WorldWideScience

Sample records for neutron star sources

  1. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  2. Stellar neutron sources and s-process in massive stars

    Science.gov (United States)

    Talwar, Rashi

    The s-process or the slow neutron capture process is a nucleosynthesis process taking place at relatively low neutron densities in stars. It runs along the valley of beta stability since the neutron capture rate is much slower compared to the beta decay rate. The s-process occurs mainly during core helium burning and shell carbon burning phase in massive stars and during thermally pulsing helium burning phase in asymptotic giant-branch stars. The potential stellar neutron source for the s-process is associated with alpha-capture reactions on light nuclei. The capture-reaction rates provide the reaction flow for the build-up of22Ne neutron source during the heliumburning phase in these stars. The low energy 26Mg resonances at stellar energies below 800 keV are predicted to have a critical influence on the alpha-capture rates on 22Ne. Some of these resonances may also correspond to pronounced alpha cluster structure near the alpha-threshold. However, these resonances have remained elusive during direct alpha capture measurements owing to the high Coulomb barrier and background from cosmic rays and beam induced reactions. Hence, in the present work, alpha-inelastic scattering and alpha- transfer measurements have been performed to probe the level structure of 26Mg nucleus in order to determine the 22Ne+alpha-capture rates. Both experiments have been performed using the high-resolution Grand Raiden Spectrometer at the Research Center for Nuclear Physics (RCNP), Osaka, Japan. For the alpha-inelastic scattering measurement, a self-supporting solid 26Mg target was used and for the alpha-transfer study via the (6Li,d) reaction, 22Ne gas enclosed in a gas cell with Aramid windows was used. The reaction products were momentum analysed by the spectrometer and detected at the focal plane equipped with two multi-wire drift chambers and two plastic-scintillation detectors. The focal plane detection system provided information on the position, the angle, the time of flight and

  3. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  4. A strongly heated neutron star in the transient z source MAXI J0556-332

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Jeroen; Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-582D, Cambridge, MA 02139 (United States); Fridriksson, Joel K.; Wijnands, Rudy [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Cackett, Edward M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St., Detroit, MI 48201 (United States); Degenaar, Nathalie [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Linares, Manuel [Instituto de Astrofísica de Canarias, c/ Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Lin, Dacheng, E-mail: jeroen@space.mit.edu [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)

    2014-11-10

    We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ∼16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M {sub ☉}. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ∼500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kT{sub eff}{sup ∞} = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (∼200 days) is similar to other sources. Fits without a power law yield higher temperatures (kT{sub eff}{sup ∞} = 190-336 eV) and a shorter e-folding time (∼160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.

  5. Demonstrating the Likely Neutron Star Nature of Five M31 Globular Cluster Sources with Swift-NuSTAR Spectroscopy

    Science.gov (United States)

    Maccarone, Thomas J.; Yukita, Mihoko; Hornschemeier, Ann; Lehmer, Bret D.; Antoniou, Vallia; Ptak, Andrew; Wik, Daniel R.; Zezas, Andreas; Boyd, Padi; Kennea, Jamie; hide

    2016-01-01

    We present the results of a joint Swift-NuSTAR spectroscopy campaign on M31. We focus on the five brightest globular cluster X-ray sources in our fields. Two of these had previously been argued to be black hole candidates on the basis of apparent hard-state spectra at luminosities above those for which neutron stars are in hard states. We show that these two sources are likely to be Z-sources (i.e. low magnetic field neutron stars accreting near their Eddington limits), or perhaps bright atoll sources (low magnetic field neutron stars which are just a bit fainter than this level) on the basis of simultaneous Swift and NuSTAR spectra which cover a broader range of energies. These new observations reveal spectral curvature above 6-8 keV that would be hard to detect without the broader energy coverage the NuSTAR data provide relative to Chandra and XMM-Newton. We show that the other three sources are also likely to be bright neutron star X-ray binaries, rather than black hole X-ray binaries. We discuss why it should already have been realized that it was unlikely that these objects were black holes on the basis of their being persistent sources, and we re-examine past work which suggested that tidal capture products would be persistently bright X-ray emitters. We discuss how this problem is likely due to neglecting disc winds in older work that predict which systems will be persistent and which will be transient.

  6. Neutron Stars and NuSTAR

    Science.gov (United States)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  7. CARBON NEUTRON STAR ATMOSPHERES

    International Nuclear Information System (INIS)

    Suleimanov, V. F.; Klochkov, D.; Werner, K.; Pavlov, G. G.

    2014-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in the chemical composition of their atmospheres. For example, the atmospheres of thermally emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in Cas A, a pure carbon atmosphere has recently been suggested by Ho and Heinke. To test this composition for other similar sources, a publicly available detailed grid of the carbon model atmosphere spectra is needed. We have computed this grid using the standard local thermodynamic equilibrium approximation and assuming that the magnetic field does not exceed 10 8  G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra

  8. Neutron stars as X-ray burst sources. II. Burst energy histograms and why they burst

    International Nuclear Information System (INIS)

    Baan, W.A.

    1979-01-01

    In this work we explore some of the implications of a model for X-ray burst sources where bursts are caused by Kruskal-Schwarzschild instabilities at the magnetopause of an accreting and rotating neutron star. A number of simplifying assumptions are made in order to test the model using observed burst-energy histograms for the rapid burster MXB 1730--335. The predicted histograms have a correct general shape, but it appears that other effects are important as well, and that mode competition, for instance, may suppress the histograms at high burst energies. An explanation is ventured for the enhancement in the histogram at the highest burst energies, which produces the bimodal shape in high accretion rate histograms. Quantitative criteria are given for deciding when accreting neutron stars are steady sources or burst sources, and these criteria are tested using the X-ray pulsars

  9. Magnetic field strength of a neutron-star-powered ultraluminous X-ray source

    Science.gov (United States)

    Brightman, M.; Harrison, F. A.; Fürst, F.; Middleton, M. J.; Walton, D. J.; Stern, D.; Fabian, A. C.; Heida, M.; Barret, D.; Bachetti, M.

    2018-04-01

    Ultraluminous X-ray sources (ULXs) are bright X-ray sources in nearby galaxies not associated with the central supermassive black hole. Their luminosities imply they are powered by either an extreme accretion rate onto a compact stellar remnant, or an intermediate mass ( 100-105M⊙) black hole1. Recently detected coherent pulsations coming from three bright ULXs2-5 demonstrate that some of these sources are powered by accretion onto a neutron star, implying accretion rates significantly in excess of the Eddington limit, a high degree of geometric beaming, or both. The physical challenges associated with the high implied accretion rates can be mitigated if the neutron star surface field is very high (1014 G)6, since this suppresses the electron scattering cross-section, reducing the radiation pressure that chokes off accretion for high luminosities. Surface magnetic field strengths can be determined through cyclotron resonance scattering features7,8 produced by the transition of charged particles between quantized Landau levels. Here, we present the detection at a significance of 3.8σ of an absorption line at 4.5 keV in the Chandra spectrum of a ULX in M51. This feature is likely to be a cyclotron resonance scattering feature produced by the strong magnetic field of a neutron star. Assuming scattering off electrons, the magnetic field strength is implied to be 1011 G, while protons would imply a magnetic field of B 1015 G.

  10. Neutron Skins and Neutron Stars

    OpenAIRE

    Piekarewicz, J.

    2013-01-01

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ("PREX") at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in 208Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron be...

  11. The Diversity of Neutron Stars

    Science.gov (United States)

    Kaplan, David L.

    2004-12-01

    Neutron stars are invaluable tools for exploring stellar death, the physics of ultra-dense matter, and the effects of extremely strong magnetic fields. The observed population of neutron stars is dominated by the >1000 radio pulsars, but there are distinct sub-populations that, while fewer in number, can have significant impact on our understanding of the issues mentioned above. These populations are the nearby, isolated neutron stars discovered by ROSAT, and the central compact objects in supernova remnants. The studies of both of these populations have been greatly accelerated in recent years through observations with the Chandra X-ray Observatory and the XMM-Newton telescope. First, we discuss radio, optical, and X-ray observations of the nearby neutron stars aimed at determining their relation to the Galactic neutron star population and at unraveling their complex physical processes by determining the basic astronomical parameters that define the population---distances, ages, and magnetic fields---the uncertainties in which limit any attempt to derive basic physical parameters for these objects. We conclude that these sources are 1e6 year-old cooling neutron stars with magnetic fields above 1e13 Gauss. Second, we describe the hollow supernova remnant problem: why many of the supernova remnants in the Galaxy have no indication of central neutron stars. We have undertaken an X-ray census of neutron stars in a volume-limited sample of Galactic supernova remnants, and from it conclude that either many supernovae do not produce neutron stars contrary to expectation, or that neutron stars can have a wide range in cooling behavior that makes many sources disappear from the X-ray sky.

  12. Introduction to neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Lattimer, James M. [Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  13. Theory of neutron star magnetospheres

    CERN Document Server

    Curtis Michel, F

    1990-01-01

    An incomparable reference for astrophysicists studying pulsars and other kinds of neutron stars, "Theory of Neutron Star Magnetospheres" sums up two decades of astrophysical research. It provides in one volume the most important findings to date on this topic, essential to astrophysicists faced with a huge and widely scattered literature. F. Curtis Michel, who was among the first theorists to propose a neutron star model for radio pulsars, analyzes competing models of pulsars, radio emission models, winds and jets from pulsars, pulsating X-ray sources, gamma-ray burst sources, and other neutron-star driven phenomena. Although the book places primary emphasis on theoretical essentials, it also provides a considerable introduction to the observational data and its organization. Michel emphasizes the problems and uncertainties that have arisen in the research as well as the considerable progress that has been made to date.

  14. Neutron star evolution and emission

    Science.gov (United States)

    Epstein, R. I.; Edwards, B. C.; Haines, T. J.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors investigated the evolution and radiation characteristics of individual neutron stars and stellar systems. The work concentrated on phenomena where new techniques and observations are dramatically enlarging the understanding of stellar phenomena. Part of this project was a study of x-ray and gamma-ray emission from neutron stars and other compact objects. This effort included calculating the thermal x-ray emission from young neutron stars, deriving the radio and gamma-ray emission from active pulsars and modeling intense gamma-ray bursts in distant galaxies. They also measured periodic optical and infrared fluctuations from rotating neutron stars and search for high-energy TeV gamma rays from discrete celestial sources.

  15. Neutron stars as cosmic neutron matter laboratories

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    Recent developments which have radically changed our understanding of the dynamics of neutron star superfluids and the free precession of neutron stars are summarized, and the extent to which neutron stars are cosmic neutron matter laboratories is discussed. 17 refs., 1 tab

  16. Old and new neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1984-09-01

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10 38 s -1 of 10 12 eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the 10 8 old dead pulsars in the Galaxy are the most probable source for the isotropically distributed γ-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables

  17. Period variations in pulsating X-ray sources. I. Accretion flow parameters and neutron star structure from timing observations

    International Nuclear Information System (INIS)

    Lamb, F.K.; Pines, D.; Shaham, J.

    1978-01-01

    We show that valuable information about both accretion flows and neutron star structure can be obtained from X-ray timing observations of period variations in pulsating sources. Such variations can result from variations in the accretion flow, or from internal torque variations, associated with oscillations of the fluid core or the unpinning of vortices in the inner crust. We develop a statistical description of torque variations in terms of noise processes, indicate how the applicability of such a description may be tested observationally, and show how it may be used to determine from observation both the properties of accretion flows and the internal structure of neutron stars, including the relative inertial moments of the crust and superfluid neutron core, the crust-core coupling time, and the frequencies of any low-frequency internal collective modes. Particular attention is paid to the physical origin of spin-down episodes; it is shown that usyc episodes may result either from external torque reversals or from internal torque variations.With the aid of the statistical description, the response of the star to torque fluctuations is calculated for three stellar models: (i) a completely rigid star; (ii) a two-component star; and (iii) a two-component star with a finite-frequency internal mode, such as the Tkachenko mode of a rotating neutron superfluid. Our calculations show that fluctuating torques could account for the period the period variations and spin-down episodes observed in Her X-1 and Cen X-3, including the large spin-down event observed in the latter source during 1972 September-October. The torque noise strengths inferred from current timing observations using the simple two-component models are shown to be consistent with those to be expected from fluctuations in accretion flows onto magnetic neutron stars

  18. Neutron source

    International Nuclear Information System (INIS)

    Cason, J.L. Jr.; Shaw, C.B.

    1975-01-01

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap

  19. An ultraluminous X-ray source powered by an accreting neutron star

    DEFF Research Database (Denmark)

    Bachetti, M.; Harrison, F. A.; Walton, D. J.

    2014-01-01

    the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects....

  20. Simulating neutron star mergers as r-process sources in ultrafaint dwarf galaxies

    Science.gov (United States)

    Safarzadeh, Mohammadtaher; Scannapieco, Evan

    2017-10-01

    To explain the high observed abundances of r-process elements in local ultrafaint dwarf (UFD) galaxies, we perform cosmological zoom simulations that include r-process production from neutron star mergers (NSMs). We model star formation stochastically and simulate two different haloes with total masses ≈108 M⊙ at z = 6. We find that the final distribution of [Eu/H] versus [Fe/H] is relatively insensitive to the energy by which the r-process material is ejected into the interstellar medium, but strongly sensitive to the environment in which the NSM event occurs. In one halo, the NSM event takes place at the centre of the stellar distribution, leading to high levels of r-process enrichment such as seen in a local UFD, Reticulum II (Ret II). In a second halo, the NSM event takes place outside of the densest part of the galaxy, leading to a more extended r-process distribution. The subsequent star formation occurs in an interstellar medium with shallow levels of r-process enrichment that results in stars with low levels of [Eu/H] compared to Ret II stars even when the maximum possible r-process mass is assumed to be ejected. This suggests that the natal kicks of neutron stars may also play an important role in determining the r-process abundances in UFD galaxies, a topic that warrants further theoretical investigation.

  1. Neutron stars velocities and magnetic fields

    Science.gov (United States)

    Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.

    2018-01-01

    We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.

  2. X-rays from neutron stars

    International Nuclear Information System (INIS)

    Boerner, G.

    1979-08-01

    The basic theoretical in the models of regularly pulsating X-ray sources are discussed, and put in relation to the observations. The topics covered include physics of the magnetosphere of an accreting neutron star, hydrodynamics of the accretion column, physical processes close to the surface of the neutron star such as proton-electron collisions, photon-electron interactions. (orig.)

  3. Thermonuclear process and accretion onto neutron star envelopes: x-ray burst and transient sources

    International Nuclear Information System (INIS)

    Starrfield, S.; Kenyon, S.; Sparks, W.M.; Truran, J.W.; Theoretical Division, Los Alamos National Laboratory)

    1982-01-01

    We have used a Lagrangian, fully implicit, one-dimensional, hydrodynamic computer code to investigate the evolution of thermonuclear runaways in the thick, accreted, hydrogen-rich envelopes of 1.0 M/sub sun/ neutron stars with radii of 10 km and 20 km. Our simulations produce outbursts which range in time scale from about 2000 seconds to longer than 1 day. Peak effective temperature was 3.3 x 10 7 K (kTapprox.2.91 keV), and peak luminosity was 2 x 10 5 L/sub sun/ for the 10 km study. The 20 km neutron star produced a peak effective temperature and luminosity of 5.3 x 10 6 K and 5.9 x 10 2 L/sub sun/, respectively. We also investigated the effects of changes in the rates of the 14 O(α,p) and 15 O(α,ν) reactions on the evolution. Hydrodynamic expansion on the 10 km neutron star produced a precursor lasting about 10 - 6 seconds

  4. Slowly braked, rotating neutron stars

    Science.gov (United States)

    Sato, H.

    1975-01-01

    A slowly braked, rotating neutron star is believed to be a star which rapidly rotates, has no nebula, is nonpulsing, and has a long initial braking time of ten thousand to a million years because of a low magnetic field. Such an object might be observable as an extended weak source of infrared or radio wave radiation due to the scattering of low-frequency strong-wave photons by accelerated electrons. If these objects exist abundantly in the Galaxy, they would act as sources of relatively low-energy cosmic rays. Pulsars (rapidly braked neutron stars) are shown to have difficulties in providing an adequate amount of cosmic-ray matter, making these new sources seem necessary. The possibility that the acceleration mechanism around a slowly braked star may be not a direct acceleration by the strong wave but an acceleration due to plasma turbulence excited by the strong wave is briefly explored. It is shown that white dwarfs may also be slowly braked stars with braking times longer than 3.15 million years.

  5. Neutron matter, symmetry energy and neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, Gandolfi [Los Alamos National Laboratory (LANL); Steiner, Andrew W [ORNL

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  6. Structure of neutron stars

    International Nuclear Information System (INIS)

    Cheong, C.K.

    1974-01-01

    Structure of neutron stars consisting of a cold and catalyzed superdense matter were investigated by integrating the equations for hydrostatic equilibrium based on the General Relativity theory. The equations of state were obtained with the help of semiempirical nuclear mass formulae. A large phase transition was found between the nuclear and subnuclear density regions. The density phase transition points were calculated as 6.2 x 10 11 and 3.8 x 10 13 g/cm 3 . Due to such a large phase transition, the equation of state practically consists of two parts: The nuclear and subnuclear phases wich are in contact under the thermodynamical equilibrium at the corresponding pressure. Some macroscopic properties of neutron stars are discussed. (Author) [pt

  7. Oscillations in neutron stars

    International Nuclear Information System (INIS)

    Hoeye, Gudrun Kristine

    1999-01-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l → 4) f-modes we were also able to derive a formula that determines II l+1 from II l and II l-1 to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n c , while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  8. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  9. A LIMIT ON THE NUMBER OF ISOLATED NEUTRON STARS DETECTED IN THE ROSAT ALL-SKY-SURVEY BRIGHT SOURCE CATALOG

    International Nuclear Information System (INIS)

    Turner, Monica L.; Rutledge, Robert E.; Letcavage, Ryan; Shevchuk, Andrew S. H.; Fox, Derek B.

    2010-01-01

    Using new and archival observations made with the Swift satellite and other facilities, we examine 147 X-ray sources selected from the ROSAT All-Sky-Survey Bright Source Catalog (RASS/BSC) to produce a new limit on the number of isolated neutron stars (INSs) in the RASS/BSC, the most constraining such limit to date. Independent of X-ray spectrum and variability, the number of INSs is ≤48 (90% confidence). Restricting attention to soft (kT eff < 200 eV), non-variable X-ray sources-as in a previous study-yields an all-sky limit of ≤31 INSs. In the course of our analysis, we identify five new high-quality INS candidates for targeted follow-up observations. A future all-sky X-ray survey with eROSITA, or another mission with similar capabilities, can be expected to increase the detected population of X-ray-discovered INSs from the 8-50 in the BSC, to (for a disk population) 240-1500, which will enable a more detailed study of neutron star population models.

  10. Physics of Neutron Star Crusts

    Directory of Open Access Journals (Sweden)

    Chamel Nicolas

    2008-12-01

    Full Text Available The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  11. KAON CONDENSATION IN NEUTRON STARS

    International Nuclear Information System (INIS)

    RAMOS, A.; SCHAFFNER-BIELICH, J.; WAMBACH, J.

    2001-01-01

    We discuss the kaon-nucleon interaction and its consequences for the change of the properties of the kaon in the medium. The onset of kaon condensation in neutron stars under various scenarios as well its effects for neutron star properties are reviewed

  12. Neutron stars, magnetic fields, and gravitational waves

    International Nuclear Information System (INIS)

    Lamb, F.K.

    2001-01-01

    The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the

  13. Super-Eddington accretion on to the neutron star NGC 7793 P13: Broad-band X-ray spectroscopy and ultraluminous X-ray sources

    Science.gov (United States)

    Walton, D. J.; Fürst, F.; Harrison, F. A.; Stern, D.; Bachetti, M.; Barret, D.; Brightman, M.; Fabian, A. C.; Middleton, M. J.; Ptak, A.; Tao, L.

    2018-02-01

    We present a detailed, broad-band X-ray spectral analysis of the ultraluminous X-ray source (ULX) pulsar NGC 7793 P13, a known super-Eddington source, utilizing data from the XMM-Newton, NuSTAR and Chandra observatories. The broad-band XMM-Newton+NuSTAR spectrum of P13 is qualitatively similar to the rest of the ULX sample with broad-band coverage, suggesting that additional ULXs in the known population may host neutron star accretors. Through time-averaged, phase-resolved and multi-epoch studies, we find that two non-pulsed thermal blackbody components with temperatures ∼0.5 and 1.5 keV are required to fit the data below 10 keV, in addition to a third continuum component which extends to higher energies and is associated with the pulsed emission from the accretion column. The characteristic radii of the thermal components appear to be comparable, and are too large to be associated with the neutron star itself, so the need for two components likely indicates the accretion flow outside the magnetosphere is complex. We suggest a scenario in which the thick inner disc expected for super-Eddington accretion begins to form, but is terminated by the neutron star's magnetic field soon after its onset, implying a limit of B ≲ 6 × 1012 G for the dipolar component of the central neutron star's magnetic field. Evidence of similar termination of the disc in other sources may offer a further means of identifying additional neutron star ULXs. Finally, we examine the spectrum exhibited by P13 during one of its unusual 'off' states. These data require both a hard power-law component, suggesting residual accretion on to the neutron star, and emission from a thermal plasma, which we argue is likely associated with the P13 system.

  14. ULX spectra revisited: Accreting, highly magnetized neutron stars as the engines of ultraluminous X-ray sources

    Science.gov (United States)

    Koliopanos, Filippos; Vasilopoulos, Georgios; Godet, Olivier; Bachetti, Matteo; Webb, Natalie A.; Barret, Didier

    2017-12-01

    Aims: In light of recent discoveries of pulsating ultraluminous X-ray sources (ULXs) and recently introduced theoretical schemes that propose neutron stars (NSs) as the central engines of ULXs, we revisit the spectra of eighteen well known ULXs, in search of indications that favour this newly emerging hypothesis. Methods: We examine the spectra from high-quality XMM-Newton and NuSTAR observations. We use a combination of elementary black body and multicolour disk black body (MCD) models, to diagnose the predictions of classic and novel theoretical models of accretion onto NSs. We re-interpret the well established spectral characteristics of ULXs in terms of accretion onto lowly or highly magnetised NSs, and explore the resulting parameter space for consistency. Results: We confirm the previously noted presence of the low-energy (≲6 keV) spectral rollover and argue that it could be interpreted as due to thermal emission. The spectra are well described by a double thermal model consisting of a "hot" (≳1 keV) and a "cool" (≲0.7 keV) multicolour black body (MCB). Under the assumption that the "cool" MCD emission originates in a disk truncated at the neutron star magnetosphere, we find that all ULXs in our sample are consistent with accretion onto a highly magnetised (B ≳ 1012 G) neutron star. We note a strong correlation between the strength of the magnetic field, the temperature of the "hot" thermal component and the total unabsorbed luminosity. Examination of the NuSTAR data supports this interpretation and also confirms the presence of a weak, high-energy (≳15 keV) tail, most likely the result of modification of the MCB emission by inverse Compton scattering. We also note that the apparent high-energy tail, may simply be the result of mismodelling of MCB emission with an atypical temperature (T) versus radius (r) gradient, using a standard MCD model with a fixed gradient of T r-0.75. Conclusions: We have offered a new and robust physical interpretation for

  15. Rotating relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K.

    1991-07-21

    Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.

  16. Accreting neutron stars, black holes, and degenerate dwarf stars.

    Science.gov (United States)

    Pines, D

    1980-02-08

    During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.

  17. Neutron star structure from QCD

    CERN Document Server

    Fraga, Eduardo S; Vuorinen, Aleksi

    2016-01-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  18. Neutron Star Physics and EOS

    Directory of Open Access Journals (Sweden)

    Lattimer James M.

    2016-01-01

    Full Text Available Neutron stars are important because measurement of their masses and radii will determine the dense matter equation of state. They will constrain the nuclear matter symmetry energy, which controls the neutron star matter pressure and the interior composition, and will influence the interpretation of nuclear experiments. Astrophysical observations include pulsar timing, X-ray bursts, quiescent low-mass X-ray binaries, pulse profiles from millisecond pulsars, neutrino observations from gravitational collapse supernovae,and gravitational radiation from compact object mergers. These observations will also constrain the neutron star interior, including the properties of superfluidity there, and determine the existence of a possible QCD phase transition.

  19. Cooling of Accretion-Heated Neutron Stars

    Science.gov (United States)

    Wijnands, Rudy; Degenaar, Nathalie; Page, Dany

    2017-09-01

    We present a brief, observational review about the study of the cooling behaviour of accretion-heated neutron stars and the inferences about the neutron-star crust and core that have been obtained from these studies. Accretion of matter during outbursts can heat the crust out of thermal equilibrium with the core and after the accretion episodes are over, the crust will cool down until crust-core equilibrium is restored. We discuss the observed properties of the crust cooling sources and what has been learned about the physics of neutron-star crusts. We also briefly discuss those systems that have been observed long after their outbursts were over, i.e, during times when the crust and core are expected to be in thermal equilibrium. The surface temperature is then a direct probe for the core temperature. By comparing the expected temperatures based on estimates of the accretion history of the targets with the observed ones, the physics of neutron-star cores can be investigated. Finally, we discuss similar studies performed for strongly magnetized neutron stars in which the magnetic field might play an important role in the heating and cooling of the neutron stars.

  20. Accretion discs around neutron stars

    International Nuclear Information System (INIS)

    Pringle, J.E.

    1982-01-01

    If the central object in the disc is a neutron star, then we do not need the disc itself to produce the X-rays. In other words, the disc structure itself is not important as long as it plays the role of depositing matter on the neutron star at a sufficient rate to produce the X-ray flux. Similarly, in the outer disc regions, the main disc luminosity comes from absorption and reradiation of X-ray photons and not from the intrinsic, viscously-produced, local energy production rate. These two points indicate why in the compact binary X-ray sources confrontation between disc theory and observations is not generally practicable. For this reason I will divide my talk into two parts: one on observational discs in which I discuss what observational evidence there is for discs in the compact X-ray sources and what the evidence can tell the theorist about disc behaviour, and the other on theoretical discs where I consider in what ways theoretical arguments can put limits or cast doubt on some of the empirical models put forward to explain the observations. (orig.)

  1. Magnetohydrodynamics of neutron star interiors

    International Nuclear Information System (INIS)

    Easson, I.; Pethick, C.J.

    1979-01-01

    Magnetohydrodynamic equations for the charged particles in the fluid interior of a neutron star are derived from the Landau-Boltzmann kinetic equations. It is assumed that the protons are normal and the neutrons are superfluid. The dissipative processes associated with the weak interactions are shown to be negligible except in very hot neutron stars; we neglect them here. Among the topics discussed are: the influence of the neutron-proton nuclear force (Fermi liquid corrections) on the magnetohydrodynamics; the effects of the magnetic field on the pressure, viscosity, and heat conductivity tensors; the plasma equation of state; and the form of the generalized Ohm's law

  2. Cracking on anisotropic neutron stars

    Science.gov (United States)

    Setiawan, A. M.; Sulaksono, A.

    2017-07-01

    We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.

  3. Cooling of Accretion-Heated Neutron Stars

    Indian Academy of Sciences (India)

    Rudy Wijnands

    2017-09-12

    Sep 12, 2017 ... the magnetic field might play an important role in the heating and cooling of the neutron stars. .... Source near Sgr A ..... marked the start of the research field that uses the cool- ... This curve is just to guide the eye for the individual sources and it is clear ..... Not all accretion-induced nuclear reactions might.

  4. Delta isobars in neutron stars

    Directory of Open Access Journals (Sweden)

    Pagliara Giuseppe

    2015-01-01

    Full Text Available The appearance of delta isobars in beta-stable matter is regulated by the behavior of the symmetry energy at densities larger than saturation density. We show that by taking into account recent constraints on the density derivative of the symmetry energy and the theoretical and experimental results on the excitations of delta isobars in nuclei, delta isobars are necessary ingredients for the equations of state used for studying neutron stars. We analyze the effect of the appearance of deltas on the structure of neutron stars: as in the case of hyperons, matter containing delta is too soft for allowing the existence of 2M⊙ neutron stars. Quark stars on the other hand, could reach very massive configurations and they could form from a process of conversion of hadronic stars in which an initial seed of strangeness appears through hyperons.

  5. Neutron star news and puzzles

    International Nuclear Information System (INIS)

    Prakash, Madappa

    2014-01-01

    Gerry Brown has had the most influence on my career in Physics, and my life after graduate studies. This article gives a brief account of some of the many ways in which Gerry shaped my research. Focus is placed on the significant strides on neutron star research made by the group at Stony Brook, which Gerry built from scratch. Selected puzzles about neutron stars that remain to be solved are noted

  6. On neutron stars and gravitation

    International Nuclear Information System (INIS)

    Castagnino, M.A.

    1987-01-01

    From the variational principle for the total internal energy of a neutron star and some restrictions of the form of the metric coefficients, equations of structure which are valid for every metric theory of gravitation have been found. Some simple solutions of the structure equations to find the maximum mass of a neutron star are also presented. Finally it is studied this problem using a post post-Newtonian parametrization

  7. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  8. Physics of neutron star interiors

    International Nuclear Information System (INIS)

    Blaschke, D.

    2001-01-01

    Neutron stars are the densest observable bodies in our universe. Born during the gravitational collapse of luminous stars - a birth heralded by spectacular supernova explosions - they open a window on a world where the state of the matter and the strength of the fields are anything but ordinary. This book is a collection of pedagogical lectures on the theory of neutron stars, and especially their interiors, at the forefront of current research. It adresses graduate students and researchers alike, and should be particularly suitable as a text bridging the gap between standard textbook material and the research literature

  9. Neutron star moments of inertia

    Science.gov (United States)

    Ravenhall, D. G.; Pethick, C. J.

    1994-01-01

    An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.

  10. Neutron star structure: Theory, observation, and speculation

    International Nuclear Information System (INIS)

    Pandharipande, V.R.; Pines, D.; Smith, R.A.

    1976-01-01

    The broad physical aspects of the neutron-neutron interaction in dense matter are reviewed, and an examination is made of the extent to which the equation of state of neutron star matter is influenced by phase transitions which have been proposed for the high-density regime. The dependence of the maximum neutron star mass and the stellar structure on the neutron-neutron interaction is studied through calculations of the equation of state of neutron matter based on four different models for this interaction: the Reid (R) and Bethe-Johnson (BJ) models, a tensor-interaction (TI) model which assumes that the attraction between nucleons comes from the higher order contribution of the pion-exchange tensor interaction, and a mean field (MF) model which assumes that all the attraction between nucleons is due to the exchange of an effective scalar meson. It is shown that the harder equations of state which result from the BJ, TI, and MF models give rise to significant modifications in the structure of neutron stars; heavy neutron stars (approximately-greater-than1 M/sub sun/) have both larger radii and thicker crusts than were predicted using the R model.These stars are used as a basis for comparing theory with observation for the mass and structure of neutron stars such as the Crab and Vela pulsars, and the compact X-ray sources Her X-1 and Vela X-1. We find that both theory and observation tend to favor an equation of state that is stiff in the region of 10 14 --10 15 g cm -3 and that a neutron star such as Her X-1 (Mapprox.1.3 M/sub sun/) has a radius of the order of 15 km with a crust thickness of order 5 km. Based on starquake theory, it is concluded that the Crab pulsar could have a mass as large as 1.3 M/sub sun/, with a critical strain angle approx.10 -3 , comparable to that suggested for Her X-1. The possibility of solid-core neutron stars and some of their observational consequences is discussed

  11. Accretion by rotating magnetic neutron stars. III. Accretion torques and period changes in pulsating X-ray sources

    International Nuclear Information System (INIS)

    Ghosh, P.; Lamb, F.K.

    1979-01-01

    We use the solutions of the two-dimensional hydromagnetic equations obtained previously to calculate the torque on a magnetic neutron star accreting from a Keplerian disk. We find that the magnetic coupling between the star and the plasma outside the inner edge of the disk is appreciable. As a result of this coupling the spin-up torque on fast rotators is substantially less than that on slow rotators; for sufficiently high stellar angular velocities or sufficiently low accretion rates this coupling dominates that de to the plasma and the magnetic field at the inner edge of the disk, braking the star's rotation even while accretion, and hence X-ray emission, continues.We apply these results to pulsating X-ray sources, and show that the observed secular spin-up rates of all the sources in which this rate has been measured can be accounted for quantitatively if one assumes that these sources are accreting from Keplerian disks and have magnetic moments approx.10 29 --10 32 gauss cm 3 . The reduction of the torque on fast rotators provides a natural explanation of the spin-up rate of Her X-1, which is much below that expected for slow rotators. We show further that a simple relation between the secular spin-up rate : P and the quantity PL/sup 3/7/ adequately represents almost all the observational data, P and L being the pulse period and the luminosity of the source, respectively. This ''universal'' relation enables one to estimate any one of the parameters P, P, and L for a given source if the other two are known. We show that the short-term period fluctuations observed in Her X-1, Cen X-3, Vela X-1, and X Per can be accounted for quite naturally as consequences of torque variations caused by fluctuations in the mass transfer rate. We also indicate how the spin-down torque at low luminosities found here may account for the paradoxical existence of a large number of long-period sources with short spin-up time scales

  12. Hyperon-mixed neutron stars

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki

    2004-01-01

    Hyperon mixing in neutron star matter is investigated by the G-matrix-based effective interaction approach under the attention to use the YN and the YY potentials compatible with hypernuclear data and is shown to occur at densities relevant to neutron star cores, together with discussions to clarify the mechanism of hyperon contamination. It is remarked that developed Y-mixed phase causes a dramatic softening of the neutron star equation of state and leads to the serious problem that the resulting maximum mass M max for neutron star model contradicts the observed neutron star mass (M max obs = 1.44 M Θ ), suggesting the necessity of some extra repulsion'' in hypernuclear system. It is shown that the introduction of three-body repulsion similar to that in nuclear system can resolve the serious situation and under the consistency with observation (M max > M obs ) the threshold densities for Λ and Σ - are pushed to higher density side, from 2ρ 0 to ∼ 4ρ 0 (ρ 0 being the nuclear density). On the basis of a realistic Y-mixed neutron star model, occurrence of Y-superfluidity essential for ''hyperon cooling'' scenario is studied and both of Λ- and Σ - -superfluids are shown to be realized with their critical temperatures 10 8-9 K, meaning that the hyperon cooling'' is a promising candidate for a fast non-standard cooling demanded for some neutron stars with low surface temperature. A comment is given as to the consequence of less attractive ΛΛ interaction suggested by the ''NAGARA event'' ΛΛ 6 He. (author)

  13. A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes

    International Nuclear Information System (INIS)

    O'Connor, Evan; Ott, Christian D

    2010-01-01

    We present the new open-source spherically symmetric general-relativistic (GR) hydrodynamics code GR1D. It is based on the Eulerian formulation of GR hydrodynamics (GRHD) put forth by Romero-Ibanez-Gourgoulhon and employs radial-gauge, polar-slicing coordinates in which the 3+1 equations simplify substantially. We discretize the GRHD equations with a finite-volume scheme, employing piecewise-parabolic reconstruction and an approximate Riemann solver. GR1D is intended for the simulation of stellar collapse to neutron stars and black holes and will also serve as a testbed for modeling technology to be incorporated in multi-D GR codes. Its GRHD part is coupled to various finite-temperature microphysical equations of state in tabulated form that we make available with GR1D. An approximate deleptonization scheme for the collapse phase and a neutrino-leakage/heating scheme for the postbounce epoch are included and described. We also derive the equations for effective rotation in 1D and implement them in GR1D. We present an array of standard test calculations and also show how simple analytic equations of state in combination with presupernova models from stellar evolutionary calculations can be used to study qualitative aspects of black hole formation in failing rotating core-collapse supernovae. In addition, we present a simulation with microphysical equations of state and neutrino leakage/heating of a failing core-collapse supernova and black hole formation in a presupernova model of a 40 M o-dot zero-age main-sequence star. We find good agreement on the time of black hole formation (within 20%) and last stable protoneutron star mass (within 10%) with predictions from simulations with full Boltzmann neutrino radiation hydrodynamics.

  14. A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Evan; Ott, Christian D, E-mail: evanoc@tapir.caltech.ed, E-mail: cott@tapir.caltech.ed [TAPIR, Mail Code 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2010-06-07

    We present the new open-source spherically symmetric general-relativistic (GR) hydrodynamics code GR1D. It is based on the Eulerian formulation of GR hydrodynamics (GRHD) put forth by Romero-Ibanez-Gourgoulhon and employs radial-gauge, polar-slicing coordinates in which the 3+1 equations simplify substantially. We discretize the GRHD equations with a finite-volume scheme, employing piecewise-parabolic reconstruction and an approximate Riemann solver. GR1D is intended for the simulation of stellar collapse to neutron stars and black holes and will also serve as a testbed for modeling technology to be incorporated in multi-D GR codes. Its GRHD part is coupled to various finite-temperature microphysical equations of state in tabulated form that we make available with GR1D. An approximate deleptonization scheme for the collapse phase and a neutrino-leakage/heating scheme for the postbounce epoch are included and described. We also derive the equations for effective rotation in 1D and implement them in GR1D. We present an array of standard test calculations and also show how simple analytic equations of state in combination with presupernova models from stellar evolutionary calculations can be used to study qualitative aspects of black hole formation in failing rotating core-collapse supernovae. In addition, we present a simulation with microphysical equations of state and neutrino leakage/heating of a failing core-collapse supernova and black hole formation in a presupernova model of a 40 M{sub o-dot} zero-age main-sequence star. We find good agreement on the time of black hole formation (within 20%) and last stable protoneutron star mass (within 10%) with predictions from simulations with full Boltzmann neutrino radiation hydrodynamics.

  15. Binary neutron star merger simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bruegmann, Bernd [Jena Univ. (Germany)

    2016-11-01

    Our research focuses on the numerical tools necessary to solve Einstein's equations. In recent years we have been particularly interested in spacetimes consisting of two neutron stars in the final stages of their evolution. Because of the emission of gravitational radiation, the objects are driven together to merge; the emitted gravitational wave signal is visualized. This emitted gravitational radiation carries energy and momentum away from the system and contains information about the system. Late last year the Laser Interferometer Gravitational-wave Observatory (LIGO) began searches for these gravitational wave signals at a sensitivity at which detections are expected. Although such systems can radiate a significant amount of their total mass-energy in gravitational waves, the gravitational wave signals one expects to receive on Earth are not strong, since sources of gravitational waves are often many millions of light years away. Therefore one needs accurate templates for the radiation one expects from such systems in order to be able to extract them out of the detector's noise. Although analytical models exist for compact binary systems when the constituents are well separated, we need numerical simulation to investigate the last orbits before merger to obtain accurate templates and validate analytical approximations. Due to the strong nonlinearity of the equations and the large separation of length scales, these simulations are computationally demanding and need to be run on large supercomputers. When matter is present the computational cost as compared to pure black hole (vacuum) simulations increases even more due to the additional matter fields. But also more interesting astrophysical phenomena can happen. In fact, there is the possibility for a strong electromagnetic signal from the merger (e.g., a short gamma-ray burst or lower-energy electromagnetic signatures from the ejecta) and significant neutrino emission. Additionally, we can expect that

  16. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  17. Lightweight Double Neutron Star Found

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    More than forty years after the first discovery of a double neutron star, we still havent found many others but a new survey is working to change that.The Hunt for PairsThe observed shift in the Hulse-Taylor binarys orbital period over time as it loses energy to gravitational-wave emission. [Weisberg Taylor, 2004]In 1974, Russell Hulse and Joseph Taylor discovered the first double neutron star: two compact objects locked in a close orbit about each other. Hulse and Taylors measurements of this binarys decaying orbit over subsequent years led to a Nobel prize and the first clear evidence of gravitational waves carrying energy and angular momentum away from massive binaries.Forty years later, we have since confirmed the existence of gravitational waves directly with the Laser Interferometer Gravitational-Wave Observatory (LIGO). Nonetheless, finding and studying pre-merger neutron-star binaries remains a top priority. Observing such systems before they merge reveals crucial information about late-stage stellar evolution, binary interactions, and the types of gravitational-wave signals we expect to find with current and future observatories.Since the Hulse-Taylor binary, weve found a total of 16 additional double neutron-star systems which represents only a tiny fraction of the more than 2,600 pulsars currently known. Recently, however, a large number of pulsar surveys are turning their eyes toward the sky, with a focus on finding more double neutron stars and at least one of them has had success.The pulse profile for PSR J1411+2551 at 327 MHz. [Martinez et al. 2017]A Low-Mass DoubleConducted with the 1,000-foot Arecibo radio telescope in Puerto Rico, the Arecibo 327 MHz Drift Pulsar Survey has enabled the recent discovery of dozens of pulsars and transients. Among them, as reported by Jose Martinez (Max Planck Institute for Radio Astronomy) and coauthors in a recent publication, is PSR J1411+2551: a new double neutron star with one of the lowest masses ever measured

  18. Anomalous hydrodynamics kicks neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Matthias, E-mail: mski@ua.edu [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2 (Canada); Uhlemann, Christoph F. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Bleicher, Marcus [Frankfurt Institute for Advanced Studies, Goethe-Universität Frankfurt (Germany); Institut für Theoretische Physik, Goethe Universität Frankfurt (Germany); Schaffner-Bielich, Jürgen [Institut für Theoretische Physik, Goethe Universität Frankfurt (Germany)

    2016-09-10

    Observations show that, at the beginning of their existence, neutron stars are accelerated briskly to velocities of up to a thousand kilometers per second. We argue that this remarkable effect can be explained as a manifestation of quantum anomalies on astrophysical scales. To theoretically describe the early stage in the life of neutron stars we use hydrodynamics as a systematic effective-field-theory framework. Within this framework, anomalies of the Standard Model of particle physics as underlying microscopic theory imply the presence of a particular set of transport terms, whose form is completely fixed by theoretical consistency. The resulting chiral transport effects in proto-neutron stars enhance neutrino emission along the internal magnetic field, and the recoil can explain the order of magnitude of the observed kick velocities.

  19. BPS Skyrmions as neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C., E-mail: adam@fpaxp1.usc.es [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Naya, C.; Sanchez-Guillen, J.; Vazquez, R. [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Reymonta 4, Kraków (Poland)

    2015-03-06

    The BPS Skyrme model has been demonstrated already to provide a physically intriguing and quantitatively reliable description of nuclear matter. Indeed, the model has both the symmetries and the energy–momentum tensor of a perfect fluid, and thus represents a field theoretic realization of the “liquid droplet” model of nuclear matter. In addition, the classical soliton solutions together with some obvious corrections (spin–isospin quantization, Coulomb energy, proton-neutron mass difference) provide an accurate modeling of nuclear binding energies for heavier nuclei. These results lead to the rather natural proposal to try to describe also neutron stars by the BPS Skyrme model coupled to gravity. We find that the resulting self-gravitating BPS Skyrmions provide excellent results as well as some new perspectives for the description of bulk properties of neutron stars when the parameter values of the model are extracted from nuclear physics. Specifically, the maximum possible mass of a neutron star before black-hole formation sets in is a few solar masses, the precise value of which depends on the precise values of the model parameters, and the resulting neutron star radius is of the order of 10 km.

  20. Neutron star pulsations and instabilities

    International Nuclear Information System (INIS)

    Lindblom, L.

    2001-01-01

    Gravitational radiation (GR) drives an instability in certain modes of rotating stars. This instability is strong enough in the case of the r-modes to cause their amplitudes to grow on a timescale of tens of seconds in rapidly rotating neutron stars. GR emitted by these modes removes angular momentum from the star at a rate which would spin it down to a relatively small angular velocity within about one year, if the dimensionless amplitude of the mode grows to order unity. A pedagogical level discussion is given here on the mechanism of GR instability in rotating stars, on the relevant properties of the r-modes, and on our present understanding of the dissipation mechanisms that tend to suppress this instability in neutron stars. The astrophysical implications of this GR driven instability are discussed for young neutron stars, and for older systems such as low mass x-ray binaries. Recent work on the non-linear evolution of the r-modes is also presented. (author)

  1. Hard X ray lines from neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; La Padula, C.; Ubertini, P.

    1982-01-01

    Experimental evidence is presented and evaluated concerning the features of the hard X-ray spectra detected in a number of cosmic X-ray sources which contain a neutron star. The strong emission line at cyclotron resonance detected in the spectrum of Her XI at an energy of 58 keV is evaluated and the implications of this finding are discussed. Also examined is the presence of spectral features in the energy range 20-80 keV found in the spectra of gamma-ray bursts, which have been interpreted as cyclotron resonance from interstellar-gas-accreting neutron stars. The less understood finding of a variable emission line at approximately 70 keV in the spectrum of the Crab Pulsar is considered. It is determined that several features varying with time are present in the spectra of cosmic X-ray sources associated with neutron stars. If these features are due to cyclotron resonance, it is suggested that they provide a direct measurement of neutron star magnetic fields on the order of 10 to the 11th-10 to the 13th Gauss. However, the physical condition of the emitting region and its geometry are still quite obscure.

  2. Superconducting superfluids in neutron stars

    International Nuclear Information System (INIS)

    Carter, B.

    2002-01-01

    For treatment of the layers below the crust of a neutron star it is useful to employ a relativistic model involving three independently moving constituents, representing superfluid neutrons, superfluid protons, and degenerate negatively charged leptons. A Kalb-Ramond type formulation is used here to develop such a model for the specific purpose of application at the semi macroscopic level characterised by lengthscales that are long compared with the separation between the highly localised and densely packed proton vortices of the Abrikosov type lattice that carries the main part of the magnetic flux, but that are short compared with the separation between the neutron vortices. (orig.)

  3. Demonstrating the likely neutron star nature of five M31 globular cluster sources with Swift-NuSTAR spectroscopy

    DEFF Research Database (Denmark)

    Maccarone, Thomas J.; Yukita, Mihoko; Hornschemeier, Ann

    2016-01-01

    of simultaneous Swift and NuSTAR spectra which cover a broader range of energies. These new observations reveal spectral curvature above 6-8 keV that would be hard to detect without the broader energy coverage the NuSTAR data provide relative to Chandra and XMM-Newton. We show that the other three sources...

  4. Spallation neutron sources

    International Nuclear Information System (INIS)

    Fraser, J.S.; Bartholomew, G.A.

    1983-01-01

    The principles and theory of spallation neutron sources are outlined and a comparison is given with other types of neutron source. A summary of the available accelerator types for spallation neutron sources and their advantages and disadvantages is presented. Suitable target materials are discussed for specific applications, and typical target assemblies shown. (U.K.)

