WorldWideScience

Sample records for neutron source moderator

  1. Neutron spectra produced by moderating an isotopic neutron source

    International Nuclear Information System (INIS)

    Carrillo Nunnez, Aureliano; Vega Carrillo, Hector Rene

    2001-01-01

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2 . From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  2. Spallation neutron source moderator design

    International Nuclear Information System (INIS)

    Charlton, L.A.; Barnes, J.M.; Gabriel, T.A.; Johnson, J.O.

    1998-01-01

    This paper describes various aspects of the spallation neutron source (SNS) moderator design. Included are the effects of varying the moderator location, interaction effects between moderators, and the impact on neutron output when various reflector materials are used. Also included is a study of the neutron output from composite moderators, where it is found that a combination of liquid H 2 O and liquid H 2 can produce a spectrum very similar to liquid methane (L-CH 4 ). (orig.)

  3. Neutronic performance issues for the Spallation Neutron Source moderators

    International Nuclear Information System (INIS)

    Iverson, E.B.; Murphy, B.D.

    2001-01-01

    We continue to develop the neutronic models of the Spallation Neutron Source target station and moderators in order to better predict the neutronic performance of the system as a whole and in order to better optimize that performance. While we are not able to say that every model change leads to more intense neutron beams being predicted, we do feel that such changes are advantageous in either performance or in the accuracy of the prediction of performance. We have computationally and experimentally studied the neutronics of hydrogen-water composite moderators such as are proposed for the SNS Project. In performing these studies, we find that the composite moderator, at least in the configuration we have examined, does not provide performance characteristics desirable for the instruments proposed and being designed for this neutron scattering facility. The pulse width as a function of energy is significantly broader than for other moderators, limiting attainable resolution-bandwidth combinations. Furthermore, there is reason to expect that higher-energy (0.1-1 eV) applications will be significantly impacted by bimodal pulse shapes requiring enormous effort to parameterize. As a result of these studies, we have changed the SNS design, and will not use a composite moderator at this time. We have analyzed the depletion of a gadolinium poison plate in a hydrogen moderator at the Spallation Neutron Source, and found that conventional poison thicknesses will be completely unable to last the desired component lifetime of three operational years. A poison plate 300-600 μm thick will survive for the required length of time, but will somewhat degrade the intensity (by as much as 15% depending on neutron energy) and the consistency of the neutron source performance. Our results should scale fairly easily to other moderators on this or any other spallation source. While depletion will be important for all highly-absorbing materials in high-flux regions, we feel it likely that

  4. Low dimensional neutron moderators for enhanced source brightness

    DEFF Research Database (Denmark)

    Mezei, Ferenc; Zanini, Luca; Takibayev, Alan

    2014-01-01

    In a recent numerical optimization study we have found that liquid para-hydrogen coupled cold neutron moderators deliver 3–5 times higher cold neutron brightness at a spallation neutron source if they take the form of a flat, quasi 2-dimensional disc, in contrast to the conventional more voluminous...... for cold neutrons. This model leads to the conclusions that the optimal shape for high brightness para-hydrogen neutron moderators is the quasi 1-dimensional tube and these low dimensional moderators can also deliver much enhanced cold neutron brightness in fission reactor neutron sources, compared...... to the much more voluminous liquid D2 or H2 moderators currently used. Neutronic simulation calculations confirm both of these theoretical conclusions....

  5. Neutronic moderator design for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Charlton, L.A.; Barnes, J.M.; Johnson, J.O.; Gabriel, T.A.

    1998-01-01

    Neutronics analyses are now in progress to support the initial selection of moderator design parameters for the Spallation Neutron Source (SNS). The results of the initial optimization studies involving moderator poison plate location, moderator position, and premoderator performance for the target system are presented in this paper. Also presented is an initial study of the use of a composite moderator to produce a liquid methane like spectrum

  6. Neutronic Design Calculations on Moderators for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Murphy, D.B.

    1999-01-01

    The Spallation Neutron Source (SNS) to be built at the Oak Ridge National Laboratory will provide an intense source of neutrons for a large variety of experiments. It consists of a high-energy (1-GeV) and high-power (∼1-MW) proton accelerator, an accumulator ring, together with a target station and an experimental area. In the target itself, the proton beam will produce neutrons via the spallation process and these will be converted to low-energy ( 2 O moderators. Extensive engineering design work has been conducted on the moderator vessels. For our studies we have produced realistic neutronic representations of these moderators. We report on neutronic studies conducted on these representations of the moderators using Monte Carlo simulation techniques

  7. Cold moderators for pulsed neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1990-01-01

    This paper reviews cold moderators in pulsed neutron sources and provides details of the performance of different cold moderator materials and configurations. Analytical forms are presented which describe wavelength spectra and emission time distributions. Several types of cooling arrangements used in pulsed source moderators are described. Choices of materials are surveyed. The author examines some of the radiation damage effects in cold moderators, including the phenomenon of ''burping'' in irradiated cold solid methane. 9 refs., 15 figs., 4 tabs

  8. Characteristics of polyethylene-moderated 252Cf neutron sources

    International Nuclear Information System (INIS)

    Alejnikov, V.E.; Beskrovnaya, L.G.; Florko, B.V.

    2000-01-01

    Polyethylene-moderated 252 Cf neutron sources were designed to produce neutron reference fields' spectra that simulate the spectra observed in the workplaces within nuclear reactors and accelerators. The paper describes the neutron sources and fields. Neutron spectra were calculated by Monte Carlo method and compared with experimental data

  9. Moderator materials for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Charlton, L.A.

    1999-01-01

    The Spallation Neutron Source (SNS) is a neutron source providing intense neutron fluxes that will be used for performing a large variety of neutron scattering experiments. SNS is to be completed and start operation in 2005. Protons will be accelerated to 1 GeV, stored in an accumulator ring, and then injected into a neutron-producing target. After leaving the target (Hg in the ca/se of SNS), the neutrons are prepared for experiments by first using a moderator to impose energy and width requirements on the neutron pulse. One of the most important ingredients is the moderator material. Four materials that are commonly used and that were considered for use in SNS are liquid hydrogen (L-H 2 ), liquid water (L-H 2 O), liquid methane (L-CH 4 ), and solid methane (S-CH 4 ). The spectra (neutron current versus neutron energy) for these four materials are shown. As may be seen, at low neutron energies ( 4 , which produces up to four times as many neutrons in this energy range as L-H 2 . The problem with the material is the internal storage of energy that can be spontaneously and explosively released. At energies of just above 10 MeV, the most effective moderator material is L-CH 4 . Polymerization problems, however, preclude its use at high powers (again such as in SNS), where the buildup of undesirable materials becomes prohibitive. This is, however, an important energy range for neutron experiments. Preliminary consideration is being given to a composite moderator that contains two adjacent sections, one of L-H 2 and one of L-H 2 O, which produces a spectrum that is very similar to L-CH 4

  10. Neutron moderators for the European Spallation Source

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Zanini, L.; Batkov, K.

    The design of the neutron moderators for the European Spallation Source, intended to be installed at the start of operations of the facility in 2019 has now been finalized and the moderators are being fabricated. Among the driving principles in the design have been flexibility for instruments...... to have access to cold and thermal neutrons with highest possible source brightness. Different design and configuration options were evaluated. The final configuration accepted for construction foresees two moderators with identical para-hydrogen (so-called "butterfly") shape, but different heights......, placed above and below the spallation target. Both moderators are able to serve the full 2 x 120° beam extraction sectors of instrument suite. The top, 3-cm tall moderator, has both high thermal and high cold brightness, more than by a factor of 2.5 compared to the previous design of the Technical Design...

  11. Report on the international workshop on cold moderators for pulsed neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J. M.

    1999-01-01

    The International Workshop on Cold Moderators for Pulsed Neutron Sources resulted from the coincidence of two forces. Our sponsors in the Materials Sciences Branch of DOE's Office of Energy Research and the community of moderator and neutron facility developers both realized that it was time. The Neutron Sources Working Group of the Megascience Forum of the Organization for Economic Cooperation and Development offered to contribute its support by publishing the proceedings, which with DOE and Argonne sponsorship cemented the initiative. The purposes of the workshop were: to recall and improve the theoretical groundwork of time-dependent neutron thermalization; to pose and examine the needs for and benefits of cold moderators for neutron scattering and other applications of pulsed neutron sources; to summarize experience with pulsed source, cold moderators, their performance, effectiveness, successes, problems and solutions, and the needs for operational data; to compile and evaluate new ideas for cold moderator materials and geometries; to review methods of measuring and characterizing pulsed source cold moderator performance; to appraise methods of calculating needed source characteristics and to evaluate the needs and prospects for improvements; to assess the state of knowledge of data needed for calculating the neutronic and engineering performance of cold moderators; and to outline the needs for facilities for testing various aspects of pulsed source cold moderator performance

  12. Report on the international workshop on cold moderators for pulsed neutron sources.

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J. M.

    1999-01-06

    The International Workshop on Cold Moderators for Pulsed Neutron Sources resulted from the coincidence of two forces. Our sponsors in the Materials Sciences Branch of DOE's Office of Energy Research and the community of moderator and neutron facility developers both realized that it was time. The Neutron Sources Working Group of the Megascience Forum of the Organization for Economic Cooperation and Development offered to contribute its support by publishing the proceedings, which with DOE and Argonne sponsorship cemented the initiative. The purposes of the workshop were: to recall and improve the theoretical groundwork of time-dependent neutron thermalization; to pose and examine the needs for and benefits of cold moderators for neutron scattering and other applications of pulsed neutron sources; to summarize experience with pulsed source, cold moderators, their performance, effectiveness, successes, problems and solutions, and the needs for operational data; to compile and evaluate new ideas for cold moderator materials and geometries; to review methods of measuring and characterizing pulsed source cold moderator performance; to appraise methods of calculating needed source characteristics and to evaluate the needs and prospects for improvements; to assess the state of knowledge of data needed for calculating the neutronic and engineering performance of cold moderators; and to outline the needs for facilities for testing various aspects of pulsed source cold moderator performance.

  13. Unperturbed moderator brightness in pulsed neutron sources

    International Nuclear Information System (INIS)

    Batkov, K.; Takibayev, A.; Zanini, L.; Mezei, F.

    2013-01-01

    The unperturbed neutron brightness of a moderator can be defined from the number of neutrons leaving the surface of a moderator completely surrounded by a reflector. Without openings for beam extraction, it is the maximum brightness that can be theoretically achieved in a moderator. The unperturbed brightness of a cylindrical cold moderator filled with pure para-H 2 was calculated using MCNPX; the moderator dimensions were optimised, for a fixed target and reflector geometry corresponding to the present concept for the ESS spallation source. This quantity does not depend on openings for beam extraction and therefore can be used for a first-round optimisation of a moderator, before effects due to beam openings are considered. We find that such an optimisation yields to a factor of 2 increase with respect to a conventional volume moderator, large enough to accommodate a viewed surface of 12×12 cm 2 : the unperturbed neutron brightness is maximum for a disc-shaped moderator of 15 cm diameter, 1.4 cm height. The reasons for this increase can be related to the properties of the scattering cross-section of para-H 2 , to the added reflector around the exit surface in the case of a compact moderator, and to a directionality effect. This large optimisation gain in the unperturbed brightness hints towards similar potentials for the perturbed neutron brightness, in particular in conjunction with advancing the optical quality of neutron delivery from the moderator to the sample, where by Liouville theorem the brightness is conserved over the beam trajectory, except for absorption and similar type losses

  14. Pulsed neutron source cold moderators --- concepts, design and engineering

    International Nuclear Information System (INIS)

    Bauer, Guenter S.

    1997-01-01

    Moderator design for pulsed neutron sources is becoming more and more an interface area between source designers and instrument designers. Although there exists a high degree of flexibility, there are also physical and technical limitations. This paper aims at pointing out these limitations and examining ways to extend the current state of moderator technology in order to make the next generation neutron sources even more versatile and flexible tools for science in accordance with the users' requirements. (auth)

  15. HFIR cold neutron source moderator vessel design analysis

    International Nuclear Information System (INIS)

    Chang, S.J.

    1998-04-01

    A cold neutron source capsule made of aluminum alloy is to be installed and located at the tip of one of the neutron beam tubes of the High Flux Isotope Reactor. Cold hydrogen liquid of temperature approximately 20 degree Kelvin and 15 bars pressure is designed to flow through the aluminum capsule that serves to chill and to moderate the incoming neutrons produced from the reactor core. The cold and low energy neutrons thus produced will be used as cold neutron sources for the diffraction experiments. The structural design calculation for the aluminum capsule is reported in this paper

  16. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Lawrence B., E-mail: Lawrence_Rees@byu.edu [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States); Czirr, J. Bart, E-mail: czirr@juno.com [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States)

    2012-11-01

    The response of a {sup 3}He neutron detector is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the {sup 3}He. If there is too much moderation, neutrons will not reach the {sup 3}He. In applications for portal or border monitors where {sup 3}He detectors are used to interdict illicit importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around {sup 3}He tubes is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of {sup 3}He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a point {sup 252}Cf source placed in the center of polyethylene spheres of varying radius. Detector efficiency as a function of box geometry and shielding is explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that incremental benefits are minimal if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the {sup 3}He tubes, however, is very important. For bare sources, about 4-5 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0.5-1 cm. Similar conclusions can be applied to polyethylene boxes employing two {sup 3}He tubes. Two-tube boxes with front moderators of non-uniform thickness may be useful for detecting neutrons over a wide energy range.

  17. Measurements of neutron intensity from liquid deuterium moderator of the cold neutron source of KUR

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Ebisawa, Toru; Akiyoshi, Tsunekazu; Tasaki, Seiji

    1990-01-01

    The neutron spectra from the liquid deuterium moderator of the cold neutron source of KUR were measured by the time of flight (TOF) method similar to the previous measurements for the liquid hydrogen moderator. The cold neutron gain factor is found to be about 20 ∼ 28 times for the wavelength longer than 6 A. Cold neutron intensities from the liquid deuterium moderator and from the liquid hydrogen moderator are compared and discussed. (author)

  18. Optimisation studies for a moderator on a pulsed neutron source

    International Nuclear Information System (INIS)

    Picton, D.J.; Ross, D.K.; Taylor, A.D.

    1982-01-01

    Having reviewed general aspects of moderator design for pulsed neutron sources, calculations are presented on a number of aspects of moderator optimization. Results of time-independent calculations on metal hydride moderators and a detailed method of evaluating moderated pulse intensities and time distributions, are given. Using computer codes, neutron cross-sections have been calculated from vibrational frequency distributions and time-dependent moderator calculations performed by Monte Carlo methods. The choice of an ambient moderator material and the optimum configuration of heterogeneous poisoning are examined and evaluations of liquid-nitrogen-cooled moderators are presented. Conclusions are drawn concerning the relative merits of cooled and poisoned moderators and an evaluation presented of solid methane at 20 K as a moderator for the production of cold neutrons. (U.K.)

  19. Low energy neutrons from a sup 2 sup 3 sup 9 PuBe isotopic neutron source inserting in moderating media

    CERN Document Server

    Vega, H R

    2002-01-01

    Several neutron applications share a common problem: the neutron source design. In this work MCNP computer code has been used to design a moderated sup 2 sup 3 sup 9 PuBe neutron source to produce low energy neutrons. The design involves the source located at the center of a spherical moderator. Moderator media studied were light water, heavy water and a heterogeneous combination of light water and heavy water. Similar moderating features were found between the 24.5 cm-radius container filled with heavy water (23.0-cm-thick) and that made with light water (3.5-cm-thick) plus heavy water (19.5-cm-thick). A sup 2 sup 3 sup 9 PuBe neutron source inserted in this moderator produces, at 27 cm, a neutron fluence of 1.8 x 10 sup - sup 4 n-cm sup - sup 2 per source neutron, with an average neutron energy of 0.34 MeV, where 47.8 % have an energy <= 0.4 eV. A further study of this moderator was carried out using a reflector medium made of graphite. Thus, 15-cm-thickness reflector improves the neutron field producing...

  20. Target-moderator-reflector optimization for JAERI 5 MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Watanabe, Noboru; Teshigawara, Makoto; Kai, Tetsuya

    1999-01-01

    Optimization studies on the target-moderator-reflector neutronics for the projected intense pulsed-spallation-neutron-source in JAERI are reported. In order to obtain the highest possible performance of the source a new target-moderator-reflector system has been proposed and effects of various parameters, such as material and the shape/dimensions of the target, the profile/distribution of the proton beam, material and dimensions of the reflector, the coupling scheme of the target-moderator, moderator parameters, etc., on slow neutron performance and energy deposition in cryogenic moderators have extensively been studied by neutronic calculations. A cold neutron moderator for high-resolution together with high-intensity experiments has newly been proposed. It was found that, by adopting a flat target with a flat beam profile, the slow neutron intensities from the moderators could be rather insensitive to the target/beam dimensions, providing more flexibility to the engineering design of the target and the moderators. The moderator position relative to the target is another important issue to be optimized. It was confirmed that the proposed target-moderator-reflector layout made it possible to put all the moderators almost at the best position (It has not been possible so far), resulting in a higher performance. The predicted performance obtained with nearly optimized parameters was compared with those of similar projects in the world to justify the present concept. (author)

  1. Evaluation of moderator assemblies for use in an accelerator-based neutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Woollard, J.E.; Blue, T.E.; Gupta, N.; Gahbauer, R.A.

    1998-01-01

    The neutron fields produced by several moderator assemblies were evaluated using both in-phantom and in-air neutron field assessment parameters. The parameters were used to determine the best moderator assembly, from among those evaluated, for use in the accelerator-based neutron source for boron neutron capture therapy. For a 10-mA proton beam current and the specified treatment parameters, a moderator assembly consisting of a BeO moderator and a Li 2 CO 3 reflector was found to be the best moderator assembly whether the comparison was based on in-phantom or in-air neutron field assessment parameters. However, the parameters were discordant regarding the moderator thickness. The in-phantom neutron field assessment parameters predict 20 cm of BeO as the best moderator thickness, whereas the in-air neutron field assessment parameters predict 25 cm of BeO as the best moderator thickness

  2. Coupled moderator neutronics

    International Nuclear Information System (INIS)

    Russell, G.J.; Pitcher, E.J.; Ferguson, P.D.

    1995-01-01

    Optimizing the neutronic performance of a coupled-moderator system for a Long-Pulse Spallation Source is a new and challenging area for the spallation target-system designer. For optimal performance of a neutron source, it is essential to have good communication with instrument scientists to obtain proper design criteria and continued interaction with mechanical, thermal-hydraulic, and materials engineers to attain a practical design. A good comprehension of the basics of coupled-moderator neutronics will aid in the proper design of a target system for a Long-Pulse Spallation Source

  3. Intensity enhancement of cold neutrons from a coupled liquid-hydrogen moderator for pulsed cold neutron sources

    International Nuclear Information System (INIS)

    Ogawa, Y.; Kiyanagi, Y.; Kosugi, N.; Iwasa, H.; Furusaka, M.; Watanabe, N.

    1999-01-01

    In order to obtain higher cold neutron intensity from a coupled liquid-hydrogen moderator with a premoderator for pulsed cold neutron sources, we examined a partial enhancement method, namely, narrow beam extraction for both a flat liquid-hydrogen moderator and a single-groove one. Combined with the narrow beam extraction, which is especially suitable for small-angle scattering and neutron reflectometry experiments, a single-groove moderator provides higher intensity, by about 30%, than a flat-surface moderator at the region of interest on a viewed surface. The effect of double-side beam extraction from such moderators on the intensity gain factor is also discussed. (author)

  4. Neutronics of pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, poisoning, etc are discussed, aiming at a high performance pulsed spallation source

  5. Neutron source

    International Nuclear Information System (INIS)

    Cason, J.L. Jr.; Shaw, C.B.

    1975-01-01

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap

  6. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  7. A new expression for determination of fluences from a spherical moderator neutron source for the calibration of spherical neutron measuring devices

    International Nuclear Information System (INIS)

    Khoshnoodi, M.; Sohrabi, M.

    1997-01-01

    A new expression modifying the inverse square law for determination of neutron fluences from spherical moderator neutron sources is reported. The formalism is based on the neutron fluence at a point outside the moderator as the summation of fluxes of two groups of neutrons: direct neutrons from the central region of the moderator, and moderated neutrons which, to a first approximation, are scattered from the outermost layers of the spherical moderator. The expression has been further developed for spherical neutron measuring devices with an appropriate geometry factor which corrects the reading of the device for non-uniform irradiation of the detector. The combination of the new fluence function and those of the air and room scattered components introduce a calibration model. The fluence relationship obtained for moderated sources may conveniently be used for calculating the more rapid change of neutron dose at close distances than that which is based on the inverse square dependence. (author)

  8. Neutronics of rectangular parallelepiped polyethylene moderator in wing geometry for accelerator based thermal neutron source

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki

    1984-01-01

    Numerical and experimental studies of the wing geometry moderator are performed in order to examine (a) the effects of the target position and the moderator thickness on the beam intensity and on the pulse shapes emitted from a polyethylene thermal moderator, and (b) the optimum thickness of the moderator. The beam intensity emitted from the moderator is expressed by an integration of the product of the source neutron distribution and the beam intensity produced by a unit intensity point source in the moderator. By applying this expression mechanism is analyzed for the optimum target position and the saturation phenomena of the intensity and the pulse width emitted from the moderator. The optimum target position is at about 2cm from the neutron emission surface for moderators thicker than 4cm and at about half of the moderator thickness for thinner ones. The intensity and the pulse shapes emitted from the moderator vary little if the target distance is varied around the optimum one and become close to the saturated ones at about 8cm thickness. It is indicated by the analysis of figures of merit that a moderator of 4--6cm thickness is optimum. (author)

  9. Coded moderator approach for fast neutron source detection and localization at standoff

    Energy Technology Data Exchange (ETDEWEB)

    Littell, Jennifer [Department of Nuclear Engineering, University of Tennessee, 305 Pasqua Engineering Building, Knoxville, TN 37996 (United States); Lukosi, Eric, E-mail: elukosi@utk.edu [Department of Nuclear Engineering, University of Tennessee, 305 Pasqua Engineering Building, Knoxville, TN 37996 (United States); Institute for Nuclear Security, University of Tennessee, 1640 Cumberland Avenue, Knoxville, TN 37996 (United States); Hayward, Jason; Milburn, Robert; Rowan, Allen [Department of Nuclear Engineering, University of Tennessee, 305 Pasqua Engineering Building, Knoxville, TN 37996 (United States)

    2015-06-01

    Considering the need for directional sensing at standoff for some security applications and scenarios where a neutron source may be shielded by high Z material that nearly eliminates the source gamma flux, this work focuses on investigating the feasibility of using thermal neutron sensitive boron straw detectors for fast neutron source detection and localization. We utilized MCNPX simulations to demonstrate that, through surrounding the boron straw detectors by a HDPE coded moderator, a source-detector orientation-specific response enables potential 1D source localization in a high neutron detection efficiency design. An initial test algorithm has been developed in order to confirm the viability of this detector system's localization capabilities which resulted in identification of a 1 MeV neutron source with a strength equivalent to 8 kg WGPu at 50 m standoff within ±11°.

  10. Developments of high-performance moderator vessel for JRR-3 cold neutron source

    International Nuclear Information System (INIS)

    Arai, Masaji; Tamura, Itaru; Hazawa, Tomoya

    2015-05-01

    The cold neutron source (CNS) facility converts thermal neutrons into cold neutrons to moderate neutrons with liquid hydrogen. The cold neutron beam at Japan Research Reactor No. 3 (JRR-3) is led to the beam experimental devices in the beam hall through neutron guide tubes. High intensities of the cold neutron beam are always demanded for increasing the experimental effectiveness and accuracy. In the Department of Research Reactor and Tandem Accelerator, developments of high-performance CNS moderator vessel that can produce cold neutron intensity about two times higher compared to the existing vessel have been performed in the second medium term plans. We compiled this report about the technological development to solve several problems with the design and manufacture of new vessel. In the present study, design strength evaluation, mockup test, simulation for thermo-fluid dynamics of the liquid hydrogen and strength evaluation of the different-material-bonding were studied. By these evaluation results, we verified that the developed new vessel can be applied to CNS moderator vessel of JRR-3. (author)

  11. Neutronic studies on decoupled hydrogen moderator for a short-pulse spallation source

    International Nuclear Information System (INIS)

    Harada, Masahide; Watanabe, Noboru; Teshigawara, Makoto; Kai, Tetsuya; Ikeda, Yujiro

    2005-01-01

    Neutronic studies of decoupled hydrogen moderators were performed by calculations taking into account para hydrogen content, decoupling energy, moderator dimensions/shapes and reflector material. Low-energy parts of calculated spectral intensities with different para hydrogen contents were analyzed by a modified Maxwell function to characterize neutron spectra. The result shows that a 100% para hydrogen moderator gives the highest pulse peak intensity together with the narrowest pulse width and the shortest decay times. Pulse broadening with a reflector was explained by time distributions of source neutrons entering into the moderator through a decoupler. Material dependence of time distribution was studied. A decoupling energy higher than 1 eV does not bring about a large improvement in pulse widths and decay times, even at a large penalty in the peak intensity. The optimal moderator thickness was also discussed for a rectangular parallelepipe-shaped and a canteen-shaped moderator

  12. A target-moderator-reflector concept of the JAERI 5 MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Watanabe, Noboru; Teshigawara, Makoto; Aizawa, Kazuya; Suzuki, Jyunichi; Oyama, Yukio

    1998-03-01

    In Japan Atomic Energy Research Institute the construction of a 5 MW (short) pulsed spallation neutron source is under planning using a projected high power superconducting proton (or H - ) linac of 8 MW in total beam power. In the present paper we report our consideration on target-moderator-reflector concept, based on the layout of the tentative neutron instruments for the assumed neutron scattering experiments in future. The choice of cold neutron moderators for high resolution and high intensity experiments, thermal and epithermal neutron moderators for high resolution uses was discussed and a reference layout of target-moderator-reflector system was proposed for detailed neutronic calculation and optimization. The proposed system was designed like that it can provide, at least, 30 beam lines for more than 40 instruments. (author)

  13. Moderator design studies for a new neutron reference source based on the D–T fusion reaction

    International Nuclear Information System (INIS)

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.

    2016-01-01

    The radioactive isotope Californium-252 ( 252 Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D 2 O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252 Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuteriumtritium (D–T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252 Cf. To be viable, the 14 MeV D–T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2–5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered. - Highlights: • D–T generator neutron calibration field replacement for D 2 O-moderated 252 Cf. • Determination of representative nuclear power plant workplace neutron spectrum. • Simulations to assess moderating materials to soften 14

  14. Design of a cold-neutron source for the Bariloche LINAC with solid mesitylene as moderator material

    International Nuclear Information System (INIS)

    Torres, Lourdes; Granada, J.R.

    2006-01-01

    We present the results of calculations performed with the code MCNP-4C relative to the neutron-field behaviour within the moderator for the Bariloche-LINAC cold-neutron source, using mesitylene at 89 K as moderating material. Throughout the design calculations we used preliminary nuclear-data libraries for that material that were previously generated and partially validated. The optimum dimensions for a slab and a cylindrical moderator were obtained, with and without a premoderator, from the point of view of neutron production and time-width of the neutron pulse

  15. Replacement of the moderator cell unit of JRR-3's cold neutron source facility

    International Nuclear Information System (INIS)

    Hazawa, Tomoya; Nagahori, Kazuhisa; Kusunoki, Tsuyoshi

    2006-10-01

    The moderator cell of the JRR-3's cold neutron source (CNS) facility, converts thermal neutrons into cold neutrons by passing through liquid cold hydrogen. The cold neutrons are used for material and life science research such as the neutron scattering. The CNS has been operated since the start of JRR-3's in 1990. The moderator cell containing liquid hydrogen is made of stainless steel. The material irradiation lifetime is limited to 7 years due to irradiation brittleness. The first replacement was done by using a spare part made in France. This replacement work of 2006 was carried out by using the domestic moderator cell unit. The following technologies were developed for the moderator cell unit production. 1) Technical development of black treatment on moderator cell surface to increase radiation heat. 2) Development of bending technology of concentric triple tubes consisting from inside tube, Outside tube and Vacuum insulation tube. 3) Development of manufacturing technique of the moderator cell with complicated shapes. According to detail planed work procedures, replacement work was carried out. As results, the working days were reduced to 80% of old ones. The radiation dose was also reduced due to reduction of working days. It was verified by measurement of neutrons characteristics that the replaced moderator cell has the same performance as that of the old moderator cell. The domestic manufacturing of the moderator cell was succeeded. As results, the replacement cost was reduced by development of domestic production technology. (author)

  16. Neutron Spectra, Fluence and Dose Rates from Bare and Moderated Cf-252 Sources

    Energy Technology Data Exchange (ETDEWEB)

    Radev, Radoslav P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-01

    A new, stronger 252Cf source (serial number SR-CF-3050-OR) was obtained from Oak Ridge National Laboratory (ORNL) in 2014 to supplement the existing 252Cf sources which had significantly decayed. A new instrument positioning track system was designed and installed by Hopewell Designs, Inc. in 2011. The neutron field from the new, stronger 252Cf source in the modified calibration environment needed to be characterized as well as the modified neutron fields produced by the new source and seven different neutron moderators. Comprehensive information about our 252Cf source, its origin, production, and isotopic content and decay characteristics needed to be compiled as well. This technical report is intended to address these issues.

  17. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    Energy Technology Data Exchange (ETDEWEB)

    Gallmeier, F. X., E-mail: gallmeierfz@ornl.gov; Lu, W.; Riemer, B. W.; Zhao, J. K.; Herwig, K. W.; Robertson, J. L. [Instrument and Source Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6466, Oak Ridge, Tennessee 37831 (United States)

    2016-06-15

    Candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) have been identified using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared to the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm{sup 2} to 20 × 20 mm{sup 2}. This increase in brightness has the potential to translate to an increase of beam intensity at the instruments’ sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. A first effort was undertaken to group decoupled moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.

  18. Spectrometers for compact neutron sources

    Science.gov (United States)

    Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.

    2018-03-01

    We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.

  19. Neutron moderation theory with thermal motion of the moderator nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rusov, V.D.; Tarasov, V.A.; Chernezhenko, S.A.; Kakaev, A.A.; Smolyar, V.P. [Odessa National Polytechnic University, Department of Theoretical and Experimental Nuclear Physics, Odessa (Ukraine)

    2017-09-15

    In this paper we present the analytical expression for the neutron scattering law for an isotropic source of neutrons, obtained within the framework of the gas model with the temperature of the moderating medium as a parameter. The obtained scattering law is based on the solution of the general kinematic problem of elastic scattering of neutrons on nuclei in the L-system. Both the neutron and the nucleus possess arbitrary velocities in the L-system. For the new scattering law we obtain the flux densities and neutron moderation spectra as functions of temperature for the reactor fissile medium. The expressions for the moderating neutrons spectra allow reinterpreting the physical nature of the underlying processes in the thermal region. (orig.)

  20. Monte Carlo design study of a moderated {sup 252}Cf source for in vivo neutron activation analysis of aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.G.; Natto, S.S.A.; Evans, C.J. [Swansea In Vivo Analysis and Cancer Research Group, Department of Physics, University of Wales, Swansea (United Kingdom); Ryde, S.J.S. [Swansea In Vivo Analysis and Cancer Research Group, Department of Medical Physics and Clinical Engineering, Singleton Hospital, Swansea (United Kingdom)

    1997-04-01

    The Monte Carlo computer code MCNP has been used to design a moderated 2{sup 52}Cf neutron source for in vivo neutron activation analysis of aluminium (Al) in the bones of the hand. The clinical motivation is the need to monitor l body burden in subjects with renal dysfunction, at risk of Al toxicity. The design involves the source positioned on the central axis at one end of a cylindrical deuterium oxide moderator. The moderator is surrounded by a graphite reflector, with the hand inserted at the end of the moderator opposing the source. For a 1 mg {sup 252}Cf source, 15 cm long x 20 cm radius moderator and 20 cm thick reflector, the estimated minimum detection limit is .5 mg Al for a 20 min irradiation, with an equivalent dose of 16.5 mSv to the hand. Increasing the moderator length and/or introducing a fast neutron filter (for example silicon) further reduces interference from fast-neutron-induced reactions on phosphorus in bone, at the expense of decreased fluence of the thermal neutrons which activate Al. Increased source strengths may be necessary to compensate for this decreased thermal fluence, or allow measurements to be made within an acceptable time limit for the comfort of the patient. (author)

  1. Development of the neutron reference calibration field using a 252Cf standard source surrounded with PMMA moderators

    International Nuclear Information System (INIS)

    Yoshida, T.; Kanai, K.; Tsujimura, N.

    2002-01-01

    The authors developed the neutron reference calibration fields using a 252 Cf standard source surrounded with PMMA moderators at the Japan Nuclear Cycle Development (JNC), Tokai Works. The moderators are co-axial, hollow cylinders made of lead-contained PMMA with a thickness of 13.5, 35.0, 59.5 and 77.0mm, and the 252 Cf source is guided to the geometric center of moderators by the pneumatic system. These fields can provide the moderated neutron spectra very similar to those encountered around the globe-boxes of the fabrication process of MOX (PuO 2 -UO 2 mixed oxide) fuel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP4B and the measurements by the INS-type Bonner multi-sphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields were characterized in terms of the neutron fluence rate, spectral composition and ambient dose equivalent rate, and have served for the response-characterization of various neutron survey instruments

  2. Accelerator-based neutron source and its future

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki

    2008-01-01

    Neutrons are useful tool for the material science and also for the industrial applications. Now, high intensity neutron sources based on MW class big accelerators are under commissioning in Japan, Japan Spallation Neutron Source (JSNS) at J-PARC and in the US, SNS. Such high power neutron sources required the moderators that can be used under high radiation field and also give high neutronic performance. We have been performing experimental and Monte Carlo simulation studies to develop the cold neutron moderator systems for the high power sources since it is becoming important for materials and life science. Hydrogen is the unique candidate at the present stage due to its high resistibility to the radiation. It was indicated the para hydrogen moderator gave a good neutronic performance by experimental results. On the other hand, in the future, low power neutron sources are recognized to be useful to perform sprouting experiments and to promote the neutron science. The moderator systems need a concept different from the high power source. Therefore, we studied neutronic performances of the mesitylene and the methane moderators to get high intensity in a definite area on the moderator surface. Single groove moderators were studied and optimal geometry and the intensity gain were obtained. The mesitylene moderator gave a rather good performance compared to the methane moderator. (author)

  3. Enhancing neutron beam production with a convoluted moderator

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, E.B., E-mail: iversoneb@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Baxter, D.V. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Muhrer, G. [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Ansell, S.; Dalgliesh, R. [ISIS Facility, Rutherford Appleton Laboratory, Chilton (United Kingdom); Gallmeier, F.X. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kaiser, H. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Lu, W. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-10-21

    We describe a new concept for a neutron moderating assembly resulting in the more efficient production of slow neutron beams. The Convoluted Moderator, a heterogeneous stack of interleaved moderating material and nearly transparent single-crystal spacers, is a directionally enhanced neutron beam source, improving beam emission over an angular range comparable to the range accepted by neutron beam lines and guides. We have demonstrated gains of 50% in slow neutron intensity for a given fast neutron production rate while simultaneously reducing the wavelength-dependent emission time dispersion by 25%, both coming from a geometric effect in which the neutron beam lines view a large surface area of moderating material in a relatively small volume. Additionally, we have confirmed a Bragg-enhancement effect arising from coherent scattering within the single-crystal spacers. We have not observed hypothesized refractive effects leading to additional gains at long wavelength. In addition to confirmation of the validity of the Convoluted Moderator concept, our measurements provide a series of benchmark experiments suitable for developing simulation and analysis techniques for practical optimization and eventual implementation at slow neutron source facilities.

  4. Reactor-moderated intermediate-energy neutron beams for neutron-capture therapy

    International Nuclear Information System (INIS)

    Less, T.J.

    1987-01-01

    One approach to producing an intermediate energy beam is moderating fission neutrons escaping from a reactor core. The objective of this research is to evaluate materials that might produce an intermediate beam for NCT via moderation of fission neutrons. A second objective is to use the more promising moderator material in a preliminary design of an NCT facility at a research reactor. The evaluations showed that several materials or combinations of materials could produce a moderator source for an intermediate beam for NCT. The best neutron spectrum for use in NCT is produced by Al 2 O 3 , but mixtures of Al metal and D 2 O are also attractive. Using the best moderator materials, results were applied to the design of an NCT moderator at the Georgia Institute of Technology Research Reactor's bio-medical facility. The amount of photon shielding and thermal neutron absorber were optimized with respect to the desired photon dose rate and intermediate neutron flux at the patient position

  5. Sources of neutronics data involving thorium of 233U and light water moderation

    International Nuclear Information System (INIS)

    Davenport, L.C.

    1978-11-01

    A literature search has been conducted to locate sources of neutronics data for light water moderated systems which contain thorium and/or uranium-233. It is concluded that insufficient data is currently available to validate neutronics design methods for licensing the 233 UO 2 -ThO 2 fuel cycle in light water reactors. A summary of the neutronics data sources found is reported in this document. These sources include critical and exponential experiments with lattices of fuel rods containing 233 U + Th or 235 U + Th. A few experiments using homogeneous aqueous solutions of 233 UO 2 (NO 3 ) 2 or 233 UO 2 F 2 are also included. The only critical lattice data using both 233 U and Th came from the LWBR program. All these experiments were zoned radially and in most cases axially also. Geometrically clean lattice critical data were measured for the CETR and TUPE programs. Both series used 235 UO 2 -ThO 2 pellets. A series of 21 exponential experiments using 3% 233 UO 2 - 97% ThO 2 fuel vibratory compacted to 92% of theoretical density in Zircaloy-2 tubing was performed at BNL using both unpoisoned and boric acid poisoned H 2 O moderator. For completeness, homogeneous systems are listed in which basic neutronics data have been measured. However, it is expected that most data concerning homogeneous systems will be applied to criticality safety problems rather than neutronics methods validation

  6. Development of the neutron reference calibration field using a {sup 252}Cf standard source surrounded with PMMA moderators

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T.; Kanai, K.; Tsujimura, N. [Japan Nuclear Cycle Development Institute, Ibaraki-ken (Japan)

    2002-07-01

    The authors developed the neutron reference calibration fields using a {sup 252} Cf standard source surrounded with PMMA moderators at the Japan Nuclear Cycle Development (JNC), Tokai Works. The moderators are co-axial, hollow cylinders made of lead-contained PMMA with a thickness of 13.5, 35.0, 59.5 and 77.0mm, and the {sup 252} Cf source is guided to the geometric center of moderators by the pneumatic system. These fields can provide the moderated neutron spectra very similar to those encountered around the globe-boxes of the fabrication process of MOX (PuO{sub 2}-UO{sub 2} mixed oxide) fuel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP4B and the measurements by the INS-type Bonner multi-sphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields were characterized in terms of the neutron fluence rate, spectral composition and ambient dose equivalent rate, and have served for the response-characterization of various neutron survey instruments.

  7. The world’s first pelletized cold neutron moderator at a neutron scattering facility

    Energy Technology Data Exchange (ETDEWEB)

    Ananiev, V.; Belyakov, A.; Bulavin, M.; Kulagin, E.; Kulikov, S.; Mukhin, K.; Petukhova, T.; Sirotin, A.; Shabalin, D.; Shabalin, E.; Shirokov, V.; Verhoglyadov, A., E-mail: verhoglyadov_al@mail.ru

    2014-02-01

    In July 10, 2012 cold neutrons were generated for the first time with the unique pelletized cold neutron moderator CM-202 at the IBR-2M reactor. This new moderator system uses small spherical beads of a solid mixture of aromatic hydrocarbons (benzene derivatives) as the moderating material. Aromatic hydrocarbons are known as the most radiation-resistant hydrogenous substances and have properties to moderate slow neutrons effectively. Since the new moderator was put into routine operation in September 2013, the IBR-2 research reactor of the Frank Laboratory of Neutron Physics has consolidated its position among the world’s leading pulsed neutron sources for investigation of matter with neutron scattering methods.

  8. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    Energy Technology Data Exchange (ETDEWEB)

    Gozani, Tsahi, E-mail: tgmaven@gmail.com [1050 Harriet St., Palo Alto, CA 94301 (United States); King, Michael J. [Rapiscan Laboratories Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States)

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time (“E–T” correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple “one-group” models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E–T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  9. Different spectra with the same neutron source

    International Nuclear Information System (INIS)

    Vega C, H. R.; Ortiz R, J. M.; Hernandez D, V. M.; Martinez B, M. R.; Hernandez A, B.; Ortiz H, A. A.; Mercado, G. A.

    2010-01-01

    Using as source term the spectrum of a 239 Pu-Be source several neutron spectra have been calculated using Monte Carlo methods. The source term was located in the centre of spherical moderators made of light water, heavy water and polyethylene of different diameters. Also a 239 Pu-Be source was used to measure its neutron spectrum, bare and moderated by water. The neutron spectra were measured at 100 cm with a Bonner spheres spectrometer. Monte Carlo calculations were used to calculate the neutron spectra of bare and water-moderated spectra that were compared with those measured with the spectrometer. Resulting spectra are similar to those found in power plants with PWR, BWR and Candu nuclear reactors. Beside the spectra the dosimetric features were determined. Using moderators and a single neutron source can be produced neutron spectra alike those found in workplaces, this neutron fields can be utilized to calibrate neutron dosimeters and area monitors. (Author)

  10. Pulsed neutron source and instruments at neutron facility

    Energy Technology Data Exchange (ETDEWEB)

    Teshigawara, Makoto; Aizawa, Kazuya; Suzuki, Jun-ichi; Morii, Yukio; Watanabe, Noboru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    We report the results of design studies on the optimal target shape, target - moderator coupling, optimal layout of moderators, and neutron instruments for a next generation pulsed spallation source in JAERI. The source utilizes a projected high-intensity proton accelerator (linac: 1.5 GeV, {approx}8 MW in total beam power, compressor ring: {approx}5 MW). We discuss the target neutronics, moderators and their layout. The sources is designed to have at least 30 beam lines equipped with more than 40 instruments, which are selected tentatively to the present knowledge. (author)

  11. Pulsed neutron sources for epithermal neutrons

    International Nuclear Information System (INIS)

    Windsor, C.G.

    1978-01-01

    It is shown how accelerator based neutron sources, giving a fast neutron pulse of short duration compared to the neutron moderation time, promise to open up a new field of epithermal neutron scattering. The three principal methods of fast neutron production: electrons, protons and fission boosters will be compared. Pulsed reactors are less suitable for epithermal neutrons and will only be briefly mentioned. The design principle of the target producing fast neutrons, the moderator and reflector to slow them down to epithermal energies, and the cell with its beam tubes and shielding will all be described with examples taken from the new Harwell electron linac to be commissioned in 1978. A general comparison of pulsed neutron performance with reactors is fraught with difficulties but has been attempted. Calculation of the new pulsed source fluxes and pulse widths is now being performed but we have taken the practical course of basing all comparisons on extrapolations from measurements on the old 1958 Harwell electron linac. Comparisons for time-of-flight and crystal monochromator experiments show reactors to be at their best at long wavelengths, at coarse resolution, and for experiments needing a specific incident wavelength. Even existing pulsed sources are shown to compete with the high flux reactors in experiments where the hot neutron flux and the time-of-flight methods can be best exploited. The sources under construction can open a new field of inelastic neutron scattering based on energy transfer up to an electron volt and beyond

  12. Neutron dosimetry at SLAC: Neutron sources and instrumentation

    International Nuclear Information System (INIS)

    Liu, J.C.; Jenkins, T.M.; McCall, R.C.; Ipe, N.E.

    1991-10-01

    This report summarizes in detail the dosimetric characteristics of the five radioisotopic type neutron sources ( 238 PuBe, 252 Cf, 238 PuB, 238 PuF 4 , and 238 PuLi) and the neutron instrumentation (moderated BF 3 detector, Anderson-Braun (AB) detector, AB remmeter, Victoreen 488 Neutron Survey Meter, Beam Shut-Off Ionization Chamber, 12 C plastic scintillator detector, moderated indium foil detector, and moderated and bare TLDs) that are commonly used for neutron dosimetry at the Stanford Linear Accelerator Center (SLAC). 36 refs,. 19 figs

  13. Neutron dosimetry at SLAC: Neutron sources and instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.C.; Jenkins, T.M.; McCall, R.C.; Ipe, N.E.

    1991-10-01

    This report summarizes in detail the dosimetric characteristics of the five radioisotopic type neutron sources ({sup 238}PuBe, {sup 252}Cf, {sup 238}PuB, {sup 238}PuF{sub 4}, and {sup 238}PuLi) and the neutron instrumentation (moderated BF{sub 3} detector, Anderson-Braun (AB) detector, AB remmeter, Victoreen 488 Neutron Survey Meter, Beam Shut-Off Ionization Chamber, {sup 12}C plastic scintillator detector, moderated indium foil detector, and moderated and bare TLDs) that are commonly used for neutron dosimetry at the Stanford Linear Accelerator Center (SLAC). 36 refs,. 19 figs.

  14. Neutron transport from targets to moderators

    International Nuclear Information System (INIS)

    Taylor, A.D.

    1980-01-01

    The title of this meeting is 'Targets for Neutron Beam Spallation Sources', but so far all the emphasis in the talks has been on how to produce the fast neutron flux. I would like to stress that that is just the beginning of the story. What we are required to produce are beams of thermal and epithermal neutrons with time and spectral characteristics tailored to the instrumental requirements. The real source of our neutrons is not uranium arrays or thorium cylinders but a small volume of hydrogenous material, some 10 x 10 x 5 cm 3 . This is really what the whole thing is about - the target produces a copious field of fast neutrons, but if we fail to moderate them with the right energy and time characteristics, we will not match to what is happening downstream. In this talk, I am going to deal specifically with what we have done for SNS to optimise the target-moderator-reflector and decoupler system in this respect. (orig.)

  15. Neutron cooling and cold-neutron sources (1962); Refroidissement des neutrons et sources de neutrons froids (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Jacrot, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Intense cold-neutron sources are useful in studying solids by the inelastic scattering of neutrons. The paper presents a general survey covering the following aspects: a) theoretical considerations put forward by various authors regarding thermalization processes at very low temperatures; b) the experiments that have been carried out in numerous laboratories with a view to comparing the different moderators that can be used; c) the cold neutron sources that have actually been produced in reactors up to the present time, and the results obtained with them. (author) [French] Des sources intenses de neutrons froids sont utiles pour l'etude des solides par diffusion inelastique des neutrons. On presente une revue d'ensemble: a) des considerations theoriques faites par divers auteurs sur les processus de thermalisation a tres basse temperature; b) des experiences faites dans de nombreux laboratoires pour comparer les divers moderateurs possibles; c) des sources de neutrons froids effectivement realisees dans des piles a ce jour, et des resultats obtenus avec ces sources. (auteur)

  16. Preliminary design of the cold neutron source for the Centro Atomico Bariloche Electron LINAC Facility. I. Solid benzene as moderating material

    International Nuclear Information System (INIS)

    Torres, Lourdes; Granada, Jose R.

    2004-01-01

    We present the results of preliminary calculations performed with the code MCNP-4C relative to the neutron field behavior within the moderator for the CAB-LINAC cold neutron source, using benzene at 89 K as moderating material. Throughout the design calculations nuclear data libraries previously generated and validated were used. The optimum dimensions for a slab and a grid moderator were calculated, with and without a pre moderator, from the point of view of neutron production and the time-width of the neutron pulse. (author)

  17. Spallation source neutron target systems

    International Nuclear Information System (INIS)

    Russell, G.; Brown, R.; Collier, M.; Donahue, J.

    1996-01-01

    This is the final report for a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project sought to design a next-generation spallation source neutron target system for the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE) at Los Alamos. It has been recognized for some time that new advanced neutron sources are needed in the US if the country is to maintain a competitive position in several important scientific and technological areas. A recent DOE panel concluded that the proposed Advanced Neutron Source (a nuclear reactor at Oak Ridge National Laboratory) and a high-power pulsed spallation source are both needed in the near future. One of the most technically challenging designs for a spallation source is the target station itself and, more specifically, the target-moderator-reflector arrangement. Los Alamos has demonstrated capabilities in designing, building, and operating high-power spallation-neutron-source target stations. Most of the new design ideas proposed worldwide for target system design for the next generation pulsed spallation source have either been conceived and implemented at LANSCE or proposed by LANSCE target system designers. These concepts include split targets, flux-trap moderators, back scattering and composite moderators, and composite reflectors

  18. Graphite moderated 252Cf source

    International Nuclear Information System (INIS)

    Sajo B, L.; Barros, H.; Greaves, E. D.; Vega C, H. R.

    2014-08-01

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a 252 Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the 252 Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  19. A combined H2/CH4 cold moderator for a short pulsed neutron source

    International Nuclear Information System (INIS)

    Williamson, K.D.; Lucas, A.T.

    1989-01-01

    Both the ISIS (Rutherford-Appleton Laboratory) spallation source and the Los Alamos Neutron Scattering Center (LANSCE) were designed to produce neutrons as a result of an 800-MeV proton beam being incident on a target. Both systems are intended to accept beam intensities up to 200 μA. Cryogenic moderators of liquid hydrogen and methane are either in use or are planned for service at both facilities. Very low temperature methane would be an ideal moderating material as it has a high hydrogen density and many low frequency modes, which facilitate thermalization. Such moderators are in service at two major world facilities, KEK (Japan) and Argonne National Laboratory (USA). Unfortunately, solid methane has very low thermal conductivity and is subject to radiation damage making a moderator of this type impractical for use in high-intensity beam, such as indicated above. This report outlines a possible alternative using small spheres of solid methane in a matrix of supercritical hydrogen at 25 K. 4 figs

  20. The Design of a Moderator for a Cold Neutron Source for the LINAC of the Centro Atomico Bariloche

    International Nuclear Information System (INIS)

    Torres, Lourdes; Gilette, Victor

    2003-01-01

    The results obtained in the design of a moderator to a cold neutron source for LINAC are given. Light water ice at 100 deg K was used as a moderator and we calculated its optimum dimension.We also calculated a grid moderator

  1. Neutron transport from targets to moderators

    International Nuclear Information System (INIS)

    Taylor, A.D.

    1981-06-01

    By appropriately choosing parameters such as temperature, decoupler, thickness and effective size it is possible to tailor the moderators of a pulsed spallation neutron source in such a way that the different characteristics regarding time structure and spectral distribution as requested for the different instruments can be met very closely. This enables a unique flexibility in the design of neutron spectrometers to be used at such a source. (author)

  2. Pulsed neutron intensity from rectangular shaped light water moderator with fast-neutron reflector

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Iwasa, Hirokatsu

    1982-01-01

    With a view to enhancing the thermal-neutron intensity obtained from a pulsed neutron source, an experimental study has been made to determine the optimum size of a rectangular shaped light water moderator provided with fast neutron reflector of beryllium oxide or graphite, and decoupled thermal-neutronically by means of Cd sheet. The optimum dimensions for the moderator are derived for the neutron emission surface and the thickn ess, for the cases in which the neutron-producing target is placed beneath the moderator (''wing geometry'') or immediately behind the moderator (''slab geometry''). The major conclusions drawn from the experimental results are as follows. The presence of the Cd decoupler inserted between the moderator and reflector prevent the enhancement of thermal-neutron emission time gained by the provision of reflector. With a graphite reflector about 14 cm thick, (a) the optimum area of emission surface would be 25 x 25 cm 2 for wing geometry and still larger for slab geometry, and (b) the optimum moderator thickness would be 5.5 cm for slab geometry and 8.5 cm for wing geometry. It is thus concluded that a higher neutron emission intensity can be obtained with slab than with wing geometry provided that a large emission surface can be adopted for the moderator. (author)

  3. The secondary neutron sources for generation of particular neutron fluxes

    International Nuclear Information System (INIS)

    Tracz, G.

    2007-07-01

    The foregoing paper presents the doctor's thesis entitled '' The secondary neutron sources for generation of particular neutron fluxes ''. Two secondary neutron sources have been designed, which exploit already existing primary sources emitting neutrons of energies different from the desired ones. The first source is devoted to boron-neutron capture therapy (BNCT). The research reactor MARIA at the Institute of Atomic Energy in Swierk (Poland) is the primary source of the reactor thermal neutrons, while the secondary source should supply epithermal neutrons. The other secondary source is the pulsed source of thermal neutrons that uses fast 14 MeV neutrons from a pulsed generator at the Institute of Nuclear Physics PAN in Krakow (Poland). The physical problems to be solved in the two mentioned cases are different. Namely, in order to devise the BNCT source the initial energy of particles ought to be increased, whilst in the other case the fast neutrons have to be moderated. Slowing down of neutrons is relatively easy since these particles lose energy when they scatter in media; the most effective moderators are the materials which contain light elements (mostly hydrogen). In order to increase the energy of neutrons from thermal to epithermal (the BNCT case) the so-called neutron converter should be exploited. It contains a fissile material, 235 U. The thermal neutrons from the reactor cause fission of uranium and fast neutrons are emitted from the converter. Then fissile neutrons of energy of a few MeV are slowed down to the required epithermal energy range. The design of both secondary sources have been conducted by means of Monte Carlo simulations, which have been carried out using the MCNP code. In the case of the secondary pulsed thermal neutron source, some of the calculated results have been verified experimentally. (author)

  4. Neutron production enhancements for the Intense Pulsed Neutron Source.

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, E. B.

    1999-01-04

    The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the US dedicated to materials research. It has operated for sixteen years, and in that time has had a very prolific record concerning the development of new target and moderator systems for pulsed spallation sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power. The development of new target and moderator systems is by no means stagnant at IPNS. They are presently considering numerous enhancements to the target and moderators that offer prospects for increasing the useful neutron production by substantial factors. Many of these enhancements could be combined, although their combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program of study concerning these improvements and their possible combination and implementation. Moreover, any improvements accomplished at IPNS would immediately increase the performance of IPNS instruments.

  5. Neutron production enhancements for the Intense Pulsed Neutron Source

    International Nuclear Information System (INIS)

    Iverson, E. B.

    1999-01-01

    The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the US dedicated to materials research. It has operated for sixteen years, and in that time has had a very prolific record concerning the development of new target and moderator systems for pulsed spallation sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power. The development of new target and moderator systems is by no means stagnant at IPNS. They are presently considering numerous enhancements to the target and moderators that offer prospects for increasing the useful neutron production by substantial factors. Many of these enhancements could be combined, although their combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program of study concerning these improvements and their possible combination and implementation. Moreover, any improvements accomplished at IPNS would immediately increase the performance of IPNS instruments

  6. Pulsed thermal neutron source at the fast neutron generator.

    Science.gov (United States)

    Tracz, Grzegorz; Drozdowicz, Krzysztof; Gabańska, Barbara; Krynicka, Ewa

    2009-06-01

    A small pulsed thermal neutron source has been designed based on results of the MCNP simulations of the thermalization of 14 MeV neutrons in a cluster-moderator which consists of small moderating cells decoupled by an absorber. Optimum dimensions of the single cell and of the whole cluster have been selected, considering the thermal neutron intensity and the short decay time of the thermal neutron flux. The source has been built and the test experiments have been performed. To ensure the response is not due to the choice of target for the experiments, calculations have been done to demonstrate the response is valid regardless of the thermalization properties of the target.

