WorldWideScience

Sample records for neutron physics related

  1. Nuclear physics and neutronics

    International Nuclear Information System (INIS)

    Paya, D.

    1997-01-01

    After a brief review of the beginnings of the nuclear reaction physics in France in the 40's and 50's, the experimentation neutronics and nuclear physics studies are related and their uses presented, which aims were to provide data for the study of the various reactor concepts and to study fundamental physics. Progressively, pure nuclear physics lost its links with neutronics, and its influence decreases more or less. Long life radioactive waste reprocessing is an important domain where it could regain its contribution

  2. Fundamental neutron physics

    International Nuclear Information System (INIS)

    Deslattes, R.; Dombeck, T.; Greene, G.; Ramsey, N.; Rauch, H.; Werner, S.

    1984-01-01

    Fundamental physics experiments of merit can be conducted at the proposed intense neutron sources. Areas of interest include: neutron particle properties, neutron wave properties, and fundamental physics utilizing reactor produced γ-rays. Such experiments require intense, full-time utilization of a beam station for periods ranging from several months to a year or more

  3. Physics of Neutron Star Crusts

    Directory of Open Access Journals (Sweden)

    Chamel Nicolas

    2008-12-01

    Full Text Available The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  4. Research trends in neutron physics

    International Nuclear Information System (INIS)

    Lynn, J.E.

    1976-01-01

    The trends in neutron research are discussed from the viewpoints of development of pulsed neutron sources, the ingenuity of specialization of instrumentation and experimental techniques, and research programs. The latter comprise the large and still expanding requirements of nuclear data for nuclear power technology, the requirements of other fundamental sciences, and the experimental and theoretical developments required for a more fundamental understanding of the subject of neutron and related nuclear reactions itself. The general conclusion is that high energy resolution coupled with high intensity for detecting weak reactions provides the key to further progress, and that (provided financial limitations do not stifle the further development of experimental facilities, particularly neutron sources) the subject of neutron physics still has a long and fruitful future

  5. Quantum physics with neutrons

    International Nuclear Information System (INIS)

    Durstberger, K.; Hasegawa, Y.; Klepp, J.; Sulyok, G.; Rauch, H.

    2008-01-01

    Full text: Fundamental quantum properties like quantum coherence and entanglement are among the most interesting features of quantum mechanics. The physical system of interest is the (massive) neutron subjected to interferometric and polarimetric measurements. Neutrons are proper objects for a study of quantum mechanical behavior: they allow for rather easy experimental control and the neutron spin is the simplest two-level system with easy manipulation by magnetic fields. In combination with interferometric measurements the system has enough intrinsic richness to show interesting quantum features such as entanglement. The coupling of the neutron to an external magnetic field allows for selective manipulations of the spinor quantum states. This can be used, on the one hand, to create entangled states where the entanglement occurs between different degrees of freedom (e.g. spin and path) and, on the other hand, one can introduce dephasing and decoherence by varying magnetic fields. We investigate different kinds of entanglement for the neutron system and mechanisms for decoherence and dephasing. We discuss weak measurements and their realization for neutrons where information about the system can be revealed without disturbing the system too much. Beyond the theoretical work we develop experimental strategies to check the results directly in suitably designed experiments. The experimental work is done at the Institute Laue-Langvine (ILL) in Grenoble, France. (author)

  6. Nuclear physics and fundamental physics explored with neutrons

    International Nuclear Information System (INIS)

    Masuda, Yasuhiro

    1995-08-01

    This Japan Hadron Project workshop was held on May 19 and 20, 1995, at Institute for Nuclear Study, University of Tokyo. The Neutron Arena planned in JHP is the facility that uses the spallation neutrons generated by high energy protons, and its utilization is planned in wide research fields. On the other hand, in the neutron scattering facility in the booster utilization facility of National Laboratory for High Energy Physics, the researches of verifying parity nonconservation and time reversal break have been carried out so far. It is necessary to accurately measure the reaction cross section of neutrons in low energy region. This workshop was planned for examining the Neutron Arena by the researchers related to elementary particles and atomic nuclei. In the workshop, lectures were given on the break of the reversal symmetry of time and space in neutron-atomic nucleus reaction, neutrino physics, neutron capture and celestial nuclear physics, neutron-induced nucleosynthesis, development and utilization of very cold neutron interferometer using multi-layer film mirror, research on gravity using neutron interferometer, electric polarizability of neutrons, β decay of neutrons, possibility of research on basic symmetry problem at E-arena, β decay in storage ring, neutron electric dipole moment using ultracold neutrons, magnetic confinement and control of ultracold neutrons, and outline of JHP neutron source. (K.I.)

  7. Neutron physics with accelerators

    Science.gov (United States)

    Colonna, N.; Gunsing, F.; Käppeler, F.

    2018-07-01

    Neutron-induced nuclear reactions are of key importance for a variety of applications in basic and applied science. Apart from nuclear reactors, accelerator-based neutron sources play a major role in experimental studies, especially for the determination of reaction cross sections over a wide energy span from sub-thermal to GeV energies. After an overview of present and upcoming facilities, this article deals with state-of-the-art detectors and equipment, including the often difficult sample problem. These issues are illustrated at selected examples of measurements for nuclear astrophysics and reactor technology with emphasis on their intertwined relations.

  8. Experiments in Fundamental Neutron Physics

    OpenAIRE

    Nico, J. S.; Snow, W. M.

    2006-01-01

    Experiments using slow neutrons address a growing range of scientific issues spanning nuclear physics, particle physics, astrophysics, and cosmology. The field of fundamental physics using neutrons has experienced a significant increase in activity over the last two decades. This review summarizes some of the recent developments in the field and outlines some of the prospects for future research.

  9. Particle physics with cold neutrons

    International Nuclear Information System (INIS)

    Dubbers, D.

    1991-01-01

    Slow neutrons are used in a large number of experiments to study the physics of particles and their fundamental interactions. Some of these experiments search for manifestations of ''new physics'' like baryon- or lepton-number nonconservation, time reversal nonconservation, new particles, right-handed currents, nonzero neutron charge, nonlinear terms in the Schrodinger equation, exotic e + e - states, and others. Other slow neutron experiments test the present Standard Model. The parity nonconserving weak neutron-nucleon interaction is studied in a variety of experiments. Free neutron beta decay gives precise values for the weak vector and axialvector coupling constants, which allow precise tests of basic symmetries like the conservation of the weak vector current, the unitarity of the weak quark mixing matrix, SU(3) flavour symmetry, and right-handed currents. Neutron beta decay data are further needed to calculate weak cross-sections, for applications, in big bang cosmology, in astrophysics, in solar physics and the solar neutrino problem, and in such mundane things as neutrino detection efficiencies in neutrino oscillation or proton decay experiments. Neutron-nucleon, neutron-nucleus and neutron-electron scattering lengths are determined in high precision experiments, which use methods like neutron interferometry or neutron gravity spectrometry. The experiments give information on quantities like the neutron charge radius or the neutron electric polarizability. Precision measurements of other fundamental constants lead to a better, model-independent value of the fine structure constant. Finally, the fundamental experiments on quantum mechanics, like spinor 4π -rotation, Berry's phase, dressed neutrons, Aharanov - Casher effect, or gravitational effects on the neutron's phase will be briefly discussed. (author)

  10. General remarks on fast neutron reactor physics

    International Nuclear Information System (INIS)

    Barre, J.Y.

    1980-01-01

    The main aspects of fast reactor physics, presented in these lecture notes, are restricted to LMFBR's. The emphasis is placed on the core neutronic balance and the burn-up problems. After a brief description of the power reactor main components and of the fast reactor chronology, the fundamental parameters of the one-group neutronic balance are briefly reviewed. Then the neutronic burn-up problems related to the Pu production and to the doubling time are considered

  11. Evaluation of Neutron-induced Cross Sections and their Related Covariances with Physical Constraints

    Science.gov (United States)

    De Saint Jean, C.; Archier, P.; Privas, E.; Noguère, G.; Habert, B.; Tamagno, P.

    2018-02-01

    Nuclear data, along with numerical methods and the associated calculation schemes, continue to play a key role in reactor design, reactor core operating parameters calculations, fuel cycle management and criticality safety calculations. Due to the intensive use of Monte-Carlo calculations reducing numerical biases, the final accuracy of neutronic calculations increasingly depends on the quality of nuclear data used. This paper gives a broad picture of all ingredients treated by nuclear data evaluators during their analyses. After giving an introduction to nuclear data evaluation, we present implications of using the Bayesian inference to obtain evaluated cross sections and related uncertainties. In particular, a focus is made on systematic uncertainties appearing in the analysis of differential measurements as well as advantages and drawbacks one may encounter by analyzing integral experiments. The evaluation work is in general done independently in the resonance and in the continuum energy ranges giving rise to inconsistencies in evaluated files. For future evaluations on the whole energy range, we call attention to two innovative methods used to analyze several nuclear reaction models and impose constraints. Finally, we discuss suggestions for possible improvements in the evaluation process to master the quantification of uncertainties. These are associated with experiments (microscopic and integral), nuclear reaction theories and the Bayesian inference.

  12. Fast neutron physics

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Amorim, E.S. do.

    1979-12-01

    Finite systems of small dimensions were investigated in comparison with systems where the diffusion theory is valid with reasonable precision. Elaborated methods were introduced for the study of small systems, based on different approximations of the neutron transport equation. Experimental data, obtained from the literature, were compared with values by the ANISN-DLC/2D system. (Author) [pt

  13. Neutron spectroscopy, nuclear structure, related topics. Abstracts

    International Nuclear Information System (INIS)

    Sukhovoj, A.M.

    1996-01-01

    Neutron spectroscopy, nuclear structure and related topics are considered. P, T-breaking, neutron beta decay, neutron radiative capture and neutron polarizability are discussed. Reaction with fast neutrons, methodical aspect low-energy fission are considered too

  14. New neutron physics using spallation sources

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1988-01-01

    The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. The energy range of neutron research which is being explored with these sources extends from thermal energies to almost 800 MeV. The emphasis here is on prospective experiments below 100 keV neutron energy using the intense neutron bursts produced by the Proton Storage Ring (PSR) at Los Alamos. 30 refs., 10 figs

  15. Neutron physics entering the 21st century

    International Nuclear Information System (INIS)

    Aksenov, V.L.

    2000-01-01

    The objectives of present-day neutron physics are neutron-aided investigations of fundamental interactions and symmetries, high excited states of nuclei, crystalline and magnetic structures, dynamic excitations in solids and liquids over a wide range of energies. The state-of-art and perspectives of the solution of most topical and principle problems of neutron physics are analyzed. The main conclusion is that neutron physics provides rich information for nuclear particle physics, physics of nucleus, condensed matter physics, chemistry, biology, materials science, and earth sciences. In the next century, however, new higher flux neutron sources must be created. By the year 2010 the number of nuclear reactors used for physical research will reduce to 10-15 reactors over the world. Trends in the development of neutron sources are analyzed. The possibilities of leading neutron research centers in the world are considered and most promising projects of neutron sources are discussed. (author)

  16. Experiment Design and Analysis Guide - Neutronics & Physics

    Energy Technology Data Exchange (ETDEWEB)

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  17. Neutron nuclear physics under the neutron science project

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    The concept of fast neutron physics facility in the Neutron Science Research project is described. This facility makes use of an ultra-short proton pulse (width < 1 ns) for fast neutron time-of-flight works. The current design is based on an assumption of the maximum proton current of 100 {mu}A. Available neutron fluence and energy resolution are explained. Some of the research subjects to be performed at this facility are discussed. (author)

  18. Basic physics with ultra cold neutrons

    International Nuclear Information System (INIS)

    Protasov, K.

    2007-01-01

    A short introduction to the physics of Ultra Cold Neutrons (UCN) is given. It covers different aspects from their discovery, their major properties as well as their using in the three experiments of fundamental physics: measurements of the neutron life time and of its electric dipole moment and studies of neutrons quantum states in the Earth's gravitational field. (author)

  19. THE SPALLATION NEUTRON SOURCE PROJECT - PHYSICAL CHALLENGES.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.

    2002-06-03

    The Spallation Neutron Source (SNS) is designed to reach an average proton beam power of 1.4 MW for pulsed neutron production. This paper summarizes design aspects and physical challenges to the project.

  20. Fundamental physics with low-energy neutrons

    International Nuclear Information System (INIS)

    Barrón-Palos, Libertad

    2016-01-01

    Low-energy neutrons are playing a prominent role in a growing number of fundamental physics studies. This paper provides a brief description of the physics that some of the experiments in the area are addressing. (paper)

  1. 30 years of cooperation in neutron physics

    International Nuclear Information System (INIS)

    Lescsenko, B.E.

    2000-01-01

    A brief account is presented of the cooperative efforts between the Physics Departments of the Debrecen Kossuth Lajos University, Hungary, and the Kiev Taras Shevchenko University, Ukraine. The fields of cooperation included time-of-flight experiments, high-intensity neutron generators, and neutron capture reactions. (R.P.)

  2. Physics of neutron emission in fission

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1989-06-01

    The document contains the proceedings of the IAEA Consultants' Meeting on the Physics of Neutron Emission in Fission, Mito City (Japan), 24-27 May 1988. Included are the conclusions and recommendations reached at the meeting and the papers presented by the meeting participants. These papers cover the following topics: Energy dependence of the number of fission neutrons ν-bar (3 papers), multiplicity distribution of fission neutrons (3 papers), competition between neutron and γ-ray emission (4 papers), the fission neutron yield in resonances (2 papers) and the energy spectrum of fission neutrons in experiment (9 papers), theory (4 papers) and evaluation (1 paper). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  3. Neutron Star Physics and EOS

    Directory of Open Access Journals (Sweden)

    Lattimer James M.

    2016-01-01

    Full Text Available Neutron stars are important because measurement of their masses and radii will determine the dense matter equation of state. They will constrain the nuclear matter symmetry energy, which controls the neutron star matter pressure and the interior composition, and will influence the interpretation of nuclear experiments. Astrophysical observations include pulsar timing, X-ray bursts, quiescent low-mass X-ray binaries, pulse profiles from millisecond pulsars, neutrino observations from gravitational collapse supernovae,and gravitational radiation from compact object mergers. These observations will also constrain the neutron star interior, including the properties of superfluidity there, and determine the existence of a possible QCD phase transition.

  4. Physical engineering and medical physics on boron neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori

    2011-01-01

    The contents of physical engineering and medical physics that support boron neutron capture therapy (BNCT) can be roughly classified to the four items, (1) neutron irradiation system, (2) development and improvement of dose assessment techniques, (3) development and improvement of dose planning system, and (4) quality assurance and quality control. This paper introduces the BNCT at Kyoto University Research Reactor Institute, with a focus on the basic physics of BNCT, thermal neutron irradiation and epithermal neutron irradiation, heavy water neutron irradiation facilities of KUR, and medical irradiation system of KUR. It also introduces the world's first BNCT clinical cyclotron irradiation system (C-BENS) of Kyoto University Research Reactor Institute, BNCT dose assessment techniques, dose planning system, and quality assurance and quality control. (A.O.)

  5. Physics of neutron star interiors

    International Nuclear Information System (INIS)

    Blaschke, D.

    2001-01-01

    Neutron stars are the densest observable bodies in our universe. Born during the gravitational collapse of luminous stars - a birth heralded by spectacular supernova explosions - they open a window on a world where the state of the matter and the strength of the fields are anything but ordinary. This book is a collection of pedagogical lectures on the theory of neutron stars, and especially their interiors, at the forefront of current research. It adresses graduate students and researchers alike, and should be particularly suitable as a text bridging the gap between standard textbook material and the research literature

  6. CAMAC in neutron physics investigations

    Energy Technology Data Exchange (ETDEWEB)

    Meiling, W; Arlt, R; Grimm, W; Hirsch, W; Krause, R; Wagner, W; Weidhase, F [Technische Univ., Dresden (German Democratic Republic). Sektion Physik

    1978-09-01

    For computer-assisted experiments on the basis of the KRS 4200 minicomputer system, a CAMAC computer connection controller AS 10 as well as some control devices and CAMAC modules have been developed. A CAMAC assembly has been used for measuring the fission cross section of /sup 235/U for 14.7 MeV neutrons finding sigma sub(n,f) = (2.073 +- 0.023) x 10/sup -24/ cm/sup 2/.

  7. ISINN-3. Neutron spectroscopy, nuclear structure, related topics

    International Nuclear Information System (INIS)

    1995-01-01

    The proceedings contain the materials presented at the Third International Seminar on Neutron-Nucleus Interactions (ISINN-3) dealing with the problems of neutron spectroscopy, nuclear structure and related topics. The Seminar took place in Dubna on April 26-28, 1995. Over 100 scientists from Belgium, Bulgaria, Czech Republic, Germany, Japan, Latvia, Mexico, Poland, Slovakia, Ukraine, USA and from more than 10 Russian research institutes took part in the Seminar. The Seminar is dedicated to the memory of the founder of the Neutron Physics Laboratory of JINR, the famous soviet scientist Professor Fedor L. Shapiro, whose 80th anniversary is being observed. The main problems discussed are the following: fundamental interactions and symmetries in neutron-induced reactions, fundamental properties of the neutron, properties of excited nuclei after neutron capture and some other ones. Special emphasis is laid upon γ decay and neutron induced nuclear fission as well as upon the methodical aspects of new experiments

  8. Fundamental Problems of Neutron Physics at the Spallation Neutron Source at the ORNL

    International Nuclear Information System (INIS)

    Gudkov, Vladimir

    2008-01-01

    We propose to provide theoretical support for the experimental program in fundamental neutron physics at the SNS. This includes the study of neutron properties, neutron beta-decay, parity violation effects and time reversal violation effects. The main purpose of the proposed research is to work on theoretical problems related to experiments which have a high priority at the SNS. Therefore, we will make a complete analysis of beta-decay process including calculations of radiative corrections and recoil corrections for angular correlations for polarized neutron decay, with an accuracy better that is supposed to be achieved in the planning experiments. Based on the results of the calculations, we will provide analysis of sensitivity of angular correlations to be able to search for the possible extensions of the Standard model. Also we will help to plan other experiments to address significant problems of modern physics and will work on their theoretical support.

  9. The basic physics of neutron scattering experiments

    International Nuclear Information System (INIS)

    Mezei, F.

    1999-01-01

    The basic physical principles behind the well-established but also developing practice of neutron scattering experiments are presented. A few examples are given either to illustrate the physical principles or to give an idea of the variety, importance or magnitude of various phenomena. The evolution of neutron scattering experimental techniques is investigated from a special aspect: the increasing capability of taking into account more and more important and sometimes decisive finer details by using more and more realistic mathematical models of the evolution of the neutrons from birth do death, eventually passing by the sample and being scattered more than one times. Working with such numerical 'virtual instruments' one will have to go far beyond notions like resolution function, convolution etc, and actually eliminate a large number of approximations currently in use. (K.A.)

  10. PREFACE: Fundamental Neutron Physics: Introduction and Overview Fundamental Neutron Physics: Introduction and Overview

    Science.gov (United States)

    Holstein, Barry R.

    2009-10-01

    In the 77 years since its discovery by Chadwick in 1932, the neutron has come to play an increasingly important role in contemporary physics. As the next to lightest baryon, it is, of course, one of the two primary components of the atomic nucleus and studies of isotopes (nuclei with varying numbers of neutrons but the same proton number) and of the neutron drip line are one of the important focuses of the recently approved radioactive beam machine to be built at Michigan State University. Precise knowledge of its ~900 second lifetime is crucial to determination of the time at which nucleosynthesis occurs in the early universe. Because it is electrically neutral, the neutron can penetrate the atomic cloud and neutron scattering has become a powerful tool in the study of the structure of materials in condensed matter and biophysics. These are all important issues, but will not be addressed in the articles presented below. Rather, in the set of manuscripts published herein, we show various ways in which the neutron has come to probe fundamental questions in physics. We present six such articles: Because of its simple structure, neutron beta decay has served as a laboratory for the study of possible symmetry violations, including search for possible Script T-violation via measurement of the D coefficient, search for second class currents and/or possible CVC violation via examination of recoil terms, search for right-handed currents via examination of correlations, search for S, T couplings via measurement of the b parameter, etc. The study of neutron decay is reviewed in the article by Jeff Nico. The use of the neutron as a probe of possible Script T-violation via the existence of a non-zero electric dipole moment is discussed in the article by Steve Lamoreaux. The neutron is a prime player in the experimental study of hadronic parity violation, via experiments involving radiative capture and spin rotation, as examined in the article by Barry Holstein. Because of its

  11. Basic physics with ultra cold neutrons; Physique fondamentale avec des neutrons ultra froids

    Energy Technology Data Exchange (ETDEWEB)

    Protasov, K. [Laboratoire de Physique Subatomique et de Cosmologie, CNRS-IN2P3, Universite Joseph Fourier, INPG, Grenoble (France)

    2007-07-01

    A short introduction to the physics of Ultra Cold Neutrons (UCN) is given. It covers different aspects from their discovery, their major properties as well as their using in the three experiments of fundamental physics: measurements of the neutron life time and of its electric dipole moment and studies of neutrons quantum states in the Earth's gravitational field. (author)

  12. Uncertainties related to numerical methods for neutron spectra unfolding

    International Nuclear Information System (INIS)

    Glodic, S.; Ninkovic, M.; Adarougi, N.A.

    1987-10-01

    One of the often used techniques for neutron detection in radiation protection utilities is the Bonner multisphere spectrometer. Besides its advantages and universal applicability for evaluating integral parameters of neutron fields in health physics practices, the outstanding problems of the method are data analysis and the accuracy of the results. This paper briefly discusses some numerical problems related to neutron spectra unfolding, such as uncertainty of the response matrix as a source of error, and the possibility of real time data reduction using spectrometers. (author)

  13. Analytical approximation of neutron physics data

    International Nuclear Information System (INIS)

    Badikov, S.A.; Vinogradov, V.A.; Gaj, E.V.; Rabotnov, N.S.

    1984-01-01

    The method for experimental neutron-physical data analytical approximation by rational functions based on the Pade approximation is suggested. It is shown that the existence of the Pade approximation specific properties in polar zones is an extremely favourable analytical property essentially extending the convergence range and increasing its rate as compared with polynomial approximation. The Pade approximation is the particularly natural instrument for resonance curve processing as the resonances conform to the complex poles of the approximant. But even in a general case analytical representation of the data in this form is convenient and compact. Thus representation of the data on the neutron threshold reaction cross sections (BOSPOR constant library) in the form of rational functions lead to approximately twenty fold reduction of the storaged numerical information as compared with the by-point calculation at the same accWracy

  14. Safeguards and Physics Measurements: Neutron Dosimetry

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2000-01-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations as well as to investigate the charcteristics of bubble detectors in order to be able to use them as direct-readiong neutron dosemeters

  15. Physics and technology of spallation neutron sources

    International Nuclear Information System (INIS)

    Bauer, G.S.

    1998-08-01

    Next to fission and fusion, spallation is an efficient process for releasing neutrons from nuclei. Unlike the other two reactions, it is an endothermal process and can, therefore, not be used per se in energy generation. In order to sustain a spallation reaction, an energetic beam of particles, most commonly protons, must be supplied onto a heavy target. Spallation can, however, play an important role as a source of neutrons whose flux can be easily controlled via the driving beam. Up to a few GeV of energy, the neutron production is roughly proportional to the beam power. Although sophisticated Monte Carlo codes exist to compute all aspects of a spallation facility, many features can be understood on the basis of simple physics arguments. Technically a spallation facility is very demanding, not only because a reliable and economic accelerator of high power is needed to drive the reaction, but also, and in particular, because high levels of radiation and heat are generated in the target which are difficult to cope with. Radiation effects in a spallation environment are different from those commonly encountered in a reactor and are probably even more temperature dependent than the latter because of the high gas production rate. A commonly favored solution is the use of molten heavy metal targets. While radiation damage is not a problem in this case, except for the container, a number of other issues are discussed. (author)

  16. Upgrade of detectors of neutron instruments at Neutron Physics Laboratory in Řež

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, E.I., E-mail: litvin@nf.jinr.ru [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 14980 Dubna (Russian Federation); Ryukhtin, V. [Nuclear Physics Institute of the CAS v.v.i., Řež 130, 250 68 Řež (Czech Republic); Bogdzel, A.A.; Churakov, A.V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 14980 Dubna (Russian Federation); Farkas, G. [Charles University in Prague, Department of Physics of Material, Ke Karlovu 5, CZ-12116 Prague (Czech Republic); Hervoches, Ch.; Lukas, P. [Nuclear Physics Institute of the CAS v.v.i., Řež 130, 250 68 Řež (Czech Republic); Pilch, J. [Nuclear Physics Institute of the CAS v.v.i., Řež 130, 250 68 Řež (Czech Republic); Institute of Physics, Czech Academy of Sciences, Na Slovance 1992/2, 1822 Prague (Czech Republic); Saroun, J.; Strunz, P. [Nuclear Physics Institute of the CAS v.v.i., Řež 130, 250 68 Řež (Czech Republic); Zhuravlev, V.V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 14980 Dubna (Russian Federation)

    2017-01-01

    Three neutron instruments at the Neutron Physics Laboratory (NPL) in Řež near Prague — small-angle scattering (SANS) MAUD, strain scanner SPN-100 and strain diffractometer TKSN-400 — have been modernized recently with new 2D position-sensitive detectors (PSDs) from JINR, Dubna. Here we report on the progress made in relation to the possibilities of the diffractometers due to the improved performance of the detectors. The first part of the paper is dedicated to a detailed description of the hardware and software of the PSDs, as well as its integration with the in-house experimental control software. Then practical examples of neutron scattering experiments for each of the upgraded facilities are presented.

  17. Nuclear physics, neutron physics and nuclear energy. Proceedings

    International Nuclear Information System (INIS)

    Andrejtscheff, W.; Elenkov, D.

    1994-01-01

    The book contains of proceedings of XI International School on Nuclear Physics, Neutron Physics and Nuclear Energy organized traditionally every two years by Bulgarian Academy of Sciences and the Physics Department of Sofia University held near the city of Varna. It provides a good insight to the large range of theoretical and experimental results, prospects, problems, difficulties and challenges which are at the core of nuclear physics today. The efforts and achievements of scientists to search for new phenomena in nuclei at extreme circumstances as superdeformation and band crossing in nuclear structure understanding are widely covered. From this point of view the achievements and future in the field of high-precision γ-spectroscopy are included. Nuclear structure models and methods, models for strong interaction, particle production and properties, resonance theory and its application in reactor physics are comprised also. (V.T.)

  18. Fundamental physics research and neutron interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, A. [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1996-08-01

    The possibility of the use of an extremely sensitive neutron interferometry technique for the study of electromagnetic structure of the neutron and the parity non-conservative effects in neutron spin rotation is discussed. (author)

  19. Mathematics and physics of neutron radiography

    International Nuclear Information System (INIS)

    Harms, A.A.; Wyman, D.R.

    1985-01-01

    This book provides detailed descriptions and analyses of selected experiments and their mathematical characterization. Also included are illustrative and quantitative procedures for applications. This book also discusses the radiography, nondestructive testing and nuclear reactor utilization. The contents discussed are: I: Introduction. II: Component Characterization. III: Object-Image Relations. IV: Rectangular Geometry. V: Cylindrical Geometry. VI: Two-Dimensional Analysis. VII: Object Scattering. VIII: Linear Systems Formulation. IX: Selected Topics. X: Neutron Radiographs. XI: Bibliography and References. Subject Index

  20. 14 MeV neutrons physics and applications

    CERN Document Server

    Valkovic, Vladivoj

    2015-01-01

    Despite the often difficult and time-consuming effort of performing experiments with fast (14 MeV) neutrons, these neutrons can offer special insight into nucleus and other materials because of the absence of charge. 14 MeV Neutrons: Physics and Applications explores fast neutrons in basic science and applications to problems in medicine, the environment, and security.Drawing on his more than 50 years of experience working with 14 MeV neutrons, the author focuses on:Sources of 14 MeV neutrons, including laboratory size accelerators, small and sealed tube generators, well logging sealed tube ac

  1. Workshop on the next plan for the study of 'physics of fast neutron reactions and measurements'

    International Nuclear Information System (INIS)

    1985-03-01

    A work shop titled ''Physics of fast neutron reaction and measurements'' was held on 25 December 1984, where discussions were made on the new approach and techniques for neutron measurements. The possibilities of experimental tests with AVF cyclotron was also discussed. The followings are the list of papers presented at the work shop (all papers are written in Japanese except for the abstracts). (1) Monoenergetic neutron beam in Tohoku Cyclotron. (2) Spin-dependent response probed in (p,n) and (n,p) reactions. (3) Measurement of D(n,p) 2n reaction and instrumentation for (n,x) reactions in the 40 - 80 MeV region. (4) Two comments related to the neutron reaction. (5) High energy neutron production facilities in the world and a possibility of neutron induced reaction experiments at RCNP. (6) A neutron counter by detection of recoil protons with solid state detectors and development of neutron source by heavy ions. (7) The measurement of neutrons with the recoil detector. (8) Polarization transfer measurements (Py, Dss, Ds 1 , · · ·) with fast neutron beams. (9) Neutron elastic scattering. (10) Neutron capture gamma reaction and effective charge. (11) Comparison between neutron and charged particle induced reactions. (12) Study of giant resonances by fast neutrons. (Aoki, K.)

  2. Neutron Physics Laboratory. Annual Progress Report October 1, 1967-September 30, 1968

    International Nuclear Information System (INIS)

    Wiedling, T.

    1969-04-01

    The present progress report gives some short descriptions of experiments going on in the neutron physics branch at the Studsvik laboratories. The main program concerns fast neutron physics at the Van de Graaff laboratory with a strong emphasis on neutron scattering cross section data of elements of interest for reactor calculations. Since the Van de Graaff accelerator is still the one in Sweden giving the highest potential, it has been quite natural to use the machine also for some nuclear physics experiments with charged particles, though in some cases related to the neutron physics program. In connection with the use of the reactors at Studsvik for physics experiments, research programs have been in progress for several years concerning the use of reactor neutrons for production of isotopes for a systematic study of short lived nuclear isomeric states as well as for the study of the gamma emission in the fission process

  3. Neutron Physics Laboratory. Annual Progress Report October 1, 1967-September 30, 1968

    Energy Technology Data Exchange (ETDEWEB)

    Wiedling, T

    1969-04-15

    The present progress report gives some short descriptions of experiments going on in the neutron physics branch at the Studsvik laboratories. The main program concerns fast neutron physics at the Van de Graaff laboratory with a strong emphasis on neutron scattering cross section data of elements of interest for reactor calculations. Since the Van de Graaff accelerator is still the one in Sweden giving the highest potential, it has been quite natural to use the machine also for some nuclear physics experiments with charged particles, though in some cases related to the neutron physics program. In connection with the use of the reactors at Studsvik for physics experiments, research programs have been in progress for several years concerning the use of reactor neutrons for production of isotopes for a systematic study of short lived nuclear isomeric states as well as for the study of the gamma emission in the fission process.

  4. Special and general relativity with applications to white dwarfs, neutron stars and black holes

    CERN Document Server

    Glendenning, Norman K

    2007-01-01

    Special and General Relativity are concisely developed together with essential aspects of nuclear and particle physics. Problem sets are provided for many chapters, making the book ideal for a course on the physics of white dwarf and neutron star interiors.

  5. Relativity in modern physics

    CERN Document Server

    Deruelle, Nathalie

    2018-01-01

    This comprehensive textbook on relativity integrates Newtonian physics, special relativity and general relativity into a single book that emphasizes the deep underlying principles common to them all, yet explains how they are applied in different ways in these three contexts. Newton's ideas about how to represent space and time, his laws of dynamics, and his theory of gravitation established the conceptual foundation from which modern physics developed. Book I in this volume offers undergraduates a modern view of Newtonian theory, emphasizing those aspects needed for understanding quantum and relativistic contemporary physics. In 1905, Albert Einstein proposed a novel representation of space and time, special relativity. Book II presents relativistic dynamics in inertial and accelerated frames, as well as a detailed overview of Maxwell's theory of electromagnetism. This provides undergraduate and graduate students with the background necessary for studying particle and accelerator physics, astrophysics and ...

  6. Polarized neutron physics at P.S.I

    International Nuclear Information System (INIS)

    Gaillard, G.

    1990-01-01

    In this paper the characteristics of the recent polarized neutron facility using the existing unpolarized neutron beam line nE1 developed at PSI and of the future nAl beam line are given. The physics program which started in 1986 is presented

  7. Neutron Stars: Laboratories for Fundamental Physics Under ...

    Indian Academy of Sciences (India)

    DEBADES BANDYOPADHYAY

    2017-09-07

    Sep 7, 2017 ... Abstract. We discuss different exotic phases and components of matter from the crust to the core of neutron stars based on theoretical models for equations of state relevant to core collapse supernova simulations and neutron star merger. Parameters of the models are constrained from laboratory ...

  8. Diamondlike carbon can replace beryllium in physics with ultracold neutrons

    International Nuclear Information System (INIS)

    Atchison, F.; Blau, B.; Daum, M.; Fierlinger, P.; Foelske, A.; Geltenbort, P.; Gupta, M.; Henneck, R.; Heule, S.; Kasprzak, M.; Kuzniak, M.; Kirch, K.; Meier, M.; Pichlmaier, A.; Plonka, Ch.; Reiser, R.; Theiler, B.; Zimmer, O.; Zsigmond, G.

    2006-01-01

    To complete our study of ultracold neutron (UCN) storage-vessel coatings, we have measured the Fermi potential for neutrons on diamondlike carbon coatings produced by laser induced vacuum arc deposition. A sample with an sp 3 content of 0.45, measured using, for the first time, neutron transmission had a Fermi potential of (249+/-14)neV. A second sample with an sp 3 fraction of 0.67, measured using cold neutron reflectometry, gave (271+/-13)neV. These values complete the demonstration that there is a viable alternative to Be in UCN physics

  9. New applications of neutron noise theory in power reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, Vasiliy

    2000-04-01

    The present thesis deals with neutron noise theory as applied to three comparatively different topics (or problems) in power reactor physics. Namely they are: theoretical investigation of the possibility to use a newly proposed current-flux (C/F) detector in Pressurized Water Reactors (PWRs) for the localisation of anomalies; both definition and studies on the point kinetic and adiabatic approximations for the relatively recently proposed Accelerator Driven Systems (ADS); development of the general theory of linear reactor kinetics and neutron noise in systems with varying size. One important practical problem is to detect and localise a vibrating control rod pin. The significance comes from the operational experience which indicates that individual pins can execute excessive mechanical vibrations that may lead to damage. Such mechanical vibrations induce neutron noise that can be detected. While the detection is relatively easy, the localisation of a vibrating control rod is much more complicated because only one measuring position is available and one needs to have at least three measured quantities. Therefore it has currently been proposed that the fluctuations of the neutron current vector, called the current noise, can be used in addition to the scalar noise in reactor diagnostic problems. The thesis investigates the possibility of the localization of a vibrating control rod pin in a PWR control assembly by using the scalar neutron noise and the 2-D radial current noise as measured at one central point in the control assembly. An explicit localisation technique is elaborated in which the searched position is determined as the absolute minimum of a minimisation function. The technique is investigated in numerical simulations. The results of the simulation tests show the potential applicability of the method. By design accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and

  10. New applications of neutron noise theory in power reactor physics

    International Nuclear Information System (INIS)

    Arzhanov, Vasiliy

    2000-04-01

    The present thesis deals with neutron noise theory as applied to three comparatively different topics (or problems) in power reactor physics. Namely they are: theoretical investigation of the possibility to use a newly proposed current-flux (C/F) detector in Pressurized Water Reactors (PWRs) for the localisation of anomalies; both definition and studies on the point kinetic and adiabatic approximations for the relatively recently proposed Accelerator Driven Systems (ADS); development of the general theory of linear reactor kinetics and neutron noise in systems with varying size. One important practical problem is to detect and localise a vibrating control rod pin. The significance comes from the operational experience which indicates that individual pins can execute excessive mechanical vibrations that may lead to damage. Such mechanical vibrations induce neutron noise that can be detected. While the detection is relatively easy, the localisation of a vibrating control rod is much more complicated because only one measuring position is available and one needs to have at least three measured quantities. Therefore it has currently been proposed that the fluctuations of the neutron current vector, called the current noise, can be used in addition to the scalar noise in reactor diagnostic problems. The thesis investigates the possibility of the localization of a vibrating control rod pin in a PWR control assembly by using the scalar neutron noise and the 2-D radial current noise as measured at one central point in the control assembly. An explicit localisation technique is elaborated in which the searched position is determined as the absolute minimum of a minimisation function. The technique is investigated in numerical simulations. The results of the simulation tests show the potential applicability of the method. By design accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and

  11. Development and application of some fast neutron dosimetry techniques utilizing plastic track detectors for therapeutic and health physics related applications. Progress report

    International Nuclear Information System (INIS)

    Morgan, K.Z.; Sohrabi, M.

    1975-01-01

    The electrochemical-etch-foil technique continues to look extremely promising for neutron monitoring of personnel and applications in medicine and research. Some of the most important parameters that must be controlled are presented and discussed. (U.S.)

  12. 40 years of neutron physics in Dubna

    International Nuclear Information System (INIS)

    Aksenov, V.L.

    2000-01-01

    This publication is based on the report presented by the author at the jubilee meeting of the 88th session of the Scientific Council of the Joint Institute for Nuclear Research (JINR) on June 8, 2000 devoted to the 40th anniversary of neutron investigations in Dubna. JINR is one of the world leading scientific centers in the use of neutrons for the investigation of fundamental interactions and symmetries, the structure of atomic nuclei, and the condensed state of matter. Scientists from 30 countries conduct experiments at the JINR neutron sources

  13. Relational time in physics

    International Nuclear Information System (INIS)

    Assis, A.K.T.

    2011-01-01

    Full text: Isaac Newton (1642-1727) defended in his book Mathematical Principles of Natural Philosophy, also know as Principia, published in 1687, the utilization of absolute time in physics. According to him 'absolute, true, and mathematical time, of itself, and from its own nature, flows equably without relation to anything external'. Leibniz (1646-1716), on the other hand, was against this concept and proposed relative time to replace it: 'As for my opinion, I have said more than once, that I hold space to be something merely relative, as time is; that I hold it to be an order of coexistence, as time is an order of successions'. Leibniz ideas were accepted and developed by Ernst Mach (1838-1916) in his book The Science of Mechanics, published in 1883. In this work we consider the implementation of relational time, as proposed by Leibniz and Mach, and the consequences this implementation will mean for physics as a whole. We consider some specific examples related to mechanics (Newton's bucket experiment, the flattening of the Earth, Foucault's pendulum experiment) and to electromagnetism (Ampere's force between current carrying wires, an electric charge describing a Larmor radius due to a nearby large magnet, two charges orbiting around one another). We generalize these ideas considering the principle of physical proportions (PPP), according to which no absolute magnitudes should appear in the laws of physics. We present some laws satisfying this principle and others which do not comply with it. The laws which do not satisfy the PPP should be based upon incomplete theories. We present the consequences of complete theories complying with this fundamental principle of nature. (author)

  14. Relational time in physics

    Energy Technology Data Exchange (ETDEWEB)

    Assis, A.K.T. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2011-07-01

    Full text: Isaac Newton (1642-1727) defended in his book Mathematical Principles of Natural Philosophy, also know as Principia, published in 1687, the utilization of absolute time in physics. According to him 'absolute, true, and mathematical time, of itself, and from its own nature, flows equably without relation to anything external'. Leibniz (1646-1716), on the other hand, was against this concept and proposed relative time to replace it: 'As for my opinion, I have said more than once, that I hold space to be something merely relative, as time is; that I hold it to be an order of coexistence, as time is an order of successions'. Leibniz ideas were accepted and developed by Ernst Mach (1838-1916) in his book The Science of Mechanics, published in 1883. In this work we consider the implementation of relational time, as proposed by Leibniz and Mach, and the consequences this implementation will mean for physics as a whole. We consider some specific examples related to mechanics (Newton's bucket experiment, the flattening of the Earth, Foucault's pendulum experiment) and to electromagnetism (Ampere's force between current carrying wires, an electric charge describing a Larmor radius due to a nearby large magnet, two charges orbiting around one another). We generalize these ideas considering the principle of physical proportions (PPP), according to which no absolute magnitudes should appear in the laws of physics. We present some laws satisfying this principle and others which do not comply with it. The laws which do not satisfy the PPP should be based upon incomplete theories. We present the consequences of complete theories complying with this fundamental principle of nature. (author)

  15. On the research activities in reactor and neutron physics using the first egyptian research reactor

    International Nuclear Information System (INIS)

    Hassan, A.M.