  5. Soft X-ray production by photon scattering in pulsating binary neutron star sources

    International Nuclear Information System (INIS)

    Bussard, R.W.; Meszaros, P.; Alexander, S.

    1985-01-01

    A new mechanism is proposed as a source of soft (less than 1 keV) radiation in binary pulsating X-ray sources, in the form of photon scattering which leaves the electron in an excited Landau level. In a plasma with parameters typical of such sources, the low-energy X-ray emissivity of this mechanism far exceeds that of bremsstrahlung. This copious source of soft photons is quite adequate to provide the seed photons needed to explain the power-law hard X-ray spectrum by inverse Comptonization on the hot electrons at the base of the accretion column. 13 references

  6. Properties of neutron sources

    International Nuclear Information System (INIS)

    1987-03-01

    The Conference presentations were divided into sessions devoted to the following topics: white neutron sources, primarily pulsed (6 papers); fast neutron fields (5 papers); Californium-252 prompt fission neutron spectra (14 papers); monoenergetic sources and filtered beams (11 papers); 14 MeV neutron sources (10 papers); selected special application (one paper); and a general interest session (4 papers). Individual abstracts were prepared separately for the papers

  7. Probing thermonuclear burning on accreting neutron stars

    Science.gov (United States)

    Keek, L.

    2008-12-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes thermonuclear burning in the neutron star envelope, creating carbon and heavier elements. The fusion process may proceed in an unstable manner, resulting in a thermonuclear runaway. Within one second the entire surface is burned, which is observable as a sharp rise in the emitted X-ray flux: a type I X-ray burst. Afterwards the neutron star surface cools down on a timescale of ten to one hundred seconds. During these bursts the surface of an accreting neutron star can be observed directly, which makes them instrumental for studying this type of stars. We have studied rare kinds of X-ray bursts. One such rare burst is the superburst, which lasts a thousand times longer than an ordinary burst. Superbursts are thought to result from the explosive burning of a thick carbon layer, which lies deeper inside the neutron star, close to a layer known as the crust. A prerequisite for the occurrence of a superburst is a high enough temperature, which is set by the temperature of the crust and the heat conductivity of the envelope. The latter is lowered by the presence of heavy elements that are produced during normal X-ray bursts. Using a large set of observations from the Wide Field Camera's onboard the BeppoSAX satellite, we find that, at high accretion rate, sources which do not exhibit normal bursts likely have a longer superburst recurrence time, than the observed superburst recurrence time of one burster. We analyze in detail the first superburst from a transient source, which went into outburst only 55 days before the superburst. Recent models of the neutron star crust predict that this is too small a time to heat the crust sufficiently for superburst ignition, indicating

  8. Hyperon-mixed neutron star matter and neutron stars

    International Nuclear Information System (INIS)

    Nishizaki, Shigeru; Takatsuka, Tatsuyuki; Yamamoto, Yasuo

    2002-01-01

    Effective Σ - n and Σ - Σ - interactions are derived from the G-matrix calculations for {n+Σ - } matter and employed in the investigation of hyperon mixing in neutron star matter. The threshold densities ρ t (Y) at which hyperons start to appear are between 2ρ 0 and 3ρ 0 (where ρ 0 is the normal nuclear density) for both Λ and Σ - , and their fractions increase rapidly with baryon density, reaching 10% already for ρ≅ρ t + ρ 0 . The mechanism of hyperon mixing and single-particle properties, such as the effective mass and the potential depth, are analyzed taking into account the roles of YN and NN interactions. The resulting equation of state is found to be too soft to sustain the observed neutron star mass M obs =1.44(solar mass). We discuss the reason for this and stress the necessity of the ''extra repulsion'' for YN and YY interactions to resolve this crucial problem. It is remarked that ρ t (Y) would be as large as 4ρ 0 for neutron stars compatible with M obs . A comment is given regarding the effects on the Y-mixing problem from a less attractive ΛΛ interaction, newly suggested by the NAGARA event. (author)

  9. The {sup 13}C(α,n){sup 16}O reaction as a neutron source for the s-process in AGB low-mass stars

    Energy Technology Data Exchange (ETDEWEB)

    Trippella, O.; Busso, M. [INFN and University of Perugia, Perugia (Italy); La Cognata, M.; Spitaleri, C.; Guardo, G. L.; Lamia, L.; Puglia, S. M.R.; Romano, S.; Spartà, R. [INFN and University of Catania, Catania (Italy); Kiss, G. G. [Institute of Nuclear Research (ATOMKI), Debrecen (Hungary); Rogachev, G. V.; Avila, M.; Koshchiy, E.; Kuchera, A.; Santiago, D. [Department of Physics, Florida State University, Tallahassee, Florida (United States); Mukhamedzhanov, A. M. [Cyclotron Institute, Texas A and M University, College Station, Texas (United States); Maiorca, E. [INAF - Arcetri Astrophysical Observatory, Firenze (Italy); Palmerini, S. [Departamento de Fìsica Teòrica y del Cosmsos, Universidad de Granada,Granada (Spain)

    2014-05-09

    The {sup 13}C(α,n){sup 16}O reaction is considered to be the most important neutron source for producing the main component of the s-process in low mass stars. In this paper we focus our attention on two of the main open problems concerning its operation as a driver for the slow neutron captures. Recently, a new measurement of the {sup 13}C(α,n){sup 16}O reaction rate was performed via the Trojan Horse Method greatly increasing the accuracy. Contemporarily, on the modelling side, magnetic mechanisms were suggested to justify the production of the {sup 13}C pocket, thus putting the s-process in stars on safe physical ground. These inputs allow us to reproduce satisfactorily the solar distribution of elements.

  10. The 13C(α,n)16O reaction as a neutron source for the s-process in AGB low-mass stars

    International Nuclear Information System (INIS)

    Trippella, O.; Busso, M.; La Cognata, M.; Spitaleri, C.; Guardo, G. L.; Lamia, L.; Puglia, S. M.R.; Romano, S.; Spartà, R.; Kiss, G. G.; Rogachev, G. V.; Avila, M.; Koshchiy, E.; Kuchera, A.; Santiago, D.; Mukhamedzhanov, A. M.; Maiorca, E.; Palmerini, S.

    2014-01-01

    The 13 C(α,n) 16 O reaction is considered to be the most important neutron source for producing the main component of the s-process in low mass stars. In this paper we focus our attention on two of the main open problems concerning its operation as a driver for the slow neutron captures. Recently, a new measurement of the 13 C(α,n) 16 O reaction rate was performed via the Trojan Horse Method greatly increasing the accuracy. Contemporarily, on the modelling side, magnetic mechanisms were suggested to justify the production of the 13 C pocket, thus putting the s-process in stars on safe physical ground. These inputs allow us to reproduce satisfactorily the solar distribution of elements

  11. The Mystery of the Lonely Neutron Star

    Science.gov (United States)

    2000-09-01

    must have formed in our own galaxy, the Milky Way. However, most of these are now invisible, having since long cooled down and become completely inactive while fading out of sight. An unsual neutron star - RX J1856.5-3754 Some years ago, the X-ray source RX J1856.5-3754 was found by the German ROSAT X-ray satellite observatory. Later observations with the Hubble Space Telescope (cf. STScI-PR97-32 ) detected extremely faint optical emission from this source and conclusively proved that it is an isolated neutron star [3]. There is no sign of the associated supernova remnant and it must therefore be at least 100,000 years "old". Most interestingly, and unlike younger isolated neutron stars or neutron stars in binary stellar systems, RX J1856.5-3754 does not show any sign of activity whatsoever, such as variability or pulsations. As a unique member of its class, RX J1856.5-3754 quickly became the centre of great interest among astronomers. It apparently presented the first, very welcome opportunity to perform detailed studies of the structure of a neutron star, without the disturbing influence of ill-understood activity. One particular question arose immediately. The emission of X-rays indicates a very high temperature of RX J1856.5-3754 . However, from the moment of their violent birth, neutron stars are thought to lose energy and to cool down continuously. But then, how can an old neutron star like this one be so hot? One possible explanation is that some interstellar material, gas and/or dust grains, is being captured by its strong gravitational field. Such particles would fall freely towards the surface of the neutron star and arrive there with about half the speed of light. Since the kinetic energy of these particles is proportionate to the second power of the velocity, even small amounts of matter would deposit much energy upon impact, thereby heating the neutron star. The spectrum of RX J1856.5-3754 The new VLT study by van Kerkwijk and Kulkarni of RX J1856

  12. Reactor Neutron Sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.

    1994-01-01

    The present status and the prospects for development of reactor neutron sources for neutron scattering research in the world are considered. The fields of application of neutron scattering relative to synchrotron radiation, the creation stages of reactors (steady state and pulsed) and their position in comparison with spallation neutron sources at present and in the foreseen future are discussed. (author). 15 refs.; 8 figs.; 3 tabs

  13. Observational constraints on neutron star masses and radii

    Energy Technology Data Exchange (ETDEWEB)

    Coleman Miller, M. [University of Maryland, Department of Astronomy and Joint Space-Science Institute, College Park, MD (United States); Lamb, Frederick K. [University of Illinois at Urbana-Champaign, Center for Theoretical Astrophysics and Department of Physics, Urbana, IL (United States); University of Illinois at Urbana-Champaign, Department of Astronomy, Urbana, IL (United States)

    2016-03-15

    Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. Several different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star - black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method. (orig.)

  14. Gravitational waves from neutron stars and asteroseismology

    Science.gov (United States)

    Ho, Wynn C. G.

    2018-05-01

    Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  15. Magnetic Fields of Neutron Stars

    Indian Academy of Sciences (India)

    Sushan Konar

    2017-09-12

    Sep 12, 2017 ... the material properties of the region where currents supporting the .... 1The evolution of magnetic field in neutron stars, in particular, the question of .... −10, 10. −9, 10. −8. M⊙/yr respec- tively. See Konar & Bhattacharya (1997) for details. Peq ≃ 1.9 ms ..... ported by a grant (SR/WOS-A/PM-1038/2014) from.

  16. Exotic phases in neutron stars

    International Nuclear Information System (INIS)

    Li, A.; Burgio, G.F.; Lombardo, U.; Peng, G.X.

    2008-01-01

    The appearance of exotic phases in neutron stars is studied. The possible transition from hadron to quark phase is studied within the density dependent mass quark model, and the kaon condensation within the Nelson and Kaplan model. In both cases a microscopic approach is adopted for dense hadron matter. From the study of the possible coexistence between the two phases it is found that the hybrid phase may strongly hinder the onset of kaon condensation. (author)

  17. Evolution of Isolated Neutron Stars

    OpenAIRE

    Popov, S. B.

    2001-01-01

    In this paper we briefly review our recent results on evolution and properties of isolated neutron stars (INSs) in the Galaxy. As the first step we discuss stochastic period evolution of INSs. We briefly discuss how an INS's spin period evolves under influence of interaction with turbulized interstellar medium. To investigate statistical properties of the INS population we calculate a {\\it census} of INSs in our Galaxy. Then we show that for exponential field decay the range of minimum value ...

  18. Neutron star/red giant encounters in globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.

    1988-01-01

    The author presents a simple expression for the amount by which xsub(crit) is diminished as a star evolves xsub(crit) Rsub(crit)/R*, where Rsub(crit) is the maximum distance of closest approach between two stars for which the tidal energy is sufficient to bind the system, and R* is the radius of the star on which tides are being raised. Also it is concluded that tidal capture of giants by neutron stars resulting in binary systems is unlikely in globular clusters. However, collisions between neutron stars and red giants, or an alternative process involving tidal capture of a main-sequence star into an initially detached binary system, may result either in rapidly rotating neutron stars or in white dwarf/neutron star binaries. (author)

  19. ON THE MASS DISTRIBUTION AND BIRTH MASSES OF NEUTRON STARS

    International Nuclear Information System (INIS)

    Özel, Feryal; Psaltis, Dimitrios; Santos Villarreal, Antonio; Narayan, Ramesh

    2012-01-01

    We investigate the distribution of neutron star masses in different populations of binaries, employing Bayesian statistical techniques. In particular, we explore the differences in neutron star masses between sources that have experienced distinct evolutionary paths and accretion episodes. We find that the distribution of neutron star masses in non-recycled eclipsing high-mass binaries as well as of slow pulsars, which are all believed to be near their birth masses, has a mean of 1.28 M ☉ and a dispersion of 0.24 M ☉ . These values are consistent with expectations for neutron star formation in core-collapse supernovae. On the other hand, double neutron stars, which are also believed to be near their birth masses, have a much narrower mass distribution, peaking at 1.33 M ☉ , but with a dispersion of only 0.05 M ☉ . Such a small dispersion cannot easily be understood and perhaps points to a particular and rare formation channel. The mass distribution of neutron stars that have been recycled has a mean of 1.48 M ☉ and a dispersion of 0.2 M ☉ , consistent with the expectation that they have experienced extended mass accretion episodes. The fact that only a very small fraction of recycled neutron stars in the inferred distribution have masses that exceed ∼2 M ☉ suggests that only a few of these neutron stars cross the mass threshold to form low-mass black holes.

  20. Spallation neutrons pulsed sources

    International Nuclear Information System (INIS)

    Carpenter, J.

    1996-01-01

    This article describes the range of scientific applications which can use these pulsed neutrons sources: Studies on super fluids, measures to verify the crawling model for the polymers diffusion; these sources are also useful to study the neutron disintegration, the ultra cold neutrons. In certain applications which were not accessible by neutrons diffusion, for example, radiations damages, radionuclides production and activation analysis, the spallation sources find their use and their improvement will bring new possibilities. Among others contributions, one must notice the place at disposal of pulsed muons sources and neutrinos sources. (N.C.). 3 figs

  1. Neutrino Processes in Neutron Stars

    Directory of Open Access Journals (Sweden)

    Kolomeitsev E.E.

    2010-10-01

    Full Text Available The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities. The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong

  2. Intense fusion neutron sources

    International Nuclear Information System (INIS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-01-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10 15 -10 21 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10 20 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  3. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  4. The diversity of neutron stars: Nearby thermally emitting neutron stars and the compact central objects in supernova remnants

    Science.gov (United States)

    Kaplan, David L.

    Neutron stars are invaluable tools for exploring stellar death, the physics of ultra-dense matter, and the effects of extremely strong magnetic fields. The observed population of neutron stars is dominated by the > 1000 radio pulsars, but there are distinct sub-populations that, while fewer in number, can have significant impact on our understanding of the issues mentioned above. These populations are the nearby isolated neutron stars discovered by ROSAT, and the central compact objects in supernova remnants. The studies of both of these populations have been greatly accelerated in recent years through observations with the Chandra X-ray Observatory and the XMM-Newton telescope. First, we discuss radio, optical, and X-ray observations of the nearby neutron stars aimed at determining their relation to the Galactic neutron star population and at unraveling their complex physical processes by determining the basic astronomical parameters that define the population -- instances, ages, and magnetic fields -- the uncertainties in which limit any attempt to derive basic physical parameters for these objects. We conclude that these sources are 10^6 year-old cooling neutron stars with magnetic fields above 10^13 G. Second, we describe the hollow supernova remnant problem: why many of the supernova remnants in the Galaxy have no indication central neutron stars. We have undertaken an X-ray census of neutron stars in a volume-limited sample of Galactic supernova remnants, and from it conclude that either many supernovae do not produce neutron stars contrary to expectation, or that neutron stars can have a wide range in cooling behavior that makes many sources disappear from the X-ray sky.

  5. Evolution of Neutron Stars and Observational Constraints

    Directory of Open Access Journals (Sweden)

    Lattimer J.

    2010-10-01

    Full Text Available The structure and evolution of neutron stars is discussed with a view towards constraining the properties of high density matter through observations. The structure of neutron stars is illuminated through the use of several analytical solutions of Einstein’s equations which, together with the maximally compact equation of state, establish extreme limits for neutron stars and approximations for binding energies, moments of inertia and crustal properties as a function of compactness. The role of the nuclear symmetry energy is highlighted and constraints from laboratory experiments such as nuclear masses and heavy ion collisions are presented. Observed neutron star masses and radius limits from several techniques, such as thermal emissions, X-ray bursts, gammaray flares, pulsar spins and glitches, spin-orbit coupling in binary pulsars, and neutron star cooling, are discussed. The lectures conclude with a discusson of proto-neutron stars and their neutrino signatures.

  6. Neutron sources and applications

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  7. Neutron sources and applications

    International Nuclear Information System (INIS)

    Price, D.L.; Rush, J.J.

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications

  8. On Fallback Disks around Young Neutron Stars

    Science.gov (United States)

    Alpar, M. Ali; Ertan, Ü.; Erkut, M. H.

    2006-08-01

    Some bound matter in the form of a fallback disk may be an initial parameter of isolated neutron stars at birth, which, along with the initial rotation rate and dipole (and higher multipole) magnetic moments, determines the evolution of neutron stars and the categories into which they fall. This talk reviews the possibilities of fallback disk models in explaining properties of isolated neutron stars of different categories. Recent observations of a fallback disk and observational limits on fallback disks will also be discussed.

  9. White Dwarfs, Neutron Stars and Black Holes

    Science.gov (United States)

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  10. The Dark Side of Neutron Stars

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos

    2013-01-01

    We review severe constraints on asymmetric bosonic dark matter based on observations of old neutron stars. Under certain conditions, dark matter particles in the form of asymmetric bosonic WIMPs can be eectively trapped onto nearby neutron stars, where they can rapidly thermalize and concentrate...... in the core of the star. If some conditions are met, the WIMP population can collapse gravitationally and form a black hole that can eventually destroy the star. Based on the existence of old nearby neutron stars, we can exclude certain classes of dark matter candidates....

  11. Thermal neutron source study

    International Nuclear Information System (INIS)

    Holden, T.M.

    1983-05-01

    The value of intense neutron beams for condensed matter research is discussed with emphasis on the complementary nature of steady state and pulsed neutron sources. A large body of information on neutron sources, both existing and planned, is then summarized under four major headings: fission reactors, electron accelerators with heavy metal targets, pulsed spallation sources and 'steady state' spallation sources. Although the cost of a spallation source is expected to exceed that of a fission reactor of the same flux by a factor of two, there are significant advantages for a spallation device such as the proposed Electronuclear Materials Test Facility (EMTF)

  12. Hyperon-mixed neutron star matter and neutron stars

    CERN Document Server

    Nishizaki, S; Yamamoto, Y

    2002-01-01

    Effective SIGMA sup - n and SIGMA sup -SIGMA sup - interactions are derived from the G-matrix calculations for left brace n+SIGMA sup -right brace matter and employed in the investigation of hyperon mixing in neutron star matter. The threshold densities rho sub t (Y) at which hyperons start to appear are between 2 rho sub 0 and 3 rho sub 0 (where rho sub 0 is the normal nuclear density) for both LAMBDA and SIGMA sup - , and their fractions increase rapidly with baryon density, reaching 10% already for rho approx = rho sub t + rho sub 0. The mechanism of hyperon mixing and single-particle properties, such as the effective mass and the potential depth, are analyzed taking into account the roles of YN and NN interactions. The resulting equation of state is found to be too soft to sustain the observed neutron star mass M sub o sub b sub s =1.44(solar mass). We discuss the reason for this and stress the necessity of the ''extra repulsion'' for YN and YY interactions to resolve this crucial problem. It is remarked ...

  13. Neutron stars with orbiting light

    International Nuclear Information System (INIS)

    Lukacs, B.

    1987-11-01

    There is a wide-spread belief in the literature of relativistic astrophysics concerning nonsingular final states of the stellar evolution: the external gravitational field of a physically nonsingular central symmetric body (e.g. a neutron star) is asymptotically empty and simple, i.e. there are no closed or trapped light-like causal geodesics. Present paper shows that this belief is false: some examples are presented for nonsingular bodies with various equations of state, around which there are closed light-like trajectories: 'orbiting light'. The reality of the used equations of state is discussed in detail. Present state of particle physics does not establish the existence of matter with such equations of state, but the hypothetical subquark level of matter may have such equation of state, thus 'subquark-stars' may exist with orbiting light around them. So the criterion of 'nonsingularity' must be further analyzed and accurately defined. (D.Gy.) 24 refs.; 5 figs

  14. Nuclei in a neutron star

    International Nuclear Information System (INIS)

    Oyamatsu, K.; Yamada, M.

    1994-01-01

    We report on the recent progress in understanding the matter in the crust of a neutron star. For nuclides in the outer crust, recently measured masses of neutron-rich nuclei enable us to determine more accurately the stable nuclide as a function of the matter density. In the inner crust, the compressible liquid-drop model predicts successive change of the nuclear shape, from sphere to cylinder, slab, cylindrical hole and spherical hole at densities just before the transition to uniform matter. In order to go beyond the liquiddrop model, we performed the Thomas-Fermi calculation paying special attention to the surface diffuseness, and have recently calculated the shell energies of the non-spherical nuclei. We have found from these studies that all these non-spherical nuclei exist stably in the above order even if we include the surface diffuseness and shell energies. (author)

  15. Initial Parameters of Neutron Stars

    Science.gov (United States)

    Popov, S. B.; Turolla, R.

    2012-12-01

    A subpopulation of neutron stars (NSs), known as central compact objects (CCOs) in supernova remnants, are suspected to be low-field objects basing on P - ṗ measurements for three of them. The birth rate of low-field NSs is probably comparable with the birth rate of normal radio pulsars. However, among compact objects in High-Mass X-ray Binaries (HMXBs) we do not see robust candidates for low-field NSs. We propose that this contradiction can be solved if magnetic fields of CCOs was buried due to strong fall-back, and then the field emerges on the time scale 104 -105 yrs.

  16. Moments of inertia of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Svenja Kim; Hebeler, Kai; Schwenk, Achim [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2016-07-01

    Neutron stars are unique laboratories for matter at extreme conditions. While nuclear forces provide systematic constraints on properties of neutron-rich matter up to around nuclear saturation density, the composition of matter at high densities is still unknown. Recent precise observations of 2 M {sub CircleDot} neutron stars made it possible to derive systematic constraints on the equation of state at high densities and also neutron star radii. Further improvements of these constraints require the observation of even heavier neutron stars or a simultaneous measurement of mass and radius of a single neutron star. Since the precise measurement of neutron star radii is an inherently difficult problem, the observation of moment of inertia of neutron stars provides a promising alternative, since they can be measured by pulsar timing experiments. We present a theoretical framework that allows to calculate moments of inertia microscopically, we show results based on state of the art equations of state and illustrate how future measurements of moments of inertia allow to constrain the equation of state and other properties of neutron stars.

  17. Potential profiles in the central core of the cathode in the star mode operation in an inertial-electrostatic fusion neutron source

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Masuda, K.; Toku, H.

    2003-01-01

    After the successful measurements of the localized electric fields in the center-spot mode operation with relatively large space-charge effects by the laser-induced fluorescence (LIF) method, measurements of potential profiles in the star mode operation with small space-charge effects on helium gas are made in the central cathode core region of an Inertial-Electrostatic Confinement Fusion (IECF) neutron source, which is most suitable to neutron calibration in the fusion devices. Since the high-voltage is required to the star mode operation on deuterium gas, it is predicted to bring about very small beam space charge-related potential. To increase accuracy, we adopted n=4 (2 1 S to 4 1 D:HeI) transition, instead of previous n=3, which is most sensitive to the local electric fields in the Stark transition, and verified using the well-known U-shaped hollow cathode potential. The localized electric fields thus measured by LIF method using n=4 transition show negligible electric fields in the star mode compared with the center-spot mode. (author)

  18. Neutron Stars: Laboratories for Fundamental Physics Under ...

    Indian Academy of Sciences (India)

    DEBADES BANDYOPADHYAY

    2017-09-07

    Sep 7, 2017 ... Abstract. We discuss different exotic phases and components of matter from the crust to the core of neutron stars based on theoretical models for equations of state relevant to core collapse supernova simulations and neutron star merger. Parameters of the models are constrained from laboratory ...

  19. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  20. Lunar neutron source function

    International Nuclear Information System (INIS)

    Kornblum, J.J.

    1974-01-01

    The search for a quantitative neutron source function for the lunar surface region is justified because it contributes to our understanding of the history of the lunar surface and of nuclear process occurring on the moon since its formation. A knowledge of the neutron source function and neutron flux distribution is important for the interpretation of many experimental measurements. This dissertation uses the available pertinent experimental measurements together with theoretical calculations to obtain an estimate of the lunar neutron source function below 15 MeV. Based upon reasonable assumptions a lunar neutron source function having adjustable parameters is assumed for neutrons below 15 MeV. The lunar neutron source function is composed of several components resulting from the action of cosmic rays with lunar material. A comparison with previous neutron calculations is made and significant differences are discussed. Application of the results to the problem of lunar soil histories is examined using the statistical model for soil development proposed by Fireman. The conclusion is drawn that the moon is losing mass

  1. Pulsed spallation Neutron Sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1994-01-01

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology

  2. Pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1996-01-01

    This paper reviews the early history of pulsed spallation neutron source development ar Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provide a few examples of applications in fundamental condensed matter physics, materials science and technology

  3. The Advanced Neutron Source

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1989-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux (φ th ∼ 9·10 19 m -2 ·s -1 ) accompanied by extensive and comprehensive equipment and facilities for neutron-based research. 5 refs., 5 figs

  4. The advanced neutron source

    International Nuclear Information System (INIS)

    Raman, S.; Hayter, J.B.

    1990-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux (φ th ∼ 8 x 10 19 m -2 ·s -1 ) accompanied by extensive and comprehensive equipment and facilities for neutron-based research

  5. Quark Deconfinement in Rotating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Richard D. Mellinger

    2017-01-01

    Full Text Available In this paper, we use a three flavor non-local Nambu–Jona-Lasinio (NJL model, an improved effective model of Quantum Chromodynamics (QCD at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular emphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars. In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in, the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.

  6. Neutron Star Science with the NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  7. Advanced neutron source project

    International Nuclear Information System (INIS)

    Gorynina, L.V.; Proskuryakov, S.F.; Tishchenko, V.A.; Uzhanova, V.V.

    1991-01-01

    The project of the ANS improved neutron source intended for fundamental researches in nuclear physics and materials testing is considered. New superhigh-flux heavy-water 350 MW reactor is used for the source creation. The standard fuel is uranium silicide (U 3 Si 2 ). Reactor core volume equals 67.4 l and average power density is 4.9 MW/l. Neutron flux density is 10 16 neutron/(cm 2 xs). The facility construction begin is planned for 1996. The first experiments should be accomplished in 2000

  8. Gravitational waves from freely precessing neutron stars

    International Nuclear Information System (INIS)

    Jones, D.I.

    2001-01-01

    The purpose of this study is to assess the likely detectability of gravitational waves from freely precessing neutron stars. We begin by presenting a neutron star model of sufficient complexity to take into account both the elasticity and fluidity of a realistic neutron star. We then examine the effect of internal dissipation (i.e. heat generation within the star) and gravitational radiation reaction on the wobble. This is followed by an examination of various astrophysical scenarios where some mechanism might pump the precessional motion. We estimate the gravitational wave amplitude in these situations. Finally, we conclude that gravitational radiation from freely precessing neutron stars is almost certainly limited to a level undetectable by a LIGO II detector by internal dissipation. (author)

  9. The advanced neutron source

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1994-01-01

    The Advanced Neutron Source (ANS), slated for construction start in 1994, will be a multipurpose neutron research laboratory serving academic and industrial users in chemistry, biology, condensed matter physics, nuclear and fundamental physics, materials science and engineering, and many other fields. It will be centered on the world's highest flux neutron beam reactor, operating at 330 MW, with careful design integration between the neutron source and the experiment systems. Many instruments will be situated in low backgrounds at distances up to 80 m from the reactor, using neutron guides with tailored neutron optical coatings for beam transport. Apart from the many stations for neutron scattering research, specialized stations will also be provided for isotope separation on-line, experiments with liquid hydrogen targets, neutron optical techniques such as interferometry, activation analysis, depth profiling, and positron production. Careful consideration has been given to providing a good research environment for visiting scientists, including easy access to the experimental areas, while maintaining a highly secure nuclear facility. This paper will describe the reactor and experimental facilities and give some examples of the types of research for which ANS has been designed

  10. Starquakes, Heating Anomalies, and Nuclear Reactions in the Neutron Star Crust

    Science.gov (United States)

    Deibel, Alex Thomas

    observations on the nature of neutron superfluidity and the thermal conductivity of nuclear pasta. Our neutron star modeling efforts also pose new questions. For instance, reaction networks find that neutrino emission from cycling nuclear reactions is present in the neutron star ocean and crust, and potentially cools an accreting neutron star. This is a theory we attempt to verify using observations of neutron star transients and thermonuclear bursts, although it remains unclear if this cooling occurs. Furthermore, on some accreting neutron stars, more heat than supplied by nuclear reactions is needed to explain their high temperatures at the outset of quiescence. Although the presence of heating anomalies seems common, the source of extra heating is difficult to determine.

  11. Pasta structures in neutron stars

    International Nuclear Information System (INIS)

    Gupta, Neha; Shabnam, I.S.; Arumugam, P.

    2011-01-01

    A neutron star (NS) is a stellar remnant, a super-compressed object left over when stars with a mass between 1.4 and about 3 times the mass of our Sun exhaust their nuclear fuel and collapse inwards. The result of such an implosion is a condensed sphere of matter about 10 km across. The outer layer of the of NS, with density less than the nuclear saturation density, represent different challenges and observational opportunities like thermal evolution, X-ray burst, glitches and the very important core-crust transition region. At this density, nucleons are correlated at short distances by attractive strong interactions, they are anti-correlated at large distances because of the Coulomb repulsion. Competition among short- and long-range interactions (i.e., frustration) leads to the development of complex and exotic nuclear shapes, such as sphere, bubbles, rods, slabs and tubes. The term 'pasta phases' has been coined to describe these complex structures. In this work the nuclear pasta phases using different mean-field models along with a droplet model has been studied

  12. Cyclotron Lines in Accreting Neutron Star Spectra

    Science.gov (United States)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  13. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  14. On the Origin of Hyperfast Neutron Stars

    Science.gov (United States)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2008-05-01

    We propose an explanation for the origin of hyperfast neutron stars (e.g. PSR B1508+55, PSR B2224+65, RX J0822 4300) based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star (or its helium core) which attained its peculiar velocity (similar to that of the neutron star) in the course of a strong three- or four-body dynamical encounter in the core of a young massive star cluster. This hypothesis implies that the dense cores of star clusters (located either in the Galactic disk or near the Galactic centre) could also produce the so-called hypervelocity stars ordinary stars moving with a speed of ~ 1 000 km s-1.

  15. A weight limit emerges for neutron stars

    Science.gov (United States)

    Cho, Adrian

    2018-02-01

    Astrophysicists have long wondered how massive a neutron star—the corpse of certain exploding stars—could be without collapsing under its own gravity to form a black hole. Now, four teams have independently deduced a mass limit for neutron stars of about 2.2 times the mass of the sun. To do so, all four groups analyzed last year's blockbuster observations of the merger of two neutron stars, spied on 17 September 2017 by dozens of observatories. That approach may seem unpromising, as it might appear that the merging neutron stars would have immediately produced a black hole. However, the researchers argue that the merger first produced a spinning, overweight neutron star momentarily propped up by centrifugal force. They deduce that just before it collapsed, the short-lived neutron star had to be near the maximum mass for one spinning as a solid body. That inference allowed them to use a scaling relationship to estimate the maximum mass of a nonrotating, stable neutron star, starting from the total mass of the original pair and the amount of matter spewed into space.

  16. Gravitational waves from neutron stars and asteroseismology.

    Science.gov (United States)

    Ho, Wynn C G

    2018-05-28

    Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  17. Thermal structure of accreting neutron stars and strange stars

    International Nuclear Information System (INIS)

    Miralda-Escude, J.; Paczynski, B.; Haensel, P.

    1990-01-01

    Steady-state models of accreting neutron stars and strange stars are presented, and their properties as a function of accretion rate are analyzed. The models have steady-state envelopes, with stationary hydrogen burning taken into account, the helium shell flashes artificially suppressed, and the crust with a large number of secondary heat sources. The deep interiors are almost isothermal and are close to thermal equilibrium. A large number of models were calculated for many values of the accretion rates, with ordinary, pion-condensed, and strange cores, with and without secondary heat sources in the crust, and with the heavy element content of the accreting matter in the range Z = 0.0002-0.02. All models show a similar pattern of changes as the accretion rate is varied. For low accretion rates, the hydrogen burning shell is unstable; for intermediate rates, the hydrogen burning shell is stable, but helium burning is not; for high rates, the two shell sources burn together and are unstable. 60 refs

  18. Black Hole - Neutron Star Binary Mergers

    Data.gov (United States)

    National Aeronautics and Space Administration — Gravitational radiation waveforms for black hole-neutron star coalescence calculations. The physical input is Newtonian physics, an ideal gas equation of state with...

  19. Transport coefficients in superfluid neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Tolos, Laura [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Frankfurt Institute for Advances Studies. Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Manuel, Cristina [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Sarkar, Sreemoyee [Tata Institute of Fundamental Research, Homi Bhaba Road, Mumbai-400005 (India); Tarrus, Jaume [Physik Department, Technische Universität München, D-85748 Garching (Germany)

    2016-01-22

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  20. Neutron rich matter, neutron stars, and their crusts

    International Nuclear Information System (INIS)

    Horowitz, C J

    2011-01-01

    Neutron rich matter is at the heart of many fundamental questions in Nuclear Physics and Astrophysics. What are the high density phases of QCD? Where did the chemical elements come from? What is the structure of many compact and energetic objects in the heavens, and what determines their electromagnetic, neutrino, and gravitational-wave radiations? Moreover, neutron rich matter is being studied with an extraordinary variety of new tools such as Facility for Rare Isotope Beams (FRIB) and the Laser Interferometer Gravitational Wave Observatory (LIGO). We describe the Lead Radius Experiment (PREX) that is using parity violation to measure the neutron radius in 208Pb. This has important implications for neutron stars and their crusts. Using large scale molecular dynamics, we model the formation of solids in both white dwarfs and neutron stars. We find neutron star crust to be the strongest material known, some 10 billion times stronger than steel. It can support mountains on rotating neutron stars large enough to generate detectable gravitational waves. Finally, we describe a new equation of state for supernova and neutron star merger simulations based on the Virial expansion at low densities, and large scale relativistic mean field calculations.

  1. Accreting neutron stars by QFT

    Science.gov (United States)

    Chen, Shao-Guang

    the negative charge from ionosphere electrons again rotate, thereby come into being the solar basal magnetic field. The solar surface plasma with additional electrons get the dynamic balance between the upwards force of stable positive charge distribution in the solar upside gas and the downwards force of the vacuum net nuν _{0} flux pressure (solar gravity). When the Jupiter enter into the connecting line of the Sun and the center of the Galaxy, the pressure (solar gravity) observed from earth will weaken because of the Jupiter stop (shield) the net nuν _{0} flux which shoot to Sun from the center of Galaxy. The dynamic balance of forces on the solar surface plasma at once is broken and the plasma will upwards eject as the solar wind with redundant negative charge. At the same time, the solar surface remain a cavity as a sunspot whorl with the positive electric potential relative to around plasma. The whorl is caused by the reaction of plasma eject front and upwards with the different velocity at different latitude of solar rotation, it leads to the cavity around in the downwards and backwards helix movement. The solar rotation more slow, when the cavity is filled by around plasma in the reverse turn direction and return to carry-over negative charge, the Jupiter at front had been produced a new cavity carry-over positive charge, so we had observe the sunspot pair with different whorl directions and different magnetic polarity. Jupiter possess half mass of all planets in solar system, its action to stop net nuν _{0} flux is primary, so that Jupiter’s period of 11.8 sidereal years accord basically with the period of sunspot eruptions. In my paper ‘Nonlinear superposition of strong gravitational field of compact stars’(E15-0039-08), according to QFT it is deduced that: let q is a positive shielding coefficient, 1- q show the gravity weaken degree, the earth (104 km) as a obstructing layer q = 4.6*10 (-10) . A spherical shell of neutron star as obstructing

  2. Gravitational waves from rotating strained neutron stars

    International Nuclear Information System (INIS)

    Jones, D I

    2002-01-01

    In this review we examine the dynamics and gravitational wave detectability of rotating strained neutron stars. The discussion is divided into two halves: triaxial stars and precessing stars. We summarize recent studies on how crustal strains and magnetic fields can sustain triaxiality, and suggest that Magnus forces connected with pinned superfluid vortices might contribute to deformation also. The conclusions that could be drawn following the successful gravitational wave detection of a triaxial star are discussed, and areas requiring further study identified. The latest ideas regarding free precession are then outlined, and the recent suggestion of Middleditch et al (Middleditch et al 2000 New Astronomy 5 243; 2000 Preprint astro-ph/0010044) that the remnant of SN1987A contains a freely precessing star, spinning down by gravitational wave energy loss, is examined critically. We describe what we would learn about neutron stars should the gravitational wave detectors prove this hypothesis to be correct

  3. On the origin of hyperfast neutron stars

    NARCIS (Netherlands)

    Gvaramadze, V.V.; Gualandris, A.; Portegies Zwart, S.

    2007-01-01

    We propose an explanation for the origin of hyperfast neutron stars (e.g. PSR B1508+55, PSR B2224+65, RX J0822-4300) based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star (or its helium core) which attained its peculiar velocity

  4. Neutron Stars and the Discovery of Pulsars.

    Science.gov (United States)

    Greenstein, George

    1985-01-01

    Part one recounted the story of the discovery of pulsars and examined the Crab Nebula, supernovae, and neutron stars. This part (experts from the book "Frozen Star") shows how an understanding of the nature of pulsars allowed astronomers to tie these together. (JN)

  5. Evolution of Neutron Star Magnetic Fields

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    in nuclei. The neutrons are expected to form a 3P superfluid and the protons a 1S ... crust are expected to form a lattice; the electrons are free and highly degenerate, .... the reduced magnetic fields in neutron stars processed in binaries,.

  6. Non-Identical Neutron Star Twins

    OpenAIRE

    Glendenning, Norman K.; Kettner, Christiane

    1998-01-01

    The work of J. A. Wheeler in the mid 1960's showed that for smooth equations of state no stable stellar configurations with central densities above that corresponding to the limiting mass of ``neutron stars'' (in the generic sense) were stable against acoustical vibrational modes. A perturbation would cause any such star to collapse to a black hole or explode. Accordingly, there has been no reason to expect that a stable degenerate family of stars with higher density than the known white dwar...

  7. Studies of accreting and non-accreting neutron stars

    International Nuclear Information System (INIS)

    Stollman, G.M.

    1987-01-01

    This thesis is divided into three parts. Part A is devoted to the statistical study of radio pulsars, in which the observations of nearly all known pulsars are used to study their properties such as magnetic field strengths, rotation periods, space velocities as well as their evolution in time. Part B is devoted to the modelling and understanding of quasi-periodic oscillations (QPO) in low-mass X-ray binaries. But, this study is mainly concerned with the accretion process in these sources, and one may hope to learn more about the neutron stars in these systems when the understanding of QPO is improved. In Part C the problem of 'super-Eddington luminosities' in X-ray burst sources is treated. The idea is that a good understanding of the burst process, which takes place directly at the surface of the neutron star, will eventually improve our understanding of the neutron stars themselves. (Auth.)

  8. Electromagnetic activity of a pulsating paramagnetic neutron star

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Podgainy, D.V.; Yang, J.; Weber, F.

    2002-01-01

    The fact that neutron star matter possesses the capability of maintaining a highly intense magnetic field has been and still is among the most debatable issues in pulsar astrophysics. Over the years, there were several independent suggestions that the dominant source of pulsar magnetism is either the field-induced or the spontaneous magnetic polarization of the baryon material. The Pauli paramagnetism of degenerate neutron matter is one of the plausible and comprehensive mechanisms of the magnetic ordering of neutron magnetic moments, promoted by a seed magnetic field inherited by the neutron star from a massive progenitor and amplified by its implosive contraction due to the magnetic flux conservation. Adhering to this attitude and based on the equations of magnetoelastic dynamics underlying continuum mechanics of single-axis magnetic insulators, we investigate electrodynamics of a paramagnetic neutron star undergoing nonradial pulsations. We show that the suggested approach regains a recent finding of Akhiezer et al. that the spin-polarized neutron matter can transmit perturbations by low-frequency transverse magnetoelastic waves. We found that nonradial torsional magnetoelastic pulsations of a paramagnetic neutron star can serve as a powerful generator of a highly intense electric field producing the magnetospheric polarization charge whose acceleration along the open magnetic field lines leads to the synchrotron and curvature radiation. Analytic and numerical estimates for periods of nonradial torsional magnetoelastic modes are presented and are followed by a discussion of their possible manifestation in currently monitored activity of pulsars and magnetars

  9. Neutronics of pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, poisoning, etc are discussed, aiming at a high performance pulsed spallation source

  10. Neutron source multiplication method

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1985-01-01

    Extensive use has been made of neutron source multiplication in thousands of measurements of critical masses and configurations and in subcritical neutron-multiplication measurements in situ that provide data for criticality prevention and control in nuclear materials operations. There is continuing interest in developing reliable methods for monitoring the reactivity, or k/sub eff/, of plant operations, but the required measurements are difficult to carry out and interpret on the far subcritical configurations usually encountered. The relationship between neutron multiplication and reactivity is briefly discussed and data presented to illustrate problems associated with the absolute measurement of neutron multiplication and reactivity in subcritical systems. A number of curves of inverse multiplication have been selected from a variety of experiments showing variations observed in multiplication during the course of critical and subcritical experiments where different methods of reactivity addition were used, with different neutron source detector position locations. Concern is raised regarding the meaning and interpretation of k/sub eff/ as might be measured in a far subcritical system because of the modal effects and spectrum differences that exist between the subcritical and critical systems. Because of this, the calculation of k/sub eff/ identical with unity for the critical assembly, although necessary, may not be sufficient to assure safety margins in calculations pertaining to far subcritical systems. Further study is needed on the interpretation and meaning of k/sub eff/ in the far subcritical system

  11. Limiting rotational period of neutron stars

    Science.gov (United States)

    Glendenning, Norman K.

    1992-11-01

    We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a M=1.442Msolar neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars.

  12. Limiting rotational period of neutron stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1992-01-01

    We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a M=1.442M circle-dot neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars

  13. The neutron star mass distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kiziltan, Bülent [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kottas, Athanasios; De Yoreo, Maria [Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA 95064 (United States); Thorsett, Stephen E., E-mail: bkiziltan@cfa.harvard.edu [Department of Astronomy and Astrophysics, University of California and UCO/Lick Observatory, Santa Cruz, CA 95064 (United States)

    2013-11-20

    In recent years, the number of pulsars with secure mass measurements has increased to a level that allows us to probe the underlying neutron star (NS) mass distribution in detail. We critically review the radio pulsar mass measurements. For the first time, we are able to analyze a sizable population of NSs with a flexible modeling approach that can effectively accommodate a skewed underlying distribution and asymmetric measurement errors. We find that NSs that have evolved through different evolutionary paths reflect distinctive signatures through dissimilar distribution peak and mass cutoff values. NSs in double NS and NS-white dwarf (WD) systems show consistent respective peaks at 1.33 M {sub ☉} and 1.55 M {sub ☉}, suggesting significant mass accretion (Δm ≈ 0.22 M {sub ☉}) has occurred during the spin-up phase. The width of the mass distribution implied by double NS systems is indicative of a tight initial mass function while the inferred mass range is significantly wider for NSs that have gone through recycling. We find a mass cutoff at ∼2.1 M {sub ☉} for NSs with WD companions, which establishes a firm lower bound for the maximum NS mass. This rules out the majority of strange quark and soft equation of state models as viable configurations for NS matter. The lack of truncation close to the maximum mass cutoff along with the skewed nature of the inferred mass distribution both enforce the suggestion that the 2.1 M {sub ☉} limit is set by evolutionary constraints rather than nuclear physics or general relativity, and the existence of rare supermassive NSs is possible.

  14. Outer crust of nonaccreting cold neutron stars

    International Nuclear Information System (INIS)

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen

    2006-01-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars

  15. The Advanced Neutron Source

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1990-01-01

    The Advanced Neutron Source (ANS) is to be a multipurpose neutron research center, constructed around a high-flux reactor now being designed at the Oak Ridge National Laboratory (ORNL). Its primary purpose is to place the United States in the forefront of neutron scattering in the twenty-first century. Other research programs include nuclear and fundamental physics, isotope production, materials irradiation, and analytical chemistry. The ANS will be a unique and invaluable research tool because of the unprecedented neutron flux available from the high-intensity research reactor. But this reactor would be ineffective without world-class research facilities that allow the fullest utilization of the available neutrons. And, in turn, those research facilities will not produce new and exciting science without a broad population of users from all parts of the nation and the world, placed in a stimulating environment in which experiments can be effectively conducted and in which scientific exchange is encouraged. This paper discusses the measures being taken to ensure that the design of the ANS focuses not only on the reactor, but on providing the experiment and user support facilities needed to allow its effective use

  16. Electromagnetic damping of neutron star oscillations

    International Nuclear Information System (INIS)

    McDermott, P.N.; Savedoff, M.P.; Van Horn, H.M.; Zweibel, E.G.; Hansen, C.J.

    1984-01-01

    Nonradial pulsations of a neutron star with a strong dipole magnetic field cause emission of electromagnetic radiation. Here we compute the power radiated to vacuum by neutron star g-mode pulsations and by torsional oscillations of the neutron star crust. For the low-order quadrupole fluid g-modes we have considered, we find electromagnetic damping to be considerably more effective than gravitational radiation. For example, a 0.5 M/sub sun/ neutron star with a core temperature approx.10 7 K has a g 1 -mode period of 371 ms; for this mode were find the electromagnetic damping time to be tau/sub FM/approx.0.3 s, assuming the surface magnetic field strength of the neutron star to be B 0 approx.10 12 gauss. This is considerably less than the corresponding gravitational radiation time tau/sub GR/approx.3 x 10 17 yr. For dipole g-mode oscillations, there is no gravitational radiation, but electromagnetic damping and ohmic dissipation are efficient damping mechanisms. For dipole torsional oscillations, we find that electromagnetic damping again dominates, with tau/sub EM/approx.5 yr. Among the cases we have studied, quadrupole torsional oscillations appear to be dominated by gravitational radiation damping, with tau/sub GR/approx.10 4 yr, as compared with tau/sub EM/approx.2 x 10 7 yr

  17. Neutron stars: Observational diversity and evolution

    Science.gov (United States)

    Safi-Harb, S.

