. Comparing the results to ones obtained without the tidal-deformability constraint, we witness a dramatic reduction in the family of allowed EOSs. Based on our analysis, we conclude that the maximal radius of a 1.4-solar-mass neutron star is 13.6 km, and that the smallest allowed tidal deformability of a similar-mass star is Λ (1.4 M⊙)=120 .

  3. Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: New Life for Pulsar Glitch Models

    Science.gov (United States)

    Watanabe, Gentaro; Pethick, C. J.

    2017-08-01

    Calculations of the effects of band structure on the neutron superfluid density in the crust of neutron stars made under the assumption that the effects of pairing are small [N. Chamel, Phys. Rev. C 85, 035801 (2012)] lead to moments of inertia of superfluid neutrons so small that the crust alone is insufficient to account for the magnitude of neutron star glitches. Inspired by earlier work on ultracold atomic gases in an optical lattice, we investigate fermions with attractive interactions in a periodic lattice in the mean-field approximation. The effects of band structure are suppressed when the pairing gap is of order or greater than the strength of the lattice potential. By applying the results to the inner crust of neutron stars, we conclude that the reduction of the neutron superfluid density is considerably less than previously estimated and, consequently, it is premature to rule out models of glitches based on neutron superfluidity in the crust.

  4. Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: New Life for Pulsar Glitch Models.

    Science.gov (United States)

    Watanabe, Gentaro; Pethick, C J

    2017-08-11

    Calculations of the effects of band structure on the neutron superfluid density in the crust of neutron stars made under the assumption that the effects of pairing are small [N. Chamel, Phys. Rev. C 85, 035801 (2012)PRVCAN0556-2813] lead to moments of inertia of superfluid neutrons so small that the crust alone is insufficient to account for the magnitude of neutron star glitches. Inspired by earlier work on ultracold atomic gases in an optical lattice, we investigate fermions with attractive interactions in a periodic lattice in the mean-field approximation. The effects of band structure are suppressed when the pairing gap is of order or greater than the strength of the lattice potential. By applying the results to the inner crust of neutron stars, we conclude that the reduction of the neutron superfluid density is considerably less than previously estimated and, consequently, it is premature to rule out models of glitches based on neutron superfluidity in the crust.

  5. Velocity-mass correlation of the O-type stars: model results

    International Nuclear Information System (INIS)

    Stone, R.C.

    1982-01-01

    This paper presents new model results describing the evolution of massive close binaries from their initial ZAMS to post-supernova stages. Unlike the previous conservative study by Stone [Astrophys. J. 232, 520 (1979) (Paper II)], these results allow explicitly for mass loss from the binary system occurring during the core hydrogen- and helium-burning stages of the primary binary star as well as during the Roche lobe overflow. Because of uncertainties in these rates, model results are given for several reasonable choices for these rates. All of the models consistently predict an increasing relation between the peculiar space velocities and masses for runaway OB stars which agrees well with the observed correlations discussed in Stone [Astron. J. 86, 544 (1981) (Paper III)] and also predict a lower limit at Mroughly-equal11M/sub sun/ for the masses of runaway stars, in agreement with the observational limit found by A. Blaauw (Bull. Astron. Inst. Neth. 15, 265, 1961), both of which support the binary-supernova scenario described by van den Heuvel and Heise for the origin of runaway stars. These models also predict that the more massive O stars will produce correspondingly more massive compact remnants, and that most binaries experiencing supernova-induced kick velocities of magnitude V/sub k/> or approx. =300 km s -1 will disrupt following the explosions. The best estimate for this velocity as established from pulsar observations is V/sub k/roughly-equal150 km s -1 , in which case probably only 15% if these binaries will be disrupted by the supernova explosions, and therefore, almost all runaway stars should have either neutron star or black hole companions

  6. EVOLUTION OF PROGENITORS FOR ELECTRON CAPTURE SUPERNOVAE

    International Nuclear Information System (INIS)

    Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi

    2013-01-01

    We provide progenitor models for electron capture supernovae (ECSNe) with detailed evolutionary calculation. We include minor electron capture nuclei using a large nuclear reaction network with updated reaction rates. For electron capture, the Coulomb correction of rates is treated and the contribution from neutron-rich isotopes is taken into account in each nuclear statistical equilibrium (NSE) composition. We calculate the evolution of the most massive super asymptotic giant branch stars and show that these stars undergo off-center carbon burning and form ONe cores at the center. These cores become heavier up to the critical mass of 1.367 M ☉ and keep contracting even after the initiation of O+Ne deflagration. Inclusion of minor electron capture nuclei causes convective URCA cooling during the contraction phase, but the effect on the progenitor evolution is small. On the other hand, electron capture by neutron-rich isotopes in the NSE region has a more significant effect. We discuss the uniqueness of the critical core mass for ECSNe and the effect of wind mass loss on the plausibility of our models for ECSN progenitors.

  7. A new class of g-modes in neutron stars

    Science.gov (United States)

    Reisenegger, Andreas; Goldreich, Peter

    1992-01-01

    Because a neutron star is born hot, its internal composition is close to chemical equilibrium. In the fluid core, this implies that the ratio of the number densities of charged particles (protons and electrons) to neutrons is an increasing function of the mass density. This composition gradient stably stratifies the matter giving rise to a Brunt-Vaisala frequency N of about 500/s. Consequently, a neutron star core provides a cavity that supports gravity modes (g-modes). These g-modes are distinct from those previously identified with the thermal stratification of the surface layers and the chemical stratification of the crust. We compute the lowest-order, quadrupolar, g-modes for cold, Newtonian, neutron star models with M/solar M = 0.581 and M/solar M = 1.405, and show that the crustal and core g-modes have similar periods. We also discuss damping mechanisms and estimate damping rates for the core g-modes. Particular attention is paid to damping due to the emission of gravitational radiation.

  8. Many-body theory of nuclear and neutron star matter

    International Nuclear Information System (INIS)

    Pandharipande, V.R.; Akmal, A.; Ravenhall, D.G.

    1998-01-01

    We present results obtained for nuclei, nuclear and neutron star matter, and neutron star structure obtained with the recent Argonne v 18 two- nucleon and Urbana IX three-nucleon interactions including relativistic boost corrections. These interactions predict that matter will undergo a transition to a spin layered phase with neutral pion condensation. We also consider the possibility of a transition to quark matter. (orig.)

  9. Many-body theory of nuclear and neutron star matter

    Energy Technology Data Exchange (ETDEWEB)

    Pandharipande, V R; Akmal, A; Ravenhall, D G [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)

    1998-06-01

    We present results obtained for nuclei, nuclear and neutron star matter, and neutron star structure obtained with the recent Argonne v{sub 18} two- nucleon and Urbana IX three-nucleon interactions including relativistic boost corrections. These interactions predict that matter will undergo a transition to a spin layered phase with neutral pion condensation. We also consider the possibility of a transition to quark matter. (orig.)

  10. Constraining the neutron star equation of state using XMM-Newton

    NARCIS (Netherlands)

    Kaastra, J.; Mendez, M.; In 't Zand, J. J. M.; Jonker, P.G.

    We have identified three possible ways in which future XMM-Newton observations can provide significant constraints on the equation of state of neutron stars. First, using a long observation of the neutron star X-ray transient Cen X-4 in quiescence one can use the RGS spectrum to constrain the

  11. Constraining the neutron star equation of state using XMM-Newton

    NARCIS (Netherlands)

    Jonker, P.G.; Kaastra, J.S.; Méndez, M.; in 't Zand, J.J.M.

    2008-01-01

    We have identified three possible ways in which future XMM-Newton observations can provide significant constraints on the equation of state of neutron stars. First, using a long observation of the neutron star X-ray transient Cen X-4 in quiescence one can use the RGS spectrum to constrain the

  12. THE FATE OF THE COMPACT REMNANT IN NEUTRON STAR MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Chris L. [Department of Physics, The University of Arizona, Tucson, AZ 85721 (United States); Belczynski, Krzysztoff [Astronomical Observatory, University of Warsaw, Al Ujazdowskie 4, 00-478 Warsaw (Poland); Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Rosswog, Stephan [The Oskar klein Center, Department of Astronomy, AlbaNova, Stockholm University, SE-106 91 Stockholm (Sweden); Shen, Gang [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195 (United States); Steiner, Andrew W. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States)

    2015-10-10

    Neutron star (binary neutron star and neutron star–black hole) mergers are believed to produce short-duration gamma-ray bursts (GRBs). They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and advanced VIRGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of Newtonian merger calculations and equation of state studies to determine the fate of the cores of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3–2.4 solar masses. If quick black hole formation is essential in producing GRBs, LIGO/Virgo observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.

  13. Hydrogen-Poor Core-Collapse Supernovae

    Science.gov (United States)

    Pian, Elena; Mazzali, Paolo A.

    Hydrogen-poor core-collapse supernovae (SNe) signal the explosive death of stars more massive than the progenitors of hydrogen-rich core-collapse supernovae, i.e., approximately in the range 15-50 M⊙ in main sequence. Since hydrogen-poor core-collapse supernovae include those that accompany gamma-ray bursts (GRBs), which were all rigorously identified with type Ic supernovae, their explosion energies cover almost two decades. The light curves and spectra are consequently very heterogeneous and often bear the signature of an asymmetric, i.e., aspherical, explosion. Asphericity is best traced by early-time (within days of the explosion) optical spectropolarimetry and by late-epoch (more than ˜ 100 days after explosion) low-resolution spectroscopy. While the relationship between hydrogen-poor core-collapse supernovae to hydrogen-poor super-luminous supernovae is not understood, a known case of association between an ultra-long gamma-ray burst and a very luminous hydrogen-poor supernova may help unraveling the connection. This is tantalizingly pointing to a magnetar powering source for both phenomena, although this scenario is still highly speculative. Host galaxies of hydrogen-poor supernovae are always star forming; in those of completely stripped supernovae and gamma-ray burst supernovae, the spatial distribution of the explosions follows the blue/ultraviolet light, with a correlation that is more than linear.

  14. Neutrino-'pasta' scattering: The opacity of nonuniform neutron-rich matter

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Perez-Garcia, M.A.; Piekarewicz, J.

    2004-01-01

    Neutron-rich matter at subnuclear densities may involve complex structures displaying a variety of shapes, such as spherical, slablike, and/or rodlike shapes. These phases of the nuclear pasta are expected to exist in the crust of neutron stars and in core-collapse supernovae. The dynamics of core-collapse supernovae is very sensitive to the interactions between neutrinos and nucleons/nuclei. Indeed, neutrino excitation of the low-energy modes of the pasta may allow for a significant energy transfer to the nuclear medium, thereby reviving the stalled supernovae shock. The linear response of the nuclear pasta to neutrinos is modeled via a simple semiclassical simulation. The transport mean free path for μ and τ neutrinos (and antineutrinos) is expressed in terms of the static structure factor of the pasta, which is evaluated using Metropolis Monte Carlo simulations

  15. Constraining the radius of neutron stars through the moment of inertia

    International Nuclear Information System (INIS)

    Greif, S.K.

    2017-01-01

    Neutron star observations provide systematic constraints on the nuclear equation of state like the recent discovery of 2 M neutron stars. While neutron star masses can be measured very precisely, their radii are inherently difficult to measure due to the influence from large systematic uncertainties. A promising alternative access to this information is the moment of inertia, which provides constraints for both radii and the equation of state. This will be possible in the future using pulsar timing observations. We present a theoretical framework for calculating moments of inertia microscopically. We use state-of-the-art equations of state that are based on chiral effective field theory interactions and fulfill the requirements of causality and of reproducing 2 M neutron stars. This allows us to generate a large set of equations of state that predict combinations of masses, radii, and moments of inertia. We investigate the impact of a moment of inertia measurement on the radius within this general setup. Based on our results, we show how future measurements of moments of inertia constrain radii of neutron stars and thus the equation of state. (author)

  16. Studies of accreting and non-accreting neutron stars

    International Nuclear Information System (INIS)

    Stollman, G.M.

    1987-01-01

    This thesis is divided into three parts. Part A is devoted to the statistical study of radio pulsars, in which the observations of nearly all known pulsars are used to study their properties such as magnetic field strengths, rotation periods, space velocities as well as their evolution in time. Part B is devoted to the modelling and understanding of quasi-periodic oscillations (QPO) in low-mass X-ray binaries. But, this study is mainly concerned with the accretion process in these sources, and one may hope to learn more about the neutron stars in these systems when the understanding of QPO is improved. In Part C the problem of 'super-Eddington luminosities' in X-ray burst sources is treated. The idea is that a good understanding of the burst process, which takes place directly at the surface of the neutron star, will eventually improve our understanding of the neutron stars themselves. (Auth.)

  17. Neutron star models with realistic high-density equations of state

    International Nuclear Information System (INIS)

    Malone, R.C.; Johnson, M.B.; Bethe, H.A.

    1975-01-01

    We calculate neutron star models using four realistic high-density models of the equation of state. We conclude that the maximum mass of a neutron star is unlikely to exceed 2 M/sub sun/. All of the realistic models are consistent with current estimates of the moment of inertia of the Crab pulsar

  18. THE INTERMEDIATE NEUTRON-CAPTURE PROCESS AND CARBON-ENHANCED METAL-POOR STARS

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, Melanie [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg (Germany); Stancliffe, Richard J. [Argelander-Institut für Astronomie, University of Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); Lugaro, Maria [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Budapest (Hungary); Meyer, Bradley S., E-mail: mhampel@lsw.uni-heidelberg.de [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978 (United States)

    2016-11-10

    Carbon-enhanced metal-poor (CEMP) stars in the Galactic Halo display enrichments in heavy elements associated with either the s (slow) or the r (rapid) neutron-capture process (e.g., barium and europium, respectively), and in some cases they display evidence of both. The abundance patterns of these CEMP- s / r stars, which show both Ba and Eu enrichment, are particularly puzzling, since the s and the r processes require neutron densities that are more than ten orders of magnitude apart and, hence, are thought to occur in very different stellar sites with very different physical conditions. We investigate whether the abundance patterns of CEMP- s / r stars can arise from the nucleosynthesis of the intermediate neutron-capture process (the i process), which is characterized by neutron densities between those of the s and the r processes. Using nuclear network calculations, we study neutron capture nucleosynthesis at different constant neutron densities n ranging from 10{sup 7}–10{sup 15} cm{sup -3}. With respect to the classical s process resulting from neutron densities on the lowest side of this range, neutron densities on the highest side result in abundance patterns, which show an increased production of heavy s -process and r -process elements, but similar abundances of the light s -process elements. Such high values of n may occur in the thermal pulses of asymptotic giant branch stars due to proton ingestion episodes. Comparison to the surface abundances of 20 CEMP- s / r stars shows that our modeled i -process abundances successfully reproduce observed abundance patterns, which could not be previously explained by s -process nucleosynthesis. Because the i -process models fit the abundances of CEMP- s / r stars so well, we propose that this class should be renamed as CEMP- i .

  19. Measuring the neutron star equation of state with gravitational wave observations

    International Nuclear Information System (INIS)

    Read, Jocelyn S.; Markakis, Charalampos; Creighton, Jolien D. E.; Friedman, John L.; Shibata, Masaru; Uryu, Koji

    2009-01-01

    We report the results of a first study that uses numerical simulations to estimate the accuracy with which one can use gravitational wave observations of double neutron-star inspiral to measure parameters of the neutron-star equation of state. The simulations use the evolution and initial-data codes of Shibata and Uryu to compute the last several orbits and the merger of neutron stars, with matter described by a parametrized equation of state. Previous work suggested the use of an effective cutoff frequency to place constraints on the equation of state. We find, however, that greater accuracy is obtained by measuring departures from the point-particle limit of the gravitational waveform produced during the late inspiral. As the stars approach their final plunge and merger, the gravitational wave phase accumulates more rapidly for smaller values of the neutron-star compactness (the ratio of the mass of the neutron-star to its radius). We estimate that realistic equations of state will lead to gravitational waveforms that are distinguishable from point-particle inspirals at an effective distance (the distance to an optimally oriented and located system that would produce an equivalent waveform amplitude) of 100 Mpc or less. As Lattimer and Prakash observed, neutron-star radius is closely tied to the pressure at density not far above nuclear. Our results suggest that broadband gravitational wave observations at frequencies between 500 and 1000 Hz will constrain this pressure, and we estimate the accuracy with which it can be measured. Related first estimates of radius measurability show that the radius can be determined to an accuracy of δR∼1 km at 100 Mpc.