    2000-01-01

    A review on the most important research activities in reactor and neutron physics using the first Egyptian Research Reactor (ET-RR-1) is given. An out look on: neutron cross-sections, neutron flux, neutron capture gamma-ray spectroscopy, neutron activation analysis, neutron diffraction and radiation shielding experiments, is presented

  16. Neutrons and antimony physical measurements and interpretations

    International Nuclear Information System (INIS)

    Smith, A. B.

    2000-01-01

    New experimental information for the elastic and inelastic scattering of ∼ 4--10 MeV neutrons from elemental antimony is presented. The differential measurements are made at ∼ 40 or more scattering angles and at incident neutron-energy intervals of ∼ 0.5 MeV. The present experimental results, those previously reported from this laboratory and as found in the literature are comprehensively interpreted using spherical optical-statistical and dispersive-optical models. Direct vibrational processes via core-excitation, isospin and shell effects are discussed. Antimony models for applications are proposed and compared with global, regional, and specific models reported in the literature

  17. Low temperature and neutron physics studies

    International Nuclear Information System (INIS)

    Shull, C.G.

    1989-01-01

    A search for a novel coupling interaction between the Pendelloesung periodicity which is formed in a diffracting crystal and the Larmor precession of neutrons in a magnetic field has been carried out. This interaction is expected to exhibit a resonant behavior when the two spatial periodicities become matched upon scanning the magnetic field being applied to the crystal. Observations on a diffracting, perfect crystal of silicon with neutrons of wavelength 1 Angstrom show the expected resonant action but some discrepancy between the observed magnitude of the resonance effects remains for interpretation. 16 refs

  18. 8-group relative delayed neutron yields for monoenergetic neutron induced fission of 239Pu

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Korolev, G.G.; Roshchenko, V.A.; Tertychnyj, R.G

    2002-01-01

    The energy dependence of the relative yield of delayed neutrons in an 8-group model representation was obtained for monoenergetic neutron induced fission of 239 Pu. A comparison of this data with the available experimental data by other authors was made in terms of the mean half-life of the delayed neutron precursors. (author)

  19. ISINN-5. 5. International seminar on interaction of neutrons with nuclei. Neutron spectroscopy, nuclear structure, related topics

    International Nuclear Information System (INIS)

    1997-01-01

    The materials submitted at the fifth in a series of annual international seminar on interaction of neutrons with nuclei Neutron Spectroscopy, Nuclear Structure, Related Topics (ISINN-5) are given. The Seminar is organized by the Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research and took place in Dubna on May 14-17, 1997. About 130 specialists from Belgium, China, Germany, France, Japan, Korea, Latvia, Netherlands, Ukraine, 7 Russian research institutes and a number of JINR laboratories took part in the Seminar. The scope of the problems discussed is traditionally wide. It includes the problems of violation of fundamental symmetries in the interaction of neutrons with nuclei, the properties of the neutron as the fundamental particle, nonstatistical aspects of the radiation capture of neutrons by nuclei, topical problems of the theory of nucleus, and the fission mechanism of heavy nuclei. The latest results obtained with ultracold neutrons (UCN), in particular, different approaches to understanding of the cause of UCN anomalous leakage through the walls of the trap are considered as well. The wide spectrum of methodological aspects of neutron-aided experiments is also discussed in details

  20. Neutrons in nuclear physics from Billiard Balls to quark-gluon structure

    International Nuclear Information System (INIS)

    Annand, J. R. M.

    2002-01-01

    Neutrons and protons are the main building blocks of atomic nuclei and neutrons have been used to probe nuclear structure since the pioneering days of nuclear physics. As strongly interacting hadrons they have a high probability of reaction and, being uncharged, they are unaffected by the nuclear Coulomb field. Neutron scattering for example has been used to determine nuclear sizes and shapes. However the strong interaction inhibits the neutron from penetrating the surface skin of the nucleus and to gain information on the interior a relatively weakly interacting probe such as a photon or electron is superior.As the energies of electron accelerators have increased, shorter distances may be probed, until at a photon momentum of ∼200 MeV/c the reduced wavelength is 1 fm, roughly the dimension of the neutron or proton. From this point one starts to become sensitive to the internal structure. Until recently most experiments have concentrated on the proton as a hydrogen target is experimentally straightforward. There is of course no free neutron target, but with an improved understanding of how nuclear binding affects the neutron embedded in deuterium or helium-3, these materials may be considered as effective neutron targets. The extra information obtained from examining an up-down-down-quark neutron, as opposed to an up-up-down-quark proton, will be vital to achieve a full understanding of the ways in which elementary quarks and gluons interact to make composite hadrons. New results from the MAMI accelerator in Germany are presented and an extension of these measurements at Jefferson Laboratory in the USA is previewed.As well as being pivotal to the development of fundamental nuclear physics, neutrons have immense technological importance. Many of the early neutron scattering experiments were driven by a need to understand nuclear fission processes for power generation or weapons production, but neutron beams have also been widely used in medicine for the treatment

  1. Research and development activities of the Neutron Physics Division for the period January 1979-December 1979

    International Nuclear Information System (INIS)

    Basu, T.K.; Vohra, Y.K.

    1980-01-01

    Research and Development (R and D) activities of the Neutron Physics Division of the Bhabha Atomic Research Centre, Bombay during the calendar year 1979 are reported in the form of individual summaries. The Division's R and D work covers the fields of reactor neutron physics, applied neutronics, fusion plasma pinches, materials physics, crystallography and seismology. Some of the highlights of these activities are: (1) the development of a criticality formula for PURNIMA-II, a BeO reflected 233 U-uranyl nitrate solution critical experiment, (2) commissioning of a 21 K3, 50 KV fast capacitor bank for experiments of high-density plasma focus devices, (3) the design of a bore-hole model to develop carbon-oxygen logging method for identifying the oil and water zones in sand-stone formations in the earth's sub-surface using neutrons from a 14 MeV neutron generator, (4) proposal of a theoretical model for the equation of state of high-density matter in the intermediate pressure (approximately 10-100 Megabar) region, (5) development of a quantitative relation between the crater dimensions and the mound kinetic energy imparted by the shock from an underground nuclear explosion, and (6) texture studies of uranium fuel element samples using neutron diffraction. Progress of work on PURNIMA-II experiment, fusion blanket neutronics experiment, monitoring of nuclear explosions and discriminating them from earthquakes using seismic and microbarographic data is also reported. (M.G.B.)

  2. Physics with Ultracold and Thermal Neutron Beams

    International Nuclear Information System (INIS)

    None

    2004-01-01

    The final report is broken into 5 segments, reflecting research conclusions reached during specific time periods: 1991-1997, 1997-1999, 1999-2000, 2000-2001, and 2001-2002. The first part of the work reported was carried out at the 2 Mw research reactor of the Rhode Island Nuclaer Science Center (RJNSC). Chosen for study was the slow phase separation in mixtures of oil and water in the presence of a surfactant, and the structural features of an oil layer during the slow build-up from the gas phase. The results of these measurements, as well as studies of the capillary wave properties of oil/surfactant/water interfaces are described. The second part of the work was performed at the neutron reflection facilities of the Intennse Pulsed Neutron Source at Argonne and of the NBSR reactor at NIST. At Argonne, the uniaxial magnetic order of an Fe/CR superlattice was investigated, while the experiments at NIST studied the swelling behavior of ordered thin films of diblock copolymers when they were exposed to solvent vapors. The third part of the work was concerned with the storage properties of ultracold neturons in a trap. New experiments on spectral evolution during storage, using the UCN source of the Institut Laue-Langevin were able to be run. Subsequent periods focussed on the ultracold neutrons work, spin valve multilayer systems, and pseudo-partial wetting

  3. Direct neutron capture and related mechanisms

    International Nuclear Information System (INIS)

    Lynn, J.E.; Raman, S.

    1990-01-01

    We consider the evidence for the role of direct and related mechanisms in neutron capture at low and medium energies. Firstly, we compare the experimental data on the thermal neutron cross sections for El transitions in light nuclei with careful estimates of direct capture. Over the full range of light nuclei with small cross sections direct capture is found to be the predominant mechanism, in some cases being remarkable accurate, but in a few showing evidence for collective effects. When resonance effects become substantial there is evidence for an important contribution from the closely related valence mechanism, but full agreement with the data in such cases appears to require the introduction of a more generalised valence model. The possibility of direct and valence mechanisms playing a role in M1 capture is studied, and it is concluded that in light nuclei at relatively low gamma ray energies, it does indeed play some role. In heavier nuclei it appears that the evidence, especially from the correlations between E1 and M1 transitions to the same final states, favours the hypothesis that the main transition strength is governed by the M1 giant resonance. 31 refs., 2 tabs

  4. Personnel neutron dose assessment upgrade: Volume 2, Field neutron spectrometer for health physics applications

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Reece, W.D.; Miller, S.D.

    1988-07-01

    Both the (ICRP) and the (NCPR) have recommended an increase in neutron quality factors and the adoption of effective dose equivalent methods. The series of reports entitled Personnel Neutron Dose Assessment Upgrade (PNL-6620) addresses these changes. Volume 1 in this series of reports (Personnel Neutron Dosimetry Assessment) provided guidance on the characteristics, use, and calibration of personnel neutron dosimeters in order to meet the new recommendations. This report, Volume 2: Field Neutron Spectrometer for Health Physics Applications describes the development of a portable field spectrometer which can be set up for use in a few minutes by a single person. The field spectrometer described herein represents a significant advance in improving the accuracy of neutron dose assessment. It permits an immediate analysis of the energy spectral distribution associated with the radiation from which neutron quality factor can be determined. It is now possible to depart from the use of maximum Q by determining and realistically applying a lower Q based on spectral data. The field spectrometer is made up of two modules: a detector module with built-in electronics and an analysis module with a IBM PC/reg sign/-compatible computer to control the data acquisition and analysis of data in the field. The unit is simple enough to allow the operator to perform spectral measurements with minimal training. The instrument is intended for use in steady-state radiation fields with neutrons energies covering the fission spectrum range. The prototype field spectrometer has been field tested in plutonium processing facilities, and has been proven to operate satisfactorily. The prototype field spectrometer uses a 3 He proportional counter to measure the neutron energy spectrum between 50 keV and 5 MeV and a tissue equivalent proportional counter (TEPC) to measure absorbed neutron dose

  5. Industrial applications of neutron physics methods

    International Nuclear Information System (INIS)

    Gozani, T.

    1994-01-01

    Three areas where nuclear based techniques have significant are briefly described. These are: Nuclear material control and non-proliferation, on-line elemental analysis of coal and minerals, and non- detection of explosives and other contraband. The nuclear physics and the role of reactor physics methods are highlighted. (author). 5 refs., 10 figs., 5 tabs

  6. Future of neutron-physical research at WWR-K reactor

    International Nuclear Information System (INIS)

    Akhmetov, E. Z.; Ibraev, B.M.

    1999-01-01

    Very cold neutrons (E nm) mostly indicate wave properties in the course of going through substance. The properties are determined by the value of the relation of neutron wave length to structure dimensions of the object studied. Very cold neutrons usage in nuclear-physical and neutron-optical research, in studying of structure and phase transformation of substances in different aggregative states continues to increase and very cold neutrons scattering method can be applied in those situation when other methods don't help to obtain the result (for example identification of light nuclei by roentgen rays etc.). Currently, we suppose that very cold neutrons can be applied in the course of studying superconductors, biological objects, different polymer systems and liquid crystals. Also it can be applied in radioecology - in determination of trans-uranium and trans-plutonium elements content in soil of territories where underground nuclear explosions were performed. These researches can be implemented at the WWR-K reactor. Its parameters and structure allow creating of 'Time-of-flight spectrometer very cold neutrons and cold neutrons', that functionally consists of the following basic blocks: - neutron conductor of stainless steel gage 50 mm, 8 m length; - switch block; - measurement cryostat chamber; - Vacuum shutters; - Measurement calculation complex. Earlier at the WWR-K the authors obtained maximum fluxes of ultra-cold neutrons (E=10 -7 eV) from vapor-hydrogen moderator at the temperature of 80 K and determined interaction cross-sections of ultra-cold neutrons with gas medium

  7. Neutron scattering and the 1994 Nobel Physics Prize

    International Nuclear Information System (INIS)

    Sun Xiangdong

    1995-01-01

    Neutron scattering is an efficient method for detecting the microstructure of matter by which we can study, for example, details of the phonon spectrum in solids, and the isotopic effect. Bertram N. Brockhouse and Clifford G. Shull earned the Nobel Physics Prize in 1994 for their significant contributions in this domain

  8. The measurement of neutron and neutron induced photon spectra in fusion reactor related assemblies

    CERN Document Server

    Unholzer, S; Klein, H; Seidel, K

    2002-01-01

    The spectral neutron and photon fluence (or flux) measured outside and inside of assemblies related to fusion reactor constructions are basic quantities of fusion neutronics. The comparison of measured spectra with the results of MCNP neutron and photon transport calculations allows a crucial test of evaluated nuclear data as generally used in fusion applications to be carried out. The experiments concern mixed neutron/photon fields with about the same intensity of the two components. An NE-213 scintillation spectrometer, well described by response matrices for both neutrons and photons, is used as proton-recoil and Compton spectrometer. The experiments described here in more detail address the background problematic of two applications, an iron benchmark experiment with an ns-pulsed neutron source and a deep penetration mock-up experiment for the investigation of the ITER in-board shield system. The measured spectral neutron and photon fluences are compared with spectra calculated with the MCNP code on the b...

  9. Polarized (3) He Spin Filters for Slow Neutron Physics.

    Science.gov (United States)

    Gentile, T R; Chen, W C; Jones, G L; Babcock, E; Walker, T G

    2005-01-01

    Polarized (3)He spin filters are needed for a variety of experiments with slow neutrons. Their demonstrated utility for highly accurate determination of neutron polarization are critical to the next generation of betadecay correlation coefficient measurements. In addition, they are broadband devices that can polarize large area and high divergence neutron beams with little gamma-ray background, and allow for an additional spin-flip for systematic tests. These attributes are relevant to all neutron sources, but are particularly well-matched to time of flight analysis at spallation sources. There are several issues in the practical use of (3)He spin filters for slow neutron physics. Besides the essential goal of maximizing the (3)He polarization, we also seek to decrease the constraints on cell lifetimes and magnetic field homogeneity. In addition, cells with highly uniform gas thickness are required to produce the spatially uniform neutron polarization needed for beta-decay correlation coefficient experiments. We are currently employing spin-exchange (SE) and metastability-exchange (ME) optical pumping to polarize (3)He, but will focus on SE. We will discuss the recent demonstration of 75 % (3)He polarization, temperature-dependent relaxation mechanism of unknown origin, cell development, spectrally narrowed lasers, and hybrid spin-exchange optical pumping.

  10. METHODS OF ASSESSMENT OF THE RELATIVE BIOLOGICAL EFFECTIVENESS OF NEUTRONS IN NEUTRON THERAPY

    Directory of Open Access Journals (Sweden)

    V. A. Lisin

    2017-01-01

    Full Text Available The relative biological effectiveness (RBE of fast neutrons is an important factor influencing the quality of neutron therapy therefore, the assessment of RBE is of great importance. Experimental and clinical studies as well as different mathematical and radiobiological models are used for assessing RBE. Research is conducted for neutron sources differing in the method of producing particles, energy and energy spectrum. Purpose: to find and analyze the dose-dependence of fast neutron RBE in neutron therapy using the U-120 cyclotron and NG-12I generator. Material and methods: The optimal method for assessing the relative biological effectiveness of neutrons for neutron therapy was described. To analyze the dependence of the RBE on neutron dose, the multi-target model of cell survival was applied. Results: The dependence of the RBE of neutrons produced from the U-120 cyclotron and NG-120 generator on the dose level was found for a single irradiation of biological objects. It was shown that the function of neutron dose was consistent with similar dependencies found by other authors in the experimental and clinical studies.

  11. Neutron scattering in soft matter physics and chemistry

    International Nuclear Information System (INIS)

    White, J.W.

    1999-01-01

    Recent experiments area of soft matter science show that self assembly on the micron scale as well as the nanometer scale can be directed chemically. This lecture illustrates how such processes can be studied using the contrast variation available in neutron scattering through isotopic replacement and the techniques of neutron small angle scattering and neutron reflectivity. Related dynamical information at nanometer resolution and on time scales between a nanosecond and a few tenths of a picosecond will become accessible with brighter neutron sources. The examples presented concern the template induced crystallisation of zeolites, the liquid crystal template induced synthesis of mesoporous materials and the structure of thin films at the air water interface. (J.P.N.)

  12. Physical principles of neutron-gamma materials monitoring

    Science.gov (United States)

    Pekarskii, G. Sh.

    1986-03-01

    The physical principles of secondary radiation methods in nondestructive testing are discussed. Among the techniques considered are: neutron activation analysis (NAA); the induced-radiation method; and quasialbedo recording of secondary gamma-radiation. Emphasis is given to the neutron-gamma method which consists of exposing test material to a neutron flux and recording the secondary gamma-radiation by means of a spectrometer. The limitations of the method in detecting local inhomogeneous defects (filled pores cracks, and inclusions) in metal layers and multicomponents materials are described, and some advantages of the method over NAA are discussed. Formulas are derived for estimating the optimum density of the gamma-ray flux which is received by the detector.

  13. Experimental investigation of the neutron physics characteristics of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang; Thong, Ha Van [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The investigation of the neutron physics characteristics of the Dalat Reactor has obtained the results as follows: 1/ The effective fraction of delayed photoneutrons and the extraneous neutron source left after reactor shut down are measured. 2/ The lowest power levels of critical states of the reactor are determined. 3/The perturbation effect is investigated when a water column or a plexiglass rod is substituted for a fuel element. 4/ The relative axial and radial distributions of the thermal neutrons measured and the geometrical parameters of the core such as the inhomogeneous coefficients, the buckling, the effective height and radius, the extrapolated distances are obtained. 4/ The thermal neutron distributions are measured around the old graphite reflector. (author). 10 refs., 10 figs., 2 tabs.

  14. Neutron physics for nuclear reactors unpublished writings by Enrico Fermi

    CERN Document Server

    Fermi, Enrico; Pisanti, O

    2010-01-01

    This unique volume gives an accurate and very detailed description of the functioning and operation of basic nuclear reactors, as emerging from yet unpublished papers by Nobel Laureate Enrico Fermi. In the first part, the entire course of lectures on Neutron Physics delivered by Fermi at Los Alamos is reported, according to the version made by Anthony P French. Here, the fundamental physical phenomena are described very clearly and comprehensively, giving the appropriate physics grounds for the functioning of nuclear piles. In the second part, all the patents issued by Fermi (and coworkers) on

  15. Upgrade of detectors of neutron instruments at Neutron Physics Laboratory in Rez

    Czech Academy of Sciences Publication Activity Database

    Litvinenko, E. I.; Ryukhtin, Vasyl; Bogdzel, A. A.; Churakov, A. V.; Farkas, G.; Hervoches, Charles; Lukáš, Petr; Pilch, Jan; Šaroun, Jan; Strunz, Pavel; Zhuravlev, V. V.

    2017-01-01

    Roč. 841, JAN (2017), s. 5-11 ISSN 0168-9002 R&D Projects: GA MŠk LG14004; GA MŠk LM2015056; GA ČR GB14-36566G Institutional support: RVO:68378271 ; RVO:61389005 Keywords : neutron scattering * gaseous position-sensitive detector * delay line readout Subject RIV: BM - Solid Matter Physics ; Magnetism; JG - Metallurgy (FZU-D) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Materials engineering (FZU-D) Impact factor: 1.362, year: 2016

  16. Order-of-magnitude physics of neutron stars. Estimating their properties from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Reisenegger, Andreas; Zepeda, Felipe S. [Pontificia Universidad Catolica de Chile, Instituto de Astrofisica, Facultad de Fisica, Macul (Chile)

    2016-03-15

    We use basic physics and simple mathematics accessible to advanced undergraduate students to estimate the main properties of neutron stars. We set the stage and introduce relevant concepts by discussing the properties of ''everyday'' matter on Earth, degenerate Fermi gases, white dwarfs, and scaling relations of stellar properties with polytropic equations of state. Then, we discuss various physical ingredients relevant for neutron stars and how they can be combined in order to obtain a couple of different simple estimates of their maximum mass, beyond which they would collapse, turning into black holes. Finally, we use the basic structural parameters of neutron stars to briefly discuss their rotational and electromagnetic properties. (orig.)

  17. Reactor physics experiments in PURNIMA sub critical facility coupled with 14 MeV neutron source

    International Nuclear Information System (INIS)

    Kumar, Rajeev; Degweker, S.B.; Patel, Tarun; Bishnoi, Saroj; Adhikari, P.S.

    2011-01-01

    Accelerator Driven Sub-critical Systems (ADSS) are attracting increasing worldwide attention due to their superior safety characteristics and their potential for burning actinide and fission product waste and energy production. A number of countries around the world have drawn up roadmaps/programs for development of ADSS. Indian interest in ADSS has an additional dimension, which is related to the planned utilization of our large thorium reserves for future nuclear energy generation. A programme for development of ADSS is taken up at the Bhabha Atomic Research Centre (BARC) in India. This includes R and D activities for high current proton accelerator development, target development and Reactor Physics studies. As part of the ADSS Reactor Physics research programme, a sub-critical facility is coming up in BARC which will be coupled with an existing D-D/D-T neutron generator. Two types of cores are planned. In one of these, the sub-critical reactor assembly consists of natural uranium moderated by high density polyethylene (HDP) and reflected by BeO. The other consists of natural uranium moderated by light water. The maximum neutron yield of the neutron source with tritium target is around 10 10 neutron per sec. Various reactor physics experiments like measurement of the source strength, neutron flux distribution, buckling estimation and sub-critical source multiplication are planned. Apart from this, measurement of the total fission power and neutron spectrum will also be carried out. Mainly activation detectors will be used in all in-core neutron flux measurement. Measurement of the degree of sub-criticality by various deterministic and noise methods is planned. Helium detectors with advanced data acquisition card will be used for the neutron noise experiments. Noise characteristics of ADSS are expected to be different from that of traditional reactors due to the non-Poisson statistical features of the source. A new theory incorporating these features has been

  18. Some principal problems in physics and low-energy neutron physics

    International Nuclear Information System (INIS)

    Aleksandrov, Yu.A.

    2004-01-01

    The questions connected with internal particle (e.g. neutron) structure obtained at low-energy neutron physics are discussed. The first question deals with the charge neutron radius E 2 > 1/2 connected with the value of neutron-electron scattering length a ne determined at low neutron energies. At present, the obtained accuracy allows us to speak not only about the value of E 2 > but also on the segmentation of E 2 > into Dirac and Foldy addenda. The sign of the Dirac addendum is connected directly with the fundamental Yukawa theory explaining the origin of nuclear forces. One of the popular experimental values of the Dirac addendum (from a ne =(-1.32±0.03)·10 -16 cm) contradicts the Yukawa theory. The second question also concerns the subject of the structure of the neutron, namely its deformation. The notion of deformation (polarizability) of the nucleon in electromagnetic field was introduced in the mid-1950s. The reasons are given in favor of the opinion that the neutron polarizability was observed for the first time in neutron experiments as far back as 1957, i.e. earlier than proton polarizability was detected (1960). Finally, the third question deals with the search for a magnetic charge of the neutron. A beautiful experiment (Finkelstein, Shull, Zeilinger, 1986) testifying with high accuracy the absence of a magnetic charge of the neutron is discussed. This diffraction experiment was based on the concept of anomalously small effective mass of the neutron providing greatly enhanced sensitivity. The existence of an isolated magnetic charge in the nature would explain the quantization of electric and magnetic charges (Dirac, 1931)

  19. ISINN-2. Neutron spectroscopy, nuclear structure and related topics

    International Nuclear Information System (INIS)

    1994-01-01

    The proceedings contain the materials presented at the Second International Seminar on Neutron-Nucleus Interactions (ISINN-2) dealing with the problems of neutron spectroscopy, nuclear structure and related topics. The Seminar took place in Dubna on April 26-28, 1994. Over 120 scientists from Belgium, Bulgaria, Czech Republic, Germany, Holland, Italy, Japan, Latvia, Mexico, Poland, Slovakia, Slovenia, Ukraine, US and about 10 Russian research institutes took part in the Seminar. The main problems discussed are the following: P-odd and P-even angular correlation and T-reversal invariance in neutron reactions, nuclear structure investigations by neutron capture, the mechanism of neutron reactions, nuclear fission processes, as well as neutron data for nuclear astrophysics

  20. The importance of the discovery of the neutron by J. Chadwick to the development of nuclear physics and technology

    International Nuclear Information System (INIS)

    Seeliger, D.

    1983-01-01

    The discovery of the neutron by J. Chadwick in 1932 was a milestone in the development of nuclear physics and technology. Apart from basic findings on the structure of atomic nuclei, this discovery has found various fields of application among which nuclear power technology is the most important. The relation between historical impact and topicality of certain objects of investigation in neutron physics is outlined on the basis of some lines of development. (author)

  1. Local computer network of the JINR Neutron Physics Laboratory

    International Nuclear Information System (INIS)

    Alfimenkov, A.V.; Vagov, V.A.; Vajdkhadze, F.

    1988-01-01

    New high-speed local computer network, where intelligent network adapter (NA) is used as hardware base, is developed in the JINR Neutron Physics Laboratory to increase operation efficiency and data transfer rate. NA consists of computer bus interface, cable former, microcomputer segment designed for both program realization of channel-level protocol and organization of bidirectional transfer of information through direct access channel between monochannel and computer memory with or witout buffering in NA operation memory device

  2. Time-dependent pseudo-reciprocity relations in neutronics

    International Nuclear Information System (INIS)

    Modak, R.S.; Sahni, D.C.

    2002-01-01

    Earlier, certain reciprocity-like relations have been shown to hold in some restricted steady state cases in neutron diffusion and transport theories. Here, the possibility of existence of similar relations in time-dependent situations is investigated

  3. Neutron physics of a high converting advanced pressurized water reactor

    International Nuclear Information System (INIS)

    Berger, H.D.

    1985-01-01

    The neutron physics of an APWR are analysed by single pin-cell calculations as well as two-dimensional whole-reactor computations. The calculational methods of the two codes employed for this study, viz. the cell code SPEKTRA and the diffusion-burnup code DIBU, are presented in detail. The APWR-investigations carried out concentrate on the void coefficient characteristics of tight UO 2 /PuO 2 -lattices, control rod worths, burnup behaviour and spatial power distributions in APWR cores. The principal physics design differences between advanced pressurized water reactors and present-day PWRs are identified and discussed. (orig./HP) [de

  4. KAMCCO, a reactor physics Monte Carlo neutron transport code

    International Nuclear Information System (INIS)

    Arnecke, G.; Borgwaldt, H.; Brandl, V.; Lalovic, M.

    1976-06-01

    KAMCCO is a 3-dimensional reactor Monte Carlo code for fast neutron physics problems. Two options are available for the solution of 1) the inhomogeneous time-dependent neutron transport equation (census time scheme), and 2) the homogeneous static neutron transport equation (generation cycle scheme). The user defines the desired output, e.g. estimates of reaction rates or neutron flux integrated over specified volumes in phase space and time intervals. Such primary quantities can be arbitrarily combined, also ratios of these quantities can be estimated with their errors. The Monte Carlo techniques are mostly analogue (exceptions: Importance sampling for collision processes, ELP/MELP, Russian roulette and splitting). Estimates are obtained from the collision and track length estimators. Elastic scattering takes into account first order anisotropy in the center of mass system. Inelastic scattering is processed via the evaporation model or via the excitation of discrete levels. For the calculation of cross sections, the energy is treated as a continuous variable. They are computed by a) linear interpolation, b) from optionally Doppler broadened single level Breit-Wigner resonances or c) from probability tables (in the region of statistically distributed resonances). (orig.) [de

  5. Research and development activities of the Neutron Physics Division for the period January 1977-December 1978

    International Nuclear Information System (INIS)

    Ramanadham, M.; Joneja, O.P.

    1979-01-01

    The research and development programmes of the Neutron Physics Division of the Bhabha Atomic Research Centre, Bombay, for the period 1977-1978 are outlined. The fields covered include reactor (neutron) physics, fusion and plasma neutronics, biological and high precision crystallography, solid state phenomena and seismology as well as the associated workshop facilities. (K.B.)

  6. Effective source size as related to 252Cf neutron radiography

    International Nuclear Information System (INIS)

    Wada, Nobuo; Enomoto, Shigemasa; Tachikawa, Noboru; Nojiri, Toshiaki.

    1977-01-01

    The effective source size in 252 Cf thermal neutron radiography, relating to its geometrical unsharpness in image formation, is experimentally studied. A neutron radiographic system consists of a 160 μg 252 Cf neutron source, water moderator and divergent cadmium lined collimator. Thermal neutron image detection is performed with using a LiF scintillator and a high speed X-ray film to employ direct exposure method. The modulation transfer function, used for describing image quality, is derived from radiographic image corresponding to a cadmium plate with sharp edge. The modulation transfer function for the system is expressed by the product of the function for both geometrical and inherent unsharpness, and allows isolation of geometrical unsharpness as related to the effective size of the thermal neutron source. It is found to be 80 -- 90% of the collimator inlet diameter. (auth.)

  7. Neutron standard cross sections in reactor physics - Need and status

    International Nuclear Information System (INIS)

    Carlson, A.D.

    1990-01-01

    The design and improvement of nuclear reactors require detailed neutronics calculations. These calculations depend on comprehensive libraries of evaluated nuclear cross sections. Most of the cross sections that form the data base for these evaluations have been measured relative to neutron cross-section standards. The use of these standards can often simplify the measurement process by eliminating the need for a direct measurement of the neutron fluence. The standards are not known perfectly, however; thus the accuracy of a cross-section measurement is limited by the uncertainty in the standard cross section relative to which it is measured. Improvements in a standard cause all cross sections measured relative to that standard to be improved. This is the reason for the emphasis on improving the neutron cross-section standards. The continual process of measurement and evaluation has led to improvements in the accuracy and range of applicability of the standards. Though these improvements have been substantial, this process must continue in order to obtain the high-quality standards needed by the user community

  8. Seminar Neutronika-2012. Neutron-physical problems of nuclear-power engineering. Program and abstracts

    International Nuclear Information System (INIS)

    2012-01-01

    On October, 30 - November, 2 in State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky a seminar Neutron-physical problems of nuclear power engineering - Neutronika-2012 took place. On the seminar the following problems were discussed: justification of neutron-physical characteristics of reactor facilities and innovation projects; constant support of neutron-physical calculations of nuclear power installations; numerical simulation during solving reactor physics problems; simulation of neutron-physical processes in reactor facilities by Monte Carlo method; development and verification of programs for reactor facilities neutron-physical calculations; algorithms and programs for solving nonstationary problems of neutron-physical calculation of nuclear reactors; analysis of integral and reactor experiments, experimental database; justification of nuclear and radiation safety of fuel cycle [ru

  9. General Relativity: Geometry Meets Physics

    Science.gov (United States)

    Thomsen, Dietrick E.

    1975-01-01

    Observing the relationship of general relativity and the geometry of space-time, the author questions whether the rest of physics has geometrical explanations. As a partial answer he discusses current research on subatomic particles employing geometric transformations, and cites the existence of geometrical definitions of physical quantities such…

  10. Simulation of merging neutron stars in full general relativity

    International Nuclear Information System (INIS)

    Shibata, M.

    2001-01-01

    We have performed 3D numerical simulations for merger of equal mass binary neutron stars in full general relativity. We adopt a Γ-law equation of state in the form P = (Γ - 1)ρε where P, ρ, ε and Γ are the pressure, rest mass density, specific internal energy, and the adiabatic constant. As initial conditions, we adopt models of irrotational binary neutron stars in a quasiequilibrium state. Simulations have been carried out for a wide range of Γ and compactness of neutron stars, paying particular attention to the final product and gravitational waves. We find that the final product depends sensitively on the initial compactness of the neutron stars: In a merger between sufficiently compact neutron stars, a black hole is formed in a dynamical timescale. As the compactness is decreased, the formation timescale becomes longer and longer. It is also found that a differentially rotating massive neutron star is formed instead of a black hole for less compact binary cases. In the case of black hole formation, the disk mass around the black hole appears to be very small; less than 1% of the total rest mass. It is indicated that waveforms of high-frequency gravitational waves after merger depend strongly on the compactness of neutron stars before the merger. We point out importance of detecting such gravitational waves of high frequency to constrain the maximum allowed mass of neutron stars. (author)

  11. Geometry of physical dispersion relations

    International Nuclear Information System (INIS)

    Raetzel, Dennis; Rivera, Sergio; Schuller, Frederic P.

    2011-01-01

    To serve as a dispersion relation, a cotangent bundle function must satisfy three simple algebraic properties. These conditions are derived from the inescapable physical requirements that local matter field dynamics must be predictive and allow for an observer-independent notion of positive energy. Possible modifications of the standard relativistic dispersion relation are thereby severely restricted. For instance, the dispersion relations associated with popular deformations of Maxwell theory by Gambini-Pullin or Myers-Pospelov are not admissible. Dispersion relations passing the simple algebraic checks derived here correspond to physically admissible Finslerian refinements of Lorentzian geometry.

  12. Neutron transport. Physics and calculation of nuclear reactors with applications to pressurized water reactors and fast neutron reactors. 2 ed.

    International Nuclear Information System (INIS)

    Bussac, J.; Reuss, P.

    1985-01-01

    This book presents the main physical bases of neutron theory and nuclear reactor calculation. 1) Interactions of neutrons with matter and basic principles of neutron transport; 2) Neutron transport in homogeneous medium and the neutron field: kinetic behaviour, slowing-down, resonance absorption, diffusion equation, processing methods; 3) Theory of a reactor constituted with homogeneous zones: critical condition, kinetics, separation of variables, calculation and neutron balance of the fundamental mode, one-group and multigroup theories; 4) Study of heterogeneous cell lattices: fast fission factor, resonance absorption, thermal output factor, diffusion coefficient, computer codes; 5) Operation and control of reactors: perturbation theory, reactivity, fuel properties evolution, poisoning by fission products, calculation of a reactor and fuel management; 6) Study of some types of reactors: PWR and fast breeder reactors, the main reactor types of the present French program [fr

  13. Research and development activities of the Neutron Physics Division for the period January 1980 - December 1980

    International Nuclear Information System (INIS)

    Basu, T.K.; Bhakay-Tamhane, S.

    1981-01-01

    The highlights of the research and development (R and D) activities of the Neutron Physics Division of the Bhabha Atomic Research Centre, Bombay, during January - December 1980 are summarised. The R and D activities are in the fields of critical and subcritical fission systems, the plasma focus device, applied neutron physics, neutron and X-ray crystallography, materials physics and seismology. (M.G.B.)

  14. Neutron physics computation of CERCA fuel elements for Maria Reactor

    International Nuclear Information System (INIS)

    Andrzejewski, K.J.; Kulikowska, T.; Marcinkowska, Z.

    2008-01-01

    Neutron physics parameters of CERCA design fuel elements were calculated in the framework of the RERTR (Reduced Enrichment for Research and Test Reactors) program for Maria reactor. The analysis comprises burnup of experimental CERCA design fuel elements for 4 cycles in Maria Reactor To predict the behavior of the mixed core the differences between the CERCA fuel (485 g U-235 as U 3 Si 2 , 5 fuel tubes, low enrichment 19.75 % - LEU) and the presently used MR-6 fuel (430 g as UO 2 , 6 fuel tubes, high enrichment 36 % - HEU) had to be taken into account. The basic tool used in neutron-physics analysis of Maria reactor is program REBUS using in its dedicated libraries of effective microscopic cross sections. The cross sections were prepared using WIMS-ANL code, taking into account the actual structure, temperature and material composition of the fuel elements required preparation of new libraries.The problem is described in the first part of the present paper. In the second part the applicability of the new library is shown on the basis of the fuel core computational analysis. (author)

  15. Quantum physics and relational ontology

    Energy Technology Data Exchange (ETDEWEB)

    Cordovil, Joao [Center of Philosophy of Sciences of University of Lisbon (Portugal)

    2013-07-01

    The discovery of the quantum domain of reality put a serious ontological challenge, a challenge that is still well present in the recent developments of Quantum Physics. Physics was conceived from an atomistic conception of the world, reducing it, in all its diversity, to two types of entities: simple, individual and immutable entities (atoms, in metaphysical sense) and composite entities, resulting solely from combinations. Linear combinations, additive, indifferent to the structure or to the context. However, the discovery of wave-particle dualism and the developments in Quantum Field Theories and in Quantum Nonlinear Physical, showed that quantum entities are not, in metaphysical sense, neither simple, nor merely the result of linear (or additive) combinations. In other words, the ontological foundations of Physics revealed as inadequate to account for the nature of quantum entities. Then a fundamental challenge arises: How to think the ontic nature of these entities? In my view, this challenge appeals to a relational and dynamist ontology of physical entities. This is the central hypothesis of this communication. In this sense, this communication has two main intentions: 1) positively characterize this relational and dynamist ontology; 2) show some elements of its metaphysical suitability to contemporary Quantum Physics.

  16. The physics of solid-state neutron detector materials and geometries.

    Science.gov (United States)

    Caruso, A N

    2010-11-10

    Detection of neutrons, at high total efficiency, with greater resolution in kinetic energy, time and/or real-space position, is fundamental to the advance of subfields within nuclear medicine, high-energy physics, non-proliferation of special nuclear materials, astrophysics, structural biology and chemistry, magnetism and nuclear energy. Clever indirect-conversion geometries, interaction/transport calculations and modern processing methods for silicon and gallium arsenide allow for the realization of moderate- to high-efficiency neutron detectors as a result of low defect concentrations, tuned reaction product ranges, enhanced effective omnidirectional cross sections and reduced electron-hole pair recombination from more physically abrupt and electronically engineered interfaces. Conversely, semiconductors with high neutron cross sections and unique transduction mechanisms capable of achieving very high total efficiency are gaining greater recognition despite the relative immaturity of their growth, lithographic processing and electronic structure understanding. This review focuses on advances and challenges in charged-particle-based device geometries, materials and associated mechanisms for direct and indirect transduction of thermal to fast neutrons within the context of application. Calorimetry- and radioluminescence-based intermediate processes in the solid state are not included.

  17. 8-group relative delayed neutron yields for epithermal neutron induced fission of 235U and 239Pu

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Korolev, G.G.; Roshchenko, V.A.; Tertychnyj, R.G

    2002-01-01

    An 8-group representation of relative delayed neutron yields was obtained for epithermal neutron induced fission of 235 U and 239 Pu. These data were compared with ENDF/B-VI data in terms of the average half- life of the delayed neutron precursors and on the basis of the dependence of reactivity on the asymptotic period. (author)

  18. Nuclear-physical investigations with oriented nuclei and polarized neutrons

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Pikel'ner, L.B.; Sharapov, Eh.I.

    1980-01-01

    Several experiments with oriented nuclei and polarized neutrons are considered, as well as some methods of polarization of neutrons and nuclei. Experiments on the study of spin dependence of neutron cross sections for fissionable and nonfissionable nuclei interaction of polarized neutrons with polarized nuclei as well as measurement of magnetic momenta of compound-states of rare-earth nuclei. Described are some investigations with thermal neutrons: study on spin dependence of neutron scattering length with nuclei and gamma radiation of neutron radiation capture. Difficulties of production of high-intensive polarized neutron beams and construction of oriented targets are noted. Neutron polarization by transmission of them through a polarized proton target is the most universal method (out of existing methods) in the energy range under consideration [ru

  19. Chart of nuclides relating to neutron activation

    International Nuclear Information System (INIS)

    Okada, Minoru

    1981-09-01

    This chart is for frequent use in the prediction of the product species of neutron activation. The first edition of the chart has been made in 1976 after the repeated trial preparation. It has the following good points. (1) Any letter in chart is as large as one can read easily. [This condition has been obtained by the selection of items to be shown in chart. They are the name (the symbol of element, mass number, and half-life) of nuclide or of isomer, and the type of decay.]. (2) Decay product has been shown indirectly for branchings with two-step decay via short-lived daughter in an excited state. [This matter has been realized by use of the new mode of indication.] (3) Nuclides shown in chart are (a) naturally occurring nuclides and (b) nuclides formed from naturally occurring nuclides through one of the following reactions: (n, γ), (n, n'), (n, p), (n, α), (n, 2n), (n, pn), (n, 3n), (n, αn), (n, t), (n, 3 He), (n, 2p), and (n, γ)(n, γ). In the revision of the first edition, some modes of indication have become a little simpler, and the isomers of shorter half-lives (0.1 - 1 μs) have been added. (author)

  20. Neutron physics calculation for WWER-1000 absorber element lifetime determination

    International Nuclear Information System (INIS)

    Kurakin, K.Yu.; Kushmanov, S.A.