    2017-12-01

    Ever since the discovery of the Crab and Vela pulsars in their respective Supernova Remnants, our understanding of how neutron stars manifest themselves observationally has been dramatically shaped by the surge of discoveries and dedicated studies across the electromagnetic spectrum, particularly in the high-energy band. The growing diversity of neutron stars includes the highly magnetized neutron stars (magnetars) and the Central Compact Objects shining in X-rays and mostly lacking pulsar wind nebulae. These two subclasses of high-energy objects, however, seem to be characterized by anomalously high or anomalously low surface magnetic fields (thus dubbed as ‘magnetars’ and ‘anti-magnetars’, respectively), and have pulsar characteristic ages that are often much offset from their associated SNRs’ ages. In addition, some neutron stars act ‘schizophrenic’ in that they occasionally display properties that seem common to more than one of the defined subclasses. I review the growing diversity of neutron stars from an observational perspective, then highlight recent and on-going theoretical and observational work attempting to address this diversity, particularly in light of their magnetic field evolution, energy loss mechanisms, and supernova progenitors’ studies.

  18. Pulsed neutron sources for epithermal neutrons

    International Nuclear Information System (INIS)

    Windsor, C.G.

    1978-01-01

    It is shown how accelerator based neutron sources, giving a fast neutron pulse of short duration compared to the neutron moderation time, promise to open up a new field of epithermal neutron scattering. The three principal methods of fast neutron production: electrons, protons and fission boosters will be compared. Pulsed reactors are less suitable for epithermal neutrons and will only be briefly mentioned. The design principle of the target producing fast neutrons, the moderator and reflector to slow them down to epithermal energies, and the cell with its beam tubes and shielding will all be described with examples taken from the new Harwell electron linac to be commissioned in 1978. A general comparison of pulsed neutron performance with reactors is fraught with difficulties but has been attempted. Calculation of the new pulsed source fluxes and pulse widths is now being performed but we have taken the practical course of basing all comparisons on extrapolations from measurements on the old 1958 Harwell electron linac. Comparisons for time-of-flight and crystal monochromator experiments show reactors to be at their best at long wavelengths, at coarse resolution, and for experiments needing a specific incident wavelength. Even existing pulsed sources are shown to compete with the high flux reactors in experiments where the hot neutron flux and the time-of-flight methods can be best exploited. The sources under construction can open a new field of inelastic neutron scattering based on energy transfer up to an electron volt and beyond

  19. THE FATE OF THE COMPACT REMNANT IN NEUTRON STAR MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Chris L. [Department of Physics, The University of Arizona, Tucson, AZ 85721 (United States); Belczynski, Krzysztoff [Astronomical Observatory, University of Warsaw, Al Ujazdowskie 4, 00-478 Warsaw (Poland); Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Rosswog, Stephan [The Oskar klein Center, Department of Astronomy, AlbaNova, Stockholm University, SE-106 91 Stockholm (Sweden); Shen, Gang [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195 (United States); Steiner, Andrew W. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States)

    2015-10-10

    Neutron star (binary neutron star and neutron star–black hole) mergers are believed to produce short-duration gamma-ray bursts (GRBs). They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and advanced VIRGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of Newtonian merger calculations and equation of state studies to determine the fate of the cores of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3–2.4 solar masses. If quick black hole formation is essential in producing GRBs, LIGO/Virgo observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.

  20. Neutron Skins and Neutron Stars in the Multimessenger Era

    Science.gov (United States)

    Fattoyev, F. J.; Piekarewicz, J.; Horowitz, C. J.

    2018-04-01

    The historical first detection of a binary neutron star merger by the LIGO-Virgo Collaboration [B. P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017), 10.1103/PhysRevLett.119.161101] is providing fundamental new insights into the astrophysical site for the r process and on the nature of dense matter. A set of realistic models of the equation of state (EOS) that yield an accurate description of the properties of finite nuclei, support neutron stars of two solar masses, and provide a Lorentz covariant extrapolation to dense matter are used to confront its predictions against tidal polarizabilities extracted from the gravitational-wave data. Given the sensitivity of the gravitational-wave signal to the underlying EOS, limits on the tidal polarizability inferred from the observation translate into constraints on the neutron-star radius. Based on these constraints, models that predict a stiff symmetry energy, and thus large stellar radii, can be ruled out. Indeed, we deduce an upper limit on the radius of a 1.4 M⊙ neutron star of R⋆1.4Pb 208 to the symmetry energy, albeit at a lower density, we infer a corresponding upper limit of about Rskin208≲0.25 fm . However, if the upcoming PREX-II experiment measures a significantly thicker skin, this may be evidence of a softening of the symmetry energy at high densities—likely indicative of a phase transition in the interior of neutron stars.

  1. The Neutron Star Interior Composition Explorer (NICER)

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Gendreau, K.; Arzoumanian, Z.

    2014-01-01

    The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear-physics environments embodied by neutron stars. Scheduled to be launched in 2016 as an International Space Station payload, NICER will explore the exotic states of matter, using rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft (0.2-12 keV) X-ray band. Grazing-incidence "concentrator" optics coupled with silicon drift detectors, actively pointed for a full hemisphere of sky coverage, will provide photon-counting spectroscopy and timing registered to GPS time and position, with high throughput and relatively low background. The NICER project plans to implement a Guest Observer Program, which includes competitively selected user targets after the first year of flight operations. I will describe NICER and discuss ideas for potential Be/X-ray binary science.

  2. Neutron star kicks and asymmetric supernovae

    International Nuclear Information System (INIS)

    Lai, D.

    2001-01-01

    Observational advances over the last decade have left little doubt that neutron stars received a large kick velocity (of order a few hundred to a thousand km s -1 ) at birth. The physical origin of the kicks and the related supernova asymmetry is one of the central unsolved mysteries of supernova research. We review the physics of different kick mechanisms, including hydrodynamically driven, neutrino - magnetic field driven, and electromagnetically driven kicks. The viabilities of the different kick mechanisms are directly related to the other key parameters characterizing nascent neutron stars, such as the initial magnetic field and the initial spin. Recent observational constraints on kick mechanisms are also discussed. (orig.)

  3. Chandra Observations of Neutron Stars: An Overview

    Science.gov (United States)

    Weisskopf, Martin C.; Karovska, M.; Pavlov, G. G.; Zavlin, V. E.; Clarke, Tracy

    2006-01-01

    We present a brief review of Chandra X-ray Observatory observations of neutron stars. The outstanding spatial and spectral resolution of this great observatory have allowed for observations of unprecedented clarity and accuracy. Many of these observations have provided new insights into neutron star physics. We present an admittedly biased and overly brief overview of these observations, highlighting some new discoveries made possible by the Observatory's unique capabilities. We also include our analysis of recent multiwavelength observations of the putative pulsar and its pulsar-wind nebula in the IC 443 SNR.

  4. Constraining neutron star matter with Quantum Chromodynamics

    CERN Document Server

    Kurkela, Aleksi; Schaffner-Bielich, Jurgen; Vuorinen, Aleksi

    2014-01-01

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount --- or even presence --- of quark matter inside the stars.

  5. Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars

    Science.gov (United States)

    Wambach, J.; Anisworth, T. L.; Pines, D.

    1993-01-01

    A microscopic model for the quaisiparticle interaction in neutron matter is presented. Both particle-particle (pp) and particle-hole (ph) correlation are are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for the particle hole interaction and the scattering amplitude on the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the S-1 gap parameter for neutron superfluidity and comment briefly on neutron-star implications.

  6. Neutron stars. [quantum mechanical processes associated with magnetic fields

    Science.gov (United States)

    Canuto, V.

    1978-01-01

    Quantum-mechanical processes associated with the presence of high magnetic fields and the effect of such fields on the evolution of neutron stars are reviewed. A technical description of the interior of a neutron star is presented. The neutron star-pulsar relation is reviewed and consideration is given to supernovae explosions, flux conservation in neutron stars, gauge-invariant derivation of the equation of state for a strongly magnetized gas, neutron beta-decay, and the stability condition for a neutron star.

  7. Escape of charged particles from a neutron star

    International Nuclear Information System (INIS)

    Pelizzari, M.A.

    1976-01-01

    The theory of particle trajectories in an axisymmetric magnetic field, formulated by C. Stormer, can be extended to cover conservative force fields as well. As such, it is an ideal tool to study the escape of charged particles from a rapidly rotating neutron star, enabling one to determine the maximum range of their trajectories in space. With the aid of this theory, it is shown that a neutron star, rotating in a vacuum with rotation and magnetic axes aligned, will not evolve a perfectly conducting magnetosphere if the neutron star is the only source of charge. The sign of charge accelerated from the equatorial regions will be magnetically trapped to a toroidal region very near the star, and the opposite sign of charge, emerging from the polar regions, will escape from the magnetosphere until a critical stellar charge is reached, after which polar charges will be electrostatically bound to the magnetosphere. This selective magnetic trapping of one sign of charge, which prevents the formation of a stellar wind, is a consequence of the magnetic field's orientation relative to the internal charge density of the neutron star

  8. Isotopic neutron sources for neutron activation analysis

    International Nuclear Information System (INIS)

    Hoste, J.

    1988-06-01

    This User's Manual is an attempt to provide for teaching and training purposes, a series of well thought out demonstrative experiments in neutron activation analysis based on the utilization of an isotopic neutron source. In some cases, these ideas can be applied to solve practical analytical problems. 19 refs, figs and tabs

  9. Searching for X-ray Pulsations from Neutron Stars Using NICER

    Science.gov (United States)

    Ray, Paul S.; Arzoumanian, Zaven; Gendreau, Keith C.; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Chakrabarty, Deepto; Guillot, Sebastien; Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick; Mahmoodifar, Simin; Miller, Cole; Strohmayer, Tod; Wilson-Hodge, Colleen; Wolff, Michael T.; NICER Science Team Working Group on Pulsation Searches and Multiwavelength Coordination

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We present our science plan and initial results from the first months of the NICER mission.

  10. Black holes and neutron stars: evolution of binary systems

    International Nuclear Information System (INIS)

    Kraft, R.P.

    1975-01-01

    Evidence for the existence of neutron stars and black holes in binary systems has been reviewed, and the following summarizes the current situation: (1) No statistically significant case has been made for the proposition that black holes and/or neutron stars contribute to the population of unseen companions of ordinary spectroscopic binaries; (2) Plausible evolutionary scenarios can be advanced that place compact X-ray sources into context as descendants of several common types of mass-exchange binaries. The collapse object may be a black hole, a neutron star, or a white dwarf, depending mostly on the mass of the original primary; (3) The rotating neutron star model for the pulsating X-ray sources Her X-1 and Cen X-3 is the simplest interpretation of these objects, but the idea that the pulsations result from the non-radial oscillations of a white dwarf cannot be altogether dismissed. The latter is particularly attractive in the case of Her X-1 because the total mass of the system is small; (4) The black hole picture for Cyg X-1 represents the simplest model that can presently be put forward to explain the observations. This does not insure its correctness, however. The picture depends on a long chain of inferences, some of which are by no means unassailable. (Auth.)

  11. Gravitational waves from remnant massive neutron stars of binary neutron star merger: Viscous hydrodynamics effects

    Science.gov (United States)

    Shibata, Masaru; Kiuchi, Kenta

    2017-06-01

    Employing a simplified version of the Israel-Stewart formalism of general-relativistic shear-viscous hydrodynamics, we explore the evolution of a remnant massive neutron star of binary neutron star merger and pay special attention to the resulting gravitational waveforms. We find that for the plausible values of the so-called viscous alpha parameter of the order 10-2 the degree of the differential rotation in the remnant massive neutron star is significantly reduced in the viscous time scale, ≲5 ms . Associated with this, the degree of nonaxisymmetric deformation is also reduced quickly, and as a consequence, the amplitude of quasiperiodic gravitational waves emitted also decays in the viscous time scale. Our results indicate that for modeling the evolution of the merger remnants of binary neutron stars we would have to take into account magnetohydrodynamics effects, which in nature could provide the viscous effects.

  12. A binary neutron star GRB model

    International Nuclear Information System (INIS)

    Wilson, J.R.; Salmonson, J.D.; Wilson, J.R.; Mathews, G.J.

    1998-01-01

    In this paper we present the preliminary results of a model for the production of gamma-ray bursts (GRBs) through the compressional heating of binary neutron stars near their last stable orbit prior to merger. Recent numerical studies of the general relativistic (GR) hydrodynamics in three spatial dimensions of close neutron star binaries (NSBs) have uncovered evidence for the compression and heating of the individual neutron stars (NSs) prior to merger 12. This effect will have significant effect on the production of gravitational waves, neutrinos and, ultimately, energetic photons. The study of the production of these photons in close NSBs and, in particular, its correspondence to observed GRBs is the subject of this paper. The gamma-rays arise as follows. Compressional heating causes the neutron stars to emit neutrino pairs which, in turn, annihilate to produce a hot electron-positron pair plasma. This pair-photon plasma expands rapidly until it becomes optically thin, at which point the photons are released. We show that this process can indeed satisfy three basic requirements of a model for cosmological gamma-ray bursts: (1) sufficient gamma-ray energy release (>10 51 ergs) to produce observed fluxes, (2) a time-scale of the primary burst duration consistent with that of a 'classical' GRB (∼10 seconds), and (3) the peak of the photon number spectrum matches that of 'classical' GRB (∼300 keV). copyright 1998 American Institute of Physics

  13. Neutron Star Interiors and Topology Change

    Directory of Open Access Journals (Sweden)

    Peter K. F. Kuhfittig

    2013-01-01

    Full Text Available Quark matter is believed to exist in the center of neutron stars. A combined model consisting of quark matter and ordinary matter is used to show that the extreme conditions existing in the center could result in a topology change, that is, in the formation of wormholes.

  14. High energy radiation from neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1985-04-01

    Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs

  15. Detecting gravitational waves from accreting neutron stars

    NARCIS (Netherlands)

    Watts, A.L.; Krishnan, B.

    2009-01-01

    The gravitational waves emitted by neutron stars carry unique information about their structure and composition. Direct detection of these gravitational waves, however, is a formidable technical challenge. In a recent study we quantified the hurdles facing searches for gravitational waves from the

  16. Tidal Love Numbers of Neutron Stars

    International Nuclear Information System (INIS)

    Hinderer, Tanja

    2008-01-01

    For a variety of fully relativistic polytropic neutron star models we calculate the star's tidal Love number k 2 . Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n ∼ 0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l = 2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second-order differential equation for the perturbation to the metric coefficient g tt and matching the exterior solution to the asymptotic expansion of the metric in the star's local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to ∼24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron stars.

  17. Neutron-Star Radius from a Population of Binary Neutron Star Mergers.

    Science.gov (United States)

    Bose, Sukanta; Chakravarti, Kabir; Rezzolla, Luciano; Sathyaprakash, B S; Takami, Kentaro

    2018-01-19

    We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realistic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies, we utilize analytical fits to postmerger numerical relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasiuniversal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy. We also give error estimates for the Einstein Telescope.

  18. Explosion of a low mass neutron star

    International Nuclear Information System (INIS)

    Blinnikov, S.I.; Imshennik, V.S.; Nadyozhin, D.K.; Novikov, I.D.; Polnarev, A.G.; AN SSSR, Moscow. Fizicheskij Inst.); Perevodchikova, T.V.

    1990-01-01

    The hydrodynamical disruption of a low mass neutron star is investigated for the case when the stellar mass becomes smaller than the minimum value, M min ≅0.1 M sun . The final phase of the process is shown to proceed explosively, leading to an expansion of all the star, with a kinetic energy of 4.8 MeV per nucleon. The results of calculations are virtually independent of the way in which the neutron star mass goes down below M min (mass exchange in a close binary stellar system, nucleon decay, or some effective mass loss due to a hypothetical decrease of the gravitational constant). The neutron star disruption is followed by a short (0.01-0.1 s) burst of thermal hard X-rays and soft gamma-rays (kT=10-100 keV) with a subsequent much more prolonged tail of radiation induced by decays of long-lived radioactive nuclides. Some fraction of the explosion energy may be emitted in the form of neutrinos. (orig.)

  19. Evolution of a blue supergiant with a neutron star companion immersed in its envelope

    International Nuclear Information System (INIS)

    Delgado, A.J.

    1980-01-01

    The evolution of a binary system consisting of 1 Msub(sun) neutron star and a 25 Msub(sun) blue supergiant through a phase of common envelope is investigated. We include the effects of an additional energy source on the supergiant's envelope, due to the presence of the neutron star, and variable mass loss from the system, taken as proportional to the total luminosity. The results indicate that, independently of the initial period, the system loses its whole envelope as a consequence of the common envelope phase, the final product of this being a detached system, consisting of a neutron star and a helium star. (orig.)

  20. Accelerator based continuous neutron source.

    CERN Document Server

    Shapiro, S M; Ruggiero, A G

    2003-01-01

    Until the last decade, most neutron experiments have been performed at steady-state, reactor-based sources. Recently, however, pulsed spallation sources have been shown to be very useful in a wide range of neutron studies. A major review of neutron sources in the US was conducted by a committee chaired by Nobel laureate Prof. W. Kohn: ''Neutron Sources for America's Future-BESAC Panel on Neutron Sources 1/93''. This distinguished panel concluded that steady state and pulsed sources are complementary and that the nation has need for both to maintain a balanced neutron research program. The report recommended that both a new reactor and a spallation source be built. This complementarity is recognized worldwide. The conclusion of this report is that a new continuous neutron source is needed for the second decade of the 20 year plan to replace aging US research reactors and close the US neutron gap. it is based on spallation production of neutrons using a high power continuous superconducting linac to generate pr...

  1. Why neutron stars have three hairs

    Science.gov (United States)

    Stein, Leo; Yagi, Kent; Pappas, George; Yunes, Nicolas; Apostolatos, Theocharis

    2015-04-01

    Neutron stars have recently been found to enjoy a certain `baldness' in their multipolar structure which is independent of the equation of state (EoS) of dense nuclear matter. This is reminiscent of the black hole no-hair relations, and in stark contrast to regular stars. Why is this? Is it because realistic EoSs are sufficiently similar, or because GR effects are especially important, or because the nuclear matter is `cold'? We explore the physics behind these and more hypotheses, and give a convincing explanation for the true origin of the three-hair relations.

  2. On neutron star/supernova remnant associations

    OpenAIRE

    Gvaramadze, V. V.

    2000-01-01

    It is pointed out that a cavity supernova (SN) explosion of a moving massive star could result in a significant offset of the neutron star (NS) birth-place from the geometrical centre of the supernova remnant (SNR). Therefore: a) the high implied transverse velocities of a number of NSs (e.g. PSR B1610-50, PSR B1757-24, SGR0525-66) could be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR; c) the circle of possibl...

  3. Role of magnetic interactions in neutron stars

    Directory of Open Access Journals (Sweden)

    Adhya Souvik Priyam

    2015-01-01

    Full Text Available In this work, we present a calculation of the non-Fermi liquid correction to the specific heat of magnetized degenerate quark matter present at the core of the neutron star. The role of non-Fermi liquid corrections to the neutrino emissivity has been calculated beyond leading order. We extend our result to the evaluation of the pulsar kick velocity and cooling of the star due to such anomalous corrections and present a comparison with the simple Fermi liquid case.

  4. Magnetic properties of neutron-star matter

    Energy Technology Data Exchange (ETDEWEB)

    Chao, N C [PERNAMBUCO UNIV., RECIFE (BRAZIL). INSTITUTO DE FISICA; CLARK, J W [WASHINGTON UNIV., ST. LOUIS, MO. (USA)

    1975-08-01

    An array of qualitative and quantitative evidence is presented to the effect that neutron-star matter in its ground state is antiferromagnetic rather than ferromagnetic. The energy of pure neutron matter is evaluated as a function of spin polarization by a two-body Jastrow procedure, for densities up to five times that of ordinary nuclear matter. The anti-ferromagnetic state is energetically preferred to states with non-zero spin polarization, and lies considerably lower in energy than the ferromagnetic state. The magnetic susceptibility of the material is calculated as a function of density in the same approximation, with results which are in good agreement with independent estimates.

  5. Asymmetric nuclear matter and neutron star properties

    International Nuclear Information System (INIS)

    Engvik, L.; Hjorth-Jensen, M.; Osnes, E.; Bao, G.; Oestgaard, E.

    1994-06-01

    Properties of neutron stars such as mass and radius, using a relativistic Dirac-Brueckner-Hartree-Fock approach, are calculated. Modern meson-exchange potential models are used to evaluate the G-matrix for asymmetric nuclear matter. For pure neutron matter the maximum mass is found to be M max ∼ 2.4M for a radius R ∼ 12 km. With a proton fraction of 30% the result is M max ∼ 2.1M for a radius R ∼ 10.5 km, close to the experimental values. The implications are discussed. 20 refs., 3 figs

  6. Magnetic properties of neutron-star matter

    International Nuclear Information System (INIS)

    Chao, N.C.

    1975-01-01

    An array of qualitative and quantitative evidence is presented to the effect that neutron-star matter in its ground state is antiferromagnetic rather than ferromagnetic. The energy of pure neutron matter is evaluated as a function of spin polarization by a two-body Jastrow procedure, for densities up to five times that of ordinary nuclear matter. The anti-ferromagnetic state is energetically preferred to states with non-zero spin polarization, and lies considerably lower in energy than the ferromagnetic state. The magnetic susceptibility of the material is calculated as a function of density in the same approximation, with results which are in good agreement with independent estimates [pt

  7. Enigmatic sub-luminous accreting neutron stars in our Galaxy

    NARCIS (Netherlands)

    Wijnands, R.

    2008-01-01

    During the last few years a class of enigmatic sub-luminous accreting neutron stars has been found in our Galaxy. They have peak X-ray luminosities (2-10 keV) of a few times 10(34) erg s(−1) to a few times 10(35) erg s(−1), and both persistent and transient sources have been found. I present a short

  8. A dynamical description of neutron star crusts

    International Nuclear Information System (INIS)

    Mota, V de la; S, F; Eudes, Ph

    2013-01-01

    Neutron Stars are natural laboratories where fundamental properties of matter under extreme conditions can be explored. Modern nuclear physics input as well as many-body theories are valuable tools which may allow us to improve our understanding of the physics of those compact objects. In this work the occurrence of exotic structures in the outermost layers of neutron stars is investigated within the framework of a microscopic model. In this approach the nucleonic dynamics is described by a time-dependent mean field approach at around zero temperature. Starting from an initial crystalline lattice of nuclei at subnuclear densities the system evolves toward a manifold of self-organized structures with different shapes and similar energies. These structures are studied in terms of a phase diagram in density and the corresponding sensitivity to the isospin-dependent part of the equation of state and to the isotopic composition is investigated.

  9. Pion condensation and neutron star dynamics

    International Nuclear Information System (INIS)

    Kaempfer, B.

    1983-01-01

    The question of formation of pion condensate via a phase transition in nuclear matter, especially in the core of neutron stars is reviewed. The possible mechanisms and the theoretical restrictions of pion condensation are summarized. The effects of ultradense equation of state and density jumps on the possible condensation phase transition are investigated. The possibilities of observation of condensation process are described. (D.Gy.)

  10. Stochastic spin evolution of neutron stars

    OpenAIRE

    Popov, S. B.; Prokhorov, M. E.; Khoperskov, A. V.; Lipunov, V. M.

    2001-01-01

    In this paper we present calculations of period distribution for old accreting isolated neutron stars (INSs). At the age about a few billions years low velocity INSs come to the stage of accretion. At that stage their period evolution is governed by magnetic breaking and accreted angular momentum. Due to turbulence of the interstellar medium (ISM) accreted momentum can both accelerate and decelerate rotation of an INS and spin evolution has chaotic character. Calculations show that for consta...

  11. Neutron Stars in Supernova Remnants and Beyond

    Science.gov (United States)

    Gvaramadze, V. V.

    We discuss a concept of off-centred cavity supernova explosion as applied to neutron star/supernova remnant associations and show how this concept could be used to preclude the anti-humane decapitating the Duck (G5.4-1.2 + G5.27-0.9) and dismembering the Swan (Cygnus Loop), as well as to search for a stellar remnant associated with the supernova remnant RCW86.

  12. Neutron Stars in Supernova Remnants and Beyond

    OpenAIRE

    Gvaramadze, V. V.

    2002-01-01

    We discuss a concept of off-centred cavity supernova explosion as applied to neutron star/supernova remnant associations and show how this concept could be used to preclude the anti-humane decapitating the Duck (G5.4-1.2 + G5.27-0.9) and dismembering the Swan (Cygnus Loop), as well as to search for a stellar remnant associated with the supernova remnant RCW86.

  13. Rossi X-Ray Timing Explorer Observations of the First Transient Z Source XTE J1701-462: Shedding New Light on Mass Accretion in Luminous Neutron Star X-Ray Binaries

    Science.gov (United States)

    Homan, Jeroen; van der Klis, Michiel; Wijnands, Rudy; Belloni, Tomaso; Fender, Rob; Klein-Wolt, Marc; Casella, Piergiorgio; Méndez, Mariano; Gallo, Elena; Lewin, Walter H. G.; Gehrels, Neil

    2007-02-01

    We report on the first 10 weeks of RXTE observations of the X-ray transient XTE J1701-462 and conclude that it had all the characteristics of the neutron star Z sources, i.e., the brightest persistent neutron star low-mass X-ray binaries. These include the typical Z-shaped tracks traced out in X-ray color diagrams and the variability components detected in the power spectra, such as kHz QPOs and normal and horizontal branch oscillations. XTE J1701-462 is the first transient Z source and provides unique insights into mass accretion rate (m˙) and luminosity dependencies in neutron star X-ray binaries. As its overall luminosity decreased, we observed a switch between two types of Z source behavior, with the branches of the Z track changing their shape and/or orientation. We interpret this as an extreme case of the more moderate long-term changes seen in the persistent Z sources and suggest that they result from changes in m˙. We also suggest that the Cyg-like Z sources (Cyg X-2, GX 5-1, and GX 340+0) are substantially more luminous (>50%) than the Sco-like Z sources (Sco X-1, GX 17+2, and GX 349+2). Adopting a possible explanation for the behavior of kHz QPOs, which involves a prompt as well as a filtered response to changes in m˙, we further propose that changes in m˙ can explain both movement along the Z track and changes in the shape of the Z track. We discuss some consequences of this and consider the possibility that the branches of the Z will smoothly evolve into the branches observed in X-ray color diagrams of the less luminous atoll sources, although not in a way that was previously suggested.

  14. Neutron stars interiors: Theory and reality

    International Nuclear Information System (INIS)

    Stone, J.R.

    2016-01-01

    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation. (orig.)

  15. Neutron stars interiors: Theory and reality

    Science.gov (United States)

    Stone, J. R.

    2016-03-01

    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation.

  16. Neutron stars interiors: Theory and reality

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.R. [University of Oxford, Department of Physics, Oxford (United Kingdom); University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States)

    2016-03-15

    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation. (orig.)

  17. Binary pulsars as probes of neutron star birth

    NARCIS (Netherlands)

    Wijers, R.A.M.J.; van Paradijs, J.; van den Heuvel, E.P.J.

    1992-01-01

    We discuss two issues in the physics of neutron stars and their progenitors. The first is whether a neutron star receives a velocity kick when it is formed in the supernova-explosion of a massive star, and if it does, what is the characteristic magnitude, v(0), thereof? The second concerns the fate

  18. Phase transitions in neutron matter and dynamics of neutron stars

    International Nuclear Information System (INIS)

    Migdal, A.B.; Chernoutsan, A.I.; Mishustin, I.N.

    1980-01-01

    The neutron star dynamics during the formation of the superdense core is considered, and the instability conditions with respect to this formation are described. Within the framework of a simple model the equation of motion of the superdense core radius is investigated, its solutions in a simple model are found analytically for some limiting cases, and the results of numerical solution of the equation of motion are presented. The possible ways for the envelope to be blown off are considered

  19. Searching for dark matter with neutron star mergers and quiet kilonovae

    Science.gov (United States)

    Bramante, Joseph; Linden, Tim; Tsai, Yu-Dai

    2018-03-01

    We identify new astrophysical signatures of dark matter that implodes neutron stars (NSs), which could decisively test whether NS-imploding dark matter is responsible for missing pulsars in the Milky Way galactic center, the source of some r -process elements, and the origin of fast-radio bursts. First, NS-imploding dark matter forms ˜10-10 solar mass or smaller black holes inside neutron stars, which proceed to convert neutron stars into ˜1.5 solar mass black holes (BHs). This decreases the number of neutron star mergers seen by LIGO/Virgo (LV) and associated merger kilonovae seen by telescopes like DES, BlackGEM, and ZTF, instead producing a population of "black mergers" containing ˜1.5 solar mass black holes. Second, dark matter-induced neutron star implosions may create a new kind of kilonovae that lacks a detectable, accompanying gravitational signal, which we call "quiet kilonovae." Using DES data and the Milky Way's r-process abundance, we constrain quiet kilonovae. Third, the spatial distribution of neutron star merger kilonovae and quiet kilonovae in galaxies can be used to detect dark matter. NS-imploding dark matter destroys most neutron stars at the centers of disc galaxies, so that neutron star merger kilonovae would appear mostly in a donut at large radii. We find that as few as ten neutron star merger kilonova events, located to ˜1 kpc precision could validate or exclude dark matter-induced neutron star implosions at 2 σ confidence, exploring dark matter-nucleon cross-sections 4-10 orders of magnitude below current direct detection experimental limits. Similarly, NS-imploding dark matter as the source of fast radio bursts can be tested at 2 σ confidence once 20 bursts are located in host galaxies by radio arrays like CHIME and HIRAX.

  20. Neutron Star Mergers and the R process

    Science.gov (United States)

    Joniak, Ronald; Ugalde, Claudio

    2017-09-01

    About half of the elements of the periodic table that are present today in the Solar System were synthesized before the formation of the Sun via a rapid neutron capture process (r process). However, the astrophysical site of the r process is a longstanding problem that has captivated both experimental and theoretical astrophysicists. Up to date, two possible scenarios for the site of the r process have been suggested: the first involves the high entropy wind of core collapse supernovae, and the second corresponds to the merger of two compact stellar objects such as neutron stars. We will study the robustness of the nucleosynthesis abundance pattern between the second and third r process peaks as produced by neutron star mergers with r process-like neutron exposures. First, we will vary parameters to obtain an understanding of the astrophysical mechanisms that create the r process. Next, we will create a program to obtain the best possible parameters based on a chi-squared test. Once we have the best fits, we will test the effect of fission in the overall isotope abundance pattern distribution. Later on, we will vary the ratio of masses of the two fission fragments and study its effect on elemental abundances. This research was supported by the UIC College of Liberal Arts and Sciences Undergraduate Research Initiative (LASURI).

  1. Searching for gravitational waves from neutron stars

    Science.gov (United States)

    Idrisy, Ashikuzzaman

    In this dissertation we discuss gravitational waves (GWs) and their neutron star (NS) sources. We begin with a general discussion of the motivation for searching for GWs and the indirect experimental evidence of their existence. Then we discuss the various mechanisms through which NS can emit GWs, paying special attention the r-mode oscillations. Finally we end with discussion of GW detection. In Chapter 2 we describe research into the frequencies of r-mode oscillations. Knowing these frequencies can be useful for guiding and interpreting gravitational wave and electromagnetic observations. The frequencies of slowly rotating, barotropic, and non-magnetic Newtonian stars are well known, but subject to various corrections. After making simple estimates of the relative strengths of these corrections we conclude that relativistic corrections are the most important. For this reason we extend the formalism of K. H. Lockitch, J. L. Friedman, and N. Andersson [Phys. Rev. D 68, 124010 (2003)], who consider relativistic polytropes, to the case of realistic equations of state. This formulation results in perturbation equations which are solved using a spectral method. We find that for realistic equations of state the r-mode frequency ranges from 1.39--1.57 times the spin frequency of the star when the relativistic compactness parameter (M/R) is varied over the astrophysically motivated interval 0.110--0.310. Following a successful r-mode detection our results can help constrain the high density equation of state. In Chapter 3 we present a technical introduction to the data analysis tools used in GW searches. Starting from the plane-wave solutions derived in Chapter 1 we develop the F-statistic used in the matched filtering technique. This technique relies on coherently integrating the GW detector's data stream with a theoretically modeled wave signal. The statistic is used to test the null hypothesis that the data contains no signal. In this chapter we also discuss how to

  2. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    International Nuclear Information System (INIS)

    Bastrukov, S I; Yang, J; Podgainy, D V; Weber, F

    2003-01-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameters taken from early and current works on transport coefficients of dense matter. It is found that the effect of viscosity is crucial for the lifetime of magneto-torsion vibrations but it does not appreciably affect the periods of this seismic mode which fall in the realm of periods of pulsed emission of soft gamma-ray repeaters and anomalous x-ray pulsars - young super-magnetized neutron stars, radiating, according to the magnetar model, at the expense of the magnetic energy release. Finally, we present arguments that the long periodic pulsed emission of these stars in a quiescent regime of radiation can be interpreted as a manifestation of weakly damped seismic magneto-torsion vibrations exhibiting the field induced spin polarization of baryon matter

  3. Pulsed neutron sources at Dubna

    International Nuclear Information System (INIS)

    Shabalin, E.P.

    1991-01-01

    In 1960 the first world repetitively pulsed reactor IBR was put into operation. It was the beginning of the story how fission based pulsed neutron sources at Dubna have survived. The engineers involved have experienced many successes and failures in the course of new sources upgrading to finally come to possess the world's brightest neutron source - IBR-2. The details are being reviewed through the paper. The fission based pulsed neutron sources did not reach their final state as yet- the conceptual views of IBR prospects are being discussed with the goal to double the thermal neutron peak flux (up to 2x10 16 ) and to enhance the cold neutron flux by 10 times (with the present one being as high that of the ISIS cold moderator). (author)

  4. General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star

    Science.gov (United States)

    Ciolfi, Riccardo; Kastaun, Wolfgang; Giacomazzo, Bruno; Endrizzi, Andrea; Siegel, Daniel M.; Perna, Rosalba

    2017-03-01

    Merging binary neutron stars (BNSs) represent the ultimate targets for multimessenger astronomy, being among the most promising sources of gravitational waves (GWs), and, at the same time, likely accompanied by a variety of electromagnetic counterparts across the entire spectrum, possibly including short gamma-ray bursts (SGRBs) and kilonova/macronova transients. Numerical relativity simulations play a central role in the study of these events. In particular, given the importance of magnetic fields, various aspects of this investigation require general relativistic magnetohydrodynamics (GRMHD). So far, most GRMHD simulations focused the attention on BNS mergers leading to the formation of a hypermassive neutron star (NS), which, in turn, collapses within few tens of ms into a black hole surrounded by an accretion disk. However, recent observations suggest that a significant fraction of these systems could form a long-lived NS remnant, which will either collapse on much longer time scales or remain indefinitely stable. Despite the profound implications for the evolution and the emission properties of the system, a detailed investigation of this alternative evolution channel is still missing. Here, we follow this direction and present a first detailed GRMHD study of BNS mergers forming a long-lived NS. We consider magnetized binaries with different mass ratios and equations of state and analyze the structure of the NS remnants, the rotation profiles, the accretion disks, the evolution and amplification of magnetic fields, and the ejection of matter. Moreover, we discuss the connection with the central engine of SGRBs and provide order-of-magnitude estimates for the kilonova/macronova signal. Finally, we study the GW emission, with particular attention to the post-merger phase.

  5. Constraints on the Equation-of-State of neutron stars from nearby neutron star observations

    International Nuclear Information System (INIS)

    Neuhäuser, R; Hambaryan, V V; Hohle, M M; Eisenbeiss, T

    2012-01-01

    We try to constrain the Equation-of-State (EoS) of supra-nuclear-density matter in neutron stars (NSs) by observations of nearby NSs. There are seven thermally emitting NSs known from X-ray and optical observations, the so-called Magnificent Seven (M7), which are young (up to few Myrs), nearby (within a few hundred pc), and radio-quiet with blackbody-like X-ray spectra, so that we can observe their surfaces. As bright X-ray sources, we can determine their rotational (pulse) period and their period derivative from X-ray timing. From XMM and/or Chandra X-ray spectra, we can determine their temperature. With precise astrometric observations using the Hubble Space Telescope, we can determine their parallax (i.e. distance) and optical flux. From flux, distance, and temperature, one can derive the emitting area - with assumptions about the atmosphere and/or temperature distribution on the surface. This was recently done by us for the two brightest M7 NSs RXJ1856 and RXJ0720. Then, from identifying absorption lines in X-ray spectra, one can also try to determine gravitational redshift. Also, from rotational phase-resolved spectroscopy, we have for the first time determined the compactness (mass/radius) of the M7 NS RBS1223. If also applied to RXJ1856, radius (from luminosity and temperature) and compactness (from X-ray data) will yield the mass and radius - for the first time for an isolated single neutron star. We will present our observations and recent results.

  6. Multi-Wavelength Polarimetry of Isolated Neutron Stars

    Directory of Open Access Journals (Sweden)

    Roberto P. Mignani

    2018-03-01

    Full Text Available Isolated neutron stars are known to be endowed with extreme magnetic fields, whose maximum intensity ranges from 10 12 – 10 15 G, which permeates their magnetospheres. Their surrounding environment is also strongly magnetized, especially in the compact nebulae powered by the relativistic wind from young neutron stars. The radiation from isolated neutron stars and their surrounding nebulae is, thus, supposed to bring a strong polarization signature. Measuring the neutron star polarization brings important information about the properties of their magnetosphere and of their highly magnetized environment. Being the most numerous class of isolated neutron stars, polarization measurements have been traditionally carried out for radio pulsars, hence in the radio band. In this review, I summarize multi-wavelength linear polarization measurements obtained at wavelengths other than radio both for pulsars and other types of isolated neutron stars and outline future perspectives with the upcoming observing facilities.

  7. Multi-messenger Observations of a Binary Neutron Star Merger

    DEFF Research Database (Denmark)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.

    2017-01-01

    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A...... Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution....../optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A...

  8. Spallation neutron source moderator design

    International Nuclear Information System (INIS)

    Charlton, L.A.; Barnes, J.M.; Gabriel, T.A.; Johnson, J.O.

    1998-01-01

    This paper describes various aspects of the spallation neutron source (SNS) moderator design. Included are the effects of varying the moderator location, interaction effects between moderators, and the impact on neutron output when various reflector materials are used. Also included is a study of the neutron output from composite moderators, where it is found that a combination of liquid H 2 O and liquid H 2 can produce a spectrum very similar to liquid methane (L-CH 4 ). (orig.)

  9. How neutron stars constrain the nuclear equation of state

    Directory of Open Access Journals (Sweden)

    Hell Thomas

    2014-03-01

    Full Text Available Recent neutron star observations set new constraints for the equation of state of baryonic matter. A chiral effective field theory approach is used for the description of neutron-dominated nuclear matter present in the outer core of neutron stars. Possible hybrid stars with quark matter in the inner core are discussed using a three-flavor Nambu–Jona-Lasinio model.

  10. An accurate metric for the spacetime around neutron stars

    OpenAIRE

    Pappas, George

    2016-01-01

    The problem of having an accurate description of the spacetime around neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a neutron star. Furthermore, an accurate appropriately parameterised metric, i.e., a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to inf...

  11. Role of strangeness to the neutron star mass and cooling

    Science.gov (United States)

    Lee, Chang-Hwan; Lim, Yeunhwan; Hyun, Chang Ho; Kwak, Kyujin

    2018-01-01

    Neutron star provides unique environments for the investigation of the physics of extreme dense matter beyond normal nuclear saturation density. In such high density environments, hadrons with strange quarks are expected to play very important role in stabilizing the system. Kaons and hyperons are the lowest mass states with strangeness among meson and bayron families, respectively. In this work, we investigate the role of kaons and hyperons to the neutron star mass, and discuss their role in the neutron star cooling.

  12. Neutron stars with spin polarized self-interacting dark matter

    OpenAIRE

    Rezaei, Zeinab

    2018-01-01

    Dark matter, one of the important portion of the universe, could affect the visible matter in neutron stars. An important physical feature of dark matter is due to the spin of dark matter particles. Here, applying the piecewise polytropic equation of state for the neutron star matter and the equation of state of spin polarized self-interacting dark matter, we investigate the structure of neutron stars which are influenced by the spin polarized self-interacting dark matter. The behavior of the...

  13. Structure and stability of warm cores in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez Cabanell, J M [Departamento de Mecanica y Astronomia, Facultad de Matematicas, Burjasot-Valencia (Spain)

    1981-12-01

    Relativistic equations of structure are solved using Lamb's equations of state for warm neutron degenerate matter. The stability of isothermal cores in neutron stars is discussed and also the possible compatibility of the results obtained with experimental evidence is shown.

  14. Mean energy polarized neutron source

    International Nuclear Information System (INIS)

    Aleshin, V.A.; Zaika, N.I.; Kolotyj, V.V.; Prokopenko, V.S.; Semenov, V.S.

    1988-01-01

    Physical bases and realization scheme of a pulsed source of polarized neutrons with the energy of up to 75 MeV are described. The source comprises polarized deuteron source, transport line, low-energy ion and axial injector to the accelerator, U-240 isochronous cyclotron, targets for polarized neutron production, accelerated deuteron transport line and flight bases. The pulsed source of fast neutrons with the energy of up to 75 MeV can provide for highly polarized neutron beams with the intensity by 2-3 orders higher than in the most perfect source of this range which allows one to perform various experiments with high efficiency and energy resolution. 9 refs.; 1 fig

  15. Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Masaru

    2016-12-15

    Late inspiral and merger phases of binary neutron stars are the valuable new experimental fields for exploring nuclear physics because (i) gravitational waves from them will bring information for the neutron-star equation of state and (ii) the matter ejected after the onset of the merger could be the main site for the r-process nucleosynthesis. We will summarize these aspects of the binary neutron stars, describing the current understanding for the merger process of binary neutron stars that has been revealed by numerical-relativity simulations.

  16. Burst Oscillations: A New Spin on Neutron Stars

    Science.gov (United States)

    Strohmayer, Tod

    2007-01-01

    Observations with NASA's Rossi X-ray Timing Explorer (RXTE) have shown that the X-ray flux during thermonuclear X-ray bursts fr-om accreting neutron stars is often strongly pulsed at frequencies as high as 620 Hz. We now know that these oscillations are produced by spin modulation of the thermonuclear flux from the neutron star surface. In addition to revealing the spin frequency, they provide new ways to probe the properties and physics of accreting neutron stars. I will briefly review our current observational and theoretical understanding of these oscillations and discuss what they are telling us about neutron stars.

  17. Neutron-Star Merger Detected By Many Eyes and Ears

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    PredictedTheoretical models describing the merger of two compact objects predict a chirping gravitational-wave signal as the objects spiral closer and closer. Unlike in a black-hole merger, however, the end of the chirp from merging neutron stars should coincide with a phenomenon known as a short gamma-ray burst: a powerful storm of energetic gamma rays produced as the objects finally collide.According to the models, these gravitational waves and gamma rays will be followed by a kilonova a transient source visible in infrared, optical, and ultraviolet which arises from radioactive decay of heavy elements formed in the collision. This source should gradually decay over a timescale of weeks.Lastly, the merger could create a powerful jet of high-energy particles, which could be visible to us in X-ray and radio wavelengths as it is emitted and interacts with its surrounding environment. We could also detect neutrinos from this outflow.What We Saw (and Didnt See)The localization of the gravitational-wave, gamma-ray, and optical signals of the neutron-star merger detected on 17 August, 2017. [Abbott et al. 2017]So what did we see on 17 August, 2017 and thereafter? Heres what was found by the army of collaborations searching in gravitational waves, electromagnetic signals across the spectrum, and neutrinos:Gravitational WavesThe gravitational-wave signature of a binary neutron-star merger was observed with all three gravitational-wave detectors currently operating as a part of the LIGO-Virgo collaboration. GW170817s signal was in the sensitivity band of these detectors for 100 seconds, arriving first at the Virgo detector in Italy, next at LIGO-Livingston in Louisiana 22 milliseconds later, and finally at LIGO-Hanford in Washington 3 milliseconds after that. These detections localized the source to a region of 31 square degrees at a relatively nearby distance of 130 million light-years, and they identified the binary components to be neutron stars.Gamma-Ray BurstThe Fermi Gamma

  18. Spectrometers for compact neutron sources

    Science.gov (United States)

    Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.

    2018-03-01

    We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.

  19. On Neutron Star/Supernova Remnant Association

    Science.gov (United States)

    Gvaramadze, V. V.

    It is pointed out that a cavity supernova (SN) explosion of a moving massive star could result in a significant offset of the neutron star (NS) birth-place from the geometrical centre of the supernova remnant (SNR). Therefore: a) the high implied transverse velocities of a number of NSs (e.g. PSR B1610-50, PSR B1706-44, PSR B1757-24, SGR 0526-66) could be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR; c) the circle of possible NS/SNR associations could be enlarged. An observational test is discussed, which could provide a determination of the true birth-places of NSs associated with middle-aged SNRs, and thereby provide more reliable estimates of their transverse velocities.

  20. Maser Emission from Gravitational States on Isolated Neutron Stars

    Science.gov (United States)

    Tepliakov, Nikita V.; Vovk, Tatiana A.; Rukhlenko, Ivan D.; Rozhdestvensky, Yuri V.

    2018-04-01

    Despite years of research on neutron stars, the source of their radio emission is still under debate. Here we propose a new coherent mechanism of pulsar radio emission based on transitions between gravitational states of electrons confined above the pulsar atmosphere. Our mechanism assumes that the coherent radiation is generated upon the electric and magnetic dipole transitions of electrons falling onto the polar caps of the pulsar, and predicts that this radiation occurs at radio frequencies—in full agreement with the observed emission spectra. We show that while the linearly polarized electric dipole radiation propagates parallel to the neutron star surface and has a fan-shape angular spectrum, the magnetic dipole emission comes from the magnetic poles of the pulsar in the form of two narrow beams and is elliptically polarized due to the spin–orbit coupling of electrons confined by the magnetic field. By explaining the main observables of the pulsar radio emission, the proposed mechanism indicates that gravitational quantum confinement plays an essential role in the physics of neutron stars.

  1. Accretion of matter onto highly magnetized neutron stars: Final report, July 1-September 30, 1985

    International Nuclear Information System (INIS)

    Hernquist, L.

    1986-06-01

    A final report is given of two research projects dealing with magnetic fields of neutron stars. These are the modulation of thermal x-rays from cooling neutron stars and plasma instabilities in neutron star accretion columns

  2. Quark matter droplets in neutron stars

    Science.gov (United States)

    Heiselberg, H.; Pethick, C. J.; Staubo, E. F.

    1993-01-01

    We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.

  3. Neutron Star/supernova Remnant Associations

    Science.gov (United States)

    Gvaramadze, V. V.