  20. Two-component Superfluid Hydrodynamics of Neutron Star Cores

    Energy Technology Data Exchange (ETDEWEB)

    Kobyakov, D. N. [Institute of Applied Physics of the Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); Pethick, C. J., E-mail: dmitry.kobyakov@appl.sci-nnov.ru, E-mail: pethick@nbi.dk [The Niels Bohr International Academy, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)

    2017-02-20

    We consider the hydrodynamics of the outer core of a neutron star under conditions when both neutrons and protons are superfluid. Starting from the equation of motion for the phases of the wave functions of the condensates of neutron pairs and proton pairs, we derive the generalization of the Euler equation for a one-component fluid. These equations are supplemented by the conditions for conservation of neutron number and proton number. Of particular interest is the effect of entrainment, the fact that the current of one nucleon species depends on the momenta per nucleon of both condensates. We find that the nonlinear terms in the Euler-like equation contain contributions that have not always been taken into account in previous applications of superfluid hydrodynamics. We apply the formalism to determine the frequency of oscillations about a state with stationary condensates and states with a spatially uniform counterflow of neutrons and protons. The velocities of the coupled sound-like modes of neutrons and protons are calculated from properties of uniform neutron star matter evaluated on the basis of chiral effective field theory. We also derive the condition for the two-stream instability to occur.

  1. Neutron star radii, universal relations, and the role of prior distributions

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, A.W. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Lattimer, J.M. [Stony Brook University, Dept. of Physics and Astronomy, Stony Brook, NY (United States); Brown, E.F. [Michigan State University, Department of Physics and Astronomy, East Lansing, MI (United States); Michigan State University, The Joint Institute for Nuclear Astrophysics-Center for the Evolution of the Elements, East Lansing, MI (United States); Michigan State University, National Superconducting Cyclotron Laboratory, East Lansing, MI (United States)

    2016-02-15

    We investigate constraints on neutron star structure arising from the assumptions that neutron stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star matter near the nuclear saturation density, that the high-density equation of state is limited by causality and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by piecewise polytropes. In the second class, the high-density behavior of the equation of state is parameterized by piecewise continuous line segments. The smallest density at which high-density matter appears is varied in order to allow for strong phase transitions above the nuclear saturation density. We critically examine correlations among the pressure of matter, radii, maximum masses, the binding energy, the moment of inertia, and the tidal deformability, paying special attention to the sensitivity of these correlations to prior assumptions about the equation of state. It is possible to constrain the radii of 1.4M {sub CircleDot} neutron stars to be larger than 10 km, even without consideration of additional astrophysical observations, for example, those from photospheric radius expansion bursts or quiescent low-mass X-ray binaries. We are able to improve the accuracy of known correlations between the moment of inertia and compactness as well as the binding energy and compactness. We also demonstrate the existence of a correlation between the neutron star binding energy and the moment of inertia. (orig.)

  2. Fate of accreting white dwarfs: Type I supernovae vs collapse

    International Nuclear Information System (INIS)

    Nomoto, Ken'ichi.

    1986-01-01

    The final fate of accreting C + O white dwarfs is either thermonuclear explosion or collapse, if the white dwarf mass grows to the Chandrasekhar mass. We discuss how the fate depends on the initial mass, age, composition of the white dwarf and the mass accretion rate. Relatively fast accretion leads to a carbon deflagration at low central density that gives rise to a Type Ia supernova. Slower accretion induces a helium detonation that could be observed as a Type Ib supernova. If the initial mass of the C + O white dwarf is larger than 1.2 Msub solar, a carbon deflagration starts at high central density and induces a collapse of the white dwarf to form a neutron star. We examine the critical condition for which a carbon deflagration leads to collapse, not explosion. For the case of explosion, we discuss to what extent the nucleosynthesis models are consistent with spectra of Type Ia and Ib supernovae. 61 refs., 18 figs

  3. Entrainment in the inner crust of a neutron star

    International Nuclear Information System (INIS)

    Chamel, N.

    2004-01-01

    The inner crust of a neutron star, which is composed of a solid Coulomb lattice of nuclei immersed in a neutron super-fluid, is studied from both a macroscopic and a microscopic level. In the first part, we develop a non-relativistic but 4-dimensionally covariant formulation of the hydrodynamics of a perfect fluid mixture based on a variational principle. This formalism is applied to the description of neutron star crust as 2-fluid model, a neutron super-fluid and a plasma of nuclei and electrons coupled via non dissipative entrainment effects, whose microscopic evaluation is studied in a second part. Applying mean field methods beyond the Wigner-Seitz approximation, the Bragg scattering of dripped neutrons upon crustal nuclei lead to a 'mesoscopic' effective neutron mass, which unlike the 'microscopic' effective mass, takes very large values compared to the bare mass in the middle layers of the crust. (author)

  4. Neutrino signal from pair-instability supernovae

    Science.gov (United States)

    Wright, Warren P.; Gilmer, Matthew S.; Fröhlich, Carla; Kneller, James P.

    2017-11-01

    A very massive star with a carbon-oxygen core in the range of 64M ⊙Earth from two, one-dimensional pair-instability supernova simulations which bracket the mass range of stars which explode by this mechanism taking into account the full time and energy dependence of the neutrino emission and the flavor evolution through the outer layers of the star. We calculate the neutrino signals in five different detectors chosen to represent present or near future designs. We find the more massive progenitors explode as pair-instability supernova which can easily be detected in multiple different neutrino detectors at the "standard" supernova distance of 10 kpc producing several events in DUNE, JUNO, and Super-Kamiokande, while the lightest progenitors produce only a handful of events (if any) in the same detectors. The proposed Hyper-Kamiokande detector would detect neutrinos from a large pair-instability supernova as far as ˜50 kpc allowing it to reach the Megallanic Clouds and the several very high mass stars known to exist there.

  5. Oscillations During Thermonuclear X-ray Bursts: A New Probe of Neutron Stars

    Science.gov (United States)

    Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Observations of thermonuclear (also called Type 1) X-ray bursts from neutron stars in low mass X-ray binaries (LMXB) with the Rossi X-ray Timing Explorer (RXTE) have revealed large amplitude, high coherence X-ray brightness oscillations with frequencies in the 300 - 600 Hz range. Substantial spectral and timing evidence point to rotational modulation of the X-ray burst flux as the cause of these oscillations, and it is likely that they reveal the spin frequencies of neutron stars in LMXB from which they are detected. Here we review the status of our knowledge of these oscillations and describe how they can be used to constrain the masses and radii of neutron stars as well as the physics of thermonuclear burning on accreting neutron stars.

  6. NEUTRONIZATION DURING CARBON SIMMERING IN TYPE IA SUPERNOVA PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Rodríguez, Héctor; Badenes, Carles [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Piro, Anthony L. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Schwab, Josiah, E-mail: hector.mr@pitt.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2016-07-01

    When a Type Ia supernova (SN Ia) progenitor first ignites carbon in its core, it undergoes ∼10{sup 3}–10{sup 4} years of convective burning prior to the onset of thermonuclear runaway. This carbon simmering phase is important for setting the thermal profile and composition of the white dwarf. Using the MESA stellar evolution code, we follow this convective burning and examine the production of neutron-rich isotopes. The neutron content of the SN fuel has important consequences for the ensuing nucleosynthesis, and in particular, for the production of secondary Fe-peak nuclei like Mn and stable Ni. These elements have been observed in the X-ray spectra of SN remnants like Tycho, Kepler, and 3C 397, and their yields can provide valuable insights into the physics of SNe Ia and the properties of their progenitors. We find that weak reactions during simmering can at most generate a neutron excess of ≈ 3 × 10{sup −4}. This is ≈ 70% lower than that found in previous studies that do not take the full density and temperature profile of the simmering region into account. Our results imply that the progenitor metallicity is the main contributor to the neutron excess in SN Ia fuel for Z ≳ 1/3 Z {sub ⊙}. Alternatively, at lower metallicities, this neutron excess provides a floor that should be present in any centrally-ignited SN Ia scenario.

  7. NEUTRONIZATION DURING CARBON SIMMERING IN TYPE IA SUPERNOVA PROGENITORS

    International Nuclear Information System (INIS)

    Martínez-Rodríguez, Héctor; Badenes, Carles; Piro, Anthony L.; Schwab, Josiah

    2016-01-01

    When a Type Ia supernova (SN Ia) progenitor first ignites carbon in its core, it undergoes ∼10 3 –10 4 years of convective burning prior to the onset of thermonuclear runaway. This carbon simmering phase is important for setting the thermal profile and composition of the white dwarf. Using the MESA stellar evolution code, we follow this convective burning and examine the production of neutron-rich isotopes. The neutron content of the SN fuel has important consequences for the ensuing nucleosynthesis, and in particular, for the production of secondary Fe-peak nuclei like Mn and stable Ni. These elements have been observed in the X-ray spectra of SN remnants like Tycho, Kepler, and 3C 397, and their yields can provide valuable insights into the physics of SNe Ia and the properties of their progenitors. We find that weak reactions during simmering can at most generate a neutron excess of ≈ 3 × 10 −4 . This is ≈ 70% lower than that found in previous studies that do not take the full density and temperature profile of the simmering region into account. Our results imply that the progenitor metallicity is the main contributor to the neutron excess in SN Ia fuel for Z ≳ 1/3 Z ⊙ . Alternatively, at lower metallicities, this neutron excess provides a floor that should be present in any centrally-ignited SN Ia scenario.

  8. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  9. Oscillations in neutron stars

    International Nuclear Information System (INIS)

    Hoeye, Gudrun Kristine

    1999-01-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l → 4) f-modes we were also able to derive a formula that determines II l+1 from II l and II l-1 to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n c , while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  10. The d*(2380) in Neutron Stars - A New Degree of Freedom?

    Science.gov (United States)

    Vidaña, I.; Bashkanov, M.; Watts, D. P.; Pastore, A.

    2018-06-01

    Elucidating the appropriate microscopic degrees of freedom within neutron stars remains an open question which impacts nuclear physics, particle physics and astrophysics. The recent discovery of the first non-trivial dibaryon, the d* (2380), provides a new candidate for an exotic degree of freedom in the nuclear equation of state at high matter densities. In this paper a first calculation of the role of the d* (2380) in neutron stars is performed based on a relativistic mean field description of the nucleonic degrees of freedom supplemented by a free boson gas of d* (2380). The calculations indicate that the d* (2380) would appear at densities around three times normal nuclear matter saturation density and comprise around 20% of the matter in the centre of heavy stars with higher fractions possible in the higher densities of merger processes. The d* (2380) would also reduce the maximum star mass by around 15% and have significant influence on the fractional proton/neutron composition. New possibilities for neutron star cooling mechanisms arising from the d* (2380) are also predicted.

  11. Explosive nucleosynthesis in a neutrino-driven core collapse supernova

    International Nuclear Information System (INIS)

    Fujimoto, Shin-ichiro; Kotake, Kei; Hashimoto, Masa-aki; Ono, Masaomi; Ohnishi, Naofumi

    2010-01-01

    We investigate explosive nucleosynthesis in a delayed neutrino-driven, supernova explosion aided by standing accretion shock instability (SASI), based on two-dimensional hydrodynamic simulations of the explosion of a 15 M · star. We take into accounts neutrino heating and cooling as well as change in electron fraction due to weak interactions appropriately, in the two-dimensional simulations. We assume the isotropic emission of neutrinos from the neutrino spheres with given luminosities. and the Fermi-Dirac distribution of given temperatures. We find that the stalled shock revives due to the neutrino heating aided by SASI for cases with L νe ≥3.9x10 52 ergss -1 and the as-pherical shock passes through the outer layers of the star (≥10,000 km), with the explosion energies of ∼10 51 ergs.Next we examine abundances and masses of the supernova ejecta. We find that masses of the ejecta and 56 Ni correlate with the neutrino luminosity, and 56 Ni mass is comparable to that observed in SN 1987A. We also find that abundance pattern of the supernova ejecta is similar to that of the solar system, for cases with high explosion energies of >10 51 ergs. We emphasize that 64 Zn, which is underproduced in the spherical case, is abundantly produced in slightly neutron-rich ejecta.

  12. A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes

    International Nuclear Information System (INIS)

    O'Connor, Evan; Ott, Christian D

    2010-01-01

    We present the new open-source spherically symmetric general-relativistic (GR) hydrodynamics code GR1D. It is based on the Eulerian formulation of GR hydrodynamics (GRHD) put forth by Romero-Ibanez-Gourgoulhon and employs radial-gauge, polar-slicing coordinates in which the 3+1 equations simplify substantially. We discretize the GRHD equations with a finite-volume scheme, employing piecewise-parabolic reconstruction and an approximate Riemann solver. GR1D is intended for the simulation of stellar collapse to neutron stars and black holes and will also serve as a testbed for modeling technology to be incorporated in multi-D GR codes. Its GRHD part is coupled to various finite-temperature microphysical equations of state in tabulated form that we make available with GR1D. An approximate deleptonization scheme for the collapse phase and a neutrino-leakage/heating scheme for the postbounce epoch are included and described. We also derive the equations for effective rotation in 1D and implement them in GR1D. We present an array of standard test calculations and also show how simple analytic equations of state in combination with presupernova models from stellar evolutionary calculations can be used to study qualitative aspects of black hole formation in failing rotating core-collapse supernovae. In addition, we present a simulation with microphysical equations of state and neutrino leakage/heating of a failing core-collapse supernova and black hole formation in a presupernova model of a 40 M o-dot zero-age main-sequence star. We find good agreement on the time of black hole formation (within 20%) and last stable protoneutron star mass (within 10%) with predictions from simulations with full Boltzmann neutrino radiation hydrodynamics.

  13. A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Evan; Ott, Christian D, E-mail: evanoc@tapir.caltech.ed, E-mail: cott@tapir.caltech.ed [TAPIR, Mail Code 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2010-06-07

    We present the new open-source spherically symmetric general-relativistic (GR) hydrodynamics code GR1D. It is based on the Eulerian formulation of GR hydrodynamics (GRHD) put forth by Romero-Ibanez-Gourgoulhon and employs radial-gauge, polar-slicing coordinates in which the 3+1 equations simplify substantially. We discretize the GRHD equations with a finite-volume scheme, employing piecewise-parabolic reconstruction and an approximate Riemann solver. GR1D is intended for the simulation of stellar collapse to neutron stars and black holes and will also serve as a testbed for modeling technology to be incorporated in multi-D GR codes. Its GRHD part is coupled to various finite-temperature microphysical equations of state in tabulated form that we make available with GR1D. An approximate deleptonization scheme for the collapse phase and a neutrino-leakage/heating scheme for the postbounce epoch are included and described. We also derive the equations for effective rotation in 1D and implement them in GR1D. We present an array of standard test calculations and also show how simple analytic equations of state in combination with presupernova models from stellar evolutionary calculations can be used to study qualitative aspects of black hole formation in failing rotating core-collapse supernovae. In addition, we present a simulation with microphysical equations of state and neutrino leakage/heating of a failing core-collapse supernova and black hole formation in a presupernova model of a 40 M{sub o-dot} zero-age main-sequence star. We find good agreement on the time of black hole formation (within 20%) and last stable protoneutron star mass (within 10%) with predictions from simulations with full Boltzmann neutrino radiation hydrodynamics.

  14. Asymmetric nuclear matter and neutron star properties within the extended Brueckner theory

    Energy Technology Data Exchange (ETDEWEB)

    Hassaneen, Khaled S.A. [Sohag University, Physics Department, Faculty of Science, Sohag (Egypt); Taif University, Physics Department, Faculty of Science, Taif (Saudi Arabia)

    2017-01-15

    Microscopically, the equation of state (EOS) and other properties of asymmetric nuclear matter at zero temperature have been investigated extensively by adopting the non-relativistic Brueckner-Hartree-Fock (BHF) and the extended BHF approaches by using the self-consistent Green's function approach or by including a phenomenological three-body force. Once three-body forces are introduced, the phenomenological saturation point is reproduced and the theory is applied to the study of neutron star properties. We can calculate the total mass and radius for neutron stars using various equations of state at high densities in β-equilibrium without hyperons. A comparison with other microscopic predictions based on non-relativistic and density-dependent relativistic mean-field calculations has been done. It is found that relativistic EOS yields however larger mass and radius for neutron star than predictions based on non-relativistic approaches. Also the three-body force plays a crucial role to deduce the theoretical value of the maximum mass of neutron stars in agreement with recent measurements of the neutron star mass. (orig.)

  15. Structure and thermal evolution of spinning-down neutron stars

    International Nuclear Information System (INIS)

    Negreiros, R.; Schramm, S.; Weber, F.