    2009-01-01

    Absorber element with compound absorber has been operating in WWER-1000 power units since 1995. AE design meets operating organizations requirements for reliability, service life (to 10 years) and safety functions. Extension of AE service life up to 20 - 30 years by the complex of calculation and experimental work is an important problem of WWER new designs development. The paper deals with the issues related to calculation determination of main factors that influence AE service life limitation - neutron flux and fluence onto absorbing and structural materials during extended service life. (Authors)

  1. Physical basis for prompt-neutron activation analysis

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1982-01-01

    The technique called prompt ν-ray neutron activation analysis has been applied to rapid materials analysis. The radiation following the neutron radiation capture is prompt in the sense that the nuclear decay time is on the order of 10 - 15 second, and thus the technique is not strictly activation, but should be called radiation neutron capture spectroscopy or neutron capture ν-ray spectroscopy. This paper reviews the following: sources and detectors, theory of radiative capture, nonstatistical capture, giant dipole resonance, fast neutron capture, and thermal neutron capture ν-ray spectra. 14 figures

  2. Proceedings of the X. international school on nuclear physics, neutron physics and nuclear energy

    International Nuclear Information System (INIS)

    Andrejtscheff, W.; Elenkov, D.

    1992-01-01

    The history of the International School on Nuclear Physics, Neutron physics and nuclear Energy ('Varna School') goes back to the year 1973. Since that time it has been carried out in the fall of every other year in the Conference Center of the Bulgarian Academy of Sciences at the Black Sea coast near Varna. This volume contains the full texts of the lectures delivered by distinguished scientists from different countries on the Tenth Varna School, 1991. 14 of them are included in INIS separately

  3. Propagation of neutron-reaction uncertainties through multi-physics models of novel LWR's

    Directory of Open Access Journals (Sweden)

    Hernandez-Solis Augusto

    2017-01-01

    Full Text Available The novel design of the renewable boiling water reactor (RBWR allows a breeding ratio greater than unity and thus, it aims at providing for a self-sustained fuel cycle. The neutron reactions that compose the different microscopic cross-sections and angular distributions are uncertain, so when they are employed in the determination of the spatial distribution of the neutron flux in a nuclear reactor, a methodology should be employed to account for these associated uncertainties. In this work, the Total Monte Carlo (TMC method is used to propagate the different neutron-reactions (as well as angular distributions covariances that are part of the TENDL-2014 nuclear data (ND library. The main objective is to propagate them through coupled neutronic and thermal-hydraulic models in order to assess the uncertainty of important safety parameters related to multi-physics, such as peak cladding temperature along the axial direction of an RBWR fuel assembly. The objective of this study is to quantify the impact that ND covariances of important nuclides such as U-235, U-238, Pu-239 and the thermal scattering of hydrogen in H2O have in the deterministic safety analysis of novel nuclear reactors designs.

  4. Taking into account of effects of finite geometry in a neutron-physical experiment

    International Nuclear Information System (INIS)

    Dushin, V.N.; Ippolitov, V.T.

    1981-01-01

    Problems for account of finite geometry of neutron-physical experiment are considered from the point of view of increasing the determination accuracy of nuclear-physical constants (NPC). A three-equation system, which relates studied nuclear-physical characteristics of the target to experimental results obtained at the output of registering device, is presented. A problem of accurate NPC determination is the solution of the given system in relation to parameters sought for, it is a so-called reverse problem of the irradiation transfer theory. A method of error matrix determination measuring NPC, with the help of the introduction of the sensitivity coefficients is considered. Proposed interpretation of reverse problems of the irradiation transfer theory is effective during the planning of experimental investigations taking into account correlation properties of experimental techniques [ru

  5. Neutron irradiation effects in fusion or spallation structural materials: Some recent insights related to neutron spectra

    International Nuclear Information System (INIS)

    Garner, F.A.; Greenwood, L.R.

    1998-01-01

    A review is presented of recent insights on the role of transmutation in the development of radiation-induced changes in dimension or radiation-induced changes in physical or mechanical properties. It is shown that, in some materials and some neutron spectra, transmutation can significantly affect or even dominate a given property change process. When the process under study is also sensitive to displacement rate, and especially if it involves radiation-induced segregation and precipitation, it becomes much more difficult to separate the transmutation and displacement rate dependencies. This complicates the application of data derived from 'surrogate' spectra to predictions in other flux-spectra environments. It is also shown in this paper that one must be sensitive to the impact of previously -ignored 'small' variations in neutron spectra within a given reactor. In some materials these small variations have major consequences. (author)

  6. System for measurements and data processing in neutron physics researches

    International Nuclear Information System (INIS)

    Kadashevich, V.I.; Kondurov, I.A.; Nikolaev, S.N.; Ryabov, Yu.F.

    1976-01-01

    A system of measuring and computing means created for automation of studies in the field of the neutron physics is discussed. Within the framework of this system each experiment is provided with its individual measuring station which consists of a set of analog and digital modules implemented in accordance with the CAMAC standard. On the higher level of this system there are measuring-computing centres (MCC) which simultaneously serve a number of physical installations. These MCCs are based on ''Minsk-22'' computers whose computational facilities are used for the preliminary processing and for creation of temporary data archives. In its turn, all the MCCs are users of the time-sharing system on the basis of the ''Minsk-32'' computers. This system extends possibilities for user's fast data processing, archive creation and provides transfer of required information to the main computing system based on the BESM-6 computer. Transfer of information and preliminary processing are performed by remote terminals with the help of a special directive language

  7. Extended I-Love relations for slowly rotating neutron stars

    Science.gov (United States)

    Gagnon-Bischoff, Jérémie; Green, Stephen R.; Landry, Philippe; Ortiz, Néstor

    2018-03-01

    Observations of gravitational waves from inspiralling neutron star binaries—such as GW170817—can be used to constrain the nuclear equation of state by placing bounds on stellar tidal deformability. For slowly rotating neutron stars, the response to a weak quadrupolar tidal field is characterized by four internal-structure-dependent constants called "Love numbers." The tidal Love numbers k2el and k2mag measure the tides raised by the gravitoelectric and gravitomagnetic components of the applied field, and the rotational-tidal Love numbers fo and ko measure those raised by couplings between the applied field and the neutron star spin. In this work, we compute these four Love numbers for perfect fluid neutron stars with realistic equations of state. We discover (nearly) equation-of-state independent relations between the rotational-tidal Love numbers and the moment of inertia, thereby extending the scope of I-Love-Q universality. We find that similar relations hold among the tidal and rotational-tidal Love numbers. These relations extend the applications of I-Love universality in gravitational-wave astronomy. As our findings differ from those reported in the literature, we derive general formulas for the rotational-tidal Love numbers in post-Newtonian theory and confirm numerically that they agree with our general-relativistic computations in the weak-field limit.

  8. Utilization of low voltage D-T neutron generators in neutron physics studies

    Energy Technology Data Exchange (ETDEWEB)

    Singkarat, S.

    1995-08-01

    In a small nuclear laboratory of a developing country a low voltage D-T neutron generator can be a very useful scientific apparatus. Such machines have been used successfully for more than 40 years in teaching and scientific research. The original continuous mode 150-kV D-T neutron generator has been modified to have also a capability of producing 2-ns pulsed neutrons. Together with a carefully designed 10 m long flight path collimator and shielding of a 25 cm diameter {center_dot} 10 cm thick BC-501 neutron detector, the pulsing system was successfully used for measuring the double differential cross-section (DDX) of natural iron for 14.1-MeV neutron from the angle of 30 deg to 150 deg in 10 deg steps. In order to extend the utility of the generator, two methods for converting the almost monoenergetic 14-MeV neutrons to monoenergetic neutrons of lower energy were proposed and tested. The first method uses a pulsed neutron generator and the second method uses an ordinary continuous mode generator. The latter method was successfully used to measure the scintillation light output of a 1.4 cm diameter spherical NE-213 scintillation detector. The neutron generator has also been used in the continuous search for improved neutron detection techniques. There is a proposal, based on Monte Carlo calculations, of using a scintillation fiber for a fast neutron spectrometer. Due to the slender shape of the fiber, the pattern of produced light gives a peak in the pulse height spectrum instead of the well-known rectangular-like distribution, when the fiber is bombarded end-on by a beam of 14-MeV neutrons. Experimental investigations were undertaken. Detailed investigations on the light transportation property of a short fiber were performed. The predicted peak has not yet been found but the fiber detector may be developed as a directional discrimination fast neutron detector. 18 refs.

  9. Relativistic polarized neutrons at the Laboratory of High Energy Physics, JINR

    International Nuclear Information System (INIS)

    Kirillov, A.; Komolov, L.; Kovalenko, A.; Matyushevskij, E.; Nomofilov, A.; Rukoyatkin, P.; Sharov, V.; Starikov, A.; Strunov, L.; Svetov, A.

    1996-01-01

    Using slowly extracted polarized deuterons, available at the accelerator facility of the Laboratory of High Energy Physics, JINR, polarized quasi-monochromatic neutrons with momenta from 1.1 to 4.5 GeV/c have been generated. Depending on momentum, from 10 4 to 10 6 polarized neutrons per accelerator cycle were produced. At present, the polarized neutrons are mainly intended for measuring the (n vec, p vec) total cross section differences. 6 refs., 2 figs

  10. Nuclear-structure aspects of theoretical neutron physics

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1976-01-01

    The structure of neutron resonances is studied on the basis of the semimicroscopic nuclear theory. Few-quasiparticle components of the wave functions of neutron resonances are calculated which determine the neutron and radiational strength functions. It is stated that it is necessary to clarify the role of their many-quasiparticle components. The structure of neutron resonances is studied within the framework of the general approach based on the operator form of the wave functions. The role of three-quasiparticle components in the wave functions of neutron resonances is studied and the cases of validity of the valence neutron model are pointed out. It is shown that the experimental information about the structure of neutron resonances is limited to few-quasiparticle components which are of 10 -3 -10 -6 part of the normalization of their wave functions. To study the structure of neutron resonances it is necessary to find the values of many-quasiparticle components of the wave functions. The ways of experimental finding of these components based on the study of γ-transitions between highly excited states are discussed. The fragmentation of single-particle states in deformed nuclei is studied within the framework of the model based on the quasiparticle--phonon interactions. The S-, p-, and α-wave neutron strength functions are determined

  11. Fundamental neutron physics at a 1 MW long pulse spallation neutron source

    International Nuclear Information System (INIS)

    Greene, G.L.

    1995-01-01

    Modern neutron sources and modern neutron science share a common origin in mid twentieth century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for the study of condensed matter with modern neutron sources being primarily used (and primarily justified) as tools for condensed matter research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities carried out at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high flux neutron facilities. Future sources, particularly high power spallation sources, offer exciting possibilities for the continuation of this program of research

  12. Neutron physics and the theory of liquids 1956-1976

    International Nuclear Information System (INIS)

    Schofield, P.

    1980-01-01

    A review is given of work carried out in the Theoretical Division, Harwell from 1956-1976 on neutron thermalization and scattering, resulting from different fuel composition and temperatures within nuclear reactor cores, and the use of thermal neutron scattering as a probe of the structure and dynamics of condensed matter. (UK)

  13. Health physics considerations at a neutron therapy facility cyclotron

    International Nuclear Information System (INIS)

    Kleck, J.H.; Krueger, D.J.; Mc Laughlin, J.E.; Smathers, J.B.

    1987-01-01

    The U.C.L.A. Neutron Therapy Facility (NTF) is one of four such facilities in the United States currently involved in NCI sponsored trials of neutron therapy and reflects the present interest in the use of high energy neutron beams for treating certain types of human cancers. The NTF houses a CP-45 negative ion cyclotron which accelerates a 46 MeV proton beam for production of neutrons from a beryllium target. In addition to patient treatment, the NTF is involved in the production of positron emitting radioisotopes for diagnostic use in Positron Emission Tomography (PET). The activation of therapy treatment collimators, positron and neutron target systems, and a high and rapidly varying external radiation environment in a clinical setting have contributed to the need for a comprehensive radiation control program in which patient care is balanced with the maintenance of occupational exposures to ALARA levels

  14. Physical particularities of nuclear reactors using heavy moderators of neutrons

    International Nuclear Information System (INIS)

    Kulikov, G. G.; Shmelev, A. N.

    2016-01-01

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using "2"3"3U as a fissile nuclide and "2"3"2Th and "2"3"1Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.

  15. Physical particularities of nuclear reactors using heavy moderators of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Shmelev, A. N. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using {sup 233}U as a fissile nuclide and {sup 232}Th and {sup 231}Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.

  16. Utilization of low voltage D-T neutron generators in neutron physics studies

    International Nuclear Information System (INIS)

    Singkarat, S.

    1995-01-01

    In a small nuclear laboratory of a developing country a low voltage D-T neutron generator can be a very useful scientific apparatus. Such machines have been used successfully for more than 40 years in teaching and scientific research. The original continuous mode 150-kV D-T neutron generator has been modified to have also a capability of producing 2-ns pulsed neutrons. Together with a carefully designed 10 m long flight path collimator and shielding of a 25 cm diameter · 10 cm thick BC-501 neutron detector, the pulsing system was successfully used for measuring the double differential cross-section (DDX) of natural iron for 14.1-MeV neutron from the angle of 30 deg to 150 deg in 10 deg steps. In order to extend the utility of the generator, two methods for converting the almost monoenergetic 14-MeV neutrons to monoenergetic neutrons of lower energy were proposed and tested. Both designs used the neutron-proton interaction at a circular surface-of-revolution made of hydrocarbon materials. The first design is for a pulsed neutron generator and the second design is for an ordinary continuous mode generator. The latter method was successfully used to measure the scintillation light output of a 1.4 cm diameter spherical NE-213 scintillation detector. The neutron generator has also been used in the continuous search for improved neutron detection techniques. There is a proposal, based on Monte Carlo calculations, of using a scintillation fiber for a fast neutron spectrometer. Due to the slender shape of the fiber, the pattern of produced light gives a peak in the pulse height spectrum instead of the well-known rectangular-like distribution, when the fiber is bombarded end-on by a beam of 14-MeV neutrons. Experimental investigations were undertaken. Detailed investigations on the light transportation property of a short fiber were performed. The predicted peak has not yet been found but the fiber detector may be developed as a directional discrimination fast neutron

  17. The neutron physics constants bank of the I.V. Kurchatov Institute of Atomic Energy

    International Nuclear Information System (INIS)

    Yudkevich, M.S.

    1987-01-01

    This paper describes the structure and contents of a neutron physics constants bank consisting of libraries, service programs and data preparation codes for reactor calculations. Use of the bank makes the constants fully accessible to users. (author)

  18. Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT).

    Science.gov (United States)

    Seki, Ryoichi; Wakisaka, Yushi; Morimoto, Nami; Takashina, Masaaki; Koizumi, Masahiko; Toki, Hiroshi; Fukuda, Mitsuhiro

    2017-12-01

    The physics of epi-thermal neutrons in the human body is discussed in the effort to clarify the nature of the unique radiologic properties of boron neutron capture therapy (BNCT). This discussion leads to the computational method of Monte Carlo simulation in BNCT. The method is discussed through two examples based on model phantoms. The physics is kept at an introductory level in the discussion in this tutorial review.

  19. Physics of dense matter, neutron stars, and supernova

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-02-01

    Nuclear and astrophysical evidence on the equation of state of dense matter is examined. The role of hyperonization of matter in the development of proto-neutron stars is briefly discussed. 7 refs., 4 figs

  20. Chemistry and Physics Challenges in Spallation Neutron Source Safety Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Lowrie, RR

    2001-06-13

    The SNS is a Department of Energy (DOE) research facility under construction near Oak Ridge, Tennessee. The SNS includes a 300-m long, 1 GeV, 2 MW, linear accelerator that produces neutrons by collisions of high-energy protons with mercury target nuclei. The mercury target atoms are in a circulating mercury loop that is water-cooled. The mercury loop operates at a nominal average temperature of 75 C (60 C nominal cold leg temperature and 90 C nominal hot leg temperature). The overall target system also includes circulating fluid systems for supercritical cryogenic hydrogen (to moderate product neutrons to low energy), heavy water (for cooling of shielding), and several light water systems (for shielding cooling, proton beam window and neutron beam window cooling, and to moderate neutrons to energies higher than those from the cryogenic hydrogen moderator).

  1. Neutron- and muon-induced background in underground physics experiments

    International Nuclear Information System (INIS)

    Kudryavtsev, V.A.; Tomasello, V.; Pandola, L.

    2008-01-01

    Background induced by neutrons in deep underground laboratories is a critical issue for all experiments looking for rare events, such as dark matter interactions or neutrinoless ββ decay. Neutrons can be produced either by natural radioactivity, via spontaneous fission or (α, n) reactions, or by interactions initiated by high-energy cosmic rays. In all underground experiments, Monte Carlo simulations of neutron background play a crucial role for the evaluation of the total background rate and for the optimization of rejection strategies. The Monte Carlo methods that are commonly employed to evaluate neutron-induced background and to optimize the experimental setup, are reviewed and discussed. Focus is given to the issue of reliability of Monte Carlo background estimates. (orig.)

  2. Neutron- and muon-induced background in underground physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, V.A.; Tomasello, V. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); Pandola, L. [Laboratori Nazionali del Gran Sasso, INFN, Assergi (Italy)

    2008-05-15

    Background induced by neutrons in deep underground laboratories is a critical issue for all experiments looking for rare events, such as dark matter interactions or neutrinoless {beta}{beta} decay. Neutrons can be produced either by natural radioactivity, via spontaneous fission or ({alpha}, n) reactions, or by interactions initiated by high-energy cosmic rays. In all underground experiments, Monte Carlo simulations of neutron background play a crucial role for the evaluation of the total background rate and for the optimization of rejection strategies. The Monte Carlo methods that are commonly employed to evaluate neutron-induced background and to optimize the experimental setup, are reviewed and discussed. Focus is given to the issue of reliability of Monte Carlo background estimates. (orig.)

  3. Hadron physics and the structure of neutron stars

    International Nuclear Information System (INIS)

    Kutschera, M.

    1996-09-01

    The equation of state of hadronic matter in neutron stars is briefly reviewed. Uncertainties regarding the stiffness and composition of hadronic matter are discussed. Importance of poorly known short range interactions of nucleons and hyperons is emphasized. Condensation of meson fields and the role of subhadronic degrees of freedom is considered. Empirical constraints on the equation of state emerging from observations of neutron stars are discussed. The nature of the remnant of SN1987A is considered. (author)

  4. The use of multi-energy-group neutron diffusion theory to numerically evaluate the relative utility of three dial-detector neutron porosity well logging tools

    International Nuclear Information System (INIS)

    Zalan, T.A.

    1988-01-01

    Multi-energy-group neutron diffusion theory is used to numerically evaluate the utility of two different dual-detector neutron porosity logging devices, a 14 MeV (accelerator) neutron source - epithermal neutron detector device and a 4 MeV neutron source - capture gamma-ray detector device, relative to the traditional 4 MeV neutron source - thermal neutron detector device. Fast and epithermal neutron diffusion parameters are calculated using Monte Carlo - derived neutron flux distributions. Thermal parameters are calculated from tabulated cross sections. An existing analytical method to describe the transport of gamma-rays through common earth materials is modified in order to accommodate the modeling of the 4 MeV neutron - capture gamma-ray device. The 14 MeV neutron - epithermal neutron device is found to be less sensitive to porosity than the 4 MeV neutron - capture gamma-ray device, which in turn is found to be less sensitive to porosity than the traditional 4 MeV neutron - thermal neutron device. Salinity effects are found to be comparable for the 4 MeV neutron - capture gamma-ray and 4 MeV neutron - thermal neutron devices. The 4 MeV neutron capture gamma-ray measurement is found to be deepest investigating

  5. Annual report of the Neutron Physics Section : period ending December 1976

    International Nuclear Information System (INIS)

    Joneja, O.P.; Ramanandham, M.

    1977-01-01

    Research activities of the Neutron Physics Section of the Bhabha Atomic Research Centre, Bombay, for the period July 1975 - December 1976 are reported. Work in the field of : (1) X-ray and neutron crystallography of molecules of biological interest, (2) phase transformations of various kinds and (3) reactor physics and applied neutron physics is being continued. Some of the highlights are : (1) TDC-312 computer controlled neutron diffractometer has been put into operation, (2) two critical configurations using U 233 -uranyl nitrate solution have been planned, (3) vapourisation, melting and other phenomena in rocks as a result of an underground nuclear explosion have been studied. In this connection, computer codes for the propagation of shock waves in rocks using numerical simulation techniques have been developed. (M.G.B.)

  6. Physical parameters and biological effects of the LVR-15 epithermal neutron beam

    International Nuclear Information System (INIS)

    Burian, J.; Marek, M.; Rejchrt, J.; Viererbl, L.; Gambarini, G.; Mares, V.; Vanossi, E.; Judas, L.

    2006-01-01

    Monitoring of the physical and biological properties of the epithermal neutron beam constructed at the multipurpose LVR-15 nuclear reactor for NCT therapy of brain tumors showed that its physical and biological properties are stable in time and independent on an ad hoc reconfiguration of the reactor core before its therapeutic use. Physical parameters were monitored by measurement of the neutron spectrum, neutron profile, fast neutron kerma rate in tissue and photon absorbed dose, the gel dosimetry was used with the group of standard measurement methods. The RBE of the beam, as evaluated by 3 different biological models, including mouse intestine crypt regeneration assay, germinative zones of the immature rat brain and C6 glioma cells in culture, ranged from 1.70 to 1.99. (author)

  7. PREFACE: XIX International School on Nuclear Physics, Neutron Physics and Applications (VARNA 2011)

    Science.gov (United States)

    Stoyanov, Chavdar; Dimitrova, Sevdalina; Voronov, Victor

    2012-05-01

    This volume contains the lectures and short talks given at the XIX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 19-25 September 2011 in 'Club Hotel Bolero' located in the 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences. The co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research - Dubna. According to long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year - 2011, we had the pleasure of welcoming more than 50 distinguished scientists as lecturers. Additionally, 14 young colleagues received the opportunity to each present a short contribution. The program ranged from recent achievements in areas such as nuclear structure and reactions to the hot topics of the application of nuclear methods, reactor physics and nuclear safety. The 94 participants enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The main topics were as follows: Nuclear excitations at various energies Nuclei at high angular moments and temperature Structure and reactions far from stability Symmetries and collective phenomena Methods for lifetime measurements Astrophysical aspects of nuclear structure Neutron nuclear physics Nuclear data Advanced methods in nuclear waste treatment Nuclear methods for applications Several colleagues helped with the organization of the School. We would like

  8. PREFACE: XX International School on Nuclear Physics, Neutron Physics and Applications (Varna2013)

    Science.gov (United States)

    Stoyanov, Chavdar; Dimitrova, Sevdalina

    2014-09-01

    The present volume contains the lectures and short talks given at the XX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 16-22 September 2013 in 'Club Hotel Bolero' located in 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences. Co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of Joint Institute for Nuclear Research - Dubna. Financial support was also provided by the Bulgarian Ministry of Education and Science. According to the long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year, 2013, we had the pleasure to welcome more than sixty distinguished scientists as lecturers. Additionally, twenty young colleagues received the opportunity to present a short contribution. Ninety-four participants altogether enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The program of the School ranged from latest results in fundamental areas such as nuclear structure and reactions to the hot issues of application of nuclear methods, reactor physics and nuclear safety. The main topics have been the following: Nuclear excitations at various energies. Nuclei at high angular moments and temperature. Structure and reactions far from stability. Symmetries and collective phenomena. Methods for lifetime measurements. Astrophysical aspects of nuclear structure. Neutron nuclear physics. Nuclear data. Advanced methods in

  9. Physical activity in relation to selected physical health components ...

    African Journals Online (AJOL)

    The aim of this study was to determine the relation between physical activity and selected physical health components. A total of 9860 employees of a financial institution in South Africa, between the ages 18 and 64 (x̄ =35.3 ± 18.6 years), voluntary participated in the study. Health risk factors and physical activity was ...

  10. Study on calibration of neutron efficiency and relative photo-yield of plastic scintillator

    International Nuclear Information System (INIS)

    Peng Taiping; Zhang Chuanfei; Li Rurong; Zhang Jianhua; Luo Xiaobing; Xia Yijun; Yang Zhihua

    2002-01-01

    A method used for the calibration of neutron efficiency and the relative photo yield of plastic scintillator is studied. T(p, n) and D(d, n) reactions are used as neutron resources. The neutron efficiencies and the relative photo yields of plastic scintillators 1421 (40 mm in diameter and 5 mm in thickness) and determined in the neutron energy range of 0.655-5 MeV

  11. Karlsruhe Nuclear Research Center, Institute of Neutron Physics and Reactor Engineering. Progress report on research and development work in 1993

    International Nuclear Information System (INIS)

    1994-03-01

    The Institute of Neutron Physics and Reactor Engineering is concerned with research work in the field of nuclear engineering related to the safety of thermal reactors as well as with specific problems of fusion reactor technology. Under the project of nuclear safety research, the Institute works on concepts designed to drastically improve reactor safety. Apart from that, methods to estimate and minimize the radiological consequences of reactor accidents are developed. Under the fusion technology project, the Institute deals with neutron physics and technological questions of the breeding blanket. Basic research covers technico-physical questions of the interaction between light ion radiation of a high energy density and matter. In addition and to a small extent, questions of employing hydrogen in the transport area are studied. (orig.) [de

  12. PREFACE: XVIII International School on Nuclear Physics, Neutron Physics and Applications

    Science.gov (United States)

    Stoyanov, Chavdar; Janeva, Natalia

    2010-11-01

    This volume contains the lectures and short talks given at the XVIII International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 21 to 27 September 2009 in Hotel 'Lilia' located on 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences. Co-organizer of the School was Bulgarian Nuclear Regulatory Agency. The event was sponsored by National Science Fund of Bulgaria. According to the long-standing tradition the School has taken place every second year since 1973. The School content has been restructured according to our new enlarged international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts a lot of young scientists and students from many countries. This year - 2009, we had the pleasure to welcome more than 50 distinguished scientists as lecturers. Additionally, 14 young colleagues received the opportunity to present a short contribution. The program ranges from recent achievements in nuclear structure and reactions to the hot problems of the application of nuclear methods, reactor physics and nuclear safety. The 94 participants enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and the pleasant evenings. The main topics were the following: Nuclear excitations at various energies. Nuclei at high angular moments and temperature. Structure and reactions far from stability Symmetries and collective phenomena Methods for lifetime measurements Astrophysical aspects of nuclear structure Neutron nuclear physics Nuclear data Advanced methods in nuclear waste treatment Nuclear methods for applications Several colleagues contributed to the organization of the School. We would like to thank to them and especially to the Scientific Secretary of the School Dr

  13. Neutron fluctuations a treatise on the physics of branching processes

    CERN Document Server

    Pazsit, Imre; Pzsit, Imre

    2007-01-01

    The transport of neutrons in a multiplying system is an area of branching processes with a clear formalism. This book presents an account of the mathematical tools used in describing branching processes, which are then used to derive a large number of properties of the neutron distribution in multiplying systems with or without an external source. In the second part of the book, the theory is applied to the description of the neutron fluctuations in nuclear reactor cores as well as in small samples of fissile material. The question of how to extract information about the system under study is discussed. In particular the measurement of the reactivity of subcritical cores, driven with various Poisson and non-Poisson (pulsed) sources, and the identification of fissile material samples, is illustrated. The book gives pragmatic information for those planning and executing and evaluating experiments on such systems. - Gives a complete treatise of the mathematics of branching particle processes, and in particular n...

  14. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  15. Low temperature and neutron physics studies. Progress report, September, 1977--April, 1979

    International Nuclear Information System (INIS)

    Shull, C.G.

    1979-04-01

    Experimental research work with the neutron diffraction spectrometers at the MIT Research Reactor concentrated during the past period in two general areas, a study of diamagnetic scattering of neutrons by bismuth and physical effects associated with dynamical diffraction by perfect crystals. The former study showed that the outermost valence (or lattice) electrons contribute dominantly to the field-induced diamagnetism. Fourier transformation of the scattering data provided maps showing the distribution of diamagnetization density throughout the unit cell with pronounced spatial variations. In the latter studies, some of the anomalous effects associated with neutron propagation through diffracting perfect crystals were investigated. These include the very sensitive modification of transport direction within the crystal when the entrance direction is changed slightly or when the neutron energy is changed slightly by applicaton of a modest magnetic field. Additional studies have shown that neutrons propagate through a diffracting crystal with a drift velocity which can be pronouncedly smaller than the usual group velocity

  16. Measurements of periods, relative abundances and absolute yields of delayed neutrons from fast neutron induced fission of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Piksaikine, V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    The experimental method for measurements of the delayed neutron yields and period is presented. The preliminary results of the total yield, relative abundances and periods are shown comparing with the previously reported values. (J.P.N.)

  17. Neutron Star Physics in the SKA Era An Indian Perspective

    Indian Academy of Sciences (India)

    65

    2016-07-04

    Jul 4, 2016 ... It is an exceptionally opportune time for Astrophysics when a number of ... evolutionary pathways, c) the evolution of neutron stars in binaries and the magnetic ...... also important for the construction of EoS tables for CC-SNe ...

  18. Physics and chemistry of materials from neutron diffraction and spectroscopy

    International Nuclear Information System (INIS)

    Dahlborg, U.; Lovesey, S.W.; Uppsala Univ.

    1990-11-01

    A short introduction to the powerful techniques of neutron diffraction and spectroscopy is illustrated largely with achievements by Swedish researchers in the past few years. Background material on sources and instrumentation is included, together with a directory of facilities routinely available to the Swedish scientific community. (author)

  19. Physics with Heavy Neutron Rich Ribs at the Hribf

    Science.gov (United States)

    Radford, David

    2002-10-01

    The Holifield Radioactive Ion Beam Facility at the Oak Ridge National Laboratory has recently produced the world's first post-accelerated beams of heavy neutron-rich nuclei. B(E2;0^+ arrow 2^+) values for neutron-rich ^126,128Sn and ^132,134,136Te isotopes have been measured by Coulomb excitation of radioactive ion beams in inverse kinematics. The results for ^132Te and ^134Te (N=80,82) show excellent agreement with systematics of lighter Te isotopes, but the B(E2) value for ^136Te (N=84) is unexpectedly small. Single-neutron transfer reactions leading to ^135Te were identified using a ^134Te beam on ^natBe and ^13C targets at energies just above the Coulomb barrier. The use of the Be target provided an unambiguous signature for neutron transfer through the detection of two correlated α particles, arising from the breakup of unstable ^8Be. The results of these experiments will be discussed, togther with plans for future experiments with these heavy n-rich RIBs.

  20. On modeling of the neutron in classical physics: a methodical review

    International Nuclear Information System (INIS)

    Eganova, I.A.; Kallies, W.

    2015-01-01

    In the given work it is shown that the question about the neutron as a non-elementary particle started recently by B.V. Vasiliev in JINR Communication P3-2014-77 demands to take into consideration the entire system of the logically relevant and based on experiments knowledge which was found by M. Gryzinski in the deterministic atomic physics, and also the two interpretations declared in this communication are refuted: 1) of an electron-like elementary particle in the neutron structure that has no magnetic properties and 2) of the planetary-type model for a neutron with point objects.

  1. Physical model study of neutron noise induced by vibration of reactor internals

    International Nuclear Information System (INIS)

    Liu Jinhui; Gu Fangyu

    1999-01-01

    The author presents a physical model of neutron noise induced by reactor internals vibration in frequency domain. Based on system control theory, the reactor dynamic equations are coupled with random vibration equation, and non-linear terms are also taken into accounted while treating the random vibration. Experiments carried out on a zero-power reactor show that the model can be used to describe dynamic character of neutron noise induced by internals' vibration. The model establishes a method to help to determine internals'vibration features, and to diagnosis anomalies through neutron noise

  2. Complex of two-dimensional multigroup programs for neutron-physical computations of nuclear reactor

    International Nuclear Information System (INIS)

    Karpov, V.A.; Protsenko, A.N.

    1975-01-01

    Briefly stated mathematical aspects of the two-dimensional multigroup method of neutron-physical computation of nuclear reactor. Problems of algorithmization and BESM-6 computer realisation of multigroup diffuse approximations in hexagonal and rectangular calculated lattices are analysed. The results of computation of fast critical assembly having complicated composition of the core are given. The estimation of computation accuracy of criticality, neutron fields distribution and efficiency of absorbing rods by means of computer programs developed is done. (author)

  3. Numerical relativity simulations of precessing binary neutron star mergers

    Science.gov (United States)

    Dietrich, Tim; Bernuzzi, Sebastiano; Brügmann, Bernd; Ujevic, Maximiliano; Tichy, Wolfgang

    2018-03-01

    We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different spin configurations and dimensionless spin magnitudes ˜0.1 . They start at a gravitational-wave frequency of ˜392 Hz and cover more than 1 precession period and about 15 orbits up to merger. We discuss the spin precession dynamics by analyzing coordinate trajectories, quasilocal spin measurements, and energetics, by comparing spin aligned, antialigned, and irrotational configurations. Gravitational waveforms from different spin configuration are compared by calculating the mismatch between pairs of waveforms in the late inspiral. We find that precession effects are not distinguishable from nonprecessing configurations with aligned spins for approximately face-on binaries, while the latter are distinguishable from nonspinning configurations. Spin precession effects are instead clearly visible for approximately edge-on binaries. For the parameters considered here, precession does not significantly affect the characteristic postmerger gravitational-wave frequencies nor the mass ejection. Our results pave the way for the modeling of spin precession effects in the gravitational waveform from binary neutron star events.

  4. Improvements in or relating to neutron beam collimators

    International Nuclear Information System (INIS)

    Lundberg, D.A.

    1975-01-01

    Reference is made to collimators suitable for use in neutron therapy equipment. The design of such collimators presents considerable difficulties, since neutrons are very penetrating. Scattering processes are also much more significant with neutrons than with x-rays or γ-rays. A further difficulty is that neutron activation causes some materials to become radioactive, which may present a hazard to users of the equipment. A novel form of collimator is described that overcomes these disadvantages to some extent. It comprises a body containing W for moderating the neutrons by inelastic collision processes, a slow neutron absorbing material intimately mixed with the W for reducing collisions between slow neutrons and the W atoms, a hydrogenous material for further moderating the neutrons to thermal energies by elastic collision processes with H atoms and for absorbing the thermal neutrons by capture processes, and a material having a density of at least 10g/cm 3 for attenuating γ-radiation produced in the hydrogenous material during neutron capture processes. The collimator is of sufficient thickness to be substantially opaque to neutrons of predetermined energy. The slow neutron absorbing material may be B, the hydrogenous material may be polyethylene, and the high density material may be Pb. Alternative methods of using and packing the various materials are described. (U.K.)

  5. Neutrino physics at the spallation neutron source. Pt. 2

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Lillie, R.A.; Bishop, B.L.; Wilczynski, J.; Zeitnitz, B.

    1981-06-01

    The shielding and detector analysis associated with a contemplated low energy (approx. equal to10 to 50 MeV) neutrino experiment at a spallation neutron source are presented and discussed. This analysis includes neutrino production and interaction rates, time dependence of the neutrino pulse, shielding considerations for neutrons coming directly from the spallation source and those which are scattered from other experimental areas, shielding considerations for galactic sources especially muons and finally detector responses to neutrino and background radiations. In general for a 1 mA (200 ns/pulse, 100 Hz), 1.1 GeV proton beam incident on a lead target surrounded by a moderator system, approximately 8 m of iron are required to reduce the background so that the event rate in the detector systems is approx. [de

  6. Development of temperature related thermal neutron scattering database for MCNP

    International Nuclear Information System (INIS)

    Mei Longwei; Cai Xiangzhou; Jiang Dazhen; Chen Jingen; Guo Wei

    2013-01-01

    Based on ENDF/B-Ⅶ neutron library, the thermal neutron scattering library S(α, β) for molten salt reactor moderators was developed. The temperatures of this library were chose as the characteristic temperature of the molten salt reactor. The cross section of the thermal neutron scattering of ACE format was investigated, and this library was also validated by the benchmarks of ICSBEP. The uncertainties shown in the validation were in reasonable range when compared with the thermal neutron scattering library tmccs which included in the MCNP data library. It was proved that the thermal neutron scattering library processed in this study could be used in the molten salt reactor design. (authors)

  7. Special relativity - the foundation of macroscopic physics

    International Nuclear Information System (INIS)

    Dixon, W.G.

    1978-01-01

    This book aims to show that an understanding of the basic laws of macroscopic systems can be gained more easily within relativistic physics than within Newtonian physics. The unity of dynamics, thermodynamics and electromagnetism under the umbrella of special relativity is examined under chapter headings entitled: the physics of space and time, affine spaces in mathematics and physics, foundations of dynamics, relativistic simple fluids, and, electrodynamics of polarizable fluids. (U.K.)

  8. Physical and microdosimetric studies of neutron beams used in radiobiology

    International Nuclear Information System (INIS)

    Lavigne, Bernard.

    1978-10-01

    Microdosimetry is concerned with the energy imparted in microscopic regions irradiated with different radiations. The energy imparted is subject to random fluctuations. The probability distribution may be estimated by measurements or by computing code. The results obtained with a tissue-equivalent proportional counter of Rossi type are compared with those obtained by means of the computer code of DENNIS and EDWARDS. Beams of monoenergetic neutrons of 0.68 MeV, 2.18 MeV, 3.53 MeV, 5.5 MeV and 14.18 MeV, and fission neutrons were used. The computer code requires that neutron spectrum and W, the mean energy expanded in a gas per ion pair formed are determined. The first part of the report thus describes: -spectrometric measurements done with a NE 213 scintillator; -W measurements with a chamber operating alternately as ionization chamber and proportional counter. Results are given for H + , He + , C + , N + and O + ions in argon and tissue-equivalent gas in the energy range 25 keV - 500 keV [fr

  9. The MCUCN simulation code for ultracold neutron physics

    Science.gov (United States)

    Zsigmond, G.

    2018-02-01

    Ultracold neutrons (UCN) have very low kinetic energies 0-300 neV, thereby can be stored in specific material or magnetic confinements for many hundreds of seconds. This makes them a very useful tool in probing fundamental symmetries of nature (for instance charge-parity violation by neutron electric dipole moment experiments) and contributing important parameters for the Big Bang nucleosynthesis (neutron lifetime measurements). Improved precision experiments are in construction at new and planned UCN sources around the world. MC simulations play an important role in the optimization of such systems with a large number of parameters, but also in the estimation of systematic effects, in benchmarking of analysis codes, or as part of the analysis. The MCUCN code written at PSI has been extensively used for the optimization of the UCN source optics and in the optimization and analysis of (test) experiments within the nEDM project based at PSI. In this paper we present the main features of MCUCN and interesting benchmark and application examples.

  10. Analysis of EBR-II neutron and photon physics by multidimensional transport-theory techniques

    International Nuclear Information System (INIS)

    Jacqmin, R.P.; Finck, P.J.; Palmiotti, G.

    1994-01-01

    This paper contains a review of the challenges specific to the EBR-II core physics, a description of the methods and techniques which have been developed for addressing these challenges, and the results of some validation studies relative to power-distribution calculations. Numerical tests have shown that the VARIANT nodal code yields eigenvalue and power predictions as accurate as finite difference and discrete ordinates transport codes, at a small fraction of the cost. Comparisons with continuous-energy Monte Carlo results have proven that the errors introduced by the use of the diffusion-theory approximation in the collapsing procedure to obtain broad-group cross sections, kerma factors, and photon-production matrices, have a small impact on the EBR-II neutron/photon power distribution

  11. Progress report on research and development in 1991, Institute of Neutron Physics and Reactor Engineering, KfK

    International Nuclear Information System (INIS)

    1992-03-01

    Progress report on research and development in 1991 Institute of Neutron Physics and Reactor Engineering. The Institute of Neutron Physics and Reactor Engineering is concerned with research work in the field of nuclear engineering related to the safety of fast and thermal reactors as well as with specific problems of fusion reactor technology. Under the project of nuclear safety research, the Institute works on concepts designed to drastically improve reactor safety. Apart from that, methods to estimate and minimize the radiological consequences of reactor accidents are developed. Under the fusion technology project, the Institute deals with neutron physics and technological questions of the breeding blanket. Basic research covers technico-physical questions of the interaction between light ion radiation of a high energy density and matter. In addition and to a small extent, questions of employing hydrogen in the transport area are studied. For all these tasks it is indispensable to use up-to-date data processing methods and equipment, from the highest capacity computer to the integrated minicomputer system. (orig./DG) [de

  12. Physics Analyses in the Design of the HFIR Cold Neutron Source

    International Nuclear Information System (INIS)

    Bucholz, J.A.