    We propose a new approach for studying the neutron star/supernova remnant associations, based on the idea that the (diffuse) supernova remnants (SNRs) can be products of an off-centred supernova (SN) explosion in a preexisting bubble created by the wind of a moving massive star. A cavity SN explosion of a moving star results in a considerable offset of the neutron star (NS) birth-place from the geometrical centre of the SNR. Therefore: a) the high transverse velocities inferred for a number of NSs (e.g. PSR B 1610-50, PSR B 1757-24, SGR 0525-66) through their association with SNRs can be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR. Taking into account of these two facts allow us to enlarge the circle of possible NS/SNR associations, and could significantly affect the results of previous studies of NS/SNR associations. The possibilities of our approach are illustrated with the example of the association between PSR B 1706-44 and SNR G 343.1-2.3. We show that this association could be real if both objects are the remnants of a SN exploded within a mushroom-like cavity (created by the SN progenitor wind breaking out of the parent molecular cloud and expanding into an intercloud medium of a much less density). We also show that the SN explosion sites in some middle-aged (shell-like) SNRs could be marked by (compact) nebulae of thermal X-ray emission. The possible detection of such nebulae within middle-aged SNRs could be used for the re-estimation of implied transverse velocities of known NSs or for the search of new stellar remnants possibly associated with these SNRs.

  4. Neutron PSDs for the next generation of spallation neutron sources

    CERN Document Server

    Eijk, C W

    2002-01-01

    A review of R and D for neutron PSDs to be used at anticipated new spallation neutron sources: the Time-of-Flight system facility, European Spallation Source, Spallation Neutron Source and Neutron Arena, is presented. The gas-filled detectors, scintillation detectors and hybrid systems are emphasized.

  5. The tokamak as a neutron source

    International Nuclear Information System (INIS)

    Hendel, H.W.; Jassby, D.L.

    1989-11-01

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs

  6. Materials for spallation neutron sources

    International Nuclear Information System (INIS)

    Sommer, W.F.; Daemen, L.L.

    1996-03-01

    The Workshop on Materials for Spallation Neutron Sources at the Los Alamos Neutron Science Center, February 6 to 10, 1995, gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss areas in which work is needed, successful designs and use of materials, and opportunities for further studies. During the first day of the workshop, speakers presented overviews of current spallation neutron sources. During the next 3 days, seven panels allowed speakers to present information on a variety of topics ranging from experimental and theoretical considerations on radiation damage to materials safety issues. An attempt was made to identify specific problems that require attention within the context of spallation neutron sources. This proceedings is a collection of summaries from the overview sessions and the panel presentations

  7. Neutron sources and their characteristics

    International Nuclear Information System (INIS)

    McCall, R.C.; Swanson, W.P.

    1979-03-01

    The significant sources of photoneutrons within a linear-accelerator treatment head are identified and absolute estimates of neutron production per treatment dose are given for typical components. It is found that the high-Z materials within the treatment head do not significantly alter the neutron fluence but do substantially reduce the average energy of the transmitted spectrum. Reflection of neutrons from the concrete treatment room contribute to the neutron fluence, but not substantially to the patient integral dose, because of a further reduction in average energy. The ratio of maximum fluence to the treatment dose at the same distance is given as a function of electron energy. This ratio rises with energy to an almost constant value of 2.1 x 10 5 neutrons cm -2 rad -1 at electron energies above about 25 MeV. Measured data obtained at a variety of accelerator installations are presented and compared with these calculations. Reasons for apparent deviations are suggested. Absolute depth-dose and depth-dose-equivalent distributions for realistic neutron spectra that occur at therapy installations are calculated, and a rapid falloff with depth is found. The ratio of neutron integral absorbed dose to leakage photon absorbed dose is estimated to be 0.04 and 0.2 for 14 to 25 MeV incident electron energy, respectively. Possible reasons are given for lesser neutron production from betatrons than from linear accelerators. Possible ways in which neutron production can be reduced are discussed

  8. Instrumentation at pulsed neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Lander, G.H.; Windsor, C.G.

    1984-01-01

    Scientific investigations involving the use of neutron beams have been centered at reactor sources for the last 35 years. Recently, there has been considerable interest in using the neutrons produced by accelerator driven (pulsed) sources. Such installations are in operation in England, Japan, and the United States. In this article a brief survey is given of how the neutron beams are produced and how they can be optimized for neutron scattering experiments. A detailed description is then given of the various types of instruments that have been, or are planned, at pulsed sources. Numerous examples of the scientific results that are emerging are given. An attempt is made throughout the article to compare the scientific opportunities at pulsed sources with the proven performance of reactor installations, and some familiarity with the latter and the general field of neutron scattering is assumed. New areas are being opened up by pulsed sources, particularly with the intense epithermal neutron beams, which promise to be several orders of magnitude more intense than can be obtained from a thermal reactor

  9. Ultra-dense neutron star matter, strange quark stars, and the nuclear equation of state

    International Nuclear Information System (INIS)

    Weber, F.; Meixner, M.; Negreiros, R.P.; Malheiro, M.

    2007-01-01

    With central densities way above the density of atomic nuclei, neutron stars contain matter in one of the densest forms found in the universe. Depending of the density reached in the cores of neutron stars, they may contain stable phases of exotic matter found nowhere else in space. This article gives a brief overview of the phases of ultra-dense matter predicted to exist deep inside neutron stars and discusses the equation of state (EoS) associated with such matter. (author)

  10. Source characterization of Purnima Neutron Generator (PNG)

    International Nuclear Information System (INIS)

    Bishnoi, Saroj; Patel, T.; Paul, Ram K.; Sarkar, P.S.; Adhikari, P.S.; Sinha, Amar

    2011-01-01

    The use of 14.1 MeV neutron generators for the applications such as elemental analysis, Accelerated Driven System (ADS) study, fast neutron radiography requires the characterization of neutron source i.e neutron yield (emission rate in n/sec), neutron dose, beam spot size and energy spectrum. In this paper, a series of experiments carried out to characterize this neutron source. The neutron source has been quantified with neutron emission rate, neutron dose at various source strength and beam spot size at target position

  11. Spallation source neutron target systems

    International Nuclear Information System (INIS)

    Russell, G.; Brown, R.; Collier, M.; Donahue, J.

    1996-01-01

    This is the final report for a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project sought to design a next-generation spallation source neutron target system for the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE) at Los Alamos. It has been recognized for some time that new advanced neutron sources are needed in the US if the country is to maintain a competitive position in several important scientific and technological areas. A recent DOE panel concluded that the proposed Advanced Neutron Source (a nuclear reactor at Oak Ridge National Laboratory) and a high-power pulsed spallation source are both needed in the near future. One of the most technically challenging designs for a spallation source is the target station itself and, more specifically, the target-moderator-reflector arrangement. Los Alamos has demonstrated capabilities in designing, building, and operating high-power spallation-neutron-source target stations. Most of the new design ideas proposed worldwide for target system design for the next generation pulsed spallation source have either been conceived and implemented at LANSCE or proposed by LANSCE target system designers. These concepts include split targets, flux-trap moderators, back scattering and composite moderators, and composite reflectors

  12. MINBAR: A comprehensive study of 6000+ thermonuclear shell flashes from neutron stars

    DEFF Research Database (Denmark)

    Galloway, Duncan; in't Zand, J.J.M.; Chenevez, Jérôme

    2014-01-01

    Thermonuclear (type-I) X-ray bursts have been observed from accreting neutron stars since the early 1970s. These events serve as a valuable diagnostic tool to constrain the source distance; accretion rate; accreted fuel composition, and hence evolutionary status of the donor; and even the neutron...

  13. Characteristics of old neutron stars in dense interstellar clouds

    International Nuclear Information System (INIS)

    Boehringer, H.; Morfill, G.E.; Zimmermann, H.U.

    1987-01-01

    The forms observable radiation will assume as old neutron stars pass through interstellar clouds and accrete material are examined theoretically. The radiation, mainly X-rays and gamma rays, will be partially absorbed by the surrounding dust and gas, which in turn produces far-IR radiation from warm dust and line radiation from the gas. Adiabatic compression of the accretion flow and the accretion shock are expected to produce cosmic rays, while gamma rays will be emitted by interaction of the energetic particles with the cloud material. The calculations indicate that the stars will then be identified as X-ray sources, some of which may be unidentified sources in the COS-B database. 37 references

  14. Anisotropic pressure and hyperons in neutron stars

    International Nuclear Information System (INIS)

    Sulaksono, A.

    2015-01-01

    We study the effects of anisotropic pressure (AI-P) on properties of the neutron stars (NSs) with hyperons inside its core within the framework of extended relativistic mean field. It is found that the main effects of AI-P on NS matter is to increase the stiffness of the equation of state EOS, which compensates for the softening of the EOS due to the hyperons. The maximum mass and redshift predictions of anisotropic neutron star with hyperonic core are quite compatible with the result of recent observational constraints if we use the parameter of AI-P model h ≤ 0.8 [L. Herrera and W. Barreto, Phys. Rev. D 88 (2013) 084022.] and Λ ≤ -1.15 [D. D. Doneva and S. S. Yazadjiev, Phys. Rev. D 85 (2012) 124023.]. The radius of the corresponding NS at M = 1.4 M ⊙ is more than 13 km, while the effect of AI-P on the minimum mass of NS is insignificant. Furthermore, due to the AI-P in the NS, the maximum mass limit of higher than 2.1 M ⊙ cannot rule out the presence of hyperons in the NS core. (author)

  15. BINARY NEUTRON STARS IN QUASI-EQUILIBRIUM

    International Nuclear Information System (INIS)

    Taniguchi, Keisuke; Shibata, Masaru

    2010-01-01

    Quasi-equilibrium sequences of binary neutron stars are constructed for a variety of equations of state in general relativity. Einstein's constraint equations in the Isenberg-Wilson-Mathews approximation are solved together with the relativistic equations of hydrostationary equilibrium under the assumption of irrotational flow. We focus on unequal-mass sequences as well as equal-mass sequences, and compare those results. We investigate the behavior of the binding energy and total angular momentum along a quasi-equilibrium sequence, the endpoint of sequences, and the orbital angular velocity as a function of time, changing the mass ratio, the total mass of the binary system, and the equation of state of a neutron star. It is found that the orbital angular velocity at the mass-shedding limit can be determined by an empirical formula derived from an analytic estimation. We also provide tables for 160 sequences, which will be useful as a guideline of numerical simulations for the inspiral and merger performed in the near future.

  16. Neutron star accretion and the neutrino fireball

    International Nuclear Information System (INIS)

    Colgate, S.A.; Herant, M.E.; Benz, W.

    1991-01-01

    The mixing necessary to explain the ''Fe'' line widths and possibly the observed red shifts of 1987A is explained in terms of large scale, entropy conserving, up and down flows (calculated with a smooth particle 2-D code) taking place between the neutron star and the explosion shock wave due to the gravity and neutrino deposition. Depending upon conditions of entropy and mass flux further accretion takes place in single events, similar to relaxation oscillator, fed by the downward flows of low entropy matter. The shock, in turn, is driven by the upflow of the buoyant high entropy bubbles. Some accretion events will reach a temperature high enough to create a neutrino ''fireball,'' a region hot enough, 11 Mev, so as to be partially opaque to its own (neutrino) radiation. The continuing neutrino deposition drives the explosion shock until the entropy of matter flowing downwards onto the neutron star is high enough to prevent further accretion. This process should result in a robust supernova explosion

  17. Gravitomagnetic effect in magnetized neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Debarati [LPC/ENSICAEN, 6 Boulevard Maréchal Juin, Caen, 14050 France (France); Chakraborty, Chandrachur [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005 India (India); Bandyopadhyay, Debades, E-mail: dchatterjee@lpccaen.in2p3.fr, E-mail: chandrachur.chakraborty@tifr.res.in, E-mail: debades.bandyopadhyay@saha.ac.in [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata, 700064 India (India)

    2017-01-01

    Rotating bodies in General Relativity produce frame dragging, also known as the gravitomagnetic effect in analogy with classical electromagnetism. In this work, we study the effect of magnetic field on the gravitomagnetic effect in neutron stars with poloidal geometry, which is produced as a result of its rotation. We show that the magnetic field has a non-negligible impact on frame dragging. The maximum effect of the magnetic field appears along the polar direction, where the frame-dragging frequency decreases with increase in magnetic field, and along the equatorial direction, where its magnitude increases. For intermediate angles, the effect of the magnetic field decreases, and goes through a minimum for a particular angular value at which magnetic field has no effect on gravitomagnetism. Beyond that particular angle gravitomagnetic effect increases with increasing magnetic field. We try to identify this 'null region' for the case of magnetized neutron stars, both inside and outside, as a function of the magnetic field, and suggest a thought experiment to find the null region of a particular pulsar using the frame dragging effect.

  18. Transition density and pressure in hot neutron stars

    International Nuclear Information System (INIS)

    Xu Jun; Chen Liewen; Ko, Che Ming; Li Baoan

    2010-01-01

    Using the momentum-dependent effective interaction (MDI) for nucleons, we have studied the transition density and pressure at the boundary between the inner crust and the liquid core of hot neutron stars. We find that their values are larger in neutrino-trapped neutron stars than in neutrino-free neutron stars. Furthermore, both are found to decrease with increasing temperature of a neutron star as well as increasing slope parameter of the nuclear symmetry energy, except that the transition pressure in neutrino-trapped neutron stars for the case of small symmetry energy slope parameter first increases and then decreases with increasing temperature. We have also studied the effect of the nuclear symmetry energy on the critical temperature above which the inner crust in a hot neutron star disappears and found that with increasing value of the symmetry energy slope parameter, the critical temperature decreases slightly in neutrino-trapped neutron stars but first decreases and then increases in neutrino-free neutron stars.

  19. Simulation of merging neutron stars in full general relativity

    International Nuclear Information System (INIS)

    Shibata, M.

    2001-01-01

    We have performed 3D numerical simulations for merger of equal mass binary neutron stars in full general relativity. We adopt a Γ-law equation of state in the form P = (Γ - 1)ρε where P, ρ, ε and Γ are the pressure, rest mass density, specific internal energy, and the adiabatic constant. As initial conditions, we adopt models of irrotational binary neutron stars in a quasiequilibrium state. Simulations have been carried out for a wide range of Γ and compactness of neutron stars, paying particular attention to the final product and gravitational waves. We find that the final product depends sensitively on the initial compactness of the neutron stars: In a merger between sufficiently compact neutron stars, a black hole is formed in a dynamical timescale. As the compactness is decreased, the formation timescale becomes longer and longer. It is also found that a differentially rotating massive neutron star is formed instead of a black hole for less compact binary cases. In the case of black hole formation, the disk mass around the black hole appears to be very small; less than 1% of the total rest mass. It is indicated that waveforms of high-frequency gravitational waves after merger depend strongly on the compactness of neutron stars before the merger. We point out importance of detecting such gravitational waves of high frequency to constrain the maximum allowed mass of neutron stars. (author)

  20. Magneto–Thermal Evolution of Neutron Stars with Emphasis to ...

    Indian Academy of Sciences (India)

    The magnetic and thermal evolution of neutron stars is a very complex process with many non-linear interactions. For a decent understanding of neutron star physics, these evolutions cannot be considered isolated. A brief overview is presented, which describes the main magneto–thermal interactions that determine the fate ...

  1. Nuclear symmetry energy and stability of matter in neutron stars

    International Nuclear Information System (INIS)

    Kubis, Sebastian

    2007-01-01

    It is shown that the nuclear symmetry energy is the key quantity in the stability consideration in neutron star matter. The symmetry energy controls the position of crust-core transition and also may lead to new effects in the inner core of neutron star

  2. Relativistic Processes and the Internal Structure of Neutron Stars

    International Nuclear Information System (INIS)

    Alvarez-Castillo, D. E.; Kubis, S.

    2011-01-01

    Models for the internal composition of Dense Compact Stars are reviewed as well as macroscopic properties derived by observations of relativistic processes. Modeling of pure neutron matter Neutron Stars is presented and crust properties are studied by means of a two fluid model.

  3. Limits on Self-Interacting Dark Matter from Neutron Stars

    DEFF Research Database (Denmark)

    Kouvaris, C.

    2012-01-01

    We impose new severe constraints on the self-interactions of fermionic asymmetric dark matter based on observations of nearby old neutron stars. Weakly interacting massive particle (WIMP) self-interactions mediated by Yukawa-type interactions can lower significantly the number of WIMPs necessary...... for gravitational collapse of the WIMP population accumulated in a neutron star. Even nearby neutron stars located at regions of low dark matter density can accrete a sufficient number of WIMPs that can potentially collapse, form a mini black hole, and destroy the host star. Based on this, we derive constraints...

  4. SUPERNOVAE, NEUTRON STARS, AND TWO KINDS OF NEUTRINO

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, H Y

    1962-08-15

    The role of neutrinos in the core of a star that has undergone a supernova explosion is discussed. The existence of neutron stars, the Schwarzchild singularity in general relativity, and the meaning of conservation of baryons in the neighborhood of a Schwarzchild singularity are also considered. The problem of detection of neutron stars is discussed. It is concluded that neutron stars are the most plausible alternative for the remnant of the core of a supernova. The neutrino emission processes are divided into two groups: the neutrino associated with the meson (mu) and the production of electron neutrinos. (C.E.S.)

  5. Pion condensation in cold dense matter and neutron stars

    International Nuclear Information System (INIS)

    Haensel, P.; Proszynski, M.

    1982-01-01

    We study possible influence, on the neutron star structure, of a pion condensation occurring in cold dense matter. Several equations of state with pion-condensed phase are considered. The models of neutron stars are calculated and confronted with existing observational data on pulsars. Such a confrontation appears to rule out the models of dense matter with an abnormal self-bound state, and therefore it seems to exclude the possibility of the existence of abnormal superheavy neutron nuclei and abnormal neutron stars with a liquid pion-condensed surface

  6. Neutron stars structure in the context of massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H.; Bordbar, G.H.; Panah, B. Eslam; Panahiyan, S., E-mail: hendi@shirazu.ac.ir, E-mail: ghbordbar@shirazu.ac.ir, E-mail: behzad.eslampanah@gmail.com, E-mail: sh.panahiyan@gmail.com [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2017-07-01

    Motivated by the recent interests in spin−2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  7. Neutron stars structure in the context of massive gravity

    Science.gov (United States)

    Hendi, S. H.; Bordbar, G. H.; Eslam Panah, B.; Panahiyan, S.

    2017-07-01

    Motivated by the recent interests in spin-2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  8. Neutron stars structure in the context of massive gravity

    International Nuclear Information System (INIS)

    Hendi, S.H.; Bordbar, G.H.; Panah, B. Eslam; Panahiyan, S.

    2017-01-01

    Motivated by the recent interests in spin−2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  9. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S. E-mail: kubis@alf.ifj.edu.pl; Kutschera, M

    2003-06-02

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.

  10. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    2003-01-01

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists

  11. Neutron star formation and the weak interaction

    International Nuclear Information System (INIS)

    Burrows, A.

    1986-01-01

    The only known direct diagnostic of the central event is its neutrino emission. The imprint of the entire internal evolution is stamped on the spectrum, mix of flavors, luminosities, and features of the accompanying neutrino burst. Detection and scrutiny of this neutrino signal will test theories concerning stellar collapse, type II supernovae, and the formation of neutron stars in ways impossible by other means. Despite the fact that an incredible 3x10 53 ergs may be emitted in neutrinos after the initiation of collapse, the very weakness of the neutrino/matter interaction that allows them to penetrate the stellar envelope and escape makes their detection at the Earth very difficult. Though neutrino astronomy is not yet a mature discipline, the physical theories of collapse have progressed to a sufficient degree that specific and detailed predictions can be made about the neutrino emissions that with future detector technology might be tested. The time seems propitious to summarize and review what is known and suspected about the neutrino signature of collapse, the potential for its detection, and how it can be used to test our ideas about the death of massive stars and the birth of neutrino stars. (orig./BBOE)

  12. Neutron diffraction on pulsed sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Balagurov, A.M.

    2016-01-01

    The possibilities currently offered and major scientific problems solved by time-of-flight neutron diffraction are reviewed. The reasons for the rapid development of the method over the last two decades has been mainly the emergence of third generation pulsed sources with a MW time-averaged power and advances in neutron-optical devices and detector systems. The paper discusses some historical aspects of time-of-flight neutron diffraction and examines the contribution to this method by F.L.Shapiro whose 100th birth anniversary was celebrated in 2015. The state of the art with respect to neutron sources for studies on output beams is reviewed in a special section. [ru

  13. The new Munich neutron source

    International Nuclear Information System (INIS)

    Herrmann, W.A.

    1998-01-01

    The Munich FRM II neutron source currently under construction is to replace the FRM I research reactor in Munich, also known as 'atomic egg'. The project is executed by the Free State of Bavaria as a construction project of the Munich Technical University and managed by the University. As main contractor for the construction project, Siemens AG is also co-applicant in the licensing procedure under the Atomic Energy Act for the construction phase. The project is carried out to build a modern high flux neutron source required for a broad range of applications in research and technology mainly with thermal and cold neutrons. The 'neutron gap' existing in Germany is to be closed with the FRM II. As a national research installation, the FRM II is available to all interested scientists from a variety of disciplines. (orig.) [de

  14. Neutron source for a reactor

    International Nuclear Information System (INIS)

    Kobayashi, Hiromasa.

    1975-01-01

    Object: To easily increase a start-up power of a reactor without irradiation in other reactors. Structure: A neutron source comprises Cf 252 , a natural antimony rod, a layer of beryllium, and a vessel of neutron source. On upper and lower portion of Cf 252 are arranged natural antimony rods, which are surrounded by the Be layer, the entirety being charged into the vessel. The Cf 252 may emit neutron, has a half life more than a period of operating cycle of the reactor and is less deteriorated even irradiated by radioactive rays while being left within the reactor. The natural antimony rod is radioactivated by neutron from Cf 252 and neutron as reactor power increases to emit γ rays. The Be absorbs γ rays to emit the neutron. The antimony rod is irradiated within the reactor. Further, since the Cf 252 is small in neutron absorption cross section, it is hard to be deteriorated even while being inserted within the reactor. (Kamimura, M.)

  15. On the illumination of neutron star accretion discs

    Science.gov (United States)

    Wilkins, D. R.

    2018-03-01

    The illumination of the accretion disc in a neutron star X-ray binary by X-rays emitted from (or close to) the neutron star surface is explored through general relativistic ray tracing simulations. The applicability of the canonical suite of relativistically broadened emission line models (developed for black holes) to discs around neutron stars is evaluated. These models were found to describe well emission lines from neutron star accretion discs unless the neutron star radius is larger than the innermost stable orbit of the accretion disc at 6 rg or the disc is viewed at high inclination, above 60° where shadowing of the back side of the disc becomes important. Theoretical emissivity profiles were computed for accretion discs illuminated by hotspots on the neutron star surfaces, bands of emission and emission by the entirety of the hot, spherical star surface and in all cases, the emissivity profile of the accretion disc was found to be well represented by a single power law falling off slightly steeper than r-3. Steepening of the emissivity index was found where the emission is close to the disc plane and the disc can appear truncated when illuminated by a hotspot at high latitude. The emissivity profile of the accretion disc in Serpens X-1 was measured and found to be consistent with a single unbroken power law with index q=3.5_{-0.4}^{+0.3}, suggestive of illumination by the boundary layer between the disc and neutron star surface.

  16. Electromagnetic multipole fields of neutron stars

    International Nuclear Information System (INIS)

    Roberts, W.J.

    1979-01-01

    There is now indisputable evidence that some pulsars possess space velocities so high that internal asymmetries in the dynamics of their formation are strongly implied. We develop in this paper a complete formalism for the calculation of the only such mechanism that has yet been subjected to quantitative analysis: electromagnetic recoil radiation. To make the general problem tractable without doing violence to the physics, we have made the following simplifying assumptions: (1) the magnetic induction B in athin shell enclosing the surface can be satisfactorily approximated by a sum of vacuum multipole fields; (2) the star is spherical, and all parts are in good electrical contact; (3) vertical-bar Ω X r vertical-barvery-much-less-thanc everywhere within the star; and (4) the star is surrounded by a vacuum. Our qualitative conclusions hold even if these assumptions are violated, but corrections to our quantitative results required by a relaxation of our assumptions are not easily computed.Given this simple electrodynamic model of a neutron star, we solve the following problems: (1) What electric multipoles are induced by each magnetic multipole. (2) What is the general formula for the recoil produced by the projection on the rotational axis of a net linear momentum flux produced by the rotation of any two magnetic multipoles. (3) What is the set of centered multipoles that represents the field of an arbitrary off-centered multipole. We use these general results go perform a detailed analysis of the linear momentum radiated by an off-centered dipole. We find a force larger by a factor 6 than that obtained for the special case treated in the best previous calculation. In spite of this considerable increase in the computed strengrh of the effect, we still believe it to be too weak to produce the large space velocities observed for pulsars. For the mechanism to be effective, the pulsar must be born rotating near the breakup velocity

  17. Double neutron stars: merger rates revisited

    Science.gov (United States)

    Chruslinska, Martyna; Belczynski, Krzysztof; Klencki, Jakub; Benacquista, Matthew

    2018-03-01

    We revisit double neutron star (DNS) formation in the classical binary evolution scenario in light of the recent Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo DNS detection (GW170817). The observationally estimated Galactic DNS merger rate of R_MW = 21^{+28}_{-14} Myr-1, based on three Galactic DNS systems, fully supports our standard input physics model with RMW = 24 Myr-1. This estimate for the Galaxy translates in a non-trivial way (due to cosmological evolution of progenitor stars in chemically evolving Universe) into a local (z ≈ 0) DNS merger rate density of Rlocal = 48 Gpc-3 yr-1, which is not consistent with the current LIGO/Virgo DNS merger rate estimate (1540^{+3200}_{-1220} Gpc-3 yr-1). Within our study of the parameter space, we find solutions that allow for DNS merger rates as high as R_local ≈ 600^{+600}_{-300} Gpc-3 yr-1 which are thus consistent with the LIGO/Virgo estimate. However, our corresponding BH-BH merger rates for the models with high DNS merger rates exceed the current LIGO/Virgo estimate of local BH-BH merger rate (12-213 Gpc-3 yr-1). Apart from being particularly sensitive to the common envelope treatment, DNS merger rates are rather robust against variations of several of the key factors probed in our study (e.g. mass transfer, angular momentum loss, and natal kicks). This might suggest that either common envelope development/survival works differently for DNS (˜10-20 M⊙ stars) than for BH-BH (˜40-100 M⊙ stars) progenitors, or high black hole (BH) natal kicks are needed to meet observational constraints for both types of binaries. Our conclusion is based on a limited number of (21) evolutionary models and is valid within this particular DNS and BH-BH isolated binary formation scenario.

  18. Relativistic tidal properties of neutron stars

    International Nuclear Information System (INIS)

    Damour, Thibault; Nagar, Alessandro

    2009-01-01

    We study the various linear responses of neutron stars to external relativistic tidal fields. We focus on three different tidal responses, associated to three different tidal coefficients: (i) a gravito-electric-type coefficient Gμ l =[length] 2l+1 measuring the lth-order mass multipolar moment GM a 1 ...a l induced in a star by an external lth-order gravito-electric tidal field G a 1 ...a l ; (ii) a gravito-magnetic-type coefficient Gσ l =[length] 2l+1 measuring the lth spin multipole moment GS a 1 ...a l induced in a star by an external lth-order gravito-magnetic tidal field H a 1 ...a l ; and (iii) a dimensionless 'shape' Love number h l measuring the distortion of the shape of the surface of a star by an external lth-order gravito-electric tidal field. All the dimensionless tidal coefficients Gμ l /R 2l+1 , Gσ l /R 2l+1 , and h l (where R is the radius of the star) are found to have a strong sensitivity to the value of the star's 'compactness'c≡GM/(c 0 2 R) (where we indicate by c 0 the speed of light). In particular, Gμ l /R 2l+1 ∼k l is found to strongly decrease, as c increases, down to a zero value as c is formally extended to the 'black hole (BH) limit'c BH =1/2. The shape Love number h l is also found to significantly decrease as c increases, though it does not vanish in the formal limit c→c BH , but is rather found to agree with the recently determined shape Love numbers of black holes. The formal vanishing of μ l and σ l as c→c BH is a consequence of the no-hair properties of black holes. This vanishing suggests, but in no way proves, that the effective action describing the gravitational interactions of black holes may not need to be augmented by nonminimal worldline couplings.

  19. From hadrons to quarks in neutron stars: a review

    Science.gov (United States)

    Baym, Gordon; Hatsuda, Tetsuo; Kojo, Toru; Powell, Philip D.; Song, Yifan; Takatsuka, Tatsuyuki

    2018-05-01

    In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. At the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors. We review here the equation of state of matter in neutron stars from the solid crust through the liquid nuclear matter interior to the quark regime at higher densities. We focus in detail on the question of how quark matter appears in neutron stars, and how it affects the equation of state. After discussing the crust and liquid nuclear matter in the core we briefly review aspects of microscopic quark physics relevant to neutron stars, and quark models of dense matter based on the Nambu–Jona–Lasinio framework, in which gluonic processes are replaced by effective quark interactions. We turn then to describing equations of state useful for interpretation of both electromagnetic and gravitational observations, reviewing the emerging picture of hadron-quark continuity in which hadronic matter turns relatively smoothly, with at most only a weak first order transition, into quark matter with increasing density. We review construction of unified equations of state that interpolate between the reasonably well

  20. Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes

    International Nuclear Information System (INIS)

    Shibata, Masaru

    2003-01-01

    We report a new implementation for axisymmetric simulation in full general relativity. In this implementation, the Einstein equations are solved using the Nakamura-Shibata formulation with the so-called cartoon method to impose an axisymmetric boundary condition, and the general relativistic hydrodynamic equations are solved using a high-resolution shock-capturing scheme based on an approximate Riemann solver. As tests, we performed the following simulations: (i) long-term evolution of nonrotating and rapidly rotating neutron stars, (ii) long-term evolution of neutron stars of a high-amplitude damping oscillation accompanied with shock formation, (iii) collapse of unstable neutron stars to black holes, and (iv) stellar collapses to neutron stars. Tests (i)-(iii) were carried out with the Γ-law equation of state, and test (iv) with a more realistic parametric equation of state for high-density matter. We found that this new implementation works very well: It is possible to perform the simulations for stable neutron stars for more than 10 dynamical time scales, to capture strong shocks formed at stellar core collapses, and to accurately compute the mass of black holes formed after the collapse and subsequent accretion. In conclusion, this implementation is robust enough to apply to astrophysical problems such as stellar core collapse of massive stars to a neutron star, and black hole, phase transition of a neutron star to a high-density star, and accretion-induced collapse of a neutron star to a black hole. The result for the first simulation of stellar core collapse to a neutron star started from a realistic initial condition is also presented

  1. Superfluidity of hyperon-mixed neutron stars

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki; Nishizaki, Shigeru; Yamamoto, Yasuo; Tamagaki, Ryozo

    2002-01-01

    Superfluidity of hyperons (Y) admixed in neutron star cores is investigated by a realistic approach. It is found that hyperons such as Λ and Σ - are likely to be superfluid due mainly to their large effective masses in the medium, in addition to their 1 S 0 -pairing attraction not so different from that of nucleons. Also the existence of nucleon superfluidity at high-density is investigated under a developed Y-contamination. It is found that the density change of nucleon components due to the Y-mixing does not work for the realization of n-superfluid and makes the existence of p-superfluid more unlikely, as compared to the normal case without the Y-mixing. (author)

  2. Radiography using californium-252 neutron sources

    International Nuclear Information System (INIS)

    Ray, J.W.

    1975-01-01

    The current status in the technology of neutron radiography using californium-252 neutron sources is summarized. Major emphasis is on thermal neutron radiography since it has the widest potential applicability at the present time. Attention is given to four major factors which affect the quality and useability of thermal neutron radiography: source neutron thermalization, neutron beam extraction geometry, neutron collimator dimensions, and neutron imaging methods. Each of these factors has a major effect on the quality of the radiographs which are obtained from a californium source neutron radiography system and the exposure times required to obtain the radiographs; radiograph quality and exposure time in turn affect the practicality of neutron radiography for specific nondestructive inspection applications. A brief discussion of fast neutron radiography using californium-252 neutron sources is also included. (U.S.)

  3. Neutrino flavor evolution in neutron star mergers

    Science.gov (United States)

    Tian, James Y.; Patwardhan, Amol V.; Fuller, George M.

    2017-08-01

    We examine the flavor evolution of neutrinos emitted from the disklike remnant (hereafter called "neutrino disk") of a binary neutron star (BNS) merger. We specifically follow the neutrinos emitted from the center of the disk, along the polar axis perpendicular to the equatorial plane. We carried out two-flavor simulations using a variety of different possible initial neutrino luminosities and energy spectra and, for comparison, three-flavor simulations in specific cases. In all simulations, the normal neutrino mass hierarchy was used. The flavor evolution was found to be highly dependent on the initial neutrino luminosities and energy spectra; in particular, we found two broad classes of results depending on the sign of the initial net electron neutrino lepton number (i.e., the number of neutrinos minus the number of antineutrinos). In the antineutrino-dominated case, we found that the matter-neutrino resonance effect dominates, consistent with previous results, whereas in the neutrino-dominated case, a bipolar spectral swap develops. The neutrino-dominated conditions required for this latter result have been realized, e.g., in a BNS merger simulation that employs the "DD2" equation of state for neutron star matter [Phys. Rev. D 93, 044019 (2016), 10.1103/PhysRevD.93.044019]. For this case, in addition to the swap at low energies, a collective Mikheyev-Smirnov-Wolfenstein mechanism generates a high-energy electron neutrino tail. The enhanced population of high-energy electron neutrinos in this scenario could have implications for the prospects of r -process nucleosynthesis in the material ejected outside the plane of the neutrino disk.

  4. Breaking strain of neutron star crust and gravitational waves.

    Science.gov (United States)

    Horowitz, C J; Kadau, Kai

    2009-05-15

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of the neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Because of the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gravitational wave radiation could limit the spin periods of some stars and might be detectable in large-scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in magnetar giant flares and microflares.

  5. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    International Nuclear Information System (INIS)

    Medin, Zach; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.; Steinkirch, Marina von; Calder, Alan C.

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  6. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Medin, Zach; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Steinkirch, Marina von; Calder, Alan C. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2016-12-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  7. The Aftermath of GW170817: Neutron Star or Black Hole?

    Science.gov (United States)

    Kohler, Susanna

    2018-06-01

    shock wave expands and slams into the surrounding interstellar medium. The earliest X-ray detection from GW170817 around 9 days after the merger likely indicated the moment when that interaction began. GW170817s X-ray emission continued to grow over the first 100 days post-merger, expected as the shock continues to expand.If the merger had produced a neutron star, however, there should be an additional source of X-ray radiation besides the shock: the neutron star itself. This emission should, by now, have started to dominate over the emission from the propagating shock. Instead, Pooley and collaborators find that the observed X-ray flux from GW170817 falls significantly short of whats needed to justify the presence of a highly magnetized, spinning neutron star. For this reason, the authors conclude that GW170817 likely produced a black hole.Future ConfirmationHow can we be sure? Pooley and collaborators point out that we can confirm this theory just by observing GW170817 for another year. Around this time, energy released from the spin-down of a central neutron star would catch up to the decelerating shock front, causing a dramatic brightening in GW170817s X-ray flux.If we dont see this brightening, the authors argue that we can conclude with certainty that GW170817s remnant is a black hole. Either way, continued observations of this remnant are sure to provide a wealth of information about the physics of mergers, shocks, and outflows that we can hope to mine for years to come.CitationDavid Pooley et al 2018 ApJL 859 L23. doi:10.3847/2041-8213/aac3d6

  8. New neutron physics using spallation sources

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1988-01-01

    The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. The energy range of neutron research which is being explored with these sources extends from thermal energies to almost 800 MeV. The emphasis here is on prospective experiments below 100 keV neutron energy using the intense neutron bursts produced by the Proton Storage Ring (PSR) at Los Alamos. 30 refs., 10 figs

  9. Lev Landau and the concept of neutron stars

    International Nuclear Information System (INIS)

    Yakovlev, Dmitrii G; Haensel, Pawel; Baym, Gordon; Pethick, Christopher

    2013-01-01

    We review Lev Landau's role in the history of neutron star physics in the 1930s. According to the recollections of Rosenfeld (Proc. 16th Solvay Conference on Physics, 1974, p. 174), Landau improvised the concept of neutron stars in a discussion with Bohr and Rosenfeld just after the news of the discovery of the neutron reached Copenhagen in February 1932. We present arguments that the discussion must have taken place in March 1931, before the discovery of the neutron, and that they, in fact, discussed the paper written by Landau in Zurich in February 1931 but not published until February 1932 (Phys. Z. Sowjetunion 1, 285). In this paper, Landau mentioned the possible existence of dense stars that look like one giant nucleus; this could be regarded as an early theoretical prediction or anticipation of neutron stars, albeit prior to the discovery of the neutron. The coincidence of the dates of the neutron discovery and the publication of the paper has led to an erroneous association of Landau's paper with the discovery of the neutron. In passing, we outline Landau's contribution to the theory of white dwarfs and to the hypothesis of stars with neutron cores. (from the history of physics)

  10. Dispersion and decay of collective modes in neutron star cores

    OpenAIRE

    Kobyakov, D. N.; Pethick, C. J.; Reddy, S.; Schwenk, A.

    2017-01-01

    We calculate the frequencies of collective modes of neutrons, protons and electrons in the outer core of neutron stars. The neutrons and protons are treated in a hydrodynamic approximation and the electrons are regarded as collisionless. The coupling of the nucleons to the electrons leads to Landau damping of the collective modes and to significant dispersion of the low-lying modes. We investigate the sensitivity of the mode frequencies to the strength of entrainment between neutrons and prot...

  11. Role of pions and hyperons in neutron stars and supernovae

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1987-05-01

    Neutron stars are studied in the framework of nuclear relativistic field theory. Hyperons and pions significantly soften the equation of state of neutron star matter at moderate and high density. We conjecture that they are responsible for the softening that is found to be crucial to the bounce scenario in supernova calculations. Hyperons reduce the limiting mass of neutron stars predicted by theory by one half solar mass or more, which is a large effect compared to the range in which theories of matter predict this limit to fall. 6 refs., 2 figs

  12. Role of strangeness to the neutron star mass and cooling

    Directory of Open Access Journals (Sweden)

    Lee Chang-Hwan

    2018-01-01

    Full Text Available Neutron star provides unique environments for the investigation of the physics of extreme dense matter beyond normal nuclear saturation density. In such high density environments, hadrons with strange quarks are expected to play very important role in stabilizing the system. Kaons and hyperons are the lowest mass states with strangeness among meson and bayron families, respectively. In this work, we investigate the role of kaons and hyperons to the neutron star mass, and discuss their role in the neutron star cooling.

  13. Neutron stars at the dark matter direct detection frontier

    Science.gov (United States)

    Raj, Nirmal; Tanedo, Philip; Yu, Hai-Bo

    2018-02-01

    Neutron stars capture dark matter efficiently. The kinetic energy transferred during capture heats old neutron stars in the local galactic halo to temperatures detectable by upcoming infrared telescopes. We derive the sensitivity of this probe in the framework of effective operators. For dark matter heavier than a GeV, we find that neutron star heating can set limits on the effective operator cutoff that are orders of magnitude stronger than possible from terrestrial direct detection experiments in the case of spin-dependent and velocity-suppressed scattering.

  14. Neutron stars with kaon condensation in relativistic effective model

    International Nuclear Information System (INIS)

    Wu, Chen; Ma, Yugang; Qian, Weiliang; Yang, Jifeng

    2013-01-01

    Relativistic mean-field theory with parameter sets FSUGold and IU-FSU is extended to study the properties of neutron star matter in β equilibrium by including Kaon condensation. The mixed phase of normal baryons and Kaon condensation cannot exist in neutron star matter for the FSUGold model and the IU-FSU model. In addition, it is found that when the optical potential of the K - in normal nuclear matter U K ≳ -100 MeV, the Kaon condensation phase is absent in the inner cores of the neutron stars. (author)

  15. Isolated Neutron Stars: From the Surface to the Interior

    CERN Document Server

    Zane, Silvia; Page, Dany

    2007-01-01

    This book collects the contributions presented at the conference Isolated Neutron Stars: From the Surface to the Interior, held in London in April 2006. Forty years after the discovery of radio pulsars it presents an up-to-date description of the new vision of isolated neutron stars that has emerged in recent years with the advance of multi-wavelength observations. The great variety of isolated neutron stars, from pulsars to magnetars, some of them discovered very recently and many of them not detectable in radio wavelengths, is amply covered by descriptions of recent observational results and presentations of the latest theoretical interpretation of these data.

  16. Spectral representations of neutron-star equations of state

    International Nuclear Information System (INIS)

    Lindblom, Lee

    2010-01-01

    Methods are developed for constructing spectral representations of cold (barotropic) neutron-star equations of state. These representations are faithful in the sense that every physical equation of state has a representation of this type and conversely every such representation satisfies the minimal thermodynamic stability criteria required of any physical equation of state. These spectral representations are also efficient, in the sense that only a few spectral coefficients are generally required to represent neutron-star equations of state quiet accurately. This accuracy and efficiency is illustrated by constructing spectral fits to a large collection of 'realistic' neutron-star equations of state.

  17. Model Atmospheres for X-ray Bursting Neutron Stars

    OpenAIRE

    Medin, Zach; von Steinkirch, Marina; Calder, Alan C.; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of t...

  18. Matter and Radiation in Strong Magnetic Fields of Neutron Stars

    International Nuclear Information System (INIS)

    Lai, D

    2006-01-01

    Neutron stars are found to possess magnetic fields ranging from 10 8 G to 10 15 G, much larger than achievable in terrestrial laboratories. Understanding the properties of matter and radiative transfer in strong magnetic fields is essential for the proper interpretation of various observations of magnetic neutron stars, including radio pulsars and magnetars. This paper reviews the atomic/molecular physics and condensed matter physics in strong magnetic fields, as well as recent works on modeling radiation from magnetized neutron star atmospheres/surface layers

  19. The secondary neutron sources for generation of particular neutron fluxes

    International Nuclear Information System (INIS)

    Tracz, G.

    2007-07-01

    The foregoing paper presents the doctor's thesis entitled '' The secondary neutron sources for generation of particular neutron fluxes ''. Two secondary neutron sources have been designed, which exploit already existing primary sources emitting neutrons of energies different from the desired ones. The first source is devoted to boron-neutron capture therapy (BNCT). The research reactor MARIA at the Institute of Atomic Energy in Swierk (Poland) is the primary source of the reactor thermal neutrons, while the secondary source should supply epithermal neutrons. The other secondary source is the pulsed source of thermal neutrons that uses fast 14 MeV neutrons from a pulsed generator at the Institute of Nuclear Physics PAN in Krakow (Poland). The physical problems to be solved in the two mentioned cases are different. Namely, in order to devise the BNCT source the initial energy of particles ought to be increased, whilst in the other case the fast neutrons have to be moderated. Slowing down of neutrons is relatively easy since these particles lose energy when they scatter in media; the most effective moderators are the materials which contain light elements (mostly hydrogen). In order to increase the energy of neutrons from thermal to epithermal (the BNCT case) the so-called neutron converter should be exploited. It contains a fissile material, 235 U. The thermal neutrons from the reactor cause fission of uranium and fast neutrons are emitted from the converter. Then fissile neutrons of energy of a few MeV are slowed down to the required epithermal energy range. The design of both secondary sources have been conducted by means of Monte Carlo simulations, which have been carried out using the MCNP code. In the case of the secondary pulsed thermal neutron source, some of the calculated results have been verified experimentally. (author)

  20. Neutron-capture nucleosynthesis in the first stars

    International Nuclear Information System (INIS)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-01-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars.

  1. ELECTROMAGNETIC EXTRACTION OF ENERGY FROM BLACK-HOLE–NEUTRON-STAR BINARIES

    International Nuclear Information System (INIS)

    McWilliams, Sean T.; Levin, Janna

    2011-01-01

    The coalescence of black-hole-neutron-star binaries is expected to be a principal source of gravitational waves for the next generation of detectors, Advanced LIGO and Advanced Virgo. For black hole masses not much larger than the neutron star mass, the tidal disruption of the neutron star by the black hole provides one avenue for generating an electromagnetic counterpart. However, in this work, we demonstrate that, for all black-hole-neutron-star binaries observable by Advanced LIGO/Virgo, the interaction of the black hole with the magnetic field of the neutron star will generate copious luminosity, comparable to supernovae and active galactic nuclei. This novel effect may have already been observed as a new class of very short gamma-ray bursts by the Swift Gamma-Ray Burst Telescope. These events may be observable to cosmological distances, so that any black-hole-neutron-star coalescence detectable with gravitational waves by Advanced LIGO/Virgo could also be detectable electromagnetically.

  2. Neutron spectra produced by moderating an isotopic neutron source

    International Nuclear Information System (INIS)

    Carrillo Nunnez, Aureliano; Vega Carrillo, Hector Rene

    2001-01-01

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2 . From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  3. Neutron star formation in theoretical supernovae. Low mass stars and white dwarfs

    International Nuclear Information System (INIS)

    Nomoto, K.

    1986-01-01

    The presupernova evolution of stars that form semi-degenerate or strongly degenerate O + Ne + Mg cores is discussed. For the 10 to 13 Msub solar stars, behavior of off-center neon flashes is crucial. The 8 to 10 m/sub solar stars do not ignite neon and eventually collapse due to electron captures. Properties of supernova explosions and neutron stars expected from these low mass progenitors are compared with the Crab nebula. The conditions for which neutron stars form from accretion-induced collapse of white dwarfs in clsoe binary systems is also examined

  4. The role of neutron star mergers in the chemical evolution of the Galactic halo

    Science.gov (United States)

    Cescutti, G.; Romano, D.; Matteucci, F.; Chiappini, C.; Hirschi, R.