  7. High brilliant thermal and cold moderator for the HBS neutron source project Jülich

    International Nuclear Information System (INIS)

    Cronert, T; Zakalek, P; Rücker, U; Brückel, T; Dabruck, J P; Doege, P E; Nabbi, R; Bessler, Y; Hofmann, M; Butzek, M; Klaus, M; Lange, C; Hansen, W

    2016-01-01

    The proposed High Brilliance Neutron Source (HBS), recognized within the Helmholtz Association of German Research Centres, will optimize the entire chain from particle source through particle accelerator, target, moderator, reflector, shielding, beam extraction, beam transport all the way to the detector, utilizing the nuclear Be(p,n) or Be(d,n) reaction in the lower MeV energy range. A D 2 O moderating reflector prototype (MRP) and a cold source were constructed and build according to MCNP parameter studies. The MRP was tested in a feasibility study at the TREFF instrument at MLZ (Garching). Cold beam extraction from the flux maximum within the moderator based on liquid para H 2 and other cold moderators will be tested by energy spectroscopy via TOF-method. Different ratios of liquid ortho/para H 2 will be fed to the cold moderator. The ratio will be controlled by feeding from reservoires of natural liquid H 2 and a storage loop with an ortho/para converter and determined via online heat capacity measurement. (paper)

  8. Development of moderated neutron calibration fields simulating workplaces of MOX fuel facilities

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Takada, Chie

    2005-01-01

    It is important for the MOX fuel facilities to control neutrons produced by the spontaneous fission of plutonium isotopes and those from (α,n) reactions between 18 O and α particles emitted by 238 Pu. Neutron dose meters should be calibrated for measuring these neutrons. We have developed moderated-neutron calibration fields employing a 252 Cf neutron source and moderators mainly for the characteristics evaluation and the calibration of neutron detectors used in MOX fuel facilities. Neutron energy spectrum can be adjusted by changing the position of the 252 Cf neutron source and combining different moderators to simulate the neutron field of the MOX fuel facility. This performance is realized owing to using an existing neutron irradiation room. (K. Yoshida)

  9. Development of cold source moderator structure

    International Nuclear Information System (INIS)

    Aso, Tomokaze; Ishikura, Syuichi; Terada, Atsuhiko; Teshigawara, Makoto; Watanabe, Noboru; HIno, Ryutaro

    1999-01-01

    The cold and thermal neutrons generated at the target (which works as a spallation neutron source under a 5MW proton beam condition) is filtered with cold source moderators using supercritical hydrogen. Preliminary structural analysis was carried out to clarify technical problems on the concept of the thin-walled structure for the cold source moderator. Structural analytical results showed that the maximum stress of 1 12MPa occurred on the moderator surface, which exceeded the allowable design stresses of ordinary aluminum alloys. Flow patterns measured by water flow experiments agreed well with hydraulic analytical results, which showed that an impinging jet flow from an inner pipe of the moderator caused a recirculation flow on a large scale. Based on analytical and experimental results, new moderator structures with minute frames, blowing flow holes etc. were proposed to keep its strength and to suppress the recirculation flow. (author)

  10. Optimized sub thermal neutron source to Linac of CAB

    International Nuclear Information System (INIS)

    Torres, L; Granada, R

    2006-01-01

    We present the results of calculations performed with the code M C N P relative to the neutron field behavior within the moderator for the Bariloche-Linac cold neutron source, using polyethylene as pre moderator and solid mesitylene as moderating material at 90 K.The optimum dimensions for a moderator were obtained, with and without a pre moderator, from the point of view of neutron production and time-width of the neutron pulse.Finally, we adopted for our cold neutron source, a slab pre moderator of P L E at room temperature, and a cylindrical moderator of mesitylene at 90 K with a cooler system of stainless steel with windows of Zircaloy-4 [es

  11. Detail design and manufacturing result of the HANARO cold neutron source moderator cell

    International Nuclear Information System (INIS)

    Hwang, Dong Gil; Han, Young Soo; Kim, Soo Sung; Lee, Kye Hong; Kim, Young Jin

    2005-01-01

    Moderator cell which is on the process of developing is the core of the Cold Neutron Source(CNS) and operates at cryogenic of 20K and made of aluminum. When infer from experience in all nuclear reactors that use moderator cell, Aluminum has a proper nature to use at cryogenic that use hydrogen. And a lot of data was already published for the Aluminum characters which are in the investigative state. Because performance of moderator cell is getting better when thickness is thinner, moderator was designed to double cylinder type of thin plate style. Aluminum is excellent both manufacturing and welding. If the plate is less than 3.0mm, manufacturing and welding are difficult. Because of this, after making a moderator cell, manufacture and integrity are evaluated. In this paper, detailed design of moderator cell and manufacturing result are described

  12. Graphite moderated {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Sajo B, L.; Barros, H.; Greaves, E. D. [Universidad Simon Bolivar, Nuclear Physics Laboratory, Apdo. 89000, 1080A Caracas (Venezuela, Bolivarian Republic of); Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a {sup 252}Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the {sup 252}Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  13. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium-Beryllium source

    Energy Technology Data Exchange (ETDEWEB)

    Didi, Abdessamad; Dadouch, Ahmed; Tajmouati, Jaouad; Bekkouri, Hassane [Advanced Technology and Integration System, Dept. of Physics, Faculty of Science Dhar Mehraz, University Sidi Mohamed Ben Abdellah, Fez (Morocco); Jai, Otman [Laboratory of Radiation and Nuclear Systems, Dept. of Physics, Faculty of Sciences, Tetouan (Morocco)

    2017-06-15

    Americium–beryllium (Am-Be; n, γ) is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci), yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources) experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

  14. Neutron cooling and cold-neutron sources (1962)

    International Nuclear Information System (INIS)

    Jacrot, B.

    1962-01-01

    Intense cold-neutron sources are useful in studying solids by the inelastic scattering of neutrons. The paper presents a general survey covering the following aspects: a) theoretical considerations put forward by various authors regarding thermalization processes at very low temperatures; b) the experiments that have been carried out in numerous laboratories with a view to comparing the different moderators that can be used; c) the cold neutron sources that have actually been produced in reactors up to the present time, and the results obtained with them. (author) [fr

  15. The Advanced Neutron Source liquid deuterium cold source

    International Nuclear Information System (INIS)

    Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source will employ two cold sources to moderate neutrons to low energy (<10 meV). The cold neutrons produced are then passed through beam guides to various experiment stations. Each cold source moderator is a sphere of 410-mm internal diameter. The moderator material is liquid deuterium flowing at a rate of 1 kg/s and maintained at subcooled temperatures at all points of the circuit, to prevent boiling. Nuclear beat deposited within the liquid deuterium and its containment structure totals more than 30 kW. All of this heat is removed by the liquid deuterium, which raises its temperature by 5 K. The liquid prime mover is a cryogenic circulator that is situated in the return leg of the flow loop. This arrangement minimizes the heat added to the liquid between the heat exchanger and the moderator vessel, allowing the moderator to be operated at the minimum practical temperature. This report describes the latest thinking at the time of project termination. It also includes the status of various systems at that time and outlines anticipated directions in which the design would have progressed. In this regard, some detail differences between this report and official design documents reflect ideas that were not approved at the time of closure but are considered noteworthy

  16. Reactor cold neutron source facility, the first in Japan

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Maeda, Yutaka; Kawai, Takeshi; Tashiro, Tameyoshi; Sakakibara, Shoji; Katada, Minoru.

    1986-01-01

    In the Research Reactor Institute, Kyoto University, the first cold neutron source facility for the reactor in Japan was installed, and various tests are carried out outside the reactor. Nippon Sanso K.K. had manufactured it. After the prescribed tests outside the reactor, this facility will be installed soon in the reactor, and its outline is described on this occasion. Cold neutrons are those having very small energy by being cooled to about-250 deg C. Since the wavelength of the material waves of cold neutrons is long, and their energy is small, they are very advantageous as an experimental means for clarifying the structure of living body molecules and polymers, the atom configuration in alloys, and atomic and molecular movements by neutron scattering and neutron diffraction. The basic principle of the cold neutron source facility is to irradiate thermal neutrons on a cold moderator kept around 20 K, and to moderate and cool the neutrons by nuclear scattering to convert to cold neutrons. The preparatory research on cold neutrons and hydrogen liquefaction, the basic design to put the cold neutron source facility in the graphite moderator facility, the safety countermeasures, the manufacture and quality control, the operation outside the reactor and the performance are reported. The cold neutron source facility comprises a cold moderator tank and other main parts, a deuterium gas tank, a helium refrigerator and instrumentation. (Kako, I.)

  17. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium–Beryllium source

    Directory of Open Access Journals (Sweden)

    Abdessamad Didi

    2017-06-01

    Full Text Available Americium–beryllium (Am-Be; n, γ is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci, yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

  18. Some preliminary design considerations for the ANS [Advanced Neutron Source] reactor cold source

    International Nuclear Information System (INIS)

    Henderson, D.L.

    1988-01-01

    Two areas concerned with the design of the Advanced Neutron Source (ANS) cold source have been investigated by simple one-dimensional calculations. The gain factors computed for a possible liquid nitrogen-15 cold source moderator are considerably below those computed for the much colder liquid deuterium moderator, as is reasonable considering the difference in moderator temperature. Nevertheless, nitrogen-15 does represent a viable option should safety related issues prohibit the use of deuterium as a moderating material. The slab geometry calculations have indicated that reflection of neutrons may be the dominant moderating mechanism and should be a consideration in the design of the cold source. 9 refs., 2 figs

  19. Pulsed neutron sources at Dubna

    International Nuclear Information System (INIS)

    Shabalin, E.P.

    1991-01-01

    In 1960 the first world repetitively pulsed reactor IBR was put into operation. It was the beginning of the story how fission based pulsed neutron sources at Dubna have survived. The engineers involved have experienced many successes and failures in the course of new sources upgrading to finally come to possess the world's brightest neutron source - IBR-2. The details are being reviewed through the paper. The fission based pulsed neutron sources did not reach their final state as yet- the conceptual views of IBR prospects are being discussed with the goal to double the thermal neutron peak flux (up to 2x10 16 ) and to enhance the cold neutron flux by 10 times (with the present one being as high that of the ISIS cold moderator). (author)

  20. Estimation of the Void Fraction in the moderator cell of the Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jungwoon; Kim, Young-ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To estimate the average void fraction in the liquid hydrogen, the Kazimi and Chen correlation is used with its modified method suggested by R.E. Williams in NBSR. Since the multiplying number can be changed along the operation condition and working fluid, the different figure is applied to estimate the average void fraction in the different moderator cell shape. This approach is checked with the void fraction measurement results from the HANARO-CNS mock-up test. Owing to national research demands on cold neutron beam utilization, the Cold Neutron Research Facility had been and operated for neuron scientists all over the world. In HANARO, the CNS facility has been operated since 2009. The actual void fraction, which is the one of dominant factors affecting the cold neutron flux, is difficult to know without the real measurement performed at the cryogenic temperature using the same moderator medium. Accordingly, the two-phase mock-up test in the CNS-IPA (In-pool assembly) had been performed using the liquid hydrogen in terms of the fluidity check, void fraction measurement, operation procedure set-up, and so on for the development of the HANARO-CNS. This paper presents the estimated void fraction in the different operating conditions and geometrical shape in the comparison with the measurement data of the void fraction in the full-scale mockup test based on the Kazimi and Chen correlation. This approach is applied to estimate the average void fraction in the newly designed moderator cell using the liquid hydrogen as a working fluid in the two-phase thermosiphon. From this calculation result, the estimated average void fraction will be used to design the optimized cold neutron source to produce the maximum cold neutron flux within the desired wavelength.

  1. Estimation of the Void Fraction in the moderator cell of the Cold Neutron Source

    International Nuclear Information System (INIS)

    Choi, Jungwoon; Kim, Young-ki

    2015-01-01

    To estimate the average void fraction in the liquid hydrogen, the Kazimi and Chen correlation is used with its modified method suggested by R.E. Williams in NBSR. Since the multiplying number can be changed along the operation condition and working fluid, the different figure is applied to estimate the average void fraction in the different moderator cell shape. This approach is checked with the void fraction measurement results from the HANARO-CNS mock-up test. Owing to national research demands on cold neutron beam utilization, the Cold Neutron Research Facility had been and operated for neuron scientists all over the world. In HANARO, the CNS facility has been operated since 2009. The actual void fraction, which is the one of dominant factors affecting the cold neutron flux, is difficult to know without the real measurement performed at the cryogenic temperature using the same moderator medium. Accordingly, the two-phase mock-up test in the CNS-IPA (In-pool assembly) had been performed using the liquid hydrogen in terms of the fluidity check, void fraction measurement, operation procedure set-up, and so on for the development of the HANARO-CNS. This paper presents the estimated void fraction in the different operating conditions and geometrical shape in the comparison with the measurement data of the void fraction in the full-scale mockup test based on the Kazimi and Chen correlation. This approach is applied to estimate the average void fraction in the newly designed moderator cell using the liquid hydrogen as a working fluid in the two-phase thermosiphon. From this calculation result, the estimated average void fraction will be used to design the optimized cold neutron source to produce the maximum cold neutron flux within the desired wavelength

  2. Design of a graphite-moderated {sup 241}Am-Li neutron field to simulate reactor spectra

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, N., E-mail: tsujimura.norio@jaea.go.j [Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, 4-33, Tokai-mura, Ibaraki-ken, 319-1194 (Japan); Yoshida, T. [Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, 4-33, Tokai-mura, Ibaraki-ken, 319-1194 (Japan)

    2010-12-15

    A neutron calibration field using {sup 241}Am-Li sources and a moderator was designed to simulate the neutron fields found outside a reactor. The moderating assembly selected for the design calculation consists of a cube of graphite blocks with dimensions of 50 cm by 50 cm by 50 cm, in which the {sup 241}Am-Li sources are placed. Monte Carlo calculations revealed the optimal depth of the source to be 15 cm. This moderated neutron source can be used to provide a test field that has a large number of intermediate energy neutrons with a small portion of MeV component.

  3. Cryogenic refrigeration for cold neutron sources

    International Nuclear Information System (INIS)

    Gistau-Baguer, Guy

    1998-01-01

    Neutron moderation by means of a fluid at cryogenic temperature is a very interesting way to obtain cold neutrons. Today, a number of nuclear research reactors are using this technology. This paper deals with thermodynamics and technology which are used for cooling Cold Neutron Sources

  4. Neutron Cross Section Libraries for Cryogenic Aromatic Moderator Materials

    International Nuclear Information System (INIS)

    Cantargi, Florencia; Granada, J.R.; Sbaffoni, Maria Monica

    2008-01-01

    The dynamics of a set of aromatic hydrocarbons, such as benzene, toluene, mesitylene and a 3:2 mixture (by volume) of mesitylene and toluene, all of them in solid phase, was studied as potential moderator materials for cold neutron sources. Cross section libraries were generated for hydrogen bounded in those materials, at several temperatures in ACE format, and they were used in MCNP calculations to analyze their neutron production compared with traditional materials like solid methane and liquid hydrogen. In particular, cross section libraries were generated at 20 K, which is the operating temperature of the majority of the existing cold neutron sources. Although solid methane is the best moderator in terms of cold neutron production, it has very poor radiation resistance, causing spontaneous burping even at fairly low doses. Such effect is considerably reduced in the aromatic hydrocarbons. On the other hand, all of them show a similar and significant neutron production, with the exception of benzene. Even though those aromatic materials are very easy to handle, the solid phases that produce an enhanced flux of cold neutrons correspond to amorphous structures rich in low-energy excitations, and they can be created through lengthy cooling processes requiring in many cases additional annealing stages. The 3:2 mesitylene-toluene mixture, that forms in a simple and direct manner the appropriate disordered structure, constitutes an excellent cryogenic moderator material, as it is able to produce an intense flux of cold neutrons while presenting high resistance to radiation, thus conforming a new and advantageous alternative to traditional moderator materials. (authors)

  5. Apparatus and method for the measurement of neutron moderating or absorbing properties of objects

    International Nuclear Information System (INIS)

    Untermyer, S.I.

    1981-01-01

    An apparatus and method for measuring the neutron moderating or absorbing properties of objects or materials is disclosed in which a fast neutron source cooperates with a neutron absorbing material which reduces the energy of the fast neutrons by inelastic scattering so that they can be readily thermalized by a moderator. A thermal neutron detector is disposed adjacent the material and serves to detect thermal neutrons emitted by a moderator placed to receive and thermalize the reduced energy neutrons. A material whose absorption is to be measured is placed between a moderator and the detector

  6. Cold neutron source conceptual designing for Tehran Research Reactor

    International Nuclear Information System (INIS)

    Khajvand, N.; Mirvakili, S.M.; Faghihi, F.

    2016-01-01

    Highlights: • Cold neutron source conceptual designing for Tehran research reactor is carried out. • Type and geometry of moderator and dimensions of cold neutron source are analyzed. • Liquid hydrogen with more ortho-concentration can be better option as moderator. - Abstract: A cold neutron source (CNS) conceptual designing for the Tehran Research Reactor (TRR) were carried out using MCNPX code. In this study, a horizontal beam tube of the core which has appropriate the highest thermal flux is selected and parametric analysis to choose the type and geometry of the moderator, and the required CNS dimensions for maximizing the cold neutron production was performed. In this design the moderator cell has a spherical annulus structure, and the cold neutron flux and its brightness are calculated together with the nuclear heat load of the CNS for a variety of materials including liquid hydrogen, liquid deuterium, and solid methane. Based on our study, liquid hydrogen with more ortho-concentration than para and solid methane are the best options.

  7. The effectivty of hydrogeneous moderators in pulsed sources

    International Nuclear Information System (INIS)

    Rief, H.; Hartman, J.

    1975-01-01

    Guide lines are provided for an evaluation of the potential of pulsed reactors. In the SORA reactor, neutrons emitted from the fast core are converted in hydrogeneous moderators to beams of low energy neutrons for time of flight experiments. The important characteristics of the neutron sources are absolute intensity of the neutron beam and its energy and time distribution. The problem is solved mathematcially by the random walk (Monte Carlo) method. Calculational methods which are described are compared with pulsed moderator measurements. The choice of moderators and criteria of optimization are discussed. Particular examples of realistic moderator design as planned for SOYA, and as they will be used in pulsed reactors, are analysed, a distinction being made between thermal, cold, and hot moderators. Finally flux estimates are compared with those obtained for a spallation target. (U.K.)

  8. The University of Texas Cold Neutron Source

    International Nuclear Information System (INIS)

    Uenlue, Kenan; Rios-Martinez, Carlos; Wehring, B.W.

    1994-01-01

    A cold neutron source has been designed, constructed, and tested by the Nuclear Engineering Teaching Laboratory (NETL) at The University of Texas at Austin. The Texas Cold Neutron Source (TCNS) is located in one of the beam ports of the NETL 1-MW TRIGA Mark II research reactor. The main components of the TCNS are a cooled moderator, a heat pipe, a cryogenic refrigerator, and a neutron guide. 80 ml of mesitylene moderator are maintained at about 30 K in a chamber within the reactor graphite reflector by the heat pipe and cryogenic refrigerator. The heat pipe is a 3-m long aluminum tube that contains neon as the working fluid. The cold neutrons obtained from the moderator are transported by a curved 6-m long neutron guide. This neutron guide has a radius of curvature of 300 m, a 50x15 mm cross-section, 58 Ni coating, and is separated into three channels. The TCNS will provide a low-background subthermal neutron beam for neutron capture and scattering research. After the installation of the external portion of the neutron guide, a neutron focusing system and a Prompt Gamma Activation Analysis facility will be set up at the TCNS. ((orig.))

  9. Method to determine the strength of a neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Chacon R, A.; Mercado, G.A. [UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Depto. Ingenieria Nuclear, Universidad Politecnica de Madrid, (Spain)

    2006-07-01

    The use of a gamma-ray spectrometer with a 3 {phi} x 3 NaI(Tl) detector, with a moderator sphere has been studied in the aim to measure the neutron fluence rate and to determine the source strength. Moderators with a large amount of hydrogen are able to slowdown and thermalize neutrons; once thermalized there is a probability that thermal neutron to be captured by hydrogen producing 2.22 MeV prompt gamma-ray. The pulse-height spectrum collected in a multicharmel analyzer shows a photopeak around 2.22 MeV whose net area is proportional to total neutron fluence rate and to the neutron source strength. The characteristics of this system were determined by a Monte Carlo study using the MCNP 4C code, where a detailed model of the Nal(Tl) was utilized. As moderators 3, 5, and 10 inches-diameter spheres where utilized and the response was calculated for monoenergetic and isotopic neutrons sources. (Author)

  10. Research of accelerator-based neutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Li Changkai; Ma Yingjie; Tang Xiaobin; Xie Qin; Geng Changran; Chen Da

    2013-01-01

    Background: 7 Li (p, n) reaction of high neutron yield and low threshold energy has become one of the most important neutron generating reactions for Accelerator-based Boron Neutron Capture Therapy (BNCT). Purpose Focuses on neutron yield and spectrum characteristics of this kind of neutron generating reaction which serves as an accelerator-based neutron source and moderates the high energy neutron beams to meet BNCT requirements. Methods: The yield and energy spectrum of neutrons generated by accelerator-based 7 Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are researched using the Monte Carlo code-MCNPX2.5.0. And the energy and angular distribution of differential neutron yield by 2.5-MeV incident proton are also given in this part. In the following part, the character of epithermal neutron beam generated by 2.5-MeV incident protons is moderated by a new-designed moderator. Results: Energy spectra of neutrons generated by accelerator-based 7 Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are got through the simulation and calculation. The best moderator thickness is got through comparison. Conclusions: Neutron beam produced by accelerator-based 7 Li(p, n) reaction, with the bombarding beam of 10 mA and the energy of 2.5 MeV, can meet the requirement of BNCT well after being moderated. (authors)

  11. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Yoshimasa, E-mail: yoshimasa.ikeda@riken.jp [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Kumagai, Masayoshi [Faculty of Engineering, Tokyo City University, Setagaya, Tokyo 158-8857 (Japan); Oba, Yojiro [Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494 (Japan); Otake, Yoshie [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Suzuki, Hiroshi [Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2016-10-11

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  12. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    Energy Technology Data Exchange (ETDEWEB)

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  13. Neutronic characteristics of coupled moderator proposed in integrated model

    International Nuclear Information System (INIS)

    Teshigawara, Makoto; Meigo, Shin-ichiro; Sakata, Hideaki; Kai, Tetsuya; Harada, Masahide; Ikeda, Yujiro; Watanabe, Noboru

    2001-05-01

    A pulsed spallation source for the materials science and the life science is currently developing for its construction in the High Intensity Proton Accelerator Project proposed jointly by the Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK). This report presents the analytical results of the neutronic characteristics of the coupled moderator based on the analytical results obtained by using an integrated model which has established on the extensive neutronic and technical study. Total heat deposition in a hydrogen (H 2 ) moderator working as the main moderator was about 420 W/MW. Maximum nuclear heat density in the H 2 moderator was about 1 W/cm 3 /MW. Also total heat deposition in a premoderator was about 9.2 kW/MW. The heat density of the premoderator was comparable to that of the moderator vessel made of aluminum alloy. The heat density of the premoderator and the moderator vessel is about 1.2-2 times higher than that of the hydrogen moderator. The temperature from 300 K to 400 K of the premoderator did not affect on neutron intensity of the H 2 moderator. This suggested an engineering advantage on the thermal and hydraulic design. 6000 or 7000 type of a aluminum alloy was considered from the viewpoint of the neutron beam transmission. The proton beams scattered by the proton beam window did not affect on the nuclear heating in the H 2 moderator. The heat deposition in the H 2 moderator and the neutron intensity of the H 2 moderator did not depend on the proton beam profile but it did on the distance between the proton beam and the moderator. (author)

  14. A possible approach to 14MeV neutron moderation: A preliminary study case.

    Science.gov (United States)

    Flammini, D; Pilotti, R; Pietropaolo, A

    2017-07-01

    Deuterium-Tritium (D-T) interactions produce almost monochromatic neutrons with about 14MeV energy. These neutrons are used in benchmark experiments as well as for neutron cross sections assessment in fusion reactors technology. The possibility to moderate 14MeV neutrons for purposes beyond fusion is worth to be studied in relation to projects of intense D-T sources. In this preliminary study, carried out using the MCNP Monte Carlo code, the moderation of 14MeV neutrons is approached foreseeing the use of combination of metallic materials as pre-moderator and reflectors coupled to standard water moderators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Small neutron sources as centers for innovation and science

    International Nuclear Information System (INIS)

    Baxter, D.V.

    2009-01-01

    The education and training of the next generation of scientists who will form the user base for the Spallation Neutron Source (SNS) remains a significant issue for the future success of this national facility. These scientists will be drawn from a wide variety of disciplines (physics, chemistry, biology, and engineering) and therefore the development of an effective interdisciplinary training program represents a significant challenge. In addition, effective test facilities to develop the full potential of pulsed neutron sources for science do not exist. Each of these problems represents a significant hurdle for the future health of neutron science in this country. An essential part of the solution to both problems is to get neutron sources of useful intensities into the hands of researchers and students at universities, where faculty can teach students about neutron production and the utility of neutrons for solving scientific problems. Due to a combination of developments in proton accelerator technology, neutron optics, cold neutron moderators, computer technology, and small-angle neutron scattering (SANS) instrumentation, it is now technically possible and cost effective to construct a pulsed cold neutron source suitable for use in a university setting and devoted to studies of nano structures in the fields of materials science, polymers, microemulsions, and biology. Such a source, based on (p,n) reactions in light nuclei induced by a few MeV pulsed proton beam coupled to a cold neutron moderator, would also be ideal for the study of a number of technical issues which are essential for the development of neutron science such as cold and perhaps ultracold neutron moderators, neutron optical devices, neutron detector technology, and transparent DAQ/user interfaces. At the Indiana University Cyclotron Facility (IUCF) we possess almost all of the required instrumentation and expertise to efficiently launch the first serious attempt to develop an intense pulsed cold

  16. “Influence Method” applied to measure a moderated neutron flux

    International Nuclear Information System (INIS)

    Rios, I.J.; Mayer, R.E.

    2016-01-01

    The “Influence Method” is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency. This method exploits the influence of the presence of one detector, in the count rate of another detector when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency. The method and its detailed mathematical description were recently published (Rios and Mayer, 2015 [1]). In this article we apply it to the measurement of the moderated neutron flux produced by an "2"4"1AmBe neutron source surrounded by a light water sphere, employing a pair of "3He detectors. For this purpose, the method is extended for its application where particles arriving at the detector obey a Poisson distribution and also, for the case when efficiency is not constant over the energy spectrum of interest. Experimental distributions and derived parameters are compared with theoretical predictions of the method and implications concerning the potential application to the absolute calibration of neutron sources are considered. - Highlights: • “Influence Method” applied to measure a moderated neutron flux. • Effective efficiency defined independently of calibration sources. • Neutron sources calibration discussion.

  17. The Los Alamos Neutron Science Center Spallation Neutron Sources

    International Nuclear Information System (INIS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-01-01

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  18. The Los Alamos Neutron Science Center Spallation Neutron Sources

    Science.gov (United States)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  19. Behavior of neutrons under different thicknesses of moderation

    International Nuclear Information System (INIS)

    Baltazar R, A.; Medina C, D.; Soto B, T. G.; Vega C, H. R.

    2016-10-01

    Neutrons occur naturally, regardless of whether they are obtained as a by-product of other reactions or intentionally, mainly as a by-product of the interaction of cosmic rays with the nuclei of the atmosphere, and in anthropogenic or artificial form with neutron generators, nuclear reactors, radioisotope sources, etc. Due to their high radiobiological efficiency is important measure them in order to estimate the effective dose in occupationally exposed personnel and the public in general. This dose depends on the amount of neutrons and their energy; in order to reduce neutron energy, light materials based on H, D, C, Be are used which moderate and thermalize them. The objective of this work was to determine the behavior of monoenergetic sources of neutrons in their transport within polyethylene of different thicknesses. The study was carried out using Monte Carlo methods with the code MCNP5, where 23 monoenergetic sources of I E(-9) were used at 20 MeV by influencing the neutrons on various polyethylene surfaces whose thickness was varied from 5.08 to 30.48 cm and the total neutron flux was estimated, as well as its spectrum when crossing the various thicknesses used in the study. (Author)

  20. Self-regulating characteristics of cold neutron source with annular cylindrical moderator cell

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Lee Chien-Hsiung; Chan Yea-Kuang; Guung Tai-Cheng; Yoshino, Hirofumi; Kawabata, Yuji; Hino, Masahiro

    2001-01-01

    The conditions, in which the ORPHEE type cold neutron source with an annular cylindrical moderator cell could have self-regulating characteristics, were obtained through thermodynamic considerations. From a viewpoint of engineering, it is not easy to establish these conditions because three parameters are involved even in an idealized system without the effect of the mass transfer resistance in the moderator transfer tube between the condenser and the moderator cell. The inner shell of the ORPHEE moderator cell is open in the bottom, but it is expected that only hydrogen vapor is contained in the inner shell and liquid hydrogen in the outer shell. The thermodynamic considerations show that such a state is maintained only when a liquefaction capacity of the condenser is large compared to heat lead and three parameters are optimized with a good balance. We proposed another type of a moderator cell, which has an inner cylindrical cavity with no hole in the bottom but a vapor inlet opening at the uppermost part of the cavity. In this structure, a self-regulating characteristic is established easily and the liquid level in the outer shell is maintained almost constant against thermal disturbances. Therefore it is enough to control one parameter, that is, the reservoir tank pressure corresponding to the liquefaction capacity of the condenser given by the refrigeration power of the helium refrigerator. (author)

  1. Commissioning of the Opal reactor cold neutron source

    International Nuclear Information System (INIS)

    Thiering, R.; Lu, W.; Ullah, R.

    2006-01-01

    Full text: At OPAL, Australia's first cold neutron facility will form an essential part of the reactor's research programs. Fast neutrons, born in the core of a reactor, interact with a cryogenic material, in this case liquid deuterium, to give them very low energies ( 1 0 m eV). A cold neutron flux of 1.4 1 0 E 1 4 n /cm 2/ s is expected, with a peak in the energy spectrum at 4.2m eV. The cold neutron source reached cryogenic conditions for the first time in late 2005. The cold neutron source operates with a sub-cooled liquid Deuterium moderator at 24 K. The moderator chamber, which contains the deuterium, has been constructed from AlMg 5. The thermosiphon and moderator chamber are cooled by helium gas, in a natural convection thermosiphon loop. The helium refrigeration system utilises the Brayton cycle, and is fully insulated within a high vacuum environment. Despite the proximity of the cold neutron source to the reactor core, it has been considered as effectively separate to the reactor system, due to the design of its special vacuum containment vessel. As OPAL is a multipurpose research reactor, used for beam research as well as radiopharmaceutical production and industrial irradiations, the cold neutron source has been designed with a stand-by mode, to maximise production. The stand-by mode is a warm operating mode using only gaseous deuterium at ambient temperatures (∼ 3 00 K ), allowing for continued reactor operations whilst parts of the cold source are unavailable or in maintenance. This is the first time such a stand-by feature has been incorporated into a cold source facility

  2. Outline of spallation neutron source engineering

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Noboru [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2001-01-01

    Slow neutrons such as cold and thermal neutrons are unique probes which can determine structures and dynamics of condensed matter in atomic scale. The neutron scattering technique is indispensable not only for basic sciences such as condensed matter research and life science, but also for basic industrial technology in 21 century. It is believed that to survive in the science-technology competition in 21 century would be almost impossible without neutron scattering. However, the intensity of neutrons presently available is much lower than synchrotron radiation sources, etc. Thus, R and D of intense neutron sources become most important. The High-Intensity Proton Accelerator Project is now being promoted jointly by Japan Atomic Energy Research Institute and High Energy Accelerator Research Organization, but there has so far been no good text which covers all the aspects of pulsed spallation neutron sources. The present review was prepare aiming at giving a better understanding on pulsed spallation neutron sources not only to neutron source researchers but also more widely to neutron scattering researchers and accelerator scientists in this field. The contents involve, starting from what is neutron scattering and what neutrons are necessary for neutron scattering, what is the spallation reaction, how to produce neutrons required for neutron scattering more efficiently, target-moderator-reflector neutronics and its engineering, shielding, target station, material issues, etc. The author have engaged in R and D of pulsed apallation neutron sources and neutron scattering research using them over 30 years. The present review is prepared based on the author's experiences with useful information obtained through ICANS collaboration and recent data from the JSNS (Japanese Spallation Neutron Source) design team. (author)

  3. Cyclotron-based neutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  4. Characteristics of the WNR: a pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Russell, G.J.; Lisowski, P.W.; Howe, S.D.; King, N.S.P.; Meier, M.M.

    1982-01-01

    The Weapons Neutron Research facility (WNR) is a pulsed spallation neutron source in operation at the Los Alamos National Laboratory. The WNR uses part of the 800-MeV proton beam from the Clinton P. Anderson Meson Physics Facility accelerator. By choosing different target and moderator configurations and varying the proton pulse structure, the WNR can provide a white neutron source spanning the energy range from a few MeV to 800 MeV. The neutron spectrum from a bare target has been measured and is compared with predictions using an Intranuclear Cascade model coupled to a Monte Carlo transport code. Calculations and measurements of the neutronics of WNR target-moderator assemblies are presented

  5. Cold source vessel development for the advanced neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.T.; Lucas, A.T. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory (ORNL), will be a user-oriented neutron research facility that will produce the most intense flux of neutrons in the world. Among its many scientific applications, the productions of cold neutrons is a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410 mm diameter sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design are being performed with multi-dimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This paper presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that will be used to verify the final design.

  6. The cold neutron source in DR 3

    International Nuclear Information System (INIS)

    Jensen, K.; Leth, j.A.

    1980-09-01

    A description of the cold neutron source in DR 3 is given. The moderator of the cold neutron source is supercritical hydrogen at about 30degK and 15 bar abs. The necessary cooling capacity is supplied by two Philips Stirling B20 cryogenerators. The hydrogen is circulated between the cryogenerators and the in-pile moderator chamber by small fans. The safety of the facility is based on the use of triple containment preventing contact between hydrogen and air. The triple containment is achieved by enclosing the high vacuum system, surrounging the hydrogen system, in a helium blanket. The achieved spectrum of the thermal neutron flux and the gain factor are given as well as the experience from more than 5 years of operation. Finally some work on extension of the facility to operate two cold sources is reported. (author)

  7. Variation of Neutron Moderating Power on HDPE by Gamma Radiation

    International Nuclear Information System (INIS)

    Park, Kwang June; Ju, June Sik; Kang, Hee Young; Shin, Hee Sung; Kim, Ho Dong

    2009-01-01

    High density polyethylene (HDPE) is degraded due to a radiation-induced oxidation when it is used as a neutron moderator in a neutron counter for a nuclear material accounting of spent fuels. The HDPE exposed to the gamma-ray emitted from the fission products in a spent nuclear fuel results in a radiation-induced degradation which changes its original molecular structure to others. So a neutron moderating power variation of HDPE, irradiated by a gamma radiation, was investigated in this work. Five HDPE moderator structures were exposed to the gamma radiation emitted from a 60 Co source to a level of 10 5 -10 9 rad to compare their post-irradiation properties. As a result of the neutron measurement test with 5 irradiated HDPE structures and a neutron measuring system, it was confirmed that the neutron moderating power for the 105 rad irradiated HDPE moderator revealed the largest decrease when the un-irradiated pure one was used as a reference. It implies that a neutron moderating power variation of HDPE is not directly proportional to the integrated gamma dose rate. To clarify the cause of these changes, some techniques such as a FTIR, an element analysis and a densitometry were employed. As a result of these analyses, it was confirmed that the molecular structure of the gamma irradiated HDPEs had partially changed to others, and the contents of hydrogen and oxygen had varied during the process of a radiation-induced degradation. The mechanism of these changes cannot be explained in detail at present, and thus need further study

  8. Testing Moderating Detection Systems with 252Cf-Based Reference Neutron Fields

    International Nuclear Information System (INIS)

    Hertel, Nolan E.; Sweezy, Jeremy; Sauber, Jeremiah S.; Vaughn, David; Cook, Andrew; Tays, Jeff; Ro, Tae-Ik

    2001-01-01

    Calibration measurements were carried out on a probe designed to measure ambient dose equivalent in accordance with ICRP Pub 60 recommendations. It consists of a cylindrical 3 He proportional counter surrounded by a 25-cm-diameter spherical polyethylene moderator. Its neutron response is optimized for dose rate measurements of neutrons between thermal energies and 20 MeV. The instrument was used to measure the dose rate in four separate neutron fields: unmoderated 252 Cf, D 2 O-moderated 252 Cf, polyethylene-moderated 252 Cf, and WEP neutron howitzer with 252 Cf at its center. Dose equivalent measurements were performed at source-detector centerline distances from 50 to 200 cm. The ratio of air-scatter- and room-return-corrected ambient dose equivalent rates to ambient dose equivalent rates calculated with the code MCNP are tabulated

  9. Evaluation of response function of moderating-type neutron detector and application to environmental neutron measurement

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Nakamura, Takashi; Iwai, Satoshi; Katsuki, Shinji; Kamata, Masashi.

    1983-08-01

    The energy-dependent response function of a multi-cylinder moderating-type BF 3 counter, so-called Bonner counter, was calculated by the time-dependent multi-group Monte Carlo code, TMMCR. The calculated response function was evaluated experimentally for neutron energy below about 50 keV down to epithermal energy by the time-of-flight method combining with a large lead pile at the Nuclear Engineering Research Laboratory, University of Tokyo and also above 50 keV by using the monoenergetic neutron standard field a t the Electrotechnical Laboratory. The time delay in the polyethylene moderator of the Bonner counter due to multiple collisions with hydrogen was analyzed by the TMMCR code and used for the time-spectrum analysis of the time-of-flight measurement. The response function obtained by these two experiments showed good agreement with the calculated results. This Bonner counter having a response function evaluated from thermal to MeV energy range was used for spectrometry and dosimetry of environmental neutrons around some nuclear facilities. The neutron spectra and dose measured in the environment around a 252 Cf fission source, fast neutron source reactor and electron synchrotron were all in good agreement with the calculated results and the measured results with other neutron detectors. (author)

  10. An Accelerator Neutron Source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Thomas, E

    2006-03-14

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.

  11. An Accelerator Neutron Source for BNCT

    International Nuclear Information System (INIS)

    Blue, Thomas E.

    2006-01-01

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were (1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, (2) that the patient treatment time be reasonable, (3) that the proton current required to treat patients in reasonable times be technologically achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally (4) that the treatment be safe for the patients

  12. A Long-Pulse Spallation Source at Los Alamos: Facility description and preliminary neutronic performance for cold neutrons

    International Nuclear Information System (INIS)

    Russell, G.J.; Weinacht, D.J.; Pitcher, E.J.; Ferguson, P.D.

    1998-03-01

    The Los Alamos National Laboratory has discussed installing a new 1-MW spallation neutron target station in an existing building at the end of its 800-MeV proton linear accelerator. Because the accelerator provides pulses of protons each about 1 msec in duration, the new source would be a Long Pulse Spallation Source (LPSS). The facility would employ vertical extraction of moderators and reflectors, and horizontal extraction of the spallation target. An LPSS uses coupled moderators rather than decoupled ones. There are potential gains of about a factor of 6 to 7 in the time-averaged neutron brightness for cold-neutron production from a coupled liquid H 2 moderator compared to a decoupled one. However, these gains come at the expense of putting ''tails'' on the neutron pulses. The particulars of the neutron pulses from a moderator (e.g., energy-dependent rise times, peak intensities, pulse widths, and decay constant(s) of the tails) are crucial parameters for designing instruments and estimating their performance at an LPSS. Tungsten is the reference target material. Inconel 718 is the reference target canister and proton beam window material, with Al-6061 being the choice for the liquid H 2 moderator canister and vacuum container. A 1-MW LPSS would have world-class neutronic performance. The authors describe the proposed Los Alamos LPSS facility, and show that, for cold neutrons, the calculated time-averaged neutronic performance of a liquid H 2 moderator at the 1-MW LPSS is equivalent to about 1/4th the calculated neutronic performance of the best liquid D 2 moderator at the Institute Laue-Langevin reactor. They show that the time-averaged moderator neutronic brightness increases as the size of the moderator gets smaller

  13. Cold neutron production in liquid para- and normal-H sub 2 moderators

    CERN Document Server

    Morishima, N

    2002-01-01

    A neutron transport analysis is performed for liquid H sub 2 moderators with 100% para and normal (ortho:para=0.75:0.25) fractions. Four sets of energy-averaged cross-sections (group constants) for liquid ortho- and para-H sub 2 at melting and boiling points are generated and neutron energy range between 0.1 mu eV and 10 eV is broken into 80 groups. Basic moderating characteristics are studied of a model cold-neutron source in a one-dimensional bare-slab geometry. It is shown that liquid para-H sub 2 is superior in cold neutron production to liquid normal H sub 2 on account of a para-to-ortho transition (molecular rotational excitation) and a good transmission property with a mean free path of about 10 cm. In the case of neutron extraction from the inside of the source, high intensity of cold neutrons is possible with liquid normal H sub 2 at higher temperatures up to the boiling point.

  14. Experimental demonstration of a compact epithermal neutron source based on a high power laser

    Science.gov (United States)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Raspino, D.; Ansell, S.; Wilson, L. A.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Kelleher, J.; Murphy, C. D.; Notley, M.; Rusby, D. R.; Schooneveld, E.; Borghesi, M.; McKenna, P.; Rhodes, N. J.; Neely, D.; Brenner, C. M.; Kar, S.

    2017-07-01

    Epithermal neutrons from pulsed-spallation sources have revolutionised neutron science allowing scientists to acquire new insight into the structure and properties of matter. Here, we demonstrate that laser driven fast (˜MeV) neutrons can be efficiently moderated to epithermal energies with intrinsically short burst durations. In a proof-of-principle experiment using a 100 TW laser, a significant epithermal neutron flux of the order of 105 n/sr/pulse in the energy range of 0.5-300 eV was measured, produced by a compact moderator deployed downstream of the laser-driven fast neutron source. The moderator used in the campaign was specifically designed, by the help of MCNPX simulations, for an efficient and directional moderation of the fast neutron spectrum produced by a laser driven source.

  15. Thickness optimization of various moderator materials for maximization of thermal neutron fluence

    International Nuclear Information System (INIS)

    Dhang, Prosenjit; Verma, Rishi; Shyam, Anurag

    2015-01-01

    Plasma focus device is widely being used as pulsed neutron source for variety of applications. Measurements of neutron yield by largely preferred Helium-3 proportional counter and Silver activation counter are mainly sensitive to thermal neutrons and are typically used with a neutron moderator. Thermalization of neutron is based on scattering reaction and hydrogenous materials are the best thermalizing medium. The efficiency of aforementioned neutron detectors is considerably affected by physical and geometrical properties of thermalizing medium i.e. moderator material, its thickness and shape. In view of the same, simulations have been performed to explore the effective utilization of Polyethylene, Perspex and Light water as moderating mediums for cylindrical and spherical geometry. In this study, estimated thermal fluence value up to 0.5 eV has been considered as the benchmark factor for comparing efficient thermalization by specific material, its thickness and shape. In either of the shapes being cylindrical or spherical, use of Polyethylene as moderating medium has resulted in minimum optimum thickness along with highest thermal fluence. (author)

  16. Cold neutron source with self-regulation

    International Nuclear Information System (INIS)

    Kawai, T.

    2003-01-01

    A way to increase the cold neutron flux is to cool moderator from where cold neutrons are extracted. Although various kinds of cooling system are considered, the closed thermo-siphon cooling system is adopted in many institutes. The notable feature of this system is to be able to keep the liquid level stable in the moderator cell against thermal disturbances, by using self-regulation, which allows a stable supply of cold neutrons. The main part of the closed thermo-siphon consists of a condenser, a moderator transfer tube and moderator cell, which is called the hydrogen cold system. When an extra heat load is applied to the hydrogen cold system having no flow resistance in a moderator transfer tube, the system pressure rises by evaporation of liquid hydrogen. Then the boiling point of hydrogen rises. The liquefaction capacity of the condenser is increasing with a rise of temperature, because a refrigerating power of the helium refrigerator increases linearly with temperature rise of the system. Therefore, the effect of thermal heat load increase is compensated and cancelled out. The closed thermo-siphon has this feature generally, when the moderator transfer tube is designed to be no flow resistance. The report reviews the concept of self-regulation, and how to design and construct the cold neutron source with self-regulation. (author)

  17. High Brightness Neutron Source for Radiography. Final report

    International Nuclear Information System (INIS)

    Cremer, J.T.; Piestrup, Melvin A.; Gary, Charles K.; Harris, Jack L.; Williams, David J.; Jones, Glenn E.; Vainionpaa, J.H.; Fuller, Michael J.; Rothbart, George H.; Kwan, J.W.; Ludewigt, B.A.; Gough, R.A.; Reijonen, Jani; Leung, Ka-Ngo

    2008-01-01

    This research and development program was designed to improve nondestructive evaluation of large mechanical objects by providing both fast and thermal neutron sources for radiography. Neutron radiography permits inspection inside objects that x-rays cannot penetrate and permits imaging of corrosion and cracks in low-density materials. Discovering of fatigue cracks and corrosion in piping without the necessity of insulation removal is possible. Neutron radiography sources can provide for the nondestructive testing interests of commercial and military aircraft, public utilities and petrochemical organizations. Three neutron prototype neutron generators were designed and fabricated based on original research done at the Lawrence Berkeley National Laboratory (LBNL). The research and development of these generators was successfully continued by LBNL and Adelphi Technology Inc. under this STTR. The original design goals of high neutron yield and generator robustness have been achieved, using new technology developed under this grant. In one prototype generator, the fast neutron yield and brightness was roughly 10 times larger than previously marketed neutron generators using the same deuterium-deuterium reaction. In another generator, we integrate a moderator with a fast neutron source, resulting in a high brightness thermal neutron generator. The moderator acts as both conventional moderator and mechanical and electrical support structure for the generator and effectively mimics a nuclear reactor. In addition to the new prototype generators, an entirely new plasma ion source for neutron production was developed. First developed by LBNL, this source uses a spiral antenna to more efficiently couple the RF radiation into the plasma, reducing the required gas pressure so that the generator head can be completely sealed, permitting the possible use of tritium gas. This also permits the generator to use the deuterium-tritium reaction to produce 14-MeV neutrons with increases

  18. Accelerator-based cold neutron sources and their cooling system

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Yanai, Masayoshi; Ishikawa, Yoshikazu.

    1985-01-01

    We have developed and installed two accelerator-based cold neutron sources within a electron linac at Hokkaido University and a proton synchrotoron at National Laboratory for High Energy Physics. Solid methane at 20K was adopted as the cold moderator. The methane condensing heat exchangers attached directly to the moderator chambers were cooled by helium gas, which was kept cooled in refrigerators and circulated by ventilation fans. Two cold neutron sources have operated smoothly and safely for the past several years. In this paper we describe some of the results obtained in the preliminary experiments by using a modest capacity refrigerator, the design philosophy of the cooling system for the pulsed cold neutron sources, and outline of two facilities. (author)

  19. On the neutron slowing-down in moderators

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, Alexandre D., E-mail: alexdc@ieav.cta.br [Instituto de Estudos Avançados (IEAV), São José dos Campos, SP (Brazil). Divisão de Energia Nuclear

    2017-07-01

    Neutron slowing-down is a very important subject to be considered in several areas of nuclear energy application, such as thermal nuclear reactors, nuclear medicine, radiological protection, detectors design and so on. Moderator materials are the responsible to perform this task and among the neutron induced cross sections, the elastic scattering cross section is the main nuclear interaction in this case. At thermal neutron energies, the moderator molecular or crystalline structure become important and dependent on the moderator phase, gas, liquid, or solid, its cross sections and, consequently, the angular and energy distributions of the scattered neutron are affected. The procedures used for generating correctly moderators cross sections at thermal neutron energies from evaluated nuclear data files utilizing the NJOY system are addressed. (author)

  20. A shielding design for an accelerator-based neutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, A.E.; Blue, T.E. E-mail: blue.1@osu.edu; Woollard, J.E

    2004-11-01

    Research in boron neutron capture therapy (BNCT) at The Ohio State University Nuclear Engineering Department has been primarily focused on delivering a high quality neutron field for use in BNCT using an accelerator-based neutron source (ABNS). An ABNS for BNCT is composed of a proton accelerator, a high-energy beam transport system, a {sup 7}Li target, a target heat removal system (HRS), a moderator assembly, and a treatment room. The intent of this paper is to demonstrate the advantages of a shielded moderator assembly design, in terms of material requirements necessary to adequately protect radiation personnel located outside a treatment room for BNCT, over an unshielded moderator assembly design.

  1. Study of neutron moderation using the {sup 241}Am-Be spectrum with hydrogenated materials; Estudo da moderacao de neutrons utilizando o espectro de {sup 241}Am-Be com materiais hidrogenados

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.R.L.; Silva, F.S.; Martins, M.M.; Pereira, W.W., E-mail: aleiras@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ/LNMRI/LN), Rio de Janeiro, RJ (Brazil). Lab. de Neutrons; Freitas, B.M. [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Tavares, D.Y.S. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    This work intends to assess materials for moderation of neutrons, trying to reduce the rate of H{sub p}(10) and H⁎p(10), reducing the effective dose of Occupationally Exposed Workers (OEW) who handle this source daily. The neutron spectra moderated by different materials was performed with a neutron source of {sup 241}Am-Be in an electronic positioning system, using a neutron spectrometry with Bonner Sphere at 50 cm from the center of source. The materials used for moderation were paraffin, silicone and Polyvinyl Chloride (PVC) resin ball. (author)

  2. Simulation for developing new pulse neutron spectrometers I. Creation of new McStas components of moderators of JSNS

    CERN Document Server

    Tamura, I; Arai, M; Harada, M; Maekawa, F; Shibata, K; Soyama, K

    2003-01-01

    Moderators components of the McStas code have been created for the design of JSNS instruments. Three cryogenic moderators are adopted in JSNS, one is coupled H sub 2 moderators for high intensity experiments and other two are decoupled H sub 2 with poisoned or unpoisoned for high resolution moderators. Since the characteristics of neutron beams generated from moderators make influence on the performance of pulse neutron spectrometers, it is important to perform the Monte Carlo simulation with neutron source component written precisely. The neutron spectrum and time structure were calculated using NMTC/JAERI97 and MCNP4a codes. The simulation parameters, which describe the pulse shape over entire spectrum as a function of time, are optimized. In this paper, the creation of neutron source components for port No.16 viewed to coupled H sub 2 moderator and for port No.11 viewed to decoupled H sub 2 moderator of JSNS are reported.

  3. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    International Nuclear Information System (INIS)

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel's inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design

  4. An accelerator based steady state neutron source

    International Nuclear Information System (INIS)

    Burke, R.J.; Johnson, D.L.

    1985-01-01

    Using high current, c.w. linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the Accelerator Based Neutron Research Facility (ABNR) would initially achieve the 10 16 n/cm 2 .s thermal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of $300-450M is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source in most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc. With the development of multi-beam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs

  5. Optimization study of ultracold neutron sources at TRIGA reactors using MCNP

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.; Rogov, A.D.

    1997-01-01

    Monte Carlo simulation for the optimization of ultracold and very cold neutron sources for TRIGA reactors is performed. The calculations of thermal and cold neutron fluxes from the TRIGA reactor for different positions and configurations of a very cold solid methane moderator were performed with using the MCNP program. The production of neutrons in the ultracold and very cold energy range was calculated for the most promising final moderators (converters): very cold solid deuterium and heavy methane. The radiation energy deposition was calculated for the optimized solid methane-heavy methane cold neutron moderator

  6. Spallation target-moderator-reflector studies at the Weapons Neutron Research facility

    International Nuclear Information System (INIS)

    Russell, G.J.; Gilmore, J.S.; Prael, S.D.; Robinson, H.; Howe, S.D.

    1980-01-01

    Basic neutronics data, initiated by 800-MeV proton spallation reactions, are important to spallation neutron source development and electronuclear fuel production. Angle-dependent and energy-dependent neutron production cross sections, energy-dependent and total neutron yields, thermal and epithermal neutron surface and beam fluxes, and fertile-to-fissile conversion ratios are being measured. The measurements are being done at the Weapons Neutron Research facility on a variety of targets and target-moderator-reflector configurations. The experiments are relevant to the above applications, and provide data to validate computer codes. Preliminary results are presented and compared to calculated predictions. 13 figures

  7. Ion source requirements for pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1995-10-01

    The neutron scattering community has endorsed the need for a high- power (1 to 5 MW) accelerator-driven source of neutrons for materials research. Properly configured, the accelerator could produce very short (sub-microsecond) bursts of cold neutrons, said time structure offering advantages over the continuous flux from a reactor for a large class of experiments. The recent cancellation of the ANS reactor project has increased the urgency to develop a comprehensive strategy based on the best technological scenarios. Studies to date have built on the experience from ISIS (the 160 KW source in the UK), and call for a high-current (approx. 100 mA peak) H - source-linac combination injecting into one or more accumulator rings in which beam may be further accelerated. The 1 to 5 GeV proton beam is extracted in a single turn and brought to the target-moderator stations. The high current, high duty-factor, high brightness and high reliability required of the ion source present a very large challenge to the ion source community. A workshop held in Berkeley in October 1994, analyzed in detail the source requirements for proposed accelerator scenarios, the present performance capabilities of different H - source technologies, and identified necessary R ampersand D efforts to bridge the gap

  8. Design of a portable directional neutron source finder

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni

    2005-01-01

    An instrument that determines the direction of a remote existing neutron source has been designed. This instrument combines a polyethylene block and four 3 He counter tubes. The advantages of the instrument are portability and good angular resolution. The count from the detector was varied with the neutron incident angle due to the moderator. Using this characteristic, the direction of the neutron source can be measured precisely by revising the axis of the instrument so that the difference between the four detectors measurements is minimized. Consequently, the direction of the central axis of the instrument in which the response difference of the four detectors reaches a minimum indicates the direction of the neutron source. The practical use of the instrument was demonstrated by 252 Cf source irradiation experiment and MCNP simulation

  9. A 3-D Thermal Analysis of the HANARO Cold Neutron Moderator Cell

    International Nuclear Information System (INIS)

    Han, Gee Y.; Kim, Heo Nil

    2007-01-01

    Fundamental studies on a thermal analysis of a cryogenic system such as a cold neutron source (CNS) have increased significantly for a successful CNS design in cold neutron research during recent years. A three-dimensional (3-D) thermal analysis model for the HANARO CNS was developed and used to accurately predict a temperature distribution between the hydrogen inside and the entire inner and outer surfaces of a moderator cell, whose moderator and cell walls are heated differently, under a steady-state operating condition by using the HEATING 7 code. The objective of this study is primarily to predict a temperature distribution through a heat flow in a cold neutron moderator cell heated from a nuclear heating and cooled by a cryogenic coolant. This paper presents satisfactory results of a steady-state temperature distribution in a cryogenic moderator cell. They are used to support the thermal stress analysis of the moderator cell walls and to provide a safe operation for the HANARO CNS facility

  10. Proceedings of the fifteenth meeting of the international collaboration on advanced neutron sources (ICANS-XV). Advanced neutron sources towards the next century

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Jun-ichi [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Itoh, Shinichi [Neutron Science Laboratory, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (JP)

    2001-03-01

    The fifteenth meeting of the International Collaboration on Advanced Neutron Sources (ICANS-XV) was held at Epocal Tsukuba, International Congress Center on 6-9 November 2000. It was hosted by Japan Atomic Energy Research Institute (JAERI) and High Energy Accelerator Research Organization (KEK). This meeting focused on 'Neutron Sources toward the 21st Century' and research activities related to targets and moderators, neutron scattering instruments and accelerators were presented. The 151 of the presented papers are indexed individually. (J.P.N.)