    2011-01-01

    In this paper we address the effects of spin-down on the cooling of neutron stars. During its evolution, stellar composition and structure might be substantially altered, as a result of spin-down and the consequent density increase. Since the timescale of cooling might be comparable to to that of the spin-evolution, the modifications to the structure/composition might have important effects on the thermal evolution of the object. We show that the direct Urca process might be delayed or supressed, when spin-down is taken into account. This leads to neutron stars with slow cooling, as opposed to enhanced cooling as would be the case if a "froze-in" structure and composition were considered. In conclusion we demonstrate that the inclusion of spin-down effects on the cooling of neutron stars have far-reaching implications for the interpretation of pulsars. (author)

  16. How well can gravitational wave observations of coalescing binaries involving neutron stars constrain the neutron star equation of state?

    International Nuclear Information System (INIS)

    Bose, Sukanta

    2015-01-01

    The Advanced LIGO detectors began observation runs a few weeks ago. This has afforded relativists and astronomers the opportunity to use gravitational waves to improve our understanding of a variety of astronomical objects and phenomena. In this talk I will examine how well gravitational wave observations of coalescing binaries involving neutron stars might constrain the neutron star (NS) equation of state. These astrophysical constraints can improve our understanding of nuclear interactions in ways that complement the knowledge acquired from terrestrial labs. I will study the effects of different NS equations of states in both NS-NS and NS-Black Hole systems, with and without spin, on these constraint. (author)

  17. Neutron stars with equation of state given by nuclear Thomas-Fermi model

    International Nuclear Information System (INIS)

    Chung, K.C.; Kodama, T.

    1978-01-01

    A equation of state for neutron gas, based on Thomas-Fermi model, is used to recalculate the maximum mass of neutron stars. The complete equation of state is found to present a first order phase transition between the subnuclear regime without free neutron and the nuclear regime. This suggests that the sudden disintegration of the neutron-rich-nuclei may be very competitive with relation to the continuous neutron drip process. The mass limit for neutron stars was found to be 3.26 M 0 [pt

  18. WHEN CAN GRAVITATIONAL-WAVE OBSERVATIONS DISTINGUISH BETWEEN BLACK HOLES AND NEUTRON STARS?

    International Nuclear Information System (INIS)

    Hannam, Mark; Fairhurst, Stephen; Brown, Duncan A.; Fryer, Chris L.; Harry, Ian W.

    2013-01-01

    Gravitational-wave observations of compact binaries have the potential to uncover the distribution of masses and spins of black holes and neutron stars in the universe. The binary components' physical parameters can be inferred from their effect on the phasing of the gravitational-wave signal, but a partial degeneracy between the components' mass ratio and their spins limits our ability to measure the individual component masses. At the typical signal amplitudes expected by the Advanced Laser Interferometer Gravitational-wave Observatory (signal-to-noise ratios between 10 and 20), we show that it will in many cases be difficult to distinguish whether the components are neutron stars or black holes. We identify when the masses of the binary components could be unambiguously measured outside the range of current observations: a system with a chirp mass M ≤ 0.871 M ☉ would unambiguously contain the smallest-mass neutron star observed, and a system with M ≥ 2.786 M ☉ must contain a black hole. However, additional information would be needed to distinguish between a binary containing two 1.35 M ☉ neutron stars and an exotic neutron-star-black-hole binary. We also identify those configurations that could be unambiguously identified as black hole binaries, and show how the observation of an electromagnetic counterpart to a neutron-star-black-hole binary could be used to constrain the black hole spin.

  19. Accretion of matter onto highly magnetized neutron stars: Final report, July 1-September 30, 1985

    International Nuclear Information System (INIS)

    Hernquist, L.

    1986-06-01

    A final report is given of two research projects dealing with magnetic fields of neutron stars. These are the modulation of thermal x-rays from cooling neutron stars and plasma instabilities in neutron star accretion columns

  20. Neutral currents, supernovae neutrinos, and nucleosynthesis

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1988-01-01

    The inelastic interactions of neutrinos during stellar collapse and neutron star cooling are discussed. The primary mechanism for dissipative neutrino reactions is nuclear excitation by neutral current scattering, a process not included in standard descriptions of supernovae. Charge-current and neutral current ''preheating'' of iron lying outside the shock front appears to be significant in the few milliseconds near shock breakout. This could help produce a more energetic shock. During the cooling phase, the neutral current interactions of muon and taon neutrinos appear to be responsible for some interesting nucleosynthesis. I discuss two examples the production of fluorine and neutrino-induced r-process nucleosynthesis. 26 refs., 1 fig., 3 tabs

  1. Unified description of astrophysical properties of neutron stars independent of the equation of state

    Science.gov (United States)

    Pappas, George

    2015-12-01

    In recent years, a lot of work was done that has revealed some very interesting properties of neutron stars. One can relate the first few multipole moments of a neutron star, or quantities that can be derived from them, with relations that are independent of the equation of state (EoS). This is a very significant result that has great implications for the description of neutron stars and in particular for the description of the spacetime around them. Additionally, it was recently shown that there is a four-parameter analytic spacetime, known as the two-soliton spacetime, which can accurately capture the properties of the geometry around neutron stars. This allows for the possibility of describing in a unified formalism the astrophysically relevant properties of the spacetime around a neutron star independently of the particulars of the EoS for the matter of the star. More precisely, the description of these astrophysical properties is done using an EoS omniscient spacetime that can describe the exterior of any neutron star. In the present work, we investigate properties such as the location of the innermost stable circular orbit RISCO (or the surface of the star when the latter overcomes the former), the various frequencies of perturbed circular equatorial geodesics, the efficiency of an accretion disc, its temperature distribution, and other properties associated with the emitted radiation from the disc, in a way that holds for all possible choices of a realistic EoS for the neutron star. Furthermore, we provide proof of principle that if one were to measure the right combinations of pairs of these properties, with the additional knowledge of the mass of the neutron star, one could determine the EoS of the star.

  2. Are neutron stars crushed? Gravitomagnetic tidal fields as a mechanism for binary-induced collapse

    International Nuclear Information System (INIS)

    Favata, Marc

    2006-01-01

    Numerical simulations of binary neutron stars by Wilson, Mathews, and Marronetti indicated that neutron stars that are stable in isolation can be made to collapse to black holes when placed in a binary. This claim was surprising as it ran counter to the Newtonian expectation that a neutron star in a binary should be more stable, not less. After correcting an error found by Flanagan, Wilson and Mathews found that the compression of the neutron stars was significantly reduced but not eliminated. This has motivated us to ask the following general question: Under what circumstances can general-relativistic tidal interactions cause an otherwise stable neutron star to be compressed? We have found that if a nonrotating neutron star possesses a current-quadrupole moment, interactions with a gravitomagnetic tidal field can lead to a compressive force on the star. If this current quadrupole is induced by the gravitomagnetic tidal field, it is related to the tidal field by an equation-of-state-dependent constant called the gravitomagnetic Love number. This is analogous to the Newtonian Love number that relates the strength of a Newtonian tidal field to the induced mass quadrupole moment of a star. The compressive force is almost never larger than the Newtonian tidal interaction that stabilizes the neutron star against collapse. In the case in which a current quadrupole is already present in the star (perhaps as an artifact of a numerical simulation), the compressive force can exceed the stabilizing one, leading to a net increase in the central density of the star. This increase is small (< or approx. 1%) but could, in principle, cause gravitational collapse in a star that is close to its maximum mass. This paper also reviews the history of the Wilson-Mathews-Marronetti controversy and, in an appendix, extends the discussion of tidally induced changes in the central density to rotating stars

  3. Supernova Explosions Stay In Shape

    Science.gov (United States)

    2009-12-01

    At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular

  4. Spontaneous scalarization with an extremely massive field and heavy neutron stars

    Science.gov (United States)

    Morisaki, Soichiro; Suyama, Teruaki

    2017-10-01

    We investigate the internal structure and the mass-radius relation of neutron stars in a recently proposed scalar-tensor theory dubbed asymmetron in which a massive scalar field undergoes spontaneous scalarization inside neutron stars. We focus on the case where the Compton wavelength is shorter than 10 km, which has not been investigated in the literature. By solving the modified Einstein equations, either purely numerically or by partially using a semianalytic method, we find that not only the weakening of gravity by spontaneous scalarization but also the scalar force affect the internal structure significantly in the massive case. We also find that the maximum mass of neutron stars is larger for certain parameter sets than that in general relativity and reaches 2 M⊙ even if the effect of strange hadrons is taken into account. There is even a range of parameters where the maximum mass of neutron stars largely exceeds the threshold that violates the causality bound in general relativity.

  5. Asymmetric explosion of core-collapse supernovae

    International Nuclear Information System (INIS)

    Kazeroni, Remi

    2016-01-01

    A core-collapse supernova represents the ultimate stage of the evolution of massive stars.The iron core contraction may be followed by a gigantic explosion which gives birth to a neutron star.The multidimensional dynamics of the innermost region, during the first hundreds milliseconds, plays a decisive role on the explosion success because hydrodynamical instabilities are able to break the spherical symmetry of the collapse. Large scale transverse motions generated by two instabilities, the neutrino-driven convection and the Standing Accretion Shock Instability (SASI),increase the heating efficiency up to the point of launching an asymmetric explosion and influencing the birth properties of the neutron star. In this thesis, hydrodynamical instabilities are studied using numerical simulations of simplified models. These models enable a wide exploration of the parameter space and a better physical understanding of the instabilities, generally inaccessible to realistic models.The non-linear regime of SASI is analysed to characterize the conditions under which a spiral mode prevails and to assess its ability to redistribute angular momentum radially.The influence of rotation on the shock dynamics is also addressed. For fast enough rotation rates, a corotation instability overlaps with SASI and greatly impacts the dynamics. The simulations enable to better constrain the effect of non-axisymmetric modes on the angular momentum budget of the iron core collapsing into a neutron star. SASI may under specific conditions spin up or down the pulsar born during the explosion. Finally, an idealised model of the heating region is studied to characterize the non-linear onset of convection by perturbations such as those produced by SASI or pre-collapse combustion inhomogeneities. The dimensionality issue is examined to stress the beneficial consequences of the three-dimensional dynamics on the onset of the explosion. (author) [fr

  6. The Aftermath of GW170817: Neutron Star or Black Hole?

    Science.gov (United States)

    Kohler, Susanna

    2018-06-01

    When two neutron stars merged in August of last year, leading to the first simultaneous detection of gravitational waves and electromagnetic signals, we knew this event was going to shed new light on compact-object mergers.A team of scientists says we now have an answer to one of the biggest mysteries of GW170817: after the neutron stars collided, what object was formed?Artists illustration of the black hole that resulted from GW170817. Some of the material accreting onto the black hole is flung out in a tightly collimated jet. [NASA/CXC/M.Weiss]A Fuzzy DivisionBased on gravitational-wave observations, we know that two neutron stars of about 1.48 and 1.26 solar masses merged in GW170817. But the result an object of 2.7 solar masses doesnt have a definitive identity; the remnant formed in the merger is either the most massive neutron star known or the least massive black hole known.The theoretical mass division between neutron stars and black holes is fuzzy, depending strongly on what model you use to describe the physics of these objects. Observations fall short as well: the most massive neutron star known is perhaps 2.3 solar masses, and the least massive black hole is perhaps 4 or 5, leaving the location of the dividing line unclear. For this reason, determining the nature of GW170817s remnant is an important target as we analyze past observations of the remnant and continue to make new ones.Chandra images of the field of GW170817 during three separate epochs. Each image is 30 x 30. [Adapted from Pooley et al. 2018]Luckily, we may not have long to wait! Led by David Pooley (Trinity University and Eureka Scientific, Inc.), a team of scientists has obtained new Chandra X-ray observations of the remnant of GW170817. By combining this new data with previous observations, the authors have drawn conclusions about what object was left behind after this fateful merger.X-Rays Provide AnswersX-ray radiation is generated in a merger of two neutron stars when the mergers

  7. Gravitational waves from rotating neutron stars and evaluation of fast chirp transform techniques

    CERN Document Server

    Strohmayer, T E

    2002-01-01

    X-ray observations suggest that neutron stars in low mass x-ray binaries (LMXB) are rotating with frequencies in the range 300-600 Hz. These spin rates are significantly less than the break-up rates for essentially all realistic neutron star equations of state, suggesting that some process may limit the spin frequencies of accreting neutron stars to this range. If the accretion-induced spin up torque is in equilibrium with gravitational radiation losses, these objects could be interesting sources of gravitational waves. I present a brief summary of current measurements of neutron star spins in LMXBs based on the observations of high-Q oscillations during thermonuclear bursts (so-called 'burst oscillations'). Further measurements of neutron star spins will be important in exploring the gravitational radiation hypothesis in more detail. To this end, I also present a study of fast chirp transform (FCT) techniques as described by Jenet and Prince (Prince T A and Jenet F A 2000 Phys. Rev. D 62 122001) in the conte...

  8. Are superluminous supernovae and long GRBs the products of dynamical processes in young dense star clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Van den Heuvel, E. P. J. [Astronomical Institute Anton Pannekoek, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Portegies Zwart, S. F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2013-12-20

    Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed 'metal aversion' of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.

  9. Galactic r-process enrichment by neutron star mergers in cosmological simulations of a Milky Way-mass galaxy

    Science.gov (United States)

    van de Voort, Freeke; Quataert, Eliot; Hopkins, Philip F.; Kereš, Dušan; Faucher-Giguère, Claude-André

    2015-02-01

    We quantify the stellar abundances of neutron-rich r-process nuclei in cosmological zoom-in simulations of a Milky Way-mass galaxy from the Feedback In Realistic Environments project. The galaxy is enriched with r-process elements by binary neutron star (NS) mergers and with iron and other metals by supernovae. These calculations include key hydrodynamic mixing processes not present in standard semi-analytic chemical evolution models, such as galactic winds and hydrodynamic flows associated with structure formation. We explore a range of models for the rate and delay time of NS mergers, intended to roughly bracket the wide range of models consistent with current observational constraints. We show that NS mergers can produce [r-process/Fe] abundance ratios and scatter that appear reasonably consistent with observational constraints. At low metallicity, [Fe/H] ≲ -2, we predict there is a wide range of stellar r-process abundance ratios, with both supersolar and subsolar abundances. Low-metallicity stars or stars that are outliers in their r-process abundance ratios are, on average, formed at high redshift and located at large galactocentric radius. Because NS mergers are rare, our results are not fully converged with respect to resolution, particularly at low metallicity. However, the uncertain rate and delay time distribution of NS mergers introduce an uncertainty in the r-process abundances comparable to that due to finite numerical resolution. Overall, our results are consistent with NS mergers being the source of most of the r-process nuclei in the Universe.

  10. STAR FORMATION ASSOCIATED WITH THE SUPERNOVA REMNANT IC443

    International Nuclear Information System (INIS)

    Xu Jinlong; Wang Junjie; Miller, Martin

    2011-01-01

    We have performed submillimeter and millimeter observations in CO lines toward supernova remnant (SNR) IC443. The CO molecular shell coincides well with the partial shell of the SNR detected in radio continuum observations. Broad emission lines and three 1720 MHz OH masers were detected in the CO molecular shell. The present observations have provided further evidence in support of the interaction between the SNR and the adjoining molecular clouds (MCs). The total mass of the MCs is 9.26 x 10 3 M sun . The integrated CO line intensity ratio (R I CO(3-2) /I CO(2-1) ) for the whole MC is between 0.79 and 3.40. The average value is 1.58, which is much higher than previous measurements of individual Galactic MCs. Higher line ratios imply that shocks have driven into the MCs. We conclude that high R I CO(3-2) /I CO(2-1) is identified as a good signature of the SNR-MC interacting system. Based on the IRAS Point Source Catalog and the Two Micron All Sky Survey near-infrared database, 12 protostellar object and 1666 young stellar object (YSO) candidates (including 154 classical T Tauri stars and 419 Herbig Ae/Be stars) are selected. In the interacting regions, the significant enhancement of the number of protostellar objects and YSOs indicates the presence of some recently formed stars. After comparing the characteristic timescales of star formation with the age of IC443, we conclude that the protostellar objects and YSO candidates are not triggered by IC443. For the age of the stellar winds shell, we have performed our calculation on the basis of a stellar wind shell expansion model. The results and analysis suggest that the formation of these stars may be triggered by the stellar winds of the IC443 progenitor.