    2015-05-01

    Context. The dominant astrophysical production site of the r-process elements has not yet been unambiguously identified. The suggested main r-process sites are core-collapse supernovae and merging neutron stars. Aims: We explore the problem of the production site of Eu. We also use the information present in the observed spread in the Eu abundances in the early Galaxy, and not only its average trend. Moreover, we extend our investigations to other heavy elements (Ba, Sr, Rb, Zr) to provide additional constraints on our results. Methods: We adopt a stochastic chemical evolution model that takes inhomogeneous mixing into account. The adopted yields of Eu from merging neutron stars and from core-collapse supernovae are those that are able to explain the average [Eu/Fe]-[Fe/H] trend observed for solar neighbourhood stars, the solar abundance of Eu, and the present-day abundance gradient of Eu along the Galactic disc in the framework of a well-tested homogeneous model for the chemical evolution of the Milky Way. Rb, Sr, Zr, and Ba are produced by both the s- and r-processes. The r-process yields were obtained by scaling the Eu yields described above according to the abundance ratios observed in r-process rich stars. The s-process contribution by spinstars is the same as in our previous papers. Results: Neutron star binaries that merge in less than 10 Myr or neutron star mergers combined with a source of r-process generated by massive stars can explain the spread of [Eu/Fe] in the Galactic halo. The combination of r-process production by neutron star mergers and s-process production by spinstars is able to reproduce the available observational data for Sr, Zr, and Ba. We also show the first predictions for Rb in the Galactic halo. Conclusions: We confirm previous results that either neutron star mergers on a very short timescale or both neutron star mergers and at least a fraction of Type II supernovae have contributed to the synthesis of Eu in the Galaxy. The r

  5. Rotating neutron stars with exotic cores: masses, radii, stability

    Energy Technology Data Exchange (ETDEWEB)

    Haensel, P.; Bejger, M.; Fortin, M.; Zdunik, L. [Polish Academy of Sciences, N. Copernicus Astronomical Center, Warszawa (Poland)

    2016-03-15

    A set of theoretical mass-radius relations for rigidly rotating neutron stars with exotic cores, obtained in various theories of dense matter, is reviewed. Two basic observational constraints are used: the largest measured rotation frequency (716Hz) and the maximum measured mass (2M {sub CircleDot}). The present status of measuring the radii of neutron stars is described. The theory of rigidly rotating stars in general relativity is reviewed and limitations of the slow rotation approximation are pointed out. Mass-radius relations for rotating neutron stars with hyperon and quark cores are illustrated using several models. Problems related to the non-uniqueness of the crust-core matching are mentioned. Limits on rigid rotation resulting from the mass-shedding instability and the instability with respect to the axisymmetric perturbations are summarized. The problem of instabilities and of the back-bending phenomenon are discussed in detail. Metastability and instability of a neutron star core in the case of a first-order phase transition, both between pure phases, and into a mixed-phase state, are reviewed. The case of two disjoint families (branches) of rotating neutron stars is discussed and generic features of neutron-star families and of core-quakes triggered by the instabilities are considered. (orig.)

  6. Compact ion source neutron generator

    Science.gov (United States)

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe

    2015-10-13

    A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.

  7. Observational Constraints on Quark Matter in Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study the observational constraints of mass and redshift on the properties of the equation of state (EOS) for quark matter in compact stars based on the quasi-particle description. We discuss two scenarios: strange stars and hybrid stars. We construct the equations of state utilizing an extended MIT bag model taking the medium effect into account for quark matter and the relativistic mean field theory for hadron matter. We show that quark matter may exist in strange stars and in the interior of neutron stars. The bag constant is a key parameter that affects strongly the mass of strange stars. The medium effect can lead to the stiffer hybrid-star EOS approaching the pure hadronic EOS, due to the reduction of quark matter, and hence the existence of heavy hybrid stars. We find that a middle range coupling constant may be the best choice for the hybrid stars being compatible with the observational constraints.

  8. Physics of dense matter, neutron stars, and supernova

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-02-01

    Nuclear and astrophysical evidence on the equation of state of dense matter is examined. The role of hyperonization of matter in the development of proto-neutron stars is briefly discussed. 7 refs., 4 figs

  9. On the Fifth Force and the Structure of Neutron Star

    Directory of Open Access Journals (Sweden)

    D. J. Song

    1994-06-01

    Full Text Available In the framework of Thomas-Fermi equation, we have examined the properties of neutron star by assuming the existence of a new intermediate force which is composition dependent. We have found that the structure, size and mass of neutron star are affected by the strength and range of this new force. In the ultrarelativistic limit, we have also confirmed that Chandrasekhar mass, Mch-(1-α^(- 3/2 (m_pl^3/m^2 is determined by the constants of classical physical laws, which take part in the selfgravitating processes on neutron star as well as the constant of hypothetical fifth force. In the experimental limits of the fifth force, the changes of size and mass of a neutron star are in the order of strength parameter α.

  10. Revisiting Field Burial by Accretion onto Neutron Stars

    Indian Academy of Sciences (India)

    Dipanjan Mukherjee

    2017-09-12

    Sep 12, 2017 ... review the recent work on magnetic confinement of accreted matter on neutron stars poles. We present ..... hours to days, see Brown & Bildsten 1998) where the ...... Radhakrishnan, V., Srinivasan, G. 1984, in: Second Asian-.

  11. Evolution of massive close binaries and formation of neutron stars and black holes

    International Nuclear Information System (INIS)

    Massevitch, A.G.; Tutukov, A.V.; Yungelson, L.R.

    1976-01-01

    Main results of computations of evolution for massive close binaries (10 M(Sun)+9.4 M(Sun), 16 M(Sun)+15 M(Sun), 32 M(Sun)+30 M(Sun), 64 M(Sun)+60 M(Sun)) up to oxygen exhaustion in the core are described. Mass exchange starting in core hydrogen, shell hydrogen and core helium burning stages was studied. Computations were performed assuming both the Ledoux and Schwarzschild stability criteria for semiconvection. The influence of UFI-neutrino emission on evolution of close binaries was investigated. The results obtained allow to outline the following evolutionary chain: two detached Main-Sequence stars - mass exchange - Wolf-Rayet star or blue supergiant plus main sequence star - explosion of the initially more massive star appearing as a supernova event - collapsed or neutron star plus Main-Sequence star, that may be observed as a 'runaway star' - mass exchange leading to X-rays emission - collapsed or neutron star plus WR-star or blue supergiant - second explosion of supernova that preferentially disrupts the system and gives birth to two single high spatial velocity pulsars. Numerical estimates concerning the number and properties of WR-stars, pulsars and X-ray sources are presented. The results are in favour of the existence of UFI-neutrino and of the Ledoux criterion for describing semiconvection. Properties of several well-known X-ray sources and the binary pulsar are discussed on base of evolutionary chain of close binaries. (Auth.)

  12. Bounds on the moment of inertia of nonrotating neutron stars

    International Nuclear Information System (INIS)

    Sabbadini, A.G.; Hartle, J.B.

    1977-01-01

    Upper and lower bounds are placed on the moments of inertia of relativistic, spherical, perfect fluid neutron stars assuming that the pressure p and density p are positive and that (dp/drho) is positive. Bounds are obtained (a) for the moment of inertia of a star with given mass and radius, (b) for the moment of inertia of neutron stars for which the equation of state is known below a given density rho/sub omicron/and (c) for the mass-moment of inertia relation for stars whose equation of state is known below a given density rho/sub omicron/The bounds are optimum ones in the sense that there always exists a configuration consistent with the assumptions having a moment of inertia equal to that of the bound. The implications of the results for the maximum mass of slowly rotating neutron stars are discussed

  13. Strangeness in nuclei and neutron stars

    Science.gov (United States)

    Lonardoni, Diego

    2017-01-01

    The presence of exotic particles in the core of neutron stars (NS) has been questioned for a long time. At present, it is still an unsolved problem that drives intense research efforts, both theoretical and experimental. The appearance of strange baryons in the inner regions of a NS, where the density can exceed several times the nuclear saturation density, is likely to happen due to energetic considerations. The onset of strange degrees of freedom is considered as an effective mechanism to soften the equation of state (EoS). This softening affects the entire structure of the star, reducing the pressure and therefore the maximum mass that the star can stably support. The observation of two very massive NS with masses of the order of 2M⊙ seems instead to rule out soft EoS, apparently excluding the possibility of hyperon formation in the core of the star. This inconsistency, usually referred to as the hyperon puzzle, is based on what we currently know about the interaction between strange particles and normal nucleons. The combination of a poor knowledge of the hypernuclear interactions and the difficulty of obtaining clear astrophysical evidence of the presence of hyperons in NS makes the understanding of the behavior of strange degrees of freedom in NS an intriguing theoretical challenge. We give our contribution to the discussion by studying the general problem of the hyperon-nucleon interaction. We attack this issue by employing a quantum Monte Carlo (QMC) technique, that has proven to be successful in the description of strongly correlated Fermion systems, to the study of finite size nuclear systems including strange degrees of freedom, i.e. hypernuclei. We show that many-body hypernuclear forces are fundamental to properly reproduce the ground state physics of Λ hypernuclei from light- to medium-heavy. However, the poor abundance of experimental data on strange nuclei leaves room for a good deal of indetermination in the construction of hypernuclear

  14. Many-body theory of nuclear and neutron star matter

    Energy Technology Data Exchange (ETDEWEB)

    Pandharipande, V R; Akmal, A; Ravenhall, D G [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)

    1998-06-01

    We present results obtained for nuclei, nuclear and neutron star matter, and neutron star structure obtained with the recent Argonne v{sub 18} two- nucleon and Urbana IX three-nucleon interactions including relativistic boost corrections. These interactions predict that matter will undergo a transition to a spin layered phase with neutral pion condensation. We also consider the possibility of a transition to quark matter. (orig.)

  15. Hadron physics and the structure of neutron stars

    International Nuclear Information System (INIS)

    Kutschera, M.

    1996-09-01

    The equation of state of hadronic matter in neutron stars is briefly reviewed. Uncertainties regarding the stiffness and composition of hadronic matter are discussed. Importance of poorly known short range interactions of nucleons and hyperons is emphasized. Condensation of meson fields and the role of subhadronic degrees of freedom is considered. Empirical constraints on the equation of state emerging from observations of neutron stars are discussed. The nature of the remnant of SN1987A is considered. (author)

  16. Many-body theory of nuclear and neutron star matter

    International Nuclear Information System (INIS)

    Pandharipande, V.R.; Akmal, A.; Ravenhall, D.G.

    1998-01-01

    We present results obtained for nuclei, nuclear and neutron star matter, and neutron star structure obtained with the recent Argonne v 18 two- nucleon and Urbana IX three-nucleon interactions including relativistic boost corrections. These interactions predict that matter will undergo a transition to a spin layered phase with neutral pion condensation. We also consider the possibility of a transition to quark matter. (orig.)

  17. The Neutron star Interior Composition Explorer (NICER): design and development

    OpenAIRE

    Gendreau, Keith C.; Arzoumanian, Zaven; Adkins, Phillip W.; Albert, Cheryl L.; Anders, John F.; Aylward, Andrew T.; Baker, Charles L.; Balsamo, Erin R.; Bamford, William A.; Benegalrao, Suyog S.; Berry, Daniel L.; Bhalwani, Shiraz; Black, J. Kevin; Blaurock, Carl; Bronke, Ginger M.

    2016-01-01

    During 2014 and 2015, NASA's Neutron star Interior Composition Explorer (NICER) mission proceeded successfully through Phase C, Design and Development. An X-ray (0.2-12 keV) astrophysics payload destined for the International Space Station, NICER is manifested for launch in early 2017 on the Commercial Resupply Services SpaceX-11 flight. Its scientific objectives are to investigate the internal structure, dynamics, and energetics of neutron stars, the densest objects in the universe. During P...

  18. Tidal Love numbers of neutron and self-bound quark stars

    International Nuclear Information System (INIS)

    Postnikov, Sergey; Prakash, Madappa; Lattimer, James M.

    2010-01-01

    Gravitational waves from the final stages of inspiraling binary neutron stars are expected to be one of the most important sources for ground-based gravitational wave detectors. The masses of the components are determinable from the orbital and chirp frequencies during the early part of the evolution, and large finite-size (tidal) effects are measurable toward the end of inspiral, but the gravitational wave signal is expected to be very complex at this time. Tidal effects during the early part of the evolution will form a very small correction, but during this phase the signal is relatively clean. The accumulated phase shift due to tidal corrections is characterized by a single quantity related to a star's tidal Love number. The Love number is sensitive, in particular, to the compactness parameter M/R and the star's internal structure, and its determination could provide an important constraint to the neutron star radius. We show that Love numbers of self-bound strange quark matter stars are qualitatively different from those of normal neutron stars. Observations of the tidal signature from coalescing compact binaries could therefore provide an important, and possibly unique, way to distinguish self-bound strange quark stars from normal neutron stars. Tidal signatures from self-bound strange quark stars with masses smaller than 1M · are substantially smaller than those of normal stars owing to their smaller radii. Thus tidal signatures of stars less massive than 1M · are probably not detectable with Advanced LIGO. For stars with masses in the range 1-2M · , the anticipated efficiency of the proposed Einstein telescope would be required for the detection of tidal signatures.

  19. From ultracold Fermi Gases to Neutron Stars

    Science.gov (United States)

    Salomon, Christophe

    2012-02-01

    Ultracold dilute atomic gases can be considered as model systems to address some pending problem in Many-Body physics that occur in condensed matter systems, nuclear physics, and astrophysics. We have developed a general method to probe with high precision the thermodynamics of locally homogeneous ultracold Bose and Fermi gases [1,2,3]. This method allows stringent tests of recent many-body theories. For attractive spin 1/2 fermions with tunable interaction (^6Li), we will show that the gas thermodynamic properties can continuously change from those of weakly interacting Cooper pairs described by Bardeen-Cooper-Schrieffer theory to those of strongly bound molecules undergoing Bose-Einstein condensation. First, we focus on the finite-temperature Equation of State (EoS) of the unpolarized unitary gas. Surprisingly, the low-temperature properties of the strongly interacting normal phase are well described by Fermi liquid theory [3] and we localize the superfluid phase transition. A detailed comparison with theories including recent Monte-Carlo calculations will be presented. Moving away from the unitary gas, the Lee-Huang-Yang and Lee-Yang beyond-mean-field corrections for low density bosonic and fermionic superfluids are quantitatively measured for the first time. Despite orders of magnitude difference in density and temperature, our equation of state can be used to describe low density neutron matter such as the outer shell of neutron stars. [4pt] [1] S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and C. Salomon, Nature 463, 1057 (2010) [0pt] [2] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon, Science 328, 729 (2010) [0pt] [3] S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini, A. Georges, and C. Salomon, Phys. Rev. Lett. 106, 215303 (2011)

  20. A spin-down mechanism for accreting neutron stars

    International Nuclear Information System (INIS)

    Illarionov, A.F.; AN SSSR, Moscow. Fizicheskij Inst.); Kompaneets, D.A.

    1990-01-01

    We propose a new spin-down mechanism for accreting neutron stars that explains the existence of a number of long-period (p≅100-1000 s) X-ray pulsars in wide binaries with OB-stars. The spin-down is a result of efficient angular momentum transfer from the rotating magnetosphere of the accreting star to an outflowing stream of magnetized matter. The outflow is formed within a limited solid angle, and the outflow rate is less than the accretion rate. The outflow formation is connected with the anisotropy and intensity of the hard X-ray emission of the neutron star. X-rays from the pulsar heat through Compton scattering the accreting matter anisotropically. The heated matter has a lower density than the surrounding accreting matter and flows up by the action of the buoyancy force. We find the criterion for the outflow to form deep in the accretion flow (i.e., close to the neutron star magnetosphere). The neutron star loses angular momentum when the outflow forms so deep as to capture the magnetic field lines from the rotating magnetosphere. The balance between angular momentum gain by accreting gas and loss by outflowing matter takes place at a particular value of the period of the spinning neutron star. (orig.)

  1. Hot neutron stars at birth and energy release

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki

    1994-01-01

    For the discussion of hot neutron stars at birth, it is necessary to calculate the equation of state for a so-called 'supernova matter' consisting of a neutron-rich nuclear matter and degenerated leptons. One of the aims of this paper is to obtain the realistic results for the equation of state. In 10-20s after the birth, new born hot neutron stars are cooled down by neutrino diffusion process, and gradually contract to usual cold neutron starts. It is another aim of this paper to determine how much energy is released during this cooling stage. The points to which attention was paid are explained. A three-nucleon interaction was introduced phenomenologically, as a two-nucleon interaction is insufficient to satisfy the empirical saturation property of symmetric nuclear matters. The separation of uncertain part from well-known part has the merit to clarify the dependence of the results on the present theoretical uncertainties. The validity of the simplified calculation as an approximation for the exact calculation is discussed. The results by both calculations were compared for the case of hot symmetric nuclear matters. The comparison of the density profiles for a hot neutron star and a cold neutron star is shown. The binding energy for hot and cold neutron stars was plotted. These results are examined. (K.I.)

  2. Measuring neutron-star properties via gravitational waves from neutron-star mergers.

    Science.gov (United States)

    Bauswein, A; Janka, H-T

    2012-01-06

    We demonstrate by a large set of merger simulations for symmetric binary neutron stars (NSs) that there is a tight correlation between the frequency peak of the postmerger gravitational-wave (GW) emission and the physical properties of the nuclear equation of state (EoS), e.g., expressed by the radius of the maximum-mass Tolman-Oppenheimer-Volkhoff configuration. Therefore, a single measurement of the peak frequency of the postmerger GW signal will constrain the NS EoS significantly. For optimistic merger-rate estimates a corresponding detection with Advanced LIGO is expected to happen within an operation time of roughly a year.

  3. Gravity Defied From Potato Asteroids to Magnetised Neutron Stars

    Indian Academy of Sciences (India)

    Gravity Defied. From Potato Asteroids to Magnetised Neutron Stars. 2. ... objects that just missed being stars in this particular install- ment. 1. .... However, the total energy that can be made .... trial metals in which the electrons form a degenerate Fermi gas. ... In deuterium fusion, a deuterium nucleus and a proton combine to.

  4. Effective interaction: From nuclear reactions to neutron stars

    Indian Academy of Sciences (India)

    pact stars. The nuclear EoS for β-equilibrated neutron star (NS) matter obtained using density-dependent effective nucleon–nucleon interaction satisfies the constraints from the observed flow data from heavy-ion collisions. The energy density of quark matter is lower than that of the nuclear EoS at higher densities implying ...

  5. Phase transitions in nuclear matter and consequences for neutron stars

    International Nuclear Information System (INIS)

    Kaempfer, B.

    1983-04-01

    Estimates of the minimal bombarding energy necessary to reach the quark gluon phase in heavy ion collisions are presented within a hydrodynamical scenario. Further, the consequences of first-order phase transitions from nuclear/neutron matter to pion-condensed matter or quark matter are discussed for neutron stars. (author)

  6. Entrainment in the inner crust of a neutron star

    International Nuclear Information System (INIS)

    Chamel, N.

    2004-01-01

    The inner crust of a neutron star, which is composed of a solid Coulomb lattice of nuclei immersed in a neutron super-fluid, is studied from both a macroscopic and a microscopic level. In the first part, we develop a non-relativistic but 4-dimensionally covariant formulation of the hydrodynamics of a perfect fluid mixture based on a variational principle. This formalism is applied to the description of neutron star crust as 2-fluid model, a neutron super-fluid and a plasma of nuclei and electrons coupled via non dissipative entrainment effects, whose microscopic evaluation is studied in a second part. Applying mean field methods beyond the Wigner-Seitz approximation, the Bragg scattering of dripped neutrons upon crustal nuclei lead to a 'mesoscopic' effective neutron mass, which unlike the 'microscopic' effective mass, takes very large values compared to the bare mass in the middle layers of the crust. (author)

  7. On the shear instability in relativistic neutron stars

    Science.gov (United States)

    Corvino, Giovanni; Rezzolla, Luciano; Bernuzzi, Sebastiano; De Pietri, Roberto; Giacomazzo, Bruno

    2010-06-01

    We present new results on instabilities in rapidly and differentially rotating neutron stars. We model the stars in full general relativity and describe the stellar matter adopting a cold realistic equation of state based on the unified SLy prescription (Douchin and Haensel 2001 Astron. Astrophys. 380 151-67). We provide evidence that rapidly and differentially rotating stars that are below the expected threshold for the dynamical bar-mode instability, βc ≡ T/|W| ~= 0.25, do nevertheless develop a shear instability on a dynamical timescale and for a wide range of values of β. This class of instability, which has so far been found only for small values of β and with very small growth rates, is therefore more generic than previously found and potentially more effective in producing strong sources of gravitational waves. Overall, our findings support the phenomenological predictions made by Watts et al (2005 Astrophys. J. 618 L37) on the nature of the low-T/|W| instability as the manifestation of a shear instability in a region where the latter is possible only for small values of β. Furthermore, our results provide additional insight on shear instabilities and on the necessary conditions for their development.

  8. On the shear instability in relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Corvino, Giovanni; Rezzolla, Luciano; Giacomazzo, Bruno [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Golm (Germany); Bernuzzi, Sebastiano [Theoretical Physics Institute, University of Jena, 07743 Jena (Germany); De Pietri, Roberto, E-mail: Giovanni.Corvino@roma1.infn.i [Physics Department, Parma University and INFN, Parma (Italy)

    2010-06-07

    We present new results on instabilities in rapidly and differentially rotating neutron stars. We model the stars in full general relativity and describe the stellar matter adopting a cold realistic equation of state based on the unified SLy prescription (Douchin and Haensel 2001 Astron. Astrophys. 380 151-67). We provide evidence that rapidly and differentially rotating stars that are below the expected threshold for the dynamical bar-mode instability, {beta}{sub c} {identical_to} T/|W| {approx_equal} 0.25, do nevertheless develop a shear instability on a dynamical timescale and for a wide range of values of {beta}. This class of instability, which has so far been found only for small values of {beta} and with very small growth rates, is therefore more generic than previously found and potentially more effective in producing strong sources of gravitational waves. Overall, our findings support the phenomenological predictions made by Watts et al (2005 Astrophys. J. 618 L37) on the nature of the low-T/|W| instability as the manifestation of a shear instability in a region where the latter is possible only for small values of {beta}. Furthermore, our results provide additional insight on shear instabilities and on the necessary conditions for their development.

  9. Outline of spallation neutron source engineering

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Noboru [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2001-01-01

    Slow neutrons such as cold and thermal neutrons are unique probes which can determine structures and dynamics of condensed matter in atomic scale. The neutron scattering technique is indispensable not only for basic sciences such as condensed matter research and life science, but also for basic industrial technology in 21 century. It is believed that to survive in the science-technology competition in 21 century would be almost impossible without neutron scattering. However, the intensity of neutrons presently available is much lower than synchrotron radiation sources, etc. Thus, R and D of intense neutron sources become most important. The High-Intensity Proton Accelerator Project is now being promoted jointly by Japan Atomic Energy Research Institute and High Energy Accelerator Research Organization, but there has so far been no good text which covers all the aspects of pulsed spallation neutron sources. The present review was prepare aiming at giving a better understanding on pulsed spallation neutron sources not only to neutron source researchers but also more widely to neutron scattering researchers and accelerator scientists in this field. The contents involve, starting from what is neutron scattering and what neutrons are necessary for neutron scattering, what is the spallation reaction, how to produce neutrons required for neutron scattering more efficiently, target-moderator-reflector neutronics and its engineering, shielding, target station, material issues, etc. The author have engaged in R and D of pulsed apallation neutron sources and neutron scattering research using them over 30 years. The present review is prepared based on the author's experiences with useful information obtained through ICANS collaboration and recent data from the JSNS (Japanese Spallation Neutron Source) design team. (author)

  10. Constructing neutron stars with a gravitational Higgs mechanism

    Science.gov (United States)

    Franchini, Nicola; Coates, Andrew; Sotiriou, Thomas P.

    2018-03-01

    In scalar-tensor theories, spontaneous scalarization is a phase transition that can occur in ultradense environments such as neutron stars. The scalar field develops a nontrivial configuration once the stars exceeds a compactness threshold. We recently pointed out that, if the scalar exhibits some additional coupling to matter, it could give rise to significantly different microphysics in these environments. In this work we study, at the nonperturbative level, a toy model in which the photon is given a large mass when spontaneous scalarization occurs. Our results demonstrate clearly the effectiveness of spontaneous scalarization as a Higgs-like mechanism in neutron stars.

  11. Early Results from NICER Observations of Accreting Neutron Stars

    Science.gov (United States)

    Chakrabarty, Deepto; Ozel, Feryal; Arzoumanian, Zaven; Gendreau, Keith C.; Bult, Peter; Cackett, Ed; Chenevez, Jerome; Fabian, Andy; Guillot, Sebastien; Guver, Tolga; Homan, Jeroen; Keek, Laurens; Lamb, Frederick; Ludlam, Renee; Mahmoodifar, Simin; Markwardt, Craig B.; Miller, Jon M.; Psaltis, Dimitrios; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael T.

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) offers significant new capabilities for the study of accreting neuton stars relative to previous X-ray missions including large effective area, low background, and greatly improved low-energy response. The NICER Burst and Accretion Working Group has designed a 2 Ms observation program to study a number of phenomena in accreting neutron stars including type-I X-ray bursts, superbursts, accretion-powered pulsations, quasi-periodic oscillations, and accretion disk reflection spectra. We present some early results from the first six months of the NICER mission.

  12. Type-I superconductivity and neutron star precession

    International Nuclear Information System (INIS)

    Sedrakian, Armen

    2005-01-01

    Type-I proton superconducting cores of neutron stars break up in a magnetic field into alternating domains of superconducting and normal fluids. We examine two channels of superfluid-normal fluid friction where (i) rotational vortices are decoupled from the nonsuperconducting domains and the interaction is due to the strong force between protons and neutrons; (ii) the nonsuperconducting domains are dynamically coupled to the vortices and the vortex motion generates transverse electric fields within them, causing electronic current flow and Ohmic dissipation. The obtained dissipation coefficients are consistent with the Eulerian precession of neutron stars

  13. Baryon superfluidity and neutrino emissivity of neutron stars

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki; Tamagaki, Ryozo

    2004-01-01

    For neutron stars with hyperon-mixed cores, neutrino emissivity is studied using the properties of neutron star matter determined under the equation of state, which is obtained by introducing a repulsive three-body force universal for all the baryons so as to assure the maximum mass of neutron stars compatible with observations. The case without a meson condensate is treated. We choose the inputs provided by nuclear physics, with a reliable allowance. Paying attention to the density dependence of the critical temperatures of the baryon superfluids, which reflect the nature of the baryon-baryon interaction and control neutron star cooling, we show what neutrino emission processes are efficient in regions both with and without hyperon mixing. By comparing the calculated emissivities with respect to densities, we can conclude that at densities lower than about 4 times the nuclear density, the Cooper-pair process arising from the neutron 3 P 2 superfluid dominates, while at higher densities the hyperon direct Urca process dominates. For the hyperon direct Urca process to be a candidate responsible for rapid cooling compatible with observations, a moderately large energy gap of the Λ-particle 1 S 0 superfluid is required to suppress its large emissivity. The implications of these results are discussed in the relation to thermal evolution of neutron stars. (author)

  14. Gamma-Ray Bursts from Neutron Star Kicks

    Science.gov (United States)

    Huang, Y. F.; Dai, Z. G.; Lu, T.; Cheng, K. S.; Wu, X. F.

    2003-09-01

    The idea that gamma-ray bursts might be a phenomenon associated with neutron star kicks was first proposed by Dar & Plaga. Here we study this mechanism in more detail and point out that the neutron star should be a high-speed one (with proper motion larger than ~1000 km s-1). It is shown that the model agrees well with observations in many aspects, such as the energetics, the event rate, the collimation, the bimodal distribution of durations, the narrowly clustered intrinsic energy, and the association of gamma-ray bursts with supernovae and star-forming regions. We also discuss the implications of this model on the neutron star kick mechanism and suggest that the high kick speed was probably acquired as the result of the electromagnetic rocket effect of a millisecond magnetar with an off-centered magnetic dipole.

  15. Supercritical accretion in the evolution of neutron star binaries and its implications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Hwan, E-mail: clee@pusan.ac.kr; Cho, Hee-Suk

    2014-08-15

    Recently ∼2M{sub ⊙} neutron stars PSR J1614-2230 and PSR J0348+0432 have been observed in neutron star-white dwarf binaries. These observations ruled out many neutron star equations of states with which the maximum neutron star mass becomes less than 2M{sub ⊙}. On the other hand, all well-measured neutron star masses in double neutron star binaries are still less than 1.5M{sub ⊙}. In this article we suggest that 2M{sub ⊙} neutron stars in neutron star-white dwarf binaries are the result of the supercritical accretion onto the first-born neutron star during the evolution of the binary progenitors.

  16. Different spectra with the same neutron source

    International Nuclear Information System (INIS)

    Vega C, H. R.; Ortiz R, J. M.; Hernandez D, V. M.; Martinez B, M. R.; Hernandez A, B.; Ortiz H, A. A.; Mercado, G. A.

    2010-01-01

    Using as source term the spectrum of a 239 Pu-Be source several neutron spectra have been calculated using Monte Carlo methods. The source term was located in the centre of spherical moderators made of light water, heavy water and polyethylene of different diameters. Also a 239 Pu-Be source was used to measure its neutron spectrum, bare and moderated by water. The neutron spectra were measured at 100 cm with a Bonner spheres spectrometer. Monte Carlo calculations were used to calculate the neutron spectra of bare and water-moderated spectra that were compared with those measured with the spectrometer. Resulting spectra are similar to those found in power plants with PWR, BWR and Candu nuclear reactors. Beside the spectra the dosimetric features were determined. Using moderators and a single neutron source can be produced neutron spectra alike those found in workplaces, this neutron fields can be utilized to calibrate neutron dosimeters and area monitors. (Author)

  17. Jet target intense neutron source

    International Nuclear Information System (INIS)

    Meier, K.L.

    1977-01-01

    A jet target Intense Neutron Source (INS) is being built by the Los Alamos Scientific Laboratory with DOE/MFE funding in order to perform radiation damage experiments on materials to be used in fusion power reactors. The jet target can be either a supersonic or a subsonic jet. Each type has its particular advantages and disadvantages, and either of the jets can be placed inside the spherical blanket converter which will be used to simulate a fusion reactor neutron environment. Preliminary mock-up experiments with a 16-mA, 115 keV, H + ion beam on a nitrogen gas supersonic jet show no serious problems in the beam formation, transport, or jet interaction

  18. Advanced Neutron Source enrichment study

    International Nuclear Information System (INIS)

    Bari, R.A.; Ludewig, H.; Weeks, J.R.

    1996-01-01

    A study has been performed of the impact on performance of using low-enriched uranium (20% 235 U) or medium-enriched uranium (35% 235 U) as an alternative fuel for the Advanced Neutron Source, which was initially designed to use uranium enriched to 93% 235 U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology

  19. Evolution of newborn neutron stars: role of quark matter nucleation

    International Nuclear Information System (INIS)

    Bombaci, Ignazio; Logoteta, Domenico; Providencia, Constança; Vidaña, Isaac

    2011-01-01

    A phase of strong interacting matter with deconfined quarks is expected in the core of massive neutron stars. We study the quark deconfinement phase transition in cold (T = 0) and hot β-stable hadronic matter. Assuming a first order phase transition, we calculate and compare the nucleation rate and the nucleation time due to thermal and quantum nucleation mechanisms. We show that above a threshold value of the central pressure a pure hadronic star (HS) is metastable to the conversion to a quark star (QS) (i.e. hybrid star or strange star). We introduce the concept of critical mass M cr for cold HSs and proto-hadronic stars (PHSs), and the concept of limiting conversion temperature for PHSs. We show that PHSs with a mass M cr could survive the early stages of their evolution without decaying to QSs. Finally, we discuss the possible evolutionary paths of proto-hadronic stars.

  20. The Fate of Neutron Star Binary Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Piro, Anthony L. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Giacomazzo, Bruno [Physics Department, University of Trento, via Sommarive 14, I-38123 Trento (Italy); Perna, Rosalba, E-mail: piro@carnegiescience.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2017-08-01

    Following merger, a neutron star (NS) binary can produce roughly one of three different outcomes: (1) a stable NS, (2) a black hole (BH), or (3) a supramassive, rotationally supported NS, which then collapses to a BH following angular momentum losses. Which of these fates occur and in what proportion has important implications for the electromagnetic transient associated with the mergers and the expected gravitational wave (GW) signatures, which in turn depend on the high density equation of state (EOS). Here we combine relativistic calculations of NS masses using realistic EOSs with Monte Carlo population synthesis based on the mass distribution of NS binaries in our Galaxy to predict the distribution of fates expected. For many EOSs, a significant fraction of the remnants are NSs or supramassive NSs. This lends support to scenarios in which a quickly spinning, highly magnetized NS may be powering an electromagnetic transient. This also indicates that it will be important for future GW observatories to focus on high frequencies to study the post-merger GW emission. Even in cases where individual GW events are too low in signal to noise to study the post merger signature in detail, the statistics of how many mergers produce NSs versus BHs can be compared with our work to constrain the EOS. To match short gamma-ray-burst (SGRB) X-ray afterglow statistics, we find that the stiffest EOSs are ruled out. Furthermore, many popular EOSs require a significant fraction of ∼60%–70% of SGRBs to be from NS–BH mergers rather than just binary NSs.

  1. Hydrodynamic evolution of neutron star merger remnants

    Science.gov (United States)

    Liu, Men-Quan; Zhang, Jie

    2017-11-01

    Based on the special relativistic hydrodynamic equations and updated cooling function, we investigate the long-term evolution of neutron stars merger (NSM) remnants by a one-dimensional hydrodynamic code. Three NSM models from one soft equation of state, SFHo, and two stiff equations of state, DD2 and TM1, are used to compare their influences on the hydrodynamic evolution of remnants. We present the luminosity, mass and radius of remnants, as well as the velocity, temperature and density of shocks. For a typical interstellar medium (ISM) density with solar metallicity, we find that the NSM remnant from the SFHo model makes much more changes to ISM in terms of velocity, density and temperature distributions, compared with the case of DD2 and TM1 models. The maximal luminosity of the NSM remnant from the SFHo model is 3.4 × 1038 erg s-1, which is several times larger than that from DD2 and TM1 models. The NSM remnant from the SFHo model can maintain high luminosity (>1038 erg s-1) for 2.29 × 104 yr. Furthermore, the density and temperature of remnants at the maximal luminosity are not sensitive to the power of the original remnant. For the ISM with the solar metallicity and nH = 1 cm- 3, the density of the first shock ∼10-23 g cm-3 and the temperature ∼3 × 105 K in the maximal luminosity phase; The temperature of the first shock decreases and there is a thin 'dense' shell with density ∼10-21 g cm-3 after the maximal luminosity. These characteristics may be helpful for future observations of NSM remnants.

  2. Multi-messenger Observations of a Binary Neutron Star Merger

    International Nuclear Information System (INIS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.

    2017-01-01

    Here, on 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg 2 at a luminosity distance of 40 −8 +8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼9 and ∼16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

  3. Discriminating strange star mergers from neutron star mergers by gravitational-wave measurements

    International Nuclear Information System (INIS)

    Bauswein, A.; Oechslin, R.; Janka, H.-T.

    2010-01-01

    We perform three-dimensional relativistic hydrodynamical simulations of the coalescence of strange stars and explore the possibility to decide on the strange matter hypothesis by means of gravitational-wave measurements. Self-binding of strange quark matter and the generally more compact stars yield features that clearly distinguish strange star from neutron star mergers, e.g. hampering tidal disruption during the plunge of quark stars. Furthermore, instead of forming dilute halo structures around the remnant as in the case of neutron star mergers, the coalescence of strange stars results in a differentially rotating hypermassive object with a sharp surface layer surrounded by a geometrically thin, clumpy high-density strange quark matter disk. We also investigate the importance of including nonzero temperature equations of state in neutron star and strange star merger simulations. In both cases we find a crucial sensitivity of the dynamics and outcome of the coalescence to thermal effects, e.g. the outer remnant structure and the delay time of the dense remnant core to black hole collapse depend on the inclusion of nonzero temperature effects. For comparing and classifying the gravitational-wave signals, we use a number of characteristic quantities like the maximum frequency during inspiral or the dominant frequency of oscillations of the postmerger remnant. In general, these frequencies are higher for strange star mergers. Only for particular choices of the equation of state the frequencies of neutron star and strange star mergers are similar. In such cases additional features of the gravitational-wave luminosity spectrum like the ratio of energy emitted during the inspiral phase to the energy radiated away in the postmerger stage may help to discriminate coalescence events of the different types. If such characteristic quantities could be extracted from gravitational-wave signals, for instance with the upcoming gravitational-wave detectors, a decision on the

  4. THE SPALLATION NEUTRON SOURCE PROJECT - PHYSICAL CHALLENGES.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.

    2002-06-03

    The Spallation Neutron Source (SNS) is designed to reach an average proton beam power of 1.4 MW for pulsed neutron production. This paper summarizes design aspects and physical challenges to the project.

  5. Neutron-capture Nucleosynthesis in the First Stars

    Science.gov (United States)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-04-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and The McDonald Observatory of The University of Texas at Austin.

  6. The Case of the Neutron Star With a Wayward Wake

    Science.gov (United States)

    2006-06-01

    A long observation with NASA's Chandra X-ray Observatory has revealed important new details of a neutron star that is spewing out a wake of high-energy particles as it races through space. The deduced location of the neutron star on the edge of a supernova remnant, and the peculiar orientation of the neutron star wake, pose mysteries that remain unresolved. "Like a kite flying in the wind, the behavior of this neutron star and its wake tell us what sort of gas it must be plowing through," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., and lead author of a paper accepted to The Astrophysical Journal. "Yet we're still not sure how the neutron star got to its present location." Animation: Sequence of images of J0617 in IC 443 Animation: Sequence of images of J0617 in IC 443 The neutron star, known as CXOU J061705.3+222127, or J0617 for short, appears to lie near the outer edge of an expanding bubble of hot gas associated with the supernova remnant IC 443. Presumably, J0617 was created at the time of the supernova -- approximately 30,000 years ago -- and propelled away from the site of the explosion at about 500,000 miles per hour. However, the neutron star's wake is oriented almost perpendicularly to the direction expected if the neutron star were moving away from the center of the supernova remnant. This apparent misalignment had previously raised doubts about the association of the speeding neutron star with the supernova remnant. Gaensler and his colleagues provide strong evidence that J0617 was indeed born in the same explosion that created the supernova remnant. First, the shape of the neutron star's wake indicates it is moving a little faster than the speed of sound in Composite Images of SNR IC 443 Composite Images of SNR IC 443 the remnant's multimillion-degree gas. The velocity that one can then calculate from this conclusion closely matches the predicted pace of the neutron star. In contrast, if the neutron

  7. Spallation Neutron Sources For Science And Technology

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2011-01-01

    Spallation Neutron Facilities Increasing interest has been noticed in spallation neutron sources (SNS) during the past 20 years. The system includes high current proton accelerator in the GeV region and spallation heavy metal target in the Hg-Bi region. Among high flux currently operating SNSs are: ISIS in UK (1985), SINQ in Switzerland (1996), JSNS in Japan (2008), and SNS in USA (2010). Under construction is the European spallation source (ESS) in Sweden (to be operational in 2020). The intense neutron beams provided by SNSs have the advantage of being of non-reactor origin, are of continuous (SINQ) or pulsed nature. Combined with state-of-the-art neutron instrumentation, they have a diverse potential for both scientific research and diverse applications. Why Neutrons? Neutrons have wavelengths comparable to interatomic spacings (1-5 A) Neutrons have energies comparable to structural and magnetic excitations (1-100 meV) Neutrons are deeply penetrating (bulk samples can be studied) Neutrons are scattered with a strength that varies from element to element (and isotope to isotope) Neutrons have a magnetic moment (study of magnetic materials) Neutrons interact only weakly with matter (theory is easy) Neutron scattering is therefore an ideal probe of magnetic and atomic structures and excitations Neutron Producing Reactions Several nuclear reactions are capable of producing neutrons. However the use of protons minimises the energetic cost of the neutrons produced solid state physics and astrophysics Inelastic neutron scattering

  8. Spin-down of neutron stars by neutrino emission

    International Nuclear Information System (INIS)

    Dvornikov, Maxim; Dib, Claudio

    2010-01-01

    We study the spin-down of a neutron star during its early stages due to the neutrino emission. The mechanism we consider is the subsequent collisions of the produced neutrinos with the outer shells of the star. We find that this mechanism can indeed slow down the star rotation but only in the first tens of seconds of the core formation, which is when the appropriate conditions of flux and collision rate are met. We find that this mechanism can extract less than 1% of the star angular momentum, a result which is much less than previously estimated by other authors.

  9. Gravitational waves from rotating neutron stars and evaluation of fast chirp transform techniques

    CERN Document Server

    Strohmayer, T E

    2002-01-01

    X-ray observations suggest that neutron stars in low mass x-ray binaries (LMXB) are rotating with frequencies in the range 300-600 Hz. These spin rates are significantly less than the break-up rates for essentially all realistic neutron star equations of state, suggesting that some process may limit the spin frequencies of accreting neutron stars to this range. If the accretion-induced spin up torque is in equilibrium with gravitational radiation losses, these objects could be interesting sources of gravitational waves. I present a brief summary of current measurements of neutron star spins in LMXBs based on the observations of high-Q oscillations during thermonuclear bursts (so-called 'burst oscillations'). Further measurements of neutron star spins will be important in exploring the gravitational radiation hypothesis in more detail. To this end, I also present a study of fast chirp transform (FCT) techniques as described by Jenet and Prince (Prince T A and Jenet F A 2000 Phys. Rev. D 62 122001) in the conte...

  10. Neutron star natal kicks and the long-term survival of star clusters

    Science.gov (United States)

    Contenta, Filippo; Varri, Anna Lisa; Heggie, Douglas C.

    2015-04-01

    We investigate the dynamical evolution of a star cluster in an external tidal field by using N-body simulations, with focus on the effects of the presence or absence of neutron star natal velocity kicks. We show that, even if neutron stars typically represent less than 2 per cent of the total bound mass of a star cluster, their primordial kinematic properties may affect the lifetime of the system by up to almost a factor of 4. We interpret this result in the light of two known modes of star cluster dissolution, dominated by either early stellar evolution mass-loss or two-body relaxation. The competition between these effects shapes the mass-loss profile of star clusters, which may either dissolve abruptly (`jumping'), in the pre-core-collapse phase, or gradually (`skiing'), after having reached core collapse.

  11. Neutron generator ion source pulser

    International Nuclear Information System (INIS)

    Peelman, H.E.

    1987-01-01

    This patent describes, for use with a pulsed neutron generator in a logging tool lowered in a borehole, a pulsed high voltage source having an output terminal adapted to be connected to pulse neutron generator. The power supply comprises: (a) high voltage supply means; (b) field effect transistor means comprising at least a pair of field effect transistors serially connected between the high voltage supply means and ground; (c) an output terminal between the two transistors of the field effect transistor means, the output terminal adapted to be connected by a conductor to provide pulsed high voltage to a neutron generator; (d) control pulse forming means connected to the gates of the respective two transistors, the pulse forming means forming control pulses selectively switching the transistors off and on in timed sequence to thereby connect the output terminal to the high voltage supply means, and (e) diode means connected to the gates of the transistors to limit gate voltage for operation of the transistors

  12. Dispersion and decay of collective modes in neutron star cores

    Science.gov (United States)

    Kobyakov, D. N.; Pethick, C. J.; Reddy, S.; Schwenk, A.

    2017-08-01

    We calculate the frequencies of collective modes of neutrons, protons, and electrons in the outer core of neutron stars. The neutrons and protons are treated in a hydrodynamic approximation and the electrons are regarded as collisionless. The coupling of the nucleons to the electrons leads to Landau damping of the collective modes and to significant dispersion of the low-lying modes. We investigate the sensitivity of the mode frequencies to the strength of entrainment between neutrons and protons, which is not well characterized. The contribution of collective modes to the thermal conductivity is evaluated.

  13. Topics in the theory of neutron star cooling

    International Nuclear Information System (INIS)

    Duncan, R.C. Jr.

    1986-01-01

    The author calculates the neutrino emissivity of interacting, degenerate quark matter, which may make up the dense cores of neutron stars. QCD interactions between quarks are included to first order. The author shows that when massive s-quarks are present in cold quark matter, electrons are not present in equilibrium at densities above a threshold electron extinction density n/sub ex/. This results in a much lower neutrino emissivity epsilon/sub nu/ at high densities than has been previously calculated. Dependences of epsilon/sub nu/ on the strange quark mass m/sub s/ and the QCD coupling constant a/sub c/ are determined for a quark liquid in β-equilibrium. Implications of these calculations for neutron-star cooling are briefly discussed. Eventually, it is shown that neutrino momentum effects may be ignored in neutron star cooling calculations without significant error, even when high-density quark-matter cores are present. Finally considered is the very early cooling epoch, lasting up to ∼1 minutes after formation, when a neutron star is optically thick to neutrinos. It is shown that the coupled equations of neutrino and photon transport in the atmosphere of a sufficiently hot, nascent neutron star do not admit hydrostatic solutions

  14. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  15. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers

    Science.gov (United States)

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-01

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  16. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.

    Science.gov (United States)

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-16

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  17. SPINDOWN OF ISOLATED NEUTRON STARS: GRAVITATIONAL WAVES OR MAGNETIC BRAKING?

    International Nuclear Information System (INIS)

    Staff, Jan E.; Jaikumar, Prashanth; Chan, Vincent; Ouyed, Rachid

    2012-01-01

    We study the spindown of isolated neutron stars from initially rapid rotation rates, driven by two factors: (1) gravitational wave emission due to r-modes and (2) magnetic braking. In the context of isolated neutron stars, we present the first study including self-consistently the magnetic damping of r-modes in the spin evolution. We track the spin evolution employing the RNS code, which accounts for the rotating structure of neutron stars for various equations of state. We find that, despite the strong damping due to the magnetic field, r-modes alter the braking rate from pure magnetic braking for B ≤ 10 13 G. For realistic values of the saturation amplitude α sat , the r-mode can also decrease the time to reach the threshold central density for quark deconfinement. Within a phenomenological model, we assess the gravitational waveform that would result from r-mode-driven spindown of a magnetized neutron star. To contrast with the persistent signal during the spindown phase, we also present a preliminary estimate of the transient gravitational wave signal from an explosive quark-hadron phase transition, which can be a signal for the deconfinement of quarks inside neutron stars.

  18. The Los Alamos Neutron Science Center Spallation Neutron Sources

    International Nuclear Information System (INIS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-01-01

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  19. The Los Alamos Neutron Science Center Spallation Neutron Sources

    Science.gov (United States)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  20. Compact Objects in Astrophysics White Dwarfs, Neutron Stars and Black Holes

    CERN Document Server

    Camenzind, Max

    2007-01-01

    Compact objects are an important class of astronomical objects in current research. Supermassive black holes play an important role in the understanding of the formation of galaxies in the early Universe. Old white dwarfs are nowadays used to calibrate the age of the Universe. Mergers of neutron stars and black holes are the sources of intense gravitational waves which will be measured in the next ten years by gravitational wave detectors. Camenzind's Compact Objects in Astrophysics gives a comprehensive introduction and up-to-date overview about the physical processes behind these objects, covering the field from the beginning to most recent results, including all relevant observations. After a presentation of the taxonomy of compact objects, the basic principles of general relativity are given. The author then discusses in detail the physics and observations of white dwarfs and neutron stars (including the most recent equations of state for neutron star matter), the gravitational field of rapidly rotating c...