  11. Proceedings of the fifteenth meeting of the international collaboration on advanced neutron sources (ICANS-XV). Advanced neutron sources towards the next century

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Jun-ichi [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Itoh, Shinichi [Neutron Science Laboratory, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (JP)] (eds.)

    2001-03-01

    The fifteenth meeting of the International Collaboration on Advanced Neutron Sources (ICANS-XV) was held at Epocal Tsukuba, International Congress Center on 6-9 November 2000. It was hosted by Japan Atomic Energy Research Institute (JAERI) and High Energy Accelerator Research Organization (KEK). This meeting focused on 'Neutron Sources toward the 21st Century' and research activities related to targets and moderators, neutron scattering instruments and accelerators were presented. The 151 of the presented papers are indexed individually. (J.P.N.)

  12. Neutron production and thermal moderation at the PSI UCN source

    Energy Technology Data Exchange (ETDEWEB)

    Becker, H. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule, Zürich (Switzerland); Bison, G.; Blau, B.; Chowdhuri, Z.; Eikenberg, J.; Fertl, M. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Kirch, K. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule, Zürich (Switzerland); Lauss, B., E-mail: bernhard.lauss@psi.ch [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Perret, G.; Reggiani, D.; Ries, D.; Schmidt-Wellenburg, P. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Talanov, V., E-mail: vadim.talanov@psi.ch [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Wohlmuther, M.; Zsigmond, G. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2015-03-21

    We report on gold foil activation measurements performed along a vertical channel along the tank of the ultracold neutron source at the Paul Scherrer Institute. The activities obtained at various distances from the spallation target are in very good agreement with MCNPX simulations which take into account the detailed description of the source as built.

  13. Neutron beam experiments using nuclear research reactors: honoring the retirement of professor Bernard W. Wehring -II. 5. Testing Moderating Detection Systems with 252Cf-Based Reference Neutron Fields

    International Nuclear Information System (INIS)

    Hertel, Nolan E.; Sweezy, Jeremy; Sauber, Jeremiah S.; Vaughn, David; Cook, Andrew; Tays, Jeff; Ro, Tae-Ik

    2001-01-01

    In recent years, Georgia Institute of Technology (Georgia Tech) has been involved in a number of neutron dosimetry research projects. Several reference neutron fields are now available for such projects. They are all based on the use of a 252 Cf source. The source can be used by itself to create a reference un-moderated 252 Cf neutron field, or it can be placed inside several different moderating assemblies. The spectra created by placing the source inside these assemblies and the un-moderated source are employed to investigate detector and dosimeter responses. Currently, the set of moderators available includes a 30-cm diam cadmium-covered D 2 O spherical shell, a 30-cm-thick iron spherical shell, a 30-cm-diam polyethylene spherical shell, an 18.3-cm-thick tungsten spherical shell, a 16-cm-thick lead spherical shell, and a 9-cm-thick tantalum spherical shell. In addition, the 252 Cf source can be placed inside a neutron howitzer recently constructed at Georgia Tech. The howitzer is a WEP cylinder loaded with boron that has a 10.16-cm-diam cylindrical opening. When the source is placed in the cylindrical penetration of the howitzer, a neutron field ∼30 cm in diameter is created at a distance of 50 cm from the californium source. Over the last few years, Bonner sphere spectrometers using LiI(Eu) scintillators and LiF thermoluminescence dosimeters have been calibrated using this facility at Georgia Tech. Recently, the Neely Nuclear Research Center (NNRC) acquired an LB 6411 neutron probe (product of EG and G Berthold). This probe is designed to measure ambient dose equivalent in accordance with International Commission on Radiological Protection Publication 60 recommendations. It consists of a cylindrical 3 He proportional counter surrounded by a 25-cm-diam spherical polyethylene moderator. Its neutron response is optimized for dose rate measurements of neutrons between thermal energies and 20 MeV (Ref. 5). As a test of the instrument's ability to measure ambient

  14. An ultracold neutron source at the NC State University PULSTAR reactor

    Science.gov (United States)

    Korobkina, E.; Wehring, B. W.; Hawari, A. I.; Young, A. R.; Huffman, P. R.; Golub, R.; Xu, Y.; Palmquist, G.

    2007-08-01

    Research and development is being completed for an ultracold neutron (UCN) source to be installed at the PULSTAR reactor on the campus of North Carolina State University (NCSU). The objective is to establish a university-based UCN facility with sufficient UCN intensity to allow world-class fundamental and applied research with UCN. To maximize the UCN yield, a solid ortho-D 2 converter will be implemented coupled to two moderators, D 2O at room temperature, to thermalize reactor neutrons, and solid CH 4, to moderate the thermal neutrons to cold-neutron energies. The source assembly will be located in a tank of D 2O in the space previously occupied by the thermal column of the PULSTAR reactor. Neutrons leaving a bare face of the reactor core enter the D 2O tank through a 45×45 cm cross-sectional area void between the reactor core and the D 2O tank. Liquid He will cool the disk-shaped UCN converter to below 5 K. Independently, He gas will cool the cup-shaped CH 4 cold-neutron moderator to an optimum temperature between 20 and 40 K. The UCN will be transported from the converter to experiments by a guide with an inside diameter of 16 cm. Research areas being considered for the PULSTAR UCN source include time-reversal violation in neutron beta decay, neutron lifetime determination, support measurements for a neutron electric-dipole-moment search, and nanoscience applications.

  15. A Polyethylene Moderator Design for Auxiliary Ex-core Neutron Detector

    International Nuclear Information System (INIS)

    Lee, Hwan Soo; Shin, Ho Cheol; Bae, Seong Man

    2012-01-01

    The moderator of detector assembly in ENFMS (Excore Neutron Flux Monitoring System) plays a key role for slowing down from fast neutron to thermal neutron at outside of reactor vessel. Since neutron monitoring detector such as BF3, fission chamber detectors mostly responds to thermal neutron, moderator should be included to neutron detector assembly to detect more efficiently. Generally, resin has been used for moderator of detector in ENFMS of OPR1000 and APR1400, because resin has stable thermal resistance, availability and high neutron moderation characteristics due to the light atomic materials. In case of an auxiliary ex-core neutron detector, the polyethylene is suggested that polyethylene has a better moderator rather than resin, then, the amounts of moderator are reduced. This is important thing for auxiliary ex-core detector equipment at reactor, because the auxiliary equipment should affect minimally to another system. In this study, polyethylene moderator is designed for auxiliary ex-core neutron detector. To find out the optimal thickness of polyethylene moderator, preliminary simulation and experiments are performed. And sensitivity simulation for detector moderator at actual reactor is performed by DORT code

  16. Behavior of neutrons under different thicknesses of moderation; Comportamiento de los neutrones bajo diferentes espesores de moderacion

    Energy Technology Data Exchange (ETDEWEB)

    Baltazar R, A. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Programa de Doctorado en Ingenieria y Tecnologia Aplicada, 98068 Zacatecas, Zac. (Mexico); Medina C, D.; Soto B, T. G. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Programa de Doctorado en Ciencias Basicas, 98068 Zacatecas, Zac. (Mexico); Vega C, H. R., E-mail: raigosa.antonio@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2016-10-15

    Neutrons occur naturally, regardless of whether they are obtained as a by-product of other reactions or intentionally, mainly as a by-product of the interaction of cosmic rays with the nuclei of the atmosphere, and in anthropogenic or artificial form with neutron generators, nuclear reactors, radioisotope sources, etc. Due to their high radiobiological efficiency is important measure them in order to estimate the effective dose in occupationally exposed personnel and the public in general. This dose depends on the amount of neutrons and their energy; in order to reduce neutron energy, light materials based on H, D, C, Be are used which moderate and thermalize them. The objective of this work was to determine the behavior of monoenergetic sources of neutrons in their transport within polyethylene of different thicknesses. The study was carried out using Monte Carlo methods with the code MCNP5, where 23 monoenergetic sources of I E(-9) were used at 20 MeV by influencing the neutrons on various polyethylene surfaces whose thickness was varied from 5.08 to 30.48 cm and the total neutron flux was estimated, as well as its spectrum when crossing the various thicknesses used in the study. (Author)

  17. Ion source requirements for pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1996-01-01

    The neutron scattering community has endorsed the need for a high-power (1 to 5 MW) accelerator-driven source of neutrons for materials research. Properly configured, the accelerator could produce very short (sub-microsecond) bursts of cold neutrons, said time structure offering advantages over the continuous flux from a reactor for a large class of experiments. The recent cancellation of the ANS reactor project has increased the urgency to develop a comprehensive strategy based on the best technological scenarios. Studies to date have built on the experience from ISIS (the 160 kW source in the UK), and call for a high-current (approx. 100 mA peak) H - source-linac combination injecting into one or more accumulator rings in which beam may be further accelerated. The 1 to 5 GeV proton beam is extracted in a single turn and brought to the target-moderator stations. The high current, high duty-factor, high brightness and high reliability required of the ion source present a very large challenge to the ion source community. A workshop held in Berkeley in October 1994, analyzed in detail the source requirements for proposed accelerator scenarios, the present performance capabilities of different H - source technologies, and identified necessary R ampersand D efforts to bridge the gap. copyright 1996 American Institute of Physics

  18. Los Alamos pulsed spallation neutron source target systems - present and future

    International Nuclear Information System (INIS)

    Russell, G.J.; Daemen, L.L.; Pitcher, E.J.; Brun, T.O.; Hjelm, R.P. Jr.

    1993-01-01

    For the past 16 yr, spallation target-system designers have devoted much time and effort to the design and optimization of pulsed spallation neutron sources. Many concepts have been proposed, but, in practice, only one has been implemented horizontal beam insertion with moderators in wing geometry i.e., until we introduced the innovative split-target/flux-trap-moderator design with a composite reflector shield at the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE). The LANSCE target system design is now considered a classic by spallation target system designers worldwide. LANSCE, a state-of-the-art pulsed spallation neutron source for materials science and nuclear physics research, uses 800-MeV protons from the Clinton P. Anderson Meson Physics Facility. These protons are fed into the proton storage ring to be compressed to 250-ns pulses before being delivered to LANSCE at 20 Hz. LANSCE produces the highest peak neutron flux of any pulsed spallation neutron source in the world

  19. Thermal neutron moderating device

    International Nuclear Information System (INIS)

    Takigami, Hiroyuki.

    1995-01-01

    In a thermal neutron moderating device, superconductive coils for generating magnetic fields capable of applying magnetic fields vertical to the longitudinal direction of a thermal neutron passing tube, and superconductive coils for magnetic field gradient for causing magnetic field gradient in the longitudinal direction of the thermal neutron passing tube are disposed being stacked at the outside of the thermal neutron passing tube. When magnetic field gradient is present vertically to the direction of a magnetic moment, thermal neutrons undergo forces in the direction of the magnetic field gradient in proportion to the magnetic moment. Then, the magnetic moment of the thermal neutrons is aligned with the direction vertical to the passing direction of the thermal neutrons, to cause the magnetic field gradient in the passing direction of the thermal neutrons. The speed of the thermal neutrons can be optionally selected and the wavelength can freely be changed by applying forces to the thermal neutrons and changing the extent and direction of the magnetic field gradient. Superconductive coils are used as the coils for generating magnetic fields and the magnetic field gradient in order to change extremely high energy of the thermal neutrons. (N.H.)

  20. Analysis of neutron propagation from the skyshine port of a fusion neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Wakisaka, M. [Hokkaido University, Kita-8, Nishi-5, Kita-ku, Sapporo 080-8628 (Japan); Kaneko, J. [Hokkaido University, Kita-8, Nishi-5, Kita-ku, Sapporo 080-8628 (Japan)]. E-mail: kin@qe.eng.hokudai.ac.jp; Fujita, F. [Hokkaido University, Kita-8, Nishi-5, Kita-ku, Sapporo 080-8628 (Japan); Ochiai, K. [Japan Atomic Energy Institute, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Nishitani, T. [Japan Atomic Energy Institute, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Yoshida, S. [Tokai University, 1117 Kitakaname, Hirastuka, Kanagawa-ken 259-1292 (Japan); Sawamura, T. [Hokkaido University, Kita-8, Nishi-5, Kita-ku, Sapporo 080-8628 (Japan)

    2005-12-01

    The process of neutron leaking from a 14MeV neutron source facility was analyzed by calculations and experiments. The experiments were performed at the Fusion Neutron Source (FNS) facility of the Japan Atomic Energy Institute, Tokai-mura, Japan, which has a port on the roof for skyshine experiments, and a {sup 3}He counter surrounded with a polyethylene moderator of different thicknesses was used to estimate the energy spectra and dose distributions. The {sup 3}He counter with a 3-cm-thick moderator was also used for dose measurements, and the doses evaluated by the counter counts and the calculated count-to-dose conversion factor agreed with the calculations to within {approx}30%. The dose distribution was found to fit a simple analytical expression, D(r)=Q{sub D}exp(-r/{lambda}{sub D})r and the parameters Q{sub D} and {lambda}{sub D} are discussed.

  1. Some neutronic studies on flux-trap type moderator

    International Nuclear Information System (INIS)

    Kiyanagi, Y.; Watanabe, N.

    1991-01-01

    The neutronic performance of a flux-trap type moderator was studied by computer simulation in connection with the KENS-II target-moderator system. It was confirmed that this system can provide 1.3-1.4 times higher neutron intensity than a traditional wing-geometry moderator system. (author)

  2. Moderator material for neutrons and use of said material

    International Nuclear Information System (INIS)

    Hiismaeki, P.; Auterinen, I.

    1994-01-01

    The invention concerns a moderator material used for mediation of high-velocity neutrons, in particular of fission neutrons, to epithermal neutrons. The principal components of the moderator material are aluminum fluoride and aluminum metal, which have been formed into a dense composite substantially free of pores, wherein the material contains 20-50 percent-vol. of aluminum metal and 80-50 percent-vol. aluminum fluoride. Further, the use of the moderator material in accordance with the invention in neutron capture therapy of cancer tumours is described, such as in boron neutron capture therapy (BNCT)

  3. Development of cold moderator vessel for the spallation neutron source. Flow field measurements and thermal hydraulic analyses in cold moderator vessel

    International Nuclear Information System (INIS)

    Aso, Tomokazu; Kaminaga, Masanori; Terada, Atsuhiko; Hino, Ryutaro

    2001-01-01

    The Japan Atomic Energy Research Institute is developing a several MW-scale spallation target system under the High-Intensity Accelerator Project. A cold moderator using supercritical hydrogen is one of the key components in the target system, which directly affects the neutronic performance both in intensity and resolution. Since a hydrogen temperature rise in the moderator vessel affects the neutronic performance, it is necessary to suppress the recirculation and stagnant flows which cause hot spots. In order to develop the conceptual design of the moderator structure in progress, the flow field was measured using a PIV (Particle Image Velocimetry) system under water flow conditions using a flat model that simulated a moderator vessel. From these results, the flow field such as recirculation flows, stagnant flows etc. was clarified. The hydraulic analytical results using the standard k-ε model agreed well with experimental results. Thermal-hydraulic analyses in the moderator vessel were carried out under liquid hydrogen conditions. Based on these results, we clarified the possibility of suppressing the local temperature rise within 3 K under 2 MW operating condition. (author)

  4. Neutrons moderation theory; Theorie du ralentissement des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Vigier, J P

    1949-07-01

    This report gives a summarized presentation of the theory of fast neutrons diffusion and moderation in a given environment as elaborated by M. Langevin, E. Fermi, R. Marshak and others. This statistical theory is based on three assumptions: there is no inelastic diffusion, the elastic diffusion has a spherical symmetry with respect to the center of gravity of the neutron-nucleus system (s-scattering), and the effects of chemical bonds and thermal agitation of nuclei are neglected. The first chapter analyzes the Boltzmann equation of moderation, its first approximate solution (age-velocity equation) and its domain of validity, the extension of the age-velocity theory (general solution) and the boundary conditions, the upper order approximation (spherical harmonics method and Laplace transformation), the asymptotic solutions, and the theory of spatial momenta. The second chapter analyzes the energy distribution of delayed neutrons (stationary and non-stationary cases). (J.S.)

  5. The advanced neutron source design - A status report

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Neutron Source (ANS) facility is being designed as a user laboratory for all types of neutron-based research, centered around a nuclear fission reactor (D 2 O cooled, moderated, and reflected), operating at approximately 300 MWth. Safety, and especially passive safety features, have been emphasized throughout the design process. The design also provides experimental facilities for neutron scattering and nuclear and fundamental physics research, transuranic and other isotope production, radiation effects research, and materials analysis. (author)

  6. Measurements of gamma-ray dose from a moderated 252Cf source

    International Nuclear Information System (INIS)

    McDonald, J.C.; Griffith, R.V.; Plato, P.; Miklos, J.

    1983-06-01

    The gamma-ray dose fraction from a moderated 252 Cf source was determined by using three types of dosimetry systems. Measurements were carried out in air at a distance of 35 cm from the surface of the moderating sphere (50 cm from the source which is at the center of the sphere) to the geometrical center of each detector. The moderating sphere is 0.8-mm-thick stainless steel shell filled with D 2 O and covered with 0.5 mm of cadmium. Measurements were also carried out with instruments and dosimeters positioned at the surface of a 40 cm x 40 cm x 15 cm plexiglass irradiation phantom whose front surface was also 35 cm from the surface of the moderating sphere. A-150 tissue-equivalent (TE) plastic ionization chambers and a TE proportional counter (TEPC) were used to measure tissue dose, from which the neutron dose equivalent was computed. The ratio of gamma-ray dose to the neutron dose equivalent was determined by using a relatively neutron-insensitive Geiger-Mueller (GM) counter and thermoluminescent dosimeters (TLD). In addition, the event-size spectrum measured by the TEPC was also used to compute the gamma-ray dose fraction. The average value for the ratio of gamma-ray dose to neutron dose equivalent was found to be 0.18 with an uncertainty of about +-18%

  7. Moderation of neutron energy

    International Nuclear Information System (INIS)

    Marlatt, G.R.

    1986-01-01

    This patent describes a nuclear reactor system having a nuclear reactor which has a core including fuel assemblies, means for transmitting through the core a coolant, the coolant having a predetermined neutron-energy moderating property, sealed tubes in the core, each tube containing a material having a different neutron-energy moderating property than the coolant, means, when actuated, to engage at least certain of the tubes, for opening certain of the tubes to permit the coolant to replace the material in the tubes thereby to change the energy spectrum of the neutrons in the reactor, hydraulic means, connected to the opening means, for actuating the opening means to engage certain of the tubes to open the tubes. A device, external to the reactor, connected to the hydraulic means controlls the actuation of the opening means, the opening means being so set with reference to the tubes that only certain of the tubes are opened at any time as the opening means is advanced towards the tubes by the hydraulic means

  8. Status of the intense pulsed neutron source

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Brown, B.S.; Kustom, R.L.; Lander, G.H.; Potts, C.W.; Schulke, A.W.; Wuestefeld, G.

    1985-01-01

    Fortunately in spite of some premature reports of its impending demise, IPNS has passed the fourth anniversary of the first delivery of protons to the targets (May 5, 1981) and is approaching the fourth anniversary of its operation as a scattering facility (August 4, 1981). On June 10, 1984, the RCS delivered its one billionth pulse to the IPNS target - the total number of protons delivered to the targets amounted then to 75 stp cm 3 of H 2 gas. Since startup IPNS has improved steadily in terms of the performance of the Rapid Cycling Synchrotron, the source and its moderators and the scattering instruments, and a substantial and productive user program has evolved. This report summarizes the current status of the Intense Pulsed Neutron Source at Argonne National Laboratory. We include reference to recent accelerator operating experience, neutron facility operating experience, improvements to these systems, design work on the ASPUN high-current facility, booster target design, the new solid methane moderator, characterization of the room temperature moderators, and provide some examples of recent results from several of the spectrometers

  9. Developing an interface between MCNP and McStas for simulation of neutron moderators

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Lauritzen, Bent; Nonbøl, Erik

    2012-01-01

    Simulations of target-moderator-reflector system at spallation sources are conventionally carried out using MCNP/X whereas simulations of neutron transport and instrument performance are carried out by neutron ray tracing codes such as McStas. The coupling between the two simulations suites...... typically consists of providing analytical fits from MCNP/X neutron spectra to McStas. This method is generally successful, but as will be discussed in the this paper, there are limitations and a more direct coupling between MCNP/X andMcStas could allow for more accurate simulations of e.g. complex...... moderator geometries, interference between beamlines as well as shielding requirements along the neutron guides. In this paper different possible interfaces between McStas and MCNP/X are discussed and first preliminary performance results are shown....

  10. Investigation of some possible changes in Am-Be neutron source configuration in order to increase the thermal neutron flux using Monte Carlo code

    Science.gov (United States)

    Basiri, H.; Tavakoli-Anbaran, H.

    2018-01-01

    Am-Be neutrons source is based on (α, n) reaction and generates neutrons in the energy range of 0-11 MeV. Since the thermal neutrons are widely used in different fields, in this work, we investigate how to improve the source configuration in order to increase the thermal flux. These suggested changes include a spherical moderator instead of common cylindrical geometry, a reflector layer and an appropriate materials selection in order to achieve the maximum thermal flux. All calculations were done by using MCNP1 Monte Carlo code. Our final results indicated that a spherical paraffin moderator, a layer of beryllium as a reflector can efficiently increase the thermal neutron flux of Am-Be source.

  11. Superintensive pulse slow neutron source SIN based on kaon factory

    International Nuclear Information System (INIS)

    Kolmichkov, N.V.; Laptev, V.D.; Matveev, V.A.

    1991-01-01

    Possibility of intensive pulse slow neutron source creation based on 45-GeV proton synchrotron of K-meson factory, planned to construction in INR AS USSR is considered. Calculated peak thermal neutrons flux density value, averaged on 'radiating' light-water moderator surface of 100 cm 2 is 6.6 x 10 17 neutrons/(cm 2 sec) for pulse duration of 35 microseconds. (author)

  12. Liquid Li based neutron source for BNCT and science application

    International Nuclear Information System (INIS)

    Horiike, H.; Murata, I.; Iida, T.; Yoshihashi, S.; Hoashi, E.; Kato, I.; Hashimoto, N.; Kuri, S.; Oshiro, S.

    2015-01-01

    Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of "7Li(p,n)"7Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. - Highlights: • Liquid lithium (Li) is a candidate material for a target of intense neutron source. • An accelerator based neutron source with p-liquid Li target for boron neutron capture therapy is under development in Osaka University, Japan. • In our system, the harmful radiation dose due to rays and fast neutrons will be suppressed very low. • The system performance are very promising as a state of art cancer treatment system. • The project is planned as a joint undertaking between industries and Osaka University.

  13. International Seminar on Advanced Pulsed Neutron Sources PANS-II. Invited talks

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.

    1994-01-01

    A conceptual design of creating intense pulsed neutron sources based on high-current accelerators and pulsed reactors for neutron scattering experiments is considered. The progress in high-efficiency moderator developments is shown. Results of diffraction studied are presented

  14. Studies and modeling of cold neutron sources; Etude et modelisation des sources froides de neutron

    Energy Technology Data Exchange (ETDEWEB)

    Campioni, G

    2004-11-15

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources.

  15. Status of the FRM-II hot neutron source

    International Nuclear Information System (INIS)

    Mueller, C.; Gutsmiedl, E.

    2001-01-01

    The new research reactor FRM-II will be equipped with a hot neutron source. This secondary source will shift a part of the thermal neutron energy spectrum in the D 2 O moderator to energies from 0.1 to 1 eV. The hot neutron source consists of a graphite cylinder (200 mm diameter, 300 mm high), which is heated by gamma radiation up to a maximum temperature of about 2400 C. The graphite cylinder is surrounded by a high-temperature insulation of carbon fiber, to achieve this high temperature. We have accomplished mock-up tests of the carbon fiber in a high temperature furnace, to investigate the insulation properties of the material. The graphite cylinder and the insulation are covered with two vessels made out of Zircaloy 4. The space between the vessels is filled with helium. The hot neutron source is permanent under control by pressure and temperature measurements. The temperature inside the graphite cylinder will be measured by a purpose-built noise thermometer due to the extremely harsh environment conditions (temperature and nuclear radiation). The hot neutron source is designed and manufactured according to the general specification basic safety and to the German nuclear atomic rules (KTA). The source will be installed in year 2001. (orig.)

  16. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S

    2007-04-15

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method.

  17. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S.

    2007-04-01

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method

  18. Neutron energy spectrum flux profile of Ghana's miniature neutron source reactor core

    International Nuclear Information System (INIS)

    Sogbadji, R.B.M.; Abrefah, R.G.; Ampomah-Amoako, E.; Agbemava, S.E.; Nyarko, B.J.B.

    2011-01-01

    Highlights: → The total neutron flux spectrum of the compact core of Ghana's miniature neutron source reactor was studied. → Using 20,484 energy grids, the thermal, slowing down and fast neutron energy regions were studied. - Abstract: The total neutron flux spectrum of the compact core of Ghana's miniature neutron source reactor was understudied using the Monte Carlo method. To create small energy groups, 20,484 energy grids were used for the three neutron energy regions: thermal, slowing down and fast. The moderator, the inner irradiation channels, the annulus beryllium reflector and the outer irradiation channels were the region monitored. The thermal neutrons recorded their highest flux in the inner irradiation channel with a peak flux of (1.2068 ± 0.0008) x 10 12 n/cm 2 s, followed by the outer irradiation channel with a peak flux of (7.9166 ± 0.0055) x 10 11 n/cm 2 s. The beryllium reflector recorded the lowest flux in the thermal region with a peak flux of (2.3288 ± 0.0004) x 10 11 n/cm 2 s. The peak values of the thermal energy range occurred in the energy range (1.8939-3.7880) x 10 -08 MeV. The inner channel again recorded the highest flux of (1.8745 ± 0.0306) x 10 09 n/cm 2 s at the lower energy end of the slowing down region between 8.2491 x 10 -01 MeV and 8.2680 x 10 -01 MeV, but was over taken by the moderator as the neutron energies increased to 2.0465 MeV. The outer irradiation channel recorded the lowest flux in this region. In the fast region, the core, where the moderator is found, the highest flux was recorded as expected, at a peak flux of (2.9110 ± 0.0198) x 10 08 n/cm 2 s at 6.961 MeV. The inner channel recorded the second highest while the outer channel and annulus beryllium recorded very low flux in this region. The flux values in this region reduce asymptotically to 20 MeV.

  19. Design of a cold neutron source for 25MeV Linac of CAB (Centro Atomico Bariloche - Argentina)

    International Nuclear Information System (INIS)

    Torres, Lourdes

    2006-01-01

    Cold neutrons are widely used in fields of research such as the dynamics of solids and liquids, the investigation of magnetic materials, material science, biology, and nuclear physics in general. Accelerator-based cold neutron sources have already proved to be well adapted to perform neutron scattering studies in all those fields.In this work we present the design of a cold neutron source in the electron Linac-based pulsed source at Centro Atomico Bariloche.The objective of this work is to develop an inexpensive yet efficient cold source with a simple moderator material.Although ideal materials for that purpose would be solid methane or liquid H2, due to economical and safety reasons light water ice, benzene or solid mesitylene were considered as cold moderators. In order to proceed with the design and optimization process of the neutron source, total cross sections for light water ice, benzene and mesitylene were measured at low temperature and thermal nuclear data libraries for such materials had to be developed.The purpose of these calculations was to optimize shape and size for the moderator at a working temperature.To calculations were performed using the MCNP-4C code and our libraries, together with files for (free-atom) carbon, hydrogen and oxygen at that temperature.The geometry studied consisted of a neutron source and different moderator (slab, cylindrical slab, grids, and sets premoderator - moderator with and without coupled).To simplify the system cooler, the slab geometry was changed to a coin shaped moderator using liquid nitrogen as cooler.From the variety of simulations performed, it was clear that a premoderator was necessary to obtain higher intensities.Furthermore, with a premoderator the thickness of the moderator was reduced, simplifying the cooling system.Finally, we adopted for our cold neutron source, a slab premoderator of PLE at room temperature, and a cylindrical moderator of mesitylene at 89K with a cooler system of stainless steel with

  20. Computed neutron response of spherical moderator-detector systems for radiation protection monitoring

    International Nuclear Information System (INIS)

    Dhairyawan, M.P.

    1979-01-01

    Neutrons of energies below 500 keV are important from the point of view of radiation protection of personnel working around reactors. However, as no neutron sources are available at lower energies, no measured values of neutron energy response are available between thermal and 0.5 MeV (but for Sb-Be source at 24 keV). The response functions in this range are, therefore, arrived at theoretically. After giving a comprehensive review of the work done in the field of response of moderated neutron detectors, a Monte Carlo method developed for this purpose is described and used to calculate energy response functions of the two spherical moderator-detector systems, namely, one using a central BF 3 counter and the other using 6 LiI(Eu) scintillator of 0.490 dia crystal. The polythene sphere diameter ranged from 2'' to 12''. The results obtained follow the trend predicted by other calculations and experiments, but are a definite improvement over them, because the most recent data on cross sections and angular distribution are used and the opacity of the detector i.e. the presence and size of the detector within the moderator is taken into account in the present calculations. The reasons for the discrepancies in the present results and those obtained earlier by other methods are discussed. The response of the Leake counter arrived at by the present method agrees very well with experimental calibration. (M.G.B.)

  1. Detection of pulsed fast neutrons by a proportional counter boron-convered and enveloped in paraffin moderators

    International Nuclear Information System (INIS)

    Goncalez, O.L.; Yanagihara, L.S.; Veissid, V.L.C.P.; Herdade, S.B.

    1983-01-01

    The response to pulsed fast neutrons by a parafin moderated boron-lined proportional counter is investigated theoretically and experimentally. The neutrons pulses are generated by 60 MeV electrons from a linear accelerator. The calculation of the counting loss based on the detector dead time and on the exponential decresse of the thermal neutron population in the moderator is presented in detail. An analytical relation between the true counting rate and the reduced one, indicated by the detector, is found. In this formula three parameters appear: the decay constant of the thermal neutron population, the detector dead time and the pulse frequency of the neutron source. The decay constant is calculated by diffusion theory. The experimental results for six values of moderator thickness (between 2.5 to 12.5 cm) agree with our theoretical calculation within 20 per cent. (Author) [pt

  2. Induction heating of a spherical aluminum moderator vessel for the Advanced Neutron Source (ANS)

    International Nuclear Information System (INIS)

    Yousuf, A.

    1994-01-01

    This task was to identify and design a heating system to apply 15 kW of heat to a cold source vessel to simulate the Advanced Neutron Source reactor. This research project aims at the analysis of the induction heating of a spherical aluminum moderator vessel. Computer modeling is presented for the design and analysis of the induction heating system. The objective is to apply 15 kW of heat as uniformly as possible to the outer wall of a 410 mm diameter sphere of thickness 1.5 mm. The report also aims at the analysis of a system model which is simulated using the Eddycuff electromagnetic software. The computer model is built with the finite element analysis software Patran. The induction heating system analysis shows that the predicted performance is in close agreement with the computer simulated data. Hardware constraints such as power supplies and matching load are also analyzed in terms of performance and cost. Physical modeling is also suggested, in which the coil and the workpiece are scaled down

  3. Irradiation facilities at the spallation neutron source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.; Ledermann, J.; Aebersold, H.; Kuehne, G.; Kohlik, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Four independent experiments for sample irradiation are under construction and in preparation for operational tests at the spallation source SINQ. Three of them are located inside a thermal beam port with end positions inside or near the moderator tank. The other experiment will be established at the end position of a super mirror lined neutron guide for applications with cold neutrons. (author) 3 figs., 1 tab., 6 refs.

  4. Physical particularities of nuclear reactors using heavy moderators of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Shmelev, A. N. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using {sup 233}U as a fissile nuclide and {sup 232}Th and {sup 231}Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.

  5. Physical particularities of nuclear reactors using heavy moderators of neutrons

    International Nuclear Information System (INIS)

    Kulikov, G. G.; Shmelev, A. N.

    2016-01-01

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using "2"3"3U as a fissile nuclide and "2"3"2Th and "2"3"1Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.

  6. Effective source size as related to 252Cf neutron radiography

    International Nuclear Information System (INIS)

    Wada, Nobuo; Enomoto, Shigemasa; Tachikawa, Noboru; Nojiri, Toshiaki.

    1977-01-01

    The effective source size in 252 Cf thermal neutron radiography, relating to its geometrical unsharpness in image formation, is experimentally studied. A neutron radiographic system consists of a 160 μg 252 Cf neutron source, water moderator and divergent cadmium lined collimator. Thermal neutron image detection is performed with using a LiF scintillator and a high speed X-ray film to employ direct exposure method. The modulation transfer function, used for describing image quality, is derived from radiographic image corresponding to a cadmium plate with sharp edge. The modulation transfer function for the system is expressed by the product of the function for both geometrical and inherent unsharpness, and allows isolation of geometrical unsharpness as related to the effective size of the thermal neutron source. It is found to be 80 -- 90% of the collimator inlet diameter. (auth.)

  7. Status of TRR-II cold neutron source

    International Nuclear Information System (INIS)

    Lee, C.H.; Guung, T.C.; Lan, K.C.; Chan, Y.K.; Wang, C.H.; Chen, S.K.

    2001-01-01

    The Taiwan research reactor improvement and the utilization promotion project (TRR-II) with a vertical cold neutron source (CNS) is carrying out at the Institute of Nuclear Energy Research (INER). The CNS with a two-phase thermosiphon loop consists of an annular cylindrical moderator cell, a single moderator transfer tube and a condenser. A cylindrical annulus moderator cell with boiling liquid hydrogen at 1.2 bar and 20.7 K gives an optimum moderation for cold neutrons in the wavelength range between 4 A and 15 A. The moderator cell lies around 400 mm away from the core center. Its perturbed thermal flux is about 1.4 x 10 14 cm -2 s -1 . It is close to the maximum thermal neutron flux area in D 2 O tank to get the maximum possible brightness about 1 x 10 12 n cm -2 s -1 A -1 sterad -1 at 4 A. An experimental study for thermal-hydraulic characteristics of the two-phase thermosiphon loop has been performed on a full-scale mockup loop using a Freon-11 as a working fluid. The objective of the mockup testing is to validate operation and heat removal capacity in CNS hydrogen loop design. Moreover, this loop will be used to demonstrate no onset of flooding and flow oscillations in a single transfer tube under CNS normal and abnormal conditions. The flooding limitation, the liquid level, and the void fraction in the moderator cell as a function of the initial Freon-11 inventory, the heat load, and the moderator cell geometry are also reported. (orig.)

  8. Beryllium neutron activation detector for pulsed DD fusion sources

    International Nuclear Information System (INIS)

    Talebitaher, A.; Springham, S.V.; Rawat, R.S.; Lee, P.

    2011-01-01

    A compact fast neutron detector based on beryllium activation has been developed to perform accurate neutron fluence measurements on pulsed DD fusion sources. It is especially well suited to moderate repetition-rate ( 9 Be(n,α) 6 He cross-section, energy calibration of the proportional counters, and numerical simulations of neutron interactions and beta-particle paths using MCNP5. The response function R(E n ) is determined over the neutron energy range 2-4 MeV. The count rate capability of the detector has been studied and the corrections required for high neutron fluence measurements are discussed. For pulsed DD neutron fluencies >3×10 4 cm -2 , the statistical uncertainty in the fluence measurement is better than 1%. A small plasma focus device has been employed as a pulsed neutron source to test two of these new detectors, and their responses are found to be practically identical. Also the level of interfering activation is found to be sufficiently low as to be negligible.

  9. Development of a high efficient conventional type cold neutron source using a non-explosive material

    International Nuclear Information System (INIS)

    Kiyanagi, Y.; Satoh, S.

    1999-01-01

    An efficient cold moderator that can be used easily at a small neutron source would be useful for neutron radiography, prompt gamma ray analysis and so on. Non-explosive materials are chosen for a cold moderator since explosive materials such as hydrogen and methane require a safety system. Neutronic performances of coupled moderators of various non-explosive materials are studied so as to develop such a cold moderator since the coupled moderator system is the best to obtain high intensity of cold neutrons. Effect of premoderator is studied and neutron spectra from methanol, ethanol, benzene, mesitylene and benzene methanol are measured around 20 K. The premoderator increased the cold neutron intensity by about 50∼70%. Methanol and mesitylene gave the highest cold neutron intensity. Effect of Be filter-reflector is also studied and a intensity gain of about 20% was obtained below about 5 MeV. (author)

  10. The advanced neutron source - A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    The advanced neutron source (ANS) is a new facility being designed at the Oak Ridge National Laboratory that is based on a heavy-water-moderated reactor and extensive experiment and user-support facilities. The primary purpose of the ANS is to provide world-class facilities for neutron scattering research, isotope production, and materials irradiation in the United States. The neutrons provided by the reactor will be thermalized to produce sources of hot, thermal, cold, very cold, and ultracold neutrons usable at the experiment stations. Beams of cold neutrons will be directed into a large guide hall using neutron guide technology, greatly enhancing the number of research stations possible in the project. Fundamental and nuclear physics, materials analysis, and other research pro- grams will share the neutron beam facilities. Sufficient laboratory and office space will be provided to create an effective user-oriented environment

  11. An accelerator neutron source for BNCT. Technical progress report, 1 June 1993--31 May 1994

    International Nuclear Information System (INIS)

    Blue, T.E.; Vafai, K.

    1994-02-01

    This is the progress report for the project entitled, ''An Accelerator Neutron Source for BNCT.'' The progress report is for the period from July 1, 1993 to date. The overall objective of our research project is to develop an Accelerator Epithermal Neutron Irradiation Facility (AENIF) for Boron Neutron Capture Therapy (BNCT). The AENIF consists of a 2.5 MeV high current proton accelerator, a lithium target to produce source neutrons, and a moderator/reflector assembly to obtain from the energetic source neutrons an epithermal neutron field suitable for BNCT treatments. Our project goals are to develop the non-accelerator components of the AENIF, and to specifically include in our development: (1) design, numerical simulation, and experimental verification of a target assembly which is capable of removing 75 kW of beam power; (2) re-optimization of the moderator assembly design based on in-phantom dose assessments using neutron spectra calculated in phantom and an energy-dependent neutron Relative Biological Effectiveness (RBE); (3) construction of a prototype moderator assembly and confirmation of its design by measurements; (4) design of the shielding of the accelerator and treatment rooms for an AENIF; and (5) design of a high energy beam transport system which is compatible with the shielding design and the thermal-hydraulic design

  12. Spallation neutron sources

    International Nuclear Information System (INIS)

    Fraser, J.S.; Bartholomew, G.A.

    1983-01-01

    The principles and theory of spallation neutron sources are outlined and a comparison is given with other types of neutron source. A summary of the available accelerator types for spallation neutron sources and their advantages and disadvantages is presented. Suitable target materials are discussed for specific applications, and typical target assemblies shown. (U.K.)

  13. Status of spallation neutron source program in High Intensity Proton Accelerator Project

    International Nuclear Information System (INIS)

    Oyama, Yukio

    2001-01-01

    Japan Atomic Energy Research Institute and High Energy Accelerator Organization are jointly designing a 1 MW spallation neutron source as one of the research facilities planned in the High Intensity Proton Accelerator Project. The spallation neutron source is driven by 3 GeV proton beam with a mercury target and liquid hydrogen moderators. The present status of design for these spallation source and relevant facility is overviewed. (author)

  14. Research opportunities with compact accelerator-driven neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I.S. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Andreani, C., E-mail: carla.andreani@uniroma2.it [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); CNR-IPCF Sezione di Messina, Messina (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy); Carpenter, J.M. [Argonne National Laboratory, Argonne, IL (United States); Festa, G., E-mail: giulia.festa@uniroma2.it [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy); Gorini, G. [Università degli Studi di Milano—Bicocca, Milano (Italy); Loong, C.-K. [Università degli Studi di Roma “Tor Vergata”, Centro NAST, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Senesi, R. [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); CNR-IPCF Sezione di Messina, Messina (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy)

    2016-10-13

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target–moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  15. Research opportunities with compact accelerator-driven neutron sources

    International Nuclear Information System (INIS)

    Anderson, I.S.; Andreani, C.; Carpenter, J.M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-01-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target–moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  16. Research opportunities with compact accelerator-driven neutron sources

    Science.gov (United States)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  17. Condensed matter research using pulsed neutron sources: a bibliography

    International Nuclear Information System (INIS)

    Mildner, D.F.R.; Stirling, G.C.

    1976-05-01

    This report is an updated revision of RL-75-095 'Condensed Matter Research Using Pulsed Neutron Sources: A Bibliography'. As before, the survey lists published papers concerning (a) the production of high intensity neutron pulses suitable for thermal neutron scattering research, (b) moderating systems for neutron thermalization and pulse shaping, (c) techniques and instrumentation for diffraction and inelastic scattering at pulsed sources, and (d) their application to research problems concerning the structural and dynamical properties of condensed matter. Papers which deal with the white beam time-of-flight technique at steady state reactors have also been included. A number of scientists have brought to the author's attention papers which have been published since the previous edition. They are thanked and encouraged to continue the cooperation so that the bibliography may be updated periodically. (author)

  18. Intense neutron source facility for the fusion energy program

    International Nuclear Information System (INIS)

    Armstrong, D.D.; Emigh, C.R.; Meier, K.L.; Meyer, E.A.; Schneider, J.D.

    1975-01-01

    The Intense Neutron Source Facility, INS, has been proposed to provide a neutronic environment similar to that anticipated in a fully operational fusion-power reactor. The neutron generator will produce an intense flux of 14-MeV neutrons greater than 10 14 neutrons per cm 2 /sec from the collision of two intersecting beams, one of 1.1 A of 270 keV tritium ions and the other of a supersonic jet of deuterium gas. Using either the pure 14-MeV primary neutron spectrum or by tailoring the spectrum with appropriate moderators, crucial radiation-damage effects which are likely to occur in fusion reactors can be thoroughly explored and better understood

  19. The new high flux neutron source FRM-2 in Munich

    International Nuclear Information System (INIS)

    Roegler, H.J.; Wierheim, G.

    2002-01-01

    Quite some years ago in 1974 to be exact, the first consideration on a new neutron source started at the technical university of Munich (Germany). 27 years later the new high flux neutron source (FRM-2) was read for hot operation, now delayed by a refused approval for its third partial license by the federal government of Germany despite a wide support from the scientific community. FRM-2 is a tank-type research reactor cooled by water, moderated by heavy water and whose thermal power was limited to 20 MW maximum. The extreme compact core together with the applied inverse flux principle led to a neutron flux design value of 8.10 18 n/m 2 .s at the reflector peak. 10 beam tubes will allow an optimized use of the high neutron flux. A hot neutron source with graphite at about 2200 Celsius degrees and a cold neutron source with liquid D 2 at about 25 K will provide shifted energy spectra. The utilization of FRM-2 is many-fold: neutronography and tomography, medical irradiation, radio-nuclide production, doping of pure silicon, neutron activation analysis. (A.C.)

  20. Neutronic studies of a liquid hydrogen-water composite moderator

    International Nuclear Information System (INIS)

    Tahara, T.; Ooi, M.; Iwasa, H.; Kiyanagi, Y.; Iverson, E.B.; Crabtree, J.A.; Lucas, A.T.

    2001-01-01

    A liquid hydrogen-liquid water composite moderator may provide performance like liquid methane at high-power spallation sources where liquid methane is impractical. We have measured the neutronic properties of such a composite moderator, where a hydrogen layer 1.25 cm thick was closely backed by water layers of 1.75 cm and 3.75 cm thickness. We also studied a moderator in which a 1.75 cm water layer was closely backed by a 1.25 cm hydrogen layer. We further performed simulations for each of these systems for comparison to the experimental results. We observed enhancement of the spectral intensity in the 'thermal' energy range as compared to the spectrum from a conventional liquid hydrogen moderator. This enhancement grew more significant as the water thickness increased, although the pulse shapes became wider as well. (author)

  1. Neutron temperature measurements in a cryogenic hydrogenous moderator

    International Nuclear Information System (INIS)

    Ball, R.M.; Hoovler, G.S.; Lewis, R.H.

    1995-01-01

    Benchmarkings of neutronic calculations are most successful when there is a direct correlation between a measurement and an analytic result. In the thermal neutron energy region, the fluence rate as a function of moderator temperature and position within the moderator is an area of potential correlation. The measurement can be done by activating natural lutetium. The two isotopes of the element lutetium have widely different cross sections and permit the discrimination of flux shape and energy distributions at different reactor conditions. The 175 Lu has a 1/v dependence in the thermal energy region, and 176 Lu has a resonance structure that approximates a constant cross section in the same region. The saturation activation of the two isotopes has been measured in an insulated moderator container at the center of a thermal heterogeneous reactor designed for space nuclear propulsion. The measurements were made in a hydrogenous (polyethylene) moderator at three temperatures (83, 184, and 297 K) and five locations within the moderator. Simultaneously, the reactivity effect of the change in the moderator temperature was determined to be positive with an increase in temperature. The plot of activation shows the variation in neutron fluence rate and current with temperature and explains the positive reactivity coefficient. A neutron temperature can be inferred from a postulated Maxwell-Boltzmann distribution and compared with Monte Carlo or other calculations

  2. Spallation neutron source target station design, development, and commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.R., E-mail: hainesjr@ornl.gov; McManamy, T.J.; Gabriel, T.A.; Battle, R.E.; Chipley, K.K.; Crabtree, J.A.; Jacobs, L.L.; Lousteau, D.C.; Rennich, M.J.; Riemer, B.W.

    2014-11-11

    The spallation neutron source target station is designed to safely, reliably, and efficiently convert a 1 GeV beam of protons to a high flux of about 1 meV neutrons that are available at 24 neutron scattering instrument beam lines. Research and development findings, design requirements, design description, initial checkout testing, and results from early operation with beam are discussed for each of the primary target subsystems, including the mercury target, neutron moderators and reflector, surrounding vessels and shielding, utilities, remote handling equipment, and instrumentation and controls. Future plans for the mercury target development program are also briefly discussed.

  3. Neutron gauging applications using a small 252Cf source

    International Nuclear Information System (INIS)

    Helf, S.

    1975-01-01

    The use of a small 252 Cf source, in the 3 to 4 μg range, for neutron gauging applications is described. Emphasis is placed on determination of low concentrations of moisture in homogeneous media, e.g., solvents, explosives, dried food products, etc. and on measurement of charge or fill weight of hydrogenous materials in sealed items, e.g., propellant in a cartridge case. Both moderation of fast neutrons and attenuation of thermalized neutrons have been explored for these applications. Parameters related to the attainment of optimum sensitivity for each method are discussed. Fast neutron moderation is superior for low level moisture measurement whereas thermal neutron attenuation is more sensitive for ''neutron weighing'' applications. Under optimum conditions, sensitivity for moisture measurement approaches 0.1 weight percent whereas ''neutron weighing'' can detect changes in hydrogeneous material content as little as a fraction of a gram. Examples are given for each technique. A number of different thermal neutron detectors are compared for neutron gauging measurements. A 6 LiI (Eu) scintillation detector is judged to be superior with regard to high thermal neutron detection efficiency and low fast neutron and gamma ray response. In this study, emphasis is placed on the use of simple, portable equipment easily adaptable to field or plant use and for on-line process or quality control. (U.S.)

  4. Effects of moderation level on core reactivity and. neutron fluxes in natural uranium fueled and heavy water moderated reactors

    International Nuclear Information System (INIS)

    Khan, M.J.; Aslam; Ahmad, N.; Ahmed, R.; Ahmad, S.I.

    2005-01-01

    The neutron moderation level in a nuclear reactor has a strong influence on core multiplication, reactivity control, fuel burnup, neutron fluxes etc. In the study presented in this article, the effects of neutron moderation level on core reactivity and neutron fluxes in a typical heavy water moderated nuclear research reactor is explored and the results are discussed. (author)

  5. Status of the low energy neutron source at Indiana University

    International Nuclear Information System (INIS)

    Baxter, D.V.; Cameron, J.M.; Derenchuk, V.P.; Lavelle, C.M.; Leuschner, M.B.; Lone, M.A.; Meyer, H.O.; Rinckel, T.; Snow, W.M.

    2005-01-01

    The National Science Foundation has recently approved funding for LENS (the low energy neutron source) at Indiana University and construction of this facility has begun. LENS represents a new paradigm for economically introducing neutron scattering into a university or industrial setting. In this design, neutrons are produced in a long-pulse (1 ms) mode through (p,n) reactions on a water-cooled Be target and the target is tightly coupled to a cryogenic moderator with a water reflector. This design gives a facility suitable for materials research, the development of new neutron instrumentation, and the education of new neutron scientists

  6. Thermodynamic consideration on self-regulating characteristics of cold neutron source with cylinder annulus type cold moderator cell

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Yoshino, Hiroshi; Kawabata, Yuji; Hino, Masahiro

    2000-01-01

    Shapes of moderator baths of ORPHEE and NIST without bottom of inner cylinder, entering liquid from downward and push down the liquid by steam formed nuclear exotherm to fill inner part of the inner cylinder with steam, require to determine a number of parameters to be optimum to realize a state storing steam in inner cylinder and liquid in shell portion. Then, for a modulator bath with a structure shielding the inner cylinder from shell portion by preparing bottom without any pore and supplying steam into the cylinder through a steam return pipe mounted with pores at its upper portion. By such structure, a cold neutron source with self-balance-ability and capable of following output without time delaying. And, its liquid volume can also be controlled by system pressure. And that, as its structure is simple, it has another characteristic that its connection structure of transmission pipe portion with moderator bath portion. (G.K.)

  7. Reactor Neutron Sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.

    1994-01-01

    The present status and the prospects for development of reactor neutron sources for neutron scattering research in the world are considered. The fields of application of neutron scattering relative to synchrotron radiation, the creation stages of reactors (steady state and pulsed) and their position in comparison with spallation neutron sources at present and in the foreseen future are discussed. (author). 15 refs.; 8 figs.; 3 tabs

  8. Application of gamma densitometer for measurement of void fraction in liquid hydrogen moderator of HANARO cold neutron source

    International Nuclear Information System (INIS)

    Kim, Myong-Seop; Choi, Jungwoon; Sun, Gwang-Min; Lee, Kye-Hong

    2009-01-01

    The void fraction in the liquid hydrogen used for the moderator of the HANARO cold neutron source (CNS) was measured by using a gamma densitometer technique. A mock-up of the HANARO CNS facility with an electric heating system as the heat source instead of radiations was constructed. The photon transmissions through the hydrogen moderator were simulated to search for an optimum experimental condition. From the simulation, it was confirmed that Am-241 was suitable for the measurement of the void fraction in the liquid hydrogen medium. A gamma densitometer using the Am-241 gamma-ray source was designed and installed at the mock-up of the CNS. The attenuation of 59.5 keV gamma-rays from the Am-241 through the hydrogen medium was measured by using an HPGe detector. The void fraction was determined using the amount of the gamma-ray attenuation. The void fractions in the hydrogen moderator were measured for stable thermo-siphon loops with several electric heat loads applied to the moderator cell of the CNS mock-up. The longitudinal distribution of the void fraction inside the moderator cell was also determined. The void fraction measured at a heat load of 720 W had values of 8-41% depending on the height from the bottom of the moderator cell. The overall void fraction was obtained by volume-weighted averaging of its longitudinal distribution. The void fraction at the nuclear heating power expected at the normal operation condition of the HANARO CNS facility was determined to be about 20%. The large uncertainty was expected in the void fraction determination by a gamma densitometer for the liquid hydrogen medium with the void fraction less than 10%. When the void fraction of the liquid hydrogen was near 20%, the uncertainty in the void fraction determination by using a gamma densitometer became relatively small, and it was regarded as an acceptable level. The measurements for the void fraction will be very useful for the design and operation of the HANARO CNS.

  9. Neutron sources and applications

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  10. Neutron sources and applications

    International Nuclear Information System (INIS)

    Price, D.L.; Rush, J.J.

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications

  11. Advanced Neutron Sources: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW th , heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS

  12. Advanced Neutron Source: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS

  13. Intense fusion neutron sources

    International Nuclear Information System (INIS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-01-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10 15 -10 21 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10 20 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  14. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  15. Accelerator based continuous neutron source.

    CERN Document Server

    Shapiro, S M; Ruggiero, A G

    2003-01-01

    Until the last decade, most neutron experiments have been performed at steady-state, reactor-based sources. Recently, however, pulsed spallation sources have been shown to be very useful in a wide range of neutron studies. A major review of neutron sources in the US was conducted by a committee chaired by Nobel laureate Prof. W. Kohn: ''Neutron Sources for America's Future-BESAC Panel on Neutron Sources 1/93''. This distinguished panel concluded that steady state and pulsed sources are complementary and that the nation has need for both to maintain a balanced neutron research program. The report recommended that both a new reactor and a spallation source be built. This complementarity is recognized worldwide. The conclusion of this report is that a new continuous neutron source is needed for the second decade of the 20 year plan to replace aging US research reactors and close the US neutron gap. it is based on spallation production of neutrons using a high power continuous superconducting linac to generate pr...

  16. Characteristic analysis on moderating material for obtaining epithermal neutron beam

    International Nuclear Information System (INIS)

    Jiang Xinbiao; Chen Da; Zhang Ying

    2000-01-01

    The one dimension discrete coordinates transport code ANISN was used to calculate three-group constants of 11 elements which could be used to consist moderating epithermal neutron material of beam. Moderating character of simple substances, compounds and mixtures consisted of the optimized elements analyzed three kinds of moderating materials were optimized for epithermal neutron beam

  17. Measurement and fitting of pulse shapes of moderators at IPNS [Intense Pulsed Neutron Source]: Progress report

    International Nuclear Information System (INIS)

    Bywater, R.L. Jr.; Williams, R.E.; Carpenter, J.M.