  11. Collapsing stellar cores and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, R J [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Noorgaard, H [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Chicago Univ., IL (USA). Enrico Fermi Inst.); Bond, J R [Niels Bohr Institutet, Copenhagen (Denmark); California Inst. of Tech., Pasadena (USA). W.K. Kellogg Radiation Lab.)

    1979-05-01

    The evolution of a stellar core is studied during its final quasi-hydrostatic contraction. The core structure and the (poorly known) properties of neutron rich matter are parametrized to include most plausible cases. It is found that the density-temperature trajectory of the material in the central part of the core (the core-center) is insensitive to nearly all reasonable parameter variations. The central density at the onset of the dynamic phase of the collapse (when the core-center begins to fall away from the rest of the star) and the fraction of the emitted neutrinos which are trapped in the collapsing core-center depend quite sensitively on the properties of neutron rich matter. We estimate that the amount of energy Ecm which is imparted to the core-mantle by the neutrinos which escape from the imploded core-center can span a large range of values. For plausible choices of nuclear and model parameters Ecm can be large enough to yield a supernova event.

  12. Multipolar electromagnetic fields around neutron stars: general-relativistic vacuum solutions

    Science.gov (United States)

    Pétri, J.

    2017-12-01

    Magnetic fields inside and around neutron stars are at the heart of pulsar magnetospheric activity. Strong magnetic fields are responsible for quantum effects, an essential ingredient to produce leptonic pairs and the subsequent broad-band radiation. The variety of electromagnetic field topologies could lead to the observed diversity of neutron star classes. Thus, it is important to include multipolar components to a presumably dominant dipolar magnetic field. Exact analytical solutions for these multipoles in Newtonian gravity have been computed in recent literature. However, flat space-time is not adequate to describe physics in the immediate surroundings of neutron stars. We generalize the multipole expressions to the strong gravity regime by using a slowly rotating metric approximation such as the one expected around neutron stars. Approximate formulae for the electromagnetic field including frame dragging are computed from which we estimate the Poynting flux and the braking index. Corrections to leading order in compactness and spin parameter are presented. As far as spin-down luminosity is concerned, it is shown that frame dragging remains irrelevant. For high-order multipoles starting from the quadrupole, the electric part can radiate more efficiently than the magnetic part. Both analytical and numerical tools are employed.

  13. Equation of state and neutrino opacity of dense stellar matter

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, S. (Sanjay)

    2004-01-01

    The properties of matter at densities similar to nuclear density plays an important role in core collapse supernova. In this talk I discuss aspects of the equation of state and weak interactions at high density. I highlight its relation to the temporal and spectral features of the neutrino emission from the newly born neutron star born in the aftermath of a core-collapse supernova. I will briefly comment on how this will impact r-process nucleosynthesis. The hot and dense neutron star (proto-neutron star) born in the aftermath of a core collapse supernova provides a promising environment for r-process nucleosynthesis. The intense temperatures and neutrino fluxes in the vicinity of the proto-neutron star is expected to result in a high entropy neutron-rich wind necessary for successful r-process nucleosynthesis. Although theoretical efforts to simulate core collapse supernova have not been able to provide a mechanism for robust explosions, several key features of the supernova dynamics and early evolution of the proto-neutron star are well understood. Large scale numerical simulations of supernova and neutron star evolution are now being pursued by several groups. Simulating core collapse supernova is challenging because it involves coupled multi-dimensional hydrodynamics and neutrino transport. The neutrinos play a key role since they are the dominant source of energy transport. It is expected that refinements in neutrino transport and better treatment of multi-dimensional effects are needed to understand the explosion mechanism. The temporal and spectral features of the neutrino emission which is emitted from the proto-neutron star is an independent diagnostic of supernova explosion dynamics and early evolution of the proto-neutron star. To accurately predict the ambient conditions just outside the newly born neutron star for the first 10-20 s, we will need to understand both the explosion mechanism and neutrino emission. In this talk I will discuss micro

  14. Supernova models

    International Nuclear Information System (INIS)

    Woosley, S.E.; California, University, Livermore, CA); Weaver, T.A.

    1981-01-01

    Recent progress in understanding the observed properties of type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the Ni-56 produced therein is reviewed. The expected nucleosynthesis and gamma-line spectra for this model of type I explosions and a model for type II explosions are presented. Finally, a qualitatively new approach to the problem of massive star death and type II supernovae based upon a combination of rotation and thermonuclear burning is discussed. While the theoretical results of existing models are predicated upon the assumption of a successful core bounce calculation and the neglect of such two-dimensional effects as rotation and magnetic fields the new model suggests an entirely different scenario in which a considerable portion of the energy carried by an equatorially ejected blob is deposited in the red giant envelope overlying the mantle of the star

  15. Properties of general relativistic irrotational binary neutron stars at the innermost orbit

    International Nuclear Information System (INIS)

    Uryu, K.; Shibata, M.

    2001-01-01

    We investigate properties of binary neutron stars around innermost orbits, assuming that the binary is equal mass and in quasiequilibrium. The quasiequilibrium configurations are numerically computed assuming the existence of a helicoidal Killing vector, conformal flatness for spatial components of the metric, and irrotational velocity field for the neutron stars. The computation is performed for the polytropic equation of state with a wide range of the polytropic index n (= 0.5, 0.66667, 0.8, 1, 1.25), and compactness of neutron stars (M/R) ∞ (= 0.03-0.3). Quasiequilibrium sequences of constant rest mass are appropriate models for the final evolution phase of binary neutron stars. It is found that these sequences are always terminated at the innermost orbit where a cusp (inner Lagrange point) appears at the inner edges of the stellar surface. We apply a turning point method to determine the stability of the innermost orbits and found that the innermost stable circular orbit (ISCO) exists for stiff equations of state (n = 0.5 with any (M/R) ∞ and n = 0.66667 with (M/R) ∞ > or ∼ 0.17). The ISCO for n = 0.5 is carefully analyzed. It is clarified that the ISCO are mainly determined by a hydrodynamic instability for realistic compactness of the neutron stars as 0.14 ∞ < or ∼ 0.2. These configurations at the innermost orbits can be used as initial conditions for fully general relativistic simulation for the binary neutron star merger. (author)

  16. Binary progenitors of supernovae

    Science.gov (United States)

    Trimble, V.

    1984-12-01

    Among the massive stars that are expected to produce Type II, hydrogen-rich supernovae, the presence of a close companion can increase the main sequence mass needed to yield a collapsing core. In addition, due to mass transfer from the primary to the secondary, the companion enhances the stripping of the stellar hydrogen envelope produced by single star winds and thereby makes it harder for the star to give rise to a typical SN II light curve. Among the less massive stars that may be the basis for Type I, hydrogen-free supernovae, a close companion could be an innocent bystander to carbon detonation/deflagration in the primary. It may alternatively be a vital participant which transfers material to a white dwarf primary and drives it to explosive conditions.

  17. Extended I-Love relations for slowly rotating neutron stars

    Science.gov (United States)

    Gagnon-Bischoff, Jérémie; Green, Stephen R.; Landry, Philippe; Ortiz, Néstor

    2018-03-01

    Observations of gravitational waves from inspiralling neutron star binaries—such as GW170817—can be used to constrain the nuclear equation of state by placing bounds on stellar tidal deformability. For slowly rotating neutron stars, the response to a weak quadrupolar tidal field is characterized by four internal-structure-dependent constants called "Love numbers." The tidal Love numbers k2el and k2mag measure the tides raised by the gravitoelectric and gravitomagnetic components of the applied field, and the rotational-tidal Love numbers fo and ko measure those raised by couplings between the applied field and the neutron star spin. In this work, we compute these four Love numbers for perfect fluid neutron stars with realistic equations of state. We discover (nearly) equation-of-state independent relations between the rotational-tidal Love numbers and the moment of inertia, thereby extending the scope of I-Love-Q universality. We find that similar relations hold among the tidal and rotational-tidal Love numbers. These relations extend the applications of I-Love universality in gravitational-wave astronomy. As our findings differ from those reported in the literature, we derive general formulas for the rotational-tidal Love numbers in post-Newtonian theory and confirm numerically that they agree with our general-relativistic computations in the weak-field limit.

  18. Black holes and neutron stars: evolution of binary systems

    International Nuclear Information System (INIS)

    Kraft, R.P.

    1975-01-01

    Evidence for the existence of neutron stars and black holes in binary systems has been reviewed, and the following summarizes the current situation: (1) No statistically significant case has been made for the proposition that black holes and/or neutron stars contribute to the population of unseen companions of ordinary spectroscopic binaries; (2) Plausible evolutionary scenarios can be advanced that place compact X-ray sources into context as descendants of several common types of mass-exchange binaries. The collapse object may be a black hole, a neutron star, or a white dwarf, depending mostly on the mass of the original primary; (3) The rotating neutron star model for the pulsating X-ray sources Her X-1 and Cen X-3 is the simplest interpretation of these objects, but the idea that the pulsations result from the non-radial oscillations of a white dwarf cannot be altogether dismissed. The latter is particularly attractive in the case of Her X-1 because the total mass of the system is small; (4) The black hole picture for Cyg X-1 represents the simplest model that can presently be put forward to explain the observations. This does not insure its correctness, however. The picture depends on a long chain of inferences, some of which are by no means unassailable. (Auth.)

  19. Constraints on perturbative f(R) gravity via neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Arapoğlu, Savaş; Ekşi, K. Yavuz [İstanbul Technical University, Faculty of Science and Letters, Physics Engineering Department, Maslak 34469, İstanbul (Turkey); Deliduman, Cemsinan, E-mail: arapoglu@itu.edu.tr, E-mail: cemsinan@msgsu.edu.tr, E-mail: eksi@itu.edu.tr [Mimar Sinan Fine Arts University, Department of Physics, Beşiktaş 34349, İstanbul (Turkey)

    2011-07-01

    We study the structure of neutron stars in perturbative f(R) gravity models with realistic equations of state. We obtain mass-radius relations in a gravity model of the form f(R) = R+αR{sup 2}. We find that deviations from the results of general relativity, comparable to the variations due to using different equations of state (EoS'), are induced for |α| ∼ 10{sup 9} cm{sup 2}. Some of the soft EoS' that are excluded within the framework of general relativity can be reconciled with the 2 solar mass neutron star recently observed for certain values of α within this range. For some of the EoS' we find that a new solution branch, which allows highly massive neutron stars, exists for values of α greater than a few 10{sup 9} cm{sup 2}. We find constraints on α for a variety of EoS' using the recent observational constraints on the mass-radius relation. These are all 5 orders of magnitude smaller than the recent constraint obtained via Gravity Probe B for this gravity model. The associated length scale √(alpha)approx 10{sup 5} cm is only an order of magnitude smaller than the typical radius of a neutron star, the probe used in this test. This implies that real deviations from general relativity can be even smaller.

  20. Supernova VLBI

    Science.gov (United States)

    Bartel, N.

    2009-08-01

    We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.

  1. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C.

    2003-08-01

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  2. Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C G

    2003-08-15

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  3. Neutrino-driven supernovae: An accretion instability in a nuclear physics controlled environment

    International Nuclear Information System (INIS)

    Janka, H.-T.; Buras, R.; Kitaura Joyanes, F.S.; Marek, A.; Rampp, M.; Scheck, L.

    2005-01-01

    New simulations demonstrate that low-mode, nonradial hydrodynamic instabilities of the accretion shock help starting hot-bubble convection in supernovae and thus support explosions by the neutrino-heating mechanism. The prevailing conditions depend on the high-density equation of state which governs stellar core collapse, core bounce, and neutron star formation. Tests of this sensitivity to nuclear physics variations are shown for spherically symmetric models. Implications of current explosion models for r-process nucleosynthesis are addressed

  4. The Impact of the Nuclear Equation of State in Core Collapse Supernovae

    Science.gov (United States)

    Baird, M. L.; Lentz, E. J.; Hix, W. R.; Mezzacappa, A.; Messer, O. E. B.; Liebendoerfer, M.; TeraScale Supernova Initiative Collaboration

    2005-12-01

    One of the key ingredients to the core collapse supernova mechanism is the physics of matter at or near nuclear density. Included in simulations as part of the Equation of State (EOS), nuclear repulsion experienced at high densities are responsible for the bounce shock, which initially causes the outer envelope of the supernova to expand, as well as determining the structure of the newly formed proto-neutron star. Recent years have seen renewed interest in this fundamental piece of supernova physics, resulting in several promising candidate EOS parameterizations. We will present the impact of these variations in the nuclear EOS using spherically symmetric, Newtonian and General Relativistic neutrino transport simulations of stellar core collapse and bounce. This work is supported in part by SciDAC grants to the TeraScale Supernovae Initiative from the DOE Office of Science High Energy, Nuclear, and Advanced Scientific Computing Research Programs. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for U.S. Department of Energy under contract DEAC05-00OR22725

  5. The influence of hyperons and strong magnetic field in neutron star properties

    International Nuclear Information System (INIS)

    Lopes, L.L.; Menezes, D.P.

    2012-01-01

    Neutron stars are among the most exotic objects in the universe and constitute a unique laboratory to study nuclear matter above the nuclear saturation density. In this work, we study the equation of state (EoS) of the nuclear matter within a relativistic model subject to a strong magnetic field. We then apply this EoS to study and describe some of the physical characteristics of neutron stars, especially the massradius relation and chemical compositions. To study the influence of the magnetic field and the hyperons in the stellar interior, we consider altogether four solutions: two different magnetic fields to obtain a weak and a strong influence; and two configurations: a family of neutron stars formed only by protons, electrons, and neutrons and a family formed by protons, electrons, neutrons, muons, and hyperons. The limit and the validity of the results found are discussed with some care. In all cases, the particles that constitute the neutron star are in ,B equilibrium and zero total net charge. Our work indicates that the effect of a strong magnetic field has to be taken into account in the description of magnetars, mainly if we believe that there are hyperons in their interior, in which case the influence of the magnetic field can increase the mass by more than 10 %. We have also seen that although a magnetar can reach 2.48 M0, a natural explanation of why we do not know pulsars with masses above 2.0 Mo arises. We also discuss how the magnetic field affects the strangeness fraction in some standard neutron star masses, and to conclude our paper, we revisit the direct Urca process related to the cooling of the neutron stars and show how it is affected by the hyperons and the magnetic field. (author)

  6. QCD matter in white dwarfs and supernova collapse

    International Nuclear Information System (INIS)

    Mathews, Grant J.; Meixner, M.; Lan, N.Q.; Suh, I.-S.

    2010-01-01

    The search for astrophysical evidence for a transition to QCD matter is an important goal. Although much effort has gone into searching for neutron star candidates, here we describe the exploration of two other possible signatures. One is the search for strange dwarfs. Masses and radii for a large number of white dwarfs have been deduced from a combination of proper motion studies, Hipparcos parallax distances, effective temperatures, and binary or spectroscopic masses. Some stars appear to have radii which are significantly smaller than that expected for a standard electron-degenerate white-dwarf equation of state. We argue that there is marginal evidence for bimodality in the radius distribution. We show that the data exhibit several features consistent with the expected mass-radius relation of strange dwarfs. We identify eight nearby white dwarfs that are possible candidates for strange matter cores and suggest observational tests of this hypothesis. We also review the current status of core-collapse supernova research, and in particular, the effects on the explosion of a QCD phase transition in the proto-neutron-star core. We describe how a first order transition could enhance the explosion and lead to observable effects in the emergent neutrino light curve. (author)

  7. Neutron star matter equation of state: current status and challenges

    Science.gov (United States)

    Ohnishi, Akira

    2014-09-01

    Neutron star matter has a variety of constituents and structures depending on the density; neutron-rich nuclei surounded by electrons and drip neutrons in the crust, pasta nuclei at the bottom of inner crust, and uniform isospin-asymmetric nuclear matter in a superfluid state in the outer core. In the inner core, the neutron Fermi energy becomes so large that exotic constituents such as hyperons, mesons and quarks may emerge. Radioactive beam and hypernuclear experiments provide information on the symmetry energy and superfluidity in the crust and outer core and on the hyperon potentials in the inner core, respectively. Cold atom experiments are also helpful to understand pure neutron matter, which may be simulated by the unitary gas. An equation of state (EOS) constructed based on these laboratory experiments has to be verified by the astronomical observations such as the mass, radius, and oscillations of neutron stars. One of the key but missing ingredients is the three-baryon interactions such as the hyperon-hyperon-nucleon (YYN) interaction. YYN interaction is important in order to explain the recently discovered massive neutron stars consistently with laboratory experiments. We have recently found that the ΛΛ interaction extracted from the ΛΛ correlation at RHIC is somewhat stronger than that from double Λ hypernuclei. Since these two interactions corresponds to the vacuum and in-medium ΛΛ interactions, respectively, the difference may tell us a possible way to access the YYN interaction based on experimental data. In the presentation, after a review on the current status of neutron star matter EOS studies, we discuss the necessary tasks to pin down the EOS. We also present our recent study of ΛΛ interaction from correlation data at RHIC.