  1. A Wide Spectrum Neutron Polarizer for a Pulsed Neutron Source

    International Nuclear Information System (INIS)

    Nikitenko, Yu.V.

    1994-01-01

    A wide spectrum neutron polarizer for a pulsed neutron source is considered. The polarizer is made in a form of a set of magnetized mirrors placed on a drum. Homogeneous rotation of the polarizer is synchronized with the power pulses of the neutron source. The polarizer may be utilized in a collimated neutron beam with cross section of the order of magnitude of 100 cm 2 within a wavelength from 2 up to 20 A on sources with a pulse repetition frequency up to 50 Hz. (author). 5 refs.; 3 figs

  2. Advanced Neutron Source operating philosophy

    International Nuclear Information System (INIS)

    Houser, M.M.

    1993-01-01

    An operating philosophy and operations cost estimate were prepared to support the Conceptual Design Report for the Advanced Neutron Source (ANS), a new research reactor planned for the Oak Ridge National Laboratory (ORNL). The operating philosophy was part of the initial effort of the ANS Human Factors Program, was integrated into the conceptual design, and addressed operational issues such as remote vs local operation; control room layout and responsibility issues; role of the operator; simulation and training; staffing levels; and plant computer systems. This paper will report on the overall plans and purpose for the operations work, the results of the work done for conceptual design, and plans for future effort

  3. Advanced Neutron Source (ANS) Project

    International Nuclear Information System (INIS)

    Campbell, J.H.; Thompson, P.B.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts

  4. A debris disk around an isolated young neutron star.

    Science.gov (United States)

    Wang, Zhongxiang; Chakrabarty, Deepto; Kaplan, David L

    2006-04-06

    Pulsars are rotating, magnetized neutron stars that are born in supernova explosions following the collapse of the cores of massive stars. If some of the explosion ejecta fails to escape, it may fall back onto the neutron star or it may possess sufficient angular momentum to form a disk. Such 'fallback' is both a general prediction of current supernova models and, if the material pushes the neutron star over its stability limit, a possible mode of black hole formation. Fallback disks could dramatically affect the early evolution of pulsars, yet there are few observational constraints on whether significant fallback occurs or even the actual existence of such disks. Here we report the discovery of mid-infrared emission from a cool disk around an isolated young X-ray pulsar. The disk does not power the pulsar's X-ray emission but is passively illuminated by these X-rays. The estimated mass of the disk is of the order of 10 Earth masses, and its lifetime (> or = 10(6) years) significantly exceeds the spin-down age of the pulsar, supporting a supernova fallback origin. The disk resembles protoplanetary disks seen around ordinary young stars, suggesting the possibility of planet formation around young neutron stars.

  5. The Continued Spectral Evolution of the Neutron Star RX J0720.4-3125

    NARCIS (Netherlands)

    Vink, Jacco; de Vries, Cor P.; Méndez, Mariano; Verbunt, Frank

    2004-01-01

    We observed the isolated neutron star RX J0720.4-3125 with Chandra's Low Energy Transmission Grating Spectrometer, following the XMM-Newton discovery of the long-term spectral evolution of this source. The new observation shows that the spectrum of RX J0720.4-3125 has continued to change in the

  6. Numerical simulation of binary black hole and neutron star mergers

    Energy Technology Data Exchange (ETDEWEB)

    Kastaun, W.; Rezzolla, L. [Albert Einstein Institut, Potsdam-Golm (Germany)

    2016-11-01

    One of the last predictions of general relativity that still awaits direct observational confirmation is the existence of gravitational waves. Those fluctuations of the geometry of space and time are expected to travel with the speed of light and are emitted by any accelerating mass. Only the most violent events in the universe, such as mergers of two black holes or neutron stars, produce gravitational waves strong enough to be measured. Even those waves are extremely weak when arriving at Earth, and their detection is a formidable technological challenge. In recent years sufficiently sensitive detectors became operational, such as GEO600, Virgo, and LIGO. They are expected to observe around 40 events per year. To interpret the observational data, theoretical modeling of the sources is a necessity, and requires numerical simulations of the equations of general relativity and relativistic hydrodynamics. Such computations can only be carried out on large scale supercomputers, given that many scenarios need to be simulated, each of which typically occupies hundreds of CPU cores for a week. Our main goal is to predict the gravitational wave signal from the merger of two compact objects. Comparison with future observations will provide important insights into the fundamental forces of nature in regimes that are impossible to recreate in laboratory experiments. The waveforms from binary black hole mergers would allow one to test the correctness of general relativity in previously inaccessible regimes. The signal from binary neutron star mergers will provide input for nuclear physics, because the signal depends strongly on the unknown properties of matter at the ultra high densities inside neutron stars, which cannot be observed in any other astrophysical scenario. Besides mergers, we also want to improve the theoretical models of close encounters between black holes. A gravitational wave detector with even higher sensitivity, the Einstein Telescope, is already in the

  7. Electromagnetic Chirps from Neutron Star-Black Hole Mergers

    Science.gov (United States)

    Schnittman, Jeremy D.; Dal Canton, Tito; Camp, Jordan B.; Tsang, David; Kelly, Bernard J.

    2018-01-01

    We calculate the electromagnetic signal of a gamma-ray flare coming from the surface of a neutron star shortly before merger with a black hole companion. Using a new version of the Monte Carlo radiation transport code Pandurata that incorporates dynamic spacetimes, we integrate photon geodesics from the neutron star surface until they reach a distant observer or are captured by the black hole. The gamma-ray light curve is modulated by a number of relativistic effects, including Doppler beaming and gravitational lensing. Because the photons originate from the inspiraling neutron star, the light curve closely resembles the corresponding gravitational waveform: a chirp signal characterized by a steadily increasing frequency and amplitude. We propose to search for these electromagnetic chirps using matched filtering algorithms similar to those used in LIGO data analysis.

  8. Neutron stars in non-linear coupling models

    International Nuclear Information System (INIS)

    Taurines, Andre R.; Vasconcellos, Cesar A.Z.; Malheiro, Manuel; Chiapparini, Marcelo

    2001-01-01

    We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, ∼ 0.72M s un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)

  9. Neutron stars in non-linear coupling models

    Energy Technology Data Exchange (ETDEWEB)

    Taurines, Andre R.; Vasconcellos, Cesar A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil); Malheiro, Manuel [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Chiapparini, Marcelo [Universidade do Estado, Rio de Janeiro, RJ (Brazil)

    2001-07-01

    We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, {approx} 0.72M{sub s}un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)

  10. Quark matter inside neutron stars in an effective chiral model

    International Nuclear Information System (INIS)

    Kotlorz, A.; Kutschera, M.

    1994-02-01

    An effective chiral model which describes properties of a single baryon predicts that the quark matter relevant to neutron stars, close to the deconfinement density, is in a chirally broken phase. We find the SU(2) model that pion-condensed up and down quark matter is preferred energetically at neutron star densities. It exhibits spin ordering and can posses a permanent magnetization. The equation of state of quark matter with chiral condensate is very well approximated by bag model equation of the state with suitably chosen parameters. We study quark cores inside neutron stars in this model using realistic nucleon equations of state. The biggest quark core corresponds to the second order phase transition to quark matter. Magnetic moment of the pion-condensed quark core is calculated. (author). 19 refs, 10 refs, 1 tab

  11. Structure and thermal evolution of spinning-down neutron stars

    International Nuclear Information System (INIS)

    Negreiros, R.; Schramm, S.; Weber, F.

    2011-01-01

    In this paper we address the effects of spin-down on the cooling of neutron stars. During its evolution, stellar composition and structure might be substantially altered, as a result of spin-down and the consequent density increase. Since the timescale of cooling might be comparable to to that of the spin-evolution, the modifications to the structure/composition might have important effects on the thermal evolution of the object. We show that the direct Urca process might be delayed or supressed, when spin-down is taken into account. This leads to neutron stars with slow cooling, as opposed to enhanced cooling as would be the case if a "froze-in" structure and composition were considered. In conclusion we demonstrate that the inclusion of spin-down effects on the cooling of neutron stars have far-reaching implications for the interpretation of pulsars. (author)

  12. Accreting Millisecond Pulsars: Neutron Star Masses and Radii

    Science.gov (United States)

    Strohmayer, Tod

    2004-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  13. An accurate metric for the spacetime around rotating neutron stars

    Science.gov (United States)

    Pappas, George

    2017-04-01

    The problem of having an accurate description of the spacetime around rotating neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a rotating neutron star. Furthermore, an accurate appropriately parametrized metric, I.e. a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to infer the properties of the structure of a neutron star from astrophysical observations. In this work, we present such an approximate stationary and axisymmetric metric for the exterior of rotating neutron stars, which is constructed using the Ernst formalism and is parametrized by the relativistic multipole moments of the central object. This metric is given in terms of an expansion on the Weyl-Papapetrou coordinates with the multipole moments as free parameters and is shown to be extremely accurate in capturing the physical properties of a neutron star spacetime as they are calculated numerically in general relativity. Because the metric is given in terms of an expansion, the expressions are much simpler and easier to implement, in contrast to previous approaches. For the parametrization of the metric in general relativity, the recently discovered universal 3-hair relations are used to produce a three-parameter metric. Finally, a straightforward extension of this metric is given for scalar-tensor theories with a massless scalar field, which also admit a formulation in terms of an Ernst potential.

  14. Calculations of mass and moment of inertia for neutron stars

    International Nuclear Information System (INIS)

    Moelnvik, T.; Oestgaard, E.

    1985-01-01

    Masses and moments of inertia for slowly-rotating neutron stars are calculated from the Tolman-Oppenheimer-Volkoff equations and various equations of state for neutron-star matter. We have also obtained pressure and density as a function of the distance from the centre of the star. Generally, two different equations of state are applied for particle densities n>0.47 fm -3 and n -3 . The maximum mass is, in our calculations for all equations of state except for the unrealistic non-relativistic ideal Fermi gas, given by 1.50 Msub(sun) 44 gxcm 2 45 gxcm 2 , which also seem to agree very well with 'experimental results'. The radius of the star corresponding to maximum mass and maximum moment of inertia is given by 8.2 km< R<10.0 km, but a smaller central density rhosub(c) will give a larger radius. (orig.)

  15. Intense neutron sources for cancer treatment

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Significant progress has been made in the development of small, solid-target, pulsed neutron sources for nuclear weapons applications. The feasibility of using this type of neutron source for cancer treatment is discussed. Plans for fabrication and testing of such a source is briefly described

  16. Cryogenic refrigeration for cold neutron sources

    International Nuclear Information System (INIS)

    Gistau-Baguer, Guy

    1998-01-01

    Neutron moderation by means of a fluid at cryogenic temperature is a very interesting way to obtain cold neutrons. Today, a number of nuclear research reactors are using this technology. This paper deals with thermodynamics and technology which are used for cooling Cold Neutron Sources

  17. Thermonuclear runaways in thick hydrogen rich envelopes of neutron stars

    Science.gov (United States)

    Starrfield, S. G.; Kenyon, S.; Truran, J. W.; Sparks, W. M.

    1981-01-01

    A Lagrangian, fully implicit, one dimensional hydrodynamic computer code was used to evolve thermonuclear runaways in the accreted hydrogen rich envelopes of 1.0 Msub solar neutron stars with radii of 10 km and 20 km. Simulations produce outbursts which last from about 750 seconds to about one week. Peak effective temeratures and luninosities were 26 million K and 80 thousand Lsub solar for the 10 km study and 5.3 millison and 600 Lsub solar for the 20 km study. Hydrodynamic expansion on the 10 km neutron star produced a precursor lasting about one ten thousandth seconds.

  18. A Hot Water Bottle for Aging Neutron Stars

    DEFF Research Database (Denmark)

    Alford, Mark; Jotwani, Pooja; Kouvaris, Christoforos

    2004-01-01

    The gapless color-flavor locked (gCFL) phase is the second-densest phase of matter in the QCD phase diagram, making it a plausible constituent of the core of neutron stars. We show that even a relatively small region of gCFL matter in a star will dominate both the heat capacity C_V and the heat...... loss by neutrino emission L_\

  19. Strangeness in nuclei and neutron stars: a challenging puzzle

    Directory of Open Access Journals (Sweden)

    Lonardoni Diego

    2016-01-01

    Full Text Available The prediction of neutron stars properties is strictly connected to the employed nuclear interactions. The appearance of hyperons in the inner core of the star is strongly dependent on the details of the underlying hypernuclear force. We summarize our recent quantum Monte Carlo results on the development of realistic two- and threebody hyperon-nucleon interactions based on the available experimental data for light- and medium-heavy hypernuclei.

  20. Neutron star matter equation of state: current status and challenges

    Science.gov (United States)

    Ohnishi, Akira

    2014-09-01

    Neutron star matter has a variety of constituents and structures depending on the density; neutron-rich nuclei surounded by electrons and drip neutrons in the crust, pasta nuclei at the bottom of inner crust, and uniform isospin-asymmetric nuclear matter in a superfluid state in the outer core. In the inner core, the neutron Fermi energy becomes so large that exotic constituents such as hyperons, mesons and quarks may emerge. Radioactive beam and hypernuclear experiments provide information on the symmetry energy and superfluidity in the crust and outer core and on the hyperon potentials in the inner core, respectively. Cold atom experiments are also helpful to understand pure neutron matter, which may be simulated by the unitary gas. An equation of state (EOS) constructed based on these laboratory experiments has to be verified by the astronomical observations such as the mass, radius, and oscillations of neutron stars. One of the key but missing ingredients is the three-baryon interactions such as the hyperon-hyperon-nucleon (YYN) interaction. YYN interaction is important in order to explain the recently discovered massive neutron stars consistently with laboratory experiments. We have recently found that the ΛΛ interaction extracted from the ΛΛ correlation at RHIC is somewhat stronger than that from double Λ hypernuclei. Since these two interactions corresponds to the vacuum and in-medium ΛΛ interactions, respectively, the difference may tell us a possible way to access the YYN interaction based on experimental data. In the presentation, after a review on the current status of neutron star matter EOS studies, we discuss the necessary tasks to pin down the EOS. We also present our recent study of ΛΛ interaction from correlation data at RHIC.

  1. New sources and instrumentation for neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Alina, E-mail: a.gil@ajd.czest.pl [Faculty of Mathematical and Natural Sciences, JD University, Al. Armii Krajowej 13/15, 42-200 Czestochowa (Poland)

    2011-04-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  2. New sources and instrumentation for neutron science

    International Nuclear Information System (INIS)

    Gil, Alina

    2011-01-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  3. Extreme neutron stars from Extended Theories of Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [I. Kant Baltic Federal University, Institute of Physics and Technology, Nevskogo st. 14, Kaliningrad, 236041 (Russian Federation); Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Via Cinthia, 9, Napoli, I-80126 Italy (Italy); Odintsov, Sergei D., E-mail: artyom.art@gmail.com, E-mail: capozziello@na.infn.it, E-mail: odintsov@ieec.uab.es [Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain)

    2015-01-01

    We discuss neutron stars with strong magnetic mean fields in the framework of Extended Theories of Gravity. In particular, we take into account models derived from f(R) and f(G) extensions of General Relativity where functions of the Ricci curvature invariant R and the Gauss-Bonnet invariant G are respectively considered. Dense matter in magnetic mean field, generated by magnetic properties of particles, is described by assuming a model with three meson fields and baryons octet. As result, the considerable increasing of maximal mass of neutron stars can be achieved by cubic corrections in f(R) gravity. In principle, massive stars with M > 4M{sub ☉} can be obtained. On the other hand, stable stars with high strangeness fraction (with central densities ρ{sub c} ∼ 1.5–2.0 GeV/fm{sup 3}) are possible considering quadratic corrections of f(G) gravity. The magnetic field strength in the star center is of order 6–8 × 10{sup 18} G. In general, we can say that other branches of massive neutron stars are possible considering the extra pressure contributions coming from gravity extensions. Such a feature can constitute both a probe for alternative theories and a way out to address anomalous self-gravitating compact systems.

  4. Tidal heating and mass loss in neutron star binaries - Implications for gamma-ray burst models

    Science.gov (United States)

    Meszaros, P.; Rees, M. J.

    1992-01-01

    A neutron star in a close binary orbit around another neutron star (or stellar-mass black hole) spirals inward owing to gravitational radiation. We discuss the effects of tidal dissipation during this process. Tidal energy dissipated in the neutron star's core escapes mainly as neutrinos, but heating of the crust, and outward diffusion of photons, blows off the outer layers of the star. This photon-driven mass loss precedes the final coalescence. The presence of this eject material impedes the escape of gamma-rays created via neutrino interactions. If an e(+) - e(-) fireball, created in the late stages of coalescence, were loaded with (or surrounded by) material with the mean column density of the ejecta, it could not be an efficient source of gamma-rays. Models for cosmologically distant gamma-rays burst that involve neutron stars must therefore be anisotropic, so that the fireball expands preferentially in directions where the column density of previously blown-off material is far below the spherically averaged value which we have calculated. Some possible 'scenarios' along these lines are briefly discussed.

  5. Accelerator based neutron source for neutron capture therapy

    International Nuclear Information System (INIS)

    Salimov, R.; Bayanov, B.; Belchenko, Yu.; Belov, V.; Davydenko, V.; Donin, A.; Dranichnikov, A.; Ivanov, A.; Kandaurov, I; Kraynov, G.; Krivenko, A.; Kudryavtsev, A.; Kursanov, N.; Savkin, V.; Shirokov, V.; Sorokin, I.; Taskaev, S.; Tiunov, M.

    2004-01-01

    Full text: The Budker Institute of Nuclear Physics (Novosibirsk) and the Institute of Physics and Power Engineering (Obninsk) have proposed an accelerator based neutron source for neutron capture and fast neutron therapy for hospital. Innovative approach is based upon vacuum insulation tandem accelerator (VITA) and near threshold 7 Li(p,n) 7 Be neutron generation. Pilot accelerator based neutron source for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, Novosibirsk, Russia. In the present report, the pilot facility design is presented and discussed. Design features of facility components are discussed. Results of experiments and simulations are presented. Complete experimental tests are planned by the end of the year 2005

  6. Neutron sources: Present practice and future potential

    International Nuclear Information System (INIS)

    Cierjacks, S.; Smith, A.B.

    1988-01-01

    The present capability and future potential of accelerator-based monoenergetic and white neutron sources are outlined in the context of fundamental and applied neutron-nuclear research. The neutron energy range extends from thermal to 500 MeV, and the time domain from steady-state to pico-second pulsed sources. Accelerator technology is summarized, including the production of intense light-ion, heavy-ion and electron beams. Target capabilities are discussed with attention to neutron-producing efficiency and power-handling capabilities. The status of underlying neutron-producing reactions is summarized. The present and future use of neutron sources in: fundamental neutron-nuclear research, nuclear data acquisition, materials damage studies, engineering tests, and biomedical applications are discussed. Emphasis is given to current status, near-term advances well within current technology, and to long-range projections. 90 refs., 4 figs

  7. Neutron star cooling constraints for color superconductivity in hybrid stars

    International Nuclear Information System (INIS)

    Popov, S.; Grigoryan, Kh.; Blaschke, D.

    2005-01-01

    We apply the recently developed LogN-LogS test of compact star cooling theories for the first time to hybrid stars with a color superconducting quark matter core. While there is not yet a microscopically founded superconducting quark matter phase which would fulfill constraints from cooling phenomenology, we explore the hypothetical 2SC+X phase and show that the magnitude and density-dependence of the X-gap can be chosen to satisfy a set of tests: temperature-age (T-t), the brightness constraint, LogN-LogS, and the mass spectrum constraint. The latter test appears as a new conjecture from the present investigation

  8. Asymptotic giant branch stars as producers of carbon and of neutron-rich isotopes

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1984-01-01

    Carbon stars are thought to be in the asymptotic giant branch (AGB) phase of evolution, alternately burning hydrogen and helium in shells above an electron-degenerate carbon-oxygen (CO) core. The excess of carbon relative to oxygen at the surfaces of these stars is thought to be due to convective dredge-up which occurs following a thermal pulse. During a thermal pulse, carbon and neutron-rich isotopes are made in a convective helium-burning zone. In model stars of large CO core mass, the source of neutrons for producing the neutron-rich isotopes is the 22 Ne(α,n) 25 Mg reaction and the isotopes are produced in the solar system s-process distribution. In models of small core mass, the 13 C(α,n) 16 reaction is thought to be responsible for the release of neutrons, and the resultant distribution of neutron-rich isotopes is expected to vary considerably from one star to the next, with the distribution in isolated instances possibly resembling the solar system distribution of r-process isotopes

  9. Gamma-burst emission from neutron-star accretion

    Science.gov (United States)

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  10. Dark matter, neutron stars, and strange quark matter.

    Science.gov (United States)

    Perez-Garcia, M Angeles; Silk, Joseph; Stone, Jirina R

    2010-10-01

    We show that self-annihilating weakly interacting massive particle (WIMP) dark matter accreted onto neutron stars may provide a mechanism to seed compact objects with long-lived lumps of strange quark matter, or strangelets, for WIMP masses above a few GeV. This effect may trigger a conversion of most of the star into a strange star. We use an energy estimate for the long-lived strangelet based on the Fermi-gas model combined with the MIT bag model to set a new limit on the possible values of the WIMP mass that can be especially relevant for subdominant species of massive neutralinos.

  11. R -process Element Cosmic Rays from Neutron Star Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Komiya, Yutaka; Shigeyama, Toshikazu [Research Center for the Early Universe, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033, Tokyo (Japan)

    2017-09-10

    Neutron star mergers (NSMs) are one of the most plausible sources of r -process elements in the universe. Therefore, NSMs can also be a major source of ultra-heavy elements in cosmic rays. In this paper, we first estimate the contribution of r -process elements synthesized in NSMs to the ultra-heavy element cosmic rays (UHCRs) by calculating transport equations that take into account energy loss processes and spallations. We show that the flux of UHCRs accelerated by the NSMs themselves fluctuates by many orders of magnitude on a timescale of several million years and can overwhelm UHCRs accelerated by supernova remnants (SNRs) after an NSM takes place within a few kiloparsec from the solar system. Experiments with very long exposure times using meteorites as UHCR detectors can detect this fluctuation. As a consequence, we show that if NSMs are the primary source of UHCRs, future experiments using meteorites may be able to reveal the event history of NSMs in the solar vicinity. We also describe a possible difference in the abundance pattern and energy spectrum of UHCRs between NSM and SNR accelerations.

  12. How well can gravitational wave observations of coalescing binaries involving neutron stars constrain the neutron star equation of state?

    International Nuclear Information System (INIS)

    Bose, Sukanta

    2015-01-01

    The Advanced LIGO detectors began observation runs a few weeks ago. This has afforded relativists and astronomers the opportunity to use gravitational waves to improve our understanding of a variety of astronomical objects and phenomena. In this talk I will examine how well gravitational wave observations of coalescing binaries involving neutron stars might constrain the neutron star (NS) equation of state. These astrophysical constraints can improve our understanding of nuclear interactions in ways that complement the knowledge acquired from terrestrial labs. I will study the effects of different NS equations of states in both NS-NS and NS-Black Hole systems, with and without spin, on these constraint. (author)

  13. Further stable neutron star models from f(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [I. Kant Baltic Federal University, Institute of Physics and Technology, Nevskogo st. 14, Kaliningrad, 236041 (Russian Federation); Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Via Cinthia, 9, Napoli, I–80126 (Italy); Odintsov, Sergei D., E-mail: artyom.art@gmail.com, E-mail: capozziello@na.infn.it, E-mail: odintsov@ieec.uab.es [Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain)

    2013-12-01

    Neutron star models in perturbative f(R) gravity are considered with realistic equations of state. In particular, we consider the FPS, SLy and other equations of state and a case of piecewise equation of state for stars with quark cores. The mass-radius relations for f(R) = R+R(e{sup −R/R{sub 0}}−1) model and for R{sup 2} models with logarithmic and cubic corrections are obtained. In the case of R{sup 2} gravity with cubic corrections, we obtain that at high central densities (ρ > 10ρ{sub ns}, where ρ{sub ns} = 2.7 × 10{sup 14} g/cm{sup 3} is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ∼ 1.9M{sub ⊙} (SLy equation). A similar situation takes place for AP4 and BSK20 EoS. Such an effect can give rise to more compact stars than in General Relativity. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level. Another interesting result can be achieved in modified gravity with only a cubic correction. For some EoS, the upper limit of neutron star mass increases and therefore these EoS can describe realistic star configurations (although, in General Relativity, these EoS are excluded by observational constraints)

  14. Further stable neutron star models from f(R) gravity

    International Nuclear Information System (INIS)

    Astashenok, Artyom V.; Capozziello, Salvatore; Odintsov, Sergei D.

    2013-01-01

    Neutron star models in perturbative f(R) gravity are considered with realistic equations of state. In particular, we consider the FPS, SLy and other equations of state and a case of piecewise equation of state for stars with quark cores. The mass-radius relations for f(R) = R+R(e −R/R 0 −1) model and for R 2 models with logarithmic and cubic corrections are obtained. In the case of R 2 gravity with cubic corrections, we obtain that at high central densities (ρ > 10ρ ns , where ρ ns = 2.7 × 10 14 g/cm 3 is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ∼ 1.9M ⊙ (SLy equation). A similar situation takes place for AP4 and BSK20 EoS. Such an effect can give rise to more compact stars than in General Relativity. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level. Another interesting result can be achieved in modified gravity with only a cubic correction. For some EoS, the upper limit of neutron star mass increases and therefore these EoS can describe realistic star configurations (although, in General Relativity, these EoS are excluded by observational constraints)

  15. Testing the Young Neutron Star Scenario with Persistent Radio Emission Associated with FRB 121102

    International Nuclear Information System (INIS)

    Kashiyama, Kazumi; Murase, Kohta

    2017-01-01

    Recently a repeating fast radio burst (FRB) 121102 has been confirmed to be an extragalactic event and a persistent radio counterpart has been identified. While other possibilities are not ruled out, the emission properties are broadly consistent with Murase et al. that theoretically proposed quasi-steady radio emission as a counterpart of both FRBs and pulsar-driven supernovae. Here, we constrain the model parameters of such a young neutron star scenario for FRB 121102. If the associated supernova has a conventional ejecta mass of M ej ≳ a few M ⊙ , a neutron star with an age of t age ∼ 10–100 years, an initial spin period of P i ≲ a few ms, and a dipole magnetic field of B dip ≲ a few × 10 13 G can be compatible with the observations. However, in this case, the magnetically powered scenario may be favored as an FRB energy source because of the efficiency problem in the rotation-powered scenario. On the other hand, if the associated supernova is an ultra-stripped one or the neutron star is born by the accretion-induced collapse with M ej ∼ 0.1 M ⊙ , a younger neutron star with t age ∼ 1–10 years can be the persistent radio source and might produce FRBs with the spin-down power. These possibilities can be distinguished by the decline rate of the quasi-steady radio counterpart.

  16. Comparison of methods for the detection of gravitational waves from unknown neutron stars

    Science.gov (United States)

    Walsh, S.; Pitkin, M.; Oliver, M.; D'Antonio, S.; Dergachev, V.; Królak, A.; Astone, P.; Bejger, M.; Di Giovanni, M.; Dorosh, O.; Frasca, S.; Leaci, P.; Mastrogiovanni, S.; Miller, A.; Palomba, C.; Papa, M. A.; Piccinni, O. J.; Riles, K.; Sauter, O.; Sintes, A. M.

    2016-12-01

    Rapidly rotating neutron stars are promising sources of continuous gravitational wave radiation for the LIGO and Virgo interferometers. The majority of neutron stars in our galaxy have not been identified with electromagnetic observations. All-sky searches for isolated neutron stars offer the potential to detect gravitational waves from these unidentified sources. The parameter space of these blind all-sky searches, which also cover a large range of frequencies and frequency derivatives, presents a significant computational challenge. Different methods have been designed to perform these searches within acceptable computational limits. Here we describe the first benchmark in a project to compare the search methods currently available for the detection of unknown isolated neutron stars. The five methods compared here are individually referred to as the PowerFlux, sky Hough, frequency Hough, Einstein@Home, and time domain F -statistic methods. We employ a mock data challenge to compare the ability of each search method to recover signals simulated assuming a standard signal model. We find similar performance among the four quick-look search methods, while the more computationally intensive search method, Einstein@Home, achieves up to a factor of two higher sensitivity. We find that the absence of a second derivative frequency in the search parameter space does not degrade search sensitivity for signals with physically plausible second derivative frequencies. We also report on the parameter estimation accuracy of each search method, and the stability of the sensitivity in frequency and frequency derivative and in the presence of detector noise.

  17. Detectable radio flares following gravitational waves from mergers of binary neutron stars.

    Science.gov (United States)

    Nakar, Ehud; Piran, Tsvi

    2011-09-28

    Mergers of neutron-star/neutron-star binaries are strong sources of gravitational waves. They can also launch subrelativistic and mildly relativistic outflows and are often assumed to be the sources of short γ-ray bursts. An electromagnetic signature that persisted for weeks to months after the event would strengthen any future claim of a detection of gravitational waves. Here we present results of calculations showing that the interaction of mildly relativistic outflows with the surrounding medium produces radio flares with peak emission at 1.4 gigahertz that persist at detectable (submillijansky) levels for weeks, out to a redshift of 0.1. Slower subrelativistic outflows produce flares detectable for years at 150 megahertz, as well as at 1.4 gigahertz, from slightly shorter distances. The radio transient RT 19870422 (ref. 11) has the properties predicted by our model, and its most probable origin is the merger of a compact neutron-star/neutron-star binary. The lack of radio detections usually associated with short γ-ray bursts does not constrain the radio transients that we discuss here (from mildly relativistic and subrelativistic outflows) because short γ-ray burst redshifts are typically >0.1 and the appropriate timescales (longer than weeks) have not been sampled.

  18. Testing the Young Neutron Star Scenario with Persistent Radio Emission Associated with FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Kashiyama, Kazumi [Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Murase, Kohta [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-04-10

    Recently a repeating fast radio burst (FRB) 121102 has been confirmed to be an extragalactic event and a persistent radio counterpart has been identified. While other possibilities are not ruled out, the emission properties are broadly consistent with Murase et al. that theoretically proposed quasi-steady radio emission as a counterpart of both FRBs and pulsar-driven supernovae. Here, we constrain the model parameters of such a young neutron star scenario for FRB 121102. If the associated supernova has a conventional ejecta mass of M {sub ej} ≳ a few M {sub ⊙}, a neutron star with an age of t {sub age} ∼ 10–100 years, an initial spin period of P{sub i} ≲ a few ms, and a dipole magnetic field of B {sub dip} ≲ a few × 10{sup 13} G can be compatible with the observations. However, in this case, the magnetically powered scenario may be favored as an FRB energy source because of the efficiency problem in the rotation-powered scenario. On the other hand, if the associated supernova is an ultra-stripped one or the neutron star is born by the accretion-induced collapse with M {sub ej} ∼ 0.1 M {sub ⊙}, a younger neutron star with t {sub age} ∼ 1–10 years can be the persistent radio source and might produce FRBs with the spin-down power. These possibilities can be distinguished by the decline rate of the quasi-steady radio counterpart.

  19. ROLE OF NUCLEONIC FERMI SURFACE DEPLETION IN NEUTRON STAR COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Dong, J. M.; Zuo, W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Lombardo, U. [Universita di Catania and Laboratori Nazionali del Sud (INFN), Catania I-95123 (Italy); Zhang, H. F. [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2016-01-20

    The Fermi surface depletion of beta-stable nuclear matter is calculated to study its effects on several physical properties that determine the neutron star (NS) thermal evolution. The neutron and proton Z factors measuring the corresponding Fermi surface depletions are calculated within the Brueckner–Hartree–Fock approach, employing the AV18 two-body force supplemented by a microscopic three-body force. Neutrino emissivity, heat capacity, and in particular neutron {sup 3}PF{sub 2} superfluidity, turn out to be reduced, especially at high baryonic density, to such an extent that the cooling rates of young NSs are significantly slowed.

  20. Neutron producing reactions in PuBe neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Bagi, János [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU) (Germany); Lakosi, László; Nguyen, Cong Tam [Centre for Energy Research, Hungarian Academy of Sciences, Budapest (Hungary)

    2016-01-01

    There are a plenty of out-of-use plutonium–beryllium neutron sources in Eastern Europe presenting both nuclear safeguards and security issues. Typically, their actual Pu content is not known. In the last couple of years different non-destructive methods were developed for their characterization. For such methods detailed knowledge of the nuclear reactions taking place within the source is necessary. In this paper we investigate the role of the neutron producing reactions, their contribution to the neutron yield and their dependence on the properties of the source.

  1. Neutron Sources for Standard-Based Testing

    Energy Technology Data Exchange (ETDEWEB)

    Radev, Radoslav [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McLean, Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-10

    The DHS TC Standards and the consensus ANSI Standards use 252Cf as the neutron source for performance testing because its energy spectrum is similar to the 235U and 239Pu fission sources used in nuclear weapons. An emission rate of 20,000 ± 20% neutrons per second is used for testing of the radiological requirements both in the ANSI standards and the TCS. Determination of the accurate neutron emission rate of the test source is important for maintaining consistency and agreement between testing results obtained at different testing facilities. Several characteristics in the manufacture and the decay of the source need to be understood and accounted for in order to make an accurate measurement of the performance of the neutron detection instrument. Additionally, neutron response characteristics of the particular instrument need to be known and taken into account as well as neutron scattering in the testing environment.

  2. (International Collaboration on Advanced Neutron Sources)

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, J.B.

    1990-11-08

    The International Collaboration on Advanced Neutron Sources was started about a decade ago with the purpose of sharing information throughout the global neutron community. The collaboration has been extremely successful in optimizing the use of resources, and the discussions are open and detailed, with reasons for failure shared as well as reasons for success. Although the meetings have become increasingly oriented toward pulsed neutron sources, many of the neutron instrumentation techniques, such as the development of better monochromators, fast response detectors and various data analysis methods, are highly relevant to the Advanced Neutron Source (ANS). I presented one paper on the ANS, and another on the neutron optical polarizer design work which won a 1989 R D-100 Award. I also gained some valuable design ideas, in particular for the ANS hot source, in discussions with individual researchers from Canada, Western Europe, and Japan.

  3. Rapid Cooling of the Neutron Star in Cassiopeia A Triggered by Neutron Superfluidity in Dense Matter

    International Nuclear Information System (INIS)

    Page, Dany; Prakash, Madappa; Lattimer, James M.; Steiner, Andrew W.

    2011-01-01

    We propose that the observed cooling of the neutron star in Cassiopeia A is due to enhanced neutrino emission from the recent onset of the breaking and formation of neutron Cooper pairs in the 3 P 2 channel. We find that the critical temperature for this superfluid transition is ≅0.5x10 9 K. The observed rapidity of the cooling implies that protons were already in a superconducting state with a larger critical temperature. This is the first direct evidence that superfluidity and superconductivity occur at supranuclear densities within neutron stars. Our prediction that this cooling will continue for several decades at the present rate can be tested by continuous monitoring of this neutron star.

  4. Neutron star crustal plate tectonics. I. Magnetic dipole evolution in millisecond pulsars and low-mass X-ray binaries

    International Nuclear Information System (INIS)

    Ruderman, M.

    1991-01-01

    Crust lattices in spinning-up or spinning-down neutron stars have growing shear stresses caused by neutron superfluid vortex lines pinned to lattice nuclei. For the most rapidly spinning stars, this stress will break and move the crust before vortex unpinning occurs. In spinning-down neutron stars, crustal plates will move an equatorial subduction zone in which the plates are forced into the stellar core below the crust. The opposite plate motion occurs in spinning-up stars. Magnetic fields which pass through the crust or have sources in it move with the crust. Spun-up neutron stars in accreting low-mass X-ray binaries LMXBs should then have almost axially symmetric magnetic fields. Spun-down ones with very weak magnetic fields should have external magnetic fields which enter and leave the neutron star surface only near its equator. The lowest field millisecond radiopulsars seem to be orthogonal rotators implying that they have not previously been spun-up in LMXBs but are neutron stars initially formed with periods near 0.001 s that subsequently spin down to their present periods. Accretion-induced white dwarf collapse is then the most plausible genesis for them. 29 refs

  5. Two-component Superfluid Hydrodynamics of Neutron Star Cores

    Energy Technology Data Exchange (ETDEWEB)

    Kobyakov, D. N. [Institute of Applied Physics of the Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); Pethick, C. J., E-mail: dmitry.kobyakov@appl.sci-nnov.ru, E-mail: pethick@nbi.dk [The Niels Bohr International Academy, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)

    2017-02-20

    We consider the hydrodynamics of the outer core of a neutron star under conditions when both neutrons and protons are superfluid. Starting from the equation of motion for the phases of the wave functions of the condensates of neutron pairs and proton pairs, we derive the generalization of the Euler equation for a one-component fluid. These equations are supplemented by the conditions for conservation of neutron number and proton number. Of particular interest is the effect of entrainment, the fact that the current of one nucleon species depends on the momenta per nucleon of both condensates. We find that the nonlinear terms in the Euler-like equation contain contributions that have not always been taken into account in previous applications of superfluid hydrodynamics. We apply the formalism to determine the frequency of oscillations about a state with stationary condensates and states with a spatially uniform counterflow of neutrons and protons. The velocities of the coupled sound-like modes of neutrons and protons are calculated from properties of uniform neutron star matter evaluated on the basis of chiral effective field theory. We also derive the condition for the two-stream instability to occur.

  6. Neutron Star Physics in the SKA Era An Indian Perspective

    Indian Academy of Sciences (India)

    65

    2016-07-04

    Jul 4, 2016 ... It is an exceptionally opportune time for Astrophysics when a number of ... evolutionary pathways, c) the evolution of neutron stars in binaries and the magnetic ...... also important for the construction of EoS tables for CC-SNe ...

  7. Multi-messenger Observations of a Binary Neutron Star Merger

    NARCIS (Netherlands)

    Scholten, Olaf; van den Berg, Adriaan

    2017-01-01

    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A)

  8. Multi-messenger Observations of a Binary Neutron Star Merger

    DEFF Research Database (Denmark)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.

    2017-01-01

    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 17081...

  9. Neutron stars as probes of extreme energy density matter

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... Neutron stars have long been regarded as extraterrestrial laboratories from which we can learn about extreme energy density matter at low temperatures. In this article, some of the recent advances made in astrophysical observations and related theory are highlighted. Although the focus is on the much ...

  10. Flux-Vortex Pinning and Neutron Star Evolution

    Indian Academy of Sciences (India)

    M. Ali Alpar

    2017-09-12

    Sep 12, 2017 ... M. ALI ALPAR. Faculty of Engineering and Natural Sciences, Sabancı University, 34956, Istanbul, Turkey. E-mail: ... netic field of the neutron star were B ∼ 109 G. At the ..... across pinning energy barriers by thermal activation.

  11. The Neutron star Interior Composition Explorer (NICER): design and development

    DEFF Research Database (Denmark)

    Gendreau, Keith C.; Arzoumanian, Zaven; Adkins, Phillip W.

    2016-01-01

    During 2014 and 2015, NASA's Neutron star Interior Composition Explorer (NICER) mission proceeded successfully through Phase C, Design and Development. An X-ray (0.2-12 keV) astrophysics payload destined for the International Space Station, NICER is manifested for launch in early 2017...

  12. Radial oscillations of neutron stars in strong magnetic fields

    Indian Academy of Sciences (India)

    The eigen frequencies of radial pulsations of neutron stars are calculated in a strong magnetic field. At low densities we use the magnetic BPS equation of state (EOS) similar to that obtained by Lai and Shapiro while at high densities the EOS obtained from the relativistic nuclear mean field theory is taken and extended to ...

  13. Extended I-Love relations for slowly rotating neutron stars

    Science.gov (United States)

    Gagnon-Bischoff, Jérémie; Green, Stephen R.; Landry, Philippe; Ortiz, Néstor

    2018-03-01

    Observations of gravitational waves from inspiralling neutron star binaries—such as GW170817—can be used to constrain the nuclear equation of state by placing bounds on stellar tidal deformability. For slowly rotating neutron stars, the response to a weak quadrupolar tidal field is characterized by four internal-structure-dependent constants called "Love numbers." The tidal Love numbers k2el and k2mag measure the tides raised by the gravitoelectric and gravitomagnetic components of the applied field, and the rotational-tidal Love numbers fo and ko measure those raised by couplings between the applied field and the neutron star spin. In this work, we compute these four Love numbers for perfect fluid neutron stars with realistic equations of state. We discover (nearly) equation-of-state independent relations between the rotational-tidal Love numbers and the moment of inertia, thereby extending the scope of I-Love-Q universality. We find that similar relations hold among the tidal and rotational-tidal Love numbers. These relations extend the applications of I-Love universality in gravitational-wave astronomy. As our findings differ from those reported in the literature, we derive general formulas for the rotational-tidal Love numbers in post-Newtonian theory and confirm numerically that they agree with our general-relativistic computations in the weak-field limit.

  14. Gravitational Waves and the Maximum Spin Frequency of Neutron Stars

    NARCIS (Netherlands)

    Patruno, A.; Haskell, B.; D'Angelo, C.

    2012-01-01

    In this paper, we re-examine the idea that gravitational waves are required as a braking mechanism to explain the observed maximum spin frequency of neutron stars. We show that for millisecond X-ray pulsars, the existence of spin equilibrium as set by the disk/magnetosphere interaction is sufficient

  15. Multi-messenger observations of a binary neutron star merger

    NARCIS (Netherlands)

    LIGO Scientific Collaboration and Virgo Collaboration; Fermi GBM; INTEGRAL; IceCube Collaboration; AstroSat Cadmium Zinc Telluride Imager Team; IPN Collaboration; The Insight-HXMT Collaboration; ANTARES Collaboration; The Swift Collaboration; AGILE Team; The 1M2H Team; The Dark Energy Camera GW-EM Collaboration and the DES Collaboration; The DLT40 Collaboration; GRAWITA: GRAvitational Wave Inaf TeAm; The Fermi Large Area Telescope Collaboration; ATCA: Australia Telescope Compact Array; ASKAP: Australian SKA Path finder; Las Cumbres Observatory Group; OzGrav; DWF (Deeper, Wider, Faster Program); AST3; CAASTRO Collaborations; The VINROUGE Collaboration; MASTER Collaboration; J-GEM; GROWTH; JAGWAR; Caltech- NRAO; TTU-NRAO; NuSTAR Collaborations; Pan-STARR; The MAXI Team; TZAC Consortium; KU Collaboration; Nordic Optical Telescope; ePESSTO; GROND; Texas Tech University; SALT Group; TOROS: Transient Robotic Observatory of the South Collaboration; The BOOTES Collaboration; MWA: Murchison Wide field Array; The CALET Collaboration; IKI-GW Follow-up Collaboration; H.E.S.S. Collaboration; LOFAR Collaboration; LWA: Long Wavelength Array; HAWC Collaboration; The Pierre Auger Collaboration; ALMA Collaboration; Euro VLBI Team; Pi of the Sky Collaboration; The Chandra Team at McGill University; DFN: Desert Fireball Network; ATLAS; High Time Resolution Universe Survey; RIMAS and RATIR; SKA South Africa / MeerKAT

    2017-01-01

    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A)

  16. The LOFT perspective on neutron star thermonuclear bursts

    DEFF Research Database (Denmark)

    in ’t Zand, J.J.M.; Altamirano, D.; Ballantyne, D. R.

    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of thermonuclear X-ray bursts on accreting neutron stars. For a summary, we refer to the paper....

  17. Can dark matter explain the braking index of neutron stars?

    DEFF Research Database (Denmark)

    Kouvaris, C.; Perez-Garcia, M. A.

    2014-01-01

    We explore a new mechanism of slowing down the rotation of neutron stars via accretion of millicharged dark matter. We find that this mechanism yields pulsar braking indices that can be substantially smaller than the standard n similar to 3 of the magnetic dipole radiation model for millicharged...... dark matter particles that are not excluded by existing experimental constraints thus accommodating existing observations....

  18. Constraints on the symmetry energy from neutron star observations

    International Nuclear Information System (INIS)

    Newton, W G; Gearheart, M; Wen, De-Hua; Li, Bao-An

    2013-01-01

    The modeling of many neutron star observables incorporates the microphysics of both the stellar crust and core, which is tied intimately to the properties of the nuclear matter equation of state (EoS). We explore the predictions of such models over the range of experimentally constrained nuclear matter parameters, focusing on the slope of the symmetry energy at nuclear saturation density L. We use a consistent model of the composition and EoS of neutron star crust and core matter to model the binding energy of pulsar B of the double pulsar system J0737-3039, the frequencies of torsional oscillations of the neutron star crust and the instability region for r-modes in the neutron star core damped by electron-electron viscosity at the crust-core interface. By confronting these models with observations, we illustrate the potential of astrophysical observables to offer constraints on poorly known nuclear matter parameters complementary to terrestrial experiments, and demonstrate that our models consistently predict L < 70 MeV.

  19. Coexistence of hyperon and π condensation in neutron stars

    International Nuclear Information System (INIS)

    Isshiki, Akinori

    2000-01-01

    We consider the coexistence of hyperon and π condensation in neutron stars. The coexistence phase may occur because of the strong ΛΣπ coupling. Hyperon can appear under π condensation, because short range repulsion reduce the π-baryon p wave attraction. The system approaches the Fermi gas because of this reduction. (author)

  20. NICER observations of highly magnetized neutron stars: Initial results

    Science.gov (United States)

    Enoto, Teruaki; Arzoumanian, Zaven; Gendreau, Keith C.; Nynka, Melania; Kaspi, Victoria; Harding, Alice; Guver, Tolga; Lewandowska, Natalia; Majid, Walid; Ho, Wynn C. G.; NICER Team

    2018-01-01

    The Neutron star Interior Composition Explorer (NICER) was launched on June 3, 2017, and attached to the International Space Station. The large effective area of NICER in soft X-rays makes it a powerful tool not only for its primary science objective (diagnostics of the nuclear equation state) but also for studying neutron stars of various classes. As one of the NICER science working groups, the Magnetars and Magnetospheres (M&M) team coordinates monitoring and target of opportunity (ToO) observations of magnetized neutron stars, including magnetars, high-B pulsars, X-ray dim isolated neutron stars, and young rotation-powered pulsars. The M&M working group has performed simultaneous X-ray and radio observations of the Crab and Vela pulsars, ToO observations of the active anomalous X-ray pulsar 4U 0142+61, and a monitoring campaign for the transient magnetar SGR 0501+4516. Here we summarize the current status and initial results of the M&M group.