    1988-01-01

    We present a progress report on measurements and fitting of pulse shapes for neutrons emerging from one solid and two liquid methane moderators in IPNS. A time-focused crystal spectrometer arrangement was used with a cooled Ge monochromator. Data analysis of one of the liquid methane moderators has shown the need for some generalization of the Ikeda-Carpenter function that worked well for fitting pulse shapes of polyethylene moderators. We describe attempts to model physical insight into the wavelength dependence of function parameters. 5 refs., 7 figs

  18. Accelerator driven neutron sources in Korea. Current and future

    International Nuclear Information System (INIS)

    Lee, Young-Ouk; Oh, Byung-Hoon; Hong, Bong-Geun; Chang, Jonghwa; Chang, Moon-Hee; Kim, Guinyun; Kim, Gi-Donng; Choi, Byung-Ho

    2008-01-01

    The Pohang Neutron Facility, based on a 65 MeV electron linear accelerator, has a neutron-gamma separation circuit, water-moderated tantalum target and 12 m TOF. It produces pulsed photonuclear neutrons with ≅2 μs width, 50 mA peak current and 15 Hz repetition, mainly for the neutron nuclear data production in up to keV energies. The Tandem Van de Graff at Korea Institute of Geoscience and Mineral Resources (KIGAM) is dedicated to measure MeV energy neutron capture and total cross section using TOF and prompt gamma ray detection system. The facility pulsed ≅10 8 mono-energetic neutrons/sec from 3 H(p,n) reaction with 1-2 ns width and 125 ns period. Korea Institute of Radiological and Medical Sciences (KIRAMS) has the MC50 medical cyclotron which accelerates protons up to an energy of 45 MeV and has several beam ports for proton or neutron irradiations. Beam current can be controlled from a few nano amperes to 50 uA. Korea Atomic Energy Research Institute (KAERI) has a plan to develop a neutron source by using 20 MeV electron accelerator. This photo-neutron source will be mainly used for nuclear data measurements based on time-of-flight experiments. A high intensity fast neutron source is also proposed to respond growing demands of fast neutrons, especially for the fusion material test. Throughput will be as high as several 10 13 neutrons/sec from D-T reaction powered by a high current (200 mA) ion source, a drive-in target and cooling systems, and closed circuit tritium ventilation/recovery systems. The Proton Engineering Frontier Project (PEFP) is developing a 100 MeV, 20 mA pulsed proton linear accelerator equipped with 5 target rooms, one of which is dedicated to produce neutrons using tungsten target. PEFP also proposes the 1-2 GeV rapid cycling synchrotron accelerator as an extension of the PEFP linac, which can be used for nuclear and high energy physics experiment, spallation neutron source, radioisotope, medical research, etc. (author)

  19. Lunar neutron source function

    International Nuclear Information System (INIS)

    Kornblum, J.J.

    1974-01-01

    The search for a quantitative neutron source function for the lunar surface region is justified because it contributes to our understanding of the history of the lunar surface and of nuclear process occurring on the moon since its formation. A knowledge of the neutron source function and neutron flux distribution is important for the interpretation of many experimental measurements. This dissertation uses the available pertinent experimental measurements together with theoretical calculations to obtain an estimate of the lunar neutron source function below 15 MeV. Based upon reasonable assumptions a lunar neutron source function having adjustable parameters is assumed for neutrons below 15 MeV. The lunar neutron source function is composed of several components resulting from the action of cosmic rays with lunar material. A comparison with previous neutron calculations is made and significant differences are discussed. Application of the results to the problem of lunar soil histories is examined using the statistical model for soil development proposed by Fireman. The conclusion is drawn that the moon is losing mass

  20. Properties of neutron sources

    International Nuclear Information System (INIS)

    1987-03-01

    The Conference presentations were divided into sessions devoted to the following topics: white neutron sources, primarily pulsed (6 papers); fast neutron fields (5 papers); Californium-252 prompt fission neutron spectra (14 papers); monoenergetic sources and filtered beams (11 papers); 14 MeV neutron sources (10 papers); selected special application (one paper); and a general interest session (4 papers). Individual abstracts were prepared separately for the papers

  1. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  2. Monte Carlo simulation of moderator and reflector in coal analyzer based on a D-T neutron generator.

    Science.gov (United States)

    Shan, Qing; Chu, Shengnan; Jia, Wenbao

    2015-11-01

    Coal is one of the most popular fuels in the world. The use of coal not only produces carbon dioxide, but also contributes to the environmental pollution by heavy metals. In prompt gamma-ray neutron activation analysis (PGNAA)-based coal analyzer, the characteristic gamma rays of C and O are mainly induced by fast neutrons, whereas thermal neutrons can be used to induce the characteristic gamma rays of H, Si, and heavy metals. Therefore, appropriate thermal and fast neutrons are beneficial in improving the measurement accuracy of heavy metals, and ensure that the measurement accuracy of main elements meets the requirements of the industry. Once the required yield of the deuterium-tritium (d-T) neutron generator is determined, appropriate thermal and fast neutrons can be obtained by optimizing the neutron source term. In this article, the Monte Carlo N-Particle (MCNP) Transport Code and Evaluated Nuclear Data File (ENDF) database are used to optimize the neutron source term in PGNAA-based coal analyzer, including the material and shape of the moderator and neutron reflector. The optimized targets include two points: (1) the ratio of the thermal to fast neutron is 1:1 and (2) the total neutron flux from the optimized neutron source in the sample increases at least 100% when compared with the initial one. The simulation results show that, the total neutron flux in the sample increases 102%, 102%, 85%, 72%, and 62% with Pb, Bi, Nb, W, and Be reflectors, respectively. Maximum optimization of the targets is achieved when the moderator is a 3-cm-thick lead layer coupled with a 3-cm-thick high-density polyethylene (HDPE) layer, and the neutron reflector is a 27-cm-thick hemispherical lead layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Neutron moderation in a bulk sample and its effects on PGNAA setup geometry

    International Nuclear Information System (INIS)

    Al-Jarallah, M.I.; Naqvi, A.A.; Fazal-ur-Rehman,; Maselehuddin, M.; Abu-Jarad, F.; Raashid, M.

    2003-01-01

    In a prompt gamma ray neutron activation analysis (PGNAA) setup, the neutron moderation in the bulk sample also plays a key role. This can even dominate the thermalization effects of the external moderator in some cases. In order to study the neutron moderation effect in the bulk sample, moderators with two different sizes of the sample were tested at the King Fahd University of Petroleum and Minerals (KFUPM) PGNAA facility. In these tests, the thermal neutron relative intensity and prompt gamma ray yield from the two moderators were measured using nuclear track detectors (NTDs) and NaI detector, respectively. As predicted by Monte Carlo simulations, the measured intensity of thermal neutron inside the large sample cavity due to the external moderator was smaller than that from the smaller sample cavity. Due to its larger size, additional thermalization of neutrons will take place in the larger sample. In spite of smaller thermal neutron yield from the external moderator at the large sample location, higher yield of the prompt gamma ray was observed as compared to that from the smaller sample. This confirms the significance of neutron moderation effects in the bulk sample and can thereby affect the PGNAA geometry size. This allows larger samples in conjunction with smaller moderators in the PGNAA setup

  4. Neutron moderation in a bulk sample and its effects on PGNAA setup geometry

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Naqvi, A.A.; Fazal-ur-Rehman,; Maselehuddin, M.; Abu-Jarad, F.; Raashid, M

    2003-06-01

    In a prompt gamma ray neutron activation analysis (PGNAA) setup, the neutron moderation in the bulk sample also plays a key role. This can even dominate the thermalization effects of the external moderator in some cases. In order to study the neutron moderation effect in the bulk sample, moderators with two different sizes of the sample were tested at the King Fahd University of Petroleum and Minerals (KFUPM) PGNAA facility. In these tests, the thermal neutron relative intensity and prompt gamma ray yield from the two moderators were measured using nuclear track detectors (NTDs) and NaI detector, respectively. As predicted by Monte Carlo simulations, the measured intensity of thermal neutron inside the large sample cavity due to the external moderator was smaller than that from the smaller sample cavity. Due to its larger size, additional thermalization of neutrons will take place in the larger sample. In spite of smaller thermal neutron yield from the external moderator at the large sample location, higher yield of the prompt gamma ray was observed as compared to that from the smaller sample. This confirms the significance of neutron moderation effects in the bulk sample and can thereby affect the PGNAA geometry size. This allows larger samples in conjunction with smaller moderators in the PGNAA setup.

  5. The Advanced Neutron Source design: A status report

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Nuetron Source (ANS) facility is being designed as a user laboratory for all types of neutron-based research, centered around a nuclear fission reactor (D 2 O cooled, moderated, and reflected), operating at approximately 300 MW th . Safety, and especially passive safety features, have been emphasized throughout the design process

  6. Spallation neutrons pulsed sources

    International Nuclear Information System (INIS)

    Carpenter, J.

    1996-01-01

    This article describes the range of scientific applications which can use these pulsed neutrons sources: Studies on super fluids, measures to verify the crawling model for the polymers diffusion; these sources are also useful to study the neutron disintegration, the ultra cold neutrons. In certain applications which were not accessible by neutrons diffusion, for example, radiations damages, radionuclides production and activation analysis, the spallation sources find their use and their improvement will bring new possibilities. Among others contributions, one must notice the place at disposal of pulsed muons sources and neutrinos sources. (N.C.). 3 figs

  7. Status report on the cold neutron source of the Garching neutron research facility FRM-II

    International Nuclear Information System (INIS)

    Gobrecht, K.; Gutsmiedl, E.; Scheuer, A.

    2001-01-01

    The new high flux research reactor of the Technical University of Munich (Technische Universitaet Muenchen, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D2O-reflector tank at 400 mm from the reactor core axis, close to the thermal neutron flux maximum. The power of 4500 W developed by the nuclear heating in the 16 litres of liquid deuterium at 25 K, and in the structures, is evacuated by a two phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10deg from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very importable during the life time of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H2) to the deuterium (D2) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. The new reactor will have 13 beam tubes, 4 of which are looking at the cold neutron source (CNS), including two for very cold (VCN) and ultra-cold neutron (UCN) production. The latter will take place in the horizontal beam tube SR4, which will house an additional cryogenic moderator (e.g. solid deuterium). More than 60% of the experiments foreseen in the new neutron research facility will use cold neutrons from the CNS. The mounting of the hardware components of the CNS into the reactor has started in the spring of 2000. The CNS will go into trial operation in the end of year 2000. (J.P.N.)

  8. Design and safety aspects of the Cornell cold neutron source

    International Nuclear Information System (INIS)

    Ouellet, Carol G.; Clark, David D.

    1992-01-01

    The cold neutron beam facility at the Cornell University TRIGA Mark II reactor will begin operational testing in early 1993. It is designed to provide a low background subthermal neutron beam that is as free as possible of fast neutrons and gamma rays for applied research and graduate-level instruction. The Cornell cold neutron source differs from the more conventional types of cold sources in that it is inherently safer because it uses a safe handling material (mesitylene) as the moderator instead of hydrogen or methane, avoids the circulation of cryogenic fluids by removing heat from the system by conduction through a 99.99% pure copper rod attached to a cryogenic refrigerator, and is much smaller in its size and loads. The design details and potential hazards are described, where it is concluded that no credible accident involving the cold source could cause damage to the reactor or personnel, or cause release of radioactivity. (author)

  9. Studies and modeling of cold neutron sources

    International Nuclear Information System (INIS)

    Campioni, G.

    2004-11-01

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources

  10. Thermal hydraulic tests of a liquid hydrogen cold neutron source. NISTIR 5026

    International Nuclear Information System (INIS)

    Siegwarth, J.D.; Olson, D.A.; Lewis, M.A.; Rowe, J.M.; Williams, R.E.; Kopetka, P.

    1995-01-01

    Liquid hydrogen cold neutron source designed at NBSR contains neutron moderator chamber. The NIST-B electrically heated glass moderator chamber used to test the NBSR chamber testing showed the following results: Stable operation possible up to at least 2200 watts with two-phase flow; LH 2 mass quickly reaches new, stable value after heat load change; Void fraction well below 20 at anticipated power and pressure; Restart of H 2 flow verified after extending supply line; Visual inspection showed no dryout or unexpected voids

  11. Cryostat system for investigation on new neutron moderator materials at reactor TRIGA PUSPATI

    Energy Technology Data Exchange (ETDEWEB)

    Dris, Zakaria bin, E-mail: zakariadris@gmail.com [College of Graduate Studies, Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Centre for Nuclear Energy, Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Mohamed, Abdul Aziz bin; Hamid, Nasri A. [Centre for Nuclear Energy, Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Azman, Azraf; Ahmad, Megat Harun Al Rashid Megat; Jamro, Rafhayudi; Yazid, Hafizal [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    A simple continuous flow (SCF) cryostat was designed to investigate the neutron moderation of alumina in high temperature co-ceramic (HTCC) and polymeric materials such as Teflon under TRIGA neutron environment using a reflected neutron beam from a monochromator. Cooling of the cryostat will be carried out using liquid nitrogen. The cryostat will be built with an aluminum holder for moderator within stainless steel cylinder pipe. A copper thermocouple will be used as the temperature sensor to monitor the moderator temperature inside the cryostat holder. Initial measurements of neutron spectrum after neutron passing through the moderating materials have been carried out using a neutron spectrometer.

  12. ICANS-XIV. The fourteenth meeting of the international collaboration on advanced neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J. M.; Tobin, C. A.

    1999-01-01

    The meeting began with a reception on Sunday evening. Monday's plenary sessions included status reports on the four operating spallation neutron sources, IPNS, ISIS, KENS, and the Lujan Center; on the INR source under construction at Troitsk; on the IBR-2 pulsed reactor at Dubna; and on proposals for five new installations. We also heard reports on spin-off activities: the ASTE tests (liquid mercury target tests at the AGS accelerator at Brookhaven), the ACoM activities (developments aimed to provide cold moderators suitable for high-power pulsed sources), and the International Workshop on Cold Moderators for Pulsed Neutron Sources, held in September 1997 at Argonne. Jose Alonso and Bob Macek delivered enlightening invited talks overviewing linear accelerators and rings for spallation neutron sources. The rest of the meeting was devoted to targets and moderators and to instrumentation in a normal rotation of ICANS topics. There were altogether 84 oral reports and 23 poster presentations. On Tuesday and on Wednesday morning, we divided into separate series of sessions on Instrumentation and on Targets and Moderators. In the first, we had reports and discussions on instrumentation and techniques, on computer software, on instrument suites, and on new instruments and equipment. In the second series were sessions on liquid target systems, on solid target systems, on neutron production and target physics, on moderator physics and performance, and on target and moderator neutronics. The Tuesday evening meetings went on until 10:00, making for a 14-hour working day. That everyone willingly endured the long hours is a credit to the dedication of the attendees. On Wednesday afternoon, we boarded buses for the 1-hour trip to Argonne, where attendees toured IPNS and the Advanced Photon Source. Returning to Starved Rock, we enjoyed boat rides on the Illinois River and then a barbecue banquet dinner at the Lodge. All day Thursday and Friday morning, the attendees, in small

  13. UCN sources at external beams of thermal neutrons. An example of PIK reactor

    International Nuclear Information System (INIS)

    Lychagin, E.V.; Mityukhlyaev, V.A.; Muzychka, A.Yu.; Nekhaev, G.V.; Nesvizhevsky, V.V.; Onegin, M.S.; Sharapov, E.I.; Strelkov, A.V.

    2016-01-01

    We consider ultracold neutron (UCN) sources based on a new method of UCN production in superfluid helium ("4He). The PIK reactor is chosen as a perspective example of application of this idea, which consists of installing "4He UCN source in the beam of thermal or cold neutrons and surrounding the source with moderator-reflector, which plays the role of cold neutron (CN) source feeding the UCN source. CN flux in the source can be several times larger than the incident flux, due to multiple neutron reflections from the moderator–reflector. We show that such a source at the PIK reactor would provide an order of magnitude larger density and production rate than an analogous source at the ILL reactor. We estimate parameters of "4He source with solid methane (CH_4) or/and liquid deuterium (D_2) moderator–reflector. We show that such a source with CH_4 moderator–reflector at the PIK reactor would provide the UCN density of ~1·10"5 cm"−"3, and the UCN production rate of ~2·10"7 s"−"1. These values are respectively 1000 and 20 times larger than those for the most intense UCN user source. The UCN density in a source with D_2 moderator-reflector would reach the value of ~2·10"5 cm"−"3, and the UCN production rate would be equal ~8·10"7 s"−"1. Installation of such a source in a beam of CNs would slightly increase the density and production rate.

  14. Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan

    Directory of Open Access Journals (Sweden)

    Yoshiaki Kiyanagi

    2018-03-01

    Full Text Available Neutron imaging has been recognized to be very useful to investigate inside of materials and products that cannot be seen by X-ray. New imaging methods using the pulsed structure of neutron sources based on accelerators has been developed also at compact accelerator-driven neutron sources and opened new application fields in neutron imaging. The world’s first dedicated imaging instrument at pulsed neutron sources was constructed at J-PARC in Japan owing to the development of such new methods. Then, usefulness of the compact accelerator-driven neutron sources in neutron science was recognized and such facilities were newly constructed in Japan. Now, existing and new sources have been used for neutron imaging. Traditional imaging and newly developed pulsed neutron imaging such as Bragg edge transmission have been applied to various fields by using compact and large neutron facilities. Here, compact accelerator-driven neutron sources used for imaging in Japan are introduced and some of their activities are presented.

  15. Method and apparatus for determination of temperature, neutron absorption cross section and neutron moderating power

    Science.gov (United States)

    Vagelatos, Nicholas; Steinman, Donald K.; John, Joseph; Young, Jack C.

    1981-01-01

    A nuclear method and apparatus determines the temperature of a medium by injecting fast neutrons into the medium and detecting returning slow neutrons in three first energy ranges by producing three respective detection signals. The detection signals are combined to produce three derived indicia each systematically related to the population of slow neutrons returning from the medium in a respective one of three second energy ranges, specifically exclusively epithermal neutrons, exclusively substantially all thermal neutrons and exclusively a portion of the thermal neutron spectrum. The derived indicia are compared with calibration indicia similarly systematically related to the population of slow neutrons in the same three second energy ranges returning from similarly irradiated calibration media for which the relationships temperature, neutron absorption cross section and neutron moderating power to such calibration indicia are known. The comparison indicates the temperature at which the calibration indicia correspond to the derived indicia and consequently the temperature of the medium. The neutron absorption cross section and moderating power of the medium can be identified at the same time.

  16. The US spallation neutron source (SNS) project

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1999-01-01

    The SNS is a 1 MW pulsed spallation neutron source that will be sited at Oak Ridge. It will consist of a high-current, normal-conducting linac accelerating an H - beam to 1 GeV, an accumulator ring which compresses each 1 ms linac pulse into a 600 ns bunch which is then extracted in a single turn onto a liquid mercury target. Neutron pulses emerge at a 60 Hz rate from the two ambient, and two cryogenic moderators. Eighteen beam ports surrounding the target station are available for neutron-scattering instrumentation. Funds for ten instruments are included in the construction project; these instruments will provide basic measurement capability for the many and varied research activities at the SNS facility. The new spallation source is being built by a consortium of laboratories; the partners are LBNL, LANL, BNL, ANL and ORNL. The breadth and depth of experience and resources brought by such a wide-spread team offers very significant advantages. Construction will start in October of 1998, operation will begin in October, 2005. (J.P.N.)

  17. Neutron Dose Measurement Using a Cubic Moderator

    International Nuclear Information System (INIS)

    Sheinfeld, M.; Mazor, T.; Cohen, Y.; Kadmon, Y.; Orion, I.

    2014-01-01

    The Bonner Sphere Spectrometer (BSS), introduced In July 1960 by a research group from Rice University, Texas, is a major approach to neutron spectrum estimation. The BSS, also known as multi-sphere spectrometer, consists of a set of a different diameters polyethylene spheres, carrying a small LiI(Eu) scintillator in their center. What makes this spectrometry method such widely used, is its almost isotropic response, covering an extraordinary wide range of energies, from thermal up to even hundreds of MeVs. One of the most interesting and useful consequences of the above study is the 12'' sphere characteristics, as it turned out that the response curve of its energy dependence, have a similar shape compared with the neutron's dose equivalent as a function of energy. This inexplicable and happy circumstance makes it virtually the only monitoring device capable providing realistic neutron dose estimates over such a wide energy range. However, since the detection mechanism is not strictly related to radiation dose, one can expect substantial errors when applied to widely different source conditions. Although the original design of the BSS included a small 4mmx4mmO 6LiI(Eu) scintillator, other thermal neutron detectors has been used over the years: track detectors, activation foils, BF3 filled proportional counters, etc. In this study we chose a Boron loaded scintillator, EJ-254, as the thermal neutron detector. The neutron capture reaction on the boron has a Q value of 2.78 MeV of which 2.34 MeV is shared by the alpha and lithium particles. The high manufacturing costs, the encasement issue, the installation efficiency and the fabrication complexity, led us to the idea of replacing the sphere with a cubic moderator. This article describes the considerations, as well as the Monte-Carlo simulations done in order to examine the applicability of this idea

  18. Basic design of the HANARO cold neutron source using MCNP code

    International Nuclear Information System (INIS)

    Yu, Yeong Jin; Lee, Kye Hong; Kim, Young Jin; Hwang, Dong Gil

    2005-01-01

    The design of the Cold Neutron Source (CNS) for the HANARO research reactor is on progress. The CNS produces neutrons in the low energy range less than 5meV using liquid hydrogen at around 21.6 K as the moderator. The primary goal for the CNS design is to maximize the cold neutron flux with wavelengths of around 2 ∼ 12 A and to minimize the nuclear heat load. In this paper, the basic design of the HANARO CNS is described

  19. Time-correlated neutron analysis of a multiplying HEU source

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E.C., E-mail: Eric.Miller@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, MD (United States); Kalter, J.M.; Lavelle, C.M. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD (United States); Watson, S.M.; Kinlaw, M.T.; Chichester, D.L. [Idaho National Laboratory, Idaho Falls, ID (United States); Noonan, W.A. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD (United States)

    2015-06-01

    The ability to quickly identify and characterize special nuclear material remains a national security challenge. In counter-proliferation applications, identifying the neutron multiplication of a sample can be a good indication of the level of threat. Currently neutron multiplicity measurements are performed with moderated {sup 3}He proportional counters. These systems rely on the detection of thermalized neutrons, a process which obscures both energy and time information from the source. Fast neutron detectors, such as liquid scintillators, have the ability to detect events on nanosecond time scales, providing more information on the temporal structure of the arriving signal, and provide an alternative method for extracting information from the source. To explore this possibility, a series of measurements were performed on the Idaho National Laboratory's MARVEL assembly, a configurable HEU source. The source assembly was measured in a variety of different HEU configurations and with different reflectors, covering a range of neutron multiplications from 2 to 8. The data was collected with liquid scintillator detectors and digitized for offline analysis. A gap based approach for identifying the bursts of detected neutrons associated with the same fission chain was used. Using this approach, we are able to study various statistical properties of individual fission chains. One of these properties is the distribution of neutron arrival times within a given burst. We have observed two interesting empirical trends. First, this distribution exhibits a weak, but definite, dependence on source multiplication. Second, there are distinctive differences in the distribution depending on the presence and type of reflector. Both of these phenomena might prove to be useful when assessing an unknown source. The physical origins of these phenomena can be illuminated with help of MCNPX-PoliMi simulations.

  20. Time-correlated neutron analysis of a multiplying HEU source

    Science.gov (United States)

    Miller, E. C.; Kalter, J. M.; Lavelle, C. M.; Watson, S. M.; Kinlaw, M. T.; Chichester, D. L.; Noonan, W. A.

    2015-06-01

    The ability to quickly identify and characterize special nuclear material remains a national security challenge. In counter-proliferation applications, identifying the neutron multiplication of a sample can be a good indication of the level of threat. Currently neutron multiplicity measurements are performed with moderated 3He proportional counters. These systems rely on the detection of thermalized neutrons, a process which obscures both energy and time information from the source. Fast neutron detectors, such as liquid scintillators, have the ability to detect events on nanosecond time scales, providing more information on the temporal structure of the arriving signal, and provide an alternative method for extracting information from the source. To explore this possibility, a series of measurements were performed on the Idaho National Laboratory's MARVEL assembly, a configurable HEU source. The source assembly was measured in a variety of different HEU configurations and with different reflectors, covering a range of neutron multiplications from 2 to 8. The data was collected with liquid scintillator detectors and digitized for offline analysis. A gap based approach for identifying the bursts of detected neutrons associated with the same fission chain was used. Using this approach, we are able to study various statistical properties of individual fission chains. One of these properties is the distribution of neutron arrival times within a given burst. We have observed two interesting empirical trends. First, this distribution exhibits a weak, but definite, dependence on source multiplication. Second, there are distinctive differences in the distribution depending on the presence and type of reflector. Both of these phenomena might prove to be useful when assessing an unknown source. The physical origins of these phenomena can be illuminated with help of MCNPX-PoliMi simulations.

  1. Time-correlated neutron analysis of a multiplying HEU source

    International Nuclear Information System (INIS)

    Miller, E.C.; Kalter, J.M.; Lavelle, C.M.; Watson, S.M.; Kinlaw, M.T.; Chichester, D.L.; Noonan, W.A.

    2015-01-01

    The ability to quickly identify and characterize special nuclear material remains a national security challenge. In counter-proliferation applications, identifying the neutron multiplication of a sample can be a good indication of the level of threat. Currently neutron multiplicity measurements are performed with moderated 3 He proportional counters. These systems rely on the detection of thermalized neutrons, a process which obscures both energy and time information from the source. Fast neutron detectors, such as liquid scintillators, have the ability to detect events on nanosecond time scales, providing more information on the temporal structure of the arriving signal, and provide an alternative method for extracting information from the source. To explore this possibility, a series of measurements were performed on the Idaho National Laboratory's MARVEL assembly, a configurable HEU source. The source assembly was measured in a variety of different HEU configurations and with different reflectors, covering a range of neutron multiplications from 2 to 8. The data was collected with liquid scintillator detectors and digitized for offline analysis. A gap based approach for identifying the bursts of detected neutrons associated with the same fission chain was used. Using this approach, we are able to study various statistical properties of individual fission chains. One of these properties is the distribution of neutron arrival times within a given burst. We have observed two interesting empirical trends. First, this distribution exhibits a weak, but definite, dependence on source multiplication. Second, there are distinctive differences in the distribution depending on the presence and type of reflector. Both of these phenomena might prove to be useful when assessing an unknown source. The physical origins of these phenomena can be illuminated with help of MCNPX-PoliMi simulations

  2. New neutron imaging using pulsed sources. Characteristics of a pulsed neutron source and principle of pulsed neutron imaging

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki

    2012-01-01

    Neutron beam is one of important tools to obtain the transmission image of an object. Until now, steady state neutron sources such as reactors are mainly used for this imaging purpose. Recently, it has been demonstrated that pulsed neutron imaging based on accelerator neutron sources can provide a real-space distribution of physical information of materials such as crystallographic structure, element, temperature, hydrogen bound state, magnetic field and so on, by analyzing wavelength dependent transmission spectrum, which information cannot be observed or difficult to obtain with a traditional imaging method using steady state neutrons. Here, characteristics of the pulsed neutron source and principle of the pulsed neutron imaging are explained as a basic concept of the new method. (author)

  3. Mockup tests of void fraction in moderator cell and two-phase thermosiphon loop of cold neutron source in China Advanced Research Reactor

    International Nuclear Information System (INIS)

    Du Shejiao; Bi Qincheng; Chen Tingkuan; Feng Quanke; Li Xiaoming

    2004-01-01

    Full-scale mockup tests were carried out using freon-113 as a working fluid to verify the design of China Advanced Research Reactor (CARR) Cold neutron Source (CNS), which is a two-phase hydrogen thermosiphon loop consisting of an annular cylindrical moderator cell, two separated hydrogen transfer tubes and a condenser. The circulation characteristics, liquid level and void fraction in the moderator cell against the variation of the heat load were studied. The density ratio and the volumetric evaporating rate of the mockup test are kept the same as those of CARR CNS. The test results show that the mockup loop can establish stable circulation and has a self-regulating characteristic. Within the moderator cell, the inner shell contains only vapor and the outer shell contains the mixture of vapor-liquid with void fraction in a certain range. (authors)

  4. Conceptual design of HANARO cold neutron source

    International Nuclear Information System (INIS)

    Lee, Chang Hee; Sim, Cheul Muu; Park, K. N.; Choi, Y. H.

    2002-07-01

    The purpose of the cold source is to increase the available neutron flux delivered to instruments at wavelength 4 ∼ 12 A. The major engineering targets of this CNS facility is established for a reach out of very high gain factors in consideration with the cold neutron flux, moderator, circulation loop, heat load, a simplicity of the maintenance of the facility, safety in the operation of the facility against the hydrogen explosion and a layout of a minimum physical interference with the present facilities. The cold source project has been divided into 5 phases: (1) pre-conceptual (2) conceptual design (3) Testing (4) detailed design and procurement (5) installation and operation. Although there is sometime overlap between the phases, in general, they are sequential. The pre-conceptual design and concept design of KCNS has been performed on elaborations of PNPI Russia and review by Technicatome, Air Liquid, CILAS France. In the design of cold neutron source, the characteristics of cold moderators have been studied to obtain the maximum gain of cold neutron, and the analysis for radiation heat, design of hydrogen system, vacuum system and helium system have been performed. The possibility for materialization of the concept in the proposed conceptual design has been reviewed in view of securing safety and installing at HANARO. Above all, the thermosiphon system to remove heat by circulation of sub-cooled two phase hydrogen has been selected so that the whole device could be installed in the reactor pool with the reduced volume. In order to secure safety, hydrogen safety has been considered on protection to prevent from hydrogen-oxygen reaction at explosion of hydrogen-oxygen e in the containment. A lay out of the installation, a maintenance and quality assurance program and a localization are included in this report. Requirements of user, regulatory, safety, operation, maintenance should be considered to be revised for detailed design, testing, installation

  5. Simulation of a high energy neutron irradiation facility at beamline 11 of the China Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Tairan, Liang [School of Physics and Electronic Information Inner Mongolia University for the Nationalities, Tongliao 028043 (China); Zhiduo, Li [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Wen, Yin, E-mail: wenyin@aphy.iphy.ac.cn [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Institute of Physics, CAS, P.O. Box 603, Beijing 100190 (China); Fei, Shen [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Quanzhi, Yu [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Institute of Physics, CAS, P.O. Box 603, Beijing 100190 (China); Tianjiao, Liang [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China)

    2017-07-11

    The China Spallation Neutron Source (CSNS) will accommodate 20 neutron beamlines at its first target station. These beamlines serve different purposes, and beamline 11 is designed to analyze the degraded models and damage mechanisms, such as Single Event Effects in electronic components and devices for aerospace electronic systems. This paper gives a preliminary discussion on the scheme of a high energy neutron irradiation experiment at the beamline 11 shutter based on the Monte Carlo simulation method. The neutron source term is generated by calculating the neutrons scattering into beamline 11 with a model that includes the target-moderator-reflector area. Then, the neutron spectrum at the sample position is obtained. The intensity of neutrons with energy of hundreds of MeV is approximately 1E8 neutron/cm{sup 2}/s, which is useful for experiments. The displacement production rate and gas productions are calculated for common materials such as tungsten, tantalum and SS316. The results indicate that the experiment can provide irradiation dose rate ranges from 1E-5 to 1E-4 dpa per operating year. The residual radioactivity is also calculated for regular maintenance work. These results give the basic reference for the experimental design.

  6. Technical design report of spallation neutron source facility in J-PARC

    International Nuclear Information System (INIS)

    Sakamoto, Shinichi

    2012-02-01

    One of the experimental facilities in Japan Proton Accelerator Research Complex (J-PARC) is the Materials and Life Science Experimental Facility (MLF), where high-intensity neutron beams are used as powerful probes for basic research on materials and life science, as well as research and development in industrial engineering. Neutrons are generated with nuclear spallation reaction by bombarding a mercury target with high-intensity proton beams. The neutrons are slowed down with supercritical hydrogen moderators and then extracted as beams to each experimental apparatus. The principal design of the spallation neutron source is compiled in this comprehensive report. (author)

  7. A Proposal for a Next Generation European Neutron Source

    International Nuclear Information System (INIS)

    Andersen, K.H.; Carlile, C.J.

    2016-01-01

    We argue that it is not too early to begin the planning process for a next generation neutron source for Europe, even as the European Spallation Source is being constructed. We put forward three main arguments. Firstly, nowadays the period between the first scientific concept of a new facility being proposed and its actual realisation is approaching half a century. We show evidence for this. Secondly, there is a straightforward development of the short pulse/long pulse spallation concepts that will deliver gains in neutron brightness of more than a factor 30 over what the ESS will soon deliver and provide the optimum balance between resolution and intensity. We describe our concept, which is a spallation source where the proton pulse length is matched to the moderating time of slow neutrons. Thirdly, when we look at our colleagues in astronomy and high energy physics, we see that they have a totally different, more global and more ambitious approach to the coming generations of large facilities. We argue that it is time for the neutron community not simply to rest upon its laurels and take what is given but to be proactive.. (paper)

  8. High-current negative-ion sources for pulsed spallation neutron sources: LBNL workshop, October 1994

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1995-09-01

    The neutron scattering community has endorsed the need for a high-power (1 to 5 MW) accelerator-driven source of neutrons for materials research. Properly configured, the accelerator could produce very short (sub-microsecond) bursts of cold neutrons, said time structure offering advantages over the continuous flux from a reactor. The recent cancellation of the ANS reactor project has increased the urgency to develop a comprehensive strategy based on the best technological scenarios. Studies to date have built on the experience from ISIS (the 160 kW source in the UK), and call for a high-current (approx. 100 mA peak) H- source-linac combination injecting into one or more accumulator rings in which beam may be further accelerated. The I to 5 GeV proton beam is extracted in a single turn and brought to the target-moderator stations. The high current, high duty-factor, high brightness and high reliability required of the ion source present a very large challenge to the ion source community. The Workshop reported on here, held in Berkeley in October 1994, analyzed in detail the source requirements for proposed accelerator scenarios, the present performance capabilities of different H- source technologies, and identified necessary R ampersand D efforts to bridge the gap

  9. Neutrino physics at the spallation neutron source. Pt. 2

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Lillie, R.A.; Bishop, B.L.; Wilczynski, J.; Zeitnitz, B.

    1981-06-01

    The shielding and detector analysis associated with a contemplated low energy (approx. equal to10 to 50 MeV) neutrino experiment at a spallation neutron source are presented and discussed. This analysis includes neutrino production and interaction rates, time dependence of the neutrino pulse, shielding considerations for neutrons coming directly from the spallation source and those which are scattered from other experimental areas, shielding considerations for galactic sources especially muons and finally detector responses to neutrino and background radiations. In general for a 1 mA (200 ns/pulse, 100 Hz), 1.1 GeV proton beam incident on a lead target surrounded by a moderator system, approximately 8 m of iron are required to reduce the background so that the event rate in the detector systems is approx. [de

  10. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  11. Study of liquid hydrogen and liquid deuterium cold neutron sources

    International Nuclear Information System (INIS)

    Harig, H.D.

    1969-01-01

    In view of the plant of the cold neutron source for a high flux reactor (maximal thermal flux of about 10 15 n/cm 2 s) an experimental study of several cold sources of liquid hydrogen and liquid deuterium has been made in a low power reactor (100 kW, about 10 12 n/cm 2 s). We have investigated: -cold neutron sources of liquid hydrogen shaped as annular layers of different thickness. Normal liquid hydrogen was used as well as hydrogen with a high para-percentage. -Cold neutron sources of liquid deuterium in cylinders of 18 and 38 cm diameter. In this case the sources could be placed into different positions to the reactor core within the heavy water reflector. This report gives a general description of the experimental device and deals more detailed with the design of the cryogenic systems. Then, the measured results are communicated, interpreted and finally compared with those of a theoretical study about the same cold moderators which have been the matter of the experimental investigation. (authors) [fr

  12. Absolute calibration system of neutron sources by the manganese sulphate bath

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Sachett, I.A.

    1990-01-01

    The calibration system consists of deep the neutron source, protected by plastic container, at the center of spherical polietilene tank, in a concentrated solution of manganese sulphate. The neutrons emitted by the source are moderated and when reach the termal energy are catched by manganese atoms activating the solution. After the saturation activity has been reached the source is removed and one scintilation detector (NaI(Tl) 3' x 3') is put in the same place to follow the decay activity. The gama couting rate (845 KeV 54 Mn photopeak), after the corrections is used to estimate the saturation activity, and calculate the neutron source emission rate. These calculations are executed by one computer program. The uncertainties in the final value of emission rate are about 2.5 - 3.0 % to AmBe sources in the 1.11 x 10 10 Bq (0,3 Ci) - 3.7 x 10 11 Bq (10 Ci) range. (author) [pt

  13. Neutron absorption profile in a reactor moderated by different mixtures of light and heavy waters

    International Nuclear Information System (INIS)

    Nagy, Mohamed E.; Aly, Mohamed N.; Gaber, Fatma A.; Dorrah, Mahmoud E.

    2014-01-01

    Highlights: • We studied neutron absorption spectra in a mixed water moderated reactor. • Changing D 2 O% in moderator induced neutron energy spectral shift. • Most of the neutrons absorbed in control rods were epithermal. • Control rods worth changes were not proportional to changes of D 2 O% in moderator. • Control rod arrangement influenced the neutronic behavior of the reactor. - Abstract: A Monte-Carlo parametric study was carried out to investigate the neutron absorption profile in a model of LR-0 reactor when it is moderated by different mixtures of heavy/light waters at molecular ratios ranging from 0% up to 100% D 2 O at increments of 10% in D 2 O. The tallies included; neutron absorption profiles in control rods and moderator, and neutron capture profile in 238 U. The work focused on neutron absorption in control rods entailing; total mass of control rods needed to attain criticality, neutron absorption density and total neutron absorption in control rods at each of the studied mixed water moderators. The aim was to explore whether thermal neutron poisons are the most suitable poisons to be used in control rods of nuclear reactors moderated by mixed heavy/light water moderators

  14. Thermal neutron source study

    International Nuclear Information System (INIS)

    Holden, T.M.

    1983-05-01

    The value of intense neutron beams for condensed matter research is discussed with emphasis on the complementary nature of steady state and pulsed neutron sources. A large body of information on neutron sources, both existing and planned, is then summarized under four major headings: fission reactors, electron accelerators with heavy metal targets, pulsed spallation sources and 'steady state' spallation sources. Although the cost of a spallation source is expected to exceed that of a fission reactor of the same flux by a factor of two, there are significant advantages for a spallation device such as the proposed Electronuclear Materials Test Facility (EMTF)

  15. Neutron PSDs for the next generation of spallation neutron sources

    CERN Document Server

    Eijk, C W

    2002-01-01

    A review of R and D for neutron PSDs to be used at anticipated new spallation neutron sources: the Time-of-Flight system facility, European Spallation Source, Spallation Neutron Source and Neutron Arena, is presented. The gas-filled detectors, scintillation detectors and hybrid systems are emphasized.

  16. Liquid Li based neutron source for BNCT and science application.

    Science.gov (United States)

    Horiike, H; Murata, I; Iida, T; Yoshihashi, S; Hoashi, E; Kato, I; Hashimoto, N; Kuri, S; Oshiro, S

    2015-12-01

    Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of (7)Li(p,n)(7)Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  18. Radiography using californium-252 neutron sources

    International Nuclear Information System (INIS)

    Ray, J.W.

    1975-01-01

    The current status in the technology of neutron radiography using californium-252 neutron sources is summarized. Major emphasis is on thermal neutron radiography since it has the widest potential applicability at the present time. Attention is given to four major factors which affect the quality and useability of thermal neutron radiography: source neutron thermalization, neutron beam extraction geometry, neutron collimator dimensions, and neutron imaging methods. Each of these factors has a major effect on the quality of the radiographs which are obtained from a californium source neutron radiography system and the exposure times required to obtain the radiographs; radiograph quality and exposure time in turn affect the practicality of neutron radiography for specific nondestructive inspection applications. A brief discussion of fast neutron radiography using californium-252 neutron sources is also included. (U.S.)

  19. Ultracold neutron source at the PULSTAR reactor: Engineering design and cryogenic testing

    Energy Technology Data Exchange (ETDEWEB)

    Korobkina, E., E-mail: ekorobk@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, 2500 Stinson Drive, Box 7909, Raleigh, NC 27695 (United States); Medlin, G. [Department of Physics, North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Triangle Universities Nuclear Laboratory, 116 Science Drive, Box 90308, Durham, NC 27708 (United States); Wehring, B.; Hawari, A.I. [Department of Nuclear Engineering, North Carolina State University, 2500 Stinson Drive, Box 7909, Raleigh, NC 27695 (United States); Huffman, P.R.; Young, A.R. [Department of Physics, North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Triangle Universities Nuclear Laboratory, 116 Science Drive, Box 90308, Durham, NC 27708 (United States); Beaumont, B. [Department of Physics, North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Palmquist, G. [Department of Physics, North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Triangle Universities Nuclear Laboratory, 116 Science Drive, Box 90308, Durham, NC 27708 (United States)

    2014-12-11

    Construction is completed and commissioning is in progress for an ultracold neutron (UCN) source at the PULSTAR reactor on the campus of North Carolina State University. The source utilizes two stages of neutron moderation, one in heavy water at room temperature and the other in solid methane at ∼40K, followed by a converter stage, solid deuterium at 5 K, that allows a single down scattering of cold neutrons to provide UCN. The UCN source rolls into the thermal column enclosure of the PULSTAR reactor, where neutrons will be delivered from a bare face of the reactor core by streaming through a graphite-lined assembly. The source infrastructure, i.e., graphite-lined assembly, heavy-water system, gas handling system, and helium liquefier cooling system, has been tested and all systems operate as predicted. The research program being considered for the PULSTAR UCN source includes the physics of UCN production, fundamental particle physics, and material surface studies of nanolayers containing hydrogen. In the present paper we report details of the engineering and cryogenic design of the facility as well as results of critical commissioning tests without neutrons.

  20. About possibilities of obtaining focused beams of thermal neutrons of radionuclide source

    International Nuclear Information System (INIS)

    Aripov, G.A.; Kurbanov, B.I.; Sulaymanov, N.T.; Ergashev, A.

    2004-01-01

    Full text: In the last years significant progress is achieved in development of neutron focusing methods (concentrating neutrons in a given direction and a small area). In this, main attention is given to focusing of neutron beams of reactor, particularly cold neutrons and their applications. [1,2]. However, isotope sources also let obtain intensive neutron beams and solve quite important (tasks) problems (e.g. neutron capture therapy for malignant tumors) [3], and an actual problems is focusing of neutrons. We developed a device on the basis of californium source of neutrons, allowing to obtain focused (preliminarily) beam of thermal neutrons with the aid of respective choice of moderators, reflectors and geometry of their disposition. Here, fast neutrons and gamma rays in the beam are minimized. With the aid of the model we developed on the basis of Monte-Carlo method, it is possible to modify aforementioned device and dynamics of output neutrons in wide energy range and analyze ways of optimization of neutron beams of isotope sources with different neutron outputs. Device of preliminary focusing of thermal neutrons can serve as a basis for further focus of neutrons using micro- and nano-capillar systems. It is known that, capillary systems performed with certain technology can form beam of thermal neutrons increasing its density by more than two orders of magnitude and effectively divert beams up to 20 o with length of system 15 cm

  1. About possibilities of obtaining focused beams of thermal neutrons of radionuclide source

    International Nuclear Information System (INIS)

    Aripov, G.A.; Kurbanov, B.I.; Sulaymanov, N.T.; Ergashev, A.

    2004-01-01

    In the last years significant progress is achieved in development of neutron focusing methods (concentrating neutrons in a given direction and a small area). In this, main attention is given to focusing of neutron beams of reactor, particularly cold neutrons and their applications. [1,2]. However, isotope sources also let obtain intensive neutron beams and solve quite important (tasks) problems (e.g. neutron capture therapy for malignant tumors) [3], and an actual problems is focusing of neutrons. We developed a device on the basis of californium source of neutrons, allowing to obtain focused (preliminarily) beam of thermal neutrons with the aid of respective choice of moderators, reflectors and geometry of their disposition. Here, fast neutrons and gamma rays in the beam are minimized. With the aid of the model we developed on the basis of Monte-Carlo method, it is possible to modify aforementioned device and dynamics of output neutrons in wide energy range and analyze ways of optimization of neutron beams of isotope sources with different neutron outputs. Device of preliminary focusing of thermal neutrons can serve as a basis for further focus of neutrons using micro- and nano-capillary systems. It is known that, capillary systems performed with certain technology can form beam of thermal neutrons increasing its density by more than two orders of magnitude and effectively divert beams up to 20 o with length of system 15 cm. (author)

  2. Sample to moderator volume ratio effects in neutron yield from a PGNAA setup

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, KFUPM Box 1815, Dhahran-31261 (Saudi Arabia)]. E-mail: aanaqvi@kfupm.edu.sa; Fazal-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, KFUPM Box 1815, Dhahran-31261 (Saudi Arabia); Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, KFUPM Box 1815, Dhahran-31261 (Saudi Arabia); Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, KFUPM Box 1815, Dhahran-31261 (Saudi Arabia)

    2007-02-15

    Performance of a prompt gamma ray neutron activation analysis (PGNAA) setup depends upon thermal neutron yield at the PGNAA sample location. For a moderator, which encloses a sample, thermal neutron intensity depends upon the effective moderator volume excluding the void volume due to sample volume. A rectangular moderator assembly has been designed for the King Fahd University of Petroleum and Minerals (KFUPM) PGNAA setup. The thermal and fast neutron yield has been measured inside the sample cavity as a function of its front moderator thickness using alpha particle tracks density and recoil proton track density inside the CR-39 nuclear track detectors (NTDs). The thermal/fast neutron yield ratio, obtained from the alpha particle tracks density to proton tracks density ratio in the NTDs, shows an inverse correlation with sample to moderator volume ratio. Comparison of the present results with the previously published results of smaller moderators of the KFUPM PGNAA setup confirms the observation.

  3. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10 7 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF 3 composite and a stacked Al/Teflon design) at various incident electron energies

  4. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Hannah E. [Georgia Inst. of Technology, Atlanta, GA (United States)

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies.

  5. Performance of novel moderator for pulsed neutron diffraction

    International Nuclear Information System (INIS)

    Mayer, R.E.; Granada, J.R.; Dawidowski, J.; Gillette, V.H.

    1991-01-01

    Measurements of neutron pulse time-width and intensity have been carried out on grids of small moderators placed side by side and decoupled by cadmium strips. This moderator concept had been introduced at ICANS-10. The present measurements explore greater moderator thicknesses than those previously attained, yielding information on thickness optimization, while confirming the previous results on resolution which make this moderator a favourable choice in front of the conventional sandwich set-up. (author)

  6. Simulation study for the influences of fluid physical properties on void fraction of moderator cell of cold neutron source

    International Nuclear Information System (INIS)

    Li Xiaoming; Feng Quanke; Bi Qincheng; Chen Tingkuan; Du Shejiao

    2004-01-01

    The void fraction at different heights in the annular channel of moderator cell mockup was measured with a differential pressure transducer. The tests proved that the ratio of surface tension to density of liquid phase is the main factor that determines the physical properties on void fraction. The larger the ratio, the smaller the void fraction. The ratio of surface tension to density of Freon 113 is lower than that of liquid hydrogen. Therefore, Freon 113 can be used as working fluid to study the void fraction in the hydrogen two-phase thermo-siphon loop in the cold neutron source (CNS) of China Advanced Research Reactor (CARR), and the results are conservative

  7. Measurement of the para-hydrogen concentration in the ISIS moderators using neutron transmission and thermal conductivity

    Science.gov (United States)

    Romanelli, Giovanni; Rudić, Svemir; Zanetti, Matteo; Andreani, Carla; Fernandez-Alonso, Felix; Gorini, Giuseppe; Krzystyniak, Maciej; Škoro, Goran

    2018-04-01

    We present an experimental study to determine the para-hydrogen concentration in the hydrogen moderators at the ISIS pulsed neutron and muon source. The experimental characterisation is based on neutron transmission experiments performed on the VESUVIO spectrometer, and thermal conductivity measurements using the TOSCA para-hydrogen rig. A reliable estimation of the level of para-hydrogen concentration in the hydrogen moderators is of crucial importance in the framework of a current project to completely refurbish the first target station at ISIS. Moreover, we report a new measurement of the total neutron cross section for normal hydrogen at 15 K on the broad energy range 3 meV -10 eV suggesting a revision of the most recent nuclear libraries for incident neutron energies lower than 10 meV. Finally, we characterise systematic errors affecting the para-hydrogen level estimation due to conversion from para to ortho hydrogen, as a function of the time a batch of gas spends in every component of our gas panel and apparatus.

  8. The Space-, Time-, and Energy-distribution of Neutrons from a Pulsed Plane Source

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, Arne

    1962-05-15

    The space-, time- and energy-distribution of neutrons from a pulsed, plane, high energy source in an infinite medium is determined in a diffusion approximation. For simplicity the moderator is first assumed to be hydrogen gas but it is also shown that the method can be used for a moderator of arbitrary mass.

  9. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-01

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load

  10. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-15

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load.

  11. Assessment of Laser-Driven Pulsed Neutron Sources for Poolside Neutron-based Advanced NDE – A Pathway to LANSCE-like Characterization at INL

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Markus [Technische Univ. Darmstadt (Germany); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourke, Mark Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocko, Michael Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Glenzer, Siegfried [Stanford Univ., CA (United States); Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siders, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Haefner, Constantin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-19

    A variety of opportunities for characterization of fresh nuclear fuels using thermal (~25meV) and epithermal (~10eV) neutrons have been documented at Los Alamos National Laboratory. They include spatially resolved non-destructive characterization of features, isotopic enrichment, chemical heterogeneity and stoichiometry. The LANSCE spallation neutron source is well suited in neutron fluence and temporal characteristics for studies of fuels. However, recent advances in high power short pulse lasers suggest that compact neutron sources might, over the next decade, become viable at a price point that would permit their consideration for poolside characterization on site at irradiation facilities. In a laser-driven neutron source the laser is used to accelerate deuterium ions into a beryllium target where neutrons are produced. At this time, the technology is new and their total neutron production is approximately four orders of magnitude less than a facility like LANSCE. However, recent measurements on a sub-optimized system demonstrated >1010 neutrons in sub-nanosecond pulses in predominantly forward direction. The compactness of the target system compared to a spallation target may allow exchanging the target during a measurement to e.g. characterize a highly radioactive sample with thermal, epithermal, and fast neutrons as well as hard X-rays, thus avoiding sample handling. At this time several groups are working on laser-driven neutron production and are advancing concepts for lasers, laser targets, and optimized neutron target/moderator systems. Advances in performance sufficient to enable poolside fuels characterization with LANSCE-like fluence on sample within a decade may be possible. This report describes the underlying physics and state-of-the-art of the laser-driven neutron production process from the perspective of the DOE/NE mission. It also discusses the development and understanding that will be necessary to provide customized capability for

  12. Synovectomy by Neutron capture; Sinovectomia por captura de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Torres M, C. [Centro Regional de Estudios Nucleares, Universidad Autonoma de Zacatecas, C. Cipres 10, Fracc. La Penuela, 98000 Zacatecas (Mexico)

    1998-12-31

    The Synovectomy by Neutron capture has as purpose the treatment of the rheumatoid arthritis, illness which at present does not have a definitive curing. This therapy requires a neutron source for irradiating the articulation affected. The energy spectra and the intensity of these neutrons are fundamental since these neutrons induce nuclear reactions of capture with Boron-10 inside the articulation and the freely energy of these reactions is transferred at the productive tissue of synovial liquid, annihilating it. In this work it is presented the neutron spectra results obtained with moderator packings of spherical geometry which contains in its center a Pu{sup 239} Be source. The calculations were realized through Monte Carlo method. The moderators assayed were light water, heavy water base and the both combination of them. The spectra obtained, the average energy, the neutron total number by neutron emitted by source, the thermal neutron percentage and the dose equivalent allow us to suggest that the moderator packing more adequate is what has a light water thickness 0.5 cm (radius 2 cm) and 24.5 cm heavy water (radius 26.5 cm). (Author)

  13. The tokamak as a neutron source

    International Nuclear Information System (INIS)

    Hendel, H.W.; Jassby, D.L.

    1989-11-01

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs

  14. Accelerator based neutron source for neutron capture therapy

    International Nuclear Information System (INIS)

    Salimov, R.; Bayanov, B.; Belchenko, Yu.; Belov, V.; Davydenko, V.; Donin, A.; Dranichnikov, A.; Ivanov, A.; Kandaurov, I; Kraynov, G.; Krivenko, A.; Kudryavtsev, A.; Kursanov, N.; Savkin, V.; Shirokov, V.; Sorokin, I.; Taskaev, S.; Tiunov, M.

    2004-01-01

    Full text: The Budker Institute of Nuclear Physics (Novosibirsk) and the Institute of Physics and Power Engineering (Obninsk) have proposed an accelerator based neutron source for neutron capture and fast neutron therapy for hospital. Innovative approach is based upon vacuum insulation tandem accelerator (VITA) and near threshold 7 Li(p,n) 7 Be neutron generation. Pilot accelerator based neutron source for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, Novosibirsk, Russia. In the present report, the pilot facility design is presented and discussed. Design features of facility components are discussed. Results of experiments and simulations are presented. Complete experimental tests are planned by the end of the year 2005

  15. Development of high-intensity D-D and D-T neutron sources and neutron filters for medical and industrial applications

    International Nuclear Information System (INIS)

    Verbeke, J.M.

    2000-01-01

    This thesis consists of three main parts. The first one relates to boron neutron capture therapy. It summarizes the guidelines obtained by numerical simulations for the treatment of shallow and deep-seated brain tumors, as well as the results on the design of beam-shaping assemblies to moderate D-D and D-T neutrons to epithermal energies. The second part is about boron neutron capture synovectomy for the treatment of rheumatoid arthritis. Optimal neutron energy for treatment and beam-shaping assembly designs are summarized in this section. The last part is on the development of the sealed neutron generator, including experimental results on the prototype ion source and the prototype accelerator column

  16. Status of the intense pulsed neutron source

    International Nuclear Information System (INIS)

    Brown, B.S.; Carpenter, J.M.; Crawford, R.K.; Rauchas, A.V.; Schulke, A.W.; Worlton, T.G.

    1989-01-01

    Since 1981 the average proton currents at IPNS has increased substantially. The reliability has averaged 91%. The moderator has changed from a room temperature polyethylene to cryogenic methane. This report details progress made at IPNS (Intense Pulsed Neutron Source) during the last two years. The topics discussed are the operating status of the accelerator systems, other accelerator activities (such as, IPNS participation in SDI), instrumentation operating at IPNS, chopper development at IPNS, data acquisition, Booster target, moderators and examples of recent scientific results. The ever increasing instrument capability, the Booster target and the very active involvement with the scientific user community guarantees a productive scientific future at IPNS. 9 figs., 3 tabs

  17. Spatial distribution of moderated neutrons along a Pb target irradiated by high-energy protons

    International Nuclear Information System (INIS)

    Fragopoulou, M.; Manolopoulou, M.; Stoulos, S.; Brandt, R.; Westmeier, W.; Kulakov, B.A.; Krivopustov, M.I.; Sosnin, A.N.; Debeauvais, M.; Adloff, J.C.; Zamani Valasiadou, M.