  8. Dynamical response of the nuclear 'pasta' in neutron star crusts

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Perez-Garcia, M.A.; Berry, D.K.; Piekarewicz, J.

    2005-01-01

    The nuclear pasta - a novel state of matter having nucleons arranged in a variety of complex shapes - is expected to be found in the crust of neutron stars and in core-collapse supernovae at subnuclear densities of about 10 14 g/cm 3 . Owing to frustration, a phenomenon that emerges from the competition between short-range nuclear attraction and long-range Coulomb repulsion, the nuclear pasta displays a preponderance of unique low-energy excitations. These excitations could have a strong impact on many transport properties, such as neutrino propagation through stellar environments. The excitation spectrum of the nuclear pasta is computed via a molecular-dynamics simulation involving up to 100,000 nucleons. The dynamic response of the pasta displays a classical plasma oscillation in the 1- to 2-MeV region. In addition, substantial strength is found at low energies. Yet this low-energy strength is missing from a simple ion model containing a single-representative heavy nucleus. The low-energy strength observed in the dynamic response of the pasta is likely to be a density wave involving the internal degrees of freedom of the clusters

  9. Theoretical models for supernovae

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1981-01-01

    The results of recent numerical simulations of supernova explosions are presented and a variety of topics discussed. Particular emphasis is given to (i) the nucleosynthesis expected from intermediate mass (10sub solar less than or equal to M less than or equal to 100 Msub solar) Type II supernovae and detonating white dwarf models for Type I supernovae, (ii) a realistic estimate of the γ-line fluxes expected from this nucleosynthesis, (iii) the continued evolution, in one and two dimensions, of intermediate mass stars wherein iron core collapse does not lead to a strong, mass-ejecting shock wave, and (iv) the evolution and explosion of vary massive stars M greater than or equal to 100 Msub solar of both Population I and III. In one dimension, nuclear burning following a failed core bounce does not appear likely to lead to a supernova explosion although, in two dimensions, a combination of rotation and nuclear burning may do so. Near solar proportions of elements from neon to calcium and very brilliant optical displays may be created by hypernovae, the explosions of stars in the mass range 100 M/sub solar/ to 300 M/sub solar/. Above approx. 300 M/sub solar/ a black hole is created by stellar collapse following carbon ignition. Still more massive stars may be copious producers of 4 He and 14 N prior to their collapse on the pair instability

  10. Quark matter inside neutron stars in an effective chiral model

    International Nuclear Information System (INIS)

    Kotlorz, A.; Kutschera, M.

    1994-02-01

    An effective chiral model which describes properties of a single baryon predicts that the quark matter relevant to neutron stars, close to the deconfinement density, is in a chirally broken phase. We find the SU(2) model that pion-condensed up and down quark matter is preferred energetically at neutron star densities. It exhibits spin ordering and can posses a permanent magnetization. The equation of state of quark matter with chiral condensate is very well approximated by bag model equation of the state with suitably chosen parameters. We study quark cores inside neutron stars in this model using realistic nucleon equations of state. The biggest quark core corresponds to the second order phase transition to quark matter. Magnetic moment of the pion-condensed quark core is calculated. (author). 19 refs, 10 refs, 1 tab

  11. Bounds on the mass and the moment of inertia of nonrotating neutron stars

    International Nuclear Information System (INIS)

    Sabbadini, A.G.

    1976-01-01

    Bounds are placed on the mass and the moment of inertia of relativistic, spherical, perfect fluid neutron stars, under minimal assumptions on the equation of state of neutron star matter above nuclear densities. The assumptions are: the pressure p, the density rho, and the derivative dp/d rho are positive. The equation of state is assumed to be known below the density rho 0 = 5 x 10 14 g/cm 3 . The upper bound on the mass of a nonrotating neutron star, under these assumptions, is found to be 5 M/sub solar mass/. Upper and lower bounds on the moment of inertia are derived: for a spherical star of given mass and radius (without assuming a specific equation of state in any density region); for a spherical neutron star of arbitrary mass and radius; for a spherical neutron star of given mass. These bounds are optimum ones, in the sense that there always exists a configuration consistent with the assumptions, having a moment of inertia equal to the bound. Using these results for the moment of inertia, the correction to the upper bound on the mass due to slow rotation is discussed

  12. Testing the deep-crustal heating model using quiescent neutron-star very-faint X-ray transients and the possibility of partially accreted crusts in accreting neutron stars

    Science.gov (United States)

    Wijnands, R.; Degenaar, N.; Page, D.

    2013-07-01

    It is assumed that accreting neutron stars in low-mass X-ray binaries are heated due to the compression of the existing crust by the freshly accreted matter which gives rise to a variety of nuclear reactions in the crust. It has been shown that most of the energy is released deep in the crust by pycnonuclear reactions involving low-Z elements (the deep-crustal heating scenario). In this paper we discuss if neutron stars in the so-called very-faint X-ray transients (VFXTs; those transients have outburst peak 2-10 keV X-ray luminosities short-term (less than a few tens of thousands of years) and the one throughout their lifetime. The latter is particularly important because it can be so low that the neutron stars might not have accreted enough matter to become massive enough that enhanced core cooling processes become active. Therefore, they could be relatively warm compared to other systems for which such enhanced cooling processes have been inferred. However, the amount of matter can also not be too low because then the crust might not have been replaced significantly by accreted matter and thus a hybrid crust of partly accreted and partly original, albeit further compressed matter, might be present. This would inhibit the full range of pycnonuclear reactions to occur and therefore possibly decrease the amount of heat deposited in the crust. More detailed calculations of the heating and cooling properties of such hybrid crusts have to be performed to be conclusive. Furthermore, better understanding is needed about how a hybrid crust affects other properties such as the thermal conductivity. A potentially interesting way to observe the effects of a hybrid crust on the heating and cooling of an accreting neutron star is to observe the crust cooling of such a neutron star after a prolonged (years to decades) accretion episode and compare the results with similar studies performed for neutron stars with a fully accreted crust. We also show that some individual neutron-star

  13. Mesonic and Quark Degrees of Freedom in the Neutron Star Matter

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.; Niemiec, J.; Stachniewicz, S.

    1999-01-01

    Full text: It is expected that mesonic and quark degrees of freedom may play an important role in the physics of dense matter in neutron stars. Any conclusions, however, as to the presence of e.g. meson condensates and/or quark matter inside neutron stars are subject to uncertainties which reflect incompatible model predictions at a purely nucleon level. In our project, as far as mesonic contributions to the equation of state of dense matter are concerned, we focus on the role of kaons and the isovector scalar meson a 0 (980). We find that a threshold density for the kaon condensate to form is very sensitive to a high density behaviour of the electron chemical potential, which is not well known due to uncertainties of nucleon-nucleon interactions. An important effect of the inclusion of the a 0 meson is a splitting of proton and neutron masses in the neutron star matter. A proper construction of the nucleon-quark phase transition in dense neutron star matter predicts that nucleons and quarks coexist over a finite range of pressure, with quarks (nucleons) filling gradually larger (smaller) fraction of space. We find, using a simple bag-model equation of state for the quark matter, that properties of such a mixed quark-nucleon phase are determined by the behaviour of nucleon matter isobars which is sensitive to the nuclear symmetry energy at high densities. We study also implications of the presence of a mixed phase for the structure of neutron stars. (author)

  14. Neutron Star Models in Alternative Theories of Gravity

    Science.gov (United States)

    Manolidis, Dimitrios

    We study the structure of neutron stars in a broad class of alternative theories of gravity. In particular, we focus on Scalar-Tensor theories and f(R) theories of gravity. We construct static and slowly rotating numerical star models for a set of equations of state, including a polytropic model and more realistic equations of state motivated by nuclear physics. Observable quantities such as masses, radii, etc are calculated for a set of parameters of the theories. Specifically for Scalar-Tensor theories, we also calculate the sensitivities of the mass and moment of inertia of the models to variations in the asymptotic value of the scalar field at infinity. These quantities enter post-Newtonian equations of motion and gravitational waveforms of two body systems that are used for gravitational-wave parameter estimation, in order to test these theories against observations. The construction of numerical models of neutron stars in f(R) theories of gravity has been difficult in the past. Using a new formalism by Jaime, Patino and Salgado we were able to construct models with high interior pressure, namely pc > rho c/3, both for constant density models and models with a polytropic equation of state. Thus, we have shown that earlier objections to f(R) theories on the basis of the inability to construct viable neutron star models are unfounded.

  15. Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution

    Science.gov (United States)

    Lund, Tina; Kneller, James P.

    2013-07-01

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova (ccSN) and reveal the complicated inner workings of the explosion we need a thorough understanding of the neutrino flavor evolution from the proto-neutron star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution in three different progenitors and include collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) conversion due to the shock wave passage through the star, and the impact of turbulence. We consider both normal and inverted neutrino mass hierarchies and a value of θ13 close to the current experimental measurements. In the Oxygen-Neon-Magnesium (ONeMg) supernova we find that the impact of turbulence is both brief and slight during a window of 1-2 seconds post bounce. This is because the shock races through the star extremely quickly and the turbulence amplitude is expected to be small, less than 10%, since these stars do not require multidimensional physics to explode. Thus the spectral features of collective and shock effects in the neutrino signals from Oxygen-Neon-Magnesium supernovae may be almost turbulence free making them the easiest to interpret. For the more massive progenitors we again find that small amplitude turbulence, up to 10%, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence is added, 30% and 50%, which is justified by the requirement of multidimensional physics in order to make these stars explode, the features of collective and shock wave effects in the high (H) density resonance channel are almost completely obscured at late times. Yet at the same time we find the other mixing channels—the low (L

  16. Neutron-Star Merger Detected By Many Eyes and Ears

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Where were you on Thursday, 17 August 2017? I was in Idaho, getting ready for Monday mornings solar eclipse. What I didnt know was that, at the time, around 70 teams around the world were mobilizing to point their ground- and space-based telescopes at a single patch of sky suspected to host the first gravitational-wave-detected merger of two neutron stars.Sudden Leaps for ScienceThe masses for black holes detected through electromagnetic observations (purple), black holes measured by gravitational-wave observations (blue), neutron stars measured with electromagnetic observations (yellow), and the neutron stars that merged in GW170817 (orange). [LIGO-Virgo/Frank Elavsky/NorthwesternUniversity]The process of science is long and arduous, generally occurring at a slow plod as theorists make predictions, and observations are then used to chip away at these theories, gradually confirming or disproving them. It is rare that science progresses forward in a giant leap, with years upon years of theories confirmed in one fell swoop.14 September 2015 marked the day of one such leap, as the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected gravitational waves for the first time simultaneously verifying that black holes exist, that black-hole binaries exist, and that they can merge on observable timescales, emitting signals that directly confirm the predictions of general relativity.As it turns out, 17 August 2017 was another such day. On this day, LIGO observed a gravitational-wave signal unlike its previous black-hole detections. Instead, this was a signal consistent with the merger of two neutron stars.Artists illustrations of the stellar-merger model for short gamma-ray bursts. In the model, 1) two neutron stars inspiral, 2) they merge and produce a gamma-ray burst, 3) a small fraction of their mass is flung out and radiates as a kilonova, 4) a massive neutron star or black hole with a disk remains after the event. [NASA, ESA, and A. Feild (STScI)]What We

  17. Search for dark matter effects on gravitational signals from neutron star mergers

    Science.gov (United States)

    Ellis, John; Hektor, Andi; Hütsi, Gert; Kannike, Kristjan; Marzola, Luca; Raidal, Martti; Vaskonen, Ville

    2018-06-01

    Motivated by the recent detection of the gravitational wave signal emitted by a binary neutron star merger, we analyse the possible impact of dark matter on such signals. We show that dark matter cores in merging neutron stars may yield an observable supplementary peak in the gravitational wave power spectral density following the merger, which could be distinguished from the features produced by the neutron components.

  18. Search for dark matter effects on gravitational signals from neutron star mergers

    OpenAIRE

    Ellis, John; Hektor, Andi; Hütsi, Gert; Kannike, Kristjan; Marzola, Luca; Raidal, Martti; Vaskonen, Ville

    2018-01-01

    Motivated by the recent detection of the gravitational wave signal emitted by a binary neutron star merger, we analyse the possible impact of dark matter on such signals. We show that dark matter cores in merging neutron stars may yield an observable supplementary peak in the gravitational wave power spectral density following the merger, which could be distinguished from the features produced by the neutron components.

  19. arXiv Gravitational-wave constraints on the neutron-star-matter Equation of State

    CERN Document Server

    Annala, Eemeli; Kurkela, Aleksi; Vuorinen, Aleksi

    The LIGO/Virgo detection of gravitational waves originating from a neutron-star merger, GW170817, has recently provided new stringent limits on the tidal deformabilities of the stars involved in the collision. Combining this measurement with the existence of two-solar-mass stars, we generate a generic family of neutron-star-matter Equations of State (EoSs) that interpolate between state-of-the-art theoretical results at low and high baryon density. Comparing the results to ones obtained without the tidal-deformability constraint, we witness a dramatic reduction in the family of allowed EoSs. Based on our analysis, we conclude that the maximal radius of a 1.4-solar-mass neutron star is 13.6 km, and that smallest allowed tidal deformability of a similar-mass star is $\\Lambda(1.4 M_\\odot) = 120$.

  20. Effective interaction: From nuclear reactions to neutron stars

    Indian Academy of Sciences (India)

    pact stars. The nuclear EoS for β-equilibrated neutron star (NS) matter obtained using density-dependent effective nucleon–nucleon interaction satisfies the constraints from the observed flow data from heavy-ion collisions. The energy density of quark matter is lower than that of the nuclear EoS at higher densities implying ...

  1. HD271791: dynamical versus binary-supernova ejection scenario

    OpenAIRE

    Gvaramadze, V. V.

    2009-01-01

    The atmosphere of the extremely high-velocity (530-920 km/s) early B-type star HD271791 is enriched in $\\alpha$-process elements, which suggests that this star is a former secondary component of a massive tight binary system and that its surface was polluted by the nucleosynthetic products after the primary star exploded in a supernova. It was proposed that the (asymmetric) supernova explosion unbind the system and that the secondary star (HD271791) was released at its orbital velocity in the...

  2. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    International Nuclear Information System (INIS)

    Bagchi, Manjari; Torres, Diego F.

    2014-01-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?

  3. Structure and stability of warm cores in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez Cabanell, J M [Departamento de Mecanica y Astronomia, Facultad de Matematicas, Burjasot-Valencia (Spain)

    1981-12-01

    Relativistic equations of structure are solved using Lamb's equations of state for warm neutron degenerate matter. The stability of isothermal cores in neutron stars is discussed and also the possible compatibility of the results obtained with experimental evidence is shown.

  4. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach.

    Science.gov (United States)

    Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W

    2016-05-06

    Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.

  5. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach

    Science.gov (United States)

    Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W.

    2016-05-01

    Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.

  6. Focused Study of Thermonuclear Bursts on Neutron Stars

    Science.gov (United States)

    Chenevez, Jérôme

    2009-05-01

    X-ray bursters form a class of Low Mass X-Ray Binaries where accreted material from a donor star undergoes rapid thermonuclear burning in the surface layers of a neutron star. The flux released can temporarily exceed the Eddington limit and drive the photosphere to large radii. Such photospheric radius expansion bursts likely eject nuclear burning ashes into the interstellar medium, and may make possible the detection of photoionization edges. Indeed, theoretical models predict that absorption edges from 58Fe at 9.2 keV, 60Zn and 62Zn at 12.2 keV should be detectable by the future missions Simbol-X and NuSTAR. A positive detection would thus probe the nuclear burning as well as the gravitational redshift from the neutron star. Moreover, likely observations of atomic X-ray spectral components reflected from the inner accretion disk have been reported. The high spectral resolution capabilities of the focusing X-ray telescopes may therefore make possible to differentiate between the potential interpretations of the X-ray bursts spectral features.

  7. Type II critical phenomena of neutron star collapse

    International Nuclear Information System (INIS)

    Noble, Scott C.; Choptuik, Matthew W.