    1999-01-01

    Physics analyses have been performed to characterize the performance of the cold neutron source to be installed in the High Flux Isotope Reactor at the Oak Ridge National Laboratory in the near future. This paper provides a description of the physics models developed, and the resulting analyses that have been performed to support the design of the cold source. These analyses have provided important parametric performance information, such as cold neutron brightness down the beam tube and the various component heat loads, that have been used to develop the reference cold source concept

  13. Basic physical phenomena, neutron production and scaling of the dense plasma focus

    International Nuclear Information System (INIS)

    Kaeppeler, H.J.

    This paper presents an attempt at establishing a model theory for the dense plasma focus in order to present a consistent interpretation of the basic physical phenomena leading to neutron production from both acceleration and thermal processes. To achieve this, the temporal history of the focus is divided into the compression of the plasma sheath, a qiescent and very dense phase with ensuing expansion, and an instable phase where the focus plasma is disrupted by instabilities. Finally, the decay of density, velocity and thermal fields is considered. Under the assumption that Io 2 /sigmaoRo 2 = const and to/Tc = const, scaling laws for plasma focus devices are derived. It is shown that while generally the neutron yield scales with the fourth power of maximum current, neutron production from thermal processes becomes increasingly important for large devices, while in the small devices neutron production from acceleration processes is by far predominant. (orig.) [de

  14. Thermal-hydraulic and neutron-physical characteristics of a new SCWR fuel assembly

    International Nuclear Information System (INIS)

    Liu, X.J.; Cheng, X.

    2009-01-01

    A new fuel assembly design for a thermal supercritical water cooled reactor (SCWR) core is proposed. Compared to the existing fuel assemblies, the present fuel assembly has two-rows of fuel rods between the moderator channels, to achieve a more uniform moderation for all fuel rod cells, and subsequently, a more uniform radial power distribution. In addition, a neutron-kinetics/thermal-hydraulics coupling method is developed, to analyze the neutron-physical and thermal-hydraulic behavior of the fuel assembly designs. This coupling method is based on the sub-channel analysis code COBRA-IV for thermal-hydraulics and the neutron-kinetics code SKETCH-N for neutron-physics. Both the COBRA-IV code and the SKETCH-N code are accordingly modified. An interface is established for the data transfer between these two codes. This coupling method is applied to both the one-row fuel assemblies (previous design) and the two-row fuel assemblies (present design). The performance of the two types of fuel assemblies is compared. The results show clearly that the two-row fuel assembly has more favorable neutron-physical and thermal-hydraulic characteristics than the one-row fuel assembly. The effect of various parameters on the fuel assembly performance is discussed. The coupling method is proven to be well suitable for further applications to SCWR fuel assembly design analysis

  15. Health physics aspects in disposal of self powered neutron detectors

    International Nuclear Information System (INIS)

    Deokar, D.V.; Tibrewala, S.K.; Singh, K.K.; Purohit, R.G.; Tripathi, R.M.

    2014-01-01

    Self Powered Neutron Detectors (SPNDs) are being used in reactor core for neutron flux measurement at Nuclear Power Plants. After their useful life, SPNDs are replaced and are disposed off in Tile holes. The Cobalt SPNDs having activity in the range of 35 to 160 TBq were encompassed in carbon steel canister. The canister having dose 25 to 50 Sv/h at 1 meter were transported in shielded flask for disposal in specially designed Tile hole at Solid Waste Management Facility (SWMF) at Tarapur. To keep personal exposures As Low As Reasonably Achievable (ALARA) the disposal operation was carried out remotely from a shielded cabin placed at a distance of 50 meter from the disposal site. During the disposal radiation measurements were carried out remotely by installing radiations monitors at a distance of 10 m, 25 m, and 50 m from the Tile hole. Estimations of radiation levels were carried out before jobs were taken up. Disposal of 70 numbers of Cobalt SPNDs was carried out by implementing ALARA. The decrease in collective dose is achieved due to improved operational practices, mock-up trials, effective monitoring program and safety compliance at various stages of operation

  16. Experimental studies of keV energy neutron-induced reactions relevant to astrophysics and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Shima, T.; Kii, T.; Kikuchi, T.; Okazaki, F.; Kobayashi, T.; Baba, T.; Nagai, Y. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Igashira, M.

    1997-03-01

    Nuclear reactions induced by keV energy neutrons provide a plenty of informations for studies of both astrophysics and nuclear physics. In this paper we will show our experimental studies of neutron- induced reactions of light nuclei in the keV energy region by means of a pulsed keV neutron beam and high-sensitivity detectors. Also we will discuss astrophysical and nuclear-physical consequences by using the obtained results. (author)

  17. About neutron capture therapy method development at WWR-SM reactor in institute of Nuclear Physics of Uzbekistan Academy of Sciences

    International Nuclear Information System (INIS)

    Abdullaeva, G.A.; Baytelesov, S.A.; Dosimbaev, A.A.; Koblik, Yu.N.; Gritsay, O.O.

    2006-01-01

    Full text: Neutron capture therapy (NCT) is developing method of swellings treatment, on which specialists set one's serious hopes, as at its realization the practical possibilities of the effect on any swellings open. The essence of method is simple and lies in the fact that to the swelling enter preparation containing boron or gadolinium, which one have a large capture cross-section of the thermal and slow neutrons. Then the swelling is irradiated once with the slow (epithermal) neutron beam with fluency about 10 9 neutrons /sm 2 s for a short time and single. As a result of thermal neutrons capture by the boron (or gadolinium) nuclei secondary radiation which affecting swelling cells is emitted. NCT of oncologic diseases makes the specific demands to physical parameters of neutron beams. Now research reactors are often used for NCT. However, research reactor WWR-SM (INP, Uzbekistan AS, Tashkent) doesn't provide with the epithermal neutron beams and to develop this technique the reactor, first of all, needs for obtaining the epithermal neutron beams with energy spectrum in range from 1 eV up to 10 keV and with intensity ∼ 10 9 neutron /sm 2 s. Practically it is connected with upgrade of at least one of existed reactor channels, namely with equipping with the special equipment (filters), forming from the reactor spectrum the beam of necessary energy neutrons. It requires realization of preliminary model calculations, including calculations of capture cross-sections, of filters types and their geometrical parameters on the basis of optimal selected materials. Such calculations, as a rule, are carried out on the basis of Monte-Carlo method and designed software for calculation of nuclear reactor physical and technical characteristics [1]. In this work the calculation results of devices variants and problems discussion, related with possibility of WWR-SM reactor using for NCT are presented. (author)

  18. Energy related applications of elementary particle physics

    International Nuclear Information System (INIS)

    Rafelski, J.

    1989-01-01

    Study of muon catalysis of nuclear fusion and phenomena commonly referred to as cold fusion has been central to our effort. Muon catalyzed fusion research concentrated primarily on the identification of energy efficient production of muons, and the understanding and control of the density dependence of auto-poisoning (sticking) of the catalyst. We have also developed the in-flight fusion description of the tμ-d reaction, and work in progress shows promise in explaining the fusion cycle anomalies and smallness of sticking as a consequence of the dominant role of such reactions. Our cold fusion work involved the exploration of numerous environments for cold fusion reactions in materials used in the heavy water electrolysis, with emphasis on reactions consistent with the conventional knowledge of nuclear physics reactions. We then considered the possibility that a previously unobserved ultra-heavy particle X - is a catalyst of dd fusion, explaining the low intensity neutrons observed by Jones et. al. 29 refs

  19. Dispersion relation for long-wave neutrons and the possibility of its precise experimental verification

    International Nuclear Information System (INIS)

    Frank, A.I.; Nosov, V.G.

    1995-01-01

    Modern theoretical concepts concerning the dispersion relation for slow neutrons in matter are considered. The generally accepted optical-potential model is apparently not quite accurate and should be supplemented with some small corrections in the energy range attainable in experiments. For ultracold neutrons, these corrections are related to the proximity of the applicability boundary of the theory; for cold neutrons, these corrections are due to correlations in the positions of scatters. The accuracy of existing experiments is insufficient for confirmation or refutation these conclusions. A precision experiment is proposed to verify the dispersion relation for long-wave neutrons. 30 refs., 3 figs

  20. Nuclear Physics meets Medicine and Biology: Boron Neutron Capture Therapy

    CERN Document Server

    F. Ballarini, F; S. Bortolussi, S; P. Bruschi, P; A.M. Clerici, A M; A. De Bari, A; P. Dionigi, P; C. Ferrari, C; M.A. Gadan, M A; N. Protti, N; S. Stella, S; C. Zonta, C; A. Zonta, A; S. Altieri, S

    2010-01-01

    BNCT is a tumour treatment based on thermal-neutron irradiation of tissues enriched with 10B, which according to the 10B(n, )7Li reaction produces particles with high Linear Energy Transfer and short range. Since this treatment can deliver a therapeutic tumour dose sparing normal tissues, BNCT represents an alternative for diffuse tumours and metastases, which show poor response to surgery and photontherapy. In 2001 and 2003, in Pavia BNCT was applied to an isolated liver, which was infused with boron, explanted, irradiated and re-implanted. A new project was then initiated for lung tumours, developing a protocol for Boron concentration measurements and performing organ-dose Monte Carlo calculations; in parallel, radiobiology studies are ongoing to characterize the BNCT effects down to cellular level. After a brief introduction, herein we will present the main activities ongoing in Pavia including the radiobiological ones, which are under investigation not only experimentally but also theoretically, basing on...

  1. Physical model of evolution of oxygen subsystem of PLZT-ceramics at neutron irradiation and annealing

    CERN Document Server

    Kulikov, D V; Trushin, Y V; Veber, K V; Khumer, K; Bitner, R; Shternberg, A R

    2001-01-01

    The physical model of evolution of the oxygen subsystem defects of the ferroelectric PLZT-ceramics by the neutron irradiation and isochrone annealing is proposed. The model accounts for the effect the lanthanum content on the material properties. The changes in the oxygen vacancies concentration, calculated by the proposed model, agree well with the polarization experimental behavior by the irradiated material annealing

  2. Stable evaluation methods of neutron-physical characteristics of nuclides on the basis of experimental data

    International Nuclear Information System (INIS)

    Volkov, N.G.; Kryanev, A.V.

    1984-01-01

    Technique for obtaining estimations of neutron-physical characteristics of nuclides on the basis of stable estimation methods is set forth. The technique presupposes correction of incorrectly determined errors of measurements and disclosure of systematic errors with their succeeding accountancy. A system of orthogonal polynomials is used as approximating functional dependence. The technique is also generalized at the presence of correlation between measurements

  3. James Chadwick Nobel Prize for Physics 1935. Discovery of the neutron

    International Nuclear Information System (INIS)

    2004-01-01

    James Chadwick (1981-1974) was a key figure in the field of nuclear science. Through his studies, he researched the disintegration of atoms by bombarding alpha particles and proved the existence of neutrons. For this discovery, he was awarded the Nobel Prize for physics in 1935. (Author)

  4. Neutron physics and nuclear data measurements with accelerators and research reactors

    International Nuclear Information System (INIS)

    1988-08-01

    The report contains a collection of lectures devoted to the latest theoretical and experimental developments in the field of fast neutron physics and nuclear data measurements. The possibilities offered by particle accelerators and research reactors for research and technological applications in these fields are pointed out. Refs, figs and tabs

  5. The Neutron, a Tool and an Object for Fundamental and Nuclear Physics Studies

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The Institut Laue-Langevin (ILL) is an international research institute which operates the currently most powerful source of neutrons in the world, a 58 MW reactor. The neutron beams provided by the reactor feed a broad range of instruments which are dedicated to a wide variety of research activities. The majority of instruments are dedicated to the study of solid-state physics, materials science, chemistry, the biosciences, and earth sciences. However, nuclear and low energy particle physics studies are also vigorously pursued with the aid of neutrons. The talk will mainly concentrate on this latter aspect. We make use of hot, thermal, cold, and ultra-cold neutrons with velocities of between a few kilometers and a few meters per second, corresponding to kinetic energies in the electronvolt-to-nanoelectronvolt range. It will be briefly discussed how thermal neutrons can be used to investigate the structure and behavior of nuclei by generating excited nuclear states. The main part of the talk will be dedicated...

  6. Black holes, white dwarfs, and neutron stars the physics of compact objects

    CERN Document Server

    Shapiro, Stuart Louis

    1983-01-01

    This self-contained textbook brings together many different branches of physics--e.g. nuclear physics, solid state physics, particle physics, hydrodynamics, relativity--to analyze compact objects. The latest astronomical data is assessed

  7. On the reciprocity-like relations in linear neutron transport theory

    International Nuclear Information System (INIS)

    Modak, R.S.; Sahni, D.C.

    1997-01-01

    The existence of certain reciprocity-like relations in neutron transport theory was shown earlier under some quite restrictive conditions. Here, these relations are shown to be valid in more general situations by using a different approach based on individual neutron trajectories. (author)

  8. Some Principal Problems in Physics and Low-Energy Neutron Physics

    CERN Document Server

    Alexandrov, Yu A

    2004-01-01

    The first question deals with the charge neutron radius $^{1/2}$ connected with the value of neutron-electron scattering length $a_{ne}$ determined at low neutron energies. At present, the obtained accuracy allows us to speak not only about the value of $$ but also on the segmentation of $$ into Dirac and Foldy addenda. The sign of the Dirac addendum is connected directly with the fundamental Yukawa theory explaining the origin of nuclear forces. One of the popular experimental values of the Dirac addendum (from ${a}_{ne} = (-1.32 \\pm 0.03) \\cdot 10^{ - 16}$ cm) contradicts the Yukawa theory. The second question also concerns the subject of the structure of the neutron, namely its deformation. The notion of deformation (polarizability) of the nucleon in electromagnetic field was introduced in the mid-1950s. The reasons are given in favor of the opinion that the neutron polarizability was observed for the first time in neutron experiments as far back as 1957, i.\\,e. earlier than proton polarizability was detec...

  9. The physics of photons and neutrons with applications of deuterium labeling methods to polymers

    International Nuclear Information System (INIS)

    Wignall, G.D.

    1986-12-01

    Over the past decade small-angle neutron scattering (SANS), has found numerous applications in the fields of biology, polymer science, physical chemistry, materials science, metallurgy, colloids, and solid state physics. A number of excellent references are available which contain basic neutron scattering theory though these text books reflect the origins of the technique and the examples are largely drawn from physics e.g., single crystals, simple liquids, monatomic gases, liquid metals, magnetic materials, etc. in view of the large numbers of nonspecialists who are increasingly using neutron scattering, the need has become apparent for presentations which can provide rapid access to the method without unnecessary detail and mathematical rigor. This article is meant to serve as a general introduction to the symposium ''Scattering Deformation and Fracture in Polymers,'' and is intended to aid potential users who have a general scientific background, but no specialist knowledge of scattering, to apply the technique to provide new information in areas of their own particular interests. In view of space limitations, the general theory will be given in the case for neutron scattering and analogies and differences with photon scattering (x-rays) will be pointed out at the appropriate point. 90 refs., 6 figs

  10. I-Love-Q relations for neutron stars in dynamical Chern Simons gravity

    Science.gov (United States)

    Gupta, Toral; Majumder, Barun; Yagi, Kent; Yunes, Nicolás

    2018-01-01

    Neutron stars are ideal to probe, not only nuclear physics, but also strong-field gravity. Approximate universal relations insensitive to the star’s internal structure exist among certain observables and are useful in testing general relativity, as they project out the uncertainties in the equation of state. One such set of universal relations between the moment of inertia (I), the tidal Love number and the quadrupole moment (Q) has been studied both in general relativity and in modified theories. In this paper, we study the relations in dynamical Chern–Simons gravity, a well-motivated, parity-violating effective field theory, extending previous work in various ways. First, we study how projected constraints on the theory using the I-Love relation depend on the measurement accuracy of I with radio observations and that of the Love number with gravitational-wave observations. Provided these quantities can be measured with future observations, we find that the latter could place bounds on dynamical Chern–Simons gravity that are six orders of magnitude stronger than current bounds. Second, we study the I–Q and Q-Love relations in this theory by constructing slowly-rotating neutron star solutions to quadratic order in spin. We find that the approximate universality continues to hold in dynamical Chern–Simons gravity, and in fact, it becomes stronger than in general relativity, although its existence depends on the normalization of the dimensional coupling constant of the theory. Finally, we study the variation of the eccentricity of isodensity contours inside a star and its relation to the degree of universality. We find that, in most cases, the eccentricity variation is smaller in dynamical Chern–Simons gravity than in general relativity, providing further support to the idea that the approximate self-similarity of isodensity contours is responsible for universality.

  11. High-energy neutron dosimetry at the Clinton P. Anderson Meson Physics Facility

    International Nuclear Information System (INIS)

    Mallett, M.W.; Vasilik, D.G.; Littlejohn, G.J.; Cortez, J.R.

    1990-01-01

    Neutron energy spectrum measurements performed at the Clinton P. Anderson Meson Physics Facility indicated potential areas for high energy neutron exposure to personnel. The low sensitivity of the Los Alamos thermoluminescent dosimeter (TLD) to high energy neutrons warranted issuing a NTA dosimeter in addition to the TLD badge to employees entering these areas. The dosimeter consists of a plastic holder surrounding NTA film that has been desiccated and sealed in a dry nitrogen environment. A study of the fading of latent images in NTA film demonstrated the success of this packaging method to control the phenomenon. The Los Alamos NTA dosimeter is characterized and the fading study discussed. 10 refs., 4 figs., 2 tabs

  12. Phonon dispersion relation in zircon, ZrSiO4 using inelastic neutron scattering at a pulsed neutron source

    International Nuclear Information System (INIS)

    Mittal, R.; Chaplot, S.L.; Parthasarathy, R.; Bull, M.J.; Harris, M.J.

    2000-01-01

    The coherent inelastic neutron scattering technique is used for the measurements of phonon dispersion relation in a geophysically important mineral zircon using PRISMA spectrometer as ISIS, UK. Lattice dynamical calculations of the phonon dispersion relation are carried out using a shell model. The one-phonon structure factors are calculated for selecting the Bragg points for the measurements and assignment of phonons to different branches. The calculations are in good agreement with the measured phonon dispersion relation. (author)

  13. Optimising neutron polarizers--measuring the flipping ratio and related quantities

    CERN Document Server

    Goossens, D J

    2002-01-01

    The continuing development of gaseous spin polarized sup 3 He transmission filters for use as neutron polarizers makes the choice of optimum thickness for these filters an important consideration. The 'quality factors' derived for the optimisation of transmission filters for particular measurements are general to all neutron polarizers. In this work optimisation conditions for neutron polarizers are derived and discussed for the family of studies related to measuring the flipping ratio from samples. The application of the optimisation conditions to sup 3 He transmission filters and other types of neutron polarizers is discussed. Absolute comparisons are made between the effectiveness of different types of polarizers for this sort of work.

  14. Experimental physics with polarized protons, neutrons and deuterons

    CERN Document Server

    Lehar, František; Wilkin, Colin

    2015-01-01

    The monograph gives a comprehensive overview of the diverse aspects of the experimental study of polarization phenomena in nucleon-nucleon and nucleon-deuteron collisions. The special nature of this volume is that it is based on the original physics results and knowledge gained by one of the authors (F. Lehar), who was a respected researcher in the field for nearly fifty years. The results of these experiments provide valuable information on the spin dependence of the forces acting between nucleons in atomic nuclei, of which all matter is ultimately composed. The fundamental importance of the results means that the subject will remain topical for years to come. The book is designed for teachers and students of natural sciences, espe - cially those with interests in nuclear and particle physics, as well as for ex - perimental physicists who are investigating polarization phenomena using accelerators of charged particles. The writing of the book was initiated by F. Lehar who was the driving force beh...

  15. Workshop Summary: Fundamental Neutron Physics in the United States: An Opportunity in Nuclear, Particle, and Astrophysics for the Next Decade

    International Nuclear Information System (INIS)

    Greene, G.

    2001-01-01

    Low-energy neutrons from reactor and spallation neutron sources have been employed in a wide variety of investigations that shed light on important issues in nuclear, particle, and astrophysics; in the elucidation of quantum mechanics; in the determination of fundamental constants; and in the study of fundamental symmetry violation (Appendix A, Glossary). In many cases, these experiments provide important information that is not otherwise available from accelerator-based nuclear physics facilities or high energy accelerators. An energetic research community in the United States is engaged in ''fundamental'' neutron physics. With exciting recent results, the possibility of new and upgraded sources, and a number of new experimental ideas, there is an important opportunity for outstanding science in the next decade. ''Fundamental'' neutron physics experiments are usually intensity limited. Researchers require the highest flux neutron sources available, which are either high-flux reactors (continuous sources) or spallation neutron sources (pulsed sources). The primary mission of these major facilities is neutron scattering for materials science research. Notwithstanding this condensed matter focus, essentially all neutron scattering facilities have accepted the value of an on-site fundamental physics program and have typically allocated 5 to 10% of their capabilities (i.e., beam lines) toward nuclear and particle physics research activities

  16. Results of research and development activities in 1989 of the Institute for Neutron Physics and Reactor Technology

    International Nuclear Information System (INIS)

    1990-03-01

    The Institute for Neutron Physics and Reactor Technology treats research problems of nuclear engineering, mainly those that are related to the development of sodium-cooled fast breeder reactors and fusion reactor technology. The activities are in approximately equal parts of an experimental and theoretical nature. A great part of the research activities is performed in co-operation with other institutes and industrial groups in the framework of projects. For the Fast Breeder Reactor Project the Institute works on reactor physical design and safety problems by the core of large-scale fast breeder reactors. Questions concerning the consequences of accidents in light water reactors upon the environment and the population are treated as part of the Nuclear Safety Project. The Institute contributes to the Reprocessing Project with theoretical investigations on the physics of the fuel cycle and by developing control devices for a reprocessing plant. In the framework of the Fusion Project the Institute is concerned with neutron physical and technological questions of the breeder blanket. (orig.) [de

  17. Chirality: a relational geometric-physical property.

    Science.gov (United States)

    Gerlach, Hans

    2013-11-01

    The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term. © 2013 Wiley Periodicals, Inc.

  18. Testing universal relations of neutron stars with a nonlinear matter-gravity coupling theory

    International Nuclear Information System (INIS)

    Sham, Y.-H.; Lin, L.-M.; Leung, P. T.

    2014-01-01

    Due to our ignorance of the equation of state (EOS) beyond nuclear density, there is still no unique theoretical model for neutron stars (NSs). It is therefore surprising that universal EOS-independent relations connecting different physical quantities of NSs can exist. Lau et al. found that the frequency of the f-mode oscillation, the mass, and the moment of inertia are connected by universal relations. More recently, Yagi and Yunes discovered the I-Love-Q universal relations among the mass, the moment of inertia, the Love number, and the quadrupole moment. In this paper, we study these universal relations in the Eddington-inspired Born-Infeld (EiBI) gravity. This theory differs from general relativity (GR) significantly only at high densities due to the nonlinear coupling between matter and gravity. It thus provides us an ideal case to test how robust the universal relations of NSs are with respect to the change of the gravity theory. Due to the apparent EOS formulation of EiBI gravity developed recently by Delsate and Steinhoff, we are able to study the universal relations in EiBI gravity using the same techniques as those in GR. We find that the universal relations in EiBI gravity are essentially the same as those in GR. Our work shows that, within the currently viable coupling constant, there exists at least one modified gravity theory that is indistinguishable from GR in view of the unexpected universal relations.

  19. Testing Universal Relations of Neutron Stars with a Nonlinear Matter-Gravity Coupling Theory

    Science.gov (United States)

    Sham, Y.-H.; Lin, L.-M.; Leung, P. T.

    2014-02-01

    Due to our ignorance of the equation of state (EOS) beyond nuclear density, there is still no unique theoretical model for neutron stars (NSs). It is therefore surprising that universal EOS-independent relations connecting different physical quantities of NSs can exist. Lau et al. found that the frequency of the f-mode oscillation, the mass, and the moment of inertia are connected by universal relations. More recently, Yagi and Yunes discovered the I-Love-Q universal relations among the mass, the moment of inertia, the Love number, and the quadrupole moment. In this paper, we study these universal relations in the Eddington-inspired Born-Infeld (EiBI) gravity. This theory differs from general relativity (GR) significantly only at high densities due to the nonlinear coupling between matter and gravity. It thus provides us an ideal case to test how robust the universal relations of NSs are with respect to the change of the gravity theory. Due to the apparent EOS formulation of EiBI gravity developed recently by Delsate and Steinhoff, we are able to study the universal relations in EiBI gravity using the same techniques as those in GR. We find that the universal relations in EiBI gravity are essentially the same as those in GR. Our work shows that, within the currently viable coupling constant, there exists at least one modified gravity theory that is indistinguishable from GR in view of the unexpected universal relations.

  20. A large data base on a small computer. Neutron Physics data and bibliography under IDMS

    International Nuclear Information System (INIS)

    Schofield, A.; Pellegrino, L.; Tubbs, N.

    1978-01-01

    The transfer of three associated files to an IDMS data base is reported: the CINDA bibliographic index to neutron physics publications, the cumulated EXFOR exchange tapes used for maintaining parallel data collections at all four centres and the CCDN's internal data storage and retrieval system NEUDADA. With associated dictionaries and inter-file conversion tables the corresponding IDMS data base will be about 160 Mbytes. The main characteristics of the three files are shown

  1. Sensitivity analysis of physical/operational parameters in neutron multiplicity counting

    International Nuclear Information System (INIS)

    Peerani, P.; Marin Ferrer, M.

    2007-01-01

    In this paper, we perform a sensitivity study on the influence of various physical and operational parameters on the results of neutron multiplicity counting. The purpose is to have a better understanding of the importance of each component and its contribution to the measurement uncertainty. Then we will be able to determine the optimal conditions for the operational parameters and for detector design and as well to point out weaknesses in the knowledge of critical fundamental nuclear data

  2. Reactor physics computer code development for neutronic design, fuel-management, reactor operation and safety analysis of PHWRs

    International Nuclear Information System (INIS)

    Rastogi, B.P.

    1989-01-01

    This report discusses various reactor physics codes developed for neutronic design, fuel-management, reactor operation and safety analysis of PHWRs. These code packages have been utilized for nuclear design of 500 MWe and new 235 MWe PHWRs. (author)

  3. Neutron physical investigations on the use of burnable poisons and gray absorber rods in large pressurized water reactors

    International Nuclear Information System (INIS)

    Brosche, C.; Katinger, T.; Kollmar, W.; Thieme, K.; Wagner, M.R.

    1977-11-01

    Methods and results of neutron physics calculations are described using burnable poisons and gray absorber rods in large PWR's. Calculated and measured values are compared, the effort for programming has been guessed. (orig.) [de

  4. Neutron Exposures in Human Cells: Bystander Effect and Relative Biological Effectiveness

    Science.gov (United States)

    Seth, Isheeta; Schwartz, Jeffrey L.; Stewart, Robert D.; Emery, Robert; Joiner, Michael C.; Tucker, James D.

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (pbystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0±0.13 for micronuclei and 5.8±2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety. PMID:24896095

  5. Opportunities for Neutrino Physics at the Spallation Neutron Source: A White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Bolozdynya, A. [Moscow Phys. Eng. Inst.; Cavanna, F. [INFN, Aquila; Efremenko, Y. [Tennessee U.; Garvey, G. T. [Los Alamos; Gudkov, V. [South Carolina U.; Hatzikoutelis, A. [Tennessee U.; Hix, W. R. [Oak Ridge; Louis, W. C. [Los Alamos; Link, J. M. [Virginia Tech.; Markoff, D. M. [North Carolina Central U.; Mills, G. B. [Los Alamos; Patton, K. [North Carolina State U.; Ray, H. [Florida U.; Scholberg, K. [Duke U.; Van de Water, R. G. [Los Alamos; Virtue, C. [Laurentian U.; White, D. H. [Los Alamos; Yen, S. [TRIUMF; Yoo, J. [Fermilab

    2012-11-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this document, the product of a workshop at the SNS in May 2012, we describe this free, high-quality stopped-pion neutrino source and outline various physics that could be done using it. We describe without prioritization some specific experimental configurations that could address these physics topics.

  6. Black holes, white dwarfs and neutron stars: The physics of compact objects

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Teukolsky, S.A.

    1983-01-01

    The contents include: Star deaths and the formation of compact objects; White dwarfs; Rotation and magnetic fields; Cold equation of state above neutron drip; Pulsars; Accretion onto black holes; Supermassive stars and black holes; Appendices; and Indexes. This book discusses one aspect, compact objects, of astronomy and provides information of astrophysics or general relativity

  7. Design of experiment existing parameter physics for supporting of Boron Neutron Capture Therapy (BNCT) method a t the piercing radial beam port of Kartini research reactor

    International Nuclear Information System (INIS)

    Indry Septiana Novitasari; Yosaphat Sumardi; Widarto

    2014-01-01

    The experiment existing parameters physics for supporting of in vivo and in vitro test facility of Boron Neutron Capture Therapy (BNCT) preliminary study at the piercing radial beam port has been done. The existing experiments is needed for determining that the parameter physics is fulfill the BNCT method requirement. To realize the existing experiment have been done by design analysis, methodology, calculation method and some procedure related with radiation safety analysis and environment. Preparation for existing experiment physics such as foil detector of Gold (Au) should be irradiated for 30 minute, irradiation instrument and procedure related with the experiment for radiation safety. (author)

  8. Modified dispersion relations and black hole physics

    International Nuclear Information System (INIS)

    Ling Yi; Li Xiang; Hu Bo

    2006-01-01

    A modified formulation of the energy-momentum relation is proposed in the context of doubly special relativity. We investigate its impact on black hole physics. It turns out that such a modification will give corrections to both the temperature and the entropy of black holes. In particular, this modified dispersion relation also changes the picture of Hawking radiation greatly when the size of black holes approaches the Planck scale. It can prevent black holes from total evaporation, as a result providing a plausible mechanism to treat the remnant of black holes as a candidate for dark matter

  9. Physical start up of the Dalat nuclear research reactor with the core configuration having a central neutron trap

    International Nuclear Information System (INIS)

    Pham Duy Hien; Ngo Quang Huy; Vu Hai Long; Tran Khanh Mai

    1994-01-01

    After the reactor has reached physical criticality with the core configuration exempt from central neutron trap on 1 November 1983, the core configuration with a central neutron trap has been arranged in the reactor and the reactor has reached physical criticality with this core configuration at 17h48 on 18 December 1983. The integral worths of different control rods are determined with accuracy. 2 refs., 24 figs., 18 tabs

  10. A Physical Model of Pulsars as Gravitational Shielding and Oscillating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2015-04-01

    Full Text Available Pulsars are thought to be fast rotating neutron stars, synchronously emitting periodic Dirac-delta-shape radio-frequency pulses and Lorentzian-shape oscillating X-rays. The acceleration of charged particles along the magnetic field lines of neutron stars above the magnetic poles that deviate from the rotating axis initiates coherent beams of ra- dio emissions, which are viewed as pulses of radiation whenever the magnetic poles sweep the viewers. However, the conventional lighthouse model of pulsars is only con- ceptual. The mechanism through which particles are accelerated to produce coherent beams is still not fully understood. The process for periodically oscillating X-rays to emit from hot spots at the inner edge of accretion disks remains a mystery. In addition, a lack of reflecting X-rays of the pulsar by the Crab Nebula in the OFF phase does not support the lighthouse model as expected. In this study, we develop a physical model of pulsars to quantitatively interpret the emission characteristics of pulsars, in accor- dance with the author’s well-developed five-dimensional fully covariant Kaluza-Klein gravitational shielding theory and the physics of thermal and accelerating charged par- ticle radiation. The results obtained from this study indicate that, with the significant gravitational shielding by scalar field, a neutron star nonlinearly oscillates and produces synchronous periodically Dirac-delta-shape radio-frequency pulses (emitted by the os- cillating or accelerating charged particles as well as periodically Lorentzian-shape os- cillating X-rays (as the thermal radiation of neutron stars whose temperature varies due to the oscillation. This physical model of pulsars broadens our understanding of neu- tron stars and develops an innovative mechanism to model the emissions of pulsars.

  11. Neutron cross section measurements at n-TOF for ADS related studies

    Science.gov (United States)

    Mastinu, P. F.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Bustreo, N.; aumann, P.; vá, F. Be; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; itzpatrick, L.; Frais-Kölbl, H.; Fujii, K.; Furman, W.; Guerrero, C.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krti ka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescherand, M.; Wisshak, K.

    2006-05-01

    A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed.

  12. Neutron cross section measurements at n-TOF for ADS related studies

    International Nuclear Information System (INIS)

    Mastinu, P F; Abbondanno, U; Aerts, G

    2006-01-01

    A neutron Time-of-Flight facility (n T OF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n T OF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed

  13. Neutron cross section measurements at n-TOF for ADS related studies

    CERN Document Server

    Mastinu, P F; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, Samuel A; Andrzejewski, J; Assimakopoulos, P A; Audouin, L; Badurek, G; Bustreo, N; Aumann, P; Beva, F; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Carillo de Albornoz, A; Cennini, P; Chepel, V; Chiaveri, Enrico; Colonna, N; Cortés, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Durán, I; Eleftheriadis, C; Segura, M E; Ferrant, L; Ferrari, A; Ferreira-Marques, R; itzpatrick, L; Frais-Kölbl, H; Fujii, K; Furman, W; Guerrero, C; Gonçalves, I; Gallino, R; González-Romero, E M; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Igashira, M; Isaev, S; Jericha, E; Kadi, Y; Käppeler, F K; Karamanis, D; Karadimos, D; Kerveno, M; Ketlerov, V; Köhler, P; Konovalov, V; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Massimi, C; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; O'Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stéphan, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescherand, M; Wisshak, K

    2006-01-01

    A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed.

  14. Neutron scatter studies of chromatin structures related to functions

    International Nuclear Information System (INIS)

    Bradbury, E.M.

    1992-01-01

    Despite of setbacks in the lack of neutrons for the proposed We have made considerable progress in chromatin reconstitution with the VLR histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized an intrinsically bent DNA region flanking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interatctions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin

  15. Relativity and quantum physics for beginners

    CERN Document Server

    Manly, Steven L

    2009-01-01

    As we humans have expanded our horizons to see things vastly smaller, faster, larger, and farther than ever before, we have been forced to confront preconceptions born of the human experience and create wholly new ways of looking at the world around us. The theories of relativity and quantum physics were developed out of this need and have provided us with phenomenal, mind-twisting insights into the strange and exciting reality show of our universe.Relativity and Quantum Physics For Beginners is an entertaining and accessible introduction to the bizarre concepts that fueled the scientific revolution of the 20th century and led to amazing advances in our understanding of the universe.

  16. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  17. James Chadwick Nobel Prize for Physics 1935. Discovery of the neutron; James Chadwick Premio Nobel de Fisica 1935. Descubrimiento del neutron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    James Chadwick (1981-1974) was a key figure in the field of nuclear science. Through his studies, he researched the disintegration of atoms by bombarding alpha particles and proved the existence of neutrons. For this discovery, he was awarded the Nobel Prize for physics in 1935. (Author)

  18. [Neutron scatter studies of chromatin structure related to function

    International Nuclear Information System (INIS)

    Bradbury, E.M.

    1990-01-01

    This study is concerned with the application of neutron scatter techniques to the different structural states of nucleosomes and chromatin with the long term objective of understanding how the enormous lengths of DNA are folded into chromosomes. Micrococcal nuclease digestion kinetics have defined two subnucleosome particles; the chromatosome with 168 bp DNA, the histone octamer and one H1 and the nucleosome core particle with 146 bp DNA and the histone octamer. As will be discussed, the structure of the 146 bp DNA core particle is known in solution at low resolution from neutron scatter studies and in crystals. Based on this structure, the authors have a working model for the chromatosome and the mode of binding of H1. In order to define the structure of the nucleosome and also the different orders of chromatin structures they need to know the paths of DNA that link nucleosomes and the factors associated with chromosome functions that act on those DNA paths. The major region for this situation is the inherent variabilities in nucleosome DNA sequences, in the histone subtypes and their states of chemical modification and in the precise locations of nucleosomes. Such variabilities obscure the underlying principles that govern the packaging of DNA into the different structural states of nucleosomes and chromatin. The only way to elucidate these principles is to study the structures of nucleosomes and oligonucleosomes that are fully defined. They have largely achieved these objectives

  19. Engineering related neutron diffraction measurements probing strains, texture and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Bjorn [Los Alamos National Laboratory; Brown, Donald W [Los Alamos National Laboratory; Tome, Carlos N [Los Alamos National Laboratory; Balogh, Levente [Los Alamos National Laboratory; Vogel, Sven C [Los Alamos National Laboratory

    2010-01-01

    Neutron diffraction has been used for engineering applications for nearly three decades. The basis of the technique is powder diffraction following Bragg's Law. From the measured diffraction patterns information about internal, or residual, strain can be deduced from the peak positions, texture information can be extracted from the peak intensities, and finally the peak widths can provide information about the microstructure, e.g. dislocation densities and grain sizes. The strains are measured directly from changes in lattice parameters, however, in many cases it is non-trivial to determine macroscopic values of stress or strain from the measured data. The effects of intergranular strains must be considered, and combining the neutron diffraction measurements with polycrystal deformation modeling has proven invaluable in determining the overall stress and strain values of interest in designing and dimensioning engineering components. Furthelmore, the combined use of measurements and modeling has provided a tool for elucidating basic material properties, such as critical resolved shear stresses for the active deformation modes and their evolution as a function of applied deformation.

  20. {sup 252}Cf spontaneous prompt fission neutron spectrum measured at 0 degree and 180 degree relative to the fragment motion

    Energy Technology Data Exchange (ETDEWEB)

    Shanglian, Bao; Jinquan, Liu [Beijing Univ., BJ (China); Batenkov, O I; Blinov, M V; Smirnov, S N [V.G. Khlopin Radium Institute, ST. Petersburg (Russian Federation)

    1994-09-01

    The {sup 252}Cf spontaneous prompt fission neutron spectrum at 0 degree and 180 degree relative to the motion direction of corresponding fission fragments was measured. High angular resolution for fragment measurements and high energy resolution for neutron measurements were obtained using multi-parameter TOF spectrometer. The results showed that there is a symmetric distribution of `forward` and `backward` for low energy in C.M.S. neutrons, which was an evidence of nonequilibrium neutrons existed in fission process.

  1. Measurements of Relative Biological Effectiveness and Oxygen Enhancement Ratio of Fast Neutrons of Different Energies

    Energy Technology Data Exchange (ETDEWEB)

    Barendsen, G. W.; Broerse, J. J. [Radiobiological Institute of the Health Research Council TNO, Rijswijk (ZH) (Netherlands)

    1968-03-15

    Impairment of the reproductive capacity of cultured cells of human kidney origin (T-l{sub g} cells) has been measured by the Puck cloning technique. From the dose-survival curves obtained in these experiments by irradiation of cells in equilibrium with air and nitrogen, respectively, the relative biological effectiveness (RBE) and the oxygen enhancement ratios (OER) were determined for different beams of fast neutrons. Monoenergetic neutrons of 3 and 15 MeV energy, fission spectrum fast neutrons (mean energy about 1.5 MeV), neutrons produced by bombarding Be with cyclotron-accelerated 16 MeV deuterons (mean energy about 6 MeV) and neutrons produced by bombarding Be with cyclotron- accelerated 20 MeV {sup 3}He ions (mean energy about 10 MeV) have been compared with 250 kVp X-rays as a standard reference. The RBE for 50% cell survival varies from 4.7 for fission-spectrum fast neutrons to 2.7 for 15 MeV monoenergetic neutrons. The OER is not strongly dependent on the neutron energy for the various beams investigated. For the neutrons with the highest and lowest energies used OER values of 1.6 {+-} 0.2 and 1.5 {+-} 0.1 were measured. An interpretation of these data on the basis of the shapes of the LET spectra is proposed and an approximate verification of this hypothesis is provided from measurements in which secondary particle equilibrium was either provided for or deliberately eliminated. (author)

  2. Uncertainties in HTGR neutron-physical characteristics due to computational errors and technological tolerances

    International Nuclear Information System (INIS)

    Glushkov, E.S.; Grebennik, V.N.; Davidenko, V.G.; Kosovskij, V.G.; Smirnov, O.N.; Tsibul'skij, V.F.