    2006-01-01

    High-energy protons in the range of 0.5-7.4 GeV have irradiated an extended Pb target covered with a paraffin moderator. The moderator was used in order to shift the hard Pb spallation neutron spectrum to lower energies and to increase the transmutation efficiency via (n,γ) reactions. Neutron distributions along and inside the paraffin moderator were measured. An analysis of the experimental results was performed based on particle production by high-energy interactions with heavy targets and neutron spectrum shifting by the paraffin. Conclusions about the spallation neutron production in the target and moderation through the paraffin are presented. The study of the total neutron fluence on the moderator surface as a function of the proton beam energy shows that neutron cost is improved up to 1 GeV. For higher proton beam energies it remains constant with a tendency to decline

  18. Deriving profiles of incident and scattered neutrons for TOF experiments with the spallation sources

    International Nuclear Information System (INIS)

    Watanabe, Hidehiro

    1993-01-01

    A formula that closely matches the incident profile of epi-thermal and thermal neutrons for time of flight experiments carried out with a spallation neutron source and moderator scheme is derived based on the slowing-down and diffusing-out processes in a moderator. This analytical description also enables us to predict burst-function profiles; these profiles are verified by a comparison with a diffraction pattern. The limits of the analytical model are discussed through the predictable peak position shift brought about by the slowing-down process. (orig.)

  19. Parametric studies of target/moderator configurations for the Weapons Neutron Research (WNR) facility

    International Nuclear Information System (INIS)

    Russell, G.J.; Seeger, P.A.; Fluharty, R.G.

    1977-03-01

    Parametric studies, using continuous-energy Monte Carlo codes, were done to optimize the neutronics of the Weapons Neutron Research (WNR) target and three possible target/moderator configurations: slab target/slab moderators, cylindrical target/cylindrical moderator, and cylindrical target/double-wing moderators. The energy range was 0.5 eV to 800 MeV. A general figure-of-merit (FOM) approach was used. The WNR facility performance can be doubled or tripled by optimizing the target and target/moderator configurations; this approach is more efficient than increasing the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator power by an equivalent factor. A bare target should be used for neutron energies above approximately 100 keV. The FOM for the slab target/slab moderator configuration is the best by a factor of at least 2 to 3 below approximately 1 keV. The total neutron leakage from 0.5 eV to 100 keV through a 100- by 100-mm area centered at the peak leakage is largest for the slab moderator, exceeding that of the cylindrical moderator and double-wing moderator by factors of 1.7 and 3.4, respectively. The neutron leakage at 1 eV from one 300- by 150-mm surface of a slab moderator is 1.5 times larger than that from one 155- by 150-mm surface of a cylindrical moderator. When compared with the 1-eV leakage from two 100- by 150-mm surfaces of a double-wing moderator, that from the slab moderator is 3.4 times larger. 107 figures, 13 tables

  20. Fission-neutrons source with fast neutron-emission timing

    Energy Technology Data Exchange (ETDEWEB)

    Rusev, G., E-mail: rusev@lanl.gov; Baramsai, B.; Bond, E.M.; Jandel, M.

    2016-05-01

    A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of {sup 252}Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  1. Source characterization of Purnima Neutron Generator (PNG)

    International Nuclear Information System (INIS)

    Bishnoi, Saroj; Patel, T.; Paul, Ram K.; Sarkar, P.S.; Adhikari, P.S.; Sinha, Amar

    2011-01-01

    The use of 14.1 MeV neutron generators for the applications such as elemental analysis, Accelerated Driven System (ADS) study, fast neutron radiography requires the characterization of neutron source i.e neutron yield (emission rate in n/sec), neutron dose, beam spot size and energy spectrum. In this paper, a series of experiments carried out to characterize this neutron source. The neutron source has been quantified with neutron emission rate, neutron dose at various source strength and beam spot size at target position

  2. Mean energy polarized neutron source

    International Nuclear Information System (INIS)

    Aleshin, V.A.; Zaika, N.I.; Kolotyj, V.V.; Prokopenko, V.S.; Semenov, V.S.

    1988-01-01

    Physical bases and realization scheme of a pulsed source of polarized neutrons with the energy of up to 75 MeV are described. The source comprises polarized deuteron source, transport line, low-energy ion and axial injector to the accelerator, U-240 isochronous cyclotron, targets for polarized neutron production, accelerated deuteron transport line and flight bases. The pulsed source of fast neutrons with the energy of up to 75 MeV can provide for highly polarized neutron beams with the intensity by 2-3 orders higher than in the most perfect source of this range which allows one to perform various experiments with high efficiency and energy resolution. 9 refs.; 1 fig

  3. Calculation of neutron flux distribution of thermal neutrons from microtron converter in a graphite moderator with water reflector

    International Nuclear Information System (INIS)

    Andrejsek, K.

    1977-01-01

    The calculation is made of the thermal neutron flux in the moderator and reflector by solving the neutron diffusion equation using the four-group theory. The correction for neutron absorption in the moderator was carried out using the perturbation theory. The calculation was carried out for four groups with the following energy ranges: the first group 2 MeV to 3 keV, the second group 3 keV to 5 eV, the third group 5 eV to 0.025 eV and the fourth group 0.025 eV. The values of the macroscopic cross section of capture and scattering, of the diffusion coefficient, the macroscopic cross section of the moderator, of the neutron age and the extrapolation length for the water-graphite moderator used in the calculations are given. The spatial distribution of the thermal neutron flux is graphically represented for graphite of a 30, 40, and 50 cm radius and for graphite of a 30 and 40 cm radius with a 10 cm water reflector; a graphic comparison is made of the distribution of the thermal neutron flux in water and in graphite, both 40 cm in radius. The system of graphite with reflector proved to be the best and most efficient system for raising the flux density of thermal neutrons. (J.P.)

  4. Neutron producing reactions in PuBe neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Bagi, János [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU) (Germany); Lakosi, László; Nguyen, Cong Tam [Centre for Energy Research, Hungarian Academy of Sciences, Budapest (Hungary)

    2016-01-01

    There are a plenty of out-of-use plutonium–beryllium neutron sources in Eastern Europe presenting both nuclear safeguards and security issues. Typically, their actual Pu content is not known. In the last couple of years different non-destructive methods were developed for their characterization. For such methods detailed knowledge of the nuclear reactions taking place within the source is necessary. In this paper we investigate the role of the neutron producing reactions, their contribution to the neutron yield and their dependence on the properties of the source.

  5. Moderators for the design of a cold neutron source for the RA 3 reactor

    International Nuclear Information System (INIS)

    Cantargi, F; Sbaffoni, M; Granada, R

    2004-01-01

    The cold neutron production of hydrogenous materials was studied, taking into account their radiation resistance, for the conceptual design of a cold neutron source for the RA-3 reactor.Low spontaneous release of chemical energy was found in mesitylene.Libraries for hidrogen in mesitylene were generated using the NJOY nuclear processing system and the resulting cross sections were compared with experimental data.Good agreement between measurements and calculations was found in those cases where data are available.New calculations using the RA-3 geometry and these validated libraries will be performed [es

  6. Moderator Demonstration Facility Design and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    McClanahan, Tucker C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallmeier, Franz X. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Iverson, Erik B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    The Spallation Neutron Source (SNS) facility at Oak Ridge National Laboratory (ORNL) is implementing a Moderator Demonstration Facility (MDF) to demonstrate the performance characteristics of advanced moderators central to the Second Target Station (STS) for SNS. The MDF will use the "spare" front-end installation within the SNS accelerator support complex – an ion source, radio-frequency quadrupole (RFQ) accelerator, and medium-energy beam transport (MEBT) chopper - to provide a 2.5 MeV proton beam of peak current 50 mA and maximum pulse length of less than 10 s at a repetition rate of no more than 60 Hz to a suitable neutron-producing target to demonstrate those aspects of moderator performance necessary to meet the goals of the STS design e ort. The accelerator beam parameters are not open to variation beyond that described above - they are fixed by the nature of the spare front-end installation (the Integrated Test Stand Facility; ITSF). Accordingly, there are some neutronic challenges in developing prototypic moderator illumination from a very non-prototypic primary neutron source; the spallation source we are attempting to mimic has an extended neutron source volume approximately 40 cm long (in the direction of the proton beam), approximately 10 cm wide (horizontally transverse to the proton beam) and approximately 5 cm high (vertically transverse to the proton beam), and an isotropic evaporation energy spectrum with mean energy above 1 MeV. In contrast, the primary neutron source available from the 7Li(p,n) reaction (the most prolific at 2.5 MeV proton energy by more than an order of magnitude) is strongly anisotropic, with an energy spectrum that is both strongly dependent on emission angle and kinematically limited to less than 700 keV, and the interaction zone between the incident protons and any target material (neutron-producing or not) is intrinsically limited to a few tens of microns. The MDF will be unique and innovative amongst the world

  7. Instrumentation at pulsed neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Lander, G.H.; Windsor, C.G.

    1984-01-01

    Scientific investigations involving the use of neutron beams have been centered at reactor sources for the last 35 years. Recently, there has been considerable interest in using the neutrons produced by accelerator driven (pulsed) sources. Such installations are in operation in England, Japan, and the United States. In this article a brief survey is given of how the neutron beams are produced and how they can be optimized for neutron scattering experiments. A detailed description is then given of the various types of instruments that have been, or are planned, at pulsed sources. Numerous examples of the scientific results that are emerging are given. An attempt is made throughout the article to compare the scientific opportunities at pulsed sources with the proven performance of reactor installations, and some familiarity with the latter and the general field of neutron scattering is assumed. New areas are being opened up by pulsed sources, particularly with the intense epithermal neutron beams, which promise to be several orders of magnitude more intense than can be obtained from a thermal reactor

  8. The performance of neutron spectrometers AR a long-pulse spallation source

    International Nuclear Information System (INIS)

    Pynn, R.; Daemen, L.L.

    1995-01-01

    At a recent workshop at Lawrence Berkeley National Laboratory members of the international neutron scattering community discussed the performance to be anticipated from neutron scattering instruments installed at a 1 MW long-pulse spallation source (LPSS). Although the report of this workshop is long, its principal conclusions can be easily summarised and almost as easily understood. This article presents such a synthesis for a 60 Hz LPSS with 1 msec proton pulses. We discuss some of the limitations of the workshop conclusions and suggest a simple analysis of the performance differences that might be expected between short- and long-pulse sources both of which exploit coupled moderators

  9. The WNR facility - a pulsed spallation neutron source at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Russell, G.J.; Lisowski, P.W.; King, N.S.P.

    1978-01-01

    The Weapons Neutron Research facility (WNR) at the Los Alamos Scientific Laboratory is the first operating example of a new class of pulsed neutron sources using the X(p,n)Y spallation reaction. At present, up to 10 microamperes of 800-MeV protons from the Clinton P. Anderson Meson Physics Facility (LAMPF) linear accelerator bombard a Ta target to produce an intense white-neutron spectrum from about 800 MeV to 100 keV. The Ta target can be coupled with CH 2 and H 2 O moderators to produce neutrons of lower energy. The time structure of the WNR proton beam may be varied to optimize neutron time-of-flight (TOF) measurements covering the energy range from several hundred MeV to a few meV. The neutronics of the WNR target and target/moderator configurations have been calculated from 800 MeV to 0.5 eV. About 11 neutrons per proton are predicted for the existing Ta target. Some initial neutron TOF data are presented and compared with calculations

  10. High energy neutron source for materials research and development

    International Nuclear Information System (INIS)

    Odera, M.

    1989-01-01

    Requirements for neutron source for nuclear materials research are reviewed and ESNIT, Energy Selective Neutron Irradiation Test facility proposed by JAERI is discussed. Its principal aims of a wide neutron energy tunability and spectra peaking at each energy to enable characterization of material damage process are demanding but attractive goals which deserve detailed study. It is also to be noted that the requirements make a difference in facility design from those of FMIT, IFMIF and other high energy intense neutron sources built or planned to date. Areas of technologies to be addressed to realize the ESNIT facility are defined and discussed. In order to get neutron source having desired spectral characteristics keeping moderate intensity, projectile and target combinations must be examined including experimentation if necessary. It is also desired to minimize change of flux density and energy spectrum according to location inside irradiation chamber. Extended target or multiple targets configuration might be a solution as well as specimen rotation and choice of combination of projectile and target which has minimum velocity of the center of mass. Though relevant accelerator technology exists, it is to be stressed that considerable efforts must be paid, especially in the area of target and irradiation devices to get ESNIT goal. Design considerations to allow hands-on maintenance and future upgrading possibility are important either, in order to exploit the facility fully for nuclear materials research and development. (author)

  11. Computational Benchmark Calculations Relevant to the Neutronic Design of the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Gallmeier, F.X.; Glasgow, D.C.; Jerde, E.A.; Johnson, J.O.; Yugo, J.J.

    1999-01-01

    The Spallation Neutron Source (SNS) will provide an intense source of low-energy neutrons for experimental use. The low-energy neutrons are produced by the interaction of a high-energy (1.0 GeV) proton beam on a mercury (Hg) target and slowed down in liquid hydrogen or light water moderators. Computer codes and computational techniques are being benchmarked against relevant experimental data to validate and verify the tools being used to predict the performance of the SNS. The LAHET Code System (LCS), which includes LAHET, HTAPE ad HMCNP (a modified version of MCNP version 3b), have been applied to the analysis of experiments that were conducted in the Alternating Gradient Synchrotron (AGS) facility at Brookhaven National Laboratory (BNL). In the AGS experiments, foils of various materials were placed around a mercury-filled stainless steel cylinder, which was bombarded with protons at 1.6 GeV. Neutrons created in the mercury target, activated the foils. Activities of the relevant isotopes were accurately measured and compared with calculated predictions. Measurements at BNL were provided in part by collaborating scientists from JAERI as part of the AGS Spallation Target Experiment (ASTE) collaboration. To date, calculations have shown good agreement with measurements

  12. The Upgrade of the Neutron Induced Positron Source NEPOMUC

    Science.gov (United States)

    Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Pikart, P.; Reiner, M.; Weber, J.; Zimnik, S.

    2013-06-01

    In summer 2012, the new NEutron induced POsitron Source MUniCh (NEPOMUC) was installed and put into operation at the research reactor FRM II. At NEPOMUC upgrade 80% 113Cd enriched Cd is used as neutron-gamma converter in order to ensure an operation time of 25 years. A structure of Pt foils inside the beam tube generates positrons by pair production. Moderated positrons leaving the Pt front foil are electrically extracted and magnetically guided to the outside of the reactor pool. The whole design, including Pt-foils, the electric lenses and the magnetic fields, has been improved in order to enhance both the intensity and the brightness of the positron beam. After adjusting the potentials and the magnetic guide and compensation fields an intensity of about 3·109 moderated positrons per second is expected. During the first start-up, the measured temperatures of about 90°C ensure a reliable operation of the positron source. Within this contribution the features and the status of NEPOMUC upgrade are elucidated. In addition, an overview of recent positron beam experiments and current developments at the spectrometers is given.

  13. Neutron scattering instrumentation for biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  14. Reactor physics experiments in PURNIMA sub critical facility coupled with 14 MeV neutron source

    International Nuclear Information System (INIS)

    Kumar, Rajeev; Degweker, S.B.; Patel, Tarun; Bishnoi, Saroj; Adhikari, P.S.

    2011-01-01

    Accelerator Driven Sub-critical Systems (ADSS) are attracting increasing worldwide attention due to their superior safety characteristics and their potential for burning actinide and fission product waste and energy production. A number of countries around the world have drawn up roadmaps/programs for development of ADSS. Indian interest in ADSS has an additional dimension, which is related to the planned utilization of our large thorium reserves for future nuclear energy generation. A programme for development of ADSS is taken up at the Bhabha Atomic Research Centre (BARC) in India. This includes R and D activities for high current proton accelerator development, target development and Reactor Physics studies. As part of the ADSS Reactor Physics research programme, a sub-critical facility is coming up in BARC which will be coupled with an existing D-D/D-T neutron generator. Two types of cores are planned. In one of these, the sub-critical reactor assembly consists of natural uranium moderated by high density polyethylene (HDP) and reflected by BeO. The other consists of natural uranium moderated by light water. The maximum neutron yield of the neutron source with tritium target is around 10 10 neutron per sec. Various reactor physics experiments like measurement of the source strength, neutron flux distribution, buckling estimation and sub-critical source multiplication are planned. Apart from this, measurement of the total fission power and neutron spectrum will also be carried out. Mainly activation detectors will be used in all in-core neutron flux measurement. Measurement of the degree of sub-criticality by various deterministic and noise methods is planned. Helium detectors with advanced data acquisition card will be used for the neutron noise experiments. Noise characteristics of ADSS are expected to be different from that of traditional reactors due to the non-Poisson statistical features of the source. A new theory incorporating these features has been

  15. Optimization of the Army’s Fast Neutron Moderator for Radiography

    Science.gov (United States)

    2013-02-26

    TECHNOLOGY DEVELOPMENTS 13 PNL Generator / Moderator Design 13 CONCLUSIONS 15 REFERENCES 16 LIST OF SYMBOLS, ABBREVIATIONS...and x-ray image 12 Figure 6: Second half comparison of neutron, processed, and x-ray image 13 Figure 7: The initial setup of the PNL neutron...reactor facility; for example, muntions and weapon systems that contain energetic materials. TECHNOLOGY DEVELOPMENTS: PNL Generator / Moderator

  16. Fissile material detection and control facility with pulsed neutron sources and digital data processing

    International Nuclear Information System (INIS)

    Romodanov, V.L.; Chernikova, D.N.; Afanasiev, V.V.

    2010-01-01

    Full text: In connection with possible nuclear terrorism, there is long-felt need of devices for effective control of radioactive and fissile materials in the key points of crossing the state borders (airports, seaports, etc.), as well as various customs check-points. In International Science and Technology Center Projects No. 596 and No. 2978, a new physical method and digital technology have been developed for the detection of fissile and radioactive materials in models of customs facilities with a graphite moderator, pulsed neutron source and digital processing of responses from scintillation PSD detectors. Detectability of fissile materials, even those shielded with various radiation-absorbing screens, has been shown. The use of digital processing of scintillation signals in this facility is a necessary element, as neutrons and photons are discriminated in the time dependence of fissile materials responses at such loads on the electronic channels that standard types of spectrometers are inapplicable. Digital processing of neutron and photon responses practically resolves the problem of dead time and allows implementing devices, in which various energy groups of neutrons exist for some time after a pulse of source neutrons. Thus, it is possible to detect fissile materials deliberately concealed with shields having a large cross-section of absorption of photons and thermal neutrons. Two models of detection and the control of fissile materials were advanced: 1. the model based on graphite neutrons moderator and PSD scintillators with digital technology of neutrons and photons responses separation; 2. the model based on plastic scintillators and detecting of time coincidences of fission particles by digital technology. Facilities that count time coincidences of neutrons and photons occurring in the fission of fissile materials can use an Am Li source of neutrons, e.g. that is the case with the AWCC system. The disadvantages of the facility are related to the issues

  17. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    Science.gov (United States)

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  18. Neutron spectra and dosimetric features of isotopic neutron sources: a review

    International Nuclear Information System (INIS)

    Vega C, H. R.; Martinez O, S. A.

    2015-10-01

    A convenient way to produce neutrons is the isotopic neutron source, where the production is through (α, n), (γ, n), and spontaneous fission reactions. Isotopic neutron sources are small, easy to handle, and have a relative low cost. On the other hand the neutron yield is small and mostly of them produces neutrons with a wide energy distribution. In this work, a review is carried out about the the main features of 24 NaBe, 24 NaD 2 O, 116 InBe, 140 LaBe, 238 PuLi, 239 PuBe, 241 AmB, 241 AmBe, 241 AmF, 241 AmLi, 242 CmBe, 210 PoBe, 226 RaBe, 252 Cf and 252 Cf/D 2 O isotopic neutron source. Also, using Monte Carlo methods, the neutron spectra in 31 energy groups, the neutron mean energy; the Ambient dose equivalent, the Personal dose equivalent and the Effective dose were calculated for these isotopic neutron sources. (Author)

  19. Spallation Neutron Source Second Target Station Integrated Systems Update

    Energy Technology Data Exchange (ETDEWEB)

    Ankner, John Francis [ORNL; An, Ke [ORNL; Blokland, Willem [ORNL; Charlton, Timothy R. [ORNL; Coates, Leighton [ORNL; Dayton, Michael J. [ORNL; Dean, Robert A. [ORNL; Dominguez-Ontiveros, Elvis E. [ORNL; Ehlers, Georg [ORNL; Gallmeier, Franz X. [ORNL; Graves, Van B. [ORNL; Heller, William T. [ORNL; Holmes, Jeffrey A. [ORNL; Huq, Ashfia [ORNL; Lumsden, Mark D. [ORNL; McHargue, William M. [ORNL; McManamy, Thomas J. [ORNL; Plum, Michael A. [ORNL; Rajic, Slobodan [ORNL; Remec, Igor [ORNL; Robertson, Lee [ORNL; Sala, Gabriele [ORNL; Stoica, Alexandru Dan [ORNL; Trotter, Steven M. [ORNL; Winn, Barry L. [ORNL; Abudureyimu, Reheman [ORNL; Rennich, Mark J. [ORNL; Herwig, Kenneth W. [ORNL

    2017-04-01

    The Spallation Neutron Source (SNS) was designed from the beginning to accommodate both an accelerator upgrade to increase the proton power and a second target station (STS). Four workshops were organized in 2013 and 2014 to identify key science areas and challenges where neutrons will play a vital role [1-4]. Participants concluded that the addition of STS to the existing ORNL neutron sources was needed to complement the strengths of High Flux Isotope Reactor (HFIR) and the SNS first target station (FTS). To address the capability gaps identified in the workshops, a study was undertaken to identify instrument concepts that could provide the required new science capabilities. The study outlined 22 instrument concepts and presented an initial science case for STS [5]. These instrument concepts formed the basis of a planning suite of instruments whose requirements determined an initial site layout and moderator selection. An STS Technical Design Report (TDR) documented the STS concept based on those choices [6]. Since issue of the TDR, the STS concept has significantly matured as described in this document.

  20. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    International Nuclear Information System (INIS)

    Kooyman, T.; Buiron, L.; Rimpault, G.

    2017-01-01

    Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long- and short-term neutron and gamma source is carried out whereas in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing. (authors)

  1. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    Directory of Open Access Journals (Sweden)

    Kooyman Timothée

    2017-01-01

    Full Text Available Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long- and short-term neutron and gamma source is carried out whereas in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing.

  2. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    Science.gov (United States)

    Kooymana, Timothée; Buiron, Laurent; Rimpault, Gérald

    2017-09-01

    Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long and short term neutron and gamma source is carried out while in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing.

  3. Advanced neutron source project

    International Nuclear Information System (INIS)

    Gorynina, L.V.; Proskuryakov, S.F.; Tishchenko, V.A.; Uzhanova, V.V.

    1991-01-01

    The project of the ANS improved neutron source intended for fundamental researches in nuclear physics and materials testing is considered. New superhigh-flux heavy-water 350 MW reactor is used for the source creation. The standard fuel is uranium silicide (U 3 Si 2 ). Reactor core volume equals 67.4 l and average power density is 4.9 MW/l. Neutron flux density is 10 16 neutron/(cm 2 xs). The facility construction begin is planned for 1996. The first experiments should be accomplished in 2000

  4. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    International Nuclear Information System (INIS)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C.

    2013-01-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD 2 ) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD 2 source will be presented. To achieve these gains, a large volume (35 litres) of LD 2 is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD 2 . The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD 2 at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that installation of the LD 2 cold

  5. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C. [NIST Center for Neutron Research, Gaithersburg (United States)

    2013-07-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD{sub 2}) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD{sub 2} source will be presented. To achieve these gains, a large volume (35 litres) of LD{sub 2} is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD{sub 2}. The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD{sub 2} at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that

  6. Neutron moderation at very low temperatures (1691); Moderation des neutrons aux tres basses temperatures (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Lacaze, A [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1961-04-15

    Starting from Harwell experiment carried out inside a low-power reactor, we intended to maintain a liquid hydrogen cell in a channel of the EL3 reactor (at Saclay) whose thermal neutrons flux is 10{sup 14} neutrons/cm{sup 2}/s. We tried to work out a device giving off an important beam of cold neutrons and able to operate in a way as automatic as possible during many consecutive day without a stop. Several circuits have already been achieved at very low temperatures but they brought out volumes and fluxes much lower than those we used this time. The difficulties we have met in carrying out such a device arose on the one hand from the very high energy release to which any kind of experiment is inevitably submitted when placed near the core of the reactor, on the other, hand from the very little room which is available in experimental channels of reactors. In such condition, it is necessary to use a moderator as effective as possible. This study is divided into three parts ; in the first part, we try to determine: a) conditions in which moderation takes place, hence the volume of the cell; b) materials likely to be used at low temperature and in pile; c) cooling system; hence we had to study fluid flow conditions at very low temperatures in very long ducts. The second part is devoted to the description of the device. The third part ventilates the results we have obtained. (author) [French] Partant de l'experience de Harwell faite dans une pile de faible puissance, nous nous sommes propose de maintenir une cellule d'hydrogene liquide dans un canal de la pile EL3 de Saclay dont le flux de neutrons thermiques est de 10{sup 14} neutrons par seconde et par cm{sup 2}. Nous avons cherche a realiser une installation donnant un faisceau de neutrons froids important, et pouvant fonctionner d'une maniere aussi automatique que possible, pendant des periodes de plusieurs jours sans arret. Plusieurs circuits aux tres basses temperatures ont deja ete realises, mais ils ne mettaient

  7. Pulsed spallation Neutron Sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1994-01-01

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology

  8. Pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1996-01-01

    This paper reviews the early history of pulsed spallation neutron source development ar Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provide a few examples of applications in fundamental condensed matter physics, materials science and technology

  9. Status report on the cold neutron source of the Garching neutron research facility FRM-II

    International Nuclear Information System (INIS)

    Gobrecht, K.

    1999-01-01

    The new high flux research reactor of the Technical University of Munich (Technische Universitaet Muenchen, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D 2 O-reflector tank at 400 mm from the reactor core axis, close to the thermal neutron flux maximum. The power of 4000 W developed by the nuclear heating in the 16 litres of liquid deuterium at 25 K, and in the structures, is evacuated by a two phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10 deg from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very improbable during the life time of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H 2 ) to the deuterium (D 2 ) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. A long term change of the hydrogen content in the deuterium is avoided be storing the mixture not in a gas buffer volume but as a metal hydride at low pressure. The metal hydride storage system contains two getter beds, one with 250 kg of LaCo 3 Ni 2 , the other one with 150 kg of ZrCo(0.8)Ni(0.2). Each bed can take the total gas inventory, both beds together can absorb the total gas inventory in less than 6 minutes at a pressure < 3 bar. The new reactor will have 13 beam tubes, 4 of which are looking at the cold neutron source (CNS), including two for very cold (VCN) and ultra-cold neutron (UCN

  10. A Wide Spectrum Neutron Polarizer for a Pulsed Neutron Source

    International Nuclear Information System (INIS)

    Nikitenko, Yu.V.

    1994-01-01

    A wide spectrum neutron polarizer for a pulsed neutron source is considered. The polarizer is made in a form of a set of magnetized mirrors placed on a drum. Homogeneous rotation of the polarizer is synchronized with the power pulses of the neutron source. The polarizer may be utilized in a collimated neutron beam with cross section of the order of magnitude of 100 cm 2 within a wavelength from 2 up to 20 A on sources with a pulse repetition frequency up to 50 Hz. (author). 5 refs.; 3 figs

  11. The advanced neutron source

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1994-01-01

    The Advanced Neutron Source (ANS), slated for construction start in 1994, will be a multipurpose neutron research laboratory serving academic and industrial users in chemistry, biology, condensed matter physics, nuclear and fundamental physics, materials science and engineering, and many other fields. It will be centered on the world's highest flux neutron beam reactor, operating at 330 MW, with careful design integration between the neutron source and the experiment systems. Many instruments will be situated in low backgrounds at distances up to 80 m from the reactor, using neutron guides with tailored neutron optical coatings for beam transport. Apart from the many stations for neutron scattering research, specialized stations will also be provided for isotope separation on-line, experiments with liquid hydrogen targets, neutron optical techniques such as interferometry, activation analysis, depth profiling, and positron production. Careful consideration has been given to providing a good research environment for visiting scientists, including easy access to the experimental areas, while maintaining a highly secure nuclear facility. This paper will describe the reactor and experimental facilities and give some examples of the types of research for which ANS has been designed

  12. Fundamental neutron physics at a 1 MW long pulse spallation neutron source

    International Nuclear Information System (INIS)

    Greene, G.L.

    1995-01-01

    Modern neutron sources and modern neutron science share a common origin in mid twentieth century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for the study of condensed matter with modern neutron sources being primarily used (and primarily justified) as tools for condensed matter research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities carried out at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high flux neutron facilities. Future sources, particularly high power spallation sources, offer exciting possibilities for the continuation of this program of research

  13. New neutron physics using spallation sources

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1988-01-01

    The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. The energy range of neutron research which is being explored with these sources extends from thermal energies to almost 800 MeV. The emphasis here is on prospective experiments below 100 keV neutron energy using the intense neutron bursts produced by the Proton Storage Ring (PSR) at Los Alamos. 30 refs., 10 figs

  14. Neutron spectra and dosimetric features of isotopic neutron sources: a review

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico); Martinez O, S. A., E-mail: fermineutron@yahoo.com [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, Av. Central del Norte 39-115, 150003 Tunja, Boyaca (Colombia)

    2015-10-15

    A convenient way to produce neutrons is the isotopic neutron source, where the production is through (α, n), (γ, n), and spontaneous fission reactions. Isotopic neutron sources are small, easy to handle, and have a relative low cost. On the other hand the neutron yield is small and mostly of them produces neutrons with a wide energy distribution. In this work, a review is carried out about the the main features of {sup 24}NaBe, {sup 24}NaD{sub 2}O, {sup 116}InBe, {sup 140}LaBe, {sup 238}PuLi, {sup 239}PuBe, {sup 241}AmB, {sup 241}AmBe, {sup 241}AmF, {sup 241}AmLi, {sup 242}CmBe, {sup 210}PoBe, {sup 226}RaBe, {sup 252}Cf and {sup 252}Cf/D{sub 2}O isotopic neutron source. Also, using Monte Carlo methods, the neutron spectra in 31 energy groups, the neutron mean energy; the Ambient dose equivalent, the Personal dose equivalent and the Effective dose were calculated for these isotopic neutron sources. (Author)

  15. Study of liquid hydrogen and liquid deuterium cold neutron sources; Etude de sources de neutrons froids a hydrogene et deuterium liquides

    Energy Technology Data Exchange (ETDEWEB)

    Harig, H D [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-12-01

    In view of the plant of the cold neutron source for a high flux reactor (maximal thermal flux of about 10{sup 15} n/cm{sup 2}s) an experimental study of several cold sources of liquid hydrogen and liquid deuterium has been made in a low power reactor (100 kW, about 10{sup 12} n/cm{sup 2}s). We have investigated: -cold neutron sources of liquid hydrogen shaped as annular layers of different thickness. Normal liquid hydrogen was used as well as hydrogen with a high para-percentage. -Cold neutron sources of liquid deuterium in cylinders of 18 and 38 cm diameter. In this case the sources could be placed into different positions to the reactor core within the heavy water reflector. This report gives a general description of the experimental device and deals more detailed with the design of the cryogenic systems. Then, the measured results are communicated, interpreted and finally compared with those of a theoretical study about the same cold moderators which have been the matter of the experimental investigation. (authors) [French] En vue de l'installation d'une source a neutrons froids dans un reacteur a haut flux (flux thermique maximal environ 10{sup 15} n/cm{sup 2}s), nous avons fait une etude neutronique experimentale de differentes sources froides a hydrogene et a deuterium liquides aupres d'un reacteur a faible puissance (100 kW environ 10{sup 12} n/cm{sup 2}s). Nous avons etudie: des couches annulaires de differentes epaisseurs d'hydrogene liquide normal et d'hydrogene a grand pourcentage para, des cellules cylindriques de 18 et 38 cm de diametre, remplies de deuterium liquide et placees a differentes positions dans le reflecteur D{sub 2}O. Ce travail traite l'implantation de l'installation cryogenique et donne une description generale de l'experience. L'interpretation des resultats fait etat entre autres d'une comparaison entre l'experience et une etude theorique portant sur les memes moderateurs. (auteurs)

  16. Long-Range Neutron Detection

    International Nuclear Information System (INIS)

    Peurrung, A.J.; Stromswold, D.C.; Hansen, R.R.; Reeder, P.L.; Barnett, D.S.

    1999-01-01

    A neutron detector designed for detecting neutron sources at distances of 50 to 100 m has been constructed and tested. This detector has a large surface area (1 m 2 ) to enhance detection efficiency, and it contains a collimator and shielding to achieve direction sensitivity and reduce background. An unusual feature of the detector is that it contains no added moderator, such as polyethylene, to moderate fast neutrons before they reach the 3 He detector. As a result, the detector is sensitive mainly to thermal neutrons. The moderator-free design reduces the weight of the detector, making it more portable, and it also aids in achieving directional sensitivity and background reduction. Test results show that moderated fission-neutron sources of strength about 3 x 10 5 n/s can be detected at a distance out to 70 m in a counting time of 1000 s. The best angular resolution of the detector is obtained at distances of 30 m or less. As the separation .distance between the source and detector increases, the contribution of scattered neutrons to the measured signal increases with a resultant decrease in the ability to detect the direction to a distant source. Applications for which the long-range detector appears to be suitable include detecting remote neutron sources (including sources in moving vehicles) and monitoring neutron storage vaults for the intrusion of humans and the effects they make on the detected neutron signal. Also, the detector can be used to measure waste for the presence of transuranic material in the presence of high gamma-ray background. A test with a neutron source (3 x 10 5 n/s) in a vehicle showed that the detector could readily measure an increase in count rate at a distance of 10 m for vehicle speeds up to 35 mph (the highest speed tested). These results. indicate that the source should be detectable at this distance at speeds up to 55 mph

  17. 1987 Neutron and gamma personnel dosimeter intercomparison study using a D2O-moderated 252Cf source

    International Nuclear Information System (INIS)

    Swaja, R.E.; West, L.E.; Sims, C.S.; Welty, T.J.

    1989-05-01

    The thirteenth Personnel Dosimetry Intercomparison Study (i.e., PDIS 13) was conducted during April 1987 as a joint effort by Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research Group and the Southwest Radiation Calibration Center at the University of Arkansas. A total of 48 organizations (34 from the US and 14 from abroad) participated in PDIS 13. Participants submitted a total of 1,113 neutron and gamma dosimeters for this mixed field study. The dosimeters were transferred by mail and were handled by experimental personnel at ORNL and the University of Arkansas. The type of neutron dosimeter and the percentage of participants submitting that type are as follows: TLD-albedo (49%), direct interaction TLD (31%), CR-39 (17%), film (3%). The type of gamma dosimeter and the percentage of participants submitting that type are as follows: Li 2 B 4 O 7 , alone or in combination with CaSO 4 , (69%), 7 LiF (28%), natural LiF (3%). Radiation exposures in PDIS 13 were limited to 0.5 and 1.5 mSv from 252 Cf moderated by 15-cm of D 2 O. Traditional exposures using the Health Physics Research Reactor (HPRR) were not possible due to the fact that all reactors at ORNL, including the HPRR, were shutdown by order of the Department of Energy at the time the intercomparison was performed. Planned exposures using a 238 PuBe source were negated by a faulty timing mechanism. Based on accuracy and precision, direct interaction TLD dosimeters exhibited the best performance in PDIS 13 neutron measurements. They were followed, in order of best performance, by CR-39, TLD albedo, and film. The Li 2 B 4 O 7 type TLD dosimeters exhibited the best performance in PDIS 13 gamma measurements. They were followed by natural LiF, 7 LiF, and film. 12 refs., 1 fig., 5 tabs

  18. Design of 6 Mev linear accelerator based pulsed thermal neutron source: FLUKA simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B.J., E-mail: bjp@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India); Chavan, S.T.; Pethe, S.N.; Krishnan, R. [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India)

    2012-01-15

    The 6 MeV LINAC based pulsed thermal neutron source has been designed for bulk materials analysis. The design was optimized by varying different parameters of the target and materials for each region using FLUKA code. The optimized design of thermal neutron source gives flux of 3 Multiplication-Sign 10{sup 6}ncm{sup -2}s{sup -1} with more than 80% of thermal neutrons and neutron to gamma ratio was 1 Multiplication-Sign 10{sup 4}ncm{sup -2}mR{sup -1}. The results of prototype experiment and simulation are found to be in good agreement with each other. - Highlights: Black-Right-Pointing-Pointer The optimized 6 eV linear accelerator based thermal neutron source using FLUKA simulation. Black-Right-Pointing-Pointer Beryllium as a photonuclear target and reflector, polyethylene as a filter and shield, graphite as a moderator. Black-Right-Pointing-Pointer Optimized pulsed thermal neutron source gives neutron flux of 3 Multiplication-Sign 10{sup 6} n cm{sup -2} s{sup -1}. Black-Right-Pointing-Pointer Results of the prototype experiment were compared with simulations and are found to be in good agreement. Black-Right-Pointing-Pointer This source can effectively be used for the study of bulk material analysis and activation products.

  19. Neutronics of the IFMIF neutron source: development and analysis

    International Nuclear Information System (INIS)

    Wilson, P.P.H.

    1999-01-01

    The accurate analysis of this system required the development of a code system and methodology capable of modelling the various physical processes. A generic code system for the neutronics analysis of neutron sources has been created by loosely integrating existing components with new developments: the data processing code NJOY, the Monte Carlo neutron transport code MCNP, and the activation code ALARA were supplemented by a damage data processing program, damChar, and integrated with a number of flexible and extensible modules for the Perl scripting language. Specific advances were required to apply this code system to IFMIF. Based on the ENDF-6 data format requirements of this system, new data evaluations have been implemented for neutron transport and activation. Extensive analysis of the Li(d, xn) reaction has led to a new MCNP source function module, M c DeLi, based on physical reaction models and capable of accurate and flexible modelling of the IFMIF neutron source term. In depth analyses of the neutron flux spectra and spatial distribution throughout the high flux test region permitted a basic validation of the tools and data. The understanding of the features of the neutron flux provided a foundation for the analyses of the other neutron responses. (orig./DGE) [de

  20. Cryogenic moderator simulations: confronting reality

    International Nuclear Information System (INIS)

    Iverson, E. B.

    1999-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source dedicated to materials research. Its three cryogenic methane moderators provide twelve neutron beams to fourteen instruments and test facilities. This report concerns ongoing activities for benchmarking our Monte Carlo model of the IPNS neutron generation system. This paper concentrates on the techniques (both experimental and calculational) used in such benchmarking activities

  1. New sources and instrumentation for neutron science

    International Nuclear Information System (INIS)

    Gil, Alina

    2011-01-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  2. New sources and instrumentation for neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Alina, E-mail: a.gil@ajd.czest.pl [Faculty of Mathematical and Natural Sciences, JD University, Al. Armii Krajowej 13/15, 42-200 Czestochowa (Poland)

    2011-04-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  3. Synovectomy by Neutron capture

    International Nuclear Information System (INIS)

    Vega C, H.R.; Torres M, C.

    1998-01-01

    The Synovectomy by Neutron capture has as purpose the treatment of the rheumatoid arthritis, illness which at present does not have a definitive curing. This therapy requires a neutron source for irradiating the articulation affected. The energy spectra and the intensity of these neutrons are fundamental since these neutrons induce nuclear reactions of capture with Boron-10 inside the articulation and the freely energy of these reactions is transferred at the productive tissue of synovial liquid, annihilating it. In this work it is presented the neutron spectra results obtained with moderator packings of spherical geometry which contains in its center a Pu 239 Be source. The calculations were realized through Monte Carlo method. The moderators assayed were light water, heavy water base and the both combination of them. The spectra obtained, the average energy, the neutron total number by neutron emitted by source, the thermal neutron percentage and the dose equivalent allow us to suggest that the moderator packing more adequate is what has a light water thickness 0.5 cm (radius 2 cm) and 24.5 cm heavy water (radius 26.5 cm). (Author)

  4. (International Collaboration on Advanced Neutron Sources)

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, J.B.

    1990-11-08

    The International Collaboration on Advanced Neutron Sources was started about a decade ago with the purpose of sharing information throughout the global neutron community. The collaboration has been extremely successful in optimizing the use of resources, and the discussions are open and detailed, with reasons for failure shared as well as reasons for success. Although the meetings have become increasingly oriented toward pulsed neutron sources, many of the neutron instrumentation techniques, such as the development of better monochromators, fast response detectors and various data analysis methods, are highly relevant to the Advanced Neutron Source (ANS). I presented one paper on the ANS, and another on the neutron optical polarizer design work which won a 1989 R D-100 Award. I also gained some valuable design ideas, in particular for the ANS hot source, in discussions with individual researchers from Canada, Western Europe, and Japan.

  5. System and apparatus for neutron radiography

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1991-01-01

    This patent describes a neutron radiography apparatus. It comprises an imaging plane; a neutron moderator having a cavity defining a convergent collimator, the cavity having a base and converging walls of neutron moderating material terminating at an aperture; a divergent collimator coaxially joined to the cavity at the aperture, the divergent collimator having diverging walls of radiation- absorbing material extending from the aperture to an expanded distal opening for irradiating the imaging plane; sources of neutrons disposed symmetrically about the base of the cavity; a neutron moderating material disposed for maximum neutron thermalization between the sources and the base of the cavity; and means for substantially shielding the plane from electromagnetic energy

  6. Thermo-hydraulic test of the moderator cell of liquid hydrogen cold neutron source for the Budapest research reactor

    International Nuclear Information System (INIS)

    Grosz, Tamas; Rosta, Laszlo; Hargitai, Tibor; Mityukhlyaev, V.A.; Serebrov, A.P.; Zaharov, A.A.

    1999-01-01

    Thermo-hydraulic experiment was carried out in order to test performance of the direct cooled liquid hydrogen moderator cell to be installed at the research reactor of the Budapest Neutron Center. Two electric hearers up to 300 W each imitated the nuclear heat release in the liquid hydrogen as well as in construction material. The test moderator cell was also equipped with temperature gauges to measure the hydrogen temperature at different positions as well as the inlet and outlet temperature of cooling he gas. The hydrogen pressure in the connected buffer volume was also controlled. At 140 w expected total heat load the moderator cell was filled with liquid hydrogen within 4 hours. The heat load and hydrogen pressure characteristics of the moderator cell are also presented. (author)

  7. Accelerator-based pulsed cold neutron source

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Iwasa, Hirokatsu; Kiyanagi, Yoshiaki

    1979-01-01

    An accelerator-based pulsed cold neutron source was constructed. The accelerator is a 35 MeV electron linear accelerator with 1 kW average beam power. The cold neutron beam intensity at a specimen is equivalent to that of a research reactor of 10 14 n/cm 2 .s thermal flux in the case of the quasi-elastic neutron scattering measurements. In spite of some limitations to the universal uses, it has been demonstrated by this facility that the modest capacity accelerator-based pulsed cold neutron source is a highly efficient cold neutron source with low capital investment. Design philosophy, construction details, performance and some operational experiences are described. (author)

  8. Radioactive source recovery program responses to neutron source emergencies

    International Nuclear Information System (INIS)

    Dinehart, S.M.; Hatler, V.A.; Gray, D.W.; Guillen, A.D.

    1997-01-01

    Recovery of neutron sources containing Pu 239 and Be is currently taking place at Los Alamos National Laboratory. The program was initiated in 1979 by the Department of Energy (DOE) to dismantle and recover sources owned primarily by universities and the Department of Defense. Since the inception of this program, Los Alamos has dismantled and recovered more than 1000 sources. The dismantlement and recovery process involves the removal of source cladding and the chemical separation of the source materials to eliminate neutron emissions. While this program continues for the disposal of 239 Pu/Be sources, there is currently no avenue for the disposition of any sources other than those containing Pu 239 . Increasingly, there have been demands from agencies both inside and outside the Federal Government and from the public to dispose of unwanted sources containing 238 Pu/Be and 241 Am/Be. DOE is attempting to establish a formal program to recover these sources and is working closely with the Nuclear Regulatory Commission (NRC) on a proposed Memorandum of Understanding to formalize an Acceptance Program. In the absence of a formal program to handle 238 Pu/Be and 241 Am/Be neutron sources, Los Alamos has responded to several emergency requests to receive and recover sources that have been determined to be a threat to public health and safety. This presentation will: (1) review the established 239 Pu neutron source recovery program at Los Alamos, (2) detail plans for a more extensive neutron source disposal program, and (3) focus on recent emergency responses

  9. Large area solid target neutron source

    International Nuclear Information System (INIS)

    Crawford, J.C.; Bauer, W.

    1974-01-01

    A potentially useful neutron source may result from the combination of a solid deuterium-tritium loaded target with the large area, high energy ion beams from ion sources being developed for neutral beam injection. The resulting neutron source would have a large radiating area and thus produce the sizable experimental volume necessary for future studies of bulk and synergistic surface radiation effects as well as experiments on engineering samples and small components. With a 200 keV D + T + beam and 40 kW/cm 2 power dissipation on a 200 cm 2 target spot, a total neutron yield of about 4 x 10 15 n/sec may be achieved. Although the useable neutron flux from this source is limited to 1 to 2 x 10 13 n/cm 2 /sec, this flux can be produced 3 cm in front of the target and over about 300 cm 3 of experimental volume. Problems of total power dissipation, sputtering, isotopic flushing and thermal dissociation are reviewed. Neutron flux profiles and potential experimental configurations are presented and compared to other neutron source concepts. (U.S.)

  10. Commissioning of cryogenic system for China Spallation Neutron Source

    Science.gov (United States)

    Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun

    2017-12-01

    China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.

  11. HYSPEC: A crystal time-of-flight hybrid spectrometer for the spallation neutron source with polarization capabilities

    International Nuclear Information System (INIS)

    Shapiro, S.M.; Zaliznyak, I.A.; Passell, L.; Ghosh, V.J.; Leonhardt, W.J.; Hagen, M.E.

    2006-01-01

    The hybrid spectrometer (HYSPEC) is a unique direct geometry inelastic scattering instrument under construction at the spallation neutron source (SNS). It combines the intensity enhancement features of focusing Bragg crystals with time-of-flight energy analysis. It will be located at beam-line 14B, which views a coupled liquid hydrogen moderator. A neutron beam from the moderator will travel along a curved guide, through a Fermi chopper and will then be focused onto a sample in an external building, 39 m from the source. In this configuration the intensity at the sample position is more than an order of magnitude larger than for other planned inelastic instrument. A movable detector bank 4.5 m from the sample will cover an angular range of 60 deg. in the horizontal plane and 15 deg. in the vertical direction. An important feature of HYSPEC is the ability to do neutron polarization analysis experiments. A Heusler crystal, which polarizes the neutron beam, can be used as the focusing crystal and a series of bender analyzers will analyze the polarization of the scattered beam

  12. Beam shaping assembly of a D-T neutron source for BNCT and its dosimetry simulation in deeply-seated tumor

    Science.gov (United States)

    Faghihi, F.; Khalili, S.

    2013-08-01

    This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D-T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D-T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor.

  13. Neutron diffractometers for structural biology at spallation neutron sources

    International Nuclear Information System (INIS)

    Schoenborn, B.P.; Pitcher, E.

    1994-01-01

    Spallation neutron sources are ideal for diffraction studies of proteins and oriented molecular complexes. With spoliation neutrons and their time dependent wavelength structure, it is easy to electronically select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved snapshots. This optimized data quality with best peak-to-background ratios and provides adequate spatial and energy resolution to eliminate peak overlaps. The application of this concept will use choppers to select the desired Laue wavelength spectrum and employ focusing optics and large cylindrical 3 He detectors to optimize data collection rates. Such a diffractometer will cover a Laue wavelength range from 1 to 5 Angstrom with a flight path length of 10m and an energy resolution of 0.25 Angstrom. Moderator concepts for maximal flux distribution within this energy range will be discussed using calculated flux profiles. Since the energy resolution required for such timed data collection in this super Laue techniques is not very high, the use of a linac only (LAMPF) spoliation target is an exciting possibility with an order of magnitude increase in flux

  14. Neutron diffractometers for structural biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B.P.; Pitcher, E. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Spallation neutron sources are ideal for diffraction studies of proteins and oriented molecular complexes. With spoliation neutrons and their time dependent wavelength structure, it is easy to electronically select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved snapshots. This optimized data quality with best peak-to-background ratios and provides adequate spatial and energy resolution to eliminate peak overlaps. The application of this concept will use choppers to select the desired Laue wavelength spectrum and employ focusing optics and large cylindrical {sup 3}He detectors to optimize data collection rates. Such a diffractometer will cover a Laue wavelength range from 1 to 5{Angstrom} with a flight path length of 10m and an energy resolution of 0.25{Angstrom}. Moderator concepts for maximal flux distribution within this energy range will be discussed using calculated flux profiles. Since the energy resolution required for such timed data collection in this super Laue techniques is not very high, the use of a linac only (LAMPF) spoliation target is an exciting possibility with an order of magnitude increase in flux.

  15. Neutron Sources for Standard-Based Testing

    Energy Technology Data Exchange (ETDEWEB)

    Radev, Radoslav [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McLean, Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-10

    The DHS TC Standards and the consensus ANSI Standards use 252Cf as the neutron source for performance testing because its energy spectrum is similar to the 235U and 239Pu fission sources used in nuclear weapons. An emission rate of 20,000 ± 20% neutrons per second is used for testing of the radiological requirements both in the ANSI standards and the TCS. Determination of the accurate neutron emission rate of the test source is important for maintaining consistency and agreement between testing results obtained at different testing facilities. Several characteristics in the manufacture and the decay of the source need to be understood and accounted for in order to make an accurate measurement of the performance of the neutron detection instrument. Additionally, neutron response characteristics of the particular instrument need to be known and taken into account as well as neutron scattering in the testing environment.

  16. The synthetic scattering function and application to the design of cold moderators for pulsed neutron sources: a fast response methane based array

    International Nuclear Information System (INIS)

    Granada, J. R.; Mayer, R. E.; Gillette, V. H.

    1997-09-01

    The Synthetic Scattering Function (SSF) allows a simple description of the incoherent interaction of slow neutrons with hydrogenous materials. The main advantages of this model reside in the analytical expressions that it produces for double-differential cross sections, energy-transfer kernels, and total cross sections, which in turn permit the fast evaluation of neutron scattering and transport properties. In this work we briefly discuss basic features of the SSF, review some previous applications to a number of moderating materials, and present new Monte Carlo results for a fast time-response moderator concept based on methane at low temperatures. (auth)

  17. Assessment of fast and thermal neutron ambient dose equivalents around the KFUPM neutron source storage area using nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-ur-Rehman [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: fazalr@kfupm.edu.sa; Al-Jarallah, M.I. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Abu-Jarad, F. [Radiation Protection Unit, Environmental Protection Department, Saudi Aramco, P. O. Box 13027, Dhahran 31311 (Saudi Arabia); Qureshi, M.A. [Center for Applied Physical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-11-15

    A set of five {sup 241}Am-Be neutron sources are utilized in research and teaching at King Fahd University of Petroleum and Minerals (KFUPM). Three of these sources have an activity of 16Ci each and the other two are of 5Ci each. A well-shielded storage area was designed for these sources. The aim of the study is to check the effectiveness of shielding of the KFUPM neutron source storage area. Poly allyl diglycol carbonate (PADC) Nuclear track detectors (NTDs) based fast and thermal neutron area passive dosimeters have been utilized side by side for 33 days to assess accumulated low ambient dose equivalents of fast and thermal neutrons at 30 different locations around the source storage area and adjacent rooms. Fast neutron measurements have been carried out using bare NTDs, which register fast neutrons through recoils of protons, in the detector material. NTDs were mounted with lithium tetra borate (Li{sub 2}B{sub 4}O{sub 7}) converters on their surfaces for thermal neutron detection via B10(n,{alpha})Li6 and Li6(n,{alpha})H3 nuclear reactions. The calibration factors of NTD both for fast and thermal neutron area passive dosimeters were determined using thermoluminescent dosimeters (TLD) with and without a polyethylene moderator. The calibration factors for fast and thermal neutron area passive dosimeters were found to be 1.33 proton tracks cm{sup -2}{mu}Sv{sup -1} and 31.5 alpha tracks cm{sup -2}{mu}Sv{sup -1}, respectively. The results show variations of accumulated dose with the locations around the storage area. The fast neutron dose equivalents rates varied from as low as 182nSvh{sup -1} up to 10.4{mu}Svh{sup -1} whereas those for thermal neutron ranged from as low as 7nSvh{sup -1} up to 9.3{mu}Svh{sup -1}. The study indicates that the area passive neutron dosimeter was able to detect dose rates as low as 7 and 182nSvh{sup -1} from accumulated dose for thermal and fast neutrons, respectively, which were not possible to detect with the available active neutron

  18. International workshop on cold neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States))

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  19. International workshop on cold neutron sources

    International Nuclear Information System (INIS)

    Russell, G.J.; West, C.D.

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources

  20. Materials for spallation neutron sources

    International Nuclear Information System (INIS)

    Sommer, W.F.; Daemen, L.L.

    1996-03-01

    The Workshop on Materials for Spallation Neutron Sources at the Los Alamos Neutron Science Center, February 6 to 10, 1995, gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss areas in which work is needed, successful designs and use of materials, and opportunities for further studies. During the first day of the workshop, speakers presented overviews of current spallation neutron sources. During the next 3 days, seven panels allowed speakers to present information on a variety of topics ranging from experimental and theoretical considerations on radiation damage to materials safety issues. An attempt was made to identify specific problems that require attention within the context of spallation neutron sources. This proceedings is a collection of summaries from the overview sessions and the panel presentations

  1. A design concept of target-moderator-reflector assemblies for KENS-II

    International Nuclear Information System (INIS)

    Watanabe, N.

    1991-01-01

    A design concept of KENS-II target-moderator-reflector assemblies is described. One of the assemblies is dedicated to the cold neutron source, and the other, to the thermal and epithermal neutron source. A flux-trap type moderator-configuration was adopted with a vertical proton-beam injection scheme. All moderators for the cold neutron source are coupled liquid hydrogen moderators with premoderators. A new scheme of proton beam delivery is proposed. The new system can provide several times higher total performance than a reference system based on a traditional single assembly with all decoupled moderators in a wing geometry and with a horizontal proton-beam injection scheme. (author)

  2. Small-angle neutron scattering at pulsed spallation sources

    International Nuclear Information System (INIS)

    Seeger, P.A.; Hjelm, R.P. Jr.