    2008-01-01

    We investigate spherically symmetric, general relativistic systems of collapsing perfect fluid distributions. We consider neutron star models that are driven to collapse by the addition of an initially 'ingoing' velocity profile to the nominally static star solution. The neutron star models we use are Tolman-Oppenheimer-Volkoff solutions with an initially isentropic, gamma law equation of state. The initial values of (1) the amplitude of the velocity profile, and (2) the central density of the star, span a parameter space, and we focus only on that region that gives rise to type II critical behavior, wherein black holes of arbitrarily small mass can be formed. In contrast to previously published work, we find that--for a specific value of the adiabatic index (Γ=2)--the observed type II critical solution has approximately the same scaling exponent as that calculated for an ultrarelativistic fluid of the same index. Further, we find that the critical solution computed using the ideal-gas equations of state asymptotes to the ultrarelativistic critical solution.

  8. Modified TOV in gravity’s rainbow: properties of neutron stars and dynamical stability conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University,Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM),P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Bordbar, G.H. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University,Shiraz 71454 (Iran, Islamic Republic of); Center for Excellence in Astronomy and Astrophysics (CEAA-RIAAM)-Maragha,P.O. Box 55134-441, Maragha 55177-36698 (Iran, Islamic Republic of); Panah, B. Eslam [Physics Department and Biruni Observatory, College of Sciences, Shiraz University,Shiraz 71454 (Iran, Islamic Republic of); Panahiyan, S. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University,Shiraz 71454 (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University,Tehran 19839 (Iran, Islamic Republic of)

    2016-09-09

    In this paper, we consider a spherical symmetric metric to extract the hydrostatic equilibrium equation of stars in (3+1)-dimensional gravity’s rainbow in the presence of cosmological constant. Then, we generalize the hydrostatic equilibrium equation to d-dimensions and obtain the hydrostatic equilibrium equation for this gravity. Also, we obtain the maximum mass of neutron star using the modern equations of state of neutron star matter derived from the microscopic calculations. It is notable that, in this paper, we consider the effects of rainbow functions on the diagrams related to the mass-central mass density (M-ρ{sub c}) relation and also the mass-radius (M-R) relation of neutron star. We also study the effects of rainbow functions on the other properties of neutron star such as the Schwarzschild radius, average density, strength of gravity and gravitational redshift. Then, we apply the cosmological constant to this theory to obtain the diagrams of M-ρ{sub c} (or M-R) and other properties of these stars. Next, we investigate the dynamical stability condition for these stars in gravity’s rainbow and show that these stars have dynamical stability. We also obtain a relation between mass of neutron stars and Planck mass. In addition, we compare obtained results of this theory with the observational data.

  9. Nucleosynthesis and hydrodynamic instabilities in core collapse supernovae

    International Nuclear Information System (INIS)

    Kifonidis, K.

    2001-01-01

    Hydrodynamic instabilities are of crucial importance for the explosion of massive stars as core collapse supernovae, for the synthesis of the heavy elements, and for their injection into the interstellar medium. The processes hereby involved are studied by means of two-dimensional hydrodynamic simulations which follow all phases from shock revival to shock breakout through the photosphere of a massive star. The computed distributions of radioactive elements are compared to observational data of SN 1987 A and other supernovae. While we find good agreement of our models with observations of Type Ib supernovae, the high velocities of iron group elements observed in SN 1987 A cannot be reproduced. Possible reasons for this discrepancy are discussed. Hydrodynamic instabilities are of crucial importance for the explosion of massive stars as core collapse supernovae, for the synthesis of the heavy elements, and for their injection into the interstellar medium. The processes hereby involved are studied by means of two-dimensional hydrodynamic simulations which follow all phases from shock revival to shock breakout through the photosphere of a massive star. The computed distributions of radioactive elements are compared to observational data of SN 1987 A and other supernovae. While we find good agreement of our models with observations of Type Ib supernovae, the high velocities of iron group elements observed in SN 1987 A cannot be reproduced. Possible reasons for this discrepancy are discussed

  10. Topological currents in neutron stars: kicks, precession, toroidal fields, and magnetic helicity

    International Nuclear Information System (INIS)

    Charbonneau, James; Zhitnitsky, Ariel

    2010-01-01

    The effects of anomalies in high density QCD are striking. We consider a direct application of one of these effects, namely topological currents, on the physics of neutron stars. All the elements required for topological currents are present in neutron stars: degenerate matter, large magnetic fields, and parity violating processes. These conditions lead to the creation of vector currents capable of carrying momentum and inducing magnetic fields. We estimate the size of these currents for many representative states of dense matter in the neutron star and argue that they could be responsible for the large proper motion of neutron stars (kicks), the toroidal magnetic field and finite magnetic helicity needed for stability of the poloidal field, and the resolution of the conflict between type-II superconductivity and precession. Though these observational effects appear unrelated, they likely originate from the same physics — they are all P-odd phenomena that stem from a topological current generated by parity violation

  11. Magnetic field effects on the crust structure of neutron stars

    Science.gov (United States)

    Franzon, B.; Negreiros, R.; Schramm, S.

    2017-12-01

    We study the effects of high magnetic fields on the structure and on the geometry of the crust in neutron stars. We find that the crust geometry is substantially modified by the magnetic field inside the star. We build stationary and axis-symmetric magnetized stellar models by using well-known equations of state to describe the neutron star crust, namely, the Skyrme model for the inner crust and the Baym-Pethick-Sutherland equation of state for the outer crust. We show that the magnetic field has a dual role, contributing to the crust deformation via the electromagnetic interaction (manifested in this case as the Lorentz force) and by contributing to curvature due to the energy stored in it. We also study a direct consequence of the crust deformation due to the magnetic field: the thermal relaxation time. This quantity, which is of great importance to the thermal evolution of neutron stars, is sensitive to the crust properties, and, as such, we show that it may be strongly affected by the magnetic field.

  12. Astroseismology of neutron stars from gravitational waves in the limit of perfect measurement

    Science.gov (United States)

    Suvorov, A. G.

    2018-04-01

    The oscillation spectrum of a perturbed neutron star is intimately related to the physical properties of the star, such as the equation of state. Observing pulsating neutron stars therefore allows one to place constraints on these physical properties. However, it is not obvious exactly how much can be learnt from such measurements. If we observe for long enough, and precisely enough, is it possible to learn everything about the star? A classical result in the theory of spectral geometry states that one cannot uniquely `hear the shape of a drum'. More formally, it is known that an eigenfrequency spectrum may not uniquely correspond to a particular geometry; some `drums' may be indistinguishable from a normal-mode perspective. In contrast, we show that the drum result does not extend to perturbations of simple neutron stars within general relativity - in the case of axial (toroidal) perturbations of static, perfect fluid stars, a quasi-normal mode spectrum uniquely corresponds to a stellar profile. We show in this paper that it is not possible for two neutron stars, with distinct fluid profiles, to oscillate in an identical manner. This result has the information-theoretic consequence that gravitational waves completely encode the properties of any given oscillating star: unique identifications are possible in the limit of perfect measurement.

  13. Exchange of transverse plasmons and electrical conductivity of neutron star cores

    International Nuclear Information System (INIS)

    Shternin, P. S.

    2008-01-01

    We study the electrical conductivity in magnetized neutron star cores produced by collisions between charged particles. We take into account the ordinary exchange of longitudinal plasmons and the exchange of transverse plasmons in collisions between particles. The exchange of transverse plasmons is important for collisions between relativistic particles, but it has been disregarded previously when calculating the electrical conductivity. We show that taking this exchange into account changes the electrical conductivity, including its temperature dependence (thus, for example, the temperature dependence of the electrical resistivity along the magnetic field in the low-temperature limit takes the form R parallel ∝ T 5/3 instead of the standard dependence R parallel ∝ T 2 for degenerate Fermi systems). We briefly describe the effect of possible neutron and proton superfluidity in neutron star cores on the electrical conductivity and discuss various scenarios for the evolution of neutron star magnetic fields

  14. CONSTRAINING THE SPIN-DOWN OF THE NEARBY ISOLATED NEUTRON STAR RX J0806.4-4123, AND IMPLICATIONS FOR THE POPULATION OF NEARBY NEUTRON STARS

    International Nuclear Information System (INIS)

    Kaplan, D. L.; Van Kerkwijk, M. H.

    2009-01-01

    The nearby isolated neutron stars (INSs) are a group of seven relatively slowly rotating neutron stars that show thermal X-ray spectra, most with broad absorption features. They are interesting both because they may allow one to determine fundamental neutron-star properties by modeling their spectra, and because they appear to be a large fraction of the overall neutron-star population. Here, we describe a series of XMM -Newton observations of the nearby INS RX J0806.4-4123, taken as part of larger program of timing studies. From these, we limit the spin-down rate to ν-dot=(-4.3±2.3)x10 -16 Hz s -1 . This constrains the dipole magnetic field to be 13 G at 2σ, significantly less than the field of ∼10 14 G implied by simple models for the X-ray absorption found at 0.45 keV. We confirm that the spectrum is thermal and stable (to within a few percent), but find that the 0.45 keV absorption feature is broader and more complex than previously thought. Considering the population of INSs, we find that magnetic field decay from an initial field of ∼ 14 G accounts most naturally for their timing and spectral properties, both qualitatively and in the context of the models for field decay of Pons and collaborators.

  15. arXiv Gravitational-wave constraints on the neutron-star-matter Equation of State

    CERN Document Server

    Annala, Eemeli; Kurkela, Aleksi; Vuorinen, Aleksi

    2018-04-26

    The detection of gravitational waves originating from a neutron-star merger, GW170817, by the LIGO and Virgo Collaborations has recently provided new stringent limits on the tidal deformabilities of the stars involved in the collision. Combining this measurement with the existence of two-solar-mass stars, we generate a generic family of neutron-star-matter equations of state (EOSs) that interpolate between state-of-the-art theoretical results at low and high baryon density. Comparing the results to ones obtained without the tidal-deformability constraint, we witness a dramatic reduction in the family of allowed EOSs. Based on our analysis, we conclude that the maximal radius of a 1.4-solar-mass neutron star is 13.6 km, and that the smallest allowed tidal deformability of a similar-mass star is Λ(1.4  M⊙)=120.

  16. Rate of formation of neutron stars in the galaxy estimated from stellar statistics

    International Nuclear Information System (INIS)

    Endal, A.S.

    1979-01-01

    Stellar statistics and stellar evolution models can be used to estimate the rate of formation of neutron stars in the Galaxy. A recent analysis by Hills suggests that the mean interval between neutron-star births is greater than 27 years. This is incompatible with estimates based on pulsar statistics. However, a closer examination of the stellar data shows that Hill's result is incorrect. A mean interval between neutron-star births as short as 4 years is consistent with (though certainly not required by) stellar evolution theory

  17. Runaway companions of supernova remnants with Gaia

    Science.gov (United States)

    Boubert, Douglas; Fraser, Morgan; Evans, N. Wyn

    2018-04-01

    It is expected that most massive stars have companions and thus that some core-collapse supernovae should have a runaway companion. The precise astrometry and photometry provided by Gaia allows for the systematic discovery of these runaway companions. We combine a prior on the properties of runaway stars from binary evolution with data from TGAS and APASS to search for runaway stars within ten nearby supernova remnants. We strongly confirm the existing candidate HD 37424 in S147, propose the Be star BD+50 3188 to be associated with HB 21, and suggest tentative candidates for the Cygnus and Monoceros Loops.

  18. Magnetic Fields of Neutron Stars

    Indian Academy of Sciences (India)

    Sushan Konar

    2017-09-12

    Sep 12, 2017 ... the material properties of the region where currents supporting the .... 1The evolution of magnetic field in neutron stars, in particular, the question of .... −10, 10. −9, 10. −8. M⊙/yr respec- tively. See Konar & Bhattacharya (1997) for details. Peq ≃ 1.9 ms ..... ported by a grant (SR/WOS-A/PM-1038/2014) from.

  19. A perturbative approach to neutron stars in f(T, T)-gravity

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Mark; Said, Jackson Levi [University of Malta, Department of Physics, Msida (Malta); University of Malta, Institute of Space Sciences and Astronomy, Msida (Malta)

    2017-05-15

    We derive a Tolman-Oppenheimer-Volkoff equation in neutron star systems within the modified f(T, T)-gravity class of models using a perturbative approach. In our approach f(T, T)-gravity is considered to be a static spherically symmetric space-time. In this instance the metric is built from a more fundamental vierbein which can be used to relate inertial and global coordinates. A linear function f = T(r) + T(r) + χh(T, T) + O(χ{sup 2}) is taken as the Lagrangian density for the gravitational action. Finally we impose the polytropic equation of state of neutron star upon the derived equations in order to derive the mass profile and mass-central density relations of the neutron star in f(T, T)-gravity. (orig.)

  20. BINARY NEUTRON STARS IN QUASI-EQUILIBRIUM

    International Nuclear Information System (INIS)

    Taniguchi, Keisuke; Shibata, Masaru

    2010-01-01

    Quasi-equilibrium sequences of binary neutron stars are constructed for a variety of equations of state in general relativity. Einstein's constraint equations in the Isenberg-Wilson-Mathews approximation are solved together with the relativistic equations of hydrostationary equilibrium under the assumption of irrotational flow. We focus on unequal-mass sequences as well as equal-mass sequences, and compare those results. We investigate the behavior of the binding energy and total angular momentum along a quasi-equilibrium sequence, the endpoint of sequences, and the orbital angular velocity as a function of time, changing the mass ratio, the total mass of the binary system, and the equation of state of a neutron star. It is found that the orbital angular velocity at the mass-shedding limit can be determined by an empirical formula derived from an analytic estimation. We also provide tables for 160 sequences, which will be useful as a guideline of numerical simulations for the inspiral and merger performed in the near future.

  1. Why neutron stars have three hairs

    Science.gov (United States)

    Stein, Leo; Yagi, Kent; Pappas, George; Yunes, Nicolas; Apostolatos, Theocharis

    2015-04-01

    Neutron stars have recently been found to enjoy a certain `baldness' in their multipolar structure which is independent of the equation of state (EoS) of dense nuclear matter. This is reminiscent of the black hole no-hair relations, and in stark contrast to regular stars. Why is this? Is it because realistic EoSs are sufficiently similar, or because GR effects are especially important, or because the nuclear matter is `cold'? We explore the physics behind these and more hypotheses, and give a convincing explanation for the true origin of the three-hair relations.

  2. REFINED NEUTRON STAR MASS DETERMINATIONS FOR SIX ECLIPSING X-RAY PULSAR BINARIES

    International Nuclear Information System (INIS)

    Rawls, Meredith L.; Orosz, Jerome A.; McClintock, Jeffrey E.; Torres, Manuel A. P.; Bailyn, Charles D.; Buxton, Michelle M.

    2011-01-01

    We present an improved method for determining the mass of neutron stars in eclipsing X-ray pulsar binaries and apply the method to six systems, namely, Vela X-1, 4U 1538-52, SMC X-1, LMC X-4, Cen X-3, and Her X-1. In previous studies to determine neutron star mass, the X-ray eclipse duration has been approximated analytically by assuming that the companion star is spherical with an effective Roche lobe radius. We use a numerical code based on Roche geometry with various optimizers to analyze the published data for these systems, which we supplement with new spectroscopic and photometric data for 4U 1538-52. This allows us to model the eclipse duration more accurately and thus calculate an improved value for the neutron star mass. The derived neutron star mass also depends on the assumed Roche lobe filling factor β of the companion star, where β = 1 indicates a completely filled Roche lobe. In previous work a range of β between 0.9 and 1.0 was usually adopted. We use optical ellipsoidal light-curve data to constrain β. We find neutron star masses of 1.77 ± 0.08 M sun for Vela X-1, 0.87 ± 0.07 M sun for 4U 1538-52 (eccentric orbit), 1.00 ± 0.10 M sun for 4U 1538-52 (circular orbit), 1.04 ± 0.09 M sun for SMC X-1, 1.29 ± 0.05 M sun for LMC X-4, 1.49 ± 0.08 M sun for Cen X-3, and 1.07 ± 0.36 M sun for Her X-1. We discuss the limits of the approximations that were used to derive the earlier mass determinations, and we comment on the implications our new masses have for observationally refining the upper and lower bounds of the neutron star mass distribution.