    1991-01-01

    The paper is dedicated to the consideration of uncertainties is neutron-physical characteristics (NPC) of high-temperature gas-cooled reactors (HTGR) with a core as spherical fuel element bed, which are caused by calculations from HTGR parameters mean values affecting NPC. Among NPC are: effective multiplication factor, burnup depth, reactivity effect, control element worth, distribution of neutrons and heat release over a reactor core, etc. The short description of calculated methods and codes used for HTGR calculations in the USSR is given and evaluations of NPC uncertainties of the methodical character are presented. Besides, the analysis of the effect technological deviations in parameters of reactor main elements such as uranium amount in the spherical fuel element, number of neutron-absorbing impurities in the reactor core and reflector, etc, upon the NPC is carried out. Results of some experimental studies of NPC of critical assemblies with graphite moderator are given as applied to HTGR. The comparison of calculations results and experiments on critical assemblies has made it possible to evaluate uncertainties of calculated description of HTGR NPC. (author). 8 refs, 8 figs, 6 tabs

  3. Results of neutron physics analyses of WWER-440 cores with modified reactor protection and control systems

    International Nuclear Information System (INIS)

    Lehmann, M.; Pecka, M.; Rocek, J.; Zalesky, K.

    1993-12-01

    Detailed results are given of neutron physics analyses performed to assess the efficiency and acceptability of modifications of the WWER-440 core protection and control system; the modifications have been proposed with a view to increasing the proportion of mechanical control in the compensation of reactivity effects during reactor unit operation in the variable load mode. The calculations were carried out using the modular MOBY-DICK macrocode system together with the SMV42G36 library of two-group parametrized diffusion constants, containing corrections which allow new-design WWER-440 fuel assemblies to be discriminated. (J.B). 37 tabs., 18 figs., 5 refs

  4. The neutron a tool and an object in nuclear and particle physics

    CERN Document Server

    Börner, Hans G

    2012-01-01

    The reactor-based laboratory at the Institut Laue-Langevin is recognized as the world's most productive and reliable source of slow neutrons for the study of low energy particle and nuclear physics. The book highlightsthe impact of about 600 very diverse publications about work performedin these fields during the pastmore than 30 years of reactor operation at this institute.On one hand neutronsare used as a tool to generate nuclei in excited states for studying their structure and decay, in particular fission. Uniquely sensitive experiments can tell us a great deal about the symmetry character

  5. The secondary neutron sources for generation of particular neutron fluxes

    International Nuclear Information System (INIS)

    Tracz, G.

    2007-07-01

    The foregoing paper presents the doctor's thesis entitled '' The secondary neutron sources for generation of particular neutron fluxes ''. Two secondary neutron sources have been designed, which exploit already existing primary sources emitting neutrons of energies different from the desired ones. The first source is devoted to boron-neutron capture therapy (BNCT). The research reactor MARIA at the Institute of Atomic Energy in Swierk (Poland) is the primary source of the reactor thermal neutrons, while the secondary source should supply epithermal neutrons. The other secondary source is the pulsed source of thermal neutrons that uses fast 14 MeV neutrons from a pulsed generator at the Institute of Nuclear Physics PAN in Krakow (Poland). The physical problems to be solved in the two mentioned cases are different. Namely, in order to devise the BNCT source the initial energy of particles ought to be increased, whilst in the other case the fast neutrons have to be moderated. Slowing down of neutrons is relatively easy since these particles lose energy when they scatter in media; the most effective moderators are the materials which contain light elements (mostly hydrogen). In order to increase the energy of neutrons from thermal to epithermal (the BNCT case) the so-called neutron converter should be exploited. It contains a fissile material, 235 U. The thermal neutrons from the reactor cause fission of uranium and fast neutrons are emitted from the converter. Then fissile neutrons of energy of a few MeV are slowed down to the required epithermal energy range. The design of both secondary sources have been conducted by means of Monte Carlo simulations, which have been carried out using the MCNP code. In the case of the secondary pulsed thermal neutron source, some of the calculated results have been verified experimentally. (author)

  6. Neutron scatter studies of chromatin structures related to functions

    International Nuclear Information System (INIS)

    Bradbury, E.M.

    1992-01-01

    We have made considerable progress in chromatin reconstitution with very lysine rich histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized in intrinsically bent DNA region flaking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interactions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear Magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin

  7. Practice of calculation of neutron-physical characteristics of reactors and radiating shielding in structure SNPS with program complex MCNP

    International Nuclear Information System (INIS)

    Krotov, A.D.; Son'ko, A.V.

    2009-01-01

    Calculation of neutron-physical properties and radiation protection of space power reactor was made by means of the MCNP code allowing simulation of neutron, γ- and electron transport by the Monte Carlo method in the systems with combined geometry. Universality of the MCNP code has been demonstrated both for the calculation of reactor-converter so for the optimization of radiation protection that allows to reserve a new level of complex simulation of SNPS [ru

  8. Study on neutron capture cross sections using the filtered neutron beams of 55 keV and 144 keV at the Dalat reactor and related applications

    International Nuclear Information System (INIS)

    Vuong Huu Tan; Nguyen Canh Hai; Pham Ngoc Son; Tran Tuan Anh

    2007-01-01

    In this fundamental research project on nuclear physics in period of 2006, the neutron capture cross sections for the reactions of 139 La (n,γ) 140 La, 152 Sm (n,γ) 153 Sm, 191 Ir (n,γ) 192 Ir and 193 Ir (n,γ) 194 Ir have been measured at 55 keV and 144 keV by the activation method using the filtered neutron beams of the Dalat nuclear research reactor. The cross sections were determined relative to the standard capture cross sections of 197 Au. The samples and standard were prepaid from high purity (99.99%) foil of Au and natural oxide powders of La 2 O 3 , Sm 2 O 3 and IrO 2 . A high efficient HPGe detector (58%) was used to detect the gamma rays, emitted from the activated samples. The absolute efficiency curve of the detector has been precisely calibrated thanks to a set of standard radioisotope sources and a multi-nuclide standard solution, supported by IAEA. The present results were compared with the previous measurements from EXFOR-2003, and the evaluated values of JENDL 3.3 and ENDF/B-6.8. (author)

  9. System of Modelling and Calculation Analysis of Neutron- Physical Experiments at Fast Reactors

    International Nuclear Information System (INIS)

    Moiseyev, A.V.

    2008-01-01

    There is an actual task on storage, processing and analysis of the unique experimental data received on power fast reactors for their subsequent use in projects of fast reactors of new (4.) generation. For modeling and carrying out analysis of experiments the integrated computing system MODEXSYS has been developed. In this system the mechanism for consecutive calculation of a fast reactor states with the detailed description of its components is created. The system includes the database describing fast reactor states, results of neutron-physical characteristics measurements at fast reactor, calculation and benchmark models of experiments and calculation results. In system convenient search means and the special graphics shell are provided. It has Interfaces for processing of calculation results and their analysis. MODEXSYS system has been applied for analysis of three types of experiments at fast reactor: k eff , control rod worth and energy release distribution. The most important results of this analysis are described. Application of MODEXSYS system will raise accuracy and reliability of forecasting of fast reactors neutron-physical characteristics; for BN-600 reactor recommended level of accuracy is resulted. (authors)

  10. System of Modelling and Calculation Analysis of Neutron- Physical Experiments at Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Moiseyev, A.V. [SSC RF - IPPE, 1 Bondarenko Square, Obninsk, Kaluga Region 249033 (Russian Federation)

    2008-07-01

    There is an actual task on storage, processing and analysis of the unique experimental data received on power fast reactors for their subsequent use in projects of fast reactors of new (4.) generation. For modeling and carrying out analysis of experiments the integrated computing system MODEXSYS has been developed. In this system the mechanism for consecutive calculation of a fast reactor states with the detailed description of its components is created. The system includes the database describing fast reactor states, results of neutron-physical characteristics measurements at fast reactor, calculation and benchmark models of experiments and calculation results. In system convenient search means and the special graphics shell are provided. It has Interfaces for processing of calculation results and their analysis. MODEXSYS system has been applied for analysis of three types of experiments at fast reactor: k{sub eff}, control rod worth and energy release distribution. The most important results of this analysis are described. Application of MODEXSYS system will raise accuracy and reliability of forecasting of fast reactors neutron-physical characteristics; for BN-600 reactor recommended level of accuracy is resulted. (authors)

  11. Dosimetry-adjusted reactor physics parameters for pressure vessel neutron exposure assessment

    International Nuclear Information System (INIS)

    McElroy, W.N.; Kellogg, L.S.

    1988-01-01

    The ASTM E706 master matrix standard describes a series of 20 American Society for Testing and Materials (ASTM) standard practices, guides, and methods for use in the prediction of neutron-induced changes in light water reactor (LWR) pressure vessel (PV) and support structure steels throughout a PV's service life. Some of these are existing ASTM standards, some are ASTM standards that have been modified, and some are new ASTM standards. These standards are periodically revised to assume their applicability during the 40-yr (32 effective full-power years) design license period for a nuclear power plant. They are now under review by two new ASTM plant life extension task groups: E10.05.11 on physics dosimetry and E10.02.11 on metallurgy. A brief review on the current application of these standards and a discussion of the status of work to verify the accuracy of derived physics-dosimetry parameter values is presented in this paper

  12. Fast neutron irradiation deteriorates hippocampus-related memory ability in adult mice.

    Science.gov (United States)

    Yang, Miyoung; Kim, Hwanseong; Kim, Juhwan; Kim, Sung-Ho; Kim, Jong-Choon; Bae, Chun-Sik; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-03-01

    Object recognition memory and contextual fear conditioning task performance in adult C57BL/6 mice exposed to cranial fast neutron irradiation (0.8 Gy) were examined to evaluate hippocampus-related behavioral dysfunction following acute exposure to relatively low doses of fast neutrons. In addition, hippocampal neurogenesis changes in adult murine brain after cranial irradiation were analyzed using the neurogenesis immunohistochemical markers Ki-67 and doublecortin (DCX). In the object recognition memory test and contextual fear conditioning, mice trained 1 and 7 days after irradiation displayed significant memory deficits compared to the sham-irradiated controls. The number of Ki-67- and DCX-positive cells decreased significantly 24 h post-irradiation. These results indicate that acute exposure of the adult mouse brain to a relatively low dose of fast neutrons interrupts hippocampal functions, including learning and memory, possibly by inhibiting neurogenesis.

  13. Theoretical physics 4 special theory of relativity

    CERN Document Server

    Nolting, Wolfgang

    2017-01-01

    This concise textbook offers a clear and comprehensive introduction to special relativity, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, thus developing the relativistic expansion of classical mechanics and electrodynamics. The first part of the book introduces Lorentz transformations, time dilation, length contraction and Minkowski diagrams. More complex themes are covered in the second part of the book, which describes the four-dimensional covariant formulation for classical mechanics and electrodynamics, including discussion of Maxwell’s equations, the Lorentz force and the covariant Lagrangian formulation. Ideally suited to undergraduate students with some grounding in classical mechanics and electrodynamics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples ...

  14. Neutron radiography with ultracold neutrons

    International Nuclear Information System (INIS)

    Bates, J.C.

    1981-01-01

    The neutron transmission factor of very thin films may be low if the neutron energy is comparable to the pseudo-potential of the film material. Surprisingly, perhaps, it is relatively easy to obtain neutrons with such low energies in sufficient numbers to produce neutron radiographs. (orig.)

  15. Cobalt, fast neutrons and physical models: Nuclear data and measurements series

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.; Lawson, R.D.

    1987-07-01

    Energy-averaged neutron total cross sections of cobalt were measured from ≅0.5 to 12.0 MeV. Differential elastic- and inelastic-scattering cross sections were measured from ≅1.5 to 10.0 MeV over the scattering-angle range ≅18 0 to 160 0 , with sufficient detail to define the energy-averaged behavior. Inelastic neutron groups were observed corresponding to ''levels'' at: 1115 +- 29, 1212 +- 24, 1307 +- 24, 1503 +- 33, 1778 +- 40, 2112 +- 40, 2224 +- 35, 2423 +- 39, 2593 +- 41 and 2810 keV. The experimental results were interpreted in terms of the spherical optical-statistical and coupled-channels models. An unusually successful description of observables was achieved over a wide energy range ( 20.0 MeV) with a spherical model having energy-dependent strengths and geometries. The energy dependencies are large below ≅7.0 MeV (i.e., ≅19.0 MeV above the Fermi energy), but become smaller and similar to those reported for ''global'' potentials at higher energies. The imaginary strength is large and decreases with energy. These imaginary-potential characteristics are attributed to neutron shell closure and collective-vibrational processes. The weak-coupling model also offers an explanation of the unusual negative energy slope and relatively small radius of the imaginary potential. The spherical optical model derived from the neutron-scattering results was extrapolated to bound energies using the dispersion relationship and the method of moments. The resulting real-potential strength and radius peak at ≅-10.0 MeV, while concurrently the real diffuseness is at a minimum. The extrapolated potential is ≅8% larger than that implied by reported particle-state energies, and ≅13% smaller than indicated by hole-state energies. 68 refs., 15 figs., 1 tab

  16. The neutron

    International Nuclear Information System (INIS)

    Kredov, B.M.

    1979-01-01

    The history of the neutron is displayed on the basis of contributions by scientists who produced outstanding results in neutron research (part 1), of summarizing discoveries and theories which led to the discovery of the neutron and the resulting development of nuclear physics (part 2), and of fundamental papers written by Rutherford, Chadwick, Iwanenko, and others (appendix). Of interest to physicists, historians, and students

  17. From the neutron to three light neutrino species: Some highlights from sixty years of particle physics

    International Nuclear Information System (INIS)

    Goldhaber, G.

    1990-07-01

    I consider the beginning to modern particle physics to be in 1932--33, when James Chadwick discovered the neutron at Cambridge, England, and Carl Anderson discovered the positron in Pasadena, California. I leave out the discoveries of the electron by J. J. Thomson, the nucleus and the proton by Ernest Rutherford, as well as the photon introduced by Albert Einstein and the neutrino as hypothesized by Wolfgang Pauli, as having occurred ''before my time.'' I was thus able to follow -- and sometimes participate in -- all the developments of modern particle physics. The story I will tell is as the unfolding of the field looked; to me -- an experimental particle physicists. As with Rashomon, this is as I see it. To get a different point of view, and no doubt there are many, you need different observer. One might ask, what did I know about physics in the 1930s, anyway? It so happens that I did hear abut Chadwick's discovery at the time, mainly because my brother Maurice was working with him in 1934 on the photo-disintegration of the deuteron, and on the first good measurement of the neutron mass. I will concentrate on the thirty years, 1930 to 1960 which includes Dick Dalitz' important early contributions. I will then skip most of the next thirty years for lack of time, and end up with the study of the Z 0 in e + e - annihilation. For more details, and explicit references to published papers, I will refer the reader to a recent book by Robert Cahn and myself

  18. Neutron star radii, universal relations, and the role of prior distributions

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, A.W. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Lattimer, J.M. [Stony Brook University, Dept. of Physics and Astronomy, Stony Brook, NY (United States); Brown, E.F. [Michigan State University, Department of Physics and Astronomy, East Lansing, MI (United States); Michigan State University, The Joint Institute for Nuclear Astrophysics-Center for the Evolution of the Elements, East Lansing, MI (United States); Michigan State University, National Superconducting Cyclotron Laboratory, East Lansing, MI (United States)

    2016-02-15

    We investigate constraints on neutron star structure arising from the assumptions that neutron stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star matter near the nuclear saturation density, that the high-density equation of state is limited by causality and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by piecewise polytropes. In the second class, the high-density behavior of the equation of state is parameterized by piecewise continuous line segments. The smallest density at which high-density matter appears is varied in order to allow for strong phase transitions above the nuclear saturation density. We critically examine correlations among the pressure of matter, radii, maximum masses, the binding energy, the moment of inertia, and the tidal deformability, paying special attention to the sensitivity of these correlations to prior assumptions about the equation of state. It is possible to constrain the radii of 1.4M {sub CircleDot} neutron stars to be larger than 10 km, even without consideration of additional astrophysical observations, for example, those from photospheric radius expansion bursts or quiescent low-mass X-ray binaries. We are able to improve the accuracy of known correlations between the moment of inertia and compactness as well as the binding energy and compactness. We also demonstrate the existence of a correlation between the neutron star binding energy and the moment of inertia. (orig.)

  19. Exploring New Physics Frontiers Through Numerical Relativity.

    Science.gov (United States)

    Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Sperhake, Ulrich

    2015-01-01

    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology.

  20. Physical performance in relation to menopause status and physical activity.

    Science.gov (United States)

    Bondarev, Dmitriy; Laakkonen, Eija K; Finni, Taija; Kokko, Katja; Kujala, Urho M; Aukee, Pauliina; Kovanen, Vuokko; Sipilä, Sarianna

    2018-05-21

    The aim of this study was to examine differences in physical performance (muscle power, muscle strength, aerobic capacity, and walking speed) across menopausal stages and potential of leisure physical activity (PA) to modify the impact of menopause on physical performance. In this cross-sectional study, women aged 47 to 55 were randomly selected from the Finnish National Registry and categorized as premenopausal (n = 233), perimenopausal (n = 381), or postmenopausal (n = 299) based on serum concentrations of follicle-stimulating hormone and bleeding diary. Physical performance was measured by knee extension force, handgrip force, vertical jumping height, maximal walking speed, and 6-minute walking distance. PA level was assessed by self-report and categorized as low, moderate, or high. Multivariate linear regression modeling was used for data analysis. After including fat mass, height, PA, and education in the model, the postmenopausal women showed 12.0 N weaker (P women. There was no significant interaction between menopausal stage and PA on physical performance. The peri- and postmenopausal women with a high PA, however, showed better performance in the maximal knee extension strength and 6-minute walking test, and showed greater lower body muscle power than those with a low PA. Menopause status is associated with muscle strength and power, whereas the association between menopause status and mobility/walking is clearly weaker. A high leisure PA level provides more capacity to counteract the potential negative influence of menopausal factors on muscle function.This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0.

  1. Boys’ and Girls’ Relational and Physical Aggression in Nine Countries.

    Science.gov (United States)

    Lansford, Jennifer E; Skinner, Ann T; Sorbring, Emma; Di Giunta, Laura; Deater-Deckard, Kirby; Dodge, Kenneth A; Malone, Patrick S; Oburu, Paul; Pastorelli, Concetta; Tapanya, Sombat; Tirado, Liliana Maria Uribe; Zelli, Arnaldo; Al-Hassan, Suha M; Alampay, Liane Peña; Bacchini, Dario; Bombi, Anna Silvia; Bornstein, Marc H; Chang, Lei

    2012-01-01

    Distinguishing between relational and physical aggression has become a key feature of many developmental studies in North America and Western Europe, but very little information is available on relational and physical aggression in more diverse cultural contexts. This study examined the factor structure of, associations between, and gender differences in relational and physical aggression in China, Colombia, Italy, Jordan, Kenya, the Philippines, Sweden, Thailand, and the United States. Children ages 7–10 years (N = 1,410) reported on their relationally and physically aggressive behavior. Relational and physical aggression shared a common factor structure across countries. In all nine countries, relational and physical aggression were significantly correlated (average r = .49). Countries differed in the mean levels of both relational and physical aggression that children reported using and with respect to whether children reported using more physical than relational aggression or more relational than physical aggression. Boys reported being more physically aggressive than girls across all nine countries; no consistent gender differences emerged in relational aggression. Despite mean-level differences in relational and physical aggression across countries, the findings provided support for cross-country similarities in associations between relational and physical aggression as well as links between gender and aggression.

  2. Measuring physical neighborhood quality related to health.

    Science.gov (United States)

    Rollings, Kimberly A; Wells, Nancy M; Evans, Gary W

    2015-04-29

    Although sociodemographic factors are one aspect of understanding the effects of neighborhood environments on health, equating neighborhood quality with socioeconomic status ignores the important role of physical neighborhood attributes. Prior work on neighborhood environments and health has relied primarily on level of socioeconomic disadvantage as the indicator of neighborhood quality without attention to physical neighborhood quality. A small but increasing number of studies have assessed neighborhood physical characteristics. Findings generally indicate that there is an association between living in deprived neighborhoods and poor health outcomes, but rigorous evidence linking specific physical neighborhood attributes to particular health outcomes is lacking. This paper discusses the methodological challenges and limitations of measuring physical neighborhood environments relevant to health and concludes with proposed directions for future work.

  3. Boys’ and Girls’ Relational and Physical Aggression in Nine Countries

    Science.gov (United States)

    Lansford, Jennifer E.; Skinner, Ann T.; Sorbring, Emma; Di Giunta, Laura; Deater-Deckard, Kirby; Dodge, Kenneth A.; Malone, Patrick S.; Oburu, Paul; Pastorelli, Concetta; Tapanya, Sombat; Tirado, Liliana Maria Uribe; Zelli, Arnaldo; Al-Hassan, Suha M.; Alampay, Liane Peña; Bacchini, Dario; Bombi, Anna Silvia; Bornstein, Marc H.; Chang, Lei

    2012-01-01

    Distinguishing between relational and physical aggression has become a key feature of many developmental studies in North America and Western Europe, but very little information is available on relational aggression in more diverse cultural contexts. This study examined the factor structure of, gender differences in, and associations between relational and physical aggression in China, Colombia, Italy, Jordan, Kenya, the Philippines, Sweden, Thailand, and the United States. Children ages 7 to 10 years (N = 1410) reported on their relationally and physically aggressive behavior. Relational and physical aggression shared a common factor structure across countries. Unsurprisingly, boys reported being more physically aggressive than girls across all nine countries; surprisingly, there were no significant gender differences in relational aggression. In all nine countries, relational and physical aggression were significantly correlated (average r = .49). The countries differed significantly in the mean levels of both relational and physical aggression that children reported using and with respect to whether children reported using more physical than relational aggression or more relational than physical aggression. Despite mean level differences in relational and physical aggression across countries, the findings provided support for cross-country similarities in associations between relational and physical aggression, as well as links between gender and aggression. PMID:23935227

  4. Sci-Sat AM: Brachy - 04: Neutron production around a radiation therapy linac bunker - monte carlo simulations and physical measurements.

    Science.gov (United States)

    Khatchadourian, R; Davis, S; Evans, M; Licea, A; Seuntjens, J; Kildea, J

    2012-07-01

    Photoneutrons are a major component of the equivalent dose in the maze and near the door of linac bunkers. Physical measurements and Monte Carlo (MC) calculations of neutron dose are key for validating bunker design with respect to health regulations. We attempted to use bubble detectors and a 3 He neutron spectrometer to measure neutron equivalent dose and neutron spectra in the maze and near the door of one of our bunkers. We also ran MC simulations with MCNP5 to measure the neutron fluence in the same region. Using a point source of neutrons, a Clinac 1800 linac operating at 10 MV was simulated and the fluence measured at various locations of interest. We describe the challenges faced when measuring dose with bubble detectors in the maze and the complexity of photoneutron spectrometry with linacs operating in pulsed mode. Finally, we report on the development of a userfriendly GUI for shielding calculations based on the NCRP 151 formalism. © 2012 American Association of Physicists in Medicine.

  5. Physical protection in relation to IAEA safeguards

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1985-01-01

    In this session, physical protection, nuclear material accounting and control, and containment and surveillance have been discussed, with emphasis on the interactions of these measures within the context of IAEA safeguards. In addition, the current physical protection equipment and techniques have been reviewed. The interactions can be summarized as follows. Although physical protection is a fundamental element of IAEA safeguards, it is solely a state/facility operator responsibility. While the IAEA has an interest in promoting the implementation of effective physical protection systems, it serves only in an advisory capacity. Nuclear material accounting directly involves the state, facility operator, and the IAEA. Facility records and reports provided by the state are independently verified by the IAEA. The SSAC is of fundamental importance in this process. Containment and surveillance measures are used by the UAEA. Installation and routine use of C/S equipment must be approved by the state and facility operator, and must not affect facility operations or safety

  6. Physical protection in relation to IAEA safeguards

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1984-01-01

    The general structure of the safeguards system, the SSAC interfaces, and physical protection principles, equipment, and techniques are reviewed. In addition, the interactions between the State, the facility operator, and the IAEA are described

  7. Head-on collisions of binary white dwarf-neutron stars: Simulations in full general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios; Etienne, Zachariah; Liu, Yuk Tung; Shapiro, Stuart L.

    2011-01-01

    We simulate head-on collisions from rest at large separation of binary white dwarf-neutron stars (WDNSs) in full general relativity. Our study serves as a prelude to our analysis of the circular binary WDNS problem. We focus on compact binaries whose total mass exceeds the maximum mass that a cold-degenerate star can support, and our goal is to determine the fate of such systems. A fully general relativistic hydrodynamic computation of a realistic WDNS head-on collision is prohibitive due to the large range of dynamical time scales and length scales involved. For this reason, we construct an equation of state (EOS) which captures the main physical features of neutron stars (NSs) while, at the same time, scales down the size of white dwarfs (WDs). We call these scaled-down WD models 'pseudo-WDs (pWDs)'. Using pWDs, we can study these systems via a sequence of simulations where the size of the pWD gradually increases toward the realistic case. We perform two sets of simulations; One set studies the effects of the NS mass on the final outcome, when the pWD is kept fixed. The other set studies the effect of the pWD compaction on the final outcome, when the pWD mass and the NS are kept fixed. All simulations show that after the collision, 14%-18% of the initial total rest mass escapes to infinity. All remnant masses still exceed the maximum rest mass that our cold EOS can support (1.92M · ), but no case leads to prompt collapse to a black hole. This outcome arises because the final configurations are hot. All cases settle into spherical, quasiequilibrium configurations consisting of a cold NS core surrounded by a hot mantle, resembling Thorne-Zytkow objects. Extrapolating our results to realistic WD compactions, we predict that the likely outcome of a head-on collision of a realistic, massive WDNS system will be the formation of a quasiequilibrium Thorne-Zytkow-like object.

  8. Safeguards and Physics Measurements: Neutron Activation Analysis with k0-standardisation

    International Nuclear Information System (INIS)

    Pomme, S.

    2000-01-01

    SCK-CEN's programme on Neutron Activation Analysis with k 0 -standardisation concentrates on the improvement of the standardisation method and the characterisation of the neutron field as well as on the improvement of the statistical control on neutron activation analysis. Main achievements in 2000 are reported

  9. X-rays from neutron stars

    International Nuclear Information System (INIS)

    Boerner, G.

    1979-08-01

    The basic theoretical in the models of regularly pulsating X-ray sources are discussed, and put in relation to the observations. The topics covered include physics of the magnetosphere of an accreting neutron star, hydrodynamics of the accretion column, physical processes close to the surface of the neutron star such as proton-electron collisions, photon-electron interactions. (orig.)

  10. Energy dependence of relative abundances and periods of separate groups of delayed neutrons at neutron induced fission of 239Pu in a range of neutrons energies 0.37 - 5 MeV

    International Nuclear Information System (INIS)

    Roschenko, V.A.; Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Korolev, G.G.; Tarasko, M.Z.; Tertychnyi, R.G.

    2001-01-01

    The fundamental role of delayed neutrons in behavior, control and safety of reactors is well known today. Delayed neutron data are of great interest not only for reactor physics but also for nuclear fission physics and astrophysics. The purpose of the present work was the measurement of energy dependence of delayed neutrons (DN) group parameters at fission of nuclei 239 Pu in a range of energies of primary neutrons from 0.37 up to 5 MeV. The measurements were executed on installation designed on the basis of the electrostatic accelerator of KG - 2.5 SSC RF IPPE. The data are obtained in 6-group representation. It is shown, that there is a significant energy dependence of DN group parameters in a range of primary neutrons energies from thermal meanings up to 5 MeV, which is expressed in reduction of the average half-life of nuclei of the DN precursors on 10 %. The data, received in the present work, can be used at creation of a set of group constants for reactors with an intermediate spectrum of neutrons. (authors)

  11. Physical characteristics related to bra fit.

    Science.gov (United States)

    Chen, Chin-Man; LaBat, Karen; Bye, Elizabeth

    2010-04-01

    Producing well-fitting garments has been a challenge for retailers and manufacturers since mass production began. Poorly fitted bras can cause discomfort or pain and result in lost sales for retailers. Because body contours are important factors affecting bra fit, this study analyses the relationship of physical characteristics to bra-fit problems. This study has used 3-D body-scanning technology to extract upper body angles from a sample of 103 college women; these data were used to categorise physical characteristics into shoulder slope, bust prominence, back curvature and acromion placement. Relationships between these physical categories and bra-fit problems were then analysed. Results show that significant main effects and two-way interactions of the physical categories exist in the fit problems of poor bra support and bra-motion restriction. The findings are valuable in helping the apparel industry create better-fitting bras. STATEMENT OF RELEVANCE: Poorly fitted bras can cause discomfort or pain and result in lost sales for retailers. The findings regarding body-shape classification provide researchers with a statistics method to quantify physical characteristics and the findings regarding the relationship analysis between physical characteristics and bra fit offer bra companies valuable information about bra-fit perceptions attributable to women with figure variations.

  12. Physical start up of the Dalat nuclear research reactor with the core configuration exempt from neutron trap

    International Nuclear Information System (INIS)

    Pham Duy Hien; Ngo Quang Huy; Vu Hai Long; Tran Khanh Mai

    1994-01-01

    The nominal power of the reconstructed Dalat reactor is of 500 KW. After a meticulous preparation the Russian and Vietnamese teams have proceeded to the physical reactor start-up in November 1983 with the core configuration exempt from the neutron trap. The reactor has reached the physical criticality at 19h50 on 1 November 1983. The report delineates different steps of the start-up procedure. 2 refs., 3 figs., 7 tabs

  13. Energy dependence of relative abundances and periods of delayed neutron separate groups from neutron induced fission of 239Pu in the virgin neutron energy range 0.37-4.97 MeV

    International Nuclear Information System (INIS)

    Piksajkin, V.M.; Kazakov, L.E.; Isaev, S.T.; Korolev, G.G.; Roshchenko, V.A.; Tertychnyj, R.G.

    2002-01-01

    Relative yield and group period of delayed neutrons induced by the 239 Pu fission in the 0.37-4.97 MeV range were measured. Comparative analysis of experimental data was conducted in terms of middle period of half-life of delayed neutron nuclei-precursors. Character and scale of changing values of delayed neutron group parameters as changing excitation energy of fission compound-nucleus have been demonstrated for the first time. Considerable energy dependence of group parameters under the neutron induced 239 Pu fission that was expressed by the decreasing middle period of half-life of nuclei-precursors by 10 % in the 2.85 eV - 5 MeV range of virgin neutrons was detected [ru

  14. Detectability of thermal neutrinos from binary neutron-star mergers and implications for neutrino physics

    Science.gov (United States)

    Kyutoku, Koutarou; Kashiyama, Kazumi

    2018-05-01

    We propose a long-term strategy for detecting thermal neutrinos from the remnant of binary neutron-star mergers with a future M-ton water-Cherenkov detector such as Hyper-Kamiokande. Monitoring ≳2500 mergers within ≲200 Mpc , we may be able to detect a single neutrino with a human time-scale operation of ≈80 Mtyears for the merger rate of 1 Mpc-3 Myr-1 , which is slightly lower than the median value derived by the LIGO-Virgo Collaboration with GW170817. Although the number of neutrino events is minimal, contamination from other sources of neutrinos can be reduced efficiently to ≈0.03 by analyzing only ≈1 s after each merger identified with gravitational-wave detectors if gadolinium is dissolved in the water. The contamination may be reduced further to ≈0.01 if we allow the increase of waiting time by a factor of ≈1.7 . The detection of even a single neutrino can pin down the energy scale of thermal neutrino emission from binary neutron-star mergers and could strongly support or disfavor formation of remnant massive neutron stars. Because the dispersion relation of gravitational waves is now securely constrained to that of massless particles with a corresponding limit on the graviton mass of ≲10-22 eV /c2 by binary black-hole mergers, the time delay of a neutrino from gravitational waves can be used to put an upper limit of ≲O (10 ) meV /c2 on the absolute neutrino mass in the lightest eigenstate. Large neutrino detectors will enhance the detectability, and, in particular, 5 Mt Deep-TITAND and 10 Mt MICA planned in the future will allow us to detect thermal neutrinos every ≈16 and 8 years, respectively, increasing the significance.

  15. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    Science.gov (United States)

    O. Silva, Hector; Berti, Emanuele; Sotani, Hajime

    2016-03-01

    Compact objects such as neutron stars are ideal astrophysical laboratories to test our understanding of the fundamental interactions in the regime of supranuclear densities, unachievable by terrestrial experiments. Despite recent progress, the description of matter (i.e., the equation of state) at such densities is still debatable. This translates into uncertainties in the bulk properties of neutron stars, masses and radii for instance. Here we will consider low-mass neutron stars. Such stars are expected to carry important information on nuclear matter near the nuclear saturation point. It has recently been shown that the masses and surface redshifts of low-mass neutron stars smoothly depend on simple functions of the central density and of a characteristic parameter η associated with the choice of equation of state. Here we extend these results to slowly-rotating and tidally deformed stars and obtain empirical relations for various quantities, such as the moment of inertia, quadrupole moment and ellipticity, tidal and rotational Love numbers, and rotational apsidal constants. We discuss how these relations might be used to constrain the equation of state by future observations in the electromagnetic and gravitational-wave spectra.

  16. Neutron Elastic Scattering Cross Sections Experimental Data and Optical Model Cross Section Calculations. A Compilation of Neutron Data from the Studsvik Neutron Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Wiedling, T

    1969-06-15

    Neutron elastic scattering cross section measurements have been going on for a long period at the Studsvik Van de Graaff laboratory. The cross sections of a range of elements have been investigated in the energy interval 1.5 to 8 MeV. The experimental data have been compared with cross sections calculated with the optical model when using a local nuclear potential.

  17. Calculated and experimental definition of neutron-physical and temperature conditions of material testing in the SM reactor

    International Nuclear Information System (INIS)

    Toporova, V.G.; Pimenov, V.V.

    2004-01-01

    , interaction with cladding etc.) are related to the temperature conditions under irradiation. At RIAR data on thermal conductivity of dysprosium titanate fuel column were also obtained as a function of its thermal conductivity, temperature, weighed portion density and helium pressure. Codes 'CONUS' and 'TEMP' were developed for calculation of temperature fields in multi-zone structures. Since 1996 SSC RF RIAR together with Moscow Plant of Polymetals has been performing certification work on absorbing elements. This work is aimed at obtaining lacking experimental data on irradiation, conditions for radiation resistance testing of B 4 C, Dy 2 O 3 ·TiO 2 , Hf a, mockups of absorbing elements on their basis, which are necessary for certification of absorbing elements and licensing of PS control rod absorbers of the WWER-1000 reactor. The presented paper describes the methods of neutron-physical and thermal-physical calculations taking the mockups of absorbing elements irradiated in RF SM as an example

  18. Physical aspects on the neutron irradiation. 4. Dosimetry with ionization chamber

    International Nuclear Information System (INIS)

    Hiraoka, Takeshi; Takada, Masashi

    2008-01-01

    Absolute measurements of the absorbed dose for irradiation are generally made using ionization chambers, which should be calibrated by the standard radiation source. The neutron dose measurements are not simple since gamma rays always contaminate the neutron flux and a variety of charged particles are induced by neutrons. Following subjects are described: (1) The method by ICRU 45 to estimate total dose of neutrons and gamma ray, (2) The method to measure the neutron dose and the gamma ray dose separately using paired ionization-chambers, and (3) The calibration of ionization chambers. The stability of the standard ionization-chambers is also presented. (K.Y.)

  19. Effectively universal behavior of rotating neutron stars in general relativity makes them even simpler than their Newtonian counterparts.

    Science.gov (United States)

    Pappas, George; Apostolatos, Theocharis A

    2014-03-28

    Recently, it was shown that slowly rotating neutron stars exhibit an interesting correlation between their moment of inertia I, their quadrupole moment Q, and their tidal deformation Love number λ (the I-Love-Q relations), independently of the equation of state of the compact object. In the present Letter a similar, more general, universality is shown to hold true for all rotating neutron stars within general relativity; the first four multipole moments of the neutron star are related in a way independent of the nuclear matter equation of state we assume. By exploiting this relation, we can describe quite accurately the geometry around a neutron star with fewer parameters, even if we don't know precisely the equation of state. Furthermore, this universal behavior displayed by neutron stars could promote them to a more promising class of candidates (next to black holes) for testing theories of gravity.

  20. Effects of mixed neutron-γ total-body irradiation on physical activity performance of rhesus monkeys

    International Nuclear Information System (INIS)

    Franz, C.G.

    1985-01-01

    Behavioral incapacitation for a physical activity task and its relationship to emesis and survival time following exposure to ionizing radiation were evaluated in 39 male rhesus monkeys (Macaca mulatta). Subjects were trained to perform a shock avoidance activity task for 6 hr on a 10-min work/5-min rest schedule in a nonmotorized physical activity wheel. Following stabilization of performance, each subject received a single, pulsed dose of mixed neutron-γ, whole-body radiation (n/γ = 3.0) ranging between 1274 and 4862 rad. Performance testing was started 45 sec after exposure. A dose-response function for early transient incapacitation (ETI) during the first 2 hr after irradiation was fitted, and the median effective dose (ED 50 ) was calculated to be 1982 rad. Analysis done on the relationship of dose to ETI, emesis, and survival time found (a) a significant relationship between the radiation dose and the number and duration of ETIs; (b) no correlation between emesis and dose, survival time, or ETI; (c) no relation between survival time and ETI at any dose; and (d) no significant difference in survival time for dose groups between 1766 +/- 9 (SEM) and 2308 +/- 23 rad

  1. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg; Amanda E. Schwint; John K. Hartwell; Elisa M. Heber; Veronica Trivillin; Jorge Castillo; Luis Wentzeis; Patrick Sloan; Charles A. Wemple

    2004-10-01

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  2. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, D.W.; Schwint, A.E.; Hartwell, J.K.; Heber, E.M.; Trivillin, V.; Castillo, J.; Wentzeis, L.; Sloan, P.; Wemple, C.A.

    2004-10-04

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  3. Start up physics tests of units 5 and 6 (WWER 1000) at Kozloduy NPP by comparison with the calculated neutron physics characteristics

    International Nuclear Information System (INIS)

    Antov, A.; Stoyanova, I.

    2008-01-01

    In conjunction with each refuelling shutdown of the reactor core, nuclear design calculations are performed to ensure that the reactor physics characteristics of the new core will be consistent with the safety limits. Prior to return to normal operation, a physics test program is required to determine if the operating characteristics of the core are consistent with the design predictions and to ensure that the core can be operated as designed. Successful completion of the physics test program is demonstrated when the test results agree with the predicted results within predetermined test criteria. Successful completion of the physics test program and successful completion of other tests, which are performed after each refuelling provides assurance that the plant can be operated as designed. The calculated neutron-physics characteristics values of Kozloduy NPP Unit 5 and Unit 6 (WWER 1000) obtained by the computer code package KASKAD are compared with the obtained results during the start up physics tests. The core fuel loading consists of 163 fuel assemblies (FAs). The calculated values are given according to actual experimental conditions of the reactor core during start up physics tests. The report includes comparisons between calculation results by code package KASKAD (BIPR7A) and experimental data values of main neutron-physics characteristics during start up physics tests in selected recent cycles of Kozloduy NPP Unit 5 and Unit 6. (authors)

  4. Start up physics tests of Units 5 and 6 (WWER-1000) at Kozloduy NPP by comparison with the calculated neutron physics characteristics

    International Nuclear Information System (INIS)

    Stoyanova, I.; Antov, A.