  1. Neutron stars as probes of extreme energy density matter

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... and the orbital period decay due to the emission of gravitational radiation. ˙P = −. 192π ... masses severely restrict the EoS of neutron star matter. Masses ..... (9) Is unstable burning of carbon (C) the real cause of superbursts?

  2. Constraints on perturbative f(R) gravity via neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Arapoğlu, Savaş; Ekşi, K. Yavuz [İstanbul Technical University, Faculty of Science and Letters, Physics Engineering Department, Maslak 34469, İstanbul (Turkey); Deliduman, Cemsinan, E-mail: arapoglu@itu.edu.tr, E-mail: cemsinan@msgsu.edu.tr, E-mail: eksi@itu.edu.tr [Mimar Sinan Fine Arts University, Department of Physics, Beşiktaş 34349, İstanbul (Turkey)

    2011-07-01

    We study the structure of neutron stars in perturbative f(R) gravity models with realistic equations of state. We obtain mass-radius relations in a gravity model of the form f(R) = R+αR{sup 2}. We find that deviations from the results of general relativity, comparable to the variations due to using different equations of state (EoS'), are induced for |α| ∼ 10{sup 9} cm{sup 2}. Some of the soft EoS' that are excluded within the framework of general relativity can be reconciled with the 2 solar mass neutron star recently observed for certain values of α within this range. For some of the EoS' we find that a new solution branch, which allows highly massive neutron stars, exists for values of α greater than a few 10{sup 9} cm{sup 2}. We find constraints on α for a variety of EoS' using the recent observational constraints on the mass-radius relation. These are all 5 orders of magnitude smaller than the recent constraint obtained via Gravity Probe B for this gravity model. The associated length scale √(alpha)approx 10{sup 5} cm is only an order of magnitude smaller than the typical radius of a neutron star, the probe used in this test. This implies that real deviations from general relativity can be even smaller.

  3. Neutron dosimetry at SLAC: Neutron sources and instrumentation

    International Nuclear Information System (INIS)

    Liu, J.C.; Jenkins, T.M.; McCall, R.C.; Ipe, N.E.

    1991-10-01

    This report summarizes in detail the dosimetric characteristics of the five radioisotopic type neutron sources ( 238 PuBe, 252 Cf, 238 PuB, 238 PuF 4 , and 238 PuLi) and the neutron instrumentation (moderated BF 3 detector, Anderson-Braun (AB) detector, AB remmeter, Victoreen 488 Neutron Survey Meter, Beam Shut-Off Ionization Chamber, 12 C plastic scintillator detector, moderated indium foil detector, and moderated and bare TLDs) that are commonly used for neutron dosimetry at the Stanford Linear Accelerator Center (SLAC). 36 refs,. 19 figs

  4. Neutron dosimetry at SLAC: Neutron sources and instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.C.; Jenkins, T.M.; McCall, R.C.; Ipe, N.E.

    1991-10-01

    This report summarizes in detail the dosimetric characteristics of the five radioisotopic type neutron sources ({sup 238}PuBe, {sup 252}Cf, {sup 238}PuB, {sup 238}PuF{sub 4}, and {sup 238}PuLi) and the neutron instrumentation (moderated BF{sub 3} detector, Anderson-Braun (AB) detector, AB remmeter, Victoreen 488 Neutron Survey Meter, Beam Shut-Off Ionization Chamber, {sup 12}C plastic scintillator detector, moderated indium foil detector, and moderated and bare TLDs) that are commonly used for neutron dosimetry at the Stanford Linear Accelerator Center (SLAC). 36 refs,. 19 figs.

  5. Cyclotron-based neutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  6. PALFA Discovers Neutron Stars on a Collision Course

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    Got any plans in 46 million years? If not, you should keep an eye out for PSR J1946+2052 around that time this upcoming merger of two neutron stars promises to be an exciting show!Survey SuccessAverage profile for PSR J1946+2052 at 1.43 GHz from a 2 hr observation from the Arecibo Observatory. [Stovall et al. 2018]It seems like we just wrote about the dearth of known double-neutron-star systems, and about how new surveys are doing their best to find more of these compact binaries. Observing these systems improves our knowledge of how pairs of evolved stars behave before they eventually spiral in, merge, and emit gravitational waves that detectors like the Laser Interferometer Gravitational-wave Observatory might observe.Todays study, led by Kevin Stovall (National Radio Astronomy Observatory), goes to show that these surveys are doing a great job so far! Yet another double-neutron-star binary, PSR J1946+2052, has now been discovered as part of the Arecibo L-Band Feed Array pulsar (PALFA) survey. This one is especially unique due to the incredible speed with which these neutron stars orbit each other and their correspondingly (relatively!) short timescale for merger.An Extreme ExampleThe PALFA survey, conducted with the enormous 305-meter radio dish at Arecibo, has thus far resulted in the discovery of 180 pulsars including two double-neutron-star systems. The most recent discovery by Stovall and collaborators brings that number up to three, for a grand total of 16 binary-neutron-star systems (confirmed and unconfirmed) known to date.The 305-m Arecibo Radio Telescope, built into the landscape at Arecibo, Puerto Rico. [NOAO/AURA/NSF/H. Schweiker/WIYN]The newest binary in this collection, PSR J1946+2052, exhibits a pulsar with a 17-millisecond spin period thatwhips around its compact companion at a terrifying rate: the binary period is just 1.88 hours. Follow-up observations with the Jansky Very Large Array and other telescopes allowed the team to identify the binarys

  7. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C. B. [Radiation Science Department, Necsa, PO Box 582, Pretoria 0001 (South Africa)

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  8. Neutronics of the IFMIF neutron source: development and analysis

    International Nuclear Information System (INIS)

    Wilson, P.P.H.

    1999-01-01

    The accurate analysis of this system required the development of a code system and methodology capable of modelling the various physical processes. A generic code system for the neutronics analysis of neutron sources has been created by loosely integrating existing components with new developments: the data processing code NJOY, the Monte Carlo neutron transport code MCNP, and the activation code ALARA were supplemented by a damage data processing program, damChar, and integrated with a number of flexible and extensible modules for the Perl scripting language. Specific advances were required to apply this code system to IFMIF. Based on the ENDF-6 data format requirements of this system, new data evaluations have been implemented for neutron transport and activation. Extensive analysis of the Li(d, xn) reaction has led to a new MCNP source function module, M c DeLi, based on physical reaction models and capable of accurate and flexible modelling of the IFMIF neutron source term. In depth analyses of the neutron flux spectra and spatial distribution throughout the high flux test region permitted a basic validation of the tools and data. The understanding of the features of the neutron flux provided a foundation for the analyses of the other neutron responses. (orig./DGE) [de

  9. Options for the Delft advanced neutron source

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Leege, P.F.A. de; Labohm, F.; Vries, J.W. de; Verkooijen, A.H.M.; Valko, J.; Feltes, W.; Heinecke, J.

    2003-01-01

    Results of feasibility studies are presented for options for an advanced neutron source for the Delft reactor including upgrading the HOR, a 2 MW pool-type research reactor at the Delft University of Technology. The primary utilisation of the HOR focuses on beam research applications with neutrons and positrons. The aim of being scientifically competitive in that research area requires a thermal neutron flux level of at least 1x10 14 n/cm 2 /s. The feasibility of an accelerator driven neutron source and upgrading the present core to a super compact core for reaching this goal has been investigated at large from a safety and operational point of view. For the upgraded core, a 3x3 fuel assembly arrangement and beryllium reflected at all sides was chosen. Figures on the system performance, including the merits of a cold neutron source application feeding the neutron guide system, are presented. (author)

  10. Lambda-nuclear interactions and hyperon puzzle in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Haidenbauer, J. [Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Meissner, U.G. [Universitaet Bonn, Helmholtz Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Kaiser, N.; Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany)

    2017-06-15

    Brueckner theory is used to investigate the in-medium properties of a Λ-hyperon in nuclear and neutron matter, based on hyperon-nucleon interactions derived within SU(3) chiral effective field theory (EFT). It is shown that the resulting Λ single-particle potential U{sub Λ}(p{sub Λ} = 0, ρ) becomes strongly repulsive for densities ρ of two-to-three times that of normal nuclear matter. Adding a density-dependent effective ΛN-interaction constructed from chiral ΛNN three-body forces increases the repulsion further. Consequences of these findings for neutron stars are discussed. It is argued that for hyperon-nuclear interactions with properties such as those deduced from the SU(3) EFT potentials, the onset for hyperon formation in the core of neutron stars could be shifted to much higher density which, in turn, could pave the way for resolving the so-called hyperon puzzle. (orig.)

  11. NEUTRON STAR MASS–RADIUS CONSTRAINTS USING EVOLUTIONARY OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A. L.; Morsink, S. M. [Department of Physics, University of Alberta, 4-183 CCIS, Edmonton, AB, T6G 2E1 (Canada); Fiege, J. D. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada); Leahy, D. A. [Department of Physics, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4 (Canada)

    2016-12-20

    The equation of state of cold supra-nuclear-density matter, such as in neutron stars, is an open question in astrophysics. A promising method for constraining the neutron star equation of state is modeling pulse profiles of thermonuclear X-ray burst oscillations from hot spots on accreting neutron stars. The pulse profiles, constructed using spherical and oblate neutron star models, are comparable to what would be observed by a next-generation X-ray timing instrument like ASTROSAT , NICER , or a mission similar to LOFT . In this paper, we showcase the use of an evolutionary optimization algorithm to fit pulse profiles to determine the best-fit masses and radii. By fitting synthetic data, we assess how well the optimization algorithm can recover the input parameters. Multiple Poisson realizations of the synthetic pulse profiles, constructed with 1.6 million counts and no background, were fitted with the Ferret algorithm to analyze both statistical and degeneracy-related uncertainty and to explore how the goodness of fit depends on the input parameters. For the regions of parameter space sampled by our tests, the best-determined parameter is the projected velocity of the spot along the observer’s line of sight, with an accuracy of ≤3% compared to the true value and with ≤5% statistical uncertainty. The next best determined are the mass and radius; for a neutron star with a spin frequency of 600 Hz, the best-fit mass and radius are accurate to ≤5%, with respective uncertainties of ≤7% and ≤10%. The accuracy and precision depend on the observer inclination and spot colatitude, with values of ∼1% achievable in mass and radius if both the inclination and colatitude are ≳60°.

  12. Radioactively powered emission from black hole-neutron star mergers

    International Nuclear Information System (INIS)

    Tanaka, Masaomi; Wanajo, Shinya; Hotokezaka, Kenta; Kyutoku, Koutarou; Kiuchi, Kenta; Sekiguchi, Yuichiro; Shibata, Masaru

    2014-01-01

    Detection of the electromagnetic counterparts of gravitational wave (GW) sources is important to unveil the nature of compact binary coalescences. We perform three-dimensional, time-dependent, multi-frequency radiative transfer simulations for radioactively powered emission from the ejecta of black hole (BH)-neutron star (NS) mergers. Depending on the BH to NS mass ratio, spin of the BH, and equations of state of dense matter, BH-NS mergers can eject more material than NS-NS mergers. In such cases, radioactively powered emission from the BH-NS merger ejecta can be more luminous than that from NS-NS mergers. We show that, in spite of the expected larger distances to BH-NS merger events, the observed brightness of BH-NS mergers can be comparable to or even higher than that of NS-NS mergers. We find that, when the tidally disrupted BH-NS merger ejecta are confined to a small solid angle, the emission from BH-NS merger ejecta tends to be bluer than that from NS-NS merger ejecta for a given total luminosity. Thanks to this property, we might be able to distinguish BH-NS merger events from NS-NS merger events by multi-band observations of the radioactively powered emission. In addition to the GW observations, such electromagnetic observations can potentially provide independent information on the progenitors of GW sources and the nature of compact binary coalescences.

  13. Particle acceleration at the magnetic poles of a neutron star

    International Nuclear Information System (INIS)

    Jones, P.B.

    1977-01-01

    The magnetic conversion of a photon in a neutron star magnetosphere near one of the magnetic poles is followed by acceleration of the electron and positron to ultra-relativistic energies. The positron moves along open magnetic flux lines to the light cylinder. The electron incident on the stellar surface produces an electromagnetic shower. Following a comment by Cheng and Ruderman (Astrophys.J.;214:598 (1977)), an order of magnitude estimate has been made of the spectrum of backward moving photons created in the electron shower. The most important source of photons is shown to be the formation of the giant dipole state in Fe 56 . Under the assumption that the surface magnetic flux density exceeds 10 12 G, the photons have, with high probability, mean free paths for magnetic conversion in the magnetosphere of 1 4 cm. An equation for the maximum acceleratin potential has been obtained in a one-dimensional model of pair creation and electron multiplication based on this photon source. The model has been applied to the phenomenon of subpulse drift in pulsars. The plasma accelerated at the magnetic pole has three components; positrons, protons and light nuclei (Z < approximately 6) formed by spallation, and iron group nuclei. Equations determining their relative fluxes have been found. The light nuclei include those with Z = 3 to 5, usually considered to be present in galactic cosmic rays only as a result of the interaction of heavier nuclei with the interstellar medium. (author)

  14. The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.

  15. Neutron cooling and cold-neutron sources (1962)

    International Nuclear Information System (INIS)

    Jacrot, B.

    1962-01-01

    Intense cold-neutron sources are useful in studying solids by the inelastic scattering of neutrons. The paper presents a general survey covering the following aspects: a) theoretical considerations put forward by various authors regarding thermalization processes at very low temperatures; b) the experiments that have been carried out in numerous laboratories with a view to comparing the different moderators that can be used; c) the cold neutron sources that have actually been produced in reactors up to the present time, and the results obtained with them. (author) [fr

  16. Neutron scattering instruments for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Crawford, R.K.; Fornek, T.; Herwig, K.W.

    1998-01-01

    The Spallation Neutron Source (SNS) is a 1 MW pulsed spallation source for neutron scattering planned for construction at Oak Ridge National Laboratory. This facility is being designed as a 5-laboratory collaboration project. This paper addresses the proposed facility layout, the process for selection and construction of neutron scattering instruments at the SNS, the initial planning done on the basis of a reference set of ten instruments, and the plans for research and development (R and D) to support construction of the first ten instruments and to establish the infrastructure to support later development and construction of additional instruments

  17. Neutron scattering instrumentation for biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  18. International workshop on cold neutron sources

    International Nuclear Information System (INIS)

    Russell, G.J.; West, C.D.

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources

  19. International workshop on cold neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States))

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  20. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and ...

  1. Radionuclide 252Cf neutron source

    International Nuclear Information System (INIS)

    Kolevatov, Yu.I.; Trykov, L.A.

    1979-01-01

    Characteristics of radionuclide neutron sourses of 252 Cf base with the activity from 10 6 to 10 9 n/s have been investigated. Energetic distributions of neutrons and gamma-radiation have been presented. The results obtained have been compared with other data available. The hardness parameter of the neutron spectrum for the energy range from 3 to 15 MeV is 1.4 +- 0.02 MeV

  2. Helium-burning flashes on accreting neutron stars: effects of stellar mass, radius, and magnetic field

    International Nuclear Information System (INIS)

    Joss, P.C.; Li, F.K.

    1980-01-01

    We have computed the evolution of the helium-burning shell in an accreting neutron star for various values of the stellar mass (M), radius (R), and surface magnetic fields strength (B). As shown in previous work, the helium-burning shell is often unstable and undergoes thermonuclear flashes that result in the emission of X-ray bursts from the neutron-star surface. The dependence of the properties of these bursts upon the values of M and R can be described by simple scaling relations. A strong magnetic field decreases the radiative and conductive opacities and inhibits convection in the neutron-star surface layers. For B 12 gauss, these effects are unimportant; for B> or approx. =10 13 gauss, the enhancement of the electron thermal conductivity is sufficiently large to stabilize the helium-burning shell against thermonuclear flashes. For intermediate values of B, the reduced opacities increase the recurrence intervals between bursts and the energy released per burst, while the inhibition of convection increases the burst rise times to about a few seconds. If the magnetic field funnels the accreting matter onto the magnetic polar caps, the instability of the helium-burning shell will be very strongly suppressed. These results suggest that it may eventually be possible to extract information on the macroscopic properties of neutron stars from the observed features of X-ray burst sources

  3. Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae

    Science.gov (United States)

    Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.

    2018-01-01

    Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.

  4. Superfluidity and Superconductivity in Neutron Stars

    Indian Academy of Sciences (India)

    N. Chamel

    2017-09-12

    Sep 12, 2017 ... years, when heat from the interior diffuses to the sur- face and is dissipated in ..... Most microscopic calculations have been car- ried out in pure neutron ..... sudden transfers of angular momentum from a more rapidly rotating ...

  5. Fission fragment driven neutron source

    Science.gov (United States)

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  6. Neutron Star Models in Alternative Theories of Gravity

    Science.gov (United States)

    Manolidis, Dimitrios

    We study the structure of neutron stars in a broad class of alternative theories of gravity. In particular, we focus on Scalar-Tensor theories and f(R) theories of gravity. We construct static and slowly rotating numerical star models for a set of equations of state, including a polytropic model and more realistic equations of state motivated by nuclear physics. Observable quantities such as masses, radii, etc are calculated for a set of parameters of the theories. Specifically for Scalar-Tensor theories, we also calculate the sensitivities of the mass and moment of inertia of the models to variations in the asymptotic value of the scalar field at infinity. These quantities enter post-Newtonian equations of motion and gravitational waveforms of two body systems that are used for gravitational-wave parameter estimation, in order to test these theories against observations. The construction of numerical models of neutron stars in f(R) theories of gravity has been difficult in the past. Using a new formalism by Jaime, Patino and Salgado we were able to construct models with high interior pressure, namely pc > rho c/3, both for constant density models and models with a polytropic equation of state. Thus, we have shown that earlier objections to f(R) theories on the basis of the inability to construct viable neutron star models are unfounded.

  7. Magnetic field effects on the crust structure of neutron stars

    Science.gov (United States)

    Franzon, B.; Negreiros, R.; Schramm, S.

    2017-12-01

    We study the effects of high magnetic fields on the structure and on the geometry of the crust in neutron stars. We find that the crust geometry is substantially modified by the magnetic field inside the star. We build stationary and axis-symmetric magnetized stellar models by using well-known equations of state to describe the neutron star crust, namely, the Skyrme model for the inner crust and the Baym-Pethick-Sutherland equation of state for the outer crust. We show that the magnetic field has a dual role, contributing to the crust deformation via the electromagnetic interaction (manifested in this case as the Lorentz force) and by contributing to curvature due to the energy stored in it. We also study a direct consequence of the crust deformation due to the magnetic field: the thermal relaxation time. This quantity, which is of great importance to the thermal evolution of neutron stars, is sensitive to the crust properties, and, as such, we show that it may be strongly affected by the magnetic field.

  8. Quark phases in neutron stars and a third family of compact stars as signature for phase transitions

    International Nuclear Information System (INIS)

    Schertler, K.; Greiner, C.; Schaffner-Bielich, J.; Thoma, M.H.

    2000-01-01

    The appearance of quark phases in the dense interior of neutron stars provides one possibility to soften the equation of state (EOS) of neutron star matter at high densities. This softening leads to more compact equilibrium configurations of neutron stars compared to pure hadronic stars of the same mass. We investigate the question to which amount the compactness of a neutron star can be attributed to the presence of a quark phase. For this purpose we employ several hadronic EOS in the framework of the relativistic mean-field (RMF) model and an extended MIT bag model to describe the quark phase. We find that -- almost independent of the model parameters -- the radius of a pure hadronic neutron star gets typically reduced by 20-30% if a pure quark phase in the center of the star does exist. For some EOS we furthermore find the possibility of a third family of compact stars which may exist besides the two known families of white dwarfs and neutron stars. We show how an experimental proof of the existence of a third family by mass and radius measurements may provide a unique signature for a phase transition inside neutron stars

  9. Fission-neutrons source with fast neutron-emission timing

    Energy Technology Data Exchange (ETDEWEB)

    Rusev, G., E-mail: rusev@lanl.gov; Baramsai, B.; Bond, E.M.; Jandel, M.

    2016-05-01

    A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of {sup 252}Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  10. A new class of g-modes in neutron stars

    Science.gov (United States)

    Reisenegger, Andreas; Goldreich, Peter

    1992-01-01

    Because a neutron star is born hot, its internal composition is close to chemical equilibrium. In the fluid core, this implies that the ratio of the number densities of charged particles (protons and electrons) to neutrons is an increasing function of the mass density. This composition gradient stably stratifies the matter giving rise to a Brunt-Vaisala frequency N of about 500/s. Consequently, a neutron star core provides a cavity that supports gravity modes (g-modes). These g-modes are distinct from those previously identified with the thermal stratification of the surface layers and the chemical stratification of the crust. We compute the lowest-order, quadrupolar, g-modes for cold, Newtonian, neutron star models with M/solar M = 0.581 and M/solar M = 1.405, and show that the crustal and core g-modes have similar periods. We also discuss damping mechanisms and estimate damping rates for the core g-modes. Particular attention is paid to damping due to the emission of gravitational radiation.

  11. Model of superdense matter and its application to neutron stars

    International Nuclear Information System (INIS)

    Pedico, R.D.

    1976-01-01

    A phenomenological model of superdense baryonic matter at zero temperature is developed and the resulting equation of state is employed in the calculation of neutron star masses and moments of inertia. The strong interactions between the baryons are described by couplings to one scalar and one vector field. These fields are not identified with observed mesons. Only a particular class of diagrams, constructed from tadpole terms, is retained in this investigation. It is argued that these terms contain the leading order density dependence of any set of diagrams that can be built up from fundamental two baryon-one meson vertices. The two parameters in the model, the coupling strengths, are fixed by the requirement that the accepted binding energy of infinite nuclear matter be reproduced at nuclear density. These couplings are used to calculate a forward proton-neutron cross section, which is found to agree with experimental data over a limited energy range. A pressure-energy density equation of state is generated for an electrically neutral system of electrons, muons, and the lowest mass baryon octet. The constituents are held in chemical equilibrium by the weak interactions. The equation of state exhibits a broad phase transition encompassing nuclear density, which leads to neutron stars containing a nearly incompressible core surrounded by a significantly less dense shell. The masses and moments of inertia of these model neutron stars are in good agreement with observational data for pulsars

  12. Advanced Neutron Source (ANS) Project progress report

    International Nuclear Information System (INIS)

    McBee, M.R.; Chance, C.M.

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I ampersand C research and development; facility concepts; design; and safety

  13. Competition of neutrino and gravitational radiation in neutron star formation

    International Nuclear Information System (INIS)

    Kazanas, D.; Schramm, D.N.

    1976-01-01

    The possibility is explored that neutrino radiation, rather than gravitational radiation, may be the dominant way by which non-radial pulsations are damped out in a collapsing star. If this is so it implies that hopes of detecting gravity waves from supernovae explosions are very optimistic. Neutron stars and black holes are probably the collapsed central remnants of a supernovae explosion. These objects presumably originate from collapse of the cores of sufficiently massive stars, following the cessation of thermonuclear burning. Although there is at present no completely consistent detailed theory as to how collapse of the core and the subsequent supernova explosion take place, a general model exists for the final stages of stellar evolution and supernovae explosions. According to this model the electrons of a sufficiently massive stellar core, due to the high density and temperature, become absorbed by the protons through the reaction p + e - → n + v. Very large numbers of neutrinos, resulting from this and other thermal processes, such as pair annihilation, plasma decay, and Bremsstrahlung, are emitted, taking away most of the gravitational energy of the collapse. These neutrinos possibly drive ejection of the overlying stellar mantle, whilst the neutron-rich core collapses further to a condensed remnant. Gravitational radiation comes into play only at very late stages of the collapse. All of this implies that neutrino radiation might contribute to the decay of the non-radial oscillations of the collapsing core and the newly formed neutron star, possibly damping out these oscillations much faster than gravitational radiation. In order to obtain a more quantitative answer to the question the effects of neutrino radiation on the non-radial oscillations are examined. The implication is that neutrino radiation, by more rapid damping of the non-radial oscillations of a newly formed neutron star in a supernova explosion, would hinder gravitational radiation and

  14. The University of Texas Cold Neutron Source

    International Nuclear Information System (INIS)

    Uenlue, Kenan; Rios-Martinez, Carlos; Wehring, B.W.

    1994-01-01

    A cold neutron source has been designed, constructed, and tested by the Nuclear Engineering Teaching Laboratory (NETL) at The University of Texas at Austin. The Texas Cold Neutron Source (TCNS) is located in one of the beam ports of the NETL 1-MW TRIGA Mark II research reactor. The main components of the TCNS are a cooled moderator, a heat pipe, a cryogenic refrigerator, and a neutron guide. 80 ml of mesitylene moderator are maintained at about 30 K in a chamber within the reactor graphite reflector by the heat pipe and cryogenic refrigerator. The heat pipe is a 3-m long aluminum tube that contains neon as the working fluid. The cold neutrons obtained from the moderator are transported by a curved 6-m long neutron guide. This neutron guide has a radius of curvature of 300 m, a 50x15 mm cross-section, 58 Ni coating, and is separated into three channels. The TCNS will provide a low-background subthermal neutron beam for neutron capture and scattering research. After the installation of the external portion of the neutron guide, a neutron focusing system and a Prompt Gamma Activation Analysis facility will be set up at the TCNS. ((orig.))

  15. On the fate of superheavy magnetic monopoles in a neutron star

    International Nuclear Information System (INIS)

    Kuzmin, V.A.; Rubakov, V.A.; AN SSSR, Moscow. Inst. Yadernykh Issledovanij)

    1983-02-01

    We propose two possible scenarios of the behaviour of superheavy magnetic monopoles in a neutron star, in which the monopole-antimonopole annihilation rate is sufficiently large to prevent the enormous heating of a neutron star due to the monopole induced neutron decays. We find that the galactic monopole flux of order 10 -16 cm -2 s -1 ster -1 can be compatible with the observational limit on the X-ray luminosity of neutron stars. (author)

  16. The Orbit of X Persei and Its Neutron Star Companion

    Science.gov (United States)

    Delgado-Martí, Hugo; Levine, Alan M.; Pfahl, Eric; Rappaport, Saul A.

    2001-01-01

    We have observed the Be/X-ray pulsar binary system X Per/4U 0352+30 on 61 occasions spanning an interval of 600 days with the PCA instrument on board the Rossi X-Ray Timing Explorer (RXTE). Pulse timing analyses of the 837 s pulsations yield strong evidence for the presence of orbital Doppler delays. We confirm the Doppler delays by using measurements made with the All Sky Monitor (ASM) on RXTE. We infer that the orbit is characterized by a period Porb=250 days, a projected semimajor axis of the neutron star axsini=454 lt-s, a mass function f(M)=1.61 Msolar, and a modest eccentricity e=0.11. The measured orbital parameters, together with the known properties of the classical Be star X Per, imply a semimajor axis a=1.8-2.2 AU and an orbital inclination i~26deg-33deg. We discuss the formation of the system in the context of the standard evolutionary scenario for Be/X-ray binaries. We find that the system most likely formed from a pair of massive progenitor stars and probably involved a quasi-stable and nearly conservative transfer of mass from the primary to the secondary. We find that the He star remnant of the primary most likely had a mass probability of a system like that of X Per forming with an orbital eccentricity e<~0.11. We speculate that there may be a substantial population of neutron stars formed with little or no kick. Finally, we discuss the connected topics of the wide orbit and accretion by the neutron star from a stellar wind.

  17. GRB 130603B: No Compelling Evidence for Neutron Star Merger

    Directory of Open Access Journals (Sweden)

    Shlomo Dado

    2015-01-01

    Full Text Available The near infrared (NIR flare/rebrightening in the afterglow of the short hard gamma ray burst (SHB 130603B measured with the Hubble Space Telescope (HST and an alleged late-time X-ray excess were interpreted as possible evidence of a neutron star merger origin of SHBs. However, the X-ray afterglow that was measured with the Swift XRT and Newton XMM has the canonical behaviour of a synchrotron afterglow produced by a highly relativistic jet. The H-band flux observed with HST 9.41 days after burst is that expected from the measured late-time X-ray afterglow. The late-time flare/rebrightening of the NIR-optical afterglow of SHB 130603B could have been produced also by jet collision with an interstellar density bump. Moreover, SHB plus a kilonova can be produced also by the collapse of a compact star (neutron star, strange star, or quark star to a more compact object due to cooling, loss of angular momentum, or mass accretion.

  18. Accelerator-based pulsed cold neutron source

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Iwasa, Hirokatsu; Kiyanagi, Yoshiaki

    1979-01-01

    An accelerator-based pulsed cold neutron source was constructed. The accelerator is a 35 MeV electron linear accelerator with 1 kW average beam power. The cold neutron beam intensity at a specimen is equivalent to that of a research reactor of 10 14 n/cm 2 .s thermal flux in the case of the quasi-elastic neutron scattering measurements. In spite of some limitations to the universal uses, it has been demonstrated by this facility that the modest capacity accelerator-based pulsed cold neutron source is a highly efficient cold neutron source with low capital investment. Design philosophy, construction details, performance and some operational experiences are described. (author)

  19. Neutron source strength associated with FTR fuel

    International Nuclear Information System (INIS)

    Boroughs, G.L.; Bunch, W.L.; Johnson, D.L.

    1975-01-01

    The study presented shows the important effect of shelf life on the neutron source strength anticipated from fuel irradiated in the FTR. The neutron source strength will be enhanced appreciably by extended shelf lives. High neutron source strengths will also be associated with reprocessed LWR plutonium, which is expected to contain a greater abundance of the higher isotopes. The branching ratio and cross section of 241 Am is an important parameter that needs to be defined more precisely to establish calculated values with greater precision

  20. Pulsed neutron source well logging system

    International Nuclear Information System (INIS)

    Dillingham, M.E.

    1975-01-01

    A pulsed neutron source arrangement is provided in which a sealed cylindrical chamber encloses a rotatable rotor member carrying a plurality of elongated target strips of material which emits neutrons when bombarded with alpha particles emitted by the plurality of source material strips. The rotor may be locked in a so-called ON position by an electromagnetic clutch drive mechanism controllable from the earth's surface so as to permit the making of various types of logs utilizing a continuously emitting neutron source. (Patent Office Record)

  1. Neutron generator tube ion source control

    International Nuclear Information System (INIS)

    Bridges, J.R.

    1982-01-01

    A system is claimed for controlling the output of a neutron generator tube of the deuterium-tritium accelerator type and having an ion source to produce sharply defined pulses of neutrons for well logging use. It comprises: means for inputting a relatively low voltage input control pulse having a leading edge and a trailing edge; means, responsive to the input control pulse, for producing a relatively high voltage ion source voltage pulse after receipt of the input pulse; and means, responsive to the input control pulse, for quenching, after receipt of the input pulse, the ion source control pulse, thereby providing a sharply time defined neutron output from the generator tube

  2. Neutron cooling and cold-neutron sources (1962); Refroidissement des neutrons et sources de neutrons froids (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Jacrot, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Intense cold-neutron sources are useful in studying solids by the inelastic scattering of neutrons. The paper presents a general survey covering the following aspects: a) theoretical considerations put forward by various authors regarding thermalization processes at very low temperatures; b) the experiments that have been carried out in numerous laboratories with a view to comparing the different moderators that can be used; c) the cold neutron sources that have actually been produced in reactors up to the present time, and the results obtained with them. (author) [French] Des sources intenses de neutrons froids sont utiles pour l'etude des solides par diffusion inelastique des neutrons. On presente une revue d'ensemble: a) des considerations theoriques faites par divers auteurs sur les processus de thermalisation a tres basse temperature; b) des experiences faites dans de nombreux laboratoires pour comparer les divers moderateurs possibles; c) des sources de neutrons froids effectivement realisees dans des piles a ce jour, et des resultats obtenus avec ces sources. (auteur)

  3. Pulsed thermal neutron source at the fast neutron generator.

    Science.gov (United States)

    Tracz, Grzegorz; Drozdowicz, Krzysztof; Gabańska, Barbara; Krynicka, Ewa

    2009-06-01

    A small pulsed thermal neutron source has been designed based on results of the MCNP simulations of the thermalization of 14 MeV neutrons in a cluster-moderator which consists of small moderating cells decoupled by an absorber. Optimum dimensions of the single cell and of the whole cluster have been selected, considering the thermal neutron intensity and the short decay time of the thermal neutron flux. The source has been built and the test experiments have been performed. To ensure the response is not due to the choice of target for the experiments, calculations have been done to demonstrate the response is valid regardless of the thermalization properties of the target.

  4. Probing properties of neutron stars with terrestrial nuclear reactions

    International Nuclear Information System (INIS)

    Li Baoan; Chen Liewen; Ko, C.M.; Steiner, Andrew W.; Yong Gaochan

    2006-01-01

    Heavy-ion reactions induced by neutron-rich nuclei provide the unique opportunity in terrestrial laboratories to constrain the nuclear symmetry energy Esym in a broad density range. A conservative constraint, 32(ρ/ρ0)0.7 < Esym(ρ) < 32(ρ/ρ0)1.1, around the nuclear matter saturation density ρ0 has recently been obtained from analyzing the isospin diffusion data within a transport model for intermediate energy heavy-ion reactions. This subsequently puts a stringent constraint on properties of neutron stars, especially their radii and cooling mechanisms

  5. An accelerator based steady state neutron source

    International Nuclear Information System (INIS)

    Burke, R.J.; Johnson, D.L.

    1985-01-01

    Using high current, c.w. linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the Accelerator Based Neutron Research Facility (ABNR) would initially achieve the 10 16 n/cm 2 .s thermal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of $300-450M is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source in most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc. With the development of multi-beam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs

  6. Formation and Evolution of Neutron Star Binaries: Masses of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Lee Chang-Hwan

    2012-02-01

    Full Text Available Neutron star (NS is one of the most interesting astrophysical compact objects for hardronic physics. It is believed that the central density of NS can reach several times the normal nuclear matter density (ρ0. Hence, the inner part of NS is the ultimate testing place for the physics of dense matter. Recently, the mass of NS in a NS-white dwarf (WD binary PSR J1614-2230 has been estimated to be 1.97 ± 0.04M๏ [1]. Since this estimate is based on the observed Shapiro delay, it can give the lower limit of the maximum NS mass and rules out many soft equations of state. On the other hand, all the well-measured NS masses in NS-NS binaries are smaller than 1.5M๏. In this work, by introducing the supercritical accretion during the binary evolution, we propose a possibility of forming higher mass NS in NS-WD binaries. In this scenario, the lifetimes of NS and WD progenitors are significantly different, and NS in NS-WD binary can accrete > 0.5M๏ after NS formation during the giant phase of the progenitor of WD. On the other hand, for the binary system with NS and heavier (> 8M๏ giants, the first-born NS will accrete more from the companion and can collapse into black hole. The only way to avoid the supercritical accretion is that the initial masses of progenitors of NS binary should be very close so that they evolve almost at the same time and don’t have time to accrete after NS formation.

  7. Pulsed neutron source and instruments at neutron facility

    Energy Technology Data Exchange (ETDEWEB)

    Teshigawara, Makoto; Aizawa, Kazuya; Suzuki, Jun-ichi; Morii, Yukio; Watanabe, Noboru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    We report the results of design studies on the optimal target shape, target - moderator coupling, optimal layout of moderators, and neutron instruments for a next generation pulsed spallation source in JAERI. The source utilizes a projected high-intensity proton accelerator (linac: 1.5 GeV, {approx}8 MW in total beam power, compressor ring: {approx}5 MW). We discuss the target neutronics, moderators and their layout. The sources is designed to have at least 30 beam lines equipped with more than 40 instruments, which are selected tentatively to the present knowledge. (author)

  8. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Bailes, M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Barthelmy, S D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bernuzzi, S; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Carullo, G; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Chatziioannou, K; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Dietrich, T; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dudi, R; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Ho, W C G; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hreibi, A; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Kastaun, W; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Larson, S L; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leon, E; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Liu, X; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Marsh, P; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Molina, I; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morisaki, S; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Nagar, A; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, P; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zimmerman, A B; Zucker, M E; Zweizig, J

    2017-10-20

    On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4}  years. We infer the component masses of the binary to be between 0.86 and 2.26  M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60  M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28  deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8}  Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

  9. Colored condensates deep inside neutron stars

    Directory of Open Access Journals (Sweden)

    Blaschke David

    2014-01-01

    Full Text Available It is demonstrated how in the absence of solutions for QCD under conditions deep inside compact stars an equation of state can be obtained within a model that is built on the basic symmetries of the QCD Lagrangian, in particular chiral symmetry and color symmetry. While in the vacuum the chiral symmetry is spontaneously broken, it gets restored at high densities. Color symmetry, however, gets broken simultaneously by the formation of colorful diquark condensates. It is shown that a strong diquark condensate in cold dense quark matter is essential for supporting the possibility that such states could exist in the recently observed pulsars with masses of 2 Mʘ.

  10. Neutronic moderator design for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Charlton, L.A.; Barnes, J.M.; Johnson, J.O.; Gabriel, T.A.

    1998-01-01

    Neutronics analyses are now in progress to support the initial selection of moderator design parameters for the Spallation Neutron Source (SNS). The results of the initial optimization studies involving moderator poison plate location, moderator position, and premoderator performance for the target system are presented in this paper. Also presented is an initial study of the use of a composite moderator to produce a liquid methane like spectrum

  11. Modeling a neutron rich nuclei source

    Energy Technology Data Exchange (ETDEWEB)

    Mirea, M.; Bajeat, O.; Clapier, F.; Ibrahim, F.; Mueller, A.C.; Pauwels, N.; Proust, J. [Institut de Physique Nucleaire, IN2P3/CNRS, 91 - Orsay (France); Mirea, M. [Institute of Physics and Nuclear Engineering, Tandem Lab., Bucharest (Romania)

    2000-07-01

    The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A source of neutron rich nuclei based on the neutron induced fission can be realised using these beams. A theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The model used to determine the fission products takes into account the excitation energy of the target nucleus and the evaporation of prompt neutrons. Results are presented in connection with a converter-target specific geometry. (author000.

  12. Compact neutron generator with nanotube ion source

    Science.gov (United States)

    Chepurnov, A. S.; Ionidi, V. Y.; Ivashchuk, O. O.; Kirsanov, M. A.; Kitsyuk, E. P.; Klenin, A. A.; Kubankin, A. S.; Nazhmudinov, R. M.; Nikulin, I. S.; Oleinik, A. N.; Pavlov, A. A.; Shchagin, A. V.; Zhukova, P. N.

    2018-02-01

    In this letter, we report the observation of fast neutrons generated when a positive acceleration potential is applied to an array of orientated carbon nanotubes, which are used as an ion source. The neutrons with energy of 2.45 MeV are generated as a result of D-D fusion reaction. The dependencies of the neutron yield on the value of the applied potential and residual pressure of deuterium are measured. The proposed approach is planned to be used for the development of compact neutron generators.

  13. Modeling a neutron rich nuclei source

    International Nuclear Information System (INIS)

    Mirea, M.; Bajeat, O.; Clapier, F.; Ibrahim, F.; Mueller, A.C.; Pauwels, N.; Proust, J.; Mirea, M.

    2000-01-01

    The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A source of neutron rich nuclei based on the neutron induced fission can be realised using these beams. A theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The model used to determine the fission products takes into account the excitation energy of the target nucleus and the evaporation of prompt neutrons. Results are presented in connection with a converter-target specific geometry. (authors)

  14. Pulsed neutron sources at KAON

    International Nuclear Information System (INIS)

    Thorson, I.M.; Egelstaff, P.A.; Craddock, M.K.

    1991-01-01

    The proposed KAON Factory facility at TRIUMF consists of a number of synchrotrons and storage rings which offer proton beams of energies between 0.45 and 30 GeV with varying pulse amplitudes, widths and repetition rates. Various possibilities for feeding these beams to a pulsed neutron facility and their potential for future development are examined. The incremental cost of such a pulsed neutron facility is estimated approximately. (author)

  15. Neutron stars in screened modified gravity: Chameleon versus dilaton

    Science.gov (United States)

    Brax, Philippe; Davis, Anne-Christine; Jha, Rahul

    2017-04-01

    We consider the scalar field profile around relativistic compact objects such as neutron stars for a range of modified gravity models with screening mechanisms of the chameleon and Damour-Polyakov types. We focus primarily on inverse power law chameleons and the environmentally dependent dilaton as examples of both mechanisms. We discuss the modified Tolman-Oppenheimer-Volkoff equation and then implement a relaxation algorithm to solve for the scalar profiles numerically. We find that chameleons and dilatons behave in a similar manner and that there is a large degeneracy between the modified gravity parameters and the neutron star equation of state. This is exemplified by the modifications to the mass-radius relationship for a variety of model parameters.

  16. Symmetry energy, unstable nuclei and neutron star crusts

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kei [Kochi University, Department of Natural Science, Kochi (Japan); RIKEN Nishina Center, Saitama (Japan); Oyamatsu, Kazuhiro [RIKEN Nishina Center, Saitama (Japan); Aichi Shukutoku University, Department of Human Informatics, Aichi (Japan)

    2014-02-15

    The phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters. (orig.)

  17. Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers.

    Science.gov (United States)

    Bernuzzi, Sebastiano; Dietrich, Tim; Nagar, Alessandro

    2015-08-28

    In the context of neutron star mergers, we study the gravitational wave spectrum of the merger remnant using numerical relativity simulations. Postmerger spectra are characterized by a main peak frequency f2 related to the particular structure and dynamics of the remnant hot hypermassive neutron star. We show that f(2) is correlated with the tidal coupling constant κ(2)^T that characterizes the binary tidal interactions during the late-inspiral merger. The relation f(2)(κ(2)^T) depends very weakly on the binary total mass, mass ratio, equation of state, and thermal effects. This observation opens up the possibility of developing a model of the gravitational spectrum of every merger unifying the late-inspiral and postmerger descriptions.

  18. Strange Stars: Can Their Crust Reach the Neutron Drip Density?

    Institute of Scientific and Technical Information of China (English)

    Hai Fu; Yong-Feng Huang

    2003-01-01

    The electrostatic potential of electrons near the surface of static strange stars at zero temperature is studied within the frame of the MIT bag model. We find that for QCD parameters within rather wide ranges, if the nuclear crust on the strange star is at a density leading to neutron drip, then the electrostatic potential will be insufficient to establish an outwardly directed electric field, which is crucial for the survival of such a crust. If a minimum gap width of 200 fm is brought in as a more stringent constraint, then our calculations will completely rule out the possibility of such crusts. Therefore, our results argue against the existence of neutron-drip crusts in nature.

  19. Helicity coherence in binary neutron star mergers and nonlinear feedback

    Science.gov (United States)

    Chatelain, Amélie; Volpe, Cristina

    2017-02-01

    Neutrino flavor conversion studies based on astrophysical environments usually implement neutrino mixings, neutrino interactions with matter, and neutrino self-interactions. In anisotropic media, the most general mean-field treatment includes neutrino mass contributions as well, which introduce a coupling between neutrinos and antineutrinos termed helicity or spin coherence. We discuss resonance conditions for helicity coherence for Dirac and Majorana neutrinos. We explore the role of these mean-field contributions on flavor evolution in the context of a binary neutron star merger remnant. We find that resonance conditions can be satisfied in neutron star merger scenarios while adiabaticity is not sufficient for efficient flavor conversion. We analyze our numerical findings by discussing general conditions to have multiple Mikheyev-Smirnov-Wolfenstein-like resonances, in the presence of nonlinear feedback, in astrophysical environments.

  20. Gravitational waves from rotating proto-neutron stars

    International Nuclear Information System (INIS)

    Ferrari, V; Gualtieri, L; Pons, J A; Stavridis, A

    2004-01-01

    We study the effects of rotation on the quasi-normal modes (QNMs) of a newly born proto-neutron star (PNS) at different evolutionary stages, until it becomes a cold neutron star (NS). We use the Cowling approximation, neglecting spacetime perturbations, and consider different models of evolving PNS. The frequencies of the modes of a PNS are considerably lower than those of a cold NS, and are further lowered by rotation; consequently, if QNMs were excited in a sufficiently energetic process, they would radiate waves that could be more easily detectable by resonant-mass and interferometric detectors than those emitted by a cold NS. We find that for high rotation rates, some of the g-modes become unstable via the CFS instability; however, this instability is likely to be suppressed by competing mechanisms before emitting a significant amount of gravitational waves

  1. Neutron shielding for a 252 Cf source

    International Nuclear Information System (INIS)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Eduardo Gallego, Alfredo Lorente

    2006-01-01

    To determine the neutron shielding features of water-extended polyester a Monte Carlo study was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through inelastic collisions and absorption reactions. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide production induced by neutron activation must be considered. In this investigation the Monte Carlo method was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a 252 Cf isotopic neutron source. During calculations a detailed model for the 252 Cf and the shield was utilized. To compare the shielding features of water extended polyester, the calculations were also made for the bare 252 Cf in vacuum, air and the shield filled with water. For all cases the calculated neutron spectra was utilized to determine the ambient equivalent neutron dose at four sites around the shielding. In the case of water extended polyester and water shielding the calculations were extended to include the prompt gamma rays produced during neutron interactions, with this information the Kerma in air was calculated at the same locations where the ambient equivalent neutron dose was determined. (Author)

  2. The spallation neutron source: New opportunities

    Indian Academy of Sciences (India)

    The spallation neutron source (SNS) facility became operational in the spring of ... the opportunity to develop science and instrumentation programs which take ... in telecommunications, manufacturing, transportation, information technology, ...

  3. UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR-BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, E.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, E.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderon Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Chen, Y; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, E.; Clark, J. A.; Cleva, E.; Coccia, E.; Cohadon, P. -E; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garunfi, E.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, R.G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jimenez-Forteza, E.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kusunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Namjun; Kim, W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzar, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Luck, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, E.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, E.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A. L.; Miller, B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Deill, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, E.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passahieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Proxhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Purrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, E. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, D.M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Rudiger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schonbecx, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shaltevi, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Toxmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.G.; van den Brand, J. E. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heuningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, E.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yablong, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    We report here the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave

  4. Anisotropy of neutron sources of Neutron Metrology Laboratory, IRD, Brazil

    International Nuclear Information System (INIS)

    Silva, A.C.F.; Silva, F.S.; Leite, S.P.; Creazolla, P.G; Patrão, K.C.S.; Fonseca, E.S. da; Fernandes, S.S.; Pereira, W.W.