  3. Demonstrating the Likely Neutron Star Nature of Five M31 Globular Cluster Sources with Swift-NuSTAR Spectroscopy

    Science.gov (United States)

    Maccarone, Thomas J.; Yukita, Mihoko; Hornschemeier, Ann; Lehmer, Bret D.; Antoniou, Vallia; Ptak, Andrew; Wik, Daniel R.; Zezas, Andreas; Boyd, Padi; Kennea, Jamie; hide

    2016-01-01

    We present the results of a joint Swift-NuSTAR spectroscopy campaign on M31. We focus on the five brightest globular cluster X-ray sources in our fields. Two of these had previously been argued to be black hole candidates on the basis of apparent hard-state spectra at luminosities above those for which neutron stars are in hard states. We show that these two sources are likely to be Z-sources (i.e. low magnetic field neutron stars accreting near their Eddington limits), or perhaps bright atoll sources (low magnetic field neutron stars which are just a bit fainter than this level) on the basis of simultaneous Swift and NuSTAR spectra which cover a broader range of energies. These new observations reveal spectral curvature above 6-8 keV that would be hard to detect without the broader energy coverage the NuSTAR data provide relative to Chandra and XMM-Newton. We show that the other three sources are also likely to be bright neutron star X-ray binaries, rather than black hole X-ray binaries. We discuss why it should already have been realized that it was unlikely that these objects were black holes on the basis of their being persistent sources, and we re-examine past work which suggested that tidal capture products would be persistently bright X-ray emitters. We discuss how this problem is likely due to neglecting disc winds in older work that predict which systems will be persistent and which will be transient.

  4. Resolving neutrino mass hierarchy from supernova (anti)neutrino-nucleus reactions

    Science.gov (United States)

    Vale, Deni; Paar, Nils

    2015-10-01

    Recently a hybrid method has been introduced to determine neutrino mass hierarchy by simultaneous measurements of detector responses induced by antineutrino and neutrino fluxes from accretion and cooling phase of type II supernova. The (anti)neutrino-nucleus cross sections for 12C, 16O, 56Fe and 208Pb are calculated in the framework of relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons in mineral oil and water, p (v¯e,e+)n are obtained using heavy-baryon chiral perturbation theory. The simulations of (anti)neutrino fluxes emitted from a proto-neutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside star. It is shown that simultaneous use of ve/v¯e detectors with different target material allow to determine the neutrino mass hierarchy from the ratios of ve/v¯e induced particle emissions. The hybrid method favors detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil and water is more appropriate.

  5. Constraining neutron star matter with Quantum Chromodynamics

    CERN Document Server

    Kurkela, Aleksi; Schaffner-Bielich, Jurgen; Vuorinen, Aleksi

    2014-01-01

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount --- or even presence --- of quark matter inside the stars.

  6. Non-Radial Oscillation Modes of Superfluid Neutron Stars Modeled with CompOSE

    Directory of Open Access Journals (Sweden)

    Prashanth Jaikumar

    2018-03-01

    Full Text Available We compute the principal non-radial oscillation mode frequencies of Neutron Stars described with a Skyrme-like Equation of State (EoS, taking into account the possibility of neutron and proton superfluidity. Using the CompOSE database and interpolation routines to obtain the needed thermodynamic quantities, we solve the fluid oscillation equations numerically in the background of a fully relativistic star, and identify imprints of the superfluid state. Though these modes cannot be observed with current technology, increased sensitivity of future Gravitational-Wave Observatories could allow us to observe these oscillations and potentially constrain or refine models of dense matter relevant to the interior of neutron stars.

  7. Prospects of detecting baryon and quark superfluidity from cooling neutron stars

    Science.gov (United States)

    Page; Prakash; Lattimer; Steiner

    2000-09-04

    Baryon and quark superfluidity in the cooling of neutron stars are investigated. Future observations will allow us to constrain combinations of the neutron or Lambda-hyperon pairing gaps and the star's mass. However, in a hybrid star with a mixed phase of hadrons and quarks, quark gaps larger than a few tenths of an MeV render quark matter virtually invisible for cooling. If the quark gap is smaller, quark superfluidity could be important, but its effects will be nearly impossible to distinguish from those of other baryonic constituents.

  8. The Neutron star Interior Composition Explorer (NICER): design and development

    OpenAIRE

    Gendreau, Keith C.; Arzoumanian, Zaven; Adkins, Phillip W.; Albert, Cheryl L.; Anders, John F.; Aylward, Andrew T.; Baker, Charles L.; Balsamo, Erin R.; Bamford, William A.; Benegalrao, Suyog S.; Berry, Daniel L.; Bhalwani, Shiraz; Black, J. Kevin; Blaurock, Carl; Bronke, Ginger M.

    2016-01-01

    During 2014 and 2015, NASA's Neutron star Interior Composition Explorer (NICER) mission proceeded successfully through Phase C, Design and Development. An X-ray (0.2-12 keV) astrophysics payload destined for the International Space Station, NICER is manifested for launch in early 2017 on the Commercial Resupply Services SpaceX-11 flight. Its scientific objectives are to investigate the internal structure, dynamics, and energetics of neutron stars, the densest objects in the universe. During P...

  9. Probing the crust of the neutron star in EXO 0748-676

    Energy Technology Data Exchange (ETDEWEB)

    Degenaar, N.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Medin, Z. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cumming, A. [Department of Physics, McGill University, 3600 rue University, Montreal, QC H3A 2T8 (Canada); Wijnands, R. [Astronomical Institute Anton Pannekoek, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Wolff, M. T. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Cackett, E. M. [Department of Physics and Astronomy, Wayne State University, 666 West Hancock Street, Detroit, MI 48201 (United States); Jonker, P. G. [SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA, Utrecht (Netherlands); Homan, J. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Brown, E. F., E-mail: degenaar@umich.edu [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2014-08-10

    X-ray observations of quiescent X-ray binaries have the potential to provide insight into the structure and the composition of neutron stars. EXO 0748-676 had been actively accreting for over 24 yr before its outburst ceased in late 2008. Subsequent X-ray monitoring revealed a gradual decay of the quiescent thermal emission that can be attributed to cooling of the accretion-heated neutron star crust. In this work, we report on new Chandra and Swift observations that extend the quiescent monitoring to ≅5 yr post-outburst. We find that the neutron star temperature remained at ≅117 eV between 2009 and 2011, but had decreased to ≅110 eV in 2013. This suggests that the crust has not fully cooled yet, which is supported by the lower temperature (≅95 eV) measured ≅4 yr prior to the accretion phase in 1980. Comparing the data to thermal evolution simulations reveals that the apparent lack of cooling between 2009 and 2011 could possibly be a signature of convection driven by phase separation of light and heavy nuclei in the outer layers of the neutron star.

  10. Evolution of r-process elements in the hot supernova bubble

    International Nuclear Information System (INIS)

    Mathews, G.J.; Wilson, J.R.; Woosley, S.E.

    1993-02-01

    We review some of the recent arguments as to why the r-process is thought to be associated with supernovae and how the high-temperature, high-entropy inner region of a core-collapse supernova is an ideal r-process site. We present preliminary extensions of our earlier work on the formation of the high-entropy ''bubble'' that describe more accurately its late-time evolution and the ejection of the neutrino-energized wind from the surface of the nascent neutron star. This site leads naturally to a distribution of temperature, density, neutron excess, and entropy for material ejected at different times in the wind as required by Solar abundances. We present simple analytic expressions which approximate these distributions. This site also predicts an amount of reprocess material ejected per event in agreement with simple galactic evolution arguments. However, it is not yet clear whether the entropy in this model is high enough (or the electron fraction is low enough) to produce an optimum fit to the Solar r-process abundance curve and additional mechanisms may be required to increase the entropy per baryon. We conclude with a discussion of nuclear measurements which would help to probe this r-process environment

  11. Dragging of inertial frames inside the rotating neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Chandrachur; Modak, Kamakshya Prasad; Bandyopadhyay, Debades, E-mail: chandrachur.chakraborty@saha.ac.in, E-mail: kamakshya.modak@saha.ac.in [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India)

    2014-07-20

    We derive the exact frame-dragging rate inside rotating neutron stars. This formula is applied to show that the frame-dragging rate monotonically decreases from the center to the surface of the neutron star along the pole. In the case of the frame-dragging rate along the equatorial distance, it decreases initially away from the center, becomes negligibly small well before the surface of the neutron star, rises again, and finally approaches to a small value at the surface. The appearance of a local maximum and minimum in this case is the result of the dependence of frame-dragging frequency on the distance and angle. Moving from the equator to the pole, it is observed that this local maximum and minimum in the frame-dragging rate along the equator disappear after crossing a critical angle. It is also noted that the positions of the local maximum and minimum of the frame-dragging rate along the equator depend on the rotation frequency and central energy density of a particular pulsar.

  12. Maser Emission from Gravitational States on Isolated Neutron Stars

    Science.gov (United States)

    Tepliakov, Nikita V.; Vovk, Tatiana A.; Rukhlenko, Ivan D.; Rozhdestvensky, Yuri V.

    2018-04-01

    Despite years of research on neutron stars, the source of their radio emission is still under debate. Here we propose a new coherent mechanism of pulsar radio emission based on transitions between gravitational states of electrons confined above the pulsar atmosphere. Our mechanism assumes that the coherent radiation is generated upon the electric and magnetic dipole transitions of electrons falling onto the polar caps of the pulsar, and predicts that this radiation occurs at radio frequencies—in full agreement with the observed emission spectra. We show that while the linearly polarized electric dipole radiation propagates parallel to the neutron star surface and has a fan-shape angular spectrum, the magnetic dipole emission comes from the magnetic poles of the pulsar in the form of two narrow beams and is elliptically polarized due to the spin–orbit coupling of electrons confined by the magnetic field. By explaining the main observables of the pulsar radio emission, the proposed mechanism indicates that gravitational quantum confinement plays an essential role in the physics of neutron stars.

  13. Properties of Localized Protons in Neutron Star Matter at Finite Temperatures

    Science.gov (United States)

    Szmaglinski, A.; Kubis, S.; Wójcik, W.

    2014-02-01

    We study properties of the proton component of neutron star matter for realistic nuclear models. Vanishing of the nuclear symmetry energy implies proton-neutron separation in dense nuclear matter. Protons which form admixture tend to be localized in potential wells. Here, we extend the description of proton localization to finite temperatures. It appears that the protons are still localized at temperatures typical for hot neutron stars. That fact has important astrophysical consequences. Moreover, the temperature inclusion leads to unexpected results for the behavior of the proton localized state.

  14. Measuring neutron-star properties via gravitational waves from neutron-star mergers.

    Science.gov (United States)

    Bauswein, A; Janka, H-T

    2012-01-06

    We demonstrate by a large set of merger simulations for symmetric binary neutron stars (NSs) that there is a tight correlation between the frequency peak of the postmerger gravitational-wave (GW) emission and the physical properties of the nuclear equation of state (EoS), e.g., expressed by the radius of the maximum-mass Tolman-Oppenheimer-Volkhoff configuration. Therefore, a single measurement of the peak frequency of the postmerger GW signal will constrain the NS EoS significantly. For optimistic merger-rate estimates a corresponding detection with Advanced LIGO is expected to happen within an operation time of roughly a year.

  15. Spin-down of neutron stars by neutrino emission

    International Nuclear Information System (INIS)

    Dvornikov, Maxim; Dib, Claudio

    2010-01-01

    We study the spin-down of a neutron star during its early stages due to the neutrino emission. The mechanism we consider is the subsequent collisions of the produced neutrinos with the outer shells of the star. We find that this mechanism can indeed slow down the star rotation but only in the first tens of seconds of the core formation, which is when the appropriate conditions of flux and collision rate are met. We find that this mechanism can extract less than 1% of the star angular momentum, a result which is much less than previously estimated by other authors.

  16. The gravitational wave spectrum of non-axisymmetric, freely precessing neutron stars

    International Nuclear Information System (INIS)

    Broeck, Chris van den

    2005-01-01

    Evidence for free precession has been observed in the radio signature of several pulsars. Freely precessing pulsars radiate gravitationally at frequencies near the rotation rate and twice the rotation rate, which for rotation frequencies greater than ∼10 Hz is in the LIGO band. In older work, the gravitational wave spectrum of a precessing neutron star has been evaluated to first order in a small precession angle. Here, we calculate the contributions to second order in the wobble angle, and we find that a new spectral line emerges. We show that for reasonable wobble angles, the second-order line may well be observable with the proposed advanced LIGO detectors for precessing neutron stars as far away as the galactic centre. Observation of the full second-order spectrum permits a direct measurement of the star's wobble angle, oblateness and deviation from axisymmetry, with the potential to significantly increase our understanding of neutron star structure

  17. Accretion discs around neutron stars

    International Nuclear Information System (INIS)

    Pringle, J.E.

    1982-01-01

    If the central object in the disc is a neutron star, then we do not need the disc itself to produce the X-rays. In other words, the disc structure itself is not important as long as it plays the role of depositing matter on the neutron star at a sufficient rate to produce the X-ray flux. Similarly, in the outer disc regions, the main disc luminosity comes from absorption and reradiation of X-ray photons and not from the intrinsic, viscously-produced, local energy production rate. These two points indicate why in the compact binary X-ray sources confrontation between disc theory and observations is not generally practicable. For this reason I will divide my talk into two parts: one on observational discs in which I discuss what observational evidence there is for discs in the compact X-ray sources and what the evidence can tell the theorist about disc behaviour, and the other on theoretical discs where I consider in what ways theoretical arguments can put limits or cast doubt on some of the empirical models put forward to explain the observations. (orig.)

  18. Neutron Capture Cross Section of Unstable Ni63: Implications for Stellar Nucleosynthesis

    Science.gov (United States)

    Lederer, C.; Massimi, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Korschinek, G.; Krtička, M.; Kroll, J.; Langer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Pignatari, M.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T. J.; Žugec, P.

    2013-01-01

    The Ni63(n,γ) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from kT=5-100keV with uncertainties around 20%. Stellar model calculations for a 25M⊙ star show that the new data have a significant effect on the s-process production of Cu63, Ni64, and Zn64 in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova.

  19. G 2.4 + 1.4: a supernova remnant or ring nebula around a peculiar star

    International Nuclear Information System (INIS)

    Johnson, H.M.

    1975-01-01

    G2.4+1.4 is a probable nonthermal radio source and an optical nebula which appears to be a supernova remnant (SNR). It also contains an O vi sequence star of great excitation. We present new radiofrequency continuum and (nil) H 92α observations, optical spectroscopy, and Fabry-Perot scanner observations of the nebula. The object distance (5 kpc), origin of gas kinematics (SNR expansion), and mode of excitation of the gas (photoexcitation and/or shock wave) remain uncertain. We discuss the possible roles of the O vi star as ''runaway'' in a SNR, as a source of photoexcitation, and as an ejector of a ''counterfeit'' SNR

  20. Evaluation of the WIPP site for the supernova neutrino burst observatory

    International Nuclear Information System (INIS)

    Balbes, M.J.; Boyd, R.N.; Kalen, J.D.; Mitchell, C.A.; Hencheck, M.; Sugarbaker, E.R.; Vandegriff, J.D.; Lieberwirth, S.D.

    1997-01-01

    Measurements of the neutron background in a potential underground site for the supernova neutrino burst observatory (SNBO) have been made. The SNBO will ultimately be capable of detecting μ and τ neutrinos from a supernova. Furthermore, masses of the μ and τ neutrinos might be measurable in the range of 10-50 eV. SNBO operates by detecting the neutrons caused by interaction of the supernova neutrinos with rock. It will consist of order ten thousand neutron detectors located in an underground environment having a very low intrinsic radiation level. The limit to the size, hence sensitivity, of SNBO is thus the neutron signal-to-noise ratio, which depends on the neutron background in the environment of SNBO. Thus we have made neutron background measurements at the department of energy waste isolation pilot plant (WIPP) located near Carlsbad, NM. The value of the ambient neutron flux we determined, 332±148 neutrons m -2 d -1 , shows that the background levels in this facility are sufficiently low to warrant construction of a galactic supernova neutrino detector. (orig.)

  1. A Hot Water Bottle for Aging Neutron Stars

    DEFF Research Database (Denmark)

    Alford, Mark; Jotwani, Pooja; Kouvaris, Christoforos

    2004-01-01

    The gapless color-flavor locked (gCFL) phase is the second-densest phase of matter in the QCD phase diagram, making it a plausible constituent of the core of neutron stars. We show that even a relatively small region of gCFL matter in a star will dominate both the heat capacity C_V and the heat...... loss by neutrino emission L_\

  2. Chaos and turbulent nucleosynthesis prior to a supernova explosion

    Directory of Open Access Journals (Sweden)

    W. D. Arnett

    2014-03-01

    Full Text Available Three-dimensional (3D, time dependent numerical simulations of flow of matter in stars, now have sufficient resolution to be fully turbulent. The late stages of the evolution of massive stars, leading up to core collapse to a neutron star (or black hole, and often to supernova explosion and nucleosynthesis, are strongly convective because of vigorous neutrino cooling and nuclear heating. Unlike models based on current stellar evolutionary practice, these simulations show a chaotic dynamics characteristic of highly turbulent flow. Theoretical analysis of this flow, both in the Reynolds-averaged Navier-Stokes (RANS framework and by simple dynamic models, show an encouraging consistency with the numerical results. It may now be possible to develop physically realistic and robust procedures for convection and mixing which (unlike 3D numerical simulation may be applied throughout the long life times of stars. In addition, a new picture of the presupernova stages is emerging which is more dynamic and interesting (i.e., predictive of new and newly observed phenomena than our previous one.