    2007-01-01

    In conjunction with each refuelling shutdown of the reactor core, nuclear design calculations are performed to ensure that the reactor physics characteristics of the new core will be consistent with the safety limits. Prior to return to normal operation, a physics test program is required to determine if the operating characteristics of the core are consistent with the design predictions and to ensure that the core can be operated as designed. Successful completion of the physics test program is demonstrated when the test results agree with the predicted results within predetermined test criteria. Successful completion of the physics test program and successful completion of other tests which are performed after each refuelling provides assurance that the plant can be operated as designed. The calculated neutron-physics characteristics values of Kozloduy NPP Unit 5 and Unit 6 (WWER 1000) obtained by the computer code package KASKAD are compared with the obtained results during the start up physics tests. The core fuel loading consists of 163 fuel assemblies. The calculated values are given according to actual experimental conditions of the reactor core during start up physics tests. The report includes comparisons between calculation results by code package KASKAD (BIPR7A) and experimental data values of main neutron-physics characteristics during start up physics tests in selected recent cycles of Kozloduy NPP Unit 5 and Unit 6 (Authors)

  5. Basic of Neutron NDA

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    The objectives of this presentation are to introduce the basic physics of neutron production, interactions and detection; identify the processes that generate neutrons; explain the most common neutron mechanism, spontaneous and induced fission and (a,n) reactions; describe the properties of neutron from different sources; recognize advantages of neutron measurements techniques; recognize common neutrons interactions; explain neutron cross section measurements; describe the fundamental of 3He detector function and designs; and differentiate between passive and active assay techniques.

  6. Correlation properties of delayed neutrons from fast neutron induced fission

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Isaev, S.G.

    1998-01-01

    The experimental studies of the energy dependence of the delayed neutron parameters for various fissioning systems has shown that the behavior of a some combination of delayed neutron parameters (group relative abundances a i and half lives T i ) has a similar features. On the basis of this findings the systematics of delayed neutron experimental data for thorium, uranium, plutonium and americium isotopes have been investigated with the purpose to find a correlation of DN parameters with characteristics of fissioning system as well as a correlation between the delayed neutron parameters themselves. Below we will present the preliminary results which were obtained during this study omitting the physics interpretation of the results. (author)

  7. The intense neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1966-07-01

    The presentation discusses both the economic and research contexts that would be served by producing neutrons in gram quantities at high intensities by electrical means without uranium-235. The revenue from producing radioisotopes is attractive. The array of techniques introduced by the multipurpose 65 megawatt Intense Neutron Generator project includes liquid metal cooling, superconducting magnets for beam bending and focussing, super-conductors for low-loss high-power radiofrequency systems, efficient devices for producing radiofrequency power, plasma physics developments for producing and accelerating hydrogen, ions at high intensity that are still far out from established practice, a multimegawatt high voltage D.C. generating machine that could have several applications. The research fields served relate principally to materials science through neutron-phonon and other quantum interactions as well as through neutron diffraction. Nuclear physics is served through {mu}-, {pi}- and K-meson production. Isotope production enters many fields of applied research. (author)

  8. The intense neutron generator

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1966-01-01

    The presentation discusses both the economic and research contexts that would be served by producing neutrons in gram quantities at high intensities by electrical means without uranium-235. The revenue from producing radioisotopes is attractive. The array of techniques introduced by the multipurpose 65 megawatt Intense Neutron Generator project includes liquid metal cooling, superconducting magnets for beam bending and focussing, super-conductors for low-loss high-power radiofrequency systems, efficient devices for producing radiofrequency power, plasma physics developments for producing and accelerating hydrogen, ions at high intensity that are still far out from established practice, a multimegawatt high voltage D.C. generating machine that could have several applications. The research fields served relate principally to materials science through neutron-phonon and other quantum interactions as well as through neutron diffraction. Nuclear physics is served through μ-, π- and K-meson production. Isotope production enters many fields of applied research. (author)

  9. Relative biological effectiveness measurements using murine lethality and survival of intestinal and hematopoietic stem cells after Fermilab neutrons compared to JANUS reactor neutrons and 60Co gamma rays

    International Nuclear Information System (INIS)

    Hanson, W.R.; Crouse, D.A.; Fry, R.J.M.; Ainsworth, E.J.

    1984-01-01

    The relative biological effectiveness (RBE) of the 25-MeV (average energy) neutron beam at the Fermi National Accelerator Laboratory was measured using murine bone marrow (LD/sub 50/30/) and gut (LD/sub 50/6/) lethality and killing of hematopoietic colony forming units (CFU-S) or intestinal clonogenic cells (ICC). The LD/sub 50/30/ and LD/sub 50/6/ for mice exposed to the Fermilab neutron beam were 6.6 and 8.7 Gy, respectively, intermediate between those of JANUS neutrons and 60 Co γ rays. The D 0 values for CFU-S and ICC were 47 cGy and 1.05 Gy, respectively, also intermediate between the lowest values found for JANUS neutrons and the highest values found after 60 Co γ rays. The split-dose survival ratios for CFU-S at intervals of 1-6 hr between doses were essentially 1.0 for both neutron sources. The 3-hr split-dose survival ratios for ICC were 1.0 for JANUS neutrons, 1.85 for Fermilab neutrons, and 6.5 for 60 Co γ rays. The RBE estimates for LD/sub 50/30/ were 1.5 and 2.3 for Fermilab and JANUS neutrons, respectively. Based on LD/sub 50/6/, the RBEs were 1.9 (Fermilab) and 3.0 (JANUS). The RBEs for CFU-S D 0 were 1.4 (Fermilab) and 1.9 (JANUS) and for jejunal microcolony D 0 1.4 (Fermilab) and 2.8 (JANUS)

  10. Health-related physical fitness for children with cerebral palsy

    Science.gov (United States)

    Maltais, Désirée B.; Wiart, Lesley; Fowler, Eileen; Verschuren, Olaf; Damiano, Diane L.

    2014-01-01

    Low levels of physical activity are a global health concern for all children. Children with cerebral palsy have even lower physical activity levels than their typically developing peers. Low levels of physical activity, and thus an increased risk for related chronic diseases, are associated with deficits in health-related physical fitness. Recent research has provided therapists with the resources to effectively perform physical fitness testing and physical activity training in clinical settings with children who have cerebral palsy, although most testing and training data to date pertains to those who walk. Nevertheless, based on the present evidence, all children with cerebral palsy should engage, to the extent they are able, in aerobic, anaerobic and muscle strengthening activities. Future research is required to determine the best ways to evaluate health-related physical fitness in non-ambulatory children with cerebral palsy and foster long-term changes in physical activity behavior in all children with this condition. PMID:24820339

  11. Physics with Ultracold and Thermal Neutron Beams: Testing and possible application of 'low temperature Fomblin' in a neutron lifetime experiment. Final report

    International Nuclear Information System (INIS)

    Steyerl, Albert

    2004-01-01

    sensitively by the neutron lifetime and the neutron decay asymmetry parameter A. Confirmation of nonunitarity would imply that the Standard Model of particle physics may have to be extended. To prepare for an improved τ n measurement based on ultracold neutron (UCN) storage our project had two main goals: (a) To investigate the suitability of a new type of per-fluorinated oil for low-loss wall coating. Like Fomblin oil, which has been used in several previous high-precision τ n measurements, the new oil consists only of carbon, oxygen and fluorine. These elements have very low neutron absorption cross sections. However, due to weak intermolecular binding the new polymer solidifies at a lower temperature (∼150 K vs. ∼230 K for Fomblin) and can, therefore, be used in liquid form at a lower temperature. This is important since a liquid perfectly seals small gaps and the low temperature ensures that the loss due to thermal-inelastic and quasi-elastic scattering is also small. The new types of oil have become known as 'Low Temperature Fomblin' (LTF). (b) If indeed the anticipated low losses were obtained we planned to perform first direct UCN storage experiments in a gravitational storage system coated with this oil. This system in principle allows measurement of the storage lifetime as a function of UCN energy and trap size, and an extrapolation to zero loss yields the neutron lifetime.

  12. Development of a neutron detector with high detection efficiency and high spatial resolution and its applications to reactor physics experiments

    International Nuclear Information System (INIS)

    Tojo, Takao

    1979-09-01

    For detection of thermal neutrons in multiplying systems, a scintillator mixture of ZnS(Ag), 6 LiF and polyethylene was prepared, and its characteristics were shown. A sintillation detector using the mixture and a long acrylic-resin light guide was developed for measuring thermal neutrons in an U-H 2 O subcritical assembly(JAERISA). The detector was applied in the following reactor physics measurements with JAERISA: (1) cadmium ratio, (2) infinite multiplication factor, (3) material buckling, and (4) prompt neutron lifetime by pulsed neutron method. These experiments revealed that neutrons in the assembly are successfully detected by the detector owing to its outstanding characteristics of gamma-ray insensitivity, high detection efficiency and high spatial resolution. In the process of activity measurement of a foil activation detector with a GM counter, it was shown that accurate counting loss correction are difficult by usual method, because of the appreciable resolving time dependence on counting rates. In accurate correction, a new method was introduced for precise measurement of the resolving time; the dependence was made clear. A new correction method was developed, which enables direct reading of the corrected counting rates, even at high counting rates. (author)

  13. Development of a neutron irradiation device with a cooled crystal filter: Radiation physical properties and applications in in vivo irradiations

    International Nuclear Information System (INIS)

    Braetter, P.; Galinke, E.; Gatschke, W.; Gawlik, D.; Roesick, U.

    1979-01-01

    The radiation-physical and geometrical properties of a neutron-beam, collimated with a Bi-crystal filter were investigated at the reactor BER II. The influence of the crystal temperature as well as the actions of a reflector and a collimator on neutron flux-density and neutron field of the thermal neutrons were investigated. The dose contributions of the thermal, epithermal and fast neutrons as well as γ-radiation was determined by activation of the sample respective with TLD-measurements. The influence of irradiation and measurement geometry on the sensitivity and detection probability was investigated by means of phantom irradiations. The method prooved to be suitable, to detect changes of the Ca-content in a rat hind leg by about 10%. In investigations on animal groups of about 10 animals a threshold of detectability for changes of the ca-content is to be expected by about 4%. In a further group experiment it was found, that even in the case of multiple radiation the procedure of irradiation and measurement was not followed by a significant change in the Ca-content of the hind legs of the testing animals. (orig.) [de

  14. Neutron activation analysis of reference materials by the k sub 0 standardization and relative methods

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, M C; Martinho, E [LNETI/ICEN, Sacavem (Portugal)

    1989-04-15

    Instrumental neutron activation analysis with the k{sub o}-standardization method was applied to eight geological, environmental and biological reference materials, including leaves, blood, fish, sediments, soils and limestone. To a first approximation, the results were normally distributed around the certified values with a standard deviation of 10%. Results obtained by using the relative method based on well characterized multi-element standards for IAEA CRM Soil-7 are reported.

  15. New physics searches in ATLAS and relation to astroparticle physics

    CERN Document Server

    Giangiobbe, V; The ATLAS collaboration

    2014-01-01

    The existence of Dark Matter (DM) is by now well established, and the fit of the cosmological model parameters to various measurements lead to a density of the cold non-baryoninc matter representing 26.5% of the critical density. Despite this relatively large density, the nature of the DM remains unknown. Amongst the preferred candidates for DM are the Weakly Interacting Massive Particles (WIMPs) with a mass roughly between 10 GeV and a few TeV. An intensive search program for DM in solar system has been going on for the last decades, providing limits on the WIMP mass and cross-section, as well as hints of potential signal. The search of direct production of DM at LHC is complementary to the one performed by astrophysics experiments, providing an independent measurement. The ATLAS detector operating at LHC collected data from proton-proton collisions corresponding by now to a total integrated luminosity of 20.3 fb-1 with 8 TeV energy in the center of mass. This high energy and luminosity allows to check the v...

  16. Elementary Physical Education Teachers' Content Knowledge of Physical Activity and Health-Related Fitness

    Science.gov (United States)

    Santiago, Jose A.; Disch, James G.; Morales, Julio

    2012-01-01

    The purpose of this study was to examine elementary physical education teachers' content knowledge of physical activity and health-related fitness. Sixty-four female and 24 male teachers completed the Appropriate Physical Activity and Health-Related Fitness test. Descriptive statistics results indicated that the mean percentage score for the test…

  17. Research and development activities of the Neutron Physics Division for the period January 1981 to December 1981

    International Nuclear Information System (INIS)

    Bhakay-Tamhane, Sandhya; Roy, Falguni

    1982-01-01

    Research and development activities of the Neutron Physics Division of the Bhabha Atomic Research Centre, Bombay, during 1981 are reported in the form of individual summaries. These are presented under headings: Purnima laboratories, crystallography, materials physics and seismology. These activities include studies of: (i) 233 U-uranyl nitrate solution critical systems, (2) fusion blanket neutronics, (3) fusion plasma experiments using 20 KJ capacitor bank, (4) crystal structures using neutron and X-ray diffraction, (5) materials behaviour at high temperatures and under shock waves, and (6) detection of underground nuclear explosions and discriminating them from earthquakes. Design work for many systems/components of the 233 U-fuelled neutron source reactor under construction at Kalpakkam has been completed and fabrication work is being taken up. A 500 KJ capacitor bank facility is being set up for pulsed fusion studies. The feasibility study for a three-dimensional network of sensors close to the working mines of the Kolar Gold Fields, for rockburst studies, was completed. Several computer programs for biological crystallography were implemented on the computers made available to the Division. A list of publications and lectures by the staff is given in an appendix. (M.G.B.)

  18. Current programmes on physical metallurgy and related areas in BARC

    International Nuclear Information System (INIS)

    1994-01-01

    Current research and development programmes on physical metallurgy and related areas from the following Divisions of Bhabha Atomic Research Centre are included in this report : Atomic Fuels Division, High Pressure Physics Division, Metallurgy Division, Radio Metallurgy Division, Solid State Physics Division. Important publications corresponding to each activity have also been listed. (author)

  19. Relation Between Higher Physical Activity and Public Transit Use

    Science.gov (United States)

    Vernez Moudon, Anne; Kang, Bumjoon; Hurvitz, Philip M.; Zhou, Chuan

    2014-01-01

    Objectives. We isolated physical activity attributable to transit use to examine issues of substitution between types of physical activity and potential confounding of transit-related walking with other walking. Methods. Physical activity and transit use data were collected in 2008 to 2009 from 693 Travel Assessment and Community study participants from King County, Washington, equipped with an accelerometer, a portable Global Positioning System, and a 7-day travel log. Physical activity was classified into transit- and non–transit-related walking and nonwalking time. Analyses compared physical activity by type between transit users and nonusers, between less and more frequent transit users, and between transit and nontransit days for transit users. Results. Transit users had more daily overall physical activity and more total walking than did nontransit users but did not differ on either non–transit-related walking or nonwalking physical activity. Most frequent transit users had more walking time than least frequent transit users. Higher physical activity levels for transit users were observed only on transit days, with 14.6 minutes (12.4 minutes when adjusted for demographics) of daily physical activity directly linked with transit use. Conclusions. Because transit use was directly related to higher physical activity, future research should examine whether substantive increases in transit access and use lead to more physical activity and related health improvements. PMID:24625142

  20. Lung volumes related to physical activity, physical fitness, aerobic capacity and body mass index in students

    Directory of Open Access Journals (Sweden)

    Mihailova A.

    2016-01-01

    Reduced lung volumes were associated with lower aerobic fitness, lower physical fitness and lower amount of weekly physical activity. Healthier body mass index was associated with higher aerobic fitness (relative VO2max in both female and male.

  1. Effect of burnup history by moderator density on neutron-physical characteristics of WWER-1000 core

    International Nuclear Information System (INIS)

    Ovdiienko, I.; Kuchin, A.; Khalimonchuk, V.; Ieremenko, M.

    2011-01-01

    Results of assessment of burnup history effect by moderator density on neutron physical characteristics of WWER-1000 core are presented on example of stationary fuel loading with Russian design fuel assembly TWSA and AER benchmark for Khmelnitsky NPP that was proposed by TUV and SSTC NRC at nineteenth symposium. Assessment was performed by DYN3D code and cross section library sets generated by HELIOS code. Burnup history was taken into account by preparing of numerous cross section sets with different isotopic composition each of which was obtained by burning under different moderator density. For analysis of history effect 20 cross section sets were prepared for each fuel assembly corresponded to each of 20 axial layers of reactor core model for DYN3D code. Four fuel cycles were modeled both for stationary fuel loading with TWSA and AER benchmark for Khmelnitsky NPP to obtain steady value of error due to neglect of burnup history effect. Main attention of study was paid to effect of burnup history by moderator density to axial power distribution. Results of study for AER benchmark were compared with experimental values of axial power distribution for fuel assemblies of first, second, third and fourth year operation. (Authors)

  2. Implosion physics, alternative targets design and neutron effects on inertial fusion systems

    International Nuclear Information System (INIS)

    Velarde, G.; Martinez-Val, J.M.; Perlado, J.M.

    2001-01-01

    A new radiation transport code has been coupled with an existing multimaterial fluidynamics code using Adaptive Mesh Refinement (AMR) and its testing is presented, solving ray effect and shadow problems in SN classical methods. Important advances in atomic physics, opacity calculations and NLTE calculations, participating in significant experiments (LULI/France), have been obtained. Our new 1D target simulation model allows considering the effect of inverse Compton scattering in DT x targets (x<3%) working in a catalytic regime, showing the effectiveness of such tritium-less targets. Neutron activation of all natural elements in IFE reactors for waste management and that of target debris in NIF-type facilities have been completed. Pulse activation in structural walls is presented with a new modeling. Tritium atmospheric dispersion results indicate large uncertainties in environmental responses and needs to treat the two chemical forms. We recognise recombination barriers (metastable defects) and compute first systematic high-energy displacement cascade analysis in SiC, and radiation damage pulses by atomistic models in metals. Using Molecular Dynamics we explain the experimental evidence of low-temperature amorphization by damage accumulation in SiC. (author)

  3. Energy related applications of elementary particle physics

    International Nuclear Information System (INIS)

    Rafelski, J.

    1991-01-01

    The current research position is summarized, and what could be done in the future to clarify issues which were opened up by the research is indicated. Following on the discussion of the viability of catalyzed fusion, there is presented along with the key experimental results, a short account of the physics surrounding the subject. This is followed by a discussion of key research topics addressed. In consequence of the progress made, it appears that the feasibility of a small-scale fusion based on catalyzed reactions rests on either the remote chance that a yet undiscovered ultraheavy negatively charged elementary particle exists in Nature, or on the possible technical realization of a system based on muon-catalyzed fusion (MuCF) in high-density degenerate hydrogen plasma (density 1000 LHD, temperature O(100 eV)). The lattter is considered to have practical promise

  4. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  5. Physical parameters and biological effects of the LVR-15 epithermal neutron beam

    Czech Academy of Sciences Publication Activity Database

    Burian, J.; Gambarini, G.; Marek, M.; Mareš, Vladislav; Rejchrt, J.; Vanossi, E.; Viererbl, L.; Judas, L.

    -, - (2006), s. 481-484 [International Congress on Neutron Capture Therapy /12./. Kagawo, 09.10.2006-13.10.2006] R&D Projects: GA MPO(CZ) 1H-PK2/05 Institutional research plan: CEZ:AV0Z50110509 Keywords : brain tumors * neutron capture therapy * NTC * dosimetry Subject RIV: FD - Oncology ; Hematology

  6. Neutron physics and nuclear data measurements with accelerators and research reactors

    International Nuclear Information System (INIS)

    1985-08-01

    The report contains a collection of lectures devoted to the latest theoretical and experimental developments in the field of fast neutron measurements and in the studies of neutron interactions with nuclei. The possibilities offered by particle accelerators and research reactors for research and technological applications in these fields are pointed out

  7. Thermal neutron cross sections and resonance integrals for the 1994 handbook of chemistry and physics

    International Nuclear Information System (INIS)

    Holden, N.E.

    1994-01-01

    A re-evaluation of all thermal neutron cross sections and neutron resonance integrals has been performed, utilizing the previous database of the ''Barn Book'' and all of the more recently published experiments. Only significant changes or previously undetermined values are recorded in this report. The source for each value is also recorded in the accompanying table

  8. XI. The Relation between Mathematics and Physic

    Indian Academy of Sciences (India)

    of mathematics in this scheme is to represent the laws of motion by equations, and to obtain solutions ... What makes the theory of relativity so acceptable to physicists in spite of its going against the principle of simplicity is its great mathematical peauty. This is a quality ... The difference may be expressed concisely, but in·a ...

  9. Moisture relations and physical properties of wood

    Science.gov (United States)

    Samuel V. Glass; Samuel L. Zelinka

    2010-01-01

    Wood, like many natural materials, is hygroscopic; it takes on moisture from the surrounding environment. Moisture exchange between wood and air depends on the relative humidity and temperature of the air and the current amount of water in the wood. This moisture relationship has an important influence on wood properties and performance. Many of the challenges of using...

  10. Low-temperature and neutron-physics studies. Progress report, July 1981-June 1982

    International Nuclear Information System (INIS)

    1982-07-01

    Experimental and theoretical studies of the neutron diffraction group at the MIT Research Reactor have concentrated during the past year in the areas of neutron interferometry and fundamental diffraction by crystals. A comprehensive study of the neutron phase effects introduced upon rotational motion of an interferometer has been carried out and found to agree with high accuracy to that predicted by theory. This effect arises because of the Coriolis force acting on the neutron radiation and a full theoretical analysis of this effect as it occurs in the finite crystals of an interferometer suggests the use of an effective mass concept similar to that for electrons in a crystal. Studies were also performed on the interesting case where neutron radiation can simultaneously satisfy the requirements of both surface optical reflection and internal Bragg diffraction. Theoretical analysis predicts that the competing processes will modify the characteristics of either one and experiments have been carried out which demonstrate these features

  11. Measurement of Neutron Field Characteristics at Nuclear-Physics Instalations for Personal Radiation Monitoring

    CERN Document Server

    Alekseev, A G; Britvich, G I; Kosyanenko, E V; Pikalov, V A; Gomonov, I P

    2003-01-01

    n this work the observed data of neutron spectra on Rostov NEP, Kursk NEP and Smolensk NEP and on the reactor IRT MIPHI are submitted. For measurement of neutron spectra two types of spectrometer were used: SHANS (IHEP design ) and SDN-MS01 (FEI design). The comparison of the data measurements per-formed by those spectrometers above one-type cells on the reactor RBMK is submitted. On the basis of the 1-st horizontal experimental channel HEC-1 of the IRT reactor 4 reference fields of neutrons are investigated. It is shown, that spectra of neutrons of reference fields can be used for imitation of neutron spectra for conditions of NEP with VVER and RBMK type reactors.

  12. Workshop on physics related to TAPS

    International Nuclear Information System (INIS)

    Kuehn, W.; Loehner, H.

    1991-06-01

    Since December 1989 there exist two accepted proposals for TAPS experiments at SIS: 'η production in Relativistic Heavy Ion Experiments' (S 025) and 'π 0 Excitation Function and π 0 -π 0 Correlations Combined with Charged Particle Flow Analysis' (S 042). A third proposal 'Electromagnetic Excitations' (S 046) was submitted and is accepted by now. Before the new phase with data taking and detailed analysis of relativistic heavy ion data was about to begin, it was feld that there should be a few days set aside to take breath and to consider in a relaxed atmosphere the physics goals for which TAPS was constructed. The large number of undergraduate and graduate students in the collaboration was additional good reason to plan a meeting in a workshop-like atmosphere in order to communicate recent experimental and theoretical results touching the goals of TAPS and to discuss the aims of the submitted proposals and methods of the respective data analysis. Moreover, new ideas for future proposals and advanced technical developments should also be discussed. The aim was to broaden the view for applications of TAPS for photon and neutral meson measurements at the different accelerators at GANIL(Caen), SIS(GSI), MAMI(Mainz) and AGOR(KVI). See hints under the relevant topics. (orig./HSI)

  13. Investigation of neutron physical features of WWER-440 assembly containing differently enriched pins and Gd burnable poison

    International Nuclear Information System (INIS)

    Nemes, Imre

    2000-01-01

    In this paper different pin-distributions of WWER-440 fuel assembly are examined. Assemblies contain 3 Gd-doped pins (Hungarian design), 6 Gd-doped pins near the assembly corners (Russian design) and differently profiled U5-enrichment in different pins. The main neutron physical characteristics of this assemblies - as the function of burnup - are calculated using HELIOS code. The calculated parameters of different assembly designs are analyzed from the standpoint of fuel cycle economy and refueling design practice. (Authors)

  14. Children's Moral Reasoning regarding Physical and Relational Aggression

    Science.gov (United States)

    Murray-Close, Dianna; Crick, Nicki R.; Galotti, Kathleen M.

    2006-01-01

    Elementary school children's moral reasoning concerning physical and relational aggression was explored. Fourth and fifth graders rated physical aggression as more wrong and harmful than relational aggression but tended to adopt a moral orientation about both forms of aggression. Gender differences in moral judgments of aggression were observed,…

  15. Relational Aggression and Physical Aggression among Adolescent Cook Islands Students

    Science.gov (United States)

    Page, Angela; Smith, Lisa F.

    2016-01-01

    Both physical and relational aggression are characterised by the intent to harm another. Physical aggression includes direct behaviours such as hitting or kicking; relational aggression involves behaviours designed to damage relationships, such as excluding others, spreading rumours, and delivering threats and verbal abuse. This study extended…

  16. Enhancements and Health-Related Studies of Neutron Activation Analysis Technique

    International Nuclear Information System (INIS)

    Soliman, M.A.M.

    2012-01-01

    The work presented in this thesis covers two major points. One algorithm concerns with establishment of an accurate standardization method with multi-elemental capabilities and low workload suitable for NAA standardization at ETRR-2. The second one deals with constructing and developing an effective nondestructive technique for analysis of liquid samples based on NAA using (very) short-lived radionuclides. To achieve the first goal, attention has been directed toward implementation of the k 0 -method for calculation of the elements concentrations in the samples. The k 0 -method of NAA standardization has a considerable success as a method for accurate multi-elemental analysis with comparable low workload. The k 0 - method is based on the fact that the unknown sample is irradiated with only one standard element as comparator. To access the implementation of this method at ETRR-2, careful and complete characterization of the neutron flux parameters in the irradiation positions as well as the efficiency calibration of the γ-ray spectrometer must be carried out. The required neutron flux parameters are: the ratio of the thermal to epithermal neutron fluxes (f) and the deviation factor (α) of the epithermal neutron flux from the ideal 1/E law. The work presented in Chapter 4 shows the efficiency calibration curve of the γ ray spectrometer system which was obtained using standard radioactive point sources. Moreover, the f and α parameters were determined in some selected irradiation sites using sets of Zr-Au as neutron flux monitors. Due to different locations relative to the reactor core, the available neutron fluxes in the selected irradiation positions differ substantially, so that different irradiation demands can be satisfied. The reference materials coal NIST 1632c and IAEA-Soil 7 were analyzed for data validation and good agreement between the experimental values and the certified values was obtained. The obtained results have revealed that the k 0 -NAA

  17. Adaptive, maladaptive, mediational, and bidirectional processes of relational and physical aggression, relational and physical victimization, and peer liking.

    Science.gov (United States)

    Kawabata, Yoshito; Tseng, Wan-Ling; Crick, Nicki R

    2014-01-01

    A three-wave longitudinal study among ethnically diverse preadolescents (N = 597 at Time 1, ages 9-11) was conducted to examine adaptive, maladaptive, mediational, and bidirectional processes of relational and physical aggression, victimization, and peer liking indexed by peer acceptance and friendships. A series of nested structural equation models tested the hypothesized links among these peer-domain factors. It was hypothesized that (1) relational aggression trails both adaptive and maladaptive processes, linking to more peer victimization and more peer liking, whereas physical aggression is maladaptive, resulting in more peer victimization and less peer liking; (2) physical and relational victimization is maladaptive, relating to more aggression and less peer liking; (3) peer liking may be the social context that promotes relational aggression (not physical aggression), whereas peer liking may protect against peer victimization, regardless of its type; and (4) peer liking mediates the link between forms of aggression and forms of peer victimization. Results showed that higher levels of peer liking predicted relative increases in relational aggression (not physical aggression), which in turn led to more peer liking. On the other hand, more peer liking was predictive of relative decreases in relational aggression and relational victimization in transition to the next grade (i.e., fifth grade). In addition, relational victimization predicted relative increases in relational aggression and relative decreases in peer liking. Similarly, physical aggression was consistently and concurrently associated more physical victimization and was marginally predictive of relative increases in physical victimization in transition to the next grade. More peer liking predicted relative decreases in physical victimization, which resulted in lower levels of peer liking. The directionality and magnitude of these paths did not differ between boys and girls. © 2013 Wiley

  18. Event-by-event simulation of single-neutron experiments to test uncertainty relations

    International Nuclear Information System (INIS)

    Raedt, H De; Michielsen, K

    2014-01-01

    Results from a discrete-event simulation of a recent single-neutron experiment that tests Ozawa's generalization of Heisenberg's uncertainty relation are presented. The event-based simulation algorithm reproduces the results of the quantum theoretical description of the experiment but does not require the knowledge of the solution of a wave equation, nor does it rely on detailed concepts of quantum theory. In particular, the data from these non-quantum simulations satisfy uncertainty relations derived in the context of quantum theory. (paper)

  19. Neutron and X-ray facilities in new Purnima extension building

    International Nuclear Information System (INIS)

    Sarkar, P.S.; Patel, Tarun; Gadkari, S.C.

    2017-01-01

    Neutron and X-ray Physics Section of Technical Physics Division has laboratories involving X-ray, gamma ray and neutrons in the New Purnima Extension Building (NPEB), behind Purnima Laboratories, BARC. Research activities related to X-ray, Gamma and neutron based detection and imaging for societal, departmental and security applications are being carried out in these laboratories

  20. The effect of neutron spectrum on the mechanical and physical properties of pure copper and copper alloys

    International Nuclear Information System (INIS)

    Fabritsiev, S.A.; Pokrovsky, A.S.; Sandakov, V.A.; Zinkle, S.J.; Rowcliffe, A.F.; Edwards, D.J.; Garner, F.A.; Singh, B.N.; Barabash, V.R.

    1996-01-01

    The electrical resistivity and tensile properties of copper and oxide dispersion strengthened (DS) copper alloys have been measured before and after fission neutron irradiation to damage levels of 0.5 to 5 displacements per atom (dps) at ∼100 to 400 degrees C. Some of the specimens were irradiated inside a 1.5 mm Cd shroud in order to reduce the thermal neutron flux. The electrical resistivity data could be separated into two components, a solid transmutation component Δρ tr which was proportional to thermal neutron fluence and a radiation defect component Δρ rd which was independent of the displacement dose. The saturation value for Δρ rd was ∼1.2 nanohm-meters for pure copper and ∼1.6 nanohm-meters for the DS copper alloys irradiated at 100 degrees C in positions with a fast-to-thermal neutron flux ratio of 5. Considerable radiation hardening was observed in all specimens at irradiation temperatures below 200 degrees C. The yield strength was relatively insensitive to neutron spectrum in specimens strengthened by dispersoids or cold- working. 17 refs., 7 figs., 1 tab

  1. Fast neutron dosimetry. Progress report, July 1, 1978-June 30, 1979. Wisconsin Medical Physics report No. WMP-109

    International Nuclear Information System (INIS)

    Attix, F.H.

    1979-01-01

    Research activities relating to neutron dosimetry at the University of Wisconsin conducted between 1961 and 1979 are comprehensively reviewed. Former principal investigators discuss the activities and accomplishments which occurred during their tenure, and the current principal investigator discusses future plans. Seven reprints of papers dealing with specific aspects of the program are included in the report, but have not been indexed separately

  2. Summary of the progress of reactor physics in Japan reviewing the activities related to NEA Committee on Reactor Physics

    International Nuclear Information System (INIS)

    Hirota, Jitsuya

    1984-09-01

    The progress of fast and thermal reactor physics, fusion neutronics and shielding researches in these twenty years can be clearly recognized in the reviews of reactor physics activities in Japan which had been perpared by the Special Committee on Reactor Physics: the joint committee under Atomic Energy Society of Japan and JAERI. Many topics of those discussed at the NEACRP meetings concerned fast reactor physics. Information exchange on the topics such as adjustment of group cross sections by integral data, central worth discrepancy, sodium void effect and heterogeneous core stimulated the researches in Japan. And achievements in Japan including those in the JAERI Fast Critical Facility FCA were reported and contributed largely to the international co-operation. In addition, the contribution from Japan was also made concerning a study of fusion blanket. Among various specialists' meetings recommended by NEACRP, those on nuclear data and benchmarks for reactor shielding were often held since 1973 and helpful to the progress of shielding researches in Japan. The Third Specialists' Meeting on Reactor Noise (SMORN-III) was held in Tokyo in 1981, indicating the recent progress in safety-related applications of reactor noise analysis. The NEACRP benchmark tests were quite useful to the progress of reactor physics in Japan, which included the benchmark calculations of BWR lattice cell, key parameters and burn-up characteristics of a large LMFBR, FBR and PWR shielding, and so on. It may be noted that the benchmark test on reactor noise analysis methods was successfully conducted by Japan in connection with SMORN-III. In addition, the co-operation was positively made to the compilation of light water lattice data, and the preparation of reviews on actinide production and burn-up, and blanket physics. (J.P.N.)

  3. Physical activity in relation to selected physical health components in employees of a financial institution

    OpenAIRE

    Smit, Madelein; Wilders, Cilas J.; Moss, S.J.

    2013-01-01

    The aim of this study was to determine the relation between physical activity and selected physical health components. A total of 9860 employees of a financial institution in South Africa, between the ages 18 and 64 (x̄ =35.3 ± 18.6 years), voluntary participated in the study. Health risk factors and physical activity was determined by using the Health Risk Assessment (HRA) and Monitored Health Risk (MHM). Assessment included a physical activity, diabetes risk and cardiovascular risk question...

  4. Boys’ and Girls’ Relational and Physical Aggression in Nine Countries

    OpenAIRE

    Lansford, Jennifer E.; Skinner, Ann T.; Sorbring, Emma; Di Giunta, Laura; Deater-Deckard, Kirby; Dodge, Kenneth A.; Malone, Patrick S.; Oburu, Paul; Pastorelli, Concetta; Tapanya, Sombat; Tirado, Liliana Maria Uribe; Zelli, Arnaldo; Al-Hassan, Suha M.; Alampay, Liane Peña; Bacchini, Dario

    2012-01-01

    Distinguishing between relational and physical aggression has become a key feature of many developmental studies in North America and Western Europe, but very little information is available on relational aggression in more diverse cultural contexts. This study examined the factor structure of, gender differences in, and associations between relational and physical aggression in China, Colombia, Italy, Jordan, Kenya, the Philippines, Sweden, Thailand, and the United States. Children ages 7 to...

  5. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    International Nuclear Information System (INIS)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.

    2016-01-01

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly and rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I -Love- Q relations.

  6. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    Energy Technology Data Exchange (ETDEWEB)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S., E-mail: daniela.doneva@uni-tuebingen.de, E-mail: yazad@phys.uni-sofia.bg [Theoretical Astrophysics, Eberhard Karls University of Tübingen, Tübingen 72076 (Germany)

    2016-11-01

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly and rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I -Love- Q relations.

  7. Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors

    Science.gov (United States)

    Velarde, G.; Perlado, J. M.; Alonso, E.; Alonso, M.; Domínguez, E.; Rubiano, J. G.; Gil, J. M.; Gómez del Rio, J.; Lodi, D.; Malerba, L.; Marian, J.; Martel, P.; Martínez-Val, J. M.; Mínguez, E.; Piera, M.; Ogando, F.; Reyes, S.; Salvador, M.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P.

    2001-05-01

    The coupling of a new radiation transport (RT) solver with an existing multimaterial fluid dynamics code (ARWEN) using Adaptive Mesh Refinement named DAFNE, has been completed. In addition, improvements were made to ARWEN in order to work properly with the RT code, and to make it user-friendlier, including new treatment of Equations of State, and graphical tools for visualization. The evaluation of the code has been performed, comparing it with other existing RT codes (including the one used in DAFNE, but in the single-grid version). These comparisons consist in problems with real input parameters (mainly opacities and geometry parameters). Important advances in Atomic Physics, Opacity calculations and NLTE atomic physics calculations, with participation in significant experiments in this area, have been obtained. Early published calculations showed that a DT x fuel with a small tritium initial content ( x<3%) could work in a catalytic regime in Inertial Fusion Targets, at very high burning temperatures (≫100 keV). Otherwise, the cross-section of DT remains much higher than that of DD and no internal breeding of tritium can take place. Improvements in the calculation model allow to properly simulate the effect of inverse Compton scattering which tends to lower Te and to enhance radiation losses, reducing the plasma temperature, Ti. The neutron activation of all natural elements in First Structural Wall (FSW) component of an Inertial Fusion Energy (IFE) reactor for waste management, and the analysis of activation of target debris in NIF-type facilities has been completed. Using an original efficient modeling for pulse activation, the FSW behavior in inertial fusion has been studied. A radiological dose library coupled to the ACAB code is being generated for assessing impact of environmental releases, and atmospheric dispersion analysis from HIF reactors indicate the uncertainty in tritium release parameters. The first recognition of recombination barriers in Si

  8. Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, G.; Perlado, J.M. E-mail: mperlado@denim.upm.es; Alonso, E.; Alonso, M.; Dominguez, E.; Rubiano, J.G.; Gil, J.M.; Gomez del Rio, J.; Lodi, D.; Malerba, L.; Marian, J.; Martel, P.; Martinez-Val, J.M.; Minguez, E.; Piera, M.; Ogando, F.; Reyes, S.; Salvador, M.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P

    2001-05-21

    The coupling of a new radiation transport (RT) solver with an existing multimaterial fluid dynamics code (ARWEN) using Adaptive Mesh Refinement named DAFNE, has been completed. In addition, improvements were made to ARWEN in order to work properly with the RT code, and to make it user-friendlier, including new treatment of Equations of State, and graphical tools for visualization. The evaluation of the code has been performed, comparing it with other existing RT codes (including the one used in DAFNE, but in the single-grid version). These comparisons consist in problems with real input parameters (mainly opacities and geometry parameters). Important advances in Atomic Physics, Opacity calculations and NLTE atomic physics calculations, with participation in significant experiments in this area, have been obtained. Early published calculations showed that a DT{sub x} fuel with a small tritium initial content (x<3%) could work in a catalytic regime in Inertial Fusion Targets, at very high burning temperatures ({>=}100 keV). Otherwise, the cross-section of DT remains much higher than that of DD and no internal breeding of tritium can take place. Improvements in the calculation model allow to properly simulate the effect of inverse Compton scattering which tends to lower T{sub e} and to enhance radiation losses, reducing the plasma temperature, T{sub i}. The neutron activation of all natural elements in First Structural Wall (FSW) component of an Inertial Fusion Energy (IFE) reactor for waste management, and the analysis of activation of target debris in NIF-type facilities has been completed. Using an original efficient modeling for pulse activation, the FSW behavior in inertial fusion has been studied. A radiological dose library coupled to the ACAB code is being generated for assessing impact of environmental releases, and atmospheric dispersion analysis from HIF reactors indicate the uncertainty in tritium release parameters. The first recognition of recombination

  9. Physics study of D-D/D-T neutron driven experimental subcritical assembly

    International Nuclear Information System (INIS)

    Sinha, Amar

    2015-01-01

    An experimental program to design and study external source driven subcritical assembly has been initiated at BARC. This program is aimed at understanding neutronic characteristics of accelerator driven system at low power level. In this series, a zero-power, sub-critical assembly driven by a D-D/D-T neutron generator has been developed. This system is modular in design and it is first in the series of subcritical assemblies being designed. The subcritical core consists of natural uranium fuel with high density polyethylene as moderator and beryllium oxide as reflector. The subcritical core is coupled to Purnima Neutron Generator. Preliminary experiments have been carried out for spatial flux measurement and reactivity estimation using pulsed neutron source (PNS) techniques. Further experiments are being planned to measure the reactivity and other kinetic parameters using noise methods. This facility would also be used for carrying out studies on effect of source importance and measurement of source multiplication factor k s and external neutron source efficiency φ* in great details. Some experiments with D-D and D-T neutrons have been presented. (author)

  10. Neutron irradiation of sapphire for compressive strengthening. II. Physical properties changes

    Energy Technology Data Exchange (ETDEWEB)

    Regan, Thomas M. E-mail: thomas_regan@uml.edu; Harris, Daniel C. E-mail: harrisdc@navair.navy.mil; Blodgett, David W.; Baldwin, Kevin C.; Miragliotta, Joseph A.; Thomas, Michael E.; Linevsky, Milton J.; Giles, John W.; Kennedy, Thomas A.; Fatemi, Mohammad; Black, David R.; Lagerloef, K. Peter D

    2002-01-01

    Irradiation of sapphire with fast neutrons (0.8-10 MeV) at a fluence of 10{sup 22}/m{sup 2} increased the c-axis compressive strength and the c-plane biaxial flexure strength at 600 deg. C by a factor of {approx}2.5. Both effects are attributed to inhibition of r-plane twin propagation by damage clusters resulting from neutron impact. The a-plane biaxial flexure strength and four-point flexure strength in the c- and m-directions decreased by 10-23% at 600 deg. C after neutron irradiation. Neutron irradiation had little or no effect on thermal conductivity, infrared absorption, elastic constants, hardness, and fracture toughness. A featureless electron paramagnetic resonance signal at g=2.02 was correlated with the strength increase: This signal grew in amplitude with increasing neutron irradiation, which also increased the compressive strength. Annealing conditions that reversed the strengthening also annihilated the g=2.02 signal. A signal associated with a paramagnetic center containing two Al nuclei was not correlated with strength. Ultraviolet and visible color centers also were not correlated with strength in that they could be removed by annealing at temperatures that were too low to reverse the compressive strengthening effect of neutron irradiation.