    1991-01-01

    The importance of small-angle neutron scattering (SANS) in biological, chemical, physical and engineering research mandates that all intense neutron sources be equipped with SANS instruments. Four existing instruments at pulsed sources are described and the general differences between pulsed-source and reactor-based instrument designs are discussed. The basic geometries are identical, but dynamic range is generally achieved by using a broad band of wavelengths (with time-of-flight analysis) rather than by moving the detector. This allows optimization for maximum beam intensity at a given beam size over the full dynamic range with fixed collimation. Data-acquisition requirements at a pulsed source are more severe, requiring large fast histrograming memories. Data reduction is also more complex, as all wavelength-dependent and angle-dependent backgrounds and nonlinearities must be accounted for before data can be transformed to intensity vs momentum transfer (Q). A comparison is shown between the Los Alamos pulsed instrument and D11 (Institut Laue-Langevin) and examples from the four major topics of the conference are shown. The general conclusion is that reactor-based instruments remain superior at very low Q or if only a narrow range of Q is required, but that the current generation of pulsed-source instruments is competitive of moderate Q and may be faster when a wide range of Q is required. (orig.)

  3. Measurement of the loss on ignition of bulk calcined bauxite samples by neutron moderation

    International Nuclear Information System (INIS)

    Aylmer, J.A.; Borsaru, M.

    1985-01-01

    The production of high-grade calcined bauxite is very dependent on the moisture content of the final product. Existing procedures rely on the ignition of small samples to monitor the effectiveness of the calcination process. The results obtained by this gravimetric technique are several hours behind production and do not permit regular adjustment of the furnace to optimize the control of the chemically bound water content (LOI). To provide rapid and more relevant results, a neutron moderation technique has been developed for measuring the LOI of bulk samples of calcined bauxite while they are still hot. The method uses fast neutrons from an 241 Am-Be neutron source to irradiate the samples, and the backscattered thermal neutrons detected are a measure of bound moisture content. The rms deviation between neutron and conventional determinations of LOI, in 15 calcined bauxite samples, was 0.08 per cent LOI over the range 0.1 to 0.9 per cent LOI. When allowance is made for the rms error in the ignition method, the error in the neutron method is found to be 0.07 per cent LOI

  4. Moderator/collimator for a proton/deuteron linac to produce a high-intensity, high-quality thermal neutron beam for neutron radiography

    International Nuclear Information System (INIS)

    Singleterry, R.C. Jr.; Imel, G.R.; McMichael, G.E.

    1995-01-01

    Reactor based high resolution neutron radiography facilities are able to deliver a well-collimated (L/D ≥100) thermal flux of 10 6 n/cm 2 ·sec to an image plane. This is well in excess of that achievable with the present accelerator based systems such as sealed tube D-T sources, Van der Graaff's, small cyclotrons, or low duty factor linacs. However, continuous wave linacs can accelerate tens of milliamperes of protons to 2.5 to 4 MeV. The MCNP code has been used to analyze target/moderator configurations that could be used with Argonne's Continuous Wave Linac (ACWL). These analyses have shown that ACWL could be modified to generate a neutron beam that has a high intensity and is of high quality

  5. Neutron source for a reactor

    International Nuclear Information System (INIS)

    Kobayashi, Hiromasa.

    1975-01-01

    Object: To easily increase a start-up power of a reactor without irradiation in other reactors. Structure: A neutron source comprises Cf 252 , a natural antimony rod, a layer of beryllium, and a vessel of neutron source. On upper and lower portion of Cf 252 are arranged natural antimony rods, which are surrounded by the Be layer, the entirety being charged into the vessel. The Cf 252 may emit neutron, has a half life more than a period of operating cycle of the reactor and is less deteriorated even irradiated by radioactive rays while being left within the reactor. The natural antimony rod is radioactivated by neutron from Cf 252 and neutron as reactor power increases to emit γ rays. The Be absorbs γ rays to emit the neutron. The antimony rod is irradiated within the reactor. Further, since the Cf 252 is small in neutron absorption cross section, it is hard to be deteriorated even while being inserted within the reactor. (Kamimura, M.)

  6. Grooved cold moderator tests

    International Nuclear Information System (INIS)

    Inoue, K.; Kiyanagi, Y.; Iwasa, H.; Watanabe, N.; Ikeda, S.; Carpenter, J.M.; Ishikawa, Y.

    1983-01-01

    We performed some grooved cold moderator experiments for methane at 20 K by using the Hokkaido University linac to obtain information to be used in the planning of the KENS-I' project. Cold neutron gains, spatial distribution of emitted beams and time distribution of the neutrons in the grooved cold moderator were measured. Furthermore, we assessed the effects of the grooved cold moderator on the performances of the spectrometers presently installed at the KENS-I cold source. We concluded that the grooved cold moderator benefited appreciably the performances of the spectrometers

  7. Optimization of moderators and beam extraction at the ESS

    DEFF Research Database (Denmark)

    Holst Andersen, Ken; Bertelsen, Mads; Zanini, Luca

    2018-01-01

    A global approach coupling the moderator to the beam extraction system has been applied for the design optimization of the thermal and cold moderators of the European Spallation Source (ESS), which will be the brightest neutron source in the world for condensed-matter studies. The design is based...... on the recently developed high-brightness low-dimensional moderator concepts. Para-hydrogen is used for the cold neutron source, while thermal neutrons are provided by moderation in water. The overall moderation configuration was chosen in order to satisfy a range of requirements on bispectral extraction......, beamport configuration and instrument performance. All instruments are served by a single moderator assembly above the target, arranged in a `butterfly' geometry with a height of 3cm. This was determined to be the optimal height for trade-off between high brightness and efficient guide illumination...

  8. Exploitation of the Fourier chopper in neutron diffractometry at pulsed sources

    International Nuclear Information System (INIS)

    Hiismaeki, P.; Poeyry, H.; Tiitta, A.

    1988-01-01

    The application of the Fourier chopper in the reverse time-of-flight mode to upgrading the performance of neutron powder diffractometry at pulsed sources is considered. Exploitation of a dual-delay-line binary correlator is suggested and a comprehensive analysis of the necessary data acquisition process is given. The best benefit is shown to be achievable at intensity optimized moderators. (orig.)

  9. The advanced neutron source

    International Nuclear Information System (INIS)

    Raman, S.; Hayter, J.B.

    1990-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux (φ th ∼ 8 x 10 19 m -2 ·s -1 ) accompanied by extensive and comprehensive equipment and facilities for neutron-based research

  10. Neutron diffraction on pulsed sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Balagurov, A.M.

    2016-01-01

    The possibilities currently offered and major scientific problems solved by time-of-flight neutron diffraction are reviewed. The reasons for the rapid development of the method over the last two decades has been mainly the emergence of third generation pulsed sources with a MW time-averaged power and advances in neutron-optical devices and detector systems. The paper discusses some historical aspects of time-of-flight neutron diffraction and examines the contribution to this method by F.L.Shapiro whose 100th birth anniversary was celebrated in 2015. The state of the art with respect to neutron sources for studies on output beams is reviewed in a special section. [ru

  11. Isotopic neutron sources for neutron activation analysis

    International Nuclear Information System (INIS)

    Hoste, J.

    1988-06-01

    This User's Manual is an attempt to provide for teaching and training purposes, a series of well thought out demonstrative experiments in neutron activation analysis based on the utilization of an isotopic neutron source. In some cases, these ideas can be applied to solve practical analytical problems. 19 refs, figs and tabs

  12. The Dynamic Method for Time-of-Flight Measurement of Thermal Neutron Spectra from Pulsed Sources

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Tulaev, A.B.; Bobrakov, V.F.

    1994-01-01

    The time-of-flight method for a measurement of thermal neutron spectra in the pulsed neutron sources with high efficiency of neutron registration, more than 10 5 times higher in comparison with traditional one, is described. The main problems connected with the electric current technique for time-of-flight spectra measurement are examined. The methodical errors, problems of a special neutron detector design and other questions are discussed. Some experimental results, spectra from surfaces of the water and solid methane moderators, obtained in the pulsed reactor IBR-2 (Dubna, Russia) are presented. 4 refs., 5 figs

  13. Intense neutron sources for cancer treatment

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Significant progress has been made in the development of small, solid-target, pulsed neutron sources for nuclear weapons applications. The feasibility of using this type of neutron source for cancer treatment is discussed. Plans for fabrication and testing of such a source is briefly described

  14. The performance of neutron scattering spectrometers at a long-pulse spallation source

    International Nuclear Information System (INIS)

    Pynn, R.

    1997-01-01

    In this document the author considers the performance of a long pulse spallation source for those neutron scattering experiments that are usually performed with a monochromatic beam at a continuous wave (CW) source such as a nuclear reactor. The first conclusion drawn is that comparison of the performance of neutron scattering spectrometers at CW and pulsed sources is simpler for long-pulsed sources than it is for the short-pulse variety. Even though detailed instrument design and assessment will require Monte Carlo simulations (which have already been performed at Los Alamos for SANS and reflectometry), simple arguments are sufficient to assess the approximate performance of spectrometers at an LPSS and to support the contention that a 1 MW long-pulse source can provide attractive performance, especially for instrumentation designed for soft-condensed-matter science. Because coupled moderators can be exploited at such a source, its time average cold flux is equivalent to that of a research reactor with a power of about 15 MW, so only a factor of 4 gain from source pulsing is necessary to obtain performance that is comparable with the ILL. In favorable cases, the gain from pulsing can be even more than this, approaching the limit set by the peak flux, giving about 4 times the performance of the ILL. Because of its low duty factor, an LPSS provides the greatest performance gains for relatively low resolution experiments with cold neutrons. It should thus be considered complementary to short pulse sources which are most effective for high resolution experiments using thermal or epithermal neutrons

  15. The dynamic method for time-of-flight measurement of thermal neutron spectra from pulsed sources

    International Nuclear Information System (INIS)

    Pepyolyshev, Yu.N.; Chuklyaev, S.V.; Tulaev, A.B.; Bobrakov, V.F.

    1995-01-01

    A time-of-flight method for measurement of thermal neutron spectra in pulsed neutron sources with an efficiency more than 10 5 times higher than the standard method is described. The main problems associated with the electric current technique for time-of-flight spectra measurement are examined. The methodical errors, problems of special neutron detector design and other questions are discussed. Some experimental results for spectra from the surfaces of water and solid methane moderators obtained at the IBR-2 pulsed reactor (Dubna, Russia) are presented. (orig.)

  16. The Advanced Neutron Source

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1989-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux (φ th ∼ 9·10 19 m -2 ·s -1 ) accompanied by extensive and comprehensive equipment and facilities for neutron-based research. 5 refs., 5 figs

  17. Fusion neutron detector calibration using a table-top laser generated plasma neutron source

    International Nuclear Information System (INIS)

    Hartke, R.; Symes, D.R.; Buersgens, F.; Ruggles, L.E.; Porter, J.L.; Ditmire, T.

    2005-01-01

    Using a high intensity, femtosecond laser driven neutron source, a high-sensitivity neutron detector was calibrated. This detector is designed for observing fusion neutrons at the Z accelerator in Sandia National Laboratories. Nuclear fusion from laser driven deuterium cluster explosions was used to generate a clean source of nearly monoenergetic 2.45 MeV neutrons at a well-defined time. This source can run at 10 Hz and was used to build up a clean pulse-height spectrum on scintillating neutron detectors giving a very accurate calibration for neutron yields at 2.45 MeV

  18. Effects of neutron spectrum and external neutron source on neutron multiplication parameters in accelerator-driven system

    International Nuclear Information System (INIS)

    Shahbunder, Hesham; Pyeon, Cheol Ho; Misawa, Tsuyoshi; Lim, Jae-Yong; Shiroya, Seiji

    2010-01-01

    The neutron multiplication parameters: neutron multiplication M, subcritical multiplication factor k s , external source efficiency φ*, play an important role for numerical assessment and reactor power evaluation of an accelerator-driven system (ADS). Those parameters can be evaluated by using the measured reaction rate distribution in the subcritical system. In this study, the experimental verification of this methodology is performed in various ADS cores; with high-energy (100 MeV) proton-tungsten source in hard and soft neutron spectra cores and 14 MeV D-T neutron source in soft spectrum core. The comparison between measured and calculated multiplication parameters reveals a maximum relative difference in the range of 6.6-13.7% that is attributed to the calculation nuclear libraries uncertainty and accuracy for energies higher than 20 MeV and also dependent on the reaction rate distribution position and count rates. The effects of different core neutron spectra and external neutron sources on the neutron multiplication parameters are discussed.

  19. Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Shinohara, T.; Kai, T.; Ooi, M. [Japan Atomic Energy Agency, 2–4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kamiyama, T.; Kiyanagi, Y.; Shiota, Y. [Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo-shi, Hokkaido 060-8628 (Japan); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2014-05-11

    The sharp variation of neutron attenuation at certain energies specific to particular nuclides (the lower range being from ∼1 eV up to ∼1 keV), can be exploited for the remote mapping of element and/or isotope distributions, as well as temperature probing, within relatively thick samples. Intense pulsed neutron beam-lines at spallation sources combined with a high spatial, high-timing resolution neutron counting detector, provide a unique opportunity to measure neutron transmission spectra through the time-of-flight technique. We present the results of experiments where spatially resolved neutron resonances were measured, at energies up to 50 keV. These experiments were performed with the intense flux low background NOBORU neutron beamline at the J-PARC neutron source and the high timing resolution (∼20 ns at epithermal neutron energies) and spatial resolution (∼55 µm) neutron counting detector using microchannel plates coupled to a Timepix electronic readout. Simultaneous element-specific imaging was carried out for several materials, at a spatial resolution of ∼150 µm. The high timing resolution of our detector combined with the low background beamline, also enabled characterization of the neutron pulse itself – specifically its pulse width, which varies with neutron energy. The results of our measurements are in good agreement with the predicted results for the double pulse structure of the J-PARC facility, which provides two 100 ns-wide proton pulses separated by 600 ns, broadened by the neutron energy moderation process. Thermal neutron radiography can be conducted simultaneously with resonance transmission spectroscopy, and can reveal the internal structure of the samples. The transmission spectra measured in our experiments demonstrate the feasibility of mapping elemental distributions using this non-destructive technique, for those elements (and in certain cases, specific isotopes), which have resonance energies below a few keV, and with lower

  20. Cold moderators at pulsed spallation sources: A personal view

    International Nuclear Information System (INIS)

    Pynn, R.

    1991-01-01

    When Maier-Leibnitz built the ILL, he came first to the US and to Canada where there were several prominent neutron scattering centers. He asked what instruments he should build. The reply was unanimous: 'First you build some three-axis machines to form the base program and then you see what else you can thin of.' Maier-Leibnitz's reply was equally characteristic: 'Thank you very much hor-ellipsis there will be no three-axis spectrometers at my institute.' He wasn't quite right - there was one at the beginning. But the point is that, instead of following conventional wisdom, Maier-Leibnitz hired a bunch of young scientists who didn't know as much about neutron scattering as their colleagues on the American continent and who therefore did not know what was 'impossible.' So, they built the impossible - a cold source integrated into the reactor, several hundred meters of guides, a 40-meter SANS machine, a back-scattering spectrometer, a hedgehog - the whole works. And they changed the face of neutron scattering forever. The author is going to adopt the same philosophy - because he knows very little about cold moderators at spallation sources, he doesn't know what is possible or what is stupid. So he is going to make some outrageous comments to stimulate Peter Egelstaff's discussion session. He makes these remarks, not as Director of LANSCE, but as a research scientist looking well beyond his ares of expertise

  1. Experimental study on a cold neutron source of solid methylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Utsuro, M; Sugimoto, M; Fujita, Y [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1975-10-01

    An experimental study to produce cold neutrons with low temperature solid mesitylene as cold moderator in liquid helium and liquid nitrogen cryostats is reported. Measured cold neutron spectra by using an electron linac and time-of-flight method shows that this material is a better cold moderator than light water ice, giving the cold neutron output not so much inferior to that of solid methane in the temperature range above about 20 K and in the neutron energy region above about 1 MeV.

  2. Study of a Slightly Enriched R Reactor Fuel by Means of a Pulsed Neutron Source; Etude d'un reacteur a combustible legerement enrichi (rubeole) a l'aide de sources pulsees de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Sagot, M; Tellier, H [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-04-01

    A Be O moderated reactor using slightly enriched uranium oxide as fuel was studied by the pulsed neutron source technique. The neutron lifetime was measured in two different cores without reflector, then attempts were made at the measurement of great negative reactivities introduced into the reactor under the following forms: decrease of the volume of the un reflected core, introduction of absorbing cadmium rods, removal of fuel at the periphery of the critical core while maintaining a constant height, and substitution of fuel elements by less reactive elements. In all cases, the results are compared with the data obtained by another type of experiment or by computation. (author) [French] Nous avons applique la methode des sources pulsees de neutrons a un reacteur utilisant de l'oxyde d'uranium legerement enrichi, modere a l'oxyde de beryllium et, apres avoir mesure le temps de vie des neutrons dans deux coeurs differents non reflechis, nous avons porte notre effort, sur la mesure de reactivites negatives importantes introduites dans le reacteur sous differentes formes: - diminution du volume du coeur non reflechi, - introduction de barres absorbantes en cadmium, - enlevement de combustible a la peripherie du coeur critique, tout en conservant une hauteur constante, - substitution d'elements de combustible par des elements moins reactifs. Dans tous les cas, les resultats sont compares aux valeurs obtenues par un autre type d'experience ou par le calcul. (auteur)

  3. Prospects for accelerator neutron sources for large volume minerals analysis

    International Nuclear Information System (INIS)

    Clayton, C.G.; Spackman, R.

    1988-01-01

    The electron Linac can be regarded as a practical source of thermal neutrons for activation analysis of large volume mineral samples. With a suitable target and moderator, a neutron flux of about 10 10 n/cm/s over 2-3 kg of rock can be generated. The proton Linac gives the possibility of a high neutron yield (> 10 12 n/s) of fast neutrons at selected energies. For the electron Linac, targets of W-U and W-Be are discussed. The advantages and limitations of the system are demonstrated for the analysis of gold in rocks and ores and for platinum in chromitite. These elements were selected as they are most likely to justify an accelerator installation at the present time. Errors due to self shielding in gold particles for thermal neutrons are discussed. The proton Linac is considered for neutrons generated from a lithium target through the 7 Li(p, n) 7 Be reaction. The analysis of gold by fast neutron activation is considered. This approach avoids particle self-absorption and, by appropriate proton energy selection, avoids potentially dominating interfering reactions. The analysis of 235 U in the presence of 238 U and 232 Th is also considered. (author)

  4. Method for controlling an accelerator-type neutron source, and a pulsed neutron source

    International Nuclear Information System (INIS)

    Givens, W.W.

    1991-01-01

    The patent deals with an accelerator-type neutron source which employs a target, an ionization section and a replenisher for supplying accelerator gas. A positive voltage pulse is applied to the ionization section to produce a burst of neutrons. A negative voltage pulse is applied to the ionization section upon the termination of the positive voltage pulse to effect a sharp cut-off to the burst of neutrons. 4 figs

  5. A proton-driven, intense, subcritical, fission neutron source for radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Y. [Chemin du Cyclotron, Louvain-la-Neuve (Belgium)

    1995-10-01

    {sup 99m}Tc, the most frequently used radioisotope in nuclear medicine, is distributed as {sup 99}Mo=>{sup 99m}Tc generators. {sup 99}Mo is a fission product of {sup 235}U. To replace the aging nuclear reactors used today for this production, the author proposes to use a spallation neutron source, with neutron multiplication by fission. A 150 MeV, H{sup {minus}} cyclotron can produce a 225 kW proton beam with 50% total system energy efficiency. The proton beam would hit a molten lead target, surrounded by a water moderator and a graphite reflector, producing around 0.96 primary neutron per proton. The primary spallation neutrons, moderated, would strike secondary targets containing a subcritical amount of {sup 235}U. The assembly would show a k{sub eff} of 0.8, yielding a fivefold neutron multiplication. The thermal neutron flux at the targets location would be 2 {times} 10{sup 14} n/cm{sup 2}.s, resulting in a fission power of 500 to 750 kW. One such system could supply the world demand in {sup 99}Mo, as well as other radioisotopes. Preliminary indications show that the cost would be lower than the cost of a commercial 10 MW isotope production reactor. The cost of operation, of disposal of radiowaste and of decommissioning should be significantly lower as well. Finally, the non-critical nature of the system would make it more acceptable for the public than a nuclear reactor and should simplify the licensing process.

  6. Pulsed neutron source well logging system

    International Nuclear Information System (INIS)

    Dillingham, M.E.

    1975-01-01

    A pulsed neutron source arrangement is provided in which a sealed cylindrical chamber encloses a rotatable rotor member carrying a plurality of elongated target strips of material which emits neutrons when bombarded with alpha particles emitted by the plurality of source material strips. The rotor may be locked in a so-called ON position by an electromagnetic clutch drive mechanism controllable from the earth's surface so as to permit the making of various types of logs utilizing a continuously emitting neutron source. (Patent Office Record)

  7. Conceptual design of a cold methane moderator system for the European Spallation Source (ESS)

    CERN Document Server

    Barnert-Wiemer, H

    2002-01-01

    As part of the work for the target station of the planned European spallation source (ESS) the Central Department of Technology at the Forschungszentrum Juelich GmbH is also concerned with the moderators, particular attention being given to the development of cold methane moderators. This report discusses the technical feasibility of solid methane moderators. Methods to tailor the neutron output by adding absorption materials (decouplers or poisons) are not considered here, neither are composite moderators. Based on the given target-moderator-reflector assembly of the ESS project a concept for the ESS cold methane moderators has been developed and is being examined at the Forschungszentrum Juelich. According to this moderator concept the moderator is a fixed bed of small spheres, which makes moderator container filling homogeneous and reproducible. Since spheres form a defined packed bed, cooling of the moderator bed by H sub 2 is reliable. The process of filling the moderator container and of removing the pe...

  8. Calculations of neutron source at the KYIV research reactor for the boron neutron capture therapy aims

    International Nuclear Information System (INIS)

    Gritzay, O.; Kalchenko, O.; Klimova, N.; Razbudey, V.; Sanzhur, A.

    2006-01-01

    Calculation results of an epithermal neutron source which can be created at the Kyiv Research Reactor (KRR) by means of placing of specially selected moderators, filters, collimators, and shielding into the 10-th horizontal experimental tube (so-called thermal column) are presented. The general Monte-Carlo radiation transport code MCNP4C [1], the Oak Ridge isotope generation code ORIGEN2 [2] and the NJOY99 [3] nuclear data processing system have been used for these calculations

  9. The upgrade of intense pulsed neutron source (IPNS) through the change of coolant and reflector

    CERN Document Server

    Baek, I C; Iverson, E B

    2002-01-01

    The current intense pulsed neutron source (IPNS) depleted uranium target is cooled by light water. The inner reflector material is graphite and the outer reflector material is beryllium. The presence of H sub 2 O in the target moderates neutrons and leads to a higher absorption loss in the target than is necessary. D sub 2 O coolant in the small quantities required minimizes this effect. We have studied the possible improvement in IPNS beam fluxes that would result from changing the coolant from H sub 2 O to D sub 2 O and the inner reflector from graphite to beryllium. Neutron intensities were calculated for directions normal to the viewed surface of each moderator for four different cases of combinations of target coolant and reflector materials. The simulations reported here were performed using the MCNPX (version 2.1.5) computer program. Our results show that substantial gains in neutron beam intensities can be achieved by appropriate combination of target coolant and reflector materials. The combination o...

  10. Neutron scattering instruments for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Crawford, R.K.; Fornek, T.; Herwig, K.W.

    1998-01-01

    The Spallation Neutron Source (SNS) is a 1 MW pulsed spallation source for neutron scattering planned for construction at Oak Ridge National Laboratory. This facility is being designed as a 5-laboratory collaboration project. This paper addresses the proposed facility layout, the process for selection and construction of neutron scattering instruments at the SNS, the initial planning done on the basis of a reference set of ten instruments, and the plans for research and development (R and D) to support construction of the first ten instruments and to establish the infrastructure to support later development and construction of additional instruments

  11. Summary of alpha-neutron sources in GADRAS

    International Nuclear Information System (INIS)

    Mitchell, Dean James; Thoreson, Gregory G.; Harding, Lee T.

    2012-01-01

    A common source of neutrons for calibration and testing is alpha-neutron material, named for the alpha-neutron nuclear reaction that occurs within. This material contains a long-lived alpha-emitter and a lighter target element. When the alpha particle from the emitter is absorbed by the target, neutrons and gamma rays are released. Gamma Detector Response and Analysis Software (GADRAS) includes built-in alpha-neutron source definitions for AcC, AmB, AmBe, AmF, AmLi, CmC, and PuC. In addition, GADRAS users may create their own alpha-neutron sources by placing valid alpha-emitters and target elements in materials within their one-dimensional models (1DModel). GADRAS has the ability to use pre-built alpha-neutron sources for plotting or as trace-sources in 1D models. In addition, if any material (existing or user-defined) specified in a 1D model contains both an alpha emitter in conjunction with a target nuclide, or there is an interface between such materials, then the appropriate neutron-emission rate from the alpha-neutron reaction will be computed. The gamma-emissions from these sources are also computed, but are limited to a subset of nine target nuclides. If a user has experimental data to contribute to the alpha-neutron gamma emission database, it may be added directly or submitted to the GADRAS developers for inclusion. The gadras.exe.config file will be replaced when GADRAS updates are installed, so sending the information to the GADRAS developers is the preferred method for updating the database. This is also preferable because it enables other users to benefit from your efforts.

  12. Recent activities of the international Group on Research Reactors (IGORR) and of the Advanced Neutron Source (ANS)

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The International Group on Research Reactors (IGORR) was formed in 1990 to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. The Advanced Neutron Source Project expects to complete conceptual design in mid-1992. In the present design concept, the neutron source is a heavy-water-cooled, moderated, and reflected reactor of about 350 MW(f) power. (author)

  13. Anisotropy of neutron sources of Neutron Metrology Laboratory, IRD, Brazil

    International Nuclear Information System (INIS)

    Silva, A.C.F.; Silva, F.S.; Leite, S.P.; Creazolla, P.G; Patrão, K.C.S.; Fonseca, E.S. da; Fernandes, S.S.; Pereira, W.W.

    2017-01-01

    The anisotropy measurements have as main objective to define the emission of the radiation by different angles of an encapsulated neutron source. The measurements were performed using a Long Accuracy Counter (PLC) Detector in the Low Dispersion Room of the LNMRI / IRD with different neutron sources. Each measurement was made using a support for the source, emulated through an arduino system to rotate it. The carrier is marked with a variation of 5 °, ranging from 0 ° to 360 °, for the work in question only half, 0 ° to 180 ° is used for a total of nineteen steps. In this paper three sources of "2"4"1AmBe (α, n) 5.92 GBq (16 Ci) were used, neutron sources having the following dimensions: 105 mm in height and 31 mm in diameter. The PLC was positioned at a distance of 2 meters from the neutron source and has a radius of 15 cm for the detection area. The anisotropy factor of the "2"4"1AmBe source was 17%. The results in this work will focus mainly on the area of radioprotection and studies that will improve the process of routine measurements in laboratories and instrument calibrations. (author)

  14. Performance of the prototype LANL solid deuterium ultra-cold neutron source

    CERN Document Server

    Hill, R E; Bowles, T J; Greene, G L; Hogan, G; Lamoreaux, S; Marek, L; Mortenson, R; Morris, C L; Saunders, A; Seestrom, S J; Teasdale, W A; Hoedl, S; Liu, C Y; Smith, D A; Young, A; Filippone, B W; Hua, J; Ito, T; Pasyuk, E A; Geltenbort, P; García, A; Fujikawa, B; Baessler, S; Serebrov, A

    2000-01-01

    A prototype of a solid deuterium (SD sub 2) source of Ultra-Cold Neutrons (UCN) is currently being tested at LANSCE. The source is contained within an assembly consisting of a 4 K polyethylene moderator surrounded by a 77 K beryllium flux trap in which is embedded a spallation target. Time-of-flight measurements have been made of the cold neutron spectrum emerging directly from the flux trap assembly. A comparison is presented of these measurements with results of Monte Carlo (LAHET/MCNP) calculations of the cold neutron fluxes produced in the prototype assembly by a beam of 800 MeV protons incident on the tungsten target. A UCN detector was coupled to the assembly through a guide system with a critical velocity of 8 m/s ( sup 5 sup 8 Ni). The rates and time-of-flight data from this detector are compared with calculated values. Measurements of UCN production as a function of SD sub 2 volume (thickness) are compared with predicted values. The dependence of UCN production on SD sub 2 temperature and proton beam...

  15. Recent advances in laser-driven neutron sources

    Science.gov (United States)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  16. Neutron sources: Present practice and future potential

    International Nuclear Information System (INIS)

    Cierjacks, S.; Smith, A.B.

    1988-01-01

    The present capability and future potential of accelerator-based monoenergetic and white neutron sources are outlined in the context of fundamental and applied neutron-nuclear research. The neutron energy range extends from thermal to 500 MeV, and the time domain from steady-state to pico-second pulsed sources. Accelerator technology is summarized, including the production of intense light-ion, heavy-ion and electron beams. Target capabilities are discussed with attention to neutron-producing efficiency and power-handling capabilities. The status of underlying neutron-producing reactions is summarized. The present and future use of neutron sources in: fundamental neutron-nuclear research, nuclear data acquisition, materials damage studies, engineering tests, and biomedical applications are discussed. Emphasis is given to current status, near-term advances well within current technology, and to long-range projections. 90 refs., 4 figs

  17. JRR-3 cold neutron source facility H2-O2 explosion safety proof testing

    International Nuclear Information System (INIS)

    Hibi, T.; Fuse, H.; Takahashi, H.; Akutsu, C.; Kumai, T.; Kawabata, Y.

    1990-01-01

    A cold Neutron Source (CNS) will be installed in Japan Research Reactor-3 (JRR-3) in Japan Atomic Energy Research Institute (JAERI) during its remodeling project. This CNS holds liquid hydrogen at a temperature of about 20 K as a cold neutron source moderator in the heavy water area of the reactor to moderate thermal neutrons from the reactor to cold neutrons of about 5 meV energy. In the hydrogen circuit of the CNS safety measures are taken to prevent oxygen/hydrogen reaction (H 2 -O 2 explosion). It is also designed in such manner that, should an H 2 -O 2 explosion take place, the soundness of all the components can be maintained so as not to harm the reactor safety. A test hydrogen circuit identical to that of the CNS (real components designed by TECHNICATOME of France) was manufactured to conduct the H 2 -O 2 explosion test. In this test, the detonation that is the severest phenomenon of the oxygen/hydrogen reaction took place in the test hydrogen circuit to measure the exerted pressure on the components and their strain, deformation, leakage, cracking, etc. Based on the results of this measurement, the structural strength of the test hydrogen circuit was analyzed. The results of this test show that the hydrogen circuit components have sufficient structural strength to withstand an oxygen/hydrogen reaction

  18. Dynamically Polarized Sample for Neutron Scattering At the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Pierce, Josh; Zhao, J. K.; Crabb, Don

    2009-01-01

    The recently constructed Spallation Neutron Source at the Oak Ridge National Laboratory is quickly becoming the world's leader in neutron scattering sciences. In addition to the world's most intense pulsed neutron source, we are continuously constructing state of the art neutron scattering instruments as well as sample environments to address today and tomorrow's challenges in materials research. The Dynamically Polarized Sample project at the SNS is aimed at taking maximum advantage of polarized neutron scattering from polarized samples, especially biological samples that are abundant in hydrogen. Polarized neutron scattering will allow us drastically increase the signal to noise ratio in experiments such as neutron protein crystallography. The DPS project is near completion and all key components have been tested. Here we report the current status of the project.

  19. Thermodynamic considerations on self-regulating characteristics of a cold neutron source with a closed thermosiphon

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Utsuro, Masahiko; Ogino, Fumimaru.

    1991-01-01

    The present report describes that a cold neutron source (CNS) having a closed-thermosiphon cooling loop shows a self-regulating characteristic under thermal disturbances if the effect of the moderator transfer tube is negligible. Due to this property, the liquid level in the moderator cell is kept almost constant under thermal disturbances. The thermodynamic meaning of the self-regulating property in the idealized closed-thermosiphon and the effect of the moderator transfer tube to the self-regulation are described. (author)

  20. Beam shaping assembly of a D–T neutron source for BNCT and its dosimetry simulation in deeply-seated tumor

    International Nuclear Information System (INIS)

    Faghihi, F.; Khalili, S.

    2013-01-01

    This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D–T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D–T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor. - Highlights: ► An assembly for the D–T neutron source including many regions is given herein. ► Dosimetry simulations in the Snyder head phantom for a deeply-seated tumor are carried out. ► Brief literatures conclusions on the recent BNCT studies are presented herein

  1. Introducing single-crystal scattering and optical potentials into MCNPX: Predicting neutron emission from a convoluted moderator

    Energy Technology Data Exchange (ETDEWEB)

    Gallmeier, F.X., E-mail: gallmeierfz@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Iverson, E.B.; Lu, W. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Baxter, D.V. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Muhrer, G.; Ansell, S. [European Spallation Source, ESS AB, Lund (Sweden)

    2016-04-01

    Neutron transport simulation codes are indispensable tools for the design and construction of modern neutron scattering facilities and instrumentation. Recently, it has become increasingly clear that some neutron instrumentation has started to exploit physics that is not well-modeled by the existing codes. In particular, the transport of neutrons through single crystals and across interfaces in MCNP(X), Geant4, and other codes ignores scattering from oriented crystals and refractive effects, and yet these are essential phenomena for the performance of monochromators and ultra-cold neutron transport respectively (to mention but two examples). In light of these developments, we have extended the MCNPX code to include a single-crystal neutron scattering model and neutron reflection/refraction physics. We have also generated silicon scattering kernels for single crystals of definable orientation. As a first test of these new tools, we have chosen to model the recently developed convoluted moderator concept, in which a moderating material is interleaved with layers of perfect crystals to provide an exit path for neutrons moderated to energies below the crystal's Bragg cut–off from locations deep within the moderator. Studies of simple cylindrical convoluted moderator systems of 100 mm diameter and composed of polyethylene and single crystal silicon were performed with the upgraded MCNPX code and reproduced the magnitude of effects seen in experiments compared to homogeneous moderator systems. Applying different material properties for refraction and reflection, and by replacing the silicon in the models with voids, we show that the emission enhancements seen in recent experiments are primarily caused by the transparency of the silicon and void layers. Finally we simulated the convoluted moderator experiments described by Iverson et al. and found satisfactory agreement between the measurements and the simulations performed with the tools we have developed.

  2. The performance of neutron scattering spectrometers at a long-pulse spallation source

    International Nuclear Information System (INIS)

    Pynn, R.

    1995-01-01

    The first conclusion the author wants to draw is that comparison of the performance of neutron scattering spectrometers at CW and pulsed sources is simpler for long-pulsed sources than it is for the short-pulse variety. Even though detailed instrument design and assessment will require Monte Carlo simulations (which have already been performed at Los Alamos for SANS and reflectometry), simple arguments are sufficient to assess the approximate performance of spectrometers at an LPSS and to support the contention that a 1 MW long-pulse source can provide attractive performance, especially for instrumentation designed for soft-condensed-matter science. Because coupled moderators can be exploited at such a source, its time average cold flux is equivalent to that of a research reactor with a power of about 15 MW, so only a factor of 4 gain from source pulsing is necessary to obtain performance that is comparable with the ILL. In favorable cases, the gain from pulsing can be even more than this, approaching the limit set by the peak flux, giving about 4 times the performance of the ILL. Because of its low duty factor, an LPSS provides the greatest performance gains for relatively low resolution experiments with cold neutrons. It should thus be considered complementary to short pulse sources which are most effective for high resolution experiments using thermal or epithermal neutrons

  3. Proton energy dependence of slow neutron intensity

    International Nuclear Information System (INIS)

    Teshigawara, Makoto; Harada, Masahide; Watanabe, Noboru; Kai, Tetsuya; Sakata, Hideaki; Ikeda, Yujiro

    2001-01-01

    The choice of the proton energy is an important issue for the design of an intense-pulsed-spallation source. The optimal proton beam energy is rather unique from a viewpoint of the leakage neutron intensity but no yet clear from the slow-neutron intensity view point. It also depends on an accelerator type. Since it is also important to know the proton energy dependence of slow-neutrons from the moderators in a realistic target-moderator-reflector assembly (TMRA). We studied on the TMRA proposed for Japan Spallation Neutron Source. The slow-neutron intensities from the moderators per unit proton beam power (MW) exhibit the maximum at about 1-2 GeV. At higher proton energies the intensity per MW goes down; at 3 and 50 GeV about 0.91 and 0.47 times as low as that at 1 GeV. The proton energy dependence of slow-neutron intensities was found to be almost the same as that of total neutron yield (leakage neutrons) from the same bare target. It was also found that proton energy dependence was almost the same for the coupled and decoupled moderators, regardless the different moderator type, geometry and coupling scheme. (author)

  4. Feasibility study for the spallation neutron source (SNQ). Pt. 1

    International Nuclear Information System (INIS)

    Bauer, G.S.; Sebening, H.; Vetter, J.E.; Willax, H.

    1981-06-01

    A concept for a new neutron source for fundamental research has been developed and is described in this report. The spallation neutron source SNQ is characterized in its first stage by a time average thermal neutron flux of 7 x 10 14 cm -2 s -1 and a peak flux of 1.3 x 10 16 cm -2 s -1 at 100 Hz repetition rate. The scientific case is presented with particular emphasis on solid state and nuclear physics. In these research domains, unique conditions are given for experimental use. The proposed machine consists in its basic stage of a 1.1 GeV, 5 mA time average, 100 mA peak current proton linear accelerator, a rotating lead target, and H 2 O and D 2 O moderators. Additional beam channels are provided for experiments with protons at 350 MeV and at the final energy. Construction of the SNQ is considered feasible within eight years at a cost of 680 million DM. As future options, use of uranium as a target material, increase of the accelerator beam power by a factor of 2, addition of a pulse compressor and a second target station for pulsed neutron and neutrino research are described. As a back-up solution to the rotating target, a liquid metal target was studied. (orig.) [de

  5. Consideration of a ultracold neutron source in two-dimensional cylindrical geometry by taking simulated boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, R., E-mail: gheisari@pgu.ac.ir [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Nuclear Energy Research Center, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Firoozabadi, M. M.; Mohammadi, H. [Department of Physics, University of Birjand, Birjand 97175 (Iran, Islamic Republic of)

    2014-01-15

    A new idea to calculate ultracold neutron (UCN) production by using Monte Carlo simulation method to calculate the cold neutron (CN) flux and an analytical approach to calculate the UCN production from the simulated CN flux was given. A super-thermal source (UCN source) was modeled based on an arrangement of D{sub 2}O and solid D{sub 2} (sD{sub 2}). The D{sub 2}O was investigated as the neutron moderator, and sD{sub 2} as the converter. In order to determine the required parameters, a two-dimensional (2D) neutron balance equation written in Matlab was combined with the MCNPX simulation code. The 2D neutron-transport equation in cylindrical (ρ − z) geometry was considered for 330 neutron energy groups in the sD{sub 2}. The 2D balance equation for UCN and CN was solved using simulated CN flux as boundary value. The UCN source dimensions were calculated for the development of the next UCN source. In the optimal condition, the UCN flux and the UCN production rate (averaged over the sD{sub 2} volume) equal to 6.79 × 10{sup 6} cm{sup −2}s{sup −1} and 2.20 ×10{sup 5} cm{sup −3}s{sup −1}, respectively.

  6. Neutron moderation at very low temperatures (1691)

    International Nuclear Information System (INIS)

    Lacaze, A.

    1961-04-01

    Starting from Harwell experiment carried out inside a low-power reactor, we intended to maintain a liquid hydrogen cell in a channel of the EL3 reactor (at Saclay) whose thermal neutrons flux is 10 14 neutrons/cm 2 /s. We tried to work out a device giving off an important beam of cold neutrons and able to operate in a way as automatic as possible during many consecutive day without a stop. Several circuits have already been achieved at very low temperatures but they brought out volumes and fluxes much lower than those we used this time. The difficulties we have met in carrying out such a device arose on the one hand from the very high energy release to which any kind of experiment is inevitably submitted when placed near the core of the reactor, on the other, hand from the very little room which is available in experimental channels of reactors. In such condition, it is necessary to use a moderator as effective as possible. This study is divided into three parts ; in the first part, we try to determine: a) conditions in which moderation takes place, hence the volume of the cell; b) materials likely to be used at low temperature and in pile; c) cooling system; hence we had to study fluid flow conditions at very low temperatures in very long ducts. The second part is devoted to the description of the device. The third part ventilates the results we have obtained. (author) [fr

  7. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  8. Cold moderators at ORNL

    International Nuclear Information System (INIS)

    Lucas, A. T.

    1997-09-01

    The Advanced Neutron Source (ANS) cold moderators were not an 'Oak Ridge first', but would have been the largest both physically and in terms of cold neutron flux. Two cold moderators were planned each 410 mm in diameter and containing about 30L of liquid deuterium. They were to be completely independent of each other. A modular system design was used to provide greater reliability and serviceability. When the ANS was terminated, upgrading of the resident High Flux Isotope Reactor (HFIR) was examined and an initial study was made into the feasibility of adding a cold source. Because the ANS design was modular, it was possible to use many identical design features. Sub-cooled liquid at 4 bar abs was initially chosen for the HFIR design concept, but this was subsequently changed to 15 bar abs to operate above the critical pressure. As in the ANS, the hydrogen will operate at a constant pressure throughout the temperature range and a completely closed loop with secondary containment was adopted. The heat load of 2 kW made the heat flux comparable with that of the ANS. Subsequent studies into the construction of cryogenic moderators for the proposed new Synchrotron Neutron source indicated that again many of the same design concepts could be used. By connecting the two cold sources together in series, the total heat load of 2 kW is very close to that of the HFIR allowing a very similar supercritical hydrogen system to be configured. The two hydrogen moderators of the SNS provide a comparable heat load to the HFIR moderator. It is subsequently planned to connect the two in series and operate from a single cold loop system, once again using supercritical hydrogen. The spallation source also provided an opportunity to re-examine a cold pellet solid methane moderator operating at 20K.

  9. Status report on the cold neutron source of the Garching neutron research facility FRM-II

    Science.gov (United States)

    Gobrecht, K.; Gutsmiedl, E.; Scheuer, A.

    2002-01-01

    The new high flux research reactor of the Technical University of Munich (Technische Universität München, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D 2O-reflector tank at 400 mm from the reactor core axis close to the thermal neutron flux maximum. The power of 4500 W developed by the nuclear heating in the 16 l of liquid deuterium at 25 K, and in the structures, is evacuated by a two-phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10° from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very improbable during the lifetime of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H 2) to the deuterium (D 2) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. A long-term change of the hydrogen content in the deuterium is avoided by storing the mixture not in a gas buffer volume but as a metal hydride at low pressure. The metal hydride storage system contains two getter beds, one with 250 kg of LaCo 3Ni 2, the other one with 150 kg of ZrCo 0.8Ni 0.2. Each bed can take the total gas inventory, both beds together can absorb the total gas inventory in cold (VCN) and ultra-cold neutron (UCN) production. The latter will take place in the horizontal beam tube SR4, which will house an additional cryogenic moderator (e.g. solid deuterium). More than 60% of the experiments

  10. γ-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Schooneveld, E.M.; Andreani, C.; Senesi, R.

    2009-01-01

    An investigation of the gamma background was carried out in the VESUVIO spectrometer at the ISIS spallation neutron source. This study, performed with a yttrium-aluminum-perovskite (YAP) scintillator, follows high resolution pulse height measurements of the gamma background carried out on the same instrument with the use of a high-purity germanium detector. In this experimental work, a mapping of the gamma background was attempted, trying to find the spatial distribution and degree of directionality of the different contributions identified in the previous study. It is found that the gamma background at low times is highly directional and mostly due to the gamma rays generated in the moderator-decoupler system. The other contributions, consistently to the findings of a previous experiment, are identified as a nearly isotropic one due to neutron absorption in the walls of the experimental hall, and a directional one coming from the beam dump.

  11. γ-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source

    Science.gov (United States)

    Pietropaolo, A.; Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Schooneveld, E. M.; Andreani, C.; Senesi, R.

    2009-09-01

    An investigation of the gamma background was carried out in the VESUVIO spectrometer at the ISIS spallation neutron source. This study, performed with a yttrium-aluminum-perovskite (YAP) scintillator, follows high resolution pulse height measurements of the gamma background carried out on the same instrument with the use of a high-purity germanium detector. In this experimental work, a mapping of the gamma background was attempted, trying to find the spatial distribution and degree of directionality of the different contributions identified in the previous study. It is found that the gamma background at low times is highly directional and mostly due to the gamma rays generated in the moderator-decoupler system. The other contributions, consistently to the findings of a previous experiment, are identified as a nearly isotropic one due to neutron absorption in the walls of the experimental hall, and a directional one coming from the beam dump.

  12. {gamma}-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Pietropaolo, A. [CNISM Milano-Bicocca, Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); NAST Center (Nanoscienze-Nanotecnologie-Strumentazione), Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy)], E-mail: antonino.pietropaolo@mib.infn.it; Perelli Cippo, E. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); Gorini, G. [CNISM Milano-Bicocca, Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); NAST Center (Nanoscienze-Nanotecnologie-Strumentazione), Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy); Tardocchi, M. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); Schooneveld, E.M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire 0QX OX11 (United Kingdom); Andreani, C.; Senesi, R. [Universia degli Studi di Roma Tor Vergata, Dipartimento di Fisica and NAST Center (Nanoscienze-Nanotecnologie-Strumentazione), via della Ricerca Scientifica 1, 00133 Roma (Italy)

    2009-09-01

    An investigation of the gamma background was carried out in the VESUVIO spectrometer at the ISIS spallation neutron source. This study, performed with a yttrium-aluminum-perovskite (YAP) scintillator, follows high resolution pulse height measurements of the gamma background carried out on the same instrument with the use of a high-purity germanium detector. In this experimental work, a mapping of the gamma background was attempted, trying to find the spatial distribution and degree of directionality of the different contributions identified in the previous study. It is found that the gamma background at low times is highly directional and mostly due to the gamma rays generated in the moderator-decoupler system. The other contributions, consistently to the findings of a previous experiment, are identified as a nearly isotropic one due to neutron absorption in the walls of the experimental hall, and a directional one coming from the beam dump.

  13. Procedure for measurement of anisotropy factor for neutron sources

    International Nuclear Information System (INIS)

    Creazolla, Prycylla Gomes

    2017-01-01

    Radioisotope neutron sources allow the production of reference fields for calibration of neutron detectors for radiation protection and analysis purposes. When the emission rate of these sources is isotropic, no correction is necessary. However, variations in source encapsulation and in the radioactive material concentration produce differences in its neutron emission rate, relative to the source axis, this effect is called anisotropy. In this study, is describe a procedure for measuring the anisotropy factor of neutron sources performed in the Laboratório de Metrologia de Neutrons (LN) using a Precision Long Counter (PLC) detector. A measurement procedure that takes into account the anisotropy factor of neutron sources contributes to solve some issues, particularly with respect to the high uncertainties associated with neutron dosimetry. Thus, a bibliographical review was carried out based on international standards and technical regulations specific to the area of neutron fields, and were later reproduced in practice by means of the procedure for measuring the anisotropy factor in neutron sources of the LN. The anisotropy factor is determined as a function of the angle of 90° in relation to the cylindrical axis of the source. This angle is more important due to its high use in measurements and also of its higher neutron emission rate if compared with other angles. (author)

  14. Investigation and optimisation of mobile NaI(Tl) and 3He-based neutron detectors for finding point sources

    International Nuclear Information System (INIS)

    Nilsson, Jonas M.C.; Finck, Robert R.; Rääf, Christopher

    2015-01-01

    Neutron radiation produces high-energy gamma radiation through (n,γ) reactions in matter. This can be used to detect neutron sources indirectly using gamma spectrometers. The sensitivity of a gamma spectrometer to neutrons can be amplified by surrounding it with polyvinyl chloride (PVC). The hydrogen in the PVC acts as a moderator and the chlorine emits prompt gammas when a neutron is captured. A 4.7-l 3 He-based mobile neutron detector was compared to a 4-l NaI(Tl)-detector covered with PVC using this principle. Methods were also developed to optimise the measurement parameters of the systems. The detector systems were compared with regard to their ability to find 241 AmBe, 252 Cf and 238 Pu– 13 C neutron sources. Results from stationary measurements were used to calculate optimal integration times as well as minimum detectable neutron emission rates. It was found that the 3 He-based detector was more sensitive to 252 Cf sources whereas the NaI(Tl) detector was more sensitive to 241 AmBe and 238 Pu– 13 C sources. The results also indicated that the sensitivity of the detectors to sources at known distances could theoretically be improved by 60% by changing from fixed integration times to list mode in mobile surveys

  15. Design of a linear neutron source

    International Nuclear Information System (INIS)

    Buzarbaruah, N.; Dutta, N.J.; Bhardwaz, J.K.; Mohanty, S.R.

    2015-01-01

    Highlights: • This paper reports the design of a linear neutron source based on inertial electrostatic confinement fusion scheme. • The voltage and current that is to be applied to the grid is computed theoretically. • Neutron production rate is theoretically estimated and found to be of the order of 10 7 –10 8 neutrons/s. • Electric potential distribution and ion trajectories are studied using SIMION code. • Optimized condition for the inner grid transparency has been found out. - Abstract: In this paper, we present the design of a linear neutron source based on the concept of inertial electrostatic confinement fusion. The source mainly comprises of a concentric coaxial cylindrical grid assembly housed inside a double walled cylindrical vacuum chamber, a gas injection system, a high voltage feedthrough and a high voltage negative polarity power supply. The inner grid will be kept at a high negative potential with respect to the outer grid that will be grounded. The effect of grid transparency on electric potential distribution and ion trajectories has been studied using SIMION. A diffuse deuterium plasma will be initially created by making filament discharge and subsequently, on application of high negative voltage to the inner grid, deuterons will be accelerated towards the axis of the device. These deuterons will oscillate in the negative potential and consequently fuse in between the grids to produce neutrons. This source is expected to produce 10 7 –10 8 neutrons/s. The proposed linear neutron source will be operated both in the continuous and pulse modes and it will be utilized for a few near term applications namely fusion reactor material studies and explosive detection

  16. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Kastenber, W.E.; Karni, Y.; Regev, D.; Verbeke, J.M.; Leung, K.N.; Chivers, D.; Guess, S.; Kim, L.; Waldron, W.; Zhu, Y.

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly

  17. Chemistry and Physics Challenges in Spallation Neutron Source Safety Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Lowrie, RR

    2001-06-13

    The SNS is a Department of Energy (DOE) research facility under construction near Oak Ridge, Tennessee. The SNS includes a 300-m long, 1 GeV, 2 MW, linear accelerator that produces neutrons by collisions of high-energy protons with mercury target nuclei. The mercury target atoms are in a circulating mercury loop that is water-cooled. The mercury loop operates at a nominal average temperature of 75 C (60 C nominal cold leg temperature and 90 C nominal hot leg temperature). The overall target system also includes circulating fluid systems for supercritical cryogenic hydrogen (to moderate product neutrons to low energy), heavy water (for cooling of shielding), and several light water systems (for shielding cooling, proton beam window and neutron beam window cooling, and to moderate neutrons to energies higher than those from the cryogenic hydrogen moderator).

  18. Inertial electrostatic confinement I(IEC) neutron sources

    International Nuclear Information System (INIS)

    Nebel, R.A.; Barnes, D.C.; Caramana, E.J.; Janssen, R.D.; Nystrom, W.D.; Tiouririne, T.N.; Trent, B.C.; Miley, G.H.; Javedani, J.

    1995-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P.T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2*10 [10]. neutrons/sec in steady state. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. This paper discusses the IEC concept and how it can be adapted to a steady-state assaying source and an intense pulsed neutron source. Theoretical modeling and experimental results are presented

  19. Fissile mass estimation by pulsed neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Israelashvili, I., E-mail: israelashvili@gmail.com [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Dubi, C.; Ettedgui, H.; Ocherashvili, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Pedersen, B. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Beck, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Roesgen, E.; Crochmore, J.M. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Ridnik, T.; Yaar, I. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel)

    2015-06-11

    Passive methods for detecting correlated neutrons from spontaneous fissions (e.g. multiplicity and SVM) are widely used for fissile mass estimations. These methods can be used for fissile materials that emit a significant amount of fission neutrons (like plutonium). Active interrogation, in which fissions are induced in the tested material by an external continuous source or by a pulsed neutron source, has the potential advantages of fast measurement, alongside independence of the spontaneous fissions of the tested fissile material, thus enabling uranium measurement. Until recently, using the multiplicity method, for uranium mass estimation, was possible only for active interrogation made with continues neutron source. Pulsed active neutron interrogation measurements were analyzed with techniques, e.g. differential die away analysis (DDA), which ignore or implicitly include the multiplicity effect (self-induced fission chains). Recently, both, the multiplicity and the SVM techniques, were theoretically extended for analyzing active fissile mass measurements, made by a pulsed neutron source. In this study the SVM technique for pulsed neutron source is experimentally examined, for the first time. The measurements were conducted at the PUNITA facility of the Joint Research Centre in Ispra, Italy. First promising results, of mass estimation by the SVM technique using a pulsed neutron source, are presented.

  20. Measurement of cold neutron spectra at a model of cryogenic moderator of the IBR-2M reactor

    International Nuclear Information System (INIS)

    Kulikov, S.A.; Chernikov, A.N.; Shabalin, E.P.; Kalinin, I.V.; Morozov, V.M.; Novikov, A.G.; Puchkov, A.V.

    2010-01-01

    The article is dedicated to methods and results of experimental determination of cold neutron spectra from solid mesitylene at neutron moderator temperatures 10-50 K. Experiments were fulfilled at the DIN-2PI spectrometer of the IBR-2 reactor. The main goals of this work were to examine a system of constants for Monte Carlo calculation of cryogenic moderators of the IBR-2M reactor and to determine the temperature dependence of cold neutron intensity from the moderator. A reasonable agreement of experimental and calculation results for mesitylene at 20 K has been obtained. The cold neutron intensity at temperature of moderator 10 K is about 1.8 times higher than at T=50 K

  1. Small-angle neutron scattering at pulsed spallation sources

    International Nuclear Information System (INIS)

    Seeger, P.A.; Hjelm, R.P. Jr.

    1990-01-01

    The importance of small-angle neutron scattering (SANS) in biological, chemical, physical, and engineering research mandates that all intense neutron sources be equipped with SANS instruments. Four existing instruments are described, and the general differences between pulsed-source and reactor-based instrument designs are discussed. The basic geometries are identical, but dynamic range is achieved by using a broad band of wavelengths (with time-of-flight analysis) rather than by moving the detector. This allows a more optimized collimation system. Data acquisition requirements at a pulsed source are more severe, requiring large, fast histogramming memories. Data reduction is also more complex, as all wave length-dependent and angle-dependent backgrounds and non-linearities must be accounted for before data can be transformed to intensity vs Q. A comparison is shown between the Los Alamos pulsed instrument and D-11 (Institute Laue-Langevin), and examples from the four major topics of the conference are shown. The general conclusion is that reactor-based instruments remain superior at very low Q or if only a narrow range of Q is required, but that the current generation of pulsed-source instruments is competitive at moderate Q and may be faster when a wide range of Q is required. In principle, a user should choose which facility to use on the basis of optimizing the experiment; in practice the tradeoffs are not severe and the choice is usually made on the basis of availability

  2. Research on background neutron of 226Ra γ source

    International Nuclear Information System (INIS)

    Ji Changsong

    1996-01-01

    This work studies the background neutron emission of 226 Ra γ source: the mechanism of resulting in background neutron is studied; a thesis that the (α, n) type reaction on Radium carriers Cl or Br is the main source of creating background neutron emission of 226 Ra γ source has been proposed and certificated; a proposal of substitution of Cl carrier by Br in radium source produced in China in order to reduce background neutron emission is put forward. A result to reduce the background neutron from 96.4 neutrons/4πsmgRa to 6.1 neutrons/4πsmgRa is obtained

  3. The new Munich neutron source

    International Nuclear Information System (INIS)

    Herrmann, W.A.