  3. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    Science.gov (United States)

    O. Silva, Hector; Berti, Emanuele; Sotani, Hajime

    2016-03-01

    Compact objects such as neutron stars are ideal astrophysical laboratories to test our understanding of the fundamental interactions in the regime of supranuclear densities, unachievable by terrestrial experiments. Despite recent progress, the description of matter (i.e., the equation of state) at such densities is still debatable. This translates into uncertainties in the bulk properties of neutron stars, masses and radii for instance. Here we will consider low-mass neutron stars. Such stars are expected to carry important information on nuclear matter near the nuclear saturation point. It has recently been shown that the masses and surface redshifts of low-mass neutron stars smoothly depend on simple functions of the central density and of a characteristic parameter η associated with the choice of equation of state. Here we extend these results to slowly-rotating and tidally deformed stars and obtain empirical relations for various quantities, such as the moment of inertia, quadrupole moment and ellipticity, tidal and rotational Love numbers, and rotational apsidal constants. We discuss how these relations might be used to constrain the equation of state by future observations in the electromagnetic and gravitational-wave spectra.

  4. Neutron stars in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.; Stachniewicz, S.

    1996-12-01

    We study the equation of state (EOS) of neutron star matter in a relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the δ-meson [a 0 (980)]. A range of values of the δ-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E s ∼ 30 MeV. We find that proton fraction of neutron star matter is higher in the presence of the δ-field whereas the energy per particle is lower. The EOS becomes slightly stiffer and the maximum mass of the neutron star increased with increasing δmeson coupling. The effect is stronger for soft EOS. (author). 7 refs, 6 figs, 1 tab

  5. Neutron stars in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.; Stachniewicz, S.

    1998-01-01

    We study the equation of state (EOS) of β-stable dense matter and models of neutron stars in the relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the δ-meson (a 0 (980)). A range of values of the δ-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E s ∼30 MeV. We find that the quantity most sensitive to the δ-meson coupling is the proton fraction of neutron star matter. It increases significantly in the presence of the δ-field. The energy per baryon also increases but the effect is smaller. The EOS becomes slightly stiffer and the maximum neutron star mass increases for stronger δ-meson coupling. (author)

  6. Neutron stars in relativistic mean field theory with isovector scalar meson

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M.; Stachniewicz, S. [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-01

    We study the equation of state (EOS) of neutron star matter in a relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the {delta}-meson [a{sub 0}(980)]. A range of values of the {delta}-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E{sub s} {approx} 30 MeV. We find that proton fraction of neutron star matter is higher in the presence of the {delta}-field whereas the energy per particle is lower. The EOS becomes slightly stiffer and the maximum mass of the neutron star increased with increasing {delta}meson coupling. The effect is stronger for soft EOS. (author). 7 refs, 6 figs, 1 tab.

  7. Neutron Star Interiors and Topology Change

    Directory of Open Access Journals (Sweden)

    Peter K. F. Kuhfittig

    2013-01-01

    Full Text Available Quark matter is believed to exist in the center of neutron stars. A combined model consisting of quark matter and ordinary matter is used to show that the extreme conditions existing in the center could result in a topology change, that is, in the formation of wormholes.

  8. Nucleosynthesis of neutron-rich heavy nuclei during explosive helium burning in massive stars

    International Nuclear Information System (INIS)

    Blake, J.B.; Woosley, S.E.; Weaver, T.A.; Schramm, D.N.

    1981-01-01

    The production of heavy nuclei during explosive helium burning has been calculated using a hydrodynamical model of a 15 M/sub sun/ (Type II) supernovae and a n-process nuclear reaction network. The resulting neutron-rich heavy nuclei are not produced in the relative abundances of solar-system r-process material, especially in the vicinity of Pt, nor are any actinides produced. These deficiencies reflect an inadequate supply of neutrons. However, some neutron-rich isotopes, normally associated with the r-process, are produced which may be significant for the production of isotopic anomalies in meteorites

  9. Illuminating gravitational waves: A concordant picture of photons from a neutron star merger

    Science.gov (United States)

    Kasliwal, M. M.; Nakar, E.; Singer, L. P.; Kaplan, D. L.; Cook, D. O.; Van Sistine, A.; Lau, R. M.; Fremling, C.; Gottlieb, O.; Jencson, J. E.; Adams, S. M.; Feindt, U.; Hotokezaka, K.; Ghosh, S.; Perley, D. A.; Yu, P.-C.; Piran, T.; Allison, J. R.; Anupama, G. C.; Balasubramanian, A.; Bannister, K. W.; Bally, J.; Barnes, J.; Barway, S.; Bellm, E.; Bhalerao, V.; Bhattacharya, D.; Blagorodnova, N.; Bloom, J. S.; Brady, P. R.; Cannella, C.; Chatterjee, D.; Cenko, S. B.; Cobb, B. E.; Copperwheat, C.; Corsi, A.; De, K.; Dobie, D.; Emery, S. W. K.; Evans, P. A.; Fox, O. D.; Frail, D. A.; Frohmaier, C.; Goobar, A.; Hallinan, G.; Harrison, F.; Helou, G.; Hinderer, T.; Ho, A. Y. Q.; Horesh, A.; Ip, W.-H.; Itoh, R.; Kasen, D.; Kim, H.; Kuin, N. P. M.; Kupfer, T.; Lynch, C.; Madsen, K.; Mazzali, P. A.; Miller, A. A.; Mooley, K.; Murphy, T.; Ngeow, C.-C.; Nichols, D.; Nissanke, S.; Nugent, P.; Ofek, E. O.; Qi, H.; Quimby, R. M.; Rosswog, S.; Rusu, F.; Sadler, E. M.; Schmidt, P.; Sollerman, J.; Steele, I.; Williamson, A. R.; Xu, Y.; Yan, L.; Yatsu, Y.; Zhang, C.; Zhao, W.

    2017-12-01

    Merging neutron stars offer an excellent laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) with gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic data set, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultrarelativistic jets. Instead, we suggest that breakout of a wide-angle, mildly relativistic cocoon engulfing the jet explains the low-luminosity gamma rays, the high-luminosity ultraviolet-optical-infrared, and the delayed radio and x-ray emission. We posit that all neutron star mergers may lead to a wide-angle cocoon breakout, sometimes accompanied by a successful jet and sometimes by a choked jet.

  10. Small radii of neutron stars as an indication of novel in-medium effects

    International Nuclear Information System (INIS)

    Jiang, Wei-Zhou; Li, Bao-An; Fattoyev, F.J.

    2015-01-01

    At present, neutron star radii from both observations and model predictions remain very uncertain. Whereas different models can predict a wide range of neutron star radii, it is not possible for most models to predict radii that are smaller than about 10 km, thus if such small radii are established in the future they will be very difficult to reconcile with model estimates. By invoking a new term in the equation of state that enhances the energy density, but leaves the pressure unchanged we simulate the current uncertainty in the neutron star radii. This new term can be possibly due to the exchange of the weakly interacting light U-boson with appropriate in-medium parameters, which does not compromise the success of the conventional nuclear models. The validity of this new scheme will be tested eventually by more precise measurements of neutron star radii. (orig.)

  11. GRB 130603B: No Compelling Evidence for Neutron Star Merger

    Directory of Open Access Journals (Sweden)

    Shlomo Dado

    2015-01-01

    Full Text Available The near infrared (NIR flare/rebrightening in the afterglow of the short hard gamma ray burst (SHB 130603B measured with the Hubble Space Telescope (HST and an alleged late-time X-ray excess were interpreted as possible evidence of a neutron star merger origin of SHBs. However, the X-ray afterglow that was measured with the Swift XRT and Newton XMM has the canonical behaviour of a synchrotron afterglow produced by a highly relativistic jet. The H-band flux observed with HST 9.41 days after burst is that expected from the measured late-time X-ray afterglow. The late-time flare/rebrightening of the NIR-optical afterglow of SHB 130603B could have been produced also by jet collision with an interstellar density bump. Moreover, SHB plus a kilonova can be produced also by the collapse of a compact star (neutron star, strange star, or quark star to a more compact object due to cooling, loss of angular momentum, or mass accretion.

  12. Gravitational waves from rotating proto-neutron stars

    International Nuclear Information System (INIS)

    Ferrari, V; Gualtieri, L; Pons, J A; Stavridis, A

    2004-01-01

    We study the effects of rotation on the quasi-normal modes (QNMs) of a newly born proto-neutron star (PNS) at different evolutionary stages, until it becomes a cold neutron star (NS). We use the Cowling approximation, neglecting spacetime perturbations, and consider different models of evolving PNS. The frequencies of the modes of a PNS are considerably lower than those of a cold NS, and are further lowered by rotation; consequently, if QNMs were excited in a sufficiently energetic process, they would radiate waves that could be more easily detectable by resonant-mass and interferometric detectors than those emitted by a cold NS. We find that for high rotation rates, some of the g-modes become unstable via the CFS instability; however, this instability is likely to be suppressed by competing mechanisms before emitting a significant amount of gravitational waves

  13. Neutron Stars and Black Holes New clues from Chandra and XMM-Newton

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Neutron stars and black holes, the most compact astrophysical objects, have become observable in many different ways during the last few decades. We will first review the phenomenology and properties of neutron stars and black holes (stellar and supermassive) as derived from multiwavelength observatories. Recently much progress has been made by means of the new powerful X-ray observatories Chandra and XMM-Newton which provide a substantial increase in sensitivity as well as spectral and angular resolution compared with previous satellites like ROSAT and ASCA. We shall discuss in more detail two recent topics: (1) The attempts to use X-ray spectroscopy for measuring the radii of neutron stars which depend on the equation of state at supranuclear densities. Have quark stars been detected? (2) The diagnostics of the strong gravity regions around supermassive black holes using X-ray spectroscopy.

  14. Asymptotic giant branch stars as producers of carbon and of neutron-rich isotopes

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1984-01-01

    Carbon stars are thought to be in the asymptotic giant branch (AGB) phase of evolution, alternately burning hydrogen and helium in shells above an electron-degenerate carbon-oxygen (CO) core. The excess of carbon relative to oxygen at the surfaces of these stars is thought to be due to convective dredge-up which occurs following a thermal pulse. During a thermal pulse, carbon and neutron-rich isotopes are made in a convective helium-burning zone. In model stars of large CO core mass, the source of neutrons for producing the neutron-rich isotopes is the 22 Ne(α,n) 25 Mg reaction and the isotopes are produced in the solar system s-process distribution. In models of small core mass, the 13 C(α,n) 16 reaction is thought to be responsible for the release of neutrons, and the resultant distribution of neutron-rich isotopes is expected to vary considerably from one star to the next, with the distribution in isolated instances possibly resembling the solar system distribution of r-process isotopes

  15. On the kinematics of a runaway Be star population

    Science.gov (United States)

    Boubert, D.; Evans, N. W.

    2018-04-01

    We explore the hypothesis that B type emission-line stars (Be stars) have their origin in mass-transfer binaries by measuring the fraction of runaway Be stars. We assemble the largest-to-date catalogue of 632 Be stars with 6D kinematics, exploiting the precise astrometry of the Tycho-Gaia Astrometric Solution (TGAS) from the first Gaia Data Release. Using binary stellar evolution simulations, we make predictions for the runaway and equatorial rotation velocities of a runaway Be star population. Accounting for observational biases, we calculate that if all classical Be stars originated through mass transfer in binaries, then 17.5% of the Be stars in our catalogue should be runaways. The remaining 82.5% should be in binaries with subdwarfs, white dwarfs or neutron stars, because those systems either remained bound post-supernova or avoided the supernova entirely. Using a Bayesian methodology, we compare the hypothesis that each Be star in our catalogue is a runaway to the null hypothesis that it is a member of the Milky Way disc. We find that 13.1^{+2.6}_{-2.4}% of the Be stars in our catalogue are runaways, and identify a subset of 40 high-probability runaways. We argue that deficiencies in our understanding of binary stellar evolution, as well as the degeneracy between velocity dispersion and number of runaway stars, can explain the slightly lower runaway fraction. We thus conclude that all Be stars could be explained by an origin in mass-transfer binaries. This conclusion is testable with the second Gaia data release (DR2).

  16. Gamma-burst emission from neutron-star accretion

    Science.gov (United States)

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  17. Observational Constraints on Quark Matter in Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study the observational constraints of mass and redshift on the properties of the equation of state (EOS) for quark matter in compact stars based on the quasi-particle description. We discuss two scenarios: strange stars and hybrid stars. We construct the equations of state utilizing an extended MIT bag model taking the medium effect into account for quark matter and the relativistic mean field theory for hadron matter. We show that quark matter may exist in strange stars and in the interior of neutron stars. The bag constant is a key parameter that affects strongly the mass of strange stars. The medium effect can lead to the stiffer hybrid-star EOS approaching the pure hadronic EOS, due to the reduction of quark matter, and hence the existence of heavy hybrid stars. We find that a middle range coupling constant may be the best choice for the hybrid stars being compatible with the observational constraints.

  18. Flux-Vortex Pinning and Neutron Star Evolution

    Indian Academy of Sciences (India)

    M. Ali Alpar

    2017-09-12

    Sep 12, 2017 ... M. ALI ALPAR. Faculty of Engineering and Natural Sciences, Sabancı University, 34956, Istanbul, Turkey. E-mail: ... netic field of the neutron star were B ∼ 109 G. At the ..... across pinning energy barriers by thermal activation.

  19. Further stable neutron star models from f(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [I. Kant Baltic Federal University, Institute of Physics and Technology, Nevskogo st. 14, Kaliningrad, 236041 (Russian Federation); Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Via Cinthia, 9, Napoli, I–80126 (Italy); Odintsov, Sergei D., E-mail: artyom.art@gmail.com, E-mail: capozziello@na.infn.it, E-mail: odintsov@ieec.uab.es [Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain)

    2013-12-01

    Neutron star models in perturbative f(R) gravity are considered with realistic equations of state. In particular, we consider the FPS, SLy and other equations of state and a case of piecewise equation of state for stars with quark cores. The mass-radius relations for f(R) = R+R(e{sup −R/R{sub 0}}−1) model and for R{sup 2} models with logarithmic and cubic corrections are obtained. In the case of R{sup 2} gravity with cubic corrections, we obtain that at high central densities (ρ > 10ρ{sub ns}, where ρ{sub ns} = 2.7 × 10{sup 14} g/cm{sup 3} is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ∼ 1.9M{sub ⊙} (SLy equation). A similar situation takes place for AP4 and BSK20 EoS. Such an effect can give rise to more compact stars than in General Relativity. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level. Another interesting result can be achieved in modified gravity with only a cubic correction. For some EoS, the upper limit of neutron star mass increases and therefore these EoS can describe realistic star configurations (although, in General Relativity, these EoS are excluded by observational constraints)

  20. Further stable neutron star models from f(R) gravity

    International Nuclear Information System (INIS)

    Astashenok, Artyom V.; Capozziello, Salvatore; Odintsov, Sergei D.

    2013-01-01

    Neutron star models in perturbative f(R) gravity are considered with realistic equations of state. In particular, we consider the FPS, SLy and other equations of state and a case of piecewise equation of state for stars with quark cores. The mass-radius relations for f(R) = R+R(e −R/R 0 −1) model and for R 2 models with logarithmic and cubic corrections are obtained. In the case of R 2 gravity with cubic corrections, we obtain that at high central densities (ρ > 10ρ ns , where ρ ns = 2.7 × 10 14 g/cm 3 is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ∼ 1.9M ⊙ (SLy equation). A similar situation takes place for AP4 and BSK20 EoS. Such an effect can give rise to more compact stars than in General Relativity. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level. Another interesting result can be achieved in modified gravity with only a cubic correction. For some EoS, the upper limit of neutron star mass increases and therefore these EoS can describe realistic star configurations (although, in General Relativity, these EoS are excluded by observational constraints)