  11. Aspects of the physics and chemistry of water radiolysis by fast neutrons and fast electrons in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, D.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Tsang, K.T. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Laughton, P.J

    1998-09-01

    Detailed radiation physics calculations of energy deposition have been done for the coolant of CANDU reactors and Pressurized Water Reactors (PWRs). The geometry of the CANDU fuel channel was modelled in detail. Fluxes and energy-deposition rates for neutrons, recoil ions, photons, and fast electrons have been calculated using MCNP4B, WIMS-AECL, and specifically derived energy-transfer factors. These factors generate the energy/flux spectra of recoil ions from fast-neutron energy/flux spectra. The energy spectrum was divided into 89 discrete ranges (energy bins).The production of oxidizing species and net coolant radiolysis can be suppressed by the addition of hydrogen to the coolant of nuclear reactors. It is argued that the net dissociation of coolant by gamma rays is suppressed by lower levels of excess hydrogen than when dissociation is by ion recoils. This has consequences for the modelling of coolant radiolysis by homogeneous kinetics. More added hydrogen is required to stop water radiolysis by recoil ions acting alone than if recoil ions and gamma rays acted concurrently in space and time. Homogeneous kinetic models and experimental data suggest that track overlap is very inefficient in providing radicals from gamma-ray tracks to recombine molecular products in ion-recoil tracks. An inhomogeneous chemical model is needed that incorporates ionizing-particle track structure and track overlap. Such a model does not yet exist, but a number of limiting cases using homogeneous kinetics are discussed. There are sufficient uncertainties and contradictions in the data relevant to the radiolysis of reactor coolant that the relatively high CHC's (critical hydrogen concentration) observed in NRU reactor experiments (compared to model predictions) may be explainable by errors in fundamental data and understanding of water radiolysis under reactor conditions. The radiation chemistry program at CRL has been focused to generate quantitative water-radiolysis data in a

  12. Neutrons and the new Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey-Musolf, M.J., E-mail: mjrm@physics.wisc.ed [Department of Physics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2009-12-11

    Fundamental symmetry tests with neutrons can provide unique information about whatever will be the new Standard Model of fundamental interactions. I review two aspects of this possibility: searches for the permanent electric dipole moment of the neutron and its relation to the origin of baryonic matter, and precision studies of neutron decay that can probe new symmetries. I discuss the complementarity of these experiments with other low-energy precision tests and high energy collider searches for new physics.

  13. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  14. Neutron spectometers

    International Nuclear Information System (INIS)

    Poortmans, F.

    1977-01-01

    Experimental work in the field of low-energy neutron physics can be subdivided into two classes: 1)Study of the decay process of the compound-nucleus state as for example the study of the capture gamma rays and of the neutron induced fission process; 2)Study of the reaction mechanism, mainly by measuring the reaction cross-sections and resonance parameters. These neutron cross-sections and resonance parameters are also important data required for many technological applications especially for reactor development programmes. In general, the second class of experiments impose other requirements on the neutron spectrometer than the first class. In most cases, a better neutron energy resolution and a broader neutron energy range are required for the study of the reaction mechanism than for the study of various aspects of the decay process. (author)

  15. Neutron Diffractometer; Neutronski difraktometar

    Energy Technology Data Exchange (ETDEWEB)

    Zivadinovic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    RA nuclear reactor is considered as a relatively strong neutron source producing the thermal neutron flux of about 3x10{sup 13} n/cm{sup 2} sec when operating at nominal power of 6.5 MW. Neutron diffraction method is applied in the field of solid state physics, material science, crystallography, magnetism, nuclear physic. Neutron diffractometer at the RA reactor consists of: system for obtaining collimated neutron beam from the horizontal experimental channel neutron monochromator; goniometer and electronic equipment for measurements and collecting the the measurement data. Nuklearni reaktor RA koji pri radu na snazi od 6,5 MW ima fluks termalnih neutrona oko 3x10{sup 13} n/cm{sup 2} sec predstavlja relativno jak izvor neutrona. Tehnika difrakcije neutrona primenjuje se u istrazivanjima fizike crvstog stanja, strukture materijala, kristalografije, magnetizma, nuklearne fizike. Neutronski difraktometar na reaktoru RA sastoji se od sistema za dobijanje kolimisanog snopa neutrona kroz horizontalni kanal reaktora; neutroskog monohromatora; goniometra i elektronskih uredjaja za merenja i registrovanje rezultata. Ovaj izvestaj sadrzi detaljan opis i seme neutronskog difraktometra sa pratecom opremom i elektronskim komponentama.

  16. A physical and engineering study on the irradiation techniques in neutron capture therapy aiming for wider application

    International Nuclear Information System (INIS)

    Sakurai, Y.; Ono, K.; Suzuki, M.; Katoh, I.; Miyatake, S.-I.; Yanagie, H.

    2003-01-01

    The solo-irradiation of thermal neutrons has been applied for brain cancer and malignant melanoma in the boron neutron capture therapy (BNCT) at the medical irradiation facility of Kyoto University Reactor (KUR), from the first clinical trial in 1974. In 1997, after the facility remodeling, the application of the mix-irradiation of thermal and epi-thermal neutrons was started, and the depth dose distribution for brain cancer has been improved in some degree. In 2001, the solo-irradiation of epi-thermal neutrons also started. It is specially mentioned that the application to oral cancers started at the same time. The BNCT clinical trial using epi-thermal neutron irradiation at KUR, amounts to twelve as of March 2003. The seven trials; more than a half of the total trials, are for oral cancers. From this fact, we think that the wider application to the other cancers is required for the future prosperity of BNCT. The cancers applied for BNCT in KUR at the present time, are brain cancer, melanoma and oral cancers, as mentioned above. The cancers, expected to be applied in near future, are liver cancer, pancreas cancer, lung cancer, tongue cancer, breast cancer, etc.. Any cancer is almost incurable by the other therapy including the other radiation therapy. In the wider application of BNCT to these cancers, the dose-distribution control suitable to each cancer and/or each part, is important. The introduction of multi-directional and/or multi-divisional irradiation is also needed. Here, a physical and engineering study using two-dimensional transport calculation and three-dimensional Monte-Carlo simulation for the irradiation techniques in BNCT aiming for wider application is reported

  17. Phase transitions and neutron scattering

    International Nuclear Information System (INIS)

    Shirane, G.

    1993-01-01

    A review is given of recent advances in neutron scattering studies of solid state physics. I have selected the study of a structural phase transition as the best example to demonstrate the power of neutron scattering techniques. Since energy analysis is relatively easy, the dynamical aspects of a transition can be elucidated by the neutron probe. I shall discuss in some detail current experiments on the 100 K transition in SrTiO 3 , the crystal which has been the paradigm of neutron studies of phase transitions for many years. This new experiment attempts to clarify the relation between the neutron central peak, observed in energy scans, and the two length scales observed in recent x-ray diffraction studies where only scans in momentum space are possible. (author)

  18. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    International Nuclear Information System (INIS)

    Rich, D.R.; Bowman, J.D.; Crawford, B.E.; Delheij, P.P.J.; Espy, M.A.; Haseyama, T.; Jones, G.; Keith, C.D.; Knudson, J.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilae, S.I.; Pomeroy, V.R.; Smith, D.A.; Snow, W.M.; Szymanski, J.J.; Stephenson, S.L.; Thompson, A.K.; Yuan, V.

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3 He spin filter and a relative transmission measurement technique. 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method

  19. Do the Uncertainty Relations Really have Crucial Significances for Physics?

    Directory of Open Access Journals (Sweden)

    Dumitru S.

    2010-10-01

    Full Text Available It is proved the falsity of idea that the Uncertainty Relations (UR have crucial significances for physics. Additionally one argues for the necesity of an UR-disconnected quantum philosophy.

  20. The role of Einstein's general relativity theory in today's physics

    International Nuclear Information System (INIS)

    Bicak, J.

    The relationships are discussed of the general relativity theory to other fields of today's physics. Recent results are reported of studies into gravitational radiation, relativistic astrophysics, cosmology and the quantum theory. (Z.M.)

  1. Phase relations, crystal structures and physical properties of nuclear fuels

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki; Fujino, Takeo; Tateno, Jun

    1975-07-01

    Phase relations, crystal structures and physical properties of the compounds for nuclear fuels are presented, including melting point, thermal expansion, diffusion and magnetic and electric properties. Emphasis is on oxides, carbides and nitrides of thorium, uranium and plutonium. (auth.)

  2. Neutronics codes

    International Nuclear Information System (INIS)

    Buckel, G.

    1983-01-01

    The objectives are the development, testing and cultivation of reliable, efficient and user-optimized neutron-physical calculation methods and conformity with users' requirements concerning design of power reactors, planning and analysis of experiments necessary for their protection as well as research on physical key problems. A short outline of available computing programmes for the following objectives is given: - Provision of macroscopic group constants, - Calculation of neutron flux distribution in transport theory and diffusion approximation, - Evaluation of neutron flux-distribution, - Execution of disturbance calculations for the determination reactivity coefficients, and - graphical representation of results. (orig./RW) [de

  3. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions.

    Science.gov (United States)

    Stewart, Robert D; Streitmatter, Seth W; Argento, David C; Kirkby, Charles; Goorley, John T; Moffitt, Greg; Jevremovic, Tatjana; Sandison, George A

    2015-11-07

    To account for particle interactions in the extracellular (physical) environment, information from the cell-level Monte Carlo damage simulation (MCDS) for DNA double strand break (DSB) induction has been integrated into the general purpose Monte Carlo N-particle (MCNP) radiation transport code system. The effort to integrate these models is motivated by the need for a computationally efficient model to accurately predict particle relative biological effectiveness (RBE) in cell cultures and in vivo. To illustrate the approach and highlight the impact of the larger scale physical environment (e.g. establishing charged particle equilibrium), we examined the RBE for DSB induction (RBEDSB) of x-rays, (137)Cs γ-rays, neutrons and light ions relative to γ-rays from (60)Co in monolayer cell cultures at various depths in water. Under normoxic conditions, we found that (137)Cs γ-rays are about 1.7% more effective at creating DSB than γ-rays from (60)Co (RBEDSB  =  1.017) whereas 60-250 kV x-rays are 1.1 to 1.25 times more efficient at creating DSB than (60)Co. Under anoxic conditions, kV x-rays may have an RBEDSB up to 1.51 times as large as (60)Co γ-rays. Fission neutrons passing through monolayer cell cultures have an RBEDSB that ranges from 2.6 to 3.0 in normoxic cells, but may be as large as 9.93 for anoxic cells. For proton pencil beams, Monte Carlo simulations suggest an RBEDSB of about 1.2 at the tip of the Bragg peak and up to 1.6 a few mm beyond the Bragg peak. Bragg peak RBEDSB increases with decreasing oxygen concentration, which may create opportunities to apply proton dose painting to help address tumor hypoxia. Modeling of the particle RBE for DSB induction across multiple physical and biological scales has the potential to aid in the interpretation of laboratory experiments and provide useful information to advance the safety and effectiveness of hadron therapy in the treatment of cancer.

  4. Kinesiophobia in relation to physical activity in chronic neck pain.

    Science.gov (United States)

    Demirbüken, İlkşan; Özgül, Bahar; Kuru Çolak, Tuğba; Aydoğdu, Onur; Sarı, Zübeyir; Yurdalan, Saadet Ufuk

    2016-01-01

    Little research is available concerning physical activity and its determinants in people with chronic neck pain. To explore the relation between kinesiophobia and physical activity and gender effect on these relations in people with chronic neck pain. Ninety-nine subjects (34 men and 65 women) with chronic neck pain were participated in the study. Pain intensity was assessed with Visual Analog Scale and kinesiophobia degree was determined by using Tampa Scale of Kinesiophobia. Level of physical activity was assessed with short form of the International Physical Activity Questionnaire. There was no statistically correlation between neck pain intensity and kinesiophobia degree (p= 0.246, r= 0.123) and physical activity level (p= 0.432, r= -0.083). It was also found that kinesiophobia degree was not correlated to physical activity level (p= 0.148, r= -0.153). There was a negative correlation between kinesiophobia degree and physical activity level only for women, not for men (p= 0.011, r= -0.318). Our results showed that although people with chronic neck pain reported higher pain intensity and fear of movement, pain intensity and kinesiophobia degree did not associate to their physical activity levels. It can be speculated that high kinesiophobia degrees cause low physical activity levels for women, but not for men.

  5. Nondestructive testing: Neutron radiography and neutron activation. (Latest citations from the INSPEC: Information services for the physics and engineering communities database). Published Search

    International Nuclear Information System (INIS)

    1993-08-01

    The bibliography contains citations concerning the technology of neutron radiography and neutron activation for nondestructive testing of materials. The development and evaluation of neutron activation analysis and neutron diffraction examination of liquids and solids are presented. Citations also discuss nondestructive assay, verification, evaluation, and multielement analysis of biomedical, environmental, industrial, and geological materials. Nondestructive identification of chemical agents, explosives, weapons, and drugs in sealed containers are explored. (Contains a minimum of 83 citations and includes a subject term index and title list.)

  6. Neutron dosimetry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J W

    1955-03-29

    This review summarizes information on the following subjects: (1) physical processes of importance in neutron dosimetry; (2) biological effects of neutrons; (3) neutron sources; and (4) instruments and methods used in neutron dosimetry. Also, possible improvements in dosimetry instrumentation are outlined and discussed. (author)

  7. Some reciprocity-like relations in multi-group neutron diffusion and transport theory over bare homogeneous regions

    International Nuclear Information System (INIS)

    Modak, R.S.; Sahni, D.C.

    1996-01-01

    Some simple reciprocity-like relations that exist in multi-group neutron diffusion and transport theory over bare homogeneous regions are presented. These relations do not involve the adjoint solutions and are directly related to numerical schemes based on an explicit evaluation of the fission matrix. (author)

  8. Neutron optical potential of 28Si derived from the dispersion relation

    International Nuclear Information System (INIS)

    Kitazawa, H.; Igarasi, S.; Katsuragi, D.; Harima, Y.

    1992-01-01

    Based upon the dispersion theory, an optical potential of 28 Si was determined at the neutron energies from the Fermi energy to 20 MeV. In particular, discussion was given on a characteristic behavior of the optical potential for low-energy neutrons. Moreover, the validity of the dispersion theory was investigated for neutron single-particle bound states in 29 Si. (orig.)

  9. Merger of binary neutron stars of unequal mass in full general relativity

    International Nuclear Information System (INIS)

    Shibata, Masaru; Taniguchi, Keisuke; Uryu-bar, Ko-barji

    2003-01-01

    We present results of three dimensional numerical simulations of the merger of unequal-mass binary neutron stars in full general relativity. A Γ-law equation of state P=(Γ-1)ρε is adopted, where P, ρ, ε, and Γ are the pressure, rest mass density, specific internal energy, and the adiabatic constant, respectively. We take Γ=2 and the baryon rest-mass ratio Q M to be in the range 0.85-1. The typical grid size is (633,633,317) for (x,y,z). We improve several implementations since the latest work. In the present code, the radiation reaction of gravitational waves is taken into account with a good accuracy. This fact enables us to follow the coalescence all the way from the late inspiral phase through the merger phase for which the transition is triggered by the radiation reaction. It is found that if the total rest mass of the system is more than ∼1.7 times of the maximum allowed rest mass of spherical neutron stars, a black hole is formed after the merger, irrespective of the mass ratios. The gravitational waveforms and outcomes in the merger of unequal-mass binaries are compared with those in equal-mass binaries. It is found that the disk mass around the so formed black holes increases with decreasing rest-mass ratios and decreases with increasing compactness of neutron stars. The merger process and the gravitational waveforms also depend strongly on the rest-mass ratios even for the range Q M =0.85-1

  10. Intense resonance neutron source (IREN) - new pulsed source for nuclear physical and applied investigations

    International Nuclear Information System (INIS)

    Anan'ev, V.D.; Furman, W.I.; Kobets, V.V.; Meshkov, I.N.; Pyataev, V.G.; Shirkov, G.D.; Shvets, V.A.; Sumbaev, A.P.; Kuatbekov, R.P.; Tret'yakov, I.T.; Frolov, A.R.; Gurov, S.M.; Logachev, P.V.; Pavlov, V.M.; Skarbo, B.A.

    2005-01-01

    An accelerator-driven subcritical system (200 MeV electron linac + metallic plutonium subcritical core) IREN is constructed at the Joint Institute for Nuclear Research (JINR). The new pulsed neutron source IREN is optimized for maximal yield of resonance neutrons (1-10 5 eV). The S-band electron linac with a pulse duration near 200 ns, repetition rate up to 150 Hz and the mean beam power 10 kW delivers 200-MeV electrons onto a specially designed tungsten target (an electron-neutron converter) situated in the center of a very compact and fast subcritical assembly with K eff 15 per second. A mean fission power of the multiplying target is planned to be near 15 kW. The current status of the project is presented

  11. Prevalence of work-related musculoskeletal disorders among physical therapists

    Directory of Open Access Journals (Sweden)

    Zaheen Iqbal

    2015-08-01

    Full Text Available Background: Health professions like dentistry, nursing and physical therapy have been reported at high risk for developing workrelated musculoskeletal disorders. Results of studies conducted in these occupational groups may help formulate prevention strategies. However, no such data among physical therapists has been reported in India. Material and Methods: We conducted an online survey among 100 physiotherapists in Delhi. Results: The response rate was 75%. The prevalence of work-related musculoskeletal disorders is found to be high since 92% of them reported to feel some pain after joining physical therapy which affects daily activities and even sometimes forces them to change their work. Physical therapists specialty, gender, furniture used in clinic and duration of patient contact are found to be related to the pain development (p < 0.05. Conclusions: We need to emphasize the role of ergonomics and techniques of patient handling in development of work-related pain symptoms. Med Pr 2015;66(4:459–469

  12. High-Flux Neutron Generator Facility for Geochronology and Nuclear Physics Research

    Science.gov (United States)

    Waltz, Cory; HFNG Collaboration

    2015-04-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being commissioned at UC Berkeley. The generator is designed to produce monoenergetic 2.45 MeV neutrons at outputs exceeding 1011 n/s. The HFNG is designed around two RF-driven multi-cusp ion sources that straddle a titanium-coated copper target. D + ions, accelerated up to 150 keV from the ion sources, self-load the target and drive neutron generation through the d(d,n)3 He fusion reaction. A well-integrated cooling system is capable of handling beam power reaching 120 kW impinging on the target. The unique design of the HFNG target permits experimental samples to be placed inside the target volume, allowing the samples to receive the highest neutron flux (1011 cm-2 s-1) possible from the generator. In addition, external beams of neutrons will be available simultaneously, ranging from thermal to 2.45 MeV. Achieving the highest neutron yields required carefully designed schemes to mitigate back-streaming of high energy electrons liberated from the cathode target by deuteron bombardment. The proposed science program is focused on pioneering advances in the 40 Ar/39 Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science, and education. An end goal is to become a user facility for researchers. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and UC Office of the President Award 12-LR-238745.

  13. The analysis of neutron physical characteristics of fast reactors by means of pulsed experiments

    International Nuclear Information System (INIS)

    Stumbur, Eh.A.; Milyutina, Z.N.

    1992-01-01

    Possibility is considered for determination of macroscopic cross sections of homogeneous multiplicating media with fast neutrons. It is shown that by means of the critical size, laplaccian and neutron pulse damping decrement measurement results it is possible to obtain values of almost all cross sections of a medium. The method is tested with systems of metal 235 U and BFS-32 assemblies with the composition, typical for fast power reactors. A suitable algorithm is developed for solving nonstationary asymptotic transport problems. Calculation results are compared with experimental ones. 21 refs.; 2 figs.; 3 tabs

  14. Few-body physics investigated through polarized neutron experiments in A /le/ 3 systems at TUNL

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W.; Howell, C.R.; Walter, R.L.

    1989-04-01

    Accurate polarization data obtained with neutrons below 20 MeV in the A /le/ 3 systems provide important new information on details of the nucleon-nucleon (NN) interaction. The two-nucleon and three-nucleon data favor the Paris potential over the new Bonn (OBEPQ) potential. However, one of the realistic potential models describes the elastic neutron-deuteron analyzing power satisfactorily. Charge independence breaking in the /sup 3/P NN interactions and/or three-body force effects must be considered. (orig.).

  15. Few-body physics investigated through polarized neutron experiments in A ≤ 3 systems at TUNL

    International Nuclear Information System (INIS)

    Tornow, W.; Howell, C.R.; Walter, R.L.

    1989-01-01

    Accurate polarization data obtained with neutrons below 20 MeV in the A ≤ 3 systems provide important new information on details of the nucleon-nucleon (NN) interaction. The two-nucleon and three-nucleon data favor the Paris potential over the new Bonn (OBEPQ) potential. However, one of the realistic potential models describes the elastic neutron-deuteron analyzing power satisfactorily. Charge independence breaking in the 3 P NN interactions and/or three-body force effects must be considered. (orig.)

  16. Magnetization of neutron star matter and implications in physics of soft gamma repeaters

    Energy Technology Data Exchange (ETDEWEB)

    Kondratyev, V N [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-01-01

    The magnetization of neutron star matter is considered within the thermodynamic formalism. The quantization effects are demonstrated to result in sharp abrupt magnetic field dependence of nuclide magnetic moments. Accounting for inter-nuclide magnetic coupling we show that such anomalies give rise to erratic jumps in magnetotransport of neutron star crusts. The properties of such a noise are favorably compared with burst statistics of Soft Gamma Repeaters. PACS: 97.60.Jd, 21.10.Dr, 26.60.+c, 95.30.Ky. (author)

  17. Disentangling longitudinal relations between physical activity, work-related fatigue, and task demands

    NARCIS (Netherlands)

    Vries, J.D. de; Claessens, B.J.C.; Hooff, M.L.M. van; Geurts, S.A.E.; Bossche, S.N.J. van den; Kompier, A.J.

    2016-01-01

    Purpose This longitudinal study examined ‘normal’, ‘reversed’, and ‘reciprocal’ relationships between (1) physical activity and work-related fatigue; and (2) physical activity and task demands. Furthermore, the effects of across-time change in meaningful physical activity groups on levels of

  18. Study of Relation between Physical Activity and Preterm Birth

    Directory of Open Access Journals (Sweden)

    Mehran N.

    2012-04-01

    Full Text Available Background and Objectives: Preterm birth is the main cause of neonatal mortality and morbidity and the importance of knowing its causes is clear. Since the effect of physical activity on preterm birth is unknown and its prevention is the priority in health care, we decided to do this study with the aim of determining the relation between physical activity and preterm birth. Methods: In this case-control study, 300 pregnant women delivering in Izadi Hospital in Qom, Iran in the second half of 2008, selected through simple sampling. The data were collected using standard pregnancy physical activity questionnaire that categorizes the physical activity into 4 groups: work activities, home activities, transport activities and fun/exercise activities. The physical activity severity was calculated as MET (Metabolic Equivalence Test. Finally, the data were analyzed using descriptive and analytic (x2 and t test statistics. A p<0.05 was considered as significant.Results: The findings didn't show any significant relation between physical activity and preterm birth. In addition, in view of activity type, fun/exercise and work activities (respectively and in view of activity severity, sedentary and moderate activities (respectively were associated with higher, but insignificant rate of preterm birth. Among demographic factors, only gravidity of women was significantly associated with preterm birth.Conclusion: Although, in this study the significant relation between physical activity and preterm delivery wasn't observed, the same research with further sample is recommended.

  19. Relations between the school physical environment and school social capital with student physical activity levels.

    Science.gov (United States)

    Button, Brenton; Trites, Stephen; Janssen, Ian

    2013-12-17

    The physical and social environments at schools are related to students' moderate-to-vigorous physical activity (MVPA) levels. The purpose of this study was to explore the interactive effects of the school physical environment and school social capital on the MVPA of students while at school. Data from 18,875 grade 6-10 students from 331 schools who participated in the 2009/10 Canadian Health Behaviour in School-Aged Children survey were analyzed using multi-level regression. Students answered questions on the amount of time they spend in MVPA at school and on their school's social capital. Administrator reports were used to create a physical activity related physical environment score. The school physical environment score was positively associated with student MVPA at school (β = 0.040, p < .005). The association between the school social capital and MVPA was also positive (β = 0.074, p < .001). The difference in physical environments equated to about 20 minutes/week of MVPA for students attending schools with the lowest number of physical environment features and about 40 minutes/week for students attending schools with the lowest school social capital scores by comparison to students attending schools with the highest scores. The findings suggest that school social capital may be a more important factor in increasing students MVPA than the school physical environment. The results of this study may help inform interventions aimed at increasing student physical activity levels.

  20. NF-6 program complex for BESM-6 computation of the basic neutron-physical characteristics of nuclear reactors

    International Nuclear Information System (INIS)

    Zizin, M.N.; Savochkina, O.A.; Chukhlova, O.P.

    1978-01-01

    A structure of standard designations is described and semantics of a number of standard values used in a NF-6 program complex is given. Main source data and results of neutron-physical reactor calculation are standard values, the peculiarities of FORTRAN and ALGOL-GDR algorithm languages in the DUBNA monitoring system were taken account of. As a base of standard values list the FIHAR system list, supplemented with new standard designations for integral reactor characteristics, is used. Developed is also a list of standard values to organize the exchange with external memory in the process of task solution and long-range storage

  1. Study of Phonon Dispersion Relations in Cuprous Oxide by Inelastic Neutron Scattering

    DEFF Research Database (Denmark)

    Beg, M. M.; Shapiro, S. M.

    1976-01-01

    Phonon dispersion relations in Cu2O have been studied at 20°C using inelastic neutron scattering. Seven acoustic branches and twelve optical branches have been studied in detail in the three symmetry directions [00ζ], [ζζ0], and [ζζζ] of the cubic lattice. Four of the six zone-center phonons have...... been observed and the assignments and energies are confirmed as Γ25=87±2 cm-1, Γ12′=105±3 cm-1, Γ15=146±1 cm-1, and Γ2′≈347 cm-1. The dispersion relations agree only qualitatively with the rigid-ion-model calculations. It is suggested that more detailed calculations may be performed in the light...

  2. Neutron activation analysis of bird bowls and related archaic ceramics from Miletus

    International Nuclear Information System (INIS)

    Kerschner, M.; Mommsen, H.; Beier, T.; Heimermann, D.; Hein, A.

    1993-01-01

    In this paper we present the results of a chemical investigation by neutron activation analysis of sherds of different kinds of bird kotylai, bird bowls and related wares excavated in Kalabaktepe, a hill of the ancient city of Miletus. A new archaeological classification of this well-known group of Archaic ceramics of eastern Greece is presented. A number of kiln wasters of misfired vessels from Kalabaktepe revealed a characteristic local pattern. This pattern helped to clarify the provenance of some of the bird bowls classified archaeologically as of orientalizing type: they have been made in Miletus. But bird kotylai and bird bowls in the ''standard fabric'' as well as other archaeologically related vessels show a different chemical pattern of unknown provenance. (author)

  3. Neutron activation analysis of bird bowls and related archaic ceramics from Miletus

    International Nuclear Information System (INIS)

    Kerschner, M.; Mommsen, H.; Beier, T.; Heimermann, D.; Hein, A.

    1993-01-01

    In this paper we present the results of a chemical investigation by neutron activation analysis of sherds of different kinds of bird kotylai, bird bowls and related wares excavated in Kalabaktepe, a hill of the ancient city of Miletus. A new archaeological classification of this well-known group of Archaic ceramics of eastern Greece is represented. A number of kiln wasters of misfired vessels from Kalabaktepe revealed a characteristic local pattern. This pattern helped to clarify the provenance of some of the bird bowls classified archaeologically as of orientalizing type: they have been made in Miletus. But bird kotylai and bird bowls in the 'standard fabric' as well as other archaeologically related vessels show a different chemical pattern of unknown provenance. (author)

  4. The Diversity of Neutron Stars

    Science.gov (United States)

    Kaplan, David L.

    2004-12-01

    Neutron stars are invaluable tools for exploring stellar death, the physics of ultra-dense matter, and the effects of extremely strong magnetic fields. The observed population of neutron stars is dominated by the >1000 radio pulsars, but there are distinct sub-populations that, while fewer in number, can have significant impact on our understanding of the issues mentioned above. These populations are the nearby, isolated neutron stars discovered by ROSAT, and the central compact objects in supernova remnants. The studies of both of these populations have been greatly accelerated in recent years through observations with the Chandra X-ray Observatory and the XMM-Newton telescope. First, we discuss radio, optical, and X-ray observations of the nearby neutron stars aimed at determining their relation to the Galactic neutron star population and at unraveling their complex physical processes by determining the basic astronomical parameters that define the population---distances, ages, and magnetic fields---the uncertainties in which limit any attempt to derive basic physical parameters for these objects. We conclude that these sources are 1e6 year-old cooling neutron stars with magnetic fields above 1e13 Gauss. Second, we describe the hollow supernova remnant problem: why many of the supernova remnants in the Galaxy have no indication of central neutron stars. We have undertaken an X-ray census of neutron stars in a volume-limited sample of Galactic supernova remnants, and from it conclude that either many supernovae do not produce neutron stars contrary to expectation, or that neutron stars can have a wide range in cooling behavior that makes many sources disappear from the X-ray sky.

  5. Research on neutron radiography in Research Reactor Institute, Kyoto University and activities related to it

    International Nuclear Information System (INIS)

    Fujine, Shigenori; Yoneda, Kenji

    1994-01-01

    The research on neutron radiography in Research Reactor Institute, Kyoto University was begun in 1974 using the E-2 experimental hole which was designed for neutron irradiation. It was reconstructed for the excellent performance as neutron radiography facility by fixing aluminum plugs, a collimator and so on. The research activities thereafter are briefly described. In 1989, the cold neutron facility was installed in the graphite thermal neutron facility, and the experiment on cold neutron radiography became feasible. The reactor in Kyoto University is of the thermal output of 5 MW, and is put to the joint utilization by universities and research institutes in whole Japan. The experimental items carried out so far are enumerated. At present, the main subjects of research are the development of the standard for establishing image evaluation method, the analysis of gas-liquid two-phase flow, the construction of the data base for the literatures and images of neutron radiography, the application of cold neutron radiography, the development of the imaging method using fast neutrons and so on. The thermal neutron radiography and the cold neutron radiography facilities of Kyoto University research reactor are described. The research and activities at Kyoto University research reactor and the investigation of problems are reported. (K.I.) 56 refs

  6. Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity

    International Nuclear Information System (INIS)

    Shibata, Masaru; Sekiguchi, Yu-ichirou

    2004-01-01

    Axisymmetric numerical simulations of rotating stellar core collapse to a neutron star are performed in the framework of full general relativity. The so-called Cartoon method, in which the Einstein field equations are solved in Cartesian coordinates and the axisymmetric condition is imposed around the y=0 plane, is adopted. The hydrodynamic equations are solved in cylindrical coordinates (on the y=0 plane in Cartesian coordinates) using a high-resolution shock-capturing scheme with maximum grid size (2500,2500). A parametric equation of state is adopted to model collapsing stellar cores and neutron stars following Dimmelmeier, Font, and Mueller. It is found that the evolution of the central density during the collapse, bounce, and formation of protoneutron stars agrees well with that in the work of Dimmelmeier, Font, and Mueller in which an approximate general relativistic formulation is adopted. This indicates that such an approximation is appropriate for following axisymmetric stellar core collapses and the subsequent formation of protoneutron stars. Gravitational waves are computed using a quadrupole formula. It is found that the waveforms are qualitatively in good agreement with those by Dimmelmeier, Font, and Mueller. However, quantitatively, two waveforms do not agree well. The possible reasons for the disagreement are discussed

  7. Workshop on polarized neutron filters and polarized pulsed neutron experiments

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2004-07-01

    The workshop was held in KEK by thirty-three participants on April 26, 2004. The polarized neutron filter method was only discussed. It consists of three parts; the first part was discussed on the polarized neutron methods, the second part on the polarized neutron experiments and the third on the pulse neutron spectrometer and polarized neutron experiments. The six papers were presented such as the polarized 3 He neutron spin filter, neutron polarization by proton polarized filter, soft master and neutron scattering, polarized neutron in solid physics, polarization experiments by chopper spectroscope and neutron polarization system in superHRPD. (S.Y.)

  8. T-violating effects in neutron physics and CP-violation in gauge models

    International Nuclear Information System (INIS)

    Herczeg, P.

    1987-01-01

    Discussed in this paper is the subject of T-violation in the transmission of polarized neutrons through polarized and oriented targets. Considered is the possible size of the T-violating effects both from a phenomenological point of view, and also in gauge models with CP-violation. A brief discussion of T-violating effects in β-decay is included

  9. Fast neutron breeder reactor Rapsodie - situation of physics, hydraulic, thermal and dynamics studies and studies of stability early in 1963

    International Nuclear Information System (INIS)

    1964-01-01

    Early in 1963, it was necessary to make a choice among the two fuels examined for Rapsodie: the UPuMo alloy with double cladding, Nb and stainless steel, and the UO 2 -PuO 2 mix oxide. This report presents the results of the studies effected with the two types of fuel. We reconsider at first the different models which have been studied and we give a detailed description of the alloy and oxide cores as they are envisaged early in 1963. We give then the most important physics performances of the two cores: neutron flux and spectrum, reactivity of the compensation find safety rods, neutrons balance, specific power, effective fraction of delayed neutrons, lifetime of the prompt neutrons, reactivity coefficient. We describe the hydraulic studies and experiments which have been done concerning the two cores. We discuss the criteria adopted as basis for the flow calculations. We give the results of pressure drop and sub-assembly lifting, force measurements, and vibration and pin flow distribution experiments. We discuss the constants utilized for the thermal calculations and we give the temperatures of sodium and alloy or oxide fuel, the temperature increases due to the hot points, and the limitation of the oxide fuel burn-up, originated by the pressure of the fission gases. We treat the hypotheses having been utilized for the dynamics calculations and we describe the different accidents which have been studied. We give the results of the calculations for every accident and each fuel, and we show fuel melting or sodium boiling can be avoided, even in case of the most pessimistic hypotheses, by modifying reactor characteristics (shim-rod reactivity or power of the reactor with only one cooling circuit). The reactor stability has been evaluated with the hypotheses utilized for the dynamics calculations, except of the Doppler coefficient which was intentionally increased. We show that the alloy and oxide cores are stable for every envisaged reactor power. (authors) [fr

  10. Hand-related physical function in rheumatic hand conditions

    DEFF Research Database (Denmark)

    Klokker, Louise; Terwee, Caroline; Wæhrens, Eva Elisabet Ejlersen

    2016-01-01

    INTRODUCTION: There is no consensus about what constitutes the most appropriate patient-reported outcome measurement (PROM) instrument for measuring physical function in patients with rheumatic hand conditions. Existing instruments lack psychometric testing and vary in feasibility...... and their psychometric qualities. We aim to develop a PROM instrument to assess hand-related physical function in rheumatic hand conditions. METHODS AND ANALYSIS: We will perform a systematic search to identify existing PROMs to rheumatic hand conditions, and select items relevant for hand-related physical function...... as well as those items from the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function (PF) item bank that are relevant to patients with rheumatic hand conditions. Selection will be based on consensus among reviewers. Content validity of selected items will be established...

  11. Hand-related physical function in rheumatic hand conditions

    DEFF Research Database (Denmark)

    Klokker, Louise; Terwee, Caroline B; Wæhrens, Eva Ejlersen

    2016-01-01

    as well as those items from the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function (PF) item bank that are relevant to patients with rheumatic hand conditions. Selection will be based on consensus among reviewers. Content validity of selected items will be established......INTRODUCTION: There is no consensus about what constitutes the most appropriate patient-reported outcome measurement (PROM) instrument for measuring physical function in patients with rheumatic hand conditions. Existing instruments lack psychometric testing and vary in feasibility...... and their psychometric qualities. We aim to develop a PROM instrument to assess hand-related physical function in rheumatic hand conditions. METHODS AND ANALYSIS: We will perform a systematic search to identify existing PROMs to rheumatic hand conditions, and select items relevant for hand-related physical function...

  12. Neutron emission from TFTR supershots

    International Nuclear Information System (INIS)

    Strachan, J.D.; Bell, M.G.; Bitter, M.; Budny, R.; Hawryluk, R.; Hill, K.W.; Hsuan, H.; Jassby, D.L.; Johnson, L.C.; LeBlanc, B.; Mansfield, D.; Meade, D.; Mikkelsen, D.R.; Mueller, D.; Park, H.; Ramsey, A.; Scott, S.; Synakowski, E.; Taylor, G.; Marmer, E.; Snipes, J.; Terry, J.

    1992-10-01

    Empirical scaling relations are deduced describing the neutron emission from TFTR supershots using a data base that includes all of the supershot plasmas (525) from the 1990 campaign. A physics-based scaling for the neutron emission is derived from the dependence of the central plasma parameters on machine settings and the energy confinement time. This scaling has been used to project the fusion rate for equivalent DT plasmas in TFTR, and to explore machine operation space which optimizes the fusion rate. Increases in neutron emission are possible by either increasing the toroidal magnetic field or further improving the limiter conditioning

  13. Quantitative neutron radiography using neutron absorbing honeycomb

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.

    1993-01-01

    This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)

  14. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Kim, Myung Hyun

    2014-01-01

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM

  15. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tariq Siddique, M.; Kim, Myung Hyun [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-05-15

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM.

  16. A physical design of extracting/accelerating system for a neutron tube with yields of 1.5 X 1010 n/s

    International Nuclear Information System (INIS)

    Li Wenjie; Li Zhongmin; Dong Aiping; Tian Shengjun

    2000-01-01

    A new screened type of extracting/accelerating system that accelerates ion beam up to 1.1 mA and 180 kV based on the requirements of high-yield neutron tube is described. The optimization of structure has been realized and a neutron yield of more than 1.5 x 10 10 n/s has reached. The long-term practices prove this physical design is rational and lays a foundation for developing neutron tubes with still higher yield

  17. Teaching Physics for Conceptual Understanding Exemplified for Einstein's Special Relativity

    Science.gov (United States)

    Undreiu, Lucian M.

    2006-12-01

    In most liberal arts colleges the prerequisites for College Physics, Introductory or Calculus based, are strictly related to Mathematics. As a state of fact, the majorities of the students perceive Physics as a conglomerate of mathematical equations, a collection of facts to be memorized and they regard Physics as one of the most difficult subjects. A change of this attitude towards Physics, and Science in general, is intrinsically connected with the promotion of conceptual understanding and stimulation of critical thinking. In such an environment, the educators are facilitators, rather than the source of knowledge. One good way of doing this is to challenge the students to think about what they see around them and to connect physics with the real world. Motivation occurs when students realize that what was learned is interesting and relevant. Visual teaching aids such as educational videos or computer simulations, as well as computer-assisted experiments, can greatly enhance the effectiveness of a science lecture or laboratory. Difficult topics can be discussed through animated analogies. Special Relativity is recognized as a challenging topic and is probably one of the most misunderstood theories of Physics. While understanding Special Relativity requires a detachment from ordinary perception and every day life notions, animated analogies can prove to be very successful in making difficult topics accessible.