    1998-01-01

    The Munich FRM II neutron source currently under construction is to replace the FRM I research reactor in Munich, also known as 'atomic egg'. The project is executed by the Free State of Bavaria as a construction project of the Munich Technical University and managed by the University. As main contractor for the construction project, Siemens AG is also co-applicant in the licensing procedure under the Atomic Energy Act for the construction phase. The project is carried out to build a modern high flux neutron source required for a broad range of applications in research and technology mainly with thermal and cold neutrons. The 'neutron gap' existing in Germany is to be closed with the FRM II. As a national research installation, the FRM II is available to all interested scientists from a variety of disciplines. (orig.) [de

  4. Neutron generator tube ion source control

    International Nuclear Information System (INIS)

    Bridges, J.R.

    1982-01-01

    A system is claimed for controlling the output of a neutron generator tube of the deuterium-tritium accelerator type and having an ion source to produce sharply defined pulses of neutrons for well logging use. It comprises: means for inputting a relatively low voltage input control pulse having a leading edge and a trailing edge; means, responsive to the input control pulse, for producing a relatively high voltage ion source voltage pulse after receipt of the input pulse; and means, responsive to the input control pulse, for quenching, after receipt of the input pulse, the ion source control pulse, thereby providing a sharply time defined neutron output from the generator tube

  5. Research on neutron source multiplication method in nuclear critical safety

    International Nuclear Information System (INIS)

    Zhu Qingfu; Shi Yongqian; Hu Dingsheng

    2005-01-01

    The paper concerns in the neutron source multiplication method research in nuclear critical safety. Based on the neutron diffusion equation with external neutron source the effective sub-critical multiplication factor k s is deduced, and k s is different to the effective neutron multiplication factor k eff in the case of sub-critical system with external neutron source. The verification experiment on the sub-critical system indicates that the parameter measured with neutron source multiplication method is k s , and k s is related to the external neutron source position in sub-critical system and external neutron source spectrum. The relation between k s and k eff and the effect of them on nuclear critical safety is discussed. (author)

  6. Composite hydrogen-solid methane moderators

    International Nuclear Information System (INIS)

    Picton, D.; Bennington, S.; Ansell, S.; Fernandez-Garcia, J.; Broome, T.

    2004-01-01

    This paper describes the results of Monte-Carlo calculations for a coupled moderator on a low-power pulsed neutron spallation source and is part of the design study for a second target station for the ISIS spallation source. Various options were compared including hydrogen, solid methane, grooving the solid methane and compound moderators made of hydrogen in front of solid methane. To maximise the neutron current at low energies two strategies appear to emerge from the calculations. For instruments that view a large area of moderator surface a layer of hydrogen in front of a thin solid-methane moderator is optimum, giving a gain of about a factor 10 relative to the current liquid hydrogen moderator on the existing ISIS tantalum target. For instruments that only view a restricted area higher flux, corresponding to a gain of 13.5, can be achieved with the use of a single groove or re-entrant hole in the moderator. (orig.)

  7. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. (China)

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  8. New scientific horizons with pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carlile, C.J.; Finney, J.L.

    1991-01-01

    Pulsed spallation sources are not just another way of producing neutrons: the time structure of the neutron pulse has consequences which allow new scientific areas to be investigated and traditional areas to be explored afresh. In addition to the high epithermal neutron component traditionally associated with pulsed sources the recent development of cold neutron techniques at ISIS illustrates that very high energy and momentum resolutions can be achieved on pulsed sources over a surprisingly wide range. (orig.)

  9. 10 CFR 39.55 - Tritium neutron generator target sources.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target....77. (b) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg...

  10. NAA using the photoneutrons of a Linac as a neutron source

    International Nuclear Information System (INIS)

    Rivera P, E.; De Leon M, H. A.; Hernandez D, V. M.; Vega C, H. R.; Soto B, T.; Gallego, E.; Lorente, A.

    2012-10-01

    Linear accelerators working above 8 MV produce photoneutrons that represent a radiological risk in the patient and hospital staff. In this work a moderator has been designed in the aim to use the photoneutron field to perform neutron activation analysis (NAA) of small samples. The moderator has been designed using Monte Carlo methods, here the photoneutron spectrum is modified by the moderator having the maximum thermal neutron flux in the moderator cavity where the sample to be analyzed is located. (Author)

  11. Options for the Delft advanced neutron source

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Leege, P.F.A. de; Labohm, F.; Vries, J.W. de; Verkooijen, A.H.M.; Valko, J.; Feltes, W.; Heinecke, J.

    2003-01-01

    Results of feasibility studies are presented for options for an advanced neutron source for the Delft reactor including upgrading the HOR, a 2 MW pool-type research reactor at the Delft University of Technology. The primary utilisation of the HOR focuses on beam research applications with neutrons and positrons. The aim of being scientifically competitive in that research area requires a thermal neutron flux level of at least 1x10 14 n/cm 2 /s. The feasibility of an accelerator driven neutron source and upgrading the present core to a super compact core for reaching this goal has been investigated at large from a safety and operational point of view. For the upgraded core, a 3x3 fuel assembly arrangement and beryllium reflected at all sides was chosen. Figures on the system performance, including the merits of a cold neutron source application feeding the neutron guide system, are presented. (author)

  12. Design considerations for neutron activation and neutron source strength monitors for ITER

    International Nuclear Information System (INIS)

    Barnes, C.W.; Jassby, D.L.; LeMunyan, G.; Roquemore, A.L.

    1997-01-01

    The International Thermonuclear Experimental Reactor will require highly accurate measurements of fusion power production in time, space, and energy. Spectrometers in the neutron camera could do it all, but experience has taught us that multiple methods with redundancy and complementary uncertainties are needed. Previously, conceptual designs have been presented for time-integrated neutron activation and time-dependent neutron source strength monitors, both of which will be important parts of the integrated suite of neutron diagnostics for this purpose. The primary goals of the neutron activation system are: to maintain a robust relative measure of fusion energy production with stability and wide dynamic range; to enable an accurate absolute calibration of fusion power using neutronic techniques as successfully demonstrated on JET and TFTR; and to provide a flexible system for materials testing. The greatest difficulty is that the irradiation locations need to be close to plasma with a wide field of view. The routing of the pneumatic system is difficult because of minimum radius of curvature requirements and because of the careful need for containment of the tritium and activated air. The neutron source strength system needs to provide real-time source strength vs. time with ∼1 ms resolution and wide dynamic range in a robust and reliable manner with the capability to be absolutely calibrated by in-situ neutron sources as done on TFTR, JT-60U, and JET. In this paper a more detailed look at the expected neutron flux field around ITER is folded into a more complete design of the fission chamber system

  13. New opportunities in neutron capture research using advanced pulsed neutron sources

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1987-08-01

    The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. Prospective experiments are reviewed with particular attention to those with a strong connection to capture gamma-ray spectroscopy

  14. Study on thermal neutron spectra in reactor moderators by time-of-flight method

    International Nuclear Information System (INIS)

    Akino, Fujiyoshi

    1982-12-01

    Prediction of thermal neutron spectra in a reactor core plays very important role in the neutronic design of the reactor for obtaining the accurate thermal group constants. It is well known that the neutron scattering properties of the moderator materials markedly influence the thermal neutron spectra. Therefore, 0 0 angular dependent thermal neutron spectra were measured by the time-of-flight method in the following moderator bulks 1) Graphite bulk poisoned with boron at the temperatures from 20 to 800 0 C, 2) Light water bulk poisoned with Cadmium and/or Indium, 3) Light water-natural uranium heterogeneous bulk. The measured results were compared with calculation utilizing Young-Koppel and Haywood scattering model for graphite and light water respectively. On the other hand, a variety of 20% enriched uranium loaded and graphite moderated cores consisting of the different lattice cell in a wide range of the carbon to uranium atomic ratio have been built at Semi-Homogeneous Critical Experimental Assembly (SHE) to perform the critical experiments related to Very High Temperature Reactor (VHTR). The experimental data were for the critical masses in 235 U, reactivity worths of experimental burnable poison rods, thorium rods, natural-uranium rods and experimental control rods and kinetic parameters. It is made clear from comparison between measurement and calculation that the accurate thermal group constants can be obtained by use of the Young-Koppel and Haywood neutron scattering models if heterogeneity of reactor core lattices is taken into account precisely. (author)

  15. Neutron source strength associated with FTR fuel

    International Nuclear Information System (INIS)

    Boroughs, G.L.; Bunch, W.L.; Johnson, D.L.

    1975-01-01

    The study presented shows the important effect of shelf life on the neutron source strength anticipated from fuel irradiated in the FTR. The neutron source strength will be enhanced appreciably by extended shelf lives. High neutron source strengths will also be associated with reprocessed LWR plutonium, which is expected to contain a greater abundance of the higher isotopes. The branching ratio and cross section of 241 Am is an important parameter that needs to be defined more precisely to establish calculated values with greater precision

  16. An advanced fusion neutron source facility

    International Nuclear Information System (INIS)

    Smith, D.L.

    1992-01-01

    Accelerator-based 14-MeV-neutron sources based on modifications of the original Fusion Materials Irradiation Facility are currently under consideration for investigating the effects of high-fluence high-energy neutron irradiation on fusion-reactor materials. One such concept for a D-Li neutron source is based on recent advances in accelerator technology associated with the Continuous Wave Deuterium Demonstrator accelerator under construction at Argonne National Laboratory, associated superconducting technology, and advances in liquid-metal technology. In this paper a summary of conceptual design aspects based on improvements in technologies is presented

  17. Future prospects of imaging at spallation neutron sources

    International Nuclear Information System (INIS)

    Strobl, M.

    2009-01-01

    The advent of state-of-the-art spallation neutron sources is a major step forward in efficient neutron production for most neutron scattering techniques. Although they provide lower time-averaged neutron flux than high flux reactor sources, advantage for different instrumental techniques can be derived from the pulsed time structure of the available flux, which can be translated into energy, respectively, wavelength resolution. Conventional neutron imaging on the other hand relies on an intense continuous beam flux and hence falls short in profiting from the new development. Nevertheless, some recently developed novel imaging techniques require and some can benefit from energy resolution. The impact of the emerging spallation sources on different imaging techniques has been investigated, ways to benefit will be identified (where possible) and prospects of future imaging instruments and possible options and layouts at a spallation neutron source will be discussed and outlined.

  18. Neutronic analysis of graphite-moderated solid breeder design for INTOR

    International Nuclear Information System (INIS)

    Jung, J.; Abdou, M.A.

    1981-01-01

    An in-depth analysis of the INTOR tritium-production-blanket design is presented. A ternary system of solid silicate breeder, lead neutron multiplier, and graphite moderator is explored primary from safety and blanket tritium-inventory considerations. Lithium-silicate (Li 2 SiO 3 ) breeder systems are studied along with water (H 2 O/D 2 O) and Type 316 stainless steel as coolant and structural material, respectively. The analysis examines the neutronics effects on tritium-production regarding: (1) coolant choice; (2) moderator choice; (3) moderator location; (4) multiplier thickness; (5) 6 Li enrichment; and (6) 6 Li burnup. The tritium-breeding-blanket modules are located at the top, outboard, and bottom (outer) parts of the torus, resulting in a breeding coverage of approx. 60% at the first-wall surface. It is found that the reference INTOR design yields, based on a three-dimensional analysis, a net tritium breeding ratio (BR) of approx. 0.65 at the beginning of reactor operation, satisfying the design criterion of BR > 0.6

  19. Neutron area monitor with TLD pairs

    International Nuclear Information System (INIS)

    Guzman G, K. A.; Borja H, C. G.; Valero L, C.; Hernandez D, V. M.; Vega C, H. R.

    2011-11-01

    The response of a passive neutron area monitor with pairs of thermoluminescent dosimeters has been calculated using the Monte Carlo code MCNP5. The response was calculated for one TLD 600 located at the center of a polyethylene cylinder, as moderator. When neutrons collide with the moderator lose their energy reaching the TLD with thermal energies where the ambient dose equivalent is calculated. The response was calculated for 47 monoenergetic neutron sources ranging from 1E(-9) to 20 MeV. Response was calculated using two irradiation geometries, one with an upper source and another with a lateral source. For both irradiation schemes the response was calculated with the TLDs in two positions, one parallel to the source and another perpendicular to the source. The advantage of this passive neutron monitor area is that can be used in locations with intense, pulsed and mixed radiation fields. (Author)

  20. Linac-driven spallation-neutron source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1995-01-01

    Strong interest has arisen in accelerator-driven spallation-neutron sources that surpass existing facilities (such as ISIS at Rutherford or LANSCE at Los Alamos) by more than an order of magnitude in beam power delivered to the spallation target. The approach chosen by Los Alamos (as well as the European Spallation Source) provides the full beam energy by acceleration in a linac as opposed to primary acceleration in a synchrotron or other circular device. Two modes of neutron production are visualized for the source. A short-pulse mode produces 1 MW of beam power (at 60 pps) in pulses, of length less than 1 ms, by compression of the linac macropulse through multi-turn injection in an accumulator ring. A long-pulse mode produces a similar beam power with 1-ms-long pulses directly applied to a target. This latter mode rivals the performance of existing reactor facilities to very low neutron energies. Combination with the short-pulse mode addresses virtually all applications

  1. Measurement of the energy spectrum from the neutron source p lanned for IGISOL

    CERN Document Server

    Mattera, A; Rakopoulos, V; Lantz, M; Pomp, S; Solders, A; Al-Adili, A; Andersson, P; Hjalmarsson, A; Valldor-Blücher, B; Prokofiev, A; Passoth, E; Gentile, A; Bortot, D; Esposito, A; Introini, M V; Pola, A; Penttilä, H; Gorelov, D; Rinta-Antila, S

    2014-01-01

    We report on the characterisation measurements of the energ y spectra from a Be (p,xn) neutron source to be installed at the IGISOL-JYFLTRA P facility for studies of neutron-induced independent fission yields. The measurements were performed at The Svedberg Laboratory (Uppsala, Sweden), during 50 hours of beam-time in June, 2012. A 30 MeV p roton beam impinged on a mock-up of the proton-neutron converter; this was a 5 mm-thick beryllium disc inserted in an aluminium holder, with a 1-cm t hick layer of cool- ing water on the backside. The geometry of the mock-up has bee n chosen to reproduce the one that will be used as the IGISOL-JYFLTRAP so urce. During the experiment, two configurations for the neutron so urce have been used: a fast neutron field, produced using the bare target; an d a moderated field, obtained adding a 10 cm-thick Polyethylene block after the t arget assembly. The neutron fields have been measured using an Extended Range Bonner Sphere Spectrometer (ERBSS), able to simultaneously determine ...

  2. Study of a Slightly Enriched R Reactor Fuel by Means of a Pulsed Neutron Source; Etude d'un reacteur a combustible legerement enrichi (rubeole) a l'aide de sources pulsees de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Sagot, M.; Tellier, H. [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-04-01

    A Be O moderated reactor using slightly enriched uranium oxide as fuel was studied by the pulsed neutron source technique. The neutron lifetime was measured in two different cores without reflector, then attempts were made at the measurement of great negative reactivities introduced into the reactor under the following forms: decrease of the volume of the un reflected core, introduction of absorbing cadmium rods, removal of fuel at the periphery of the critical core while maintaining a constant height, and substitution of fuel elements by less reactive elements. In all cases, the results are compared with the data obtained by another type of experiment or by computation. (author) [French] Nous avons applique la methode des sources pulsees de neutrons a un reacteur utilisant de l'oxyde d'uranium legerement enrichi, modere a l'oxyde de beryllium et, apres avoir mesure le temps de vie des neutrons dans deux coeurs differents non reflechis, nous avons porte notre effort, sur la mesure de reactivites negatives importantes introduites dans le reacteur sous differentes formes: - diminution du volume du coeur non reflechi, - introduction de barres absorbantes en cadmium, - enlevement de combustible a la peripherie du coeur critique, tout en conservant une hauteur constante, - substitution d'elements de combustible par des elements moins reactifs. Dans tous les cas, les resultats sont compares aux valeurs obtenues par un autre type d'experience ou par le calcul. (auteur)

  3. Influence of Great East Japan Earthquake on neutron source station in J-PARC

    International Nuclear Information System (INIS)

    Sakai, Kenji; Sakamoto, Shinichi; Kinoshita, Hidetaka; Seki, Masakazu; Haga, Katsuhiro; Kogawa, Hiroyuki; Wakui, Takashi; Naoe, Takashi; Kasugai, Yoshimi; Tatsumoto, Hideki; Aso, Tomokazu; Hasegawa, Shoichi; Maekawa, Fujio; Oikawa, Kenichi; Ooi, Motoki; Watanabe, Akihiko; Teshigawara, Makoto; Meigo, Shin-ichiro; Ikezaki, Kiyomi; Akutsu, Atsushi; Harada, Masahide; Takada, Hiroshi; Futakawa, Masatoshi

    2012-03-01

    This report investigates the behavior, damage and restoration of each component in a neutron source station of the Materials and Life Science Experimental Facility (MLF) of J-PARC at the time of the Great East Japan Earthquake (M9.0) and verified the safety design for emergency accidents in the neutron source station. The neutron source station of the MLF at the J-PARC generates neutrons by injecting proton beams into a mercury target, and supplies to user experimental apparatuses. It consists of the mercury target, three moderators filled with supercritical hydrogen, reflectors, water cooling shields, a vessel filled with helium gas, neutron beam shutters, biological-shields and so on. In case of loss of their external electric power supply, a control function for the source station is kept by an emergency power supply. According to interlock sequences in an emergency, a signal for terminating the beam operation is transmitted, the circulators shut down automatically, and the hydrogen gas is released out of the building. On March 11 in 2011, strong shocks caused by the earthquake were observed all over Ibaraki prefecture. At the date, a status of the source station was ready for the restart of beam operation. In the MLF, after strong quakes were detected at the several instruments, the external power supply was lost, all of the circulators shut down automatically, and the hydrogen gas was released. The leakages of mercury, hydrogen and radio-activation gases did not occur. While, the quakes made gaps between the shield blocks and ruptured external pipe lines for compressed air and water by subsidence around the building. But significant damages to the components were not found though the pressure drop of compressed air lines influenced on the mercury target trolley lock system and pneumatic operation values. These results substantiated the validity of the safety design for emergency accidents in the neutron source station in the MLF, and suggested several points

  4. Neutronic study of spherical cold-neutron sources composed of liquid hydrogen and liquid deuterium

    CERN Document Server

    Matsuo, Y; Nagaya, Y

    2003-01-01

    Using the cross-section model for neutron scattering in liquid H sub 2 and D sub 2 , a neutron transport analysis is performed for spherical cold-neutron sources composed of either para H sub 2 , normal H sub 2 or normal D sub 2. A special effort is made to generate a set of energy-averaged cross-sections (80 group constants between 0.1 mu eV and 10 eV) for liquid H sub 2 and D sub 2 at melting and boiling points. A number of conclusions on the spherical cold-neutron source configurations are drawn. It is especially shown that the highest cold-neutron flux is obtainable from the normal D sub 2 source with a radius of about 50 cm, while the normal- and para-H sub 2 sources with radii around 3-4 cm produce maximum cold-neutron fluxes at the center.

  5. Calculations of accelerator-based neutron sources characteristics

    International Nuclear Information System (INIS)

    Tertytchnyi, R.G.; Shorin, V.S.

    2000-01-01

    Accelerator-based quasi-monoenergetic neutron sources (T(p,n), D(d;n), T(d;n) and Li (p,n)-reactions) are widely used in experiments on measuring the interaction cross-sections of fast neutrons with nuclei. The present work represents the code for calculation of the yields and spectra of neutrons generated in (p, n)- and ( d; n)-reactions on some targets of light nuclei (D, T; 7 Li). The peculiarities of the stopping processes of charged particles (with incident energy up to 15 MeV) in multilayer and multicomponent targets are taken into account. The code version is made in terms of the 'SOURCE,' a subroutine for the well-known MCNP code. Some calculation results for the most popular accelerator- based neutron sources are given. (authors)

  6. Neutron source multiplication method

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1985-01-01

    Extensive use has been made of neutron source multiplication in thousands of measurements of critical masses and configurations and in subcritical neutron-multiplication measurements in situ that provide data for criticality prevention and control in nuclear materials operations. There is continuing interest in developing reliable methods for monitoring the reactivity, or k/sub eff/, of plant operations, but the required measurements are difficult to carry out and interpret on the far subcritical configurations usually encountered. The relationship between neutron multiplication and reactivity is briefly discussed and data presented to illustrate problems associated with the absolute measurement of neutron multiplication and reactivity in subcritical systems. A number of curves of inverse multiplication have been selected from a variety of experiments showing variations observed in multiplication during the course of critical and subcritical experiments where different methods of reactivity addition were used, with different neutron source detector position locations. Concern is raised regarding the meaning and interpretation of k/sub eff/ as might be measured in a far subcritical system because of the modal effects and spectrum differences that exist between the subcritical and critical systems. Because of this, the calculation of k/sub eff/ identical with unity for the critical assembly, although necessary, may not be sufficient to assure safety margins in calculations pertaining to far subcritical systems. Further study is needed on the interpretation and meaning of k/sub eff/ in the far subcritical system

  7. Spallation neutron source target station issues

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A.

    1996-01-01

    In many areas of physics, materials and nuclear engineering, it is extremely valuable to have a very intense source of neutrons so that the structure and function of materials can be studied. One facility proposed for this purpose is the National Spallation Neutron Source (NSNS). This facility will consist of two parts: (1) a high-energy (∼1 GeV) and high powered (∼ 1 MW) proton accelerator, and (2) a target station which converts the protons to low-energy (≤ 2 eV) neutrons and delivers them to the neutron scattering instruments. This paper deals with the second part, i.e., the design and development of the NSNS target station and the scientifically challenging issues. Many scientific and technical disciplines are required to produce a successful target station. These include engineering, remote handling, neutronics, materials, thermal hydraulics, and instrumentation. Some of these areas will be discussed

  8. Coupled hydrogen moderator optimization with ortho/para hydrogen ratio

    International Nuclear Information System (INIS)

    Kai, Tetsuya; Harada, Masahide; Teshigawara, Makoto; Watanabe, Noboru; Ikeda, Yujiro

    2004-01-01

    Neutronic performance of a coupled hydrogen moderator was studied as a function of para hydrogen concentration, moderator thickness and height, premoderator thickness, etc. for the J-PARC spallation neutron source. It was found that a thick (140 mm) moderator with 100% para-hydrogen was optimal to provide a high time- and energy-integrated neutron intensity below 15 meV and high pulse-peak intensities at lower energies. Distribution of the cold neutrons on a moderator viewed surface was studied and found to exhibit an intensity-enhanced region at the fringe part near the premoderator. This rather peculiar distribution suggested that the moderator and the viewed surface must be designed so as to take the full advantage of the brighter region near the premoderator

  9. How should the JAERI neutron source be designed?

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    1996-01-01

    The importance of a next-generation neutron source in JAERI is discussed. The feasibility and the performances of three types of neutron sources, namely continuous wave spallation source (CWSS), long-pulse spallation source (LPSS) and short-pulse spallation source (SPSS), are compared based on a proposed JAERI accelerator, a superconducting (SC) proton linac (1-1.5 GeV, 25-16 mA in peak current, finally CW). How to realize one of the world's best neutron source using such a linac with a modest beam-current and what type of neutron source is the best for such a linac are the most important current problems. Since the accelerator is not favorable for LPSS due to a lower peak current and there exist serious technical problems for a CWSS target, a short-pulse spallation source would be the best candidate to realize a 5 MW-class SPSS like ESS, provided that the H - -injection to a compressor ring over a long pulse duration (>2 ms) is feasible. (author)

  10. Development of the RRR Cold Neutron Source facility

    International Nuclear Information System (INIS)

    Masriera, N.; Lecot, C.; Hergenreder, D.; Lovotti, O.; Serebrov, A.; Zakharov, A.; Mityukhlyaev, V.

    2003-01-01

    This paper describes some general design issues on the Cold Neutron Source (CNS) of the Replacement Research Reactor (RRR) for the Australian Nuclear Science and Technology Organisation (ANSTO). The description covers different aspects of the design: the requirements that lead to an innovative design, the overall design itself and the definition of a technical approach in order to develop the necessary design solutions. The RRR-CNS has liquid Deuterium (LD2) moderator, sub-cooled to ensure maximum moderation efficiency, flowing within a closed natural circulation Thermosiphon loop. The Thermosiphon is surrounded by a CNS Vacuum Containment made of zirconium alloy, that provides thermal insulation and a multiple barriers scheme to prevent Deuterium from mixing with water or air. Consistent with international practice, this vessel is designed to withstand any hypothetical energy reaction should Deuterium and air mix in its interior. The applied design approach allows ensuring that the RRR-CNS, in spite of being innovative, will meet all the design, performance and quality requirements. (author)

  11. A neutron booster for spallation sources--application to accelerator driven systems and isotope production

    CERN Document Server

    Galy, J; Van Dam, H; Valko, J

    2002-01-01

    One can design a critical system with fissile material in the form of a thin layer on the inner surface of a cylindrical neutron moderator such as graphite or beryllium. Recently, we have investigated the properties of critical and near critical systems based on the use of thin actinide layers of uranium, plutonium and americium. The thickness of the required fissile layer depends on the type of fissile material, its concentration in the layer and on the geometrical arrangement, but is typically in the mu m-mm range. The resulting total mass of fissile material can be as low as 100 g. Thin fissile layers have a variety of applications in nuclear technology--for example in the design neutron amplifiers for medical applications and 'fast' islands in thermal reactors for waste incineration. In the present paper, we investigate the properties of a neutron booster unit for spallation sources and isotope production. In those applications a layer of fissile material surrounds the spallation source. Such a module cou...

  12. Small accelerator-based pulsed cold neutron sources

    International Nuclear Information System (INIS)

    Lanza, Richard C.

    1997-09-01

    Small neutron sources could be used by individual researchers with the convenience of an adequate local facility. Although these sources would produce lower fluxes than the national facilities, for selected applications, the convenience and availability may overcome the limitations on source strength. Such sources might also be useful for preliminary testing of ideas before going to a larger facility. Recent developments in small, high-current pulsed accelerators makes possible such a local source for pulsed cold neutrons.

  13. New sources and instrumentation for neutrons in biology

    DEFF Research Database (Denmark)

    Teixeira, S. C. M.; Zaccai, G.; Ankner, J.

    2008-01-01

    Neutron radiation offers significant advantages for the study of biological molecular structure and dynamics. A broad and significant effort towards instrumental and methodological development to facilitate biology experiments at neutron sources worldwide is reviewed.......Neutron radiation offers significant advantages for the study of biological molecular structure and dynamics. A broad and significant effort towards instrumental and methodological development to facilitate biology experiments at neutron sources worldwide is reviewed....

  14. Determination of neutron interaction effect and subcriticality for light water moderated UO2 lattices

    International Nuclear Information System (INIS)

    Miyoshi, Y.; Suzaki, T.; Kobayashi, I.

    1984-01-01

    From the view point of nuclear criticality safety for fuel storage, transport and processing, a series of critical experiments have been performed using a Tank-type Critical Assembly (TCA) at the Japan Atomic Energy Research Institute. The first series of experiments are concerned with the neutron interaction effects between two cores composed of BWR-type fuel rods in water. The reactivity contribution from one core to another have been measured by the water level worth method and a pulsed neutron source method. Two symmetrical rectangular cores were composed in TCA and the water gap between two cores were parametrically changed. The volume ratios of water to fuel are 1.83 and 2.48 of which lattice pitches are 1.96 cm and 2.15 cm respectively. As for the pulsed neutron experiment, Gozani's area ratio method is theoretically extended to a coupled-core system, and the applicability of this method has been studied for determination of the reactivity at a subcritical state and the coupling coefficient that represents reactivity contribution from one core to another. The object of the second series of experiment is development of the technique which determine the reactivity at a high sub-critical state. The CF-252 source driven neutron noise analysis method proposed by Mihalczo has been tested in order to examine whether it could be available for measuring the subcriticality for the light water moderated system. The tested core was water reflected annular type which consisted of 308 UO 2 fuel rods and had a void region at the core center

  15. Miniature neutron sources: Thermal neutron sources and their users in the academic field

    International Nuclear Information System (INIS)

    Egelstaff, P.A.

    1992-01-01

    The three levels of thermal neutron sources are introduced - University laboratory sources infrastructure sources and world-class sources - and the needs for each kind and their inter-dependence will be emphasized. A description of the possibilities for University sources based on α-Be reactions or spontaneous fission emission is given, and current experience with them is described. A new generation of infrastructure sources is needed to continue the regional programs based on small reactors. Some possibilities for accelerator sources that could meet this need are considered

  16. Experimental test of a newly developed single-moderator, multi-detector, directional neutron spectrometer in reference monochromatic fields from 144 keV to 16.5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Gómez-Ros, J.M. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Pola, A.; Bortot, D. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria 16, 20133 Milano (Italy); Gentile, A. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Introini, M.V. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria 16, 20133 Milano (Italy); Buonomo, B. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria 16, 20133 Milano (Italy); Mazzitelli, M. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Sacco, D. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); INAIL – DPIA, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy)

    2015-05-11

    A new directional neutron spectrometer called CYSP (CYlindrical SPectrometer) was developed within the NESCOFI@BTF (2011–2013) collaboration. The device, composed by seven active thermal neutron detectors located along the axis of a cylindrical moderator, was designed to simultaneously respond from the thermal domain up to hundreds of MeV neutrons. The new spectrometer condenses the performance of the Bonner Sphere Spectrometer in a single moderator; thus requiring only one exposure to determine the whole spectrum. The CYSP response matrix, determined with MCNP, has been experimentally evaluated with monochromatic reference neutron fields from 144 keV to 16.5 MeV, plus a {sup 252}Cf source, available at NPL (Teddington, UK). The results of the experiment confirmed the correctness of the response matrix within an overall uncertainty of ±2.5%. The new active spectrometer CYSP offers an innovative option for real-time monitoring of directional neutron fields as those produced in neutron beam-lines.

  17. Targets for neutron beam spallation sources

    International Nuclear Information System (INIS)

    Bauer, G.S.

    1980-01-01

    The meeting on Targets for Neutron Beam Spallation Sources held at the Institut fuer Festkoerperforschung at KFA Juelich on June 11 and 12, 1979 was planned as an informal get-together for scientists involved in the planning, design and future use of spallation neutron sources in Europe. These proceedings contain the papers contributed to this meeting. For further information see hints under relevant topics. (orig./FKS)

  18. Accelerator-driven neutron sources for materials research

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1990-01-01

    Particle accelerators are important tools for materials research and production. Advances in high-intensity linear accelerator technology make it possible to consider enhanced neutron sources for fusion material studies or as a source of spallation neutrons. Energy variability, uniformity of target dose distribution, target bombardment from multiple directions, time-scheduled dose patterns, and other features can be provided, opening new experimental opportunities. New designs have also been used to ensure hands-on maintenance on the accelerator in these factory-type facilities. Designs suitable for proposals such as the Japanese Energy-Selective Intense Neutron Source, and the international Fusion Materials Irradiation Facility are discussed

  19. Future neutron data activity on the neutron source IREN

    International Nuclear Information System (INIS)

    Janeva, N.B.; Koyumdjieva, N.T.; Grigoriev, Y.V.; Gundorin, N.A.; Mareev, Y.D.; Kopatch, Y.N.; Pikelner, L.B.; Shvetsov, V.N.; Sedyshev, P.V.; Zeinalov, S.; Ruskov, I.N.

    2011-01-01

    The global energy demand continues to rise and nuclear power has a potential to be part of the solution of energy problem. Complete and accurate information about the nuclear reactions ensures developing and operating nuclear reactors to reach high efficiencies and adequate safety standards. This demands many nuclear data of improved quality, including covariance nuclear data and correlations. The new neutron source IREN (1 stage) has been put in operation at the end of 2009. The first stage includes the construction of the LUE-200 linear accelerator and non multiplying target. The first measured TOF spectra have been presented recently. The facility is in continuous completion and improvement (according to the full version in the project). The program for neutron data investigation on the IREN neutron source is in preparation. The measuring targets for neutron cross-sections TOF spectra would be selected between isotopes of construction materials, fission products and minor actinides. Now the experimental facilities are in preparation - detectors, innovative electronics equipment and systems for data acquisition and analysis. (authors)

  20. Procedures for measurement of anisotropy factor of neutron sources

    International Nuclear Information System (INIS)

    Creazolla, P.G.; Camargo, A.; Astuto, A.; Silva, F.; Pereira, W.W.

    2017-01-01

    Radioisotope sources of neutrons allow the production of reference fields for calibration of neutron measurement devices for radioprotection and analysis purposes. When the emission rate of these sources is isotropic, no correction is necessary. However, variations in the source capsule material and variations in the concentration of the emitting material may produce differences in its neutron emission rate relative to the source axis, this effect is called anisotropy. A proposed procedure for measuring the anisotropy factor of the sources belonging to the IRD/LNMRI/LN Neutron Metrology Laboratory using a Precision Long Counter (PLC) detector will be presented

  1. Determination of diffusion parameters of Thermal neutrons for non-moderator media by a pulsed method and a time independent method

    International Nuclear Information System (INIS)

    Boufraqech, A.

    1991-01-01

    Two methods for determining the diffusion parameters of thermal neutrons for non-moderator and non-multiplicator media have been developped: The first one, which is a pulsed method, is based on thermal neutrons relaxation coefficients measurement in a moderator, with and without the medium of interest that plays the role of reflector. For the experimental results interpretation using the diffusion theory, a corrective factor which takes into account the neutron cooling by diffusion has been introduced. Its dependence on the empirically obtained relaxation coefficients is in a good agreement with the calculations made in P3L2 approximation. The difference between linear extrapolation lengths of the moderator and the reflector has been taken into account, by developping the scalar fluxes in Bessel function series which automatically satisfy the boundary conditions at the extra-polated surfaces of the two media. The obtained results for Iron are in a good agreement with those in the literature. The second method is time independent, based on the 'flux albedo' measurements interpretation (Concept introduced by Amaldi and Fermi) by P3 approximation in the one group trans-port theory. The independent sources are introduced in the Marshak boundary conditions. An angular albedo matrix has been used to deal with multiple reflections and to take into account the distortion of the current vector when entring a medium, after being reflected by this latter. The results obtained by this method are slightly different from those given in the literature. The analysis of the possible sources causing this discrepancy, particulary the radial distribution of flux in cylindrical geometry and the flux depression at medium-black body interface, has shown that the origin of this discrepancy is the neutron heating by diffusion. 47 figs., 20 tabs., 39 refs. (author)

  2. Materials considerations for the National Spallation Neutron Source target

    International Nuclear Information System (INIS)

    Mansur, L.K.; DiStefano, J.R.; Farrell, K.; Lee, E.H.; Pawel, S.J.; Wechsler, M.S.

    1997-08-01

    The National Spallation Neutron Source (NSNS), in which neutrons are generated by bombarding a liquid mercury target with 1 GeV protons, will place extraordinary demands on materials performance. The target structural material will operate in an aggressive environment, subject to intense fluxes of high energy protons, neutrons, and other particles, while exposed to liquid mercury and to water. Components that require special consideration include the Hg liquid target container and protective shroud, beam windows, support structures, moderator containers, and beam tubes. In response to these demands a materials R and D program has been developed for the NSNS that includes: selection of materials; calculations of radiation damage; irradiations, post irradiation testing, and characterization; compatibility testing and characterization; design and implementation of a plan for monitoring of materials performance in service; and materials engineering and technical support to the project. Irradiations are being carried out in actual and simulated spallation environments. Compatibility experiments in Hg are underway to ascertain whether the phenomena of liquid metal embrittlement and temperature gradient mass transfer will be significant. Results available to date are assessed in terms of the design and operational performance of the facility

  3. Power Burst Reactor Facility as an epithermal neutron source for brain cancer therapy

    International Nuclear Information System (INIS)

    Wheeler, F.J.

    1986-01-01

    The Power Burst Facility (PBF) reactor is considered for modification to provide an intense, clean source of intermediate-energy (epithermal) neutrons desirable for clinical studies of neutron capture therapy (NCT) for malignant tumors. The modifications include partial replacement of the reflector, installation of a neutron-moderating, shifting region, additional shielding, and penetration of the present concrete shield with a collimating (and optionally) filtering region. The studies have indicated that the reactor, after these modifications, will be safely operable at full power (28 MW) within the acceptable limits of the plant protection systems. The neutron beam exiting from the collimator port is predicted to be of sufficient intensity (approx.10 10 neutrons/cm 2 -s) to provide therapeutic doses in very short irradiation times. The beam would be relatively free of undesirable fast neutrons, thermal neutrons and gamma rays. The calculated neutron energy spectrum and associated gamma rays in the beam were provided as input in simulation studies that used a computer model of a patient with a brain tumor to determine predicted dose rates to the tumor and healthy tissue. The results of this conceptual study indicate an intense, clean beam of epithermal neutrons for NCT clinical trials is attainable in the PBF facility with properly engineered design modifications. 9 refs., 11 figs., 3 tabs

  4. Preliminary thermal-hydraulic and structural strength analyses for pre-moderator of cold moderator

    International Nuclear Information System (INIS)

    Aso, Tomokazu; Kaminaga, Masanori; Terada, Atsuhiko; Hino, Ryutaro

    2001-08-01

    A light-water cooled pre-moderator with a thin-walled structure made of aluminum alloy is installed around a liquid hydrogen moderator in order to enhance the neutron performance of a MW-scale spallation target system which is being developed in the Japan Atomic Energy Research Institute (JAERI). Since the pre-moderator is needed to be located close to a target working as a neutron source, it is indispensable to remove nuclear heat deposition in the pre-moderator effectively by means of smooth water flow without flow stagnation. Also, the structural integrity of the thin-walled structure should be kept against the water pressure. Preliminary thermal-hydraulic analytical results showed that the water temperature rise could be suppressed less than 1degC while keeping the smooth water flow, which would assure the expected neutron performance. As for the structural integrity, several measures to meet allowable stress conditions of aluminum alloy were proposed on the basis of the preliminary structural strength analyses. (author)

  5. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    International Nuclear Information System (INIS)

    Wehring, B.W.; Uenlue, K.

    1995-01-01

    Funds were received for the first year of a three year DOE Nuclear Engineering Research Grant, ''Study of Neutron Focusing at the Texas Cold Neutron Source'' (FGO2-92ER75711). The purpose of this three year study was to develop a neutron focusing system to be used with the Texas Cold Neutron Source (TCNS) to produce an intense beam of neutrons. A prompt gamma activation analysis (PGAA) facility was also to be designed, setup, and tested under the three year project. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which we wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, we obtained gains of 3 to 5 for the neutron flux averaged over an area of 1 x 1 cm

  6. A Broad Coverage Neutron Source For Security Inspections

    Science.gov (United States)

    Yang, Yang; Robert, Stubbers; Linchun, Wu; George, Miley

    2004-05-01

    To meet the increasing demanding requirements for security safety inspections, a line-type neutron source employing a cylindrical IEC (RC-IEC) is proposed for non-destructive "in situ" security inspections. The advantages of such a neutron source include line geometry, modularity, swithcability, variable source strength, low cost with minimum maintenance. Detailed description of a 1/3 scale cylindrical device is presented, which might demonstrate that a reasonably long RC-IEC produces a stable discharge with reasonably uniform neutron production along the cylindrical axis. Aiming at the neutron production efficiency at the order of 106 n/J, several methods to maximize neutron production efficiency are discussed. The results of a two-dimensional computer code(MCP) using a Monte Carlo numerical approach for the RC-IEC device are presented together with an analysis of neutron yield vs. different operation parameters.

  7. An epithermal neutron source for BNCT based on an ESQ-accelerator

    International Nuclear Information System (INIS)

    Ludewigt, B.A.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Phillips, T.L.; Reginato, L.L.; Wells, R.P.

    1997-07-01

    An accelerator-based BNCT facility is under development at the Lawrence Berkeley National Laboratory. Neutrons will be produced via the 7 Li(p,n) reaction at proton energies of about 2.5 MeV with subsequent moderation and filtering for shaping epithermal neutron beams for BNCT. Moderator, filter, and shielding assemblies have been modeled using MCNP. Head-phantom dose distributions have been calculated using the treatment planning software BNCT RTPE. The simulation studies have shown that a proton beam current of ∼ 20 mA is required to deliver high quality brain treatments in about 40 minutes. The results also indicate that significantly higher doses can be delivered to deep-seated tumors in comparison to the Brookhaven Medical Research Reactor beam. An electrostatic quadrupole (ESQ) accelerator is ideally suited to provide the high beam currents desired. A novel power supply utilizing the air-coupled transformer concept is under development. It will enable the ESQ-accelerator to deliver proton beam currents exceeding 50 mA. A lithium target has been designed which consists of a thin layer of lithium on an aluminum backing. Closely spaced, narrow coolant passages cut into the aluminum allow the removal of a 50kW heat-load by convective water cooling. The system under development is suitable for hospital installation and has the potential for providing neutron beams superior to reactor sources

  8. Spallation Neutron Sources For Science And Technology

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2011-01-01

    Spallation Neutron Facilities Increasing interest has been noticed in spallation neutron sources (SNS) during the past 20 years. The system includes high current proton accelerator in the GeV region and spallation heavy metal target in the Hg-Bi region. Among high flux currently operating SNSs are: ISIS in UK (1985), SINQ in Switzerland (1996), JSNS in Japan (2008), and SNS in USA (2010). Under construction is the European spallation source (ESS) in Sweden (to be operational in 2020). The intense neutron beams provided by SNSs have the advantage of being of non-reactor origin, are of continuous (SINQ) or pulsed nature. Combined with state-of-the-art neutron instrumentation, they have a diverse potential for both scientific research and diverse applications. Why Neutrons? Neutrons have wavelengths comparable to interatomic spacings (1-5 A) Neutrons have energies comparable to structural and magnetic excitations (1-100 meV) Neutrons are deeply penetrating (bulk samples can be studied) Neutrons are scattered with a strength that varies from element to element (and isotope to isotope) Neutrons have a magnetic moment (study of magnetic materials) Neutrons interact only weakly with matter (theory is easy) Neutron scattering is therefore an ideal probe of magnetic and atomic structures and excitations Neutron Producing Reactions Several nuclear reactions are capable of producing neutrons. However the use of protons minimises the energetic cost of the neutrons produced solid state physics and astrophysics Inelastic neutron scattering

  9. Accelerating fissile material detection with a neutron source

    Science.gov (United States)

    Rowland, Mark S.; Snyderman, Neal J.

    2018-01-30

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly to count neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a Poisson neutron generator for in-beam interrogation of a possible fissile neutron source and a DC power supply that exhibits electrical ripple on the order of less than one part per million. Certain voltage multiplier circuits, such as Cockroft-Walton voltage multipliers, are used to enhance the effective of series resistor-inductor circuits components to reduce the ripple associated with traditional AC rectified, high voltage DC power supplies.

  10. Device for Writing the Time Tail from Spallation Neutron Pulses

    International Nuclear Information System (INIS)

    Langan, P.; Schoenborn, Benno P.; Daemen, L.L.

    2001-01-01

    Recent work at Los Alamos Neutron Science Center (LANSCE), has shown that there are large gains in neutron beam intensity to be made by using coupled moderators at spallation neutron sources. Most of these gains result from broadening the pulse-width in time. However the accompanying longer exponential tail at large emission times can be a problem in that it introduces relatively large beam-related backgrounds at high resolutions. We have designed a device that can reshape the moderated neutron beam by cutting the time-tail so that a sharp time resolution can be re-established without a significant loss in intensity. In this work the basic principles behind the tail-cutter and some initial results of Monte Carlo simulations are described. Unwanted neutrons in the long time-tail are diffracted out of the transmitted neutron beam by a nested stack of aperiodic multi-layers, rocking at the same frequency as the source. Nested aperiodic multi-layers have recently been used at X-ray sources and as band-pass filters in quasi-Laue neutron experiments at reactor neutron sources. Optical devices that rock in synchronization with a pulsed neutron beam are relatively new but are already under construction at LANSCE. The tail-cutter described here is a novel concept that uses existing multi-layer technology in a new way for spallation neutrons. Coupled moderators in combination with beam shaping devices offer the means of increasing flux whilst maintaining a sharp time distribution. A prototype device is being constructed for the protein crystallography station at LANSCE. The protein crystallography station incorporates a water moderator that has been judiciously coupled in order to increase the flux over neutron energies that are important to structural biology (3-80meV). This development in moderator design is particularly important because protein crystallography is flux limited and because conventional ambient water and cold hydrogen moderators do not provide relatively

  11. Analysis of the neutron generation from a D-Li neutron source

    International Nuclear Information System (INIS)

    Gomes, I.

    1994-02-01

    The study of the neutron generation from the D-Li reaction is an important issue to define the optimum combination of the intervening parameters during the design phase of a D-Li neutron source irradiation facility. The major players in defining the neutron yield from the D-Li reaction are the deuteron incident energy and the beam current, provided that the lithium target is thick enough to stop all incident deuterons. The incident deuteron energy also plays a role on the angular distribution of the generated neutrons, on the energy distribution of the generated neutrons, and on the maximum possible energy of the neutrons. The D-Li reaction produces neutrons with energies ranging from eV's to several MeV's. The angular distribution of these neutrons is dependent on the energy of both, incident deuterons and generated neutrons. The deuterons lose energy interacting with the lithium target material in such a way that the energy of the deuterons inside the lithium target varies from the incident deuteron energy to essentially zero. The first part of this study focuses in analyzing the neutron generation rate from the D-Li reaction as a function of the intervening parameters, in defining the source term, in terms of the energy and angular distributions of the generated neutrons, and finally in providing some insights of the impact of varying input parameters on the generation rate and correlated distributions. In the second part an analytical description of the Monte Carlo sampling procedure of the neutron from the D-Li reaction is provided with the aim at further Monte Carlo transport of the D-Li neutrons

  12. Future opportunities with pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A D [Rutherford Appleton Lab., Chilton (United Kingdom)

    1996-05-01

    ISIS is the world`s most powerful pulsed spallation source and in the past ten years has demonstrated the scientific potential of accelerator-driven pulsed neutron sources in fields as diverse as physics, earth sciences, chemistry, materials science, engineering and biology. The Japan Hadron Project gives the opportunity to build on this development and to further realize the potential of neutrons as a microscopic probe of the condensed state. (author)

  13. Advanced spallation neutron sources for condensed matter research

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Stirling, G.C.

    1984-03-01

    Advanced spallation neutron sources afford significant advantages over existing high flux reactors. The effective flux is much greater than that currently available with reactor sources. A ten-fold increase in neutron flux will be a major benefit to a wide range of condensed matter studies, and it will realise important experiments that are marginal at reactor sources. Moreover, the high intensity of epithermal neutrons open new vistas in studies of electronic states and molecular vibrations. (author)

  14. Development of resonant detectors for epithermal neutron spectroscopy at pulsed neutron sources

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Senesi, R.; Andreani, C.; Gorini, G.

    2004-01-01

    New perspectives for epithermal neutron spectroscopy are opened by the development of new detectors for inverse geometry time of flight spectrometers at pulsed neutron sources. One example is the Very Low Angle Detector (VLAD) bank planned to be delivered, within the next 4 years, within the eVERDI project, on the neutron spectrometer VESUVIO, at the ISIS pulsed neutron source (UK). VLAD will extend the (q,ω) kinematical region for neutron scattering to low wavefactor transfer (q -1 ) still keeping energy transfer >1 eV, thus allowing the investigations of new experimental studies in condensed matter systems. The technique being developed for detection of epithermal neutrons, within this low q and high-energy transfer region, is the Resonance Detection Technique. In this work, the state of the detector development will be presented with special focus on the results obtained with some prototype detectors, namely YAP scintillators and cadmium-zinc-telluride semiconductors

  15. Level gauge using neutron radiation

    International Nuclear Information System (INIS)

    Mathew, P.J.

    1985-01-01

    Apparatus for determining the level of a solid or liquid material in a container comprises: a vertical guide within or alongside the container; a sensor positioned within the guide; means for moving the sensor along the guide; and means for monitoring the position of the sensor. The sensor comprises a source of fast neutrons, a detector for thermal neutrons, and a body of a neutron moderating material in close proximity to the detector. Thermal neutrons produced by fast neutron irradiation of the solid or liquid material, or thermal neutrons produced by irradiation of the neutron-moderating material by fast or epithermal neutrons reflected by the solid or liquid material, are detected when the sensor is positioned at or below the level of the material in the container

  16. Production, Distribution, and Applications of Californium-252 Neutron Sources

    International Nuclear Information System (INIS)

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-01-01

    The radioisotope 252 Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10 11 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells 252 Cf to commercial reencapsulators domestically and internationally. Sealed 252 Cf sources are also available for loan to agencies and subcontractors of the U.S. government and to universities for educational, research, and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of 252 Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments, and irradiation of rice to induce genetic mutations

  17. Neutron-irradiation facilities at the Intense Pulsed Neutron Source-I for fusion magnet materials studies

    International Nuclear Information System (INIS)

    Brown, B.S.; Blewitt, T.H.

    1982-01-01

    The decommissioning of reactor-based neutron sources in the USA has led to the development of a new generation of neutron sources that employ high-energy accelerators. Among the accelerator-based neutron sources presently in operation, the highest-flux source is the Intense Pulsed Neutron Source (IPNS), a user facility at Argonne National Laboratory. Neutrons in this source are produced by the interaction of 400 to 500 MeV protons with either of two 238 U target systems. In the Radiation Effects Facility (REF), the 238 U target is surrounded by Pb for neutron generatjion and reflection. The REF has three separate irradiation thimbles. Two thimbles provide irradiation temperatures between that of liquid He and several hundred degrees centigrade. The third thimble operates at ambient temperature. The large irradiation volume, the neutron spectrum and flux, the ability to transfer samples without warm up, and the dedication of the facilities during the irradiation make this ideally suited for radiation damage studies on components for superconducting fusion magnets. Possible experiments for fusion magnet materials are discussed on cyclic irradiation and annealing of stabilizers in a high magnetic field, mechanical tests on organic insulation irradiated at 4 K, and superconductors measured in high fields after irradiation

  18. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C. B. [Radiation Science Department, Necsa, PO Box 582, Pretoria 0001 (South Africa)

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  19. Status of the advanced neutron source

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1991-01-01

    Research reactors in the United States are becoming more and more outdated, at a time when neutron scattering is being recognized as an increasingly important technique in areas vital to the U.S. scientific and technological future. The last U.S. research reactor was constructed over 25 years ago, whereas new facilities have been built or are under construction in Japan, Russia and, especially, Western Europe, which now has a commanding lead in this important field. Concern over this situation in the early 1980's by a number of organizations, including the National Academy of Sciences, led to a recommendation that design work start urgently on an advanced U.S. neutron research facility. This recommendation is realized in the Advanced Neutron Source Project. The centerpiece of the Advanced Neutron Source will be a new research reactor of unprecedented flux (> 7.5x10 19 m -2 ·s -1 ), equipped with a wide variety of state-of-the-art spectrometers and diffractometers on hot, thermal, and cold neutron beams. Very cold and ultracold neutron beams will also be provided for specialized experiments. This paper will discuss the current status of the design and the plans for scattering instrumentation. (author)

  20. Standard Practice for Conducting Irradiations at Accelerator-Based Neutron Sources

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This practice covers procedures for irradiations at accelerator-based neutron sources. The discussion focuses on two types of sources, namely nearly monoenergetic 14-MeV neutrons from the deuterium-tritium T(d,n) interaction, and broad spectrum neutrons from stopping deuterium beams in thick beryllium or lithium targets. However, most of the recommendations also apply to other types of accelerator-based sources, including spallation neutron sources (1). Interest in spallation sources has increased recently due to their proposed use for transmutation of fission reactor waste (2). 1.2 Many of the experiments conducted using such neutron sources are intended to simulate irradiation in another neutron spectrum, for example, that from a DT fusion reaction. The word simulation is used here in a broad sense to imply an approximation of the relevant neutron irradiation environment. The degree of conformity can range from poor to nearly exact. In general, the intent of these simulations is to establish the fundam...

  1. Advanced Neutron Source (ANS) Project progress report

    International Nuclear Information System (INIS)

    McBee, M.R.; Chance, C.M.

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I ampersand C research and development; facility concepts; design; and safety

  2. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE

    International Nuclear Information System (INIS)

    SHAPIRO, S.M.; ZALIZNYAK, I.A.

    2002-01-01

    design for a focused-beam, hybrid time-of-flight instrument with a crystal monochromator for the SNS called HYSPEC (an acronym for hybrid spectrometer). The proposed instrument has a potential to collect data more than an order of magnitude faster than existing steady-source spectrometers over a wide range of energy transfer ((h b ar)ω) and momentum transfer (Q) space, and will transform the way that data in elastic and inelastic single-crystal spectroscopy are collected. HYSPEC is optimized to provide the highest neutron flux on sample in the thermal and epithermal neutron energy ranges at a good-to-moderate energy resolution. By providing a flux on sample several times higher than other inelastic instruments currently planned for the SNS, the proposed instrument will indeed allow unique ground-breaking measurements, and will ultimately make polarized beam studies at a pulsed spallation source a realistic possibility

  3. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    SHAPIRO,S.M.; ZALIZNYAK,I.A.

    2002-12-30

    design for a focused-beam, hybrid time-of-flight instrument with a crystal monochromator for the SNS called HYSPEC (an acronym for hybrid spectrometer). The proposed instrument has a potential to collect data more than an order of magnitude faster than existing steady-source spectrometers over a wide range of energy transfer ({h_bar}{omega}) and momentum transfer (Q) space, and will transform the way that data in elastic and inelastic single-crystal spectroscopy are collected. HYSPEC is optimized to provide the highest neutron flux on sample in the thermal and epithermal neutron energy ranges at a good-to-moderate energy resolution. By providing a flux on sample several times higher than other inelastic instruments currently planned for the SNS, the proposed instrument will indeed allow unique ground-breaking measurements, and will ultimately make polarized beam studies at a pulsed spallation source a realistic possibility.