    2017-01-01

    The anisotropy measurements have as main objective to define the emission of the radiation by different angles of an encapsulated neutron source. The measurements were performed using a Long Accuracy Counter (PLC) Detector in the Low Dispersion Room of the LNMRI / IRD with different neutron sources. Each measurement was made using a support for the source, emulated through an arduino system to rotate it. The carrier is marked with a variation of 5 °, ranging from 0 ° to 360 °, for the work in question only half, 0 ° to 180 ° is used for a total of nineteen steps. In this paper three sources of "2"4"1AmBe (α, n) 5.92 GBq (16 Ci) were used, neutron sources having the following dimensions: 105 mm in height and 31 mm in diameter. The PLC was positioned at a distance of 2 meters from the neutron source and has a radius of 15 cm for the detection area. The anisotropy factor of the "2"4"1AmBe source was 17%. The results in this work will focus mainly on the area of radioprotection and studies that will improve the process of routine measurements in laboratories and instrument calibrations. (author)

  5. Thermalization time in a model of neutron star

    Czech Academy of Sciences Publication Activity Database

    Ducomet, B.; Nečasová, Šárka

    2011-01-01

    Roč. 16, č. 3 (2011), s. 801-818 ISSN 1531-3492 R&D Projects: GA ČR GA201/08/0012 Institutional research plan: CEZ:AV0Z10190503 Keywords : comressible * heat conducting fluids * one-dimensional symmetry * neutron star Subject RIV: BA - General Mathematics Impact factor: 0.921, year: 2011 http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=6325

  6. Resonant production of $\\gamma$ rays in jolted cold neutron stars

    CERN Document Server

    Kusenko, A

    1998-01-01

    Acoustic shock waves passing through colliding cold neutron stars can cause repetitive superconducting phase transitions in which the proton condensate relaxes to its equilibrium value via coherent oscillations. As a result, a resonant non-thermal production of gamma rays in the MeV energy range with power up to 10^(52) erg/s can take place during the short period of time before the nuclear matter is heated by the shock waves.

  7. Predicting neutron star spins from twin kHz QPOs

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We briefly review the proposed relations between the frequencies of twin kilohertz quasi-periodic oscillations(kHz QPOs) and the spin frequencies in neutron star low-mass X-ray binaries(NSLMXBs).To test the validity of the proposed models,we estimate the spin frequencies under these theoretical relations and compare them with the measured ones.It seems that magnetohydrodynamic(MHD) oscillations are more promising to account for the kHz QPOs.

  8. Symmetry Energy Effects in the Neutron Star Properties

    Science.gov (United States)

    Alvarez-Castillo, D. E.; Kubis, S.

    2012-12-01

    The functional form of the nuclear symmetry energy has only been determined in a very narrow range of densities. Uncertainties concern both the low as well as the high density behaviour of this function. In this work different shapes of the symmetry energy, consistent with the experimental data, were introduced and their consequences for the crustal properties of neutron stars are presented. The resulting models are in agreement with astrophysical observations.

  9. Naturalness in an Effective Field Theory for Neutron Star Matter

    International Nuclear Information System (INIS)

    Razeira, Moises; Vasconcellos, Cesar A.Z.; Bodmann, Bardo E.J.; Coelho, Helio T.; Dillig, Manfred

    2004-01-01

    High density hadronic matter is studied in a generalized relativistic multi-baryon lagrangian density. By comparing the predictions of our model with estimates obtained within a phenomenological naive dimensional analysis based on the naturalness of the coefficients of the theory, we show that naturalness plays a major role in effective field theory and, in combination with experiment, could represent a relevant criterium to select a model among others in the description of global static properties of neutron stars

  10. On the capture of dark matter by neutron stars

    International Nuclear Information System (INIS)

    Güver, Tolga; Erkoca, Arif Emre; Sarcevic, Ina; Reno, Mary Hall

    2014-01-01

    We calculate the number of dark matter particles that a neutron star accumulates over its lifetime as it rotates around the center of a galaxy, when the dark matter particle is a self-interacting boson but does not self-annihilate. We take into account dark matter interactions with baryonic matter and the time evolution of the dark matter sphere as it collapses within the neutron star. We show that dark matter self-interactions play an important role in the rapid accumulation of dark matter in the core of the neutron star. We consider the possibility of determining an exclusion region of the parameter space for dark matter mass and dark matter interaction cross section with the nucleons as well as dark matter self-interaction cross section, based on the observation of old neutron stars. We show that for a dark matter density of 10 3 GeV/cm 3 and dark matter mass m χ ∼< 10 GeV, there is a potential exclusion region for dark matter interactions with nucleons that is three orders of magnitude more stringent than without self-interactions. The potential exclusion region for dark matter self-interaction cross sections is many orders of magnitude stronger than the current Bullet Cluster limit. For example, for high dark matter density regions, we find that for m χ ∼ 10 GeV when the dark matter interaction cross section with the nucleons ranges from σ χn ∼ 10 −52 cm 2 to σ χn ∼ 10 −57 cm 2 , the dark matter self-interaction cross section limit is σ χχ ∼< 10 −33 cm 2 , which is about ten orders of magnitude stronger than the Bullet Cluster limit

  11. Moderator materials for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Charlton, L.A.

    1999-01-01

    The Spallation Neutron Source (SNS) is a neutron source providing intense neutron fluxes that will be used for performing a large variety of neutron scattering experiments. SNS is to be completed and start operation in 2005. Protons will be accelerated to 1 GeV, stored in an accumulator ring, and then injected into a neutron-producing target. After leaving the target (Hg in the ca/se of SNS), the neutrons are prepared for experiments by first using a moderator to impose energy and width requirements on the neutron pulse. One of the most important ingredients is the moderator material. Four materials that are commonly used and that were considered for use in SNS are liquid hydrogen (L-H 2 ), liquid water (L-H 2 O), liquid methane (L-CH 4 ), and solid methane (S-CH 4 ). The spectra (neutron current versus neutron energy) for these four materials are shown. As may be seen, at low neutron energies ( 4 , which produces up to four times as many neutrons in this energy range as L-H 2 . The problem with the material is the internal storage of energy that can be spontaneously and explosively released. At energies of just above 10 MeV, the most effective moderator material is L-CH 4 . Polymerization problems, however, preclude its use at high powers (again such as in SNS), where the buildup of undesirable materials becomes prohibitive. This is, however, an important energy range for neutron experiments. Preliminary consideration is being given to a composite moderator that contains two adjacent sections, one of L-H 2 and one of L-H 2 O, which produces a spectrum that is very similar to L-CH 4

  12. An Accelerator Neutron Source for BNCT

    International Nuclear Information System (INIS)

    Blue, Thomas E.

    2006-01-01

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were (1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, (2) that the patient treatment time be reasonable, (3) that the proton current required to treat patients in reasonable times be technologically achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally (4) that the treatment be safe for the patients

  13. Spallation neutron source target station issues

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A.

    1996-01-01

    In many areas of physics, materials and nuclear engineering, it is extremely valuable to have a very intense source of neutrons so that the structure and function of materials can be studied. One facility proposed for this purpose is the National Spallation Neutron Source (NSNS). This facility will consist of two parts: (1) a high-energy (∼1 GeV) and high powered (∼ 1 MW) proton accelerator, and (2) a target station which converts the protons to low-energy (≤ 2 eV) neutrons and delivers them to the neutron scattering instruments. This paper deals with the second part, i.e., the design and development of the NSNS target station and the scientifically challenging issues. Many scientific and technical disciplines are required to produce a successful target station. These include engineering, remote handling, neutronics, materials, thermal hydraulics, and instrumentation. Some of these areas will be discussed

  14. An Accelerator Neutron Source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Thomas, E

    2006-03-14

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.

  15. Future opportunities with pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A D [Rutherford Appleton Lab., Chilton (United Kingdom)

    1996-05-01

    ISIS is the world`s most powerful pulsed spallation source and in the past ten years has demonstrated the scientific potential of accelerator-driven pulsed neutron sources in fields as diverse as physics, earth sciences, chemistry, materials science, engineering and biology. The Japan Hadron Project gives the opportunity to build on this development and to further realize the potential of neutrons as a microscopic probe of the condensed state. (author)

  16. Targets for neutron beam spallation sources

    International Nuclear Information System (INIS)

    Bauer, G.S.

    1980-01-01

    The meeting on Targets for Neutron Beam Spallation Sources held at the Institut fuer Festkoerperforschung at KFA Juelich on June 11 and 12, 1979 was planned as an informal get-together for scientists involved in the planning, design and future use of spallation neutron sources in Europe. These proceedings contain the papers contributed to this meeting. For further information see hints under relevant topics. (orig./FKS)

  17. Relativistic structure, stability, and gravitational collapse of charged neutron stars

    International Nuclear Information System (INIS)

    Ghezzi, Cristian R.

    2005-01-01

    Charged stars have the potential of becoming charged black holes or even naked singularities. We present a set of numerical solutions of the Tolman-Oppenheimer-Volkov equations that represents spherical charged compact stars in hydrostatic equilibrium. The stellar models obtained are evolved forward in time integrating the Einstein-Maxwell field equations. We assume an equation of state of a neutron gas at zero temperature. The charge distribution is taken as being proportional to the rest mass density distribution. The set of solutions present an unstable branch, even with charge-to-mass ratios arbitrarily close to the extremum case. We perform a direct check of the stability of the solutions under strong perturbations and for different values of the charge-to-mass ratio. The stars that are in the stable branch oscillate and do not collapse, while models in the unstable branch collapse directly to form black holes. Stars with a charge greater than or equal to the extreme value explode. When a charged star is suddenly discharged, it does not necessarily collapse to form a black hole. A nonlinear effect that gives rise to the formation of a shell of matter (in supermassive stars), is negligible in the present simulations. The results are in agreement with the third law of black hole thermodynamics and with the cosmic censorship conjecture

  18. Evidence for a maximum mass cut-off in the neutron star mass distribution and constraints on the equation of state

    Science.gov (United States)

    Alsing, Justin; Silva, Hector O.; Berti, Emanuele

    2018-04-01

    We infer the mass distribution of neutron stars in binary systems using a flexible Gaussian mixture model and use Bayesian model selection to explore evidence for multi-modality and a sharp cut-off in the mass distribution. We find overwhelming evidence for a bimodal distribution, in agreement with previous literature, and report for the first time positive evidence for a sharp cut-off at a maximum neutron star mass. We measure the maximum mass to be 2.0M⊙ sharp cut-off is interpreted as the maximum stable neutron star mass allowed by the equation of state of dense matter, our measurement puts constraints on the equation of state. For a set of realistic equations of state that support >2M⊙ neutron stars, our inference of mmax is able to distinguish between models at odds ratios of up to 12: 1, whilst under a flexible piecewise polytropic equation of state model our maximum mass measurement improves constraints on the pressure at 3 - 7 × the nuclear saturation density by ˜30 - 50% compared to simply requiring mmax > 2M⊙. We obtain a lower bound on the maximum sound speed attained inside the neutron star of c_s^max > 0.63c (99.8%), ruling out c_s^max c/√{3} at high significance. Our constraints on the maximum neutron star mass strengthen the case for neutron star-neutron star mergers as the primary source of short gamma-ray bursts.

  19. Dragging of inertial frames inside the rotating neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Chandrachur; Modak, Kamakshya Prasad; Bandyopadhyay, Debades, E-mail: chandrachur.chakraborty@saha.ac.in, E-mail: kamakshya.modak@saha.ac.in [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India)

    2014-07-20

    We derive the exact frame-dragging rate inside rotating neutron stars. This formula is applied to show that the frame-dragging rate monotonically decreases from the center to the surface of the neutron star along the pole. In the case of the frame-dragging rate along the equatorial distance, it decreases initially away from the center, becomes negligibly small well before the surface of the neutron star, rises again, and finally approaches to a small value at the surface. The appearance of a local maximum and minimum in this case is the result of the dependence of frame-dragging frequency on the distance and angle. Moving from the equator to the pole, it is observed that this local maximum and minimum in the frame-dragging rate along the equator disappear after crossing a critical angle. It is also noted that the positions of the local maximum and minimum of the frame-dragging rate along the equator depend on the rotation frequency and central energy density of a particular pulsar.

  20. Neutronic performance issues for the Spallation Neutron Source moderators

    International Nuclear Information System (INIS)

    Iverson, E.B.; Murphy, B.D.

    2001-01-01

    We continue to develop the neutronic models of the Spallation Neutron Source target station and moderators in order to better predict the neutronic performance of the system as a whole and in order to better optimize that performance. While we are not able to say that every model change leads to more intense neutron beams being predicted, we do feel that such changes are advantageous in either performance or in the accuracy of the prediction of performance. We have computationally and experimentally studied the neutronics of hydrogen-water composite moderators such as are proposed for the SNS Project. In performing these studies, we find that the composite moderator, at least in the configuration we have examined, does not provide performance characteristics desirable for the instruments proposed and being designed for this neutron scattering facility. The pulse width as a function of energy is significantly broader than for other moderators, limiting attainable resolution-bandwidth combinations. Furthermore, there is reason to expect that higher-energy (0.1-1 eV) applications will be significantly impacted by bimodal pulse shapes requiring enormous effort to parameterize. As a result of these studies, we have changed the SNS design, and will not use a composite moderator at this time. We have analyzed the depletion of a gadolinium poison plate in a hydrogen moderator at the Spallation Neutron Source, and found that conventional poison thicknesses will be completely unable to last the desired component lifetime of three operational years. A poison plate 300-600 μm thick will survive for the required length of time, but will somewhat degrade the intensity (by as much as 15% depending on neutron energy) and the consistency of the neutron source performance. Our results should scale fairly easily to other moderators on this or any other spallation source. While depletion will be important for all highly-absorbing materials in high-flux regions, we feel it likely that

  1. Irradiation facilities at the advanced neutron source

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Neutron Source (ANS) is a facility, centered around a new 330MW(f) heavy-water cooled and reflected research reactor, proposed for construction at Oak Ridge. The main scientific justification for the new source is the United States' need for increased capabilities in neutron scattering and other neutron beam research, but the technical objectives of the project also cater for the need to replace the irradiation facilities at the aging High Flux Isotope Reactor and to provide other research capabilities to the scientific community. This document provides a description of the ANS facilities

  2. An advanced fusion neutron source facility

    International Nuclear Information System (INIS)

    Smith, D.L.

    1992-01-01

    Accelerator-based 14-MeV-neutron sources based on modifications of the original Fusion Materials Irradiation Facility are currently under consideration for investigating the effects of high-fluence high-energy neutron irradiation on fusion-reactor materials. One such concept for a D-Li neutron source is based on recent advances in accelerator technology associated with the Continuous Wave Deuterium Demonstrator accelerator under construction at Argonne National Laboratory, associated superconducting technology, and advances in liquid-metal technology. In this paper a summary of conceptual design aspects based on improvements in technologies is presented

  3. Focused Study of Thermonuclear Bursts on Neutron Stars

    Science.gov (United States)

    Chenevez, Jérôme

    2009-05-01

    X-ray bursters form a class of Low Mass X-Ray Binaries where accreted material from a donor star undergoes rapid thermonuclear burning in the surface layers of a neutron star. The flux released can temporarily exceed the Eddington limit and drive the photosphere to large radii. Such photospheric radius expansion bursts likely eject nuclear burning ashes into the interstellar medium, and may make possible the detection of photoionization edges. Indeed, theoretical models predict that absorption edges from 58Fe at 9.2 keV, 60Zn and 62Zn at 12.2 keV should be detectable by the future missions Simbol-X and NuSTAR. A positive detection would thus probe the nuclear burning as well as the gravitational redshift from the neutron star. Moreover, likely observations of atomic X-ray spectral components reflected from the inner accretion disk have been reported. The high spectral resolution capabilities of the focusing X-ray telescopes may therefore make possible to differentiate between the potential interpretations of the X-ray bursts spectral features.

  4. Type II critical phenomena of neutron star collapse

    International Nuclear Information System (INIS)

    Noble, Scott C.; Choptuik, Matthew W.

    2008-01-01

    We investigate spherically symmetric, general relativistic systems of collapsing perfect fluid distributions. We consider neutron star models that are driven to collapse by the addition of an initially 'ingoing' velocity profile to the nominally static star solution. The neutron star models we use are Tolman-Oppenheimer-Volkoff solutions with an initially isentropic, gamma law equation of state. The initial values of (1) the amplitude of the velocity profile, and (2) the central density of the star, span a parameter space, and we focus only on that region that gives rise to type II critical behavior, wherein black holes of arbitrarily small mass can be formed. In contrast to previously published work, we find that--for a specific value of the adiabatic index (Γ=2)--the observed type II critical solution has approximately the same scaling exponent as that calculated for an ultrarelativistic fluid of the same index. Further, we find that the critical solution computed using the ideal-gas equations of state asymptotes to the ultrarelativistic critical solution.

  5. Collapse of differentially rotating neutron stars and cosmic censorship

    International Nuclear Information System (INIS)

    Giacomazzo, Bruno; Rezzolla, Luciano; Stergioulas, Nikolaos

    2011-01-01

    We present new results on the dynamics and gravitational-wave emission from the collapse of differentially rotating neutron stars. We have considered a number of polytropic stellar models having different values of the dimensionless angular momentum J/M 2 , where J and M are the asymptotic angular momentum and mass of the star, respectively. For neutron stars with J/M 2 2 >1, i.e. 'supra-Kerr' models, on the other hand, we were not able to find models that are dynamically unstable and all of the computed supra-Kerr models were found to be far from the stability threshold. For these models a gravitational collapse is possible only after a very severe and artificial reduction of the pressure, which then leads to a torus developing nonaxisymmetric instabilities and eventually contracting to a stable axisymmetric stellar configuration. While this does not exclude the possibility that a naked singularity can be produced by the collapse of a differentially rotating star, it also suggests that cosmic censorship is not violated and that generic conditions for a supra-Kerr progenitor do not lead to a naked singularity.

  6. The GKSS cold neutron source

    International Nuclear Information System (INIS)

    Knop, W.; Wedderien, T.; Krull, W.

    1995-01-01

    The FRG-1 research reactor, in operation since 1958 at 5 MW power, is upgraded and refurbished many times to follow the changing demands on safe operation and the today needs for scientific research. This requires during the lifetime of the reactor many measures to follow these demands. Within the last years many additional activities have been made to overcome the ageing of the experiments, to change the experimental facilities and to increase the neutron flux and adapt the neutron spectrum to ensure good scientific utilization of the research reactor for the next 15 to 20 years. (orig./HP)

  7. Large area solid target neutron source

    International Nuclear Information System (INIS)

    Crawford, J.C.; Bauer, W.

    1974-01-01

    A potentially useful neutron source may result from the combination of a solid deuterium-tritium loaded target with the large area, high energy ion beams from ion sources being developed for neutral beam injection. The resulting neutron source would have a large radiating area and thus produce the sizable experimental volume necessary for future studies of bulk and synergistic surface radiation effects as well as experiments on engineering samples and small components. With a 200 keV D + T + beam and 40 kW/cm 2 power dissipation on a 200 cm 2 target spot, a total neutron yield of about 4 x 10 15 n/sec may be achieved. Although the useable neutron flux from this source is limited to 1 to 2 x 10 13 n/cm 2 /sec, this flux can be produced 3 cm in front of the target and over about 300 cm 3 of experimental volume. Problems of total power dissipation, sputtering, isotopic flushing and thermal dissociation are reviewed. Neutron flux profiles and potential experimental configurations are presented and compared to other neutron source concepts. (U.S.)

  8. Testing the Formation Scenarios of Binary Neutron Star Systems with Measurements of the Neutron Star Moment of Inertia

    Science.gov (United States)

    Newton, William G.; Steiner, Andrew W.; Yagi, Kent

    2018-03-01

    Two low-mass (M slope of the nuclear symmetry energy L. We find that, if either J0737-3039B or the J1756-2251 companion were formed in a US-SN, no more than 0.06 M ⊙ could have been lost from the progenitor core. Furthermore, a measurement of the moment of inertia of J0737-3039A to within 10% accuracy can discriminate between formation scenarios and, given current constraints on the predicted core mass loss, potentially rule them out. Advanced LIGO can potentially measure the neutron star tidal polarizability to equivalent accuracy which, using the I-Love-Q relations, would obtain similar constraints on the formation scenarios. Such information would help constrain important aspects of binary evolution used for population synthesis predictions of the rate of binary neutron star mergers and resulting electromagnetic and gravitational wave signals. Further progress needs to be made in modeling the core-collapse process that leads to low-mass neutron stars, particularly in making robust predictions for the mass loss from the progenitor core.

  9. Mass measurements of neutron rich isotopes in the Fe region and electron capture processes in neutron star crusts

    International Nuclear Information System (INIS)

    Estrade, Alfredo; Matos, M.; Schatz, Hendrik; Amthor, A.M.; Beard, Mary; Brown, Edward; Bazin, D.; Becerril, A.; Elliot, T.; Gade, A.; Galaviz, D.; Gupta, Sanjib; Hix, William Raphael; Lau, Rita; Moeller, Peter; Pereira, J.; Portillo, M.; Rogers, A.M.; Shapira, Dan; Smith, E.; Stolz, A.; Wallace, M.; Wiescher, Michael

    2011-01-01

    Experimental knowledge of nuclear masses of exotic nuclei is important for understanding nuclear structure far from the valley of stability, and as a direct input into astrophysical models. Electron capture processes in the crust of accreting neutron stars have been proposed as a heat source that can affect the thermal structure of the star. Nuclear masses of very neutron-rich nuclides are necessary inputs to model the electron capture process. The time-of-flight (TOF) mass measurement technique allows measurements on very short-lived nuclei. It has been effectively applied using the fast fragment beams produced at the National Superconducting Cyclotron Lab (NSCL) to reach masses very far from stability. Measurements were performed for neutron-rich isotopes in the region of the N=32 and N=40 subshells, which coincides with the mass range of carbon superburst ashes. We discuss reaction network calculations performed to investigate the impact of our new measurements and to compare the effect of using different global mass models in the calculations. It is observed that the process is sensitive to the differences in the odd-even mass staggering predicted by the mass models, and our new result for 66Mn has a significant impact on the distribution of heat sources in the crust.

  10. Gravitational waves and neutrino emission from the merger of binary neutron stars.

    Science.gov (United States)

    Sekiguchi, Yuichiro; Kiuchi, Kenta; Kyutoku, Koutarou; Shibata, Masaru

    2011-07-29

    Numerical simulations for the merger of binary neutron stars are performed in full general relativity incorporating a finite-temperature (Shen's) equation of state (EOS) and neutrino cooling for the first time. It is found that for this stiff EOS, a hypermassive neutron star (HMNS) with a long lifetime (≫10  ms) is the outcome for the total mass ≲3.0M(⊙). It is shown that the typical total neutrino luminosity of the HMNS is ∼3-8×10(53)  erg/s and the effective amplitude of gravitational waves from the HMNS is 4-6×10(-22) at f=2.1-2.5  kHz for a source distance of 100 Mpc. We also present the neutrino luminosity curve when a black hole is formed for the first time.

  11. Neutron star model atmospheres - a comparison with MXB 1728-34

    International Nuclear Information System (INIS)

    Foster, A.J.; Fabian, A.C.; Ross, R.R.

    1986-01-01

    A detailed comparison between the X-ray spectra calculated for model atmospheres in neutron stars and the observed spectra of X-ray bursts is presented. Comptonization and free - free absorption and emission processes are taken into account, as are the effects of iron in its last three states of ionization. Two types of model are formulated: (i) a constant density atmosphere and (ii) an atmosphere in approximate hydrostatic equilibrium. The models have been fitted to X-ray burst data obtained with EXOSAT from the source MXB 1728-34. It is possible simultaneously to fit a sub-Eddington burst luminosity, a neutron star radius consistent with current equations of state, and a distance in agreement with optical estimates. (author)

  12. Distinguishing Newly Born Strange Stars from Neutron Stars with g-Mode Oscillations

    International Nuclear Information System (INIS)

    Fu Weijie; Wei Haiqing; Liu Yuxin

    2008-01-01

    The gravity-mode (g-mode) eigenfrequencies of newly born strange quark stars (SQSs) and neutron stars (NSs) are studied. It is found that the eigenfrequencies in SQSs are much lower than those in NSs by almost 1 order of magnitude, since the components of a SQS are all extremely relativistic particles while nucleons in a NS are nonrelativistic. We therefore propose that newly born SQSs can be distinguished from the NSs by detecting the eigenfrequencies of the g-mode pulsations of supernovae cores through gravitational radiation by LIGO-class detectors

  13. Neutron production enhancements for the Intense Pulsed Neutron Source.

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, E. B.

    1999-01-04

    The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the US dedicated to materials research. It has operated for sixteen years, and in that time has had a very prolific record concerning the development of new target and moderator systems for pulsed spallation sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power. The development of new target and moderator systems is by no means stagnant at IPNS. They are presently considering numerous enhancements to the target and moderators that offer prospects for increasing the useful neutron production by substantial factors. Many of these enhancements could be combined, although their combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program of study concerning these improvements and their possible combination and implementation. Moreover, any improvements accomplished at IPNS would immediately increase the performance of IPNS instruments.

  14. Neutron production enhancements for the Intense Pulsed Neutron Source

    International Nuclear Information System (INIS)

    Iverson, E. B.

    1999-01-01

    The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the US dedicated to materials research. It has operated for sixteen years, and in that time has had a very prolific record concerning the development of new target and moderator systems for pulsed spallation sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power. The development of new target and moderator systems is by no means stagnant at IPNS. They are presently considering numerous enhancements to the target and moderators that offer prospects for increasing the useful neutron production by substantial factors. Many of these enhancements could be combined, although their combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program of study concerning these improvements and their possible combination and implementation. Moreover, any improvements accomplished at IPNS would immediately increase the performance of IPNS instruments

  15. Self-similar Hot Accretion Flow onto a Neutron Star

    Science.gov (United States)

    Medvedev, Mikhail V.; Narayan, Ramesh

    2001-06-01

    We consider hot, two-temperature, viscous accretion onto a rotating, unmagnetized neutron star. We assume Coulomb coupling between the protons and electrons, as well as free-free cooling from the electrons. We show that the accretion flow has an extended settling region that can be described by means of two analytical self-similar solutions: a two-temperature solution that is valid in an inner zone, r~102.5. In both zones the density varies as ρ~r-2 and the angular velocity as Ω~r-3/2. We solve the flow equations numerically and confirm that the analytical solutions are accurate. Except for the radial velocity, all gas properties in the self-similar settling zone, such as density, angular velocity, temperature, luminosity, and angular momentum flux, are independent of the mass accretion rate; these quantities do depend sensitively on the spin of the neutron star. The angular momentum flux is outward under most conditions; therefore, the central star is nearly always spun down. The luminosity of the settling zone arises from the rotational energy that is released as the star is braked by viscosity, and the contribution from gravity is small; hence, the radiative efficiency, η=Lacc/Mc2, is arbitrarily large at low M. For reasonable values of the gas adiabatic index γ, the Bernoulli parameter is negative; therefore, in the absence of dynamically important magnetic fields, a strong outflow or wind is not expected. The flow is also convectively stable but may be thermally unstable. The described solution is not advection dominated; however, when the spin of the star is small enough, the flow transforms smoothly to an advection-dominated branch of solution.

  16. PALFA Discovery of a Highly Relativistic Double Neutron Star Binary

    Science.gov (United States)

    Stovall, K.; Freire, P. C. C.; Chatterjee, S.; Demorest, P. B.; Lorimer, D. R.; McLaughlin, M. A.; Pol, N.; van Leeuwen, J.; Wharton, R. S.; Allen, B.; Boyce, M.; Brazier, A.; Caballero, K.; Camilo, F.; Camuccio, R.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Ferdman, R. D.; Hessels, J. W. T.; Jenet, F. A.; Kaspi, V. M.; Knispel, B.; Lazarus, P.; Lynch, R.; Parent, E.; Patel, C.; Pleunis, Z.; Ransom, S. M.; Scholz, P.; Seymour, A.; Siemens, X.; Stairs, I. H.; Swiggum, J.; Zhu, W. W.

    2018-02-01

    We report the discovery and initial follow-up of a double neutron star (DNS) system, PSR J1946+2052, with the Arecibo L-Band Feed Array pulsar (PALFA) survey. PSR J1946+2052 is a 17 ms pulsar in a 1.88 hr, eccentric (e = 0.06) orbit with a ≳1.2 M ⊙ companion. We have used the Jansky Very Large Array to localize PSR J1946+2052 to a precision of 0.″09 using a new phase binning mode. We have searched multiwavelength catalogs for coincident sources but did not find any counterparts. The improved position enabled a measurement of the spin period derivative of the pulsar (\\dot{P}=9+/- 2× {10}-19); the small inferred magnetic field strength at the surface (B S = 4 × 109 G) indicates that this pulsar has been recycled. This and the orbital eccentricity lead to the conclusion that PSR J1946+2052 is in a DNS system. Among all known radio pulsars in DNS systems, PSR J1946+2052 has the shortest orbital period and the shortest estimated merger timescale, 46 Myr; at that time it will display the largest spin effects on gravitational-wave waveforms of any such system discovered to date. We have measured the advance of periastron passage for this system, \\dot{ω }=25.6+/- 0.3 \\deg {yr}}-1, implying a total system mass of only 2.50 ± 0.04 M ⊙, so it is among the lowest-mass DNS systems. This total mass measurement combined with the minimum companion mass constrains the pulsar mass to ≲1.3 M ⊙.

  17. New neutron imaging using pulsed sources. Characteristics of a pulsed neutron source and principle of pulsed neutron imaging

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki

    2012-01-01

    Neutron beam is one of important tools to obtain the transmission image of an object. Until now, steady state neutron sources such as reactors are mainly used for this imaging purpose. Recently, it has been demonstrated that pulsed neutron imaging based on accelerator neutron sources can provide a real-space distribution of physical information of materials such as crystallographic structure, element, temperature, hydrogen bound state, magnetic field and so on, by analyzing wavelength dependent transmission spectrum, which information cannot be observed or difficult to obtain with a traditional imaging method using steady state neutrons. Here, characteristics of the pulsed neutron source and principle of the pulsed neutron imaging are explained as a basic concept of the new method. (author)

  18. Advanced Neutron Source: The users' perspective

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1990-01-01

    User experiments will cover fields such as activation analysis of pollutants, irradiation of materials for the fusion program, and neutron scattering studies of materials as diverse as viruses, aerospace composites, and superconductors. Production capabilities must also be provided for the production of isotopes, especially of transuranic elements. The different ways in which these research areas and their required infrastructure influence the design of the Advanced Neutron Source will be the subject of this paper

  19. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C.

    2003-08-01

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  20. Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C G

    2003-08-15

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  1. Pulsed neutron source well logging system

    International Nuclear Information System (INIS)

    Dillingham, M.E.

    1975-01-01

    A pulsed neutron source with a chamber containing a plurality of alpha emitting strips and beryllium targets coaxially mounted is described. A pulsed source is provided by rotation of the target to on-off positions along with electromagnetic and magnetic devices for positive locking and rotation. (U.S.)

  2. On hard X-ray spectra of accreting neutron stars

    International Nuclear Information System (INIS)

    Zheleznyakov, V.V.

    1982-01-01

    Formation of the spectra of X-ray pulsars and gamma bursters is investigated. Interpretation of a hard X-ray spectrum of pulsars containing cyclotron lines is feasible on the basis of an isothermal model of a polar spot heated due to acccretion to a neutron star. It has been ascertained that in the regions responsible for the formation of continuum radiation and lines the mode polarization is determined by a magnetized vacuum rather than by a plasma. Bearing this in mind, the influence of the magnetic field of a star on the wide wings of the cyclotron line and on its depth is discussed. The part played by the accreting column in the case of strong accretion (approx. equal to 10 19 el cm -3 ) needed for long sustaining of the high level of X-rays from a neutron star-pulsar is studied. There occur the gaps in spectrum at frequencies close to the electron gyro-frequency and its harmonics due to the screening of the hot spot by the opaque gyro-resonant layer located within the accreting column. These gaps ensure the formation of cyclotron lines in absorption irrespective of the presence of such lines in the X-ray spectrum of a polar hot spot. (orig./WL)

  3. Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: New Life for Pulsar Glitch Models

    Science.gov (United States)

    Watanabe, Gentaro; Pethick, C. J.

    2017-08-01

    Calculations of the effects of band structure on the neutron superfluid density in the crust of neutron stars made under the assumption that the effects of pairing are small [N. Chamel, Phys. Rev. C 85, 035801 (2012)] lead to moments of inertia of superfluid neutrons so small that the crust alone is insufficient to account for the magnitude of neutron star glitches. Inspired by earlier work on ultracold atomic gases in an optical lattice, we investigate fermions with attractive interactions in a periodic lattice in the mean-field approximation. The effects of band structure are suppressed when the pairing gap is of order or greater than the strength of the lattice potential. By applying the results to the inner crust of neutron stars, we conclude that the reduction of the neutron superfluid density is considerably less than previously estimated and, consequently, it is premature to rule out models of glitches based on neutron superfluidity in the crust.

  4. Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: New Life for Pulsar Glitch Models.

    Science.gov (United States)

    Watanabe, Gentaro; Pethick, C J

    2017-08-11

    Calculations of the effects of band structure on the neutron superfluid density in the crust of neutron stars made under the assumption that the effects of pairing are small [N. Chamel, Phys. Rev. C 85, 035801 (2012)PRVCAN0556-2813] lead to moments of inertia of superfluid neutrons so small that the crust alone is insufficient to account for the magnitude of neutron star glitches. Inspired by earlier work on ultracold atomic gases in an optical lattice, we investigate fermions with attractive interactions in a periodic lattice in the mean-field approximation. The effects of band structure are suppressed when the pairing gap is of order or greater than the strength of the lattice potential. By applying the results to the inner crust of neutron stars, we conclude that the reduction of the neutron superfluid density is considerably less than previously estimated and, consequently, it is premature to rule out models of glitches based on neutron superfluidity in the crust.

  5. Monitoring Chandra Observations of the Quasi-persistent Neutron Star X-Ray Transient MXB 1659-29 in Quiescence: The Cooling Curve of the Heated Neutron Star Crust

    NARCIS (Netherlands)

    Wijnands, R.A.D.; Homan, J.; Miller, J.M.; Lewin, W.H.G.

    2004-01-01

    We have observed the quasi-persistent neutron star X-ray transient and eclipsing binary MXB 1659-29 in quiescence on three occasions with Chandra. The purpose of our observations was to monitor the quiescent behavior of the source after its last prolonged (~2.5 yr) outburst that ended in 2001

  6. Signatures of Heavy Element Production in Neutron Star Mergers

    Science.gov (United States)

    Barnes, Jennifer

    2018-06-01

    Compact object mergers involving at least one neutron star have long been theorized to be sites of astrophysical nucleosynthesis via rapid neutron capture (the r-process). The observation in light and gravitational waves of the first neutron star merger (GW1701817) this past summer provided a stunning confirmation of this theory. Electromagnetic emission powered by the radioactive decay of freshly synthesized nuclei from mergers encodes information about the composition burned by the r-process, including whether a particular merger event synthesized the heaviest nuclei along the r-process path, or froze out at lower mass number. However, efforts to model the emission in detail must still contend with many uncertainties. For instance, the uncertain nuclear masses far from the valley of stability influence the final composition burned by the r-process, as will weak interactions operating in the merger’s immediate aftermath. This in turn can affect the color electromagnetic emission. Understanding the details of these transients’ spectra will also require a detailed accounting the electronic transitions of r-process elements and ions, in order to identify the strong transitions that underlie spectral formation. This talk will provide an overview of our current understanding of radioactive transients from mergers, with an emphasis on the role of experiment in providing critical inputs for models and reducing uncertainty.

  7. Gravitational wave content and stability of uniformly, rotating, triaxial neutron stars in general relativity.

    Science.gov (United States)

    Tsokaros, Antonios; Ruiz, Milton; Paschalidis, Vasileios; Shapiro, Stuart L; Baiotti, Luca; Uryū, Kōji

    2017-06-15

    Targets for ground-based gravitational wave interferometers include continuous, quasiperiodic sources of gravitational radiation, such as isolated, spinning neutron stars. In this work, we perform evolution simulations of uniformly rotating, triaxially deformed stars, the compressible analogs in general relativity of incompressible, Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave emission. We employ five models, both normal and supramassive, and track their evolution with different grid setups and resolutions, as well as with two different evolution codes. We find that all models are dynamically stable and produce a strain that is approximately one-tenth the average value of a merging binary system. We track their secular evolution and find that all our stars evolve toward axisymmetry, maintaining their uniform rotation, rotational kinetic energy, and angular momentum profiles while losing their triaxiality.

  8. Cold source vessel development for the advanced neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.T.; Lucas, A.T. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory (ORNL), will be a user-oriented neutron research facility that will produce the most intense flux of neutrons in the world. Among its many scientific applications, the productions of cold neutrons is a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410 mm diameter sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design are being performed with multi-dimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This paper presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that will be used to verify the final design.

  9. Design of a linear neutron source

    International Nuclear Information System (INIS)

    Buzarbaruah, N.; Dutta, N.J.; Bhardwaz, J.K.; Mohanty, S.R.

    2015-01-01

    Highlights: • This paper reports the design of a linear neutron source based on inertial electrostatic confinement fusion scheme. • The voltage and current that is to be applied to the grid is computed theoretically. • Neutron production rate is theoretically estimated and found to be of the order of 10 7 –10 8 neutrons/s. • Electric potential distribution and ion trajectories are studied using SIMION code. • Optimized condition for the inner grid transparency has been found out. - Abstract: In this paper, we present the design of a linear neutron source based on the concept of inertial electrostatic confinement fusion. The source mainly comprises of a concentric coaxial cylindrical grid assembly housed inside a double walled cylindrical vacuum chamber, a gas injection system, a high voltage feedthrough and a high voltage negative polarity power supply. The inner grid will be kept at a high negative potential with respect to the outer grid that will be grounded. The effect of grid transparency on electric potential distribution and ion trajectories has been studied using SIMION. A diffuse deuterium plasma will be initially created by making filament discharge and subsequently, on application of high negative voltage to the inner grid, deuterons will be accelerated towards the axis of the device. These deuterons will oscillate in the negative potential and consequently fuse in between the grids to produce neutrons. This source is expected to produce 10 7 –10 8 neutrons/s. The proposed linear neutron source will be operated both in the continuous and pulse modes and it will be utilized for a few near term applications namely fusion reactor material studies and explosive detection

  10. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  11. 10 CFR 39.55 - Tritium neutron generator target sources.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target....77. (b) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg...

  12. The cold neutron source in DR 3

    International Nuclear Information System (INIS)

    Jensen, K.; Leth, j.A.

    1980-09-01

    A description of the cold neutron source in DR 3 is given. The moderator of the cold neutron source is supercritical hydrogen at about 30degK and 15 bar abs. The necessary cooling capacity is supplied by two Philips Stirling B20 cryogenerators. The hydrogen is circulated between the cryogenerators and the in-pile moderator chamber by small fans. The safety of the facility is based on the use of triple containment preventing contact between hydrogen and air. The triple containment is achieved by enclosing the high vacuum system, surrounging the hydrogen system, in a helium blanket. The achieved spectrum of the thermal neutron flux and the gain factor are given as well as the experience from more than 5 years of operation. Finally some work on extension of the facility to operate two cold sources is reported. (author)

  13. Development of cold neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Oong; Cho, M. S.; Park, K. N. and others

    1999-05-01

    The purpose of this study is to develop the CNS facility in Hanaro to extend the scope of the neutron utilization and to carry out the works impossible by thermal neutrons. According to the project schedule, the establishment of the CNS concept and the basic design are performed in the phase 1, and the elementary technologies for basic design will be developed in the phase 2. Finally in the phase 3, the design of CNS will be completed, and the fabrication, the installation will be ended and then the development plan of spectrometers will be decided to establish the foothold to carry out the basic researches. This study is aimed to produce the design data and utilize them in the future basic and detail design, which include the estimation and the measurement of the heat load, the code development for the design of the in pile assembly and the heat removal system, the measurement of the shape of the CN hole, the performance test of thermosiphon and the concept of the general layout of the whole system etc.. (author)

  14. Constraining the physics of the r-mode instability in neutron stars with X-ray and ultraviolet observations

    NARCIS (Netherlands)

    Haskell, B.; Degenaar, N.; Ho, W.C.G.

    2012-01-01

    Rapidly rotating neutron stars in low-mass X-ray binaries may be an interesting source of gravitational waves (GWs). In particular, several modes of stellar oscillation may be driven unstable by GW emission, and this can lead to a detectable signal. Here we illustrate how current X-ray and

  15. The optical/ultraviolet excess of isolated neutron stars in the resonant cyclotron scattering model

    Science.gov (United States)

    Tong, Hao; Xu, Ren-Xin; Song, Li-Ming

    2011-12-01

    X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.

  16. Neutron spectra characteristics for the intense neutron source, INS

    International Nuclear Information System (INIS)

    Battat, M.; Dierckx, R.; Emigh, C.R.

    1977-01-01

    The Intense Neutron Source, INS, facility is presently under construction at the Los Alamos Scientific Laboratory. Its purpose is to provide a broad base for research work related to the radiation effects produced by 14-MeV neutrons from a D-T burn of a fusion reactor. The INS facility produces a D-T burn-like reaction from the collision of an intense tritium-ion beam with a supersonic jet target of deuterium gas. The reaction produces a typical D-T 14-MeV neutron spectrum. By adding a fission blanket surrounding the D-T ''burn,'' the neutron spectral shape may be tailored to match almost perfectly the anticipated first-wall spectra from presently proposed fusion reactors. With a blanket in place, the total production of neutrons can be as large as 3 x 10 16 n/s and experimental volumes of the order of 1000 cm 3 can be available at flux levels greater than 0.6 x 10 14 n/cm 2 s

  17. Neutrino opacities in kaon condensation and evolution of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Muto, Takumi [Chiba Institute of Technology, Dept. of Physics, Narashino, Chiba (Japan); Yasuhira, Masatomi [Kyoto Univ., Yukawa Institute for Theoretical Physics, Kyoto (Japan); Tatsumi, Toshitaka [Kyoto Univ., Dept. of Physics, Kyoto (Japan); Iwamoto, Naoki [Kagawa Univ., Faculty of Engineering, Takamatsu, Kagawa (Japan)

    2002-09-01

    The neutrino mean free paths are obtained in kaon condensates realized from hot neutron-star matter. Kaon-induced neutrino absorption processes (KA), {nu}{sub e}N {yields} e{sup -}N (N stands for the nucleon), which are unique in the presence of kaon condensates, are mainly considered in nondegenerate neutrino case. The mean free paths for the KA processes are compared with the neutrino scatterings (S), {nu}{sub e}N {yields} {nu}{sub e}N. It is shown that the mean free paths for KA are shorter than the ordinary two-nucleon processes, {nu}{sub e}nN {yields} e{sup -}pN by several orders of magnitude when the temperature is not very high. However, the scattering processes have a dominant contribution to the neutrino opacities as compared with KA, so that KA has a minor effect on the thermal and dynamical evolution of protoneutron stars. (author)

  18. Statistical approach to thermal evolution of neutron stars

    International Nuclear Information System (INIS)

    Beznogov, M V; Yakovlev, D G

    2015-01-01

    Studying thermal evolution of neutron stars (NSs) is one of a few ways to investigate the properties of superdense matter in their cores. We study the cooling of isolated NSs (INSs) and deep crustal heating of transiently accreting NSs in X-ray transients (XRTs, binary systems with low-mass companions). Currently, nearly 50 of such NSs are observed, and one can apply statistical methods to analyze the whole dataset. We propose a method for such analysis based on thermal evolution theory for individual stars and on averaging the results over NS mass distributions. We calculate the distributions of INSs and accreting NSs (ANSs) in XRTs over cooling and heating diagrams respectively. Comparing theoretical and observational distributions one can infer information on physical properties of superdense matter and on mass distributions of INSs and ANSs. (paper)

  19. Radioactive source recovery program responses to neutron source emergencies

    International Nuclear Information System (INIS)

    Dinehart, S.M.; Hatler, V.A.; Gray, D.W.; Guillen, A.D.

    1997-01-01

    Recovery of neutron sources containing Pu 239 and Be is currently taking place at Los Alamos National Laboratory. The program was initiated in 1979 by the Department of Energy (DOE) to dismantle and recover sources owned primarily by universities and the Department of Defense. Since the inception of this program, Los Alamos has dismantled and recovered more than 1000 sources. The dismantlement and recovery process involves the removal of source cladding and the chemical separation of the source materials to eliminate neutron emissions. While this program continues for the disposal of 239 Pu/Be sources, there is currently no avenue for the disposition of any sources other than those containing Pu 239 . Increasingly, there have been demands from agencies both inside and outside the Federal Government and from the public to dispose of unwanted sources containing 238 Pu/Be and 241 Am/Be. DOE is attempting to establish a formal program to recover these sources and is working closely with the Nuclear Regulatory Commission (NRC) on a proposed Memorandum of Understanding to formalize an Acceptance Program. In the absence of a formal program to handle 238 Pu/Be and 241 Am/Be neutron sources, Los Alamos has responded to several emergency requests to receive and recover sources that have been determined to be a threat to public health and safety. This presentation will: (1) review the established 239 Pu neutron source recovery program at Los Alamos, (2) detail plans for a more extensive neutron source disposal program, and (3) focus on recent emergency responses

  20. Gravitational waves, neutrino emissions and effects of hyperons in binary neutron star mergers

    International Nuclear Information System (INIS)

    Kiuchi, Kenta; Sekiguchi, Yuichiro; Kyutoku, Koutarou; Shibata, Masaru

    2012-01-01

    Numerical simulations for the merger of binary neutron stars are performed in full general relativity incorporating both nucleonic and hyperonic finite-temperature equations of state (EOS) and neutrino cooling. It is found that for the nucleonic and hyperonic EOS, a hyper-massive neutron star (HMNS) with a long lifetime (t life ≥ 10 ms) is the outcome for the total mass ≅2.7M sun . For the total mass ≅3 M sun , a long-lived (short-lived with t life ≅ 3 ms) HMNS is the outcome for the nucleonic (hyperonic) EOS. It is shown that the typical total neutrino luminosity of the HMNS is ∼3-6 x 10 53 erg s -1 and the effective amplitude of gravitational waves from the HMNS is 1-4 x 10 -22 at f ≅ 2-3.2 kHz for a source of distance of 100 Mpc. During the HMNS phase, characteristic frequencies of gravitational waves shift to a higher frequency for the hyperonic EOS in contrast to the nucleonic EOS in which they remain constant approximately. Our finding suggests that the effects of hyperons are well imprinted in gravitational waves and their detection will give us a potential opportunity to explore the composition of the neutron star matter. We present the neutrino luminosity curve when a black hole is formed as well. (paper)