  4. New spallation neutron sources, their performance and applications

    International Nuclear Information System (INIS)

    1985-01-01

    Pulsed spallation sources now operating in the world are at the KEK Laboratory in Japan (the KENS source), at Los Alamos National Laboratory (WNR) and at Argonne National Laboratory (IPNS), both the latter being in the US. The Intense Pulsed Neutron Source (IPNS) is currently the world's most intense source with a peak neutron flux of 4 x 10 14 n cm -2 s -1 at a repetition rate of 30 Hz, and globally producing approx. 1.5 x 10 15 n/sec. Present pulsed sources are still relatively weak compared to their potential. In 1985 the Rutherford Spallation Neutron Source will come on line, and eventually be approx. 30 more intense than the present IPNS. Later, in 1986 the WNR/PSR option at Los Alamos will make that facility of comparable intensity, while a subcritical fission booster at IPNS will keep IPNS competitive. These new sources will expand the applications of pulsed neutrons but are still based on accelerators built for other scientific purposes, usually nuclear or high-energy physics. Accelerator physicists are now designing machines expressly for spallation neutron research, and the proton currents attainable appear in the milliamps. (IPNS now runs at 0.5 GeV and 14 μA). Such design teams are at the KFA Laboratory Julich, Argonne National Laboratory and KEK. Characteristics, particularly the different time structure of the pulses, of these new sources will be discussed. Such machines will be expensive and require national, if not international, collaboration across a wide spectrum of scientific disciplines. The new opportunities for neutron research will, of course, be dramatic with these new sources

  5. Measurement of radiation skyshine with D-T neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S.; Nishitani, T. E-mail: nisitani@naka.jaeri.go.jp; Ochiai, K.; Kaneko, J.; Hori, J.; Sato, S.; Yamauchi, M.; Tanaka, R.; Nakao, M.; Wada, M.; Wakisaka, M.; Murata, I.; Kutsukake, C.; Tanaka, S.; Sawamura, T.; Takahashi, A

    2003-09-01

    The D-T neutron skyshine experiments have been carried out at the Fusion Neutronics Source (FNS) of JAERI with the neutron yield of {approx}1.7x10{sup 11} n/s. The concrete thickness of the roof and the wall of a FNS target room are 1.15 and 2 m, respectively. The FNS skyshine port with a size of 0.9x0.9 m{sup 2} was open during the experimental period. The radiation dose rate outside the target room was measured a maximum distance of 550 m from the D-T target point with a spherical rem-counter. Secondary gamma-rays were measured with high purity Ge detectors and NaI scintillation counters. The highest neutron dose was about 9x10{sup -22} Sv/(source neutron) at a distance of 30 m from the D-T target point and the dose rate was attenuated to 4x10{sup -24} Sv/(source neutron) at a distance of 550 m. The measured neutron dose distribution was analyzed with Monte Carlo code MCNP-4B and a simple line source model. The MCNP calculation overestimates the neutron dose in the distance range larger than 230 m. The line source model agrees well with the experimental results within the distance of 350 m.

  6. Modeling a neutron rich nuclei source

    Energy Technology Data Exchange (ETDEWEB)

    Mirea, M.; Bajeat, O.; Clapier, F.; Ibrahim, F.; Mueller, A.C.; Pauwels, N.; Proust, J. [Institut de Physique Nucleaire, IN2P3/CNRS, 91 - Orsay (France); Mirea, M. [Institute of Physics and Nuclear Engineering, Tandem Lab., Bucharest (Romania)

    2000-07-01

    The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A source of neutron rich nuclei based on the neutron induced fission can be realised using these beams. A theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The model used to determine the fission products takes into account the excitation energy of the target nucleus and the evaporation of prompt neutrons. Results are presented in connection with a converter-target specific geometry. (author000.

  7. Modeling a neutron rich nuclei source

    International Nuclear Information System (INIS)

    Mirea, M.; Bajeat, O.; Clapier, F.; Ibrahim, F.; Mueller, A.C.; Pauwels, N.; Proust, J.; Mirea, M.

    2000-01-01

    The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A source of neutron rich nuclei based on the neutron induced fission can be realised using these beams. A theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The model used to determine the fission products takes into account the excitation energy of the target nucleus and the evaporation of prompt neutrons. Results are presented in connection with a converter-target specific geometry. (authors)

  8. Neutron spectra of /sup 239/Pu-Be neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A; Nagarajan, P S [Bhabha Atomic Research Centre, Bombay (India). Div. of Radiation Protection

    1977-01-01

    Neutron spectra of /sup 239/Pu-Be(..cap alpha..,n) sources have been calculated by using the most recent data on the differential cross sections and angular distributions. The contribution from the multibody break-up reaction /sup 9/Be(..cap alpha..,..cap alpha..n)/sup 8/Be has also been incorporated. Modifications to the primary spectrum due to the secondary interactions in the source such as elastic scattering with beryllium, oxygen and plutonium and the /sup 9/Be(n,2n) and /sup 239/Pu(n,f) reaction have been calculated for different strengths and geometries. The present calculation has shown that the spectrum changes considerably because of these events within the source by way of smearing of peaks and filling up of valleys and raising the low energy part of the spectrum. Increase in H/D value leads to channeling of extra neutrons into the equatorial plane at the cost of the neutrons along the axial direction. The present calculations show that inclusion of secondary interactions to the extent considered in this work does not account completely for the increased intensity in the lower energy end of the measured spectrum.

  9. Design of a thermal neutron field by 252Cf source for measurement of 10B concentrations in the blood samples for BNCT

    International Nuclear Information System (INIS)

    Naito, H.; Sakurai, Y.; Maruhashi, A.

    2006-01-01

    10 B concentrations in the blood samples for BNCT has been estimated due to amounts of prompt gamma rays from 10 B in the fields of thermal neutrons from a special guide tube attached to research reactor. A system using radioisotopes as the source of thermal neutron fields has advantages that are convenient and low cost because it doesn't need running of a reactor or an accelerator. The validity of 252 Cf as a neutron source for 10 B concentrations detection system was investigated. This system is composed of D 2 O moderator, Pb reflector/filter, C reflector, and LiF filter. A thermal neutron field with low background gamma-rays is obtained. A large source of 252 Cf is required to obtain a sufficient flux. (author)

  10. Preliminary design of GDT-based 14 MeV neutron source

    International Nuclear Information System (INIS)

    Du Hongfei; Chen Dehong; Wang Hui; Wang Fuqiong; Jiang Jieqiong; Wu Yican; Chen Yiping

    2012-01-01

    To meet the need of D-T fusion neutron source for fusion material testing, design goals were presented in this paper according to the international requirements of neutron source for fusion material testing. A preliminary design scheme of GDT-based 14 MeV neutron source was proposed, and a physics model of the neutron source was built based on progress of GDT experiments. Two preliminary design schemes (i. e. FDS-GDT1, FDS-GDT2) were designed; among which FDS-GDT2 can be used for fusion material testing with neutron first wall loading of 2 MW/m 2 . (authors)

  11. Status report on the cold neutron source of the Garching neutron research facility FRM-II

    International Nuclear Information System (INIS)

    Gutsmiedl, E.; Gobrecht, K.

    2001-01-01

    The new high flux research reactor of the Technical University of Munich (Technische Universitaet Muenchen, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D2O-reflector tank at 400 mm from the reactor core axis, close to the thermal neutron flux maximum. The power of 4500 W developed by the nuclear heating in the 16 litres of liquid deuterium at 25 K, and in the structures, is evacuated by a two phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10 from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very improbable during the life time of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H2) to the deuterium (D2) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. A long term change of the hydrogen content in the deuterium is avoided be storing the mixture not in a gas buffer volume but as a metal hydride at low pressure. The metal hydride storage system contains two getter beds, one with 250 kg of LaCo3Ni2, the other one with 150 kg of ZrCo(0.8)Ni(0.2). Each bed can take the total gas inventory, both beds together can absorb the total gas inventory in less than 6 minutes at a pressure < 3 bar. (orig.)

  12. Irradiation facilities at the advanced neutron source

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Neutron Source (ANS) is a facility, centered around a new 330MW(f) heavy-water cooled and reflected research reactor, proposed for construction at Oak Ridge. The main scientific justification for the new source is the United States' need for increased capabilities in neutron scattering and other neutron beam research, but the technical objectives of the project also cater for the need to replace the irradiation facilities at the aging High Flux Isotope Reactor and to provide other research capabilities to the scientific community. This document provides a description of the ANS facilities

  13. Simulated and measured neutron/gamma light output distribution for poly-energetic neutron/gamma sources

    Science.gov (United States)

    Hosseini, S. A.; Zangian, M.; Aghabozorgi, S.

    2018-03-01

    In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the present study, the neutron-gamma discrimination based on the light output distribution was performed using the zero crossing method. As a case study, 241Am-9Be source was considered and the simulated and measured neutron/gamma light output distributions were compared. There is an acceptable agreement between the discriminated neutron/gamma light output distributions obtained from the simulation and experiment.

  14. First test of SP{sup 2}: A novel active neutron spectrometer condensing the functionality of Bonner spheres in a single moderator

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Bortot, D. [Politecnico di Milano—Dipartimento di Energia, Via Ponzio 34/3, 20133 Milano (Italy); INFN—sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Buonomo, B.; Esposito, A. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Gómez-Ros, J.M. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Introini, M.V.; Lorenzoli, M.; Pola, A. [Politecnico di Milano—Dipartimento di Energia, Via Ponzio 34/3, 20133 Milano (Italy); INFN—sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Sacco, D. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); INAIL—DPIA Via di Fontana Candida n.1, 00040 Monteporzio C. (Italy)

    2014-12-11

    The NESCOFI@BTF (2011–2013) international collaboration was established to develop realtime neutron spectrometers to simultaneously cover all energy components of neutron fields, from thermal up to hundreds MeV. This communication concerns a new spherical spectrometer, called SP^2, which condenses the functionality of an Extended Range Bonner Sphere Spectrometer (ERBSS) into a single moderator embedding multiple active thermal neutron detectors. The possibility of achieving the complete spectrometric information in a single exposure constitutes a great advantage compared to the ERBSS. The first experimental test of the instrument, performed with a reference 241Am–Be source in different irradiation geometries, is described. The agreement between observed and simulated response is satisfactory for all tested geometries.

  15. Thermal design study of a liquid hydrogen-cooled cold-neutron source

    International Nuclear Information System (INIS)

    Quach, D.; Aldredge, R.C.; Liu, H.B.; Richards, W.J.

    2007-01-01

    The use of both liquid hydrogen as a moderator and polycrystalline beryllium as a filter to enhance cold neutron flux at the UC Davis McClellan Nuclear Radiation Center has been studied. Although, more work is needed before an actual cold neutron source can be designed and built, the purpose of this preliminary study is to investigate the effects of liquid hydrogen and the thickness of a beryllium filter on the cold neutron flux generated. Liquid hydrogen is kept at 20 K, while the temperature of beryllium is assumed to be 77 K in this study. Results from Monte Carlo simulations show that adding a liquid hydrogen vessel around the beam tube can increase cold neutron flux by more than an order of magnitude. As the thickness of the liquid hydrogen layer increases up to about half an inch, the flux of cold neutrons also increases. Increasing the layer thickness to more than half an inch gives no significant enhancement of cold neutron flux. Although, the simulations show that the cold neutron flux is almost independent of the thickness of beryllium at 77 K, the fraction of cold neutrons does drop along the beam tube. This may be due to the fact that the beam tube is not shielded for neutrons coming directly from the reactor core. Further design studies are necessary for to achieve complete filtering of undesired neutrons. A simple comparison analysis based on heat transfer due to neutron scattering and gamma-ray heating shows that the beryllium filter has a larger rate of change of temperature and its temperature is higher. As a result heat will be transferred from beryllium to liquid hydrogen, so that keeping liquid hydrogen at the desired temperature will be the most important step in the cooling process

  16. Sweden to host a new neutron source

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    The first European neutron source, currently under development, should commence operations by the end of this decade. Its aim: to produce beams of neutrons that can penetrate into the heart of matter without damaging it and reveal its secrets.   An artist's impression of what the ESS should look like in 2019. At the southern end of Sweden, a town called Lund is preparing for the arrival of the world's most powerful neutron source: the European Spallation Source (ESS). Construction is scheduled to start at the beginning of next year, and the facility is expected to become operational by 2019, when it will produce its first neutron beams. “The ESS is the result of an idea that began 20 years ago!” underlines Mats Lindroos, in charge of the ESS Accelerator Division. “Today, 17 European countries support the project, including Sweden, Denmark and Norway, who together account for 50% of the construction funding.” The ESS, whose design is al...

  17. The Advanced Neutron Source

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1990-01-01

    The Advanced Neutron Source (ANS) is to be a multipurpose neutron research center, constructed around a high-flux reactor now being designed at the Oak Ridge National Laboratory (ORNL). Its primary purpose is to place the United States in the forefront of neutron scattering in the twenty-first century. Other research programs include nuclear and fundamental physics, isotope production, materials irradiation, and analytical chemistry. The ANS will be a unique and invaluable research tool because of the unprecedented neutron flux available from the high-intensity research reactor. But this reactor would be ineffective without world-class research facilities that allow the fullest utilization of the available neutrons. And, in turn, those research facilities will not produce new and exciting science without a broad population of users from all parts of the nation and the world, placed in a stimulating environment in which experiments can be effectively conducted and in which scientific exchange is encouraged. This paper discusses the measures being taken to ensure that the design of the ANS focuses not only on the reactor, but on providing the experiment and user support facilities needed to allow its effective use

  18. Proposal for the design of a small-angle neutron scattering facility at a pulsed neutron source

    International Nuclear Information System (INIS)

    Kley, W.

    1980-01-01

    The intensity-resolution-background considerations of an optimized small angle neutron scattering facility are reviewed for the special case of a pulsed neutron source. In the present proposal we conclude that for 'true elastic scattering experiments' filters can be used instead of expensive neutron guide tubes since low background conditions can be achieved by a combined action of filters as well as a proper time gating of the twodimensional detector. The impinging neutron beam is monochromatized by phasing a disk chopper to the neutron source pulses and in the scattered beam a second disk chopper is used to eliminate the inelastically scattered neutrons. Therefore, no time of fligh analysis is necessary for the scattered neutron intensity and true-elastic conditions are obtained by simply gating the two-dimensional detector. Considering a 4 m thick shield for the pulsed neutron source and choosing for optimum conditions a detector area element of (2.5 cm) 2 and a sample area of (1.25 cm) 2 , than for a minimum sample-detector-distance of 1.5 m, a maximum neutron source diameter of 6.67 cm is required in order to maintain always the optimum intensity- and resolution requirements

  19. General-purpose readout electronics for white neutron source at China Spallation Neutron Source.

    Science.gov (United States)

    Wang, Q; Cao, P; Qi, X; Yu, T; Ji, X; Xie, L; An, Q

    2018-01-01

    The under-construction White Neutron Source (WNS) at China Spallation Neutron Source is a facility for accurate measurements of neutron-induced cross section. Seven spectrometers are planned at WNS. As the physical objectives of each spectrometer are different, the requirements for readout electronics are not the same. In order to simplify the development of the readout electronics, this paper presents a general method for detector signal readout. This method has advantages of expansibility and flexibility, which makes it adaptable to most detectors at WNS. In the WNS general-purpose readout electronics, signals from any kinds of detectors are conditioned by a dedicated signal conditioning module corresponding to this detector, and then digitized by a common waveform digitizer with high speed and high precision (1 GSPS at 12-bit) to obtain the full waveform data. The waveform digitizer uses a field programmable gate array chip to process the data stream and trigger information in real time. PXI Express platform is used to support the functionalities of data readout, clock distribution, and trigger information exchange between digitizers and trigger modules. Test results show that the performance of the WNS general-purpose readout electronics can meet the requirements of the WNS spectrometers.

  20. Directional epithermal neutron detector

    International Nuclear Information System (INIS)

    Givens, W.W.; Mills, W.R. Jr.

    1986-01-01

    A borehole tool for epithermal neutron die-away logging of subterranean formations surrounding a borehole is described which consists of: (a) a pulsed source of fast neutrons for irradiating the formations surrounding a borehole, (b) at least one neutron counter for counting epithermal neutrons returning to the borehole from the irradiated formations, (c) a neutron moderating material, (d) an outer thermal neutron shield providing a housing for the counter and the moderating material, (e) an inner thermal neutron shield dividing the housing so as to provide a first compartment bounded by the inner thermal neutron shield and a first portion of the outer thermal neutron shield and a second compartment bounded by the inner thermal neutron shield and a second portion of the outer thermal neutron shield, the counter being positioned within the first compartment and the moderating material being positioned within the second compartment, and (f) means for positioning the borehole tool against one side of the borehole wall and azimuthally orienting the borehole tool such that the first chamber is in juxtaposition with the borehole wall, the formation epithermal neutrons penetrating into the first chamber through the first portion of the outer thermal neutron shield are detected by the neutron counter for die-away measurement, thereby maximizing the directional sensitivty of the neutron counter to formation epithermal neutrons, the borehole fluid epithermal neutrons penetrating into the second chamber through the second chamber through the second portion of the outer thermal neutron shield are largely slowed down and lowered in energy by the moderating material and absorbed by the inner thermal neutron shield before penetrating into the first chamber, thereby minimizing the directional sensitivity of the neutron counter to borehole fluid epithermal neutrons

  1. Characterization of the γ background in epithermal neutron scattering measurements at pulsed neutron sources

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Tardocchi, M.; Schooneveld, E.M.; Senesi, R.

    2006-01-01

    This paper reports the characterization of the different components of the γ background in epithermal neutron scattering experiments at pulsed neutron sources. The measurements were performed on the VESUVIO spectrometer at ISIS spallation neutron source. These measurements, carried out with a high purity germanium detector, aim to provide detailed information for the investigation of the effect of the γ energy discrimination on the signal-to-background ratio. It is shown that the γ background is produced by different sources that can be identified with their relative time structure and relative weight

  2. Study on neutron dosimetry in JNC Tokai Works

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Norio [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works

    2003-03-01

    The author developed the neutron reference calibration fields using a {sup 252}Cf standard source surrounded with PMMA (polymethylmethacrylates) moderators at the Japan Nuclear Cycle Development Institute (JNC), Tokai Works. The moderators are concentric, annular cylinders made of lead-contained PMMA with a thickness of 13.5, 35.0, 59.5 and 77.0mm, and the {sup 252}Cf source is guided to the geometric center of moderators by the pneumatic system. These fields can provide the moderated neutron spectra very similar to those encountered around the globe-boxes of the fabrication process of MOX (PuO{sub 2}-UO{sub 2} mixed oxide) fuel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP4B and the measurements by the INS-type Bonner multi-sphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields were characterized in terms of the neutron fluence rate, spectral composition and ambient dose equivalent rate, and have served for the response-characterization of various neutron survey instruments. (author)

  3. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    International Nuclear Information System (INIS)

    Waldmann, Ole; Ludewigt, Bernhard

    2010-01-01

    We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5 · 10 11 n/s for D-T and ∼ 1 · 10 10 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60 · 6 mm 2 ) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm 2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

  4. Neutron spectra characteristics for the intense neutron source, INS

    International Nuclear Information System (INIS)

    Battat, M.; Dierckx, R.; Emigh, C.R.

    1977-01-01

    The Intense Neutron Source, INS, facility is presently under construction at the Los Alamos Scientific Laboratory. Its purpose is to provide a broad base for research work related to the radiation effects produced by 14-MeV neutrons from a D-T burn of a fusion reactor. The INS facility produces a D-T burn-like reaction from the collision of an intense tritium-ion beam with a supersonic jet target of deuterium gas. The reaction produces a typical D-T 14-MeV neutron spectrum. By adding a fission blanket surrounding the D-T ''burn,'' the neutron spectral shape may be tailored to match almost perfectly the anticipated first-wall spectra from presently proposed fusion reactors. With a blanket in place, the total production of neutrons can be as large as 3 x 10 16 n/s and experimental volumes of the order of 1000 cm 3 can be available at flux levels greater than 0.6 x 10 14 n/cm 2 s

  5. Anisotropy of neutron sources of Neutron Metrology Laboratory, IRD, Brazil; Anisotropia de fontes de neutrons do Laboratorio de Metrologia de Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.C.F.; Silva, F.S.; Leite, S.P.; Creazolla, P.G; Patrão, K.C.S.; Fonseca, E.S. da; Fernandes, S.S.; Pereira, W.W., E-mail: Alexander.camargo@oi.com.br, E-mail: s.felippesouza@gmail.com, E-mail: karla@ird.gov.br, E-mail: walsan@ird.gov.br, E-mail: evaldo@ird.gov.br, E-mail: simonesilvafernandes@gmail.com, E-mail: prycyllacreazolla@gmail.com, E-mail: leitesprk@gmail.com [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Laboratorio Nacional de Metrologia; Fundação Técnico Educacional Souza Marques (FTESM), Rio de Janeiro, RJ (Brazil)

    2017-11-01

    The anisotropy measurements have as main objective to define the emission of the radiation by different angles of an encapsulated neutron source. The measurements were performed using a Long Accuracy Counter (PLC) Detector in the Low Dispersion Room of the LNMRI / IRD with different neutron sources. Each measurement was made using a support for the source, emulated through an arduino system to rotate it. The carrier is marked with a variation of 5 °, ranging from 0 ° to 360 °, for the work in question only half, 0 ° to 180 ° is used for a total of nineteen steps. In this paper three sources of {sup 241}AmBe (α, n) 5.92 GBq (16 Ci) were used, neutron sources having the following dimensions: 105 mm in height and 31 mm in diameter. The PLC was positioned at a distance of 2 meters from the neutron source and has a radius of 15 cm for the detection area. The anisotropy factor of the {sup 241}AmBe source was 17%. The results in this work will focus mainly on the area of radioprotection and studies that will improve the process of routine measurements in laboratories and instrument calibrations. (author)

  6. Neutron reflector design with Californium 252 neutron for Boron neutron chapter therapy facility using MCNP5 simulation method

    International Nuclear Information System (INIS)

    Muhammad Fakhrurreza; Kusminanto; Y Sardjono

    2014-01-01

    In this research has made a reflector design to provide beams of Neutron for BNCT with Californium-252 radioactive source. This collimator is useful to obtain optimum epithermal neutron flux with the smallest impurity radiation (thermal neutron, fast neutron, and gamma). The design process is done using Monte Carlo N-Particle simulation version 5 (MCNP5) code to calculate the neutron flux tally form. The chosen reflector design is the reflectors which use material such as BeO ceramic with 13 cm thick. Moderator use sulfur material with the slope angle of the cone is 30°. From the calculation result, it is obtained that Reflector with 1 gram Californium-252 source can produce a neutron output thermal which has thermal neutron specification 2.23189 x 10 9 n/s.cm 2 , epithermal neutron 3.51548 x 10 9 n/s.cm 2 , and fast neutron 4.82241 x 10 9 n/s.cm 2 From the result, it needs additional collimator because the BNCT requirement. (author)

  7. Characterization of the neutron sources storage pool of the Neutron Standards Laboratory, using Montecarlo Techniques

    International Nuclear Information System (INIS)

    Campo Blanco, X.

    2015-01-01

    The development of irradiation damage resistant materials is one of the most important open fields in the design of experimental facilities and conceptual nucleoelectric fusion plants. The Neutron Standards Laboratory aims to contribute to this development by allowing the neutron irradiation of materials in its calibration neutron sources storage pool. For this purposes, it is essential to characterize the pool itself in terms of neutron fluence and spectra due to the calibration neutron sources. In this work, the main features of this facility are presented and the characterization of the storage pool is carried out. Finally, an application is shown of the obtained results to the neutron irradiation of material.

  8. Neutron sources for neutrino investigations with the lithium converter

    International Nuclear Information System (INIS)

    Lyashuk, V.I.; Lutostansky, Yu.S.

    2012-01-01

    Creation of the powerful antineutrino source with a hard spectrum is possible on the base of β - -decay of the short lived 8 Li (T 1/2 = 0.84 s) isotope formed in the reaction 7 Li(n,γ) 8 Li. The 8 Li. isotope is a prime perspective antineutrino source taking into account that neutrino cross section depends as σ ∼ E ν 2 at the considered energy. The creation of this type powerful neutrino source (neutrino factory) is possible by (n,γ)-activation of high-purified 7 Li isotope under intensive neutron flux. As a neutron source for this purpose can be used the nuclear reactors (of steady-state flux and pulsed one), neutron sources on the base of accelerators and neutron generating targets, beam-dumps of large accelerators. The capabilities and perspectives of neutron sources are considered for the purpose of creation of the neutrino factory. Different realizations of lithium antineutrino sources (lithium converter on the base of high purified 7 Li isotope) are discussed: static regime (i.e., without transport of 8 Li isotope to the detector); dynamic regime (pumping of activated lithium to a remote detector in a closed cycle); lithium converter on the base of (a) a pulse reactors and (b) constructed as tandem of an antineutrino source and accelerator with a neutron-producing target. Heavy water solution of LiOD is proposed as a substance for the lithium converter. The expressions for neutrino fluxes in the detector position are obtained

  9. Neutronic performance of decoupled poisoned and unpoisoned composite moderators for high resolution experiments

    International Nuclear Information System (INIS)

    Kai, Tetsuya; Harada, Masahide; Watanabe, Noboru; Teshigawara, Makoto; Sakata, Hideaki; Ikeda, Yujiro

    2001-01-01

    We studied decoupled poisoned and un-poisoned composite moderators consisting of 20 mm thick hydrogen and 30 mm thick light water. The neutron pulses from un-poisoned one were much broader with longer decay times than a simple decoupled hydrogen moderator in 50 mm thickness. It was also found that the poisoned composite moderator provides higher pulse peak intensities relative to the hydrogen moderator (poisoned at 20 mm) below several tens meV with no penalty of pulse width. (author)

  10. THE SPALLATION NEUTRON SOURCE PROJECT - PHYSICAL CHALLENGES.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.

    2002-06-03

    The Spallation Neutron Source (SNS) is designed to reach an average proton beam power of 1.4 MW for pulsed neutron production. This paper summarizes design aspects and physical challenges to the project.

  11. Experimental optimisation of a moderated sup 2 sup 5 sup 2 Cf source for land mine detection

    CERN Document Server

    Zuin, L; Fabris, D; Lunardon, M; Nebbia, G; Viesti, G; Cinausero, M; Fioretto, E; Prete, G; Palomba, M; Pantaleo, A

    2000-01-01

    A moderated sup 2 sup 5 sup 2 Cf source to be used for the detection of buried land mines has been experimentally characterised. The moderating structure was obtained by using an inner sphere of Pb embedded in a high-density polyethylene (HDPe) brick assembly. The number of capture events in a Cd sample placed outside the structure was used, by varying the dimensions of the brick assembly, to determine the best moderator geometry. Furthermore, the detection of land mines by neutron capture reaction on nitrogen nuclei contained in the explosive was simulated by in field measurements placing the Cd sample at different depths in the soil. The obtained results are compared with predictions from Monte Carlo calculations.

  12. Preliminary radiation transport analysis for the proposed National Spallation Neutron Source (NSNS)

    International Nuclear Information System (INIS)

    Johnson, J.O.; Lillie, R.A.

    1997-01-01

    The use of neutrons in science and industry has increased continuously during the past 50 years with applications now widely used in physics, chemistry, biology, engineering, and medicine. Within this history, the relative merits of using pulsed accelerator spallation sources versus reactors for neutron sources as the preferred option for the future. To address this future need, the Department of Energy (DOE) has initiated a pre-conceptual design study for the National Spallation Neutron Source (NSNS) and given preliminary approval for the proposed facility to be built at Oak Ridge National Laboratory (ORNL). The DOE directive is to design and build a short pulse spallation source in the 1 MS power range with sufficient design flexibility that it can be upgraded and operated at a significantly higher power at a later stage. The pre-conceptualized design of the NSNS initially consists of an accelerator system capable of delivering a 1 to 2 GeV proton beam with 1 MW of beam power in an approximate 0.5 microsecond pulse at a 60 Hz frequency onto a single target station. The NSNS will be upgraded in stages to a 5 MW facility with two target stations (a high power station operating at 60 Hz and a low power station operating at 10 Hz). Each target station will contain four moderators (combinations of cryogenic and ambient temperature) and 18 beam liens for a total of 36 experiment stations. This paper summarizes the radiation transport analysis strategies for the proposed NSNS facility

  13. Design of analytical instrumentation with D-T sealed neutron generators

    International Nuclear Information System (INIS)

    Qiao Yahua; Wu Jizong; Zheng Weiming; Liu Quanwei; Zhang Min

    2008-01-01

    Analytical instrumentation with D-T sealed neutron generators source activation, The 14 MeV D-T sealed neutron tube with 10 9 n · s -1 neutron yield is used as generator source. The optimal structure of moderator and shield was achieved by MC computing.The instrumentation's configuration is showed. The instrumentation is made up of the SMY-DT50.8-2.1 sealed neutron tube and the high-voltage power supply system, which center is the sealed neutron generators. 6 cm Pb and 20 cm polythene is chosen as moderator, Pb, polythene and 10 cm boron-PE was chosen as shield .The sample box is far the source from 9 cm, the measurement system were made up of HPGe detector and the sample transforming system. After moderator and shield, the thermal neutron fluence rate at the point of sample is 0.93 × 10 6 n · s -1 cm -2 , which is accorded with design demand, and the laboratory and surroundings reaches the safety standard of the dose levels. (authors)

  14. Cryogenic moderator design

    International Nuclear Information System (INIS)

    Diplock, B.R.

    1983-01-01

    This paper describes the present design of the two cold moderators to be built for the Spallation Neutron Source. It discusses the reasons behind a number of the design features and highlights several problem areas requiring solutions before a final design can be constructed

  15. Measurements of prompt gamma-rays from fast-neutron induced fission with the LICORNE directional neutron source

    CERN Document Server

    Wilson, J N; Halipre, P; Oberstedt, S; Oberstedt, A

    2014-01-01

    At the IPN Orsay we have developed a unique, directional, fast neutron source called LICORNE, intended initially to facilitate prompt fission gamma measurements. The ability of the IPN Orsay tandem accelerator to produce intense beams of $^7$Li is exploited to produce quasi-monoenergetic neutrons between 0.5 - 4 MeV using the p($^7$Li,$^7$Be)n inverse reaction. The available fluxes of up to 7 × 10$^7$ neutrons/second/steradian for the thickest hydrogen-rich targets are comparable to similar installations, but with two added advantages: (i) The kinematic focusing produces a natural neutron beam collimation which allows placement of gamma detectors adjacent to the irradiated sample unimpeded by source neutrons. (ii) The background of scattered neutrons in the experimental hall is drastically reduced. The dedicated neutron converter was commissioned in June 2013. Some preliminary results from the first experiment using the LICORNE neutron source at the IPN Orsay are presented. Prompt fission gamma rays from fas...

  16. Proceedings of the workshop on neutron instrumentation for a long-pulse spallation source

    International Nuclear Information System (INIS)

    Alonso, J.; Schroeder, L.; Pynn, R.

    1995-01-01

    This workshop was carried out under the auspices of the Lawrence Berkeley National Laboratory Pulsed Spallation Source activity and its Pulsed Spallation Source Committee (PSSC). One of our activities has been the sponsorship of workshops related to neutron production by pulsed sources. At the Crystal City PSSC meeting a decision was made to hold a workshop on the instrumentation opportunities at a long-pulse spallation source (LPSS). The enclosed material represents the results of deliberations of the three working groups into which the participants were divided, covering elastic scattering, inelastic scattering and fundamental physics, as well as contributions from individual participants. We hope that the material in this report will be useful to the neutron scattering community as it develops a road-map for future neutron sources. The workshop was held at LBNL in mid-April with about sixty very dedicated participants from the US and abroad. This report presents the charge for the workshop: Based on the bench mark source parameters provided by Gary Russell, determine how a suite of spectrometers in each of the three working group's area of expertise would perform at an LPSS and compare this performance with that of similar spectrometers at a continuous source or a short-pulse source. Identify and discuss modifications to these spectrometers that would enhance their performance at an LPSS. Identify any uncertainties in the analysis of spectrometer performance that require further research. Describe what R ampersand D is needed to resolve these issues. Discuss how the performance of instruments would be affected by changes in source parameters such as repetition rate, proton pulse length, and the characteristic time of pulse tails. Identify beneficial changes that could become goals for target/moderator designers. Identify novel methods that might be applied at an LPSS. Selected papers are indexed separately for inclusion in the Energy Science and Technology

  17. The single-collision thermalization approximation for application to cold neutron moderation problems

    International Nuclear Information System (INIS)

    Ritenour, R.L.

    1989-01-01

    The single collision thermalization (SCT) approximation models the thermalization process by assuming that neutrons attain a thermalized distribution with only a single collision within the moderating material, independent of the neutron's incident energy. The physical intuition on which this approximation is based is that the salient properties of neutron thermalization are accounted for in the first collision, and the effects of subsequent collisions tend to average out statistically. The independence of the neutron incident and outscattering energy leads to variable separability in the scattering kernel and, thus, significant simplification of the neutron thermalization problem. The approximation also addresses detailed balance and neutron conservation concerns. All of the tests performed on the SCT approximation yielded excellent results. The significance of the SCT approximation is that it greatly simplifies thermalization calculations for CNS design. Preliminary investigations with cases involving strong absorbers also indicates that this approximation may have broader applicability, as in the upgrading of the thermalization codes

  18. Moderator Configuration Options for ESS

    DEFF Research Database (Denmark)

    Zanini, L.; Batkov, K.; Klinkby, Esben Bryndt

    2016-01-01

    The current, still evolving status of the design and the optimization work for the moderator configuration for the European Spallation Source is described. The moderator design has been strongly driven by the low-dimensional moderator concept recently proposed for use in spallation neutron sources...... or reactors. Quasi-two dimensional, disc- or tube-shaped moderators,can provide strong brightness increase (factor of 3 or more) with respect to volume para-H2moderators, which constitute the reference, state-of-the-art technology for high-intensity coupled moderators. In the design process other, more...... conventional, principles were also considered,such as the importance of moderator positioning, of the premoderator, and beam extraction considerations. Different design and configuration options are evaluated and compared with the reference volume moderator configuration described in the ESS Technical Design...

  19. Thermal-hydraulic experiments and analyses for cold moderators

    International Nuclear Information System (INIS)

    Aso, Tomokazu; Kaminaga, Masanori; Hino, Ryutaro

    2003-01-01

    Cold moderators using liquid hydrogen are one of the key components in a MW-scale target system working as a spallation neutron source. The cold moderators directly affect the neutronic performance both in intensity and resolution. Cold moderator vessels are designed to be flat and cylindrical type vessels, which are required to realize and uniform temperature distribution in the vessel to obtain better neutronic performance. Velocity distributions in the moderator vessels, affecting the temperature distributions, were measured by using moderator models under water flowing conditions. In the experiments, jet-induced flows such as recirculation flows and stagnant regions were observed. For the flat type moderator vessel, the analytical results of velocity distributions using a standard k-ε turbulence model agreed well with experimental results obtained with a PIV system. However, for the cylindrical type moderator vessel, especially predicted heat transfer coefficients on a bottom of the vessel were much lower than the experimental results, which gave conservative analytical result of temperature. (author)

  20. Neutron source investigations in support of the cross section program at the Argonne Fast-Neutron Generator

    International Nuclear Information System (INIS)

    Meadows, J.W.; Smith, D.L.

    1980-05-01

    Experimental methods related to the production of neutrons for cross section studies at the Argonne Fast-Neutron Generator are reviewed. Target assemblies commonly employed in these measurements are described, and some of the relevant physical properties of the neutron source reactions are discussed. Various measurements have been performed to ascertain knowledge about these source reaction that is required for cross section data analysis purposes. Some results from these studies are presented, and a few specific examples of neutron-source-related corrections to cross section data are provided. 16 figures, 3 tables

  1. Preliminary optimization experiments of coupled liquid hydrogen moderator for KENS-II

    International Nuclear Information System (INIS)

    Watanabe, N.; Kiyanagi, Y.; Inoue, K.; Furusaka, M.; Ikeda, S.; Arai, M.; Iwasa, H.

    1989-01-01

    As a preliminary optimization experiment on the cold-neutron source for KENS-II, energy and time distributions of cold neutrons emanating from coupled liquid-hydrogen moderators with and without a premoderator in a graphite reflector were measured and compared with those from a decoupled liquid-hydrogen moderator. The results showed that the energy spectra from the coupled liquid-hydrogen moderators are almost the same as those from a decoupled one. Relative gain of the former to the latter is fairly high, more than 5, and further increases with increasing wavelength. The broadening of the neutron pulse width in coupled moderators at the cold-neutron region is not so significant and only 1.5 times compared to the solid methane moderator presently operated at KENS-II. 2 refs., 12 figs., 1 tab

  2. Prototype Neutron Energy Spectrometer

    International Nuclear Information System (INIS)

    Mitchell, Stephen; Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald

    2010-01-01

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production (ship effect), (a, n) reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  3. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  4. Enhancing the performance of a tensioned metastable fluid detector based active interrogation system for the detection of SNM in interrogation source in moderated/reflected geometries

    Science.gov (United States)

    Grimes, T. F.; Hagen, A. R.; Archambault, B. C.; Taleyarkhan, R. P.

    2018-03-01

    This paper describes the development of a SNM detection system for interrogating 1m3 cargos via the combination of a D-D neutron interrogation source (with and without reflectors) and tensioned metastable fluid detectors (TMFDs). TMFDs have been previously shown (Taleyarkhan et al., 2008; Grimes et al., 2015; Grimes and Taleyarkhan, 2016; Archambault et al., 2017; Hagen et al., 2016) to be capable of using Threshold Energy Neutron Analysis (TENA) techniques to reject the ∼2.45 MeV D-D interrogating neutrons while still remaining sensitive to >2.45 MeV neutrons resulting from fission in the target (HEU) material. In order to enhance the performance, a paraffin reflector was included around the accelerator head. This reflector was used to direct neutrons into the package to increase the fission signal, lower the energy of the interrogating neutrons to increase the fission cross-section with HEU, and, also to direct interrogating neutrons away from the detectors in order to enhance the required discrimination between interrogating and fission neutrons. Experiments performed with a 239 Pu-Be neutron source and MnO2 indicated that impressive performance gains could be made by placing a parabolic paraffin moderator between the interrogation source and an air-filled cargo container with HEU placed at the center. However, experiments with other cargo fillers (as specified in the well-known ANSI N42.41-2007 report), and with HEU placed in locations other than the center of the package indicated that other reflector geometries might be superior due to over-"focusing" and the increased solid angle effects due to the accommodation of the moderator geometry. The best performance for the worst case of source location and box fill was obtained by placing the reflector only behind the D-D neutron source rather than in front of it. Finally, it was shown that there could be significant gains in the ability to detect concealed SNM by operating the system in multiple geometric

  5. Correction for variable moderation and multiplication effects associated with thermal neutron coincidence counting

    International Nuclear Information System (INIS)

    Baron, N.

    1978-01-01

    A correction is described for multiplication and moderation when doing passive thermal neutron coincidence counting nondestructive assay measurements on powder samples of PuO 2 mixed arbitrarily with MgO, SiO 2 , and moderating material. The multiplication correction expression is shown to be approximately separable into the product of two independent terms; F/sub Pu/ which depends on the mass of 240 Pu, and F/sub αn/ which depends on properties of the matrix material. Necessary assumptions for separability are (1) isotopic abundances are constant, and (2) fission cross sections are independent of incident neutron energy: both of which are reasonable for the 8% 240 Pu powder samples considered here. Furthermore since all prompt fission neutrons are expected to have nearly the same energy distributions, variations among different samples can be due only to the moderating properties of the samples. Relative energy distributions are provided by a thermal neutron well counter having two concentric rings of 3 He proportional counters placed symmetrically about the well. Measured outer-to-inner ring ratios raised to an empirically determined power for coincidences, (N/sup I//N/sup O/)/sup Z/, and singles, (T/sup O//T/sup I/)/sup delta/, provide corrections for moderation and F/sub αn/ respectively, and F/sub Pu/ is approximated by M 240 /sup X//M 240 . The exponents are calibration constants determined by a least squares fitting procedure using standards' data. System calibration is greatly simplified using the separability principle. Once appropriate models are established for F/sub Pu/ and F/sub αn/, only a few standards are necessary to determine the calibration constants associated with these terms. Since F/sub Pu/ is expressed as a function of M 240 , correction for multiplication in a subsequent assay demands only a measurement of F/sub αn/

  6. Container construction for the Pu-Be source at the Atominstitut Wien

    International Nuclear Information System (INIS)

    Tatlisu Halit

    2003-07-01

    The aim of this study was to construct a neutron source container as small as possible. For this purpose an aluminum container was ordered to reserve the Pu-Be neutron source of the TRIGA Mark-II research reactor at the Atominstitute of Austrian Universities, Vienna. The important point is the shielding of the neutrons according to the radiation protection policy at ATI. Fast neutrons, which emitted from the source, cannot be shielded directly. They have to be moderated by a suitable moderator material and then they can be absorbed using a strong neutron absorber material. The most effective moderators are elements with low atomic number; therefore hydrogen-containing materials are the major component of neutron shielding. As a moderator and absorber material together we have chosen borated polyethylene among the various materials considering its properties. It contains H and C, which are suitable moderator materials and B for neutron absorption. It is important to quickly moderate the neutron to low energy, where it can be absorbed with boron owing to the high absorption cross section. The constructed shielding, which consists of borated polyethylene, was placed into the ordered A1 container. At the end we measured the emitted radiation dose using a neutron counter at different distances from the container. (author)

  7. Cold neutron radiographic apparatus and method

    International Nuclear Information System (INIS)

    Larsen, J.E.

    1980-01-01

    Cold neutron radiography may be improved by matching neutron temperature to the specific material to be analyzed. It is possible to bombard the material with neutrons having the precise average temperature necessary to realize the minimum attenuation coefficient, or to choose a neutron temperature that would increase the attenuation by inclusions, defects, etc., or to choose a neutron temperature that provides a good balance between sample transmission and defect attenuation. Other neutron temperatures might also be chosen for other reasons. This may be done by having a source of neutrons embedded in a moderator material, such as solid methane, and cooling the moderator material to the desired temperature by a cryogenic refrigerator. In another embodiment, neutrons from a nuclear reactor are passed through a moderator cooled by a cryogenic refrigerator. Since the neutron temperature is matched to the material being radiographically inspected, improved contrast and resolution can be obtained through thicker materials than it has heretofore been possible to analyze by cold neutron radiography. More optimum filtering of a neutron beam is also achieved by using a cryogenic refrigerator to cool the neutron beam filter. (auth)

  8. Synchrotron based spallation neutron source concepts

    International Nuclear Information System (INIS)

    Cho, Y.

    1998-01-01

    During the past 20 years, rapid-cycling synchrotrons (RCS) have been used very productively to generate short-pulse thermal neutron beams for neutron scattering research by materials science communities in Japan (KENS), the UK (ISIS) and the US (IPNS). The most powerful source in existence, ISIS in the UK, delivers a 160-kW proton beam to a neutron-generating target. Several recently proposed facilities require proton beams in the MW range to produce intense short-pulse neutron beams. In some proposals, a linear accelerator provides the beam power and an accumulator ring compresses the pulse length to the required ∼ 1 micros. In others, RCS technology provides the bulk of the beam power and compresses the pulse length. Some synchrotron-based proposals achieve the desired beam power by combining two or more synchrotrons of the same energy, and others propose a combination of lower and higher energy synchrotrons. This paper presents the rationale for using RCS technology, and a discussion of the advantages and disadvantages of synchrotron-based spallation sources

  9. A large angle cold neutron bender using sequential garland reflections for pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, T.; Tasaki, S. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Soyama, K.; Suzuki, J. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    We discuss a basic structure and performance of a new cold neutron bender using sequential garland reflections, in order to bend a neutron beam with large divergence by large angle. Using this bender for a pulsed neutron source we could not only avoid the frame overlap for cold neutrons but also install a plural spectrometers at a cold guide and obtain polarized neutron beams if necessary. (author)

  10. A large angle cold neutron bender using sequential garland reflections for pulsed neutron source

    International Nuclear Information System (INIS)

    Ebisawa, T.; Tasaki, S.; Soyama, K.; Suzuki, J.

    2001-01-01

    We discuss a basic structure and performance of a new cold neutron bender using sequential garland reflections, in order to bend a neutron beam with large divergence by large angle. Using this bender for a pulsed neutron source we could not only avoid the frame overlap for cold neutrons but also install a plural spectrometers at a cold guide and obtain polarized neutron beams if necessary. (author)

  11. Neutron sources and their characteristics

    International Nuclear Information System (INIS)

    McCall, R.C.; Swanson, W.P.

    1979-03-01

    The significant sources of photoneutrons within a linear-accelerator treatment head are identified and absolute estimates of neutron production per treatment dose are given for typical components. It is found that the high-Z materials within the treatment head do not significantly alter the neutron fluence but do substantially reduce the average energy of the transmitted spectrum. Reflection of neutrons from the concrete treatment room contribute to the neutron fluence, but not substantially to the patient integral dose, because of a further reduction in average energy. The ratio of maximum fluence to the treatment dose at the same distance is given as a function of electron energy. This ratio rises with energy to an almost constant value of 2.1 x 10 5 neutrons cm -2 rad -1 at electron energies above about 25 MeV. Measured data obtained at a variety of accelerator installations are presented and compared with these calculations. Reasons for apparent deviations are suggested. Absolute depth-dose and depth-dose-equivalent distributions for realistic neutron spectra that occur at therapy installations are calculated, and a rapid falloff with depth is found. The ratio of neutron integral absorbed dose to leakage photon absorbed dose is estimated to be 0.04 and 0.2 for 14 to 25 MeV incident electron energy, respectively. Possible reasons are given for lesser neutron production from betatrons than from linear accelerators. Possible ways in which neutron production can be reduced are discussed

  12. Research applications of the Livermore RTNS-II neutron sources

    International Nuclear Information System (INIS)

    Davis, J.C.

    1978-01-01

    The Lawrence Livermore Laboratory has completed construction of the Rotating Target Neutron Source-II (RTNS-II) Facility. These sources, built and operated for the Office of Fusion Energy of the Department of Energy, will be operated by LLL as a national facility for the study of materials damage processes induced by 14-MeV neutrons. Design strength of the sources is 4 x 10 13 n/s with a maximum flux of 1 X 10 13 n/cm 2 s. The 400 keV, 150 mA D + accelerators and 5000 rpm titanium--tritide target assemblies were built using experience gained with LLL's RTNS-I neutron source. The RTNS-I source, producing 6 x 10 12 n/s, is currently the most intense 14-MeV source available. RTNS-I has been used for fusion reactor materials studies for the past six years. The experimental program for the new sources will be oriented toward fundamental measurements of high energy neutron-induced effects. The data produced will be used to develop models of damage processes to help guide materials selection for future fusion reactors

  13. Development of Cold Neutron Activation Station at HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Sun, G. M.; Hoang, S. M. T.; Moon, J. H.; Chung, Y. S.; Cho, S. J.; Lee, K. H.; Park, B. G.; Choi, H. D.

    2012-01-01

    A new cold neutron source at the HANARO Research Reactor had been constructed in the framework of a five-year project, and ended in 2009. It has seven neutron guides, among which five guides were already allocated for a number of neutron scattering instruments. A new two-year project to develop a Cold Neutron Activation Station (CONAS) was carried out at the two neutron guides since May 2010, which was supported by the program of the Ministry of Education, Science and Technology, Korea. Fig. 1 shows the location of CONAS. CONAS is a complex facility including several radioanalytical instruments utilizing neutron capture reaction to analyze elements in a sample. It was designed to include three instruments like a CN-PGAA (Cold Neutron - Prompt Gamma Activation Analysis), a CN-NIPS (Cold Neutron - Neutron Induced Pair Spectrometer), and a CN-NDP (Cold Neutron - Neutron-induced prompt charged particle Depth Profiling). Fig. 2 shows the conceptual configuration of the CONAS concrete bioshield and the instruments. CN-PGAA and CN-NIPS measure the gamma-rays promptly emitted from the sample after neutron capture, whereas CN-NDP is a probe to measure the charged particles emitted from the sample surface after neutron capture. For this, we constructed two cold neutron guides called CG1 and CG2B guides from the CNS

  14. Status of the Spallation Neutron Source with focus on target materials

    International Nuclear Information System (INIS)

    Mansur, L.K.; Haines, J.R.

    2006-01-01

    An overview of the design and construction of the Spallation Neutron Source (SNS) is presented. Key facility performance parameters are summarized and plans for initial operation are described. Early efforts produced a conceptual design in 1997; the project itself was initiated in 1999, with the official groundbreaking taking place in December of 1999. As of April 2005 building construction was complete and the overall project was more than 90% complete. The design of the target and surrounds are finished and the first target was installed in June 2005. First beam on target is expected in June, 2006. The engineering design of the target region is described. The key systems comprise the mercury target, moderator and reflector assemblies, remote handling systems, utilities and shielding. Through interactions with the 1 GeV proton beam, the target, moderators and reflectors produce short pulse neutrons in thermal energy ranges, which are transported to a variety of neutron scattering instruments. The mercury target module itself is described in more detail. Materials issues are expected to govern the overall lifetime and have influenced the design, fabrication and planned operation. A wide range of materials research and development has been carried out to provide experimental data and analyses to ensure the satisfactory performance of the target and to set initial design conditions. Materials R and D concentrated mainly on cavitation erosion, radiation effects, and mercury compatibility issues, including investigations of the mechanical properties during exposure to mercury. Questions that would require future materials research are discussed

  15. Spectral investigation of neutron radiation in three-sectional concrete labyrinth from a californium-252 source

    International Nuclear Information System (INIS)

    Belogorlov, E.A.; Britvich, G.I.; Getmanov, V.B.

    1985-01-01

    Construction of labyrinths in points of communication output from the storage-ring under construction is accompanied by numerous difficulties due to a considerable number of gas and cryogenic pipelines, which require large cross sections at the minimal length of the pipelines proper for their location. It results in unfavourable for radiation attenuation ratios between cross section and length of the labyrinth separate sections. Neutron spectra in a model concrete labyrinth, at the entrance to which a neutron source with fission spectrum (californium-252) and the same source in a polyethylene moderator are located, are measured. On the basis of the spectra obtained the formation of fluence and equivalent dose along the labyrinth geometric axis is analyzed. Conditions permitting actually to reduce radiation dose in the labyrinth (dead end provision, the use of cover materials, construction of diaphragms and shielding plates) are simulated

  16. IPNS grooved, solid methane moderator

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Schulke, A.W.; Scott, T.L.; Wozniak, D.G.; Benson, B.E.; Leyda, B.D.

    1985-01-01

    There are two motives for using cold moderators in pulsed neutron sources, to provide higher fluxes of long-wavelength neutrons, and to extend the epithermal range with its short pulse structure to lower energies. For both these purposes solid methane, operated at the lowest possible temperatures, is the best material we know of. Two problems accompany the use of solid methane in high power sources, namely heat transport in view of the low thermal conductivity of solid methane, and deterioration due to radiation damage. We have designed a system suitable to operate in IPNS, subject to nuclear heating of about 25 W, which incorporates an aluminum foam matrix to conduct the heat from within the moderator. We report the results of the first few months' operation and of a few tests that we have performed

  17. Subcriticality calculation in nuclear reactors with external neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Adilson Costa da; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mails: asilva@con.ufrj.br; aquilino@lmp.ufrj.br; fernando@con.ufrj.br

    2007-07-01

    The main objective of this paper consists on the development of a methodology to monitor subcriticality. We used the inverse point kinetic equation with 6 precursor groups and external neutron sources for the calculation of reactivity. The input data for the inverse point kinetic equation was adjusted, in order to use the neutron counting rates obtained from the subcritical multiplication (1/M) in a nuclear reactor. In this paper, we assumed that the external neutron sources strength is constant and we define it in terms of a known initial condition. The results obtained from inverse point kinetic equation with external neutron sources were compared with the results obtained with a benchmark calculation, and showed good accuracy (author)

  18. Subcriticality calculation in nuclear reactors with external neutron sources

    International Nuclear Information System (INIS)

    Silva, Adilson Costa da; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2007-01-01

    The main objective of this paper consists on the development of a methodology to monitor subcriticality. We used the inverse point kinetic equation with 6 precursor groups and external neutron sources for the calculation of reactivity. The input data for the inverse point kinetic equation was adjusted, in order to use the neutron counting rates obtained from the subcritical multiplication (1/M) in a nuclear reactor. In this paper, we assumed that the external neutron sources strength is constant and we define it in terms of a known initial condition. The results obtained from inverse point kinetic equation with external neutron sources were compared with the results obtained with a benchmark calculation, and showed good accuracy (author)

  19. The “neutron channel design”—A method for gaining the desired neutrons

    Directory of Open Access Journals (Sweden)

    G. Hu

    2016-12-01

    Full Text Available The neutrons with desired parameters can be obtained after initial neutrons penetrating various structure and component of the material. A novel method, the “neutron channel design”, is proposed in this investigation for gaining the desired neutrons. It is established by employing genetic algorithm (GA combining with Monte Carlo software. This method is verified by obtaining 0.01eV to 1.0eV neutrons from the Compact Accelerator-driven Neutron Source (CANS. One layer polyethylene (PE moderator was designed and installed behind the beryllium target in CANS. The simulations and the experiment for detection the neutrons were carried out. The neutron spectrum at 500cm from the PE moderator was simulated by MCNP and PHITS software. The counts of 0.01eV to 1.0eV neutrons were simulated by MCNP and detected by the thermal neutron detector in the experiment. These data were compared and analyzed. Then this method is researched on designing the complex structure of PE and the composite material consisting of PE, lead and zirconium dioxide.

  20. Thermal neutron equivalent doses assessment around KFUPM neutron source storage area using NTDs

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Fazal-ur-Rehman; Al-Haddad, M.N.; Al-Jarrallah, M.I.; Nassar, R

    2002-07-01

    Area passive neutron dosemeters based on nuclear track detectors (NTDs) have been used for 13 days to assess accumulated low doses of thermal neutrons around neutron source storage area of the King Fahd University of Petroleum and Minerals (KFUPM). Moreover, the aim of this study is to check the effectiveness of shielding of the storage area. NTDs were mounted with the boron converter on their surface as one compressed unit. The converter is a lithium tetraborate (Li{sub 2}B{sub 4}O{sub 7}) layer for thermal neutron detection via {sup 10}B(N,{alpha}){sup 7}Li and {sup 6}Li(n,{alpha}){sup 3}H nuclear reactions. The area passive dosemeters were installed on 26 different locations around the source storage area and adjacent rooms. The calibration factor for NTD-based area passive neutron dosemeters was found to be 8.3 alpha tracks.cm{sup -2}.{mu}Sv{sup -1} using active snoopy neutron dosemeters in the KFUPM neutron irradiation facility. The results show the variation of accumulated dose with locations around the storage area. The range of dose rates varied from as low as 40 nSv.h{sup -1} up to 11 {mu}Sv.h{sup -1}. The study indicates that the area passive neutron dosemeter was able to detect accumulated doses as low as 40 nSv.h{sup -1}, which could not be detected with the available active neutron dosemeters. The results of the study also indicate that an additional shielding is required to bring the dose rates down to background level. The present investigation suggests extending this study to find the contribution of doses from fast neutrons around the neutron source storage area using NTDs through proton recoil. The significance of this passive technique is that it is highly sensitive and does not require any electronics or power supplies, as is the case in active systems. (author)