  18. Discovery of the neutron (to the fiftieth anniversary of neutron discovery)

    International Nuclear Information System (INIS)

    Pasechnik, M.V.

    1984-01-01

    Development of neutron physics in the USSR for the recent 50 years from the moment of neutron discovery is considered. History of neutron discovery is presented in brief. Neutron properties and fundamental problems of physics: electric dipole neutron moment, neutron β-decay, neutron interaction with nuclei and potential of nucleon interaction not conserving spatial parity are discussed. Main aspects of neutron physics application in power engineering, nuclear technology and other branches of science and technique are set forth

  19. Neutron transport

    International Nuclear Information System (INIS)

    Berthoud, Georges; Ducros, Gerard; Feron, Damien; Guerin, Yannick; Latge, Christian; Limoge, Yves; Santarini, Gerard; Seiler, Jean-Marie; Vernaz, Etienne; Coste-Delclaux, Mireille; M'Backe Diop, Cheikh; Nicolas, Anne; Andrieux, Catherine; Archier, Pascal; Baudron, Anne-Marie; Bernard, David; Biaise, Patrick; Blanc-Tranchant, Patrick; Bonin, Bernard; Bouland, Olivier; Bourganel, Stephane; Calvin, Christophe; Chiron, Maurice; Damian, Frederic; Dumonteil, Eric; Fausser, Clement; Fougeras, Philippe; Gabriel, Franck; Gagnier, Emmanuel; Gallo, Daniele; Hudelot, Jean-Pascal; Hugot, Francois-Xavier; Dat Huynh, Tan; Jouanne, Cedric; Lautard, Jean-Jacques; Laye, Frederic; Lee, Yi-Kang; Lenain, Richard; Leray, Sylvie; Litaize, Olivier; Magnaud, Christine; Malvagi, Fausto; Mijuin, Dominique; Mounier, Claude; Naury, Sylvie; Nicolas, Anne; Noguere, Gilles; Palau, Jean-Marc; Le Pallec, Jean-Charles; Peneliau, Yannick; Petit, Odile; Poinot-Salanon, Christine; Raepsaet, Xavier; Reuss, Paul; Richebois, Edwige; Roque, Benedicte; Royer, Eric; Saint-Jean, Cyrille de; Santamarina, Alain; Serot, Olivier; Soldevila, Michel; Tommasi, Jean; Trama, Jean-Christophe; Tsilanizara, Aime; Behar, Christophe; Provitina, Olivier; Lecomte, Michael; Forestier, Alain; Bender, Alexandra; Parisot, Jean-Francois; Finot, Pierre

    2013-10-01

    This bibliographical note presents a reference book which addresses the study of neutron transport in matter, the study of conditions for a chain reaction and the study of modifications of matter composition due to nuclear reactions. This book presents the main nuclear data, their measurement, assessment and processing, and the spallation. It proposes an overview of methods applied for the study of neutron transport: basic equations and their derived forms, deterministic methods and Monte Carlo method of resolution of the Boltzmann equation, methods of resolution of generalized Bateman equations, methods of time resolution of space kinetics coupled equations. It presents the main calculation codes, discusses the qualification and experimental aspects, and gives an overview of neutron transport applications: neutron transport calculation of reactors, neutron transport coupled with other disciplines, physics of fuel cycle, criticality

  20. Gravitational wave content and stability of uniformly, rotating, triaxial neutron stars in general relativity.

    Science.gov (United States)

    Tsokaros, Antonios; Ruiz, Milton; Paschalidis, Vasileios; Shapiro, Stuart L; Baiotti, Luca; Uryū, Kōji

    2017-06-15

    Targets for ground-based gravitational wave interferometers include continuous, quasiperiodic sources of gravitational radiation, such as isolated, spinning neutron stars. In this work, we perform evolution simulations of uniformly rotating, triaxially deformed stars, the compressible analogs in general relativity of incompressible, Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave emission. We employ five models, both normal and supramassive, and track their evolution with different grid setups and resolutions, as well as with two different evolution codes. We find that all models are dynamically stable and produce a strain that is approximately one-tenth the average value of a merging binary system. We track their secular evolution and find that all our stars evolve toward axisymmetry, maintaining their uniform rotation, rotational kinetic energy, and angular momentum profiles while losing their triaxiality.

  1. Neutron imaging methods for the investigation of energy related materials. Fuel cells, battery, hydrogen storage and nuclear fuel

    Science.gov (United States)

    Lehmann, Eberhard H.; Boillat, Pierre; Kaestner, Anders; Vontobel, Peter; Mannes, David

    2015-10-01

    After a short explanation of the state-of-the-art in the field of neutron imaging we give some examples how energy related materials can be studied successfully. These are in particular fuel cell studies, battery research approaches, the storage of hydrogen, but also some investigations with nuclear fuel components. The high contrast for light isotopes like H-1, Li-6 or B-10 are used to trace low amounts of material even within compact sealing of metals which are relatively transparent for neutrons at the same time.

  2. Improvement of Modeling HTGR Neutron Physics by Uncertainty Analysis with the Use of Cross-Section Covariance Information

    Science.gov (United States)

    Boyarinov, V. F.; Grol, A. V.; Fomichenko, P. A.; Ternovykh, M. Yu

    2017-01-01

    This work is aimed at improvement of HTGR neutron physics design calculations by application of uncertainty analysis with the use of cross-section covariance information. Methodology and codes for preparation of multigroup libraries of covariance information for individual isotopes from the basic 44-group library of SCALE-6 code system were developed. A 69-group library of covariance information in a special format for main isotopes and elements typical for high temperature gas cooled reactors (HTGR) was generated. This library can be used for estimation of uncertainties, associated with nuclear data, in analysis of HTGR neutron physics with design codes. As an example, calculations of one-group cross-section uncertainties for fission and capture reactions for main isotopes of the MHTGR-350 benchmark, as well as uncertainties of the multiplication factor (k∞) for the MHTGR-350 fuel compact cell model and fuel block model were performed. These uncertainties were estimated by the developed technology with the use of WIMS-D code and modules of SCALE-6 code system, namely, by TSUNAMI, KENO-VI and SAMS. Eight most important reactions on isotopes for MHTGR-350 benchmark were identified, namely: 10B(capt), 238U(n,γ), ν5, 235U(n,γ), 238U(el), natC(el), 235U(fiss)-235U(n,γ), 235U(fiss).

  3. Students’ Gender-Related Choices and Achievement in Physics

    Directory of Open Access Journals (Sweden)

    Ivana Jugović

    2017-06-01

    Full Text Available The goal of the research was to explore the role of motivation, gender roles and stereotypes in the explanation of students’ educational outcomes in a stereotypically male educational domain: physics. Eccles and colleagues’ expectancy-value model was used as a theoretical framework for the research. The research sample included 736 grammar school students from Zagreb, Croatia. The variables explored were expectancy of success, selfconcept of ability and subjective task values of physics, gender roles and stereotypes, and educational outcomes: academic achievement in physics, intention to choose physics at the high school leaving exam, and intention to choose a technical sciences university course. The results showed that girls had a lower self-concept of ability and lower expectancies of success in physics compared to boys, in spite of their higher physics school grades. Hierarchical regression analyses showed that self-concept of physics ability was the strongest predictor of physics school grades, whereas the utility value of physics was the key predictor of educational intentions for both genders. Expectancy of success was one of the key predictors of girls’ educational intentions, as well. Endorsement of a typically masculine gender role predicted girls’ and boys’ stronger intentions to choose a stereotypically male educational domain, whereas acceptance of the stereotype about the poorer talent of women in technical sciences occupations predicted girls’ lower educational outcomes related to physics. The practical implication of the research is the need to create gender-sensitive intervention programmes aimed at deconstructing the gender stereotypes and traditional gender roles that restrain students from choosing gender-non-stereotypical careers.

  4. Analysis of relation between the mutation frequencies and somatic recombination induced by neutrons and the age of D. Melanogaster larvae

    International Nuclear Information System (INIS)

    Guzman R, J.; Zambrano A, F.; Paredes G, L.; Delfin L, A.; Quiroz R, C.

    1998-01-01

    Neutrons are subatomic particles with neutral electric charge, equal zero, which are emitted during the fissile material fission in nuclear reactors. It is known a little about biological effects induced by neutrons. There is a world interest in the use of reactors and accelerators for patients radiotherapy using neutrons with the purpose to destroy malignant cells of deep tumours where traditional methods have not given satisfactory results. There for it is required to do wide studies of biological effects of neutrons as well as their dosimetry. It was used the Smart test (Somatic Mutation and Recombination Test) of D. Melanogaster for quantifying the mutation induction and somatic recombination induced by neutrons of the National Institute of Nuclear Research reactor, at power of 300 and 1000 k W, with equivalent doses calculated 95.14 and 190.2 Sv for 300 k W and of 25.64 and 51.29 Sv for 1000 k W, using larvae with 72 or 96 hours aged. It was observed a linear relation between equivalent dose and genetic effects frequency, these last were greater when the reactor power was 1000 k W than those 300 k W. It was observed too that the damage was greater in 96 hours larvae than those 72 hours. The stain size presented an inverse relation with respect to larvae age. It is concluded that the Smart system is sensitive to neutrons effect and it responds of a directly proportional form to radiation dose, as well as to dose rate. It is noted more the effect when are used larvas in pre pupa stage where the irradiation target (imagal cells) is greater. The Smart is sensitive to damage induced by neutrons , thus can be used to studying its direct biological effects or by the use of chemical modulators. (Author)

  5. Neutron-physical characteristics of the TVRM-100 reactor with ten ring fuel channels

    International Nuclear Information System (INIS)

    Mikhajlov, V.M.; Myrtsymova, L.A.

    1988-01-01

    Three-dimensional heterogeneous calculations of TVRM-100 reactor which is a research reactor using enriched fuel with heavy-water moderator, coolant and reflector, are conducted. Achievable burnup depths depending on the number of removable FAs are presented. The maximum non-perturbed thermal neutron flux in the reflector is (2-1.8)x10 15 cm -2 c -1 ; mean flux on the fuel is 2.9x10 14 cm -2 c -1 . Energy release radial non-uniformity is 0.67, maximum bending by FA is ∼3.7. Reactivity temperature effect is negative and is equal to - 0.9x10 -4 grad -1 without accounting for experimental channels. Control rod efficiency in the radial reflector is high, but their location dose to experimental devices in the high neutron flux area is undesirable. 4 refs.; 5 figs

  6. Neutron source

    International Nuclear Information System (INIS)

    Cason, J.L. Jr.; Shaw, C.B.

    1975-01-01

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap

  7. BRAND program complex for neutron-physical experiment simulation by the Monte-Carlo method

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.

    1984-01-01

    Possibilities of the BRAND program complex for neutron and γ-radiation transport simulation by the Monte-Carlo method are described in short. The complex includes the following modules: geometric module, source module, detector module, modules of simulation of a vector of particle motion direction after interaction and a free path. The complex is written in the FORTRAN langauage and realized by the BESM-6 computer

  8. Mathematical methods for students of physics and related fields

    CERN Document Server

    Hassani, Sadri

    2000-01-01

    Intended to follow the usual introductory physics courses, this book has the unique feature of addressing the mathematical needs of sophomores and juniors in physics, engineering and other related fields Many original, lucid, and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts help guide the student through the material Beginning with reviews of vector algebra and differential and integral calculus, the book continues with infinite series, vector analysis, complex algebra and analysis, ordinary and partial differential equations Discussions of numerical analysis, nonlinear dynamics and chaos, and the Dirac delta function provide an introduction to modern topics in mathematical physics This new edition has been made more user-friendly through organization into convenient, shorter chapters Also, it includes an entirely new section on Probability and plenty of new material on tensors and integral transforms Some praise for the previous edi...

  9. Mathematical Methods For Students of Physics and Related Fields

    CERN Document Server

    Hassani, Sadri

    2009-01-01

    Intended to follow the usual introductory physics courses, this book has the unique feature of addressing the mathematical needs of sophomores and juniors in physics, engineering and other related fields. Many original, lucid, and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts help guide the student through the material. Beginning with reviews of vector algebra and differential and integral calculus, the book continues with infinite series, vector analysis, complex algebra and analysis, ordinary and partial differential equations. Discussions of numerical analysis, nonlinear dynamics and chaos, and the Dirac delta function provide an introduction to modern topics in mathematical physics. This new edition has been made more user-friendly through organization into convenient, shorter chapters. Also, it includes an entirely new section on Probability and plenty of new material on tensors and integral transforms. Some praise for the previo...

  10. EL2-related defects in neutron irradiated GaAs1/sub -x/P/sub x/ alloys

    International Nuclear Information System (INIS)

    Munoz, E.; Garcia, F.; Jimenez, B.; Calleja, E.; Gomez, A.; Alcober, V.

    1985-01-01

    The generation of EL2-related defects in GaAsP alloys by fast neutron irradiation has been studied through deep level transient spectroscopy and photocapacitance techniques. After irradiation p-n junctions were not annealed at high temperatures. In the composition range x>0.4, fast neutrons generate a broad center at E/sub c/-0.7 eV that it is suggested to belong to the EL2 family. The presence of photocapacitance quenching effects has been taken as a preliminary fingerprint to make the above assignment. From computer analysis of the nonexponential transient capacitance waveforms, evidence that neutron irradiation creates a family of midgap levels, EL2-related, is found

  11. Calibration, checking and physical corrections for a new dual-spaced neutron porosity tool

    International Nuclear Information System (INIS)

    Smith, M.P.

    1986-01-01

    A new dual-spaced neutron tool has been developed that features high count rates and improved statistical precision and log repeatability. Environmental corrections including borehole diameter, standoff, and lithology are at acceptable levels for DSN-II. The effects of varying source-to-detector spacings and shielding are summarized. Porosity measurement resolution and statistical precision are discussed and it is indicated how tradeoffs between higher count rates and increased environmental corrections must be considered. The absolute calibration of a standard tool is based on its response to limestone test pits, field data, and theoretical calculations. Test data for actual manufactured tools are presented. Shop calibration and wellsite check procedures are discussed. The advantages of multiposition check operations are explained, including reduced sensitivity to check block positioning and external environment. An analysis is presented of errors from tool manufacturing, calibration, and check procedures. A generalized theory of neutron scattering and absorption has been developed to correct dual-spaced neutron logs for unusual minerals and fluids

  12. The relative biological effectiveness of a high energy neutron beam for micronuclei induction in T-lymphocytes of different individuals

    Energy Technology Data Exchange (ETDEWEB)

    Slabbert, J.P., E-mail: jps@tlabs.ac.z [NRF iThemba LABS (Laboratory for Accelerated Based Sciences), Somerset West (South Africa); Dept. of Medical Imaging and Clinical Oncology, University of Stellenbosch (South Africa); August, L. [NRF iThemba LABS (Laboratory for Accelerated Based Sciences), Somerset West (South Africa); Vral, A. [Dept. of Basic Medical Sciences, Ghent University (Belgium); Symons, J. [NRF iThemba LABS (Laboratory for Accelerated Based Sciences), Somerset West (South Africa)

    2010-12-15

    In assessing the radiation risk of personnel exposed to cosmic radiation fields as it pertains to radiological damage during travel in civilian aircrafts, it is particularly important to know the relative biological effectiveness (RBE) for high energy neutrons. It has been the subject of numerous investigations in recent years using different neutron energies and cytogenetic examinations. Variations in the radiosensitivity of white blood cells for different individuals are likely to influence the estimate of the relative biological effectiveness for high energy neutrons. This as such observations have been noted in the response of different cancer cell lines with varying inherent sensitivities. In this work the radiosensitivities of T-lymphocytes of different individuals to the p(66)/Be neutron beam at iThemba LABS were measured using micronuclei formations and compared to that noted following exposure to {sup 60}Co {gamma}-rays. The principle objective of this investigation was to establish if a relationship between neutron RBE and variation in biological response to {sup 60}Co {gamma}-rays for lymphocytes from different individuals could be determined. Peripheral blood samples were collected from four healthy donors and isolated lymphocytes were exposed to different doses of {sup 60}Co {gamma}-rays (1-5 Gy) and p(66)/Be neutrons (0.5-2.5 Gy). One sample per donor was not exposed to radiation and served as a control. Lymphocytes were stimulated using PHA and cultured to induce micronuclei in cytokinesis-blocked cells. Micronuclei yields were numerated using fluorescent microscopy. Radiosensitivities and RBE values were calculated from the fitted parameters describing the micronuclei frequency dose response data. Dissimilar dose response curves for different donors were observed reflecting varying inherent sensitivities to both neutron and gamma radiation. A clear reduction in the dose limiting RBE{sub M} is noted for donors with lymphocytes more sensitive to

  13. [Physical activity diminishes aging-related decline of physical and cognitive performance].

    Science.gov (United States)

    Apor, Péter; Babai, László

    2014-05-25

    Aging-related decline of muscle force, walking speed, locomotor coordination, aerobic capacity and endurance exert prognostic impact on life expectancy. Proper use of training may diminish the aging process and it may improve the quality of life of elderly persons. This paper provides a brief summary on the impact of training on aging-related decline of physical and cognitive functions.

  14. Dispersal from deep ocean sources: physical and related scientific processes

    International Nuclear Information System (INIS)

    Robinson, A.R.; Kupferman, S.L.

    1985-02-01

    This report presents the results of the workshop ''Dispersal from Deep Ocean Sources: Physical and Related Scientific Processes,'' together with subsequent developments and syntheses of the material discussed there. The project was undertaken to develop usable predictive descriptions of dispersal from deep oceanic sources. Relatively simple theoretical models embodying modern ocean physics were applied, and observational and experimental data bases were exploited. All known physical processes relevant to the dispersal of passive, conservative tracers were discussed, and contact points for inclusion of nonconservative processes (biological and chemical) were identified. Numerical estimates of the amplitude, space, and time scales of dispersion were made for various mechanisms that control the evolution of the dispersal as the material spreads from a bottom point source to small-, meso-, and world-ocean scales. Recommendations for additional work are given. The volume is presented as a handbook of dispersion processes. It is intended to be updated as new results become available

  15. Physical Activity and Smoking Habits in Relation to Weight Status ...

    African Journals Online (AJOL)

    Purpose: Understanding factors that impact overweight or obesity is an essential step towards formulating programs to prevent or control obesity in young adults. Thus, we aim to assess the prevalence of physical activity and smoking habits in relation to weight status among a sample of university students. Methods: A ...

  16. Health-related fitness, body composition and physical activity status ...

    African Journals Online (AJOL)

    Physical inactivity (PI) is found to be a major contributor to the high incidence of overweight and obesity among children and adolescents. As such, PI was significantly related to risk factors of cardiovascular disease. Studies especially in the 14-years in adolescents' learners are sparse. The purpose of this study was to ...

  17. Dose-response relation between physical activity and sick leave

    NARCIS (Netherlands)

    Proper, K.I.; Heuvel, S.G. van den; Vroome, E.M. de; Hildebrandt, V.H.; Beek, A.J. van der

    2006-01-01

    Objective: To investigate the dose-response relation between moderate and vigorous physical activity and sick leave in a working population. Methods: Data were used from three large Dutch databases: two continuous, cross sectional surveys among a representative sample of the Dutch population and one

  18. Physical properties of peats as related to degree of decomposition

    Science.gov (United States)

    D.H. Boelter

    1969-01-01

    Important physical characteristics, such as water retention, water yield coefficient, and hydraulic conductivity, vary greatly for representative northern Minnesota peat materials. The differences are related to the degree of decomposition, which largely determines the porosity and pore size distribution. Fiber content (> 0.1 mm) and bulk density are properties...

  19. Dobinski-type relations: some properties and physical applications

    International Nuclear Information System (INIS)

    Blasiak, P; Horzela, A; Penson, K A; Solomon, A I

    2006-01-01

    We introduce a generalization of the Dobinski relation through which we define a family of Bell-type numbers and polynomials. For all these sequences, we find the weight function of the moment problem and give their generating functions. We provide a physical motivation of this extension in the context of the boson normal ordering problem and its relation to an extension of the Kerr Hamiltonian

  20. Neutron diffraction for studying the influence of the relative humidity on the carbonation process of cement pastes

    International Nuclear Information System (INIS)

    Galan, I; Andrade, C; Castellote, M; Rebolledo, N; Sanchez, J; Toro, L; Puente, I; Campo, J; Fabelo, O

    2011-01-01

    The effect of humidity on hydrated cement carbonation has been studied by means of in-situ neutron diffraction measurements. The evolution of the main crystalline phases in the bulk of the sample, portlandite and calcite, has been monitored during the process. Data obtained from neutron diffraction allow the quantification of the phases involved. The results highlight the great influence of humidity on carbonation. At very low humidity there are almost no changes. Between 53 and 75% relative humidity, portlandite decrease and calcite increase data can be fitted to exponential decay functions. At very high humidity portlandite remains nearly constant while calcite increases slightly with time, almost linearly.

  1. Calculations of the relative effectiveness of alanine for neutrons with energies up to 17.1 MeV

    International Nuclear Information System (INIS)

    Gerstenberg, H.M.; Coyne, J.J.

    1990-01-01

    The relative effectiveness (RE) of alanine has been calculated for neutrons using the RE of alanine for charged particles. The neutrons interact with one or more of the elements (hydrogen, carbon, nitrogen and oxygen) that compose the alanine. These interactions produce spectra of secondary charged particles consisting of ions of H, D, He, Be, B, C, N and O. From a combination of the calculated secondary charged particle spectra generated by the slowing down neutrons, and the calculated RE of the ions produced, a RE for the neutrons can be obtained. In addition, lineal energy spectra were determined for neutrons with energies up to 17.1 MeV interacting with alanine. An analytical code was used to calculate these spectra for a 1 μm diameter alanine cell surrounded by an alanine medium. For comparison, similar calculations were made for muscle tissue. Finally, the calculated differential RE was folded with dose distributions to obtain RE-weighted distributions for alanine. (author)

  2. Nuclear data physics issues in Monte Carlo simulations of neutron and photon transport in the Indian context

    International Nuclear Information System (INIS)

    Ganesan, S.

    2009-01-01

    In this write-up, some of the basic issues of nuclear data physics in Monte Carlo simulation of neutron transport in the Indian context are dealt with. In this lecture, some of the aspects associated with usage of the ENDF/B system, and of the PREPRO code system developed by D.E. Cullen and distributed by the IAEA Nuclear Data Section are briefly touched upon. Some aspects of the SIGACE code system which was developed by the author in collaboration with IPR, Ahmedabad and the IAEA Nuclear Data Section are also briefly covered. The validation of the SIGACE package included investigations using the NJOY and the MCNP compatible ACE files. Appendix-1 of the paper provides some useful discussions pointing out that voluminous and high-quality nuclear physics data required for nuclear applications usually evolve from a national effort to provide state-of-the-art data that are based upon established needs and uncertainties. Appendix-2 deals with some interesting work that was carried out using the SIGACE Code for Generating High Temperature ACE Files. Appendix-3 mentions briefly Integral nuclear data validation studies and use of Monte Carlo codes and nuclear data. Appendix-4 provides a brief summary report on selected Indian nuclear data physics activities for the interested reader in the light of BARC/DAE treating the subject area of nuclear data physics as a thrust area in our atomic energy programme

  3. Establishing an Information Security System related to Physical Protection

    International Nuclear Information System (INIS)

    Jang, Sung Soon; Yoo, Ho Sik

    2009-01-01

    A physical protection system (PPS) integrates people, procedures and equipment for the protection of assets or facilities against theft, sabotage or other malevolent attacks. In the physical protection field, it is important the maintain confidentiality of PPS related information, such as the alarm system layout, detailed maps of buildings, and guard schedules. In this abstract, we suggest establishing a methodology for an information security system. The first step in this methodology is to determine the information to protect and possible adversaries. Next, system designers should draw all possible paths to the information and arrange appropriate protection elements. Finally he/she should analyze and upgrade their information security system

  4. Televised relational and physical aggression and children's hostile intent attributions.

    Science.gov (United States)

    Martins, Nicole

    2013-12-01

    An experiment was conducted with 150 children (mean age=10.1years) in third to fifth grades to test whether exposure to different forms of aggression in the media affected hostile attributional biases in response to different forms of provocation scenarios. Children were randomly assigned to watch a clip containing physical aggression, relational aggression, or no aggression. After exposure, children were asked to respond to a series of written provocation scenarios where a character caused some form of harm (instrumental or relational) to a target person, but the intent of the provocateur was ambiguous. Results revealed that exposure to relationally aggressive portrayals resulted in a hostile attributional bias in response to relational scenarios, whereas exposure to portrayals of physical aggression was associated with a hostile attributional bias in response to instrumental scenarios. Moreover, these biases were shown to be specific to the exposure condition (physical or relational) and not simply associated with exposure to aggression in general. The findings are discussed in terms of the general aggression model and children's social information processing. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Relative measurements of fast neutron contamination in 18-MV photon beams from two linear accelerators and a betatron

    International Nuclear Information System (INIS)

    Gur, D.; Bukovitz, A.G.; Rosen, J.C.; Holmes, B.G.

    1979-01-01

    Fast neutron contamination in photon beams in the 20 MV range have been reported in recent years. In order to determine if the variations were due mainly to differences in measurement procedures, or inherent in the design of the accelerators, three different 18-MV (BJR) photon beams were compared using identical analytical techniques. The units studied were a Philips SL/75-20 and a Siemens Mevatron-20 linear accelerators and a Schimadzu betatron. Gamma spectroscopy of an activated aluminum foil was the method used. By comparing the relative amounts of neutron contamination, errors associated with absolute measurements such as detector efficiency and differences in activation foils were eliminated. Fast neutron contaminations per rad of x rays in a ratio of 6.7:3.7:1 were found for the Philips, Schimadzu and Siemens accelerators, respectively

  6. The relative biological effectiveness of fractionated doses of fast neutrons (42 MeVd→Be) for normal tissues. Pt. 3

    International Nuclear Information System (INIS)

    Rezvani, M.; Hopewell, J.W.; Robbins, M.E.C.; Hamlet, R.; Barnes, D.W.H.; Sansom, J.M.; Adams, P.J.V.

    1990-01-01

    The effect of single and fractionated doses of fast neutrons (42 MeV d→Bc ) on the early and late radiation responses of the pig lung have been assessed by the measurement of changes in lung function using a 133 Xe washout technique. The results obtained for irradiation schedules with fast neutrons have been compared with those after photon irradiation. There was no statistically significant difference between the values for the relative biological effectiveness (RBE) for the early and late radiation response of the lung. The RBE of the neutron beam increased with decreasing size of dose/fraction with an upper limit value of 4.39 ± 0.94 for infinitely small X-ray doses per fraction. (author)

  7. Neutron activation analysis of archaeological artifacts using the conventional relative method: a realistic approach for analysis of large samples

    International Nuclear Information System (INIS)

    Bedregal, P.S.; Mendoza, A.; Montoya, E.H.; Cohen, I.M.; Universidad Tecnologica Nacional, Buenos Aires; Oscar Baltuano

    2012-01-01

    A new approach for analysis of entire potsherds of archaeological interest by INAA, using the conventional relative method, is described. The analytical method proposed involves, primarily, the preparation of replicates of the original archaeological pottery, with well known chemical composition (standard), destined to be irradiated simultaneously, in a well thermalized external neutron beam of the RP-10 reactor, with the original object (sample). The basic advantage of this proposal is to avoid the need of performing complicated effect corrections when dealing with large samples, due to neutron self shielding, neutron self-thermalization and gamma ray attenuation. In addition, and in contrast with the other methods, the main advantages are the possibility of evaluating the uncertainty of the results and, fundamentally, validating the overall methodology. (author)

  8. Physical relativity. Space-time structure from a dynamical perspective

    Science.gov (United States)

    Brown, Harvey R.

    Physical Relativity explores the nature of the distinction at the heart of Einstein's 1905 formulation of his special theory of relativity: that between kinematics and dynamics. Einstein himself became increasingly uncomfortable with this distinction, and with the limitations of what he called the 'principle theory' approach inspired by the logic of thermodynamics. A handful of physicists and philosophers have over the last century likewise expressed doubts about Einstein's treatment of the relativistic behaviour of rigid bodies and clocks in motion in the kinematical part of his great paper, and suggested that the dynamical understanding of length contraction and time dilation intimated by the immediate precursors of Einstein is more fundamental. Harvey Brown both examines and extends these arguments (which support a more 'constructive' approach to relativistic effects in Einstein's terminology), after giving a careful analysis of key features of the pre-history of relativity theory. He argues furthermore that the geometrization of the theory by Minkowski in 1908 brought illumination, but not a causal explanation of relativistic effects. Finally, Brown tries to show that the dynamical interpretation of special relativity defended in the book is consistent with the role this theory must play as a limiting case of Einstein's 1915 theory of gravity: the general theory of relativity. Appearing in the centennial year of Einstein's celebrated paper on special relativity, Physical Relativity is an unusual, critical examination of the way Einstein formulated his theory. It also examines in detail certain specific historical and conceptual issues that have long given rise to debate in both special and general relativity theory, such as the conventionality of simultaneity, the principle of general covariance, and the consistency or otherwise of the special theory with quantum mechanics. Harvey Brown's new interpretation of relativity theory will interest anyone working on

  9. School Bullying Among US Adolescents: Physical, Verbal, Relational and Cyber

    Science.gov (United States)

    Wang, Jing; Iannotti, Ronald J.; Nansel, Tonja R.

    2009-01-01

    Purpose Four forms of school bullying behaviors among US adolescents and their association with socio-demographic characteristics, parental support and friends were examined. Methods Data were obtained from the Health Behavior in School-Aged Children (HBSC) 2005 Survey, a nationally-representative sample of grades 6 to 10 (N = 7182). The Olweus Bully/Victim Questionnaire was used to measure physical, verbal and relational forms of bullying. Two items were added using the same format to measure cyber bullying. For each form, four categories were created: bully, victim, bully-victim, and not involved. Multinomial logistic regressions were applied, with socio-demographic variables, parental support and number of friends as predictors. Results Prevalence rates of having bullied others or having been bullied at school for at least once in the last 2 months were 20.8% physically, 53.6% verbally, 51.4% socially or 13.6% electronically. Boys were more involved in physical or verbal bullying, while girls were more involved in relational bullying. Boys were more likely to be cyber bullies, while girls were more likely to be cyber victims. African-American adolescents were involved in more bullying (physical, verbal or cyber) but less victimization (verbal or relational). Higher parental support was associated with less involvement across all forms and classifications of bullying. Having more friends was associated with more bullying and less victimization for physical, verbal and relational forms, but was not associated with cyber bullying. Conclusions Parental support may protect adolescents from all four forms of bullying. Friends associate differentially with traditional and cyber bullying. Results indicate that cyber bullying has a distinct nature from traditional bullying. PMID:19766941

  10. Evidence for consciousness-related anomalies in random physical systems

    Science.gov (United States)

    Radin, Dean I.; Nelson, Roger D.

    1989-12-01

    Speculations about the role of consciousness in physical systems are frequently observed in the literature concerned with the interpretation of quantum mechanics. While only three experimental investigations can be found on this topic in physics journals, more than 800 relevant experiments have been reported in the literature of parapsychology. A well-defined body of empirical evidence from this domain was reviewed using meta-analytic techniques to assess methodological quality and overall effect size. Results showed effects conforming to chance expectation in control conditions and unequivocal non-chance effects in experimental conditions. This quantitative literature review agrees with the findings of two earlier reviews, suggesting the existence of some form of consciousness-related anomaly in random physical systems.

  11. EPRI-LATTICE: a multigroup neutron transport code for light water reactor lattice physics calculations

    International Nuclear Information System (INIS)

    Jones, D.B.

    1986-01-01

    EPRI-LATTICE is a multigroup neutron transport computer code for the analysis of light water reactor fuel assemblies. It can solve the two-dimensional neutron transport problem by two distinct methods: (a) the method of collision probabilities and (b) the method of discrete ordinates. The code was developed by S. Levy Inc. as an account of work sponsored by the Electric Power Research Institute (EPRI). The collision probabilities calculation in EPRI-LATTICE (L-CP) is based on the same methodology that exists in the lattice codes CPM-2 and EPRI-CPM. Certain extensions have been made to the data representations of the CPM programs to improve the overall accuracy of the calculation. The important extensions include unique representations of scattering matrices and fission fractions (chi) for each composition in the problem. A new capability specifically developed for the EPRI-LATTICE code is a discrete ordinates methodology. The discrete ordinates calculation in EPRI-LATTICE (L-SN) is based on the discrete S/sub n/ methodology that exists in the TWODANT program. In contrast to TWODANT, which utilizes synthetic diffusion acceleration and supports multiple geometries, only the transport equations are solved by L-SN and only the data representations for the two-dimensional geometry are treated

  12. Correlation of microdosimetric measurements with relative biological effectiveness from clinical experience for two neutron therapy beams

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Kuchnir, F.T.; Myrianthopoulos, L.C.; Horton, J.L. Jr.; Roberts, W.K.

    1986-01-01

    Microdosimetric measurements were made for the neutron therapy beams at the University of Chicago and at the Cleveland Clinic with the same geometry and phantom material using the same tissue-equivalent spherical proportional counter and standard techniques. The energy deposition spectra (dose distributions in lineal energy) are compared for these beams and for their scattered components (direct beam blocked). The model of dual radiation action (DRA) of Kellerer and Rossi is employed to interpret these data in terms of biological effectiveness over this limited range of radiation qualities. The site-diameter parameter of the DRA theory is determined for the Cleveland beam by setting the biological effectiveness (relative to 60 Co gamma radiation) equal to the relative biological effectiveness value deduced from radiobiology experiments and clinical experience. The resulting value of this site-diameter parameter is then used to predict the biological effectiveness of the Chicago beam. The prediction agrees with the value deduced from radiobiology and clinical experience. The biological effectiveness of the scattered components of both beams is also estimated using the model

  13. Reference radiation fields - Simulated workplace neutron fields - Part 2: Calibration fundamentals related to the basic quantities

    International Nuclear Information System (INIS)

    2008-01-01

    ISO 8529-1, ISO 8529-2 and ISO 8529-3, deal with the production, characterization and use of neutron fields for the calibration of personal dosimeters and area survey meters. These International Standards describe reference radiations with neutron energy spectra that are well defined and well suited for use in the calibration laboratory. However, the neutron spectra commonly encountered in routine radiation protection situations are, in many cases, quite different from those produced by the sources specified in the International Standards. Since personal neutron dosimeters, and to a lesser extent survey meters, are generally quite energy dependent in their dose equivalent response, it might not be possible to achieve an appropriate calibration for a device that is used in a workplace where the neutron energy spectrum and angular distribution differ significantly from those of the reference radiation used for calibration. ISO 8529-1 describes four radionuclide based neutron reference radiations in detail. This part of ISO 12789 includes the specification of neutron reference radiations that were developed to closely resemble radiation that is encountered in practice

  14. Development of additional module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, K.N.; Bogomazov, D.N.; Poliakov, N. [Moscow Power Engineering Institute (Technical University), Moscow (Russian Federation)

    2007-07-01

    The new special module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation is worked out. The Russian computer code Rainbow has been selected for joint use with a developed module. This code system provides the possibility of EFOCP (Eigen Frequencies of Oscillations of the Coolant Pressure) calculations in any coolant acoustical elements of primary circuits of NPP. EFOCP values have been calculated for transient and for stationary operating. The calculated results for nominal operating were compared with results of measured EFOCP. For example, this comparison was provided for the system: 'pressurizer + surge line' of a WWER-1000 reactor. The calculated result 0.58 Hz practically coincides with the result of measurement (0.6 Hz). The EFOCP variations in transients are also shown. The presented results are intended to be useful for NPP vibration-acoustical certification. There are no serious difficulties for using this module with other computer codes.

  15. Development of additional module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Bogomazov, D.N.; Poliakov, N.

    2007-01-01

    The new special module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation is worked out. The Russian computer code Rainbow has been selected for joint use with a developed module. This code system provides the possibility of EFOCP (Eigen Frequencies of Oscillations of the Coolant Pressure) calculations in any coolant acoustical elements of primary circuits of NPP. EFOCP values have been calculated for transient and for stationary operating. The calculated results for nominal operating were compared with results of measured EFOCP. For example, this comparison was provided for the system: 'pressurizer + surge line' of a WWER-1000 reactor. The calculated result 0.58 Hz practically coincides with the result of measurement (0.6 Hz). The EFOCP variations in transients are also shown. The presented results are intended to be useful for NPP vibration-acoustical certification. There are no serious difficulties for using this module with other computer codes

  16. Simulation study for the influences of fluid physical properties on void fraction of moderator cell of cold neutron source

    International Nuclear Information System (INIS)

    Li Xiaoming; Feng Quanke; Bi Qincheng; Chen Tingkuan; Du Shejiao

    2004-01-01

    The void fraction at different heights in the annular channel of moderator cell mockup was measured with a differential pressure transducer. The tests proved that the ratio of surface tension to density of liquid phase is the main factor that determines the physical properties on void fraction. The larger the ratio, the smaller the void fraction. The ratio of surface tension to density of Freon 113 is lower than that of liquid hydrogen. Therefore, Freon 113 can be used as working fluid to study the void fraction in the hydrogen two-phase thermo-siphon loop in the cold neutron source (CNS) of China Advanced Research Reactor (CARR), and the results are conservative

  17. Neutron scattering

    International Nuclear Information System (INIS)

    Furrer, A.

    1993-01-01

    This report contains the text of 16 lectures given at the Summer School and the report on a panel discussion entitled ''the relative merits and complementarities of x-rays, synchrotron radiation, steady- and pulsed neutron sources''. figs., tabs., refs

  18. Neutron relative biological effectiveness for solid cancer incidence in the Japanese A-bomb survivors: an analysis considering the degree of independent effects from γ-ray and neutron absorbed doses with hierarchical partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Linda [Federal Office for Radiation Protection, Department Radiation Protection and Health, Oberschleissheim (Germany); University of Manchester, The Faculty of Medical and Human Sciences, Manchester (United Kingdom)

    2013-03-15

    It has generally been assumed that the neutron and γ-ray absorbed doses in the data from the life span study (LSS) of the Japanese A-bomb survivors are too highly correlated for an independent separation of the all solid cancer risks due to neutrons and due to γ-rays. However, with the release of the most recent data for all solid cancer incidence and the increased statistical power over previous datasets, it is instructive to consider alternatives to the usual approaches. Simple excess relative risk (ERR) models for radiation-induced solid cancer incidence fitted to the LSS epidemiological data have been applied with neutron and γ-ray absorbed doses as separate explanatory covariables. A simple evaluation of the degree of independent effects from γ-ray and neutron absorbed doses on the all solid cancer risk with the hierarchical partitioning (HP) technique is presented here. The degree of multi-collinearity between the γ-ray and neutron absorbed doses has also been considered. The results show that, whereas the partial correlation between the neutron and γ-ray colon absorbed doses may be considered to be high at 0.74, this value is just below the level beyond which remedial action, such as adding the doses together, is usually recommended. The resulting variance inflation factor is 2.2. Applying HP indicates that just under half of the drop in deviance resulting from adding the γ-ray and neutron absorbed doses to the baseline risk model comes from the joint effects of the neutrons and γ-rays - leaving a substantial proportion of this deviance drop accounted for by individual effects of the neutrons and γ-rays. The average ERR/Gy γ-ray absorbed dose and the ERR/Gy neutron absorbed dose that have been obtained here directly for the first time, agree well with previous indirect estimates. The average relative biological effectiveness (RBE) of neutrons relative to γ-rays, calculated directly from fit parameters to the all solid cancer ERR model with both

  19. Relativity Based on Physical Processes Rather Than Space-Time

    Science.gov (United States)

    Giese, Albrecht

    2013-09-01

    Physicists' understanding of relativity and the way it is handled is at present dominated by the interpretation of Albert Einstein, who related relativity to specific properties of space and time. The principal alternative to Einstein's interpretation is based on a concept proposed by Hendrik A. Lorentz, which uses knowledge of classical physics to explain relativistic phenomena. In this paper, we will show that on the one hand the Lorentz-based interpretation provides a simpler mathematical way of arriving at the known results for both Special and General Relativity. On the other hand, it is able to solve problems which have remained open to this day. Furthermore, a particle model will be presented, based on Lorentzian relativity, which explains the origin of mass without the use of the Higgs mechanism, based on the finiteness of the speed of light, and which provides the classical results for particle properties that are currently only accessible through quantum mechanics.

  20. Importance of Health-Related Fitness Knowledge to Increasing Physical Activity and Physical Fitness

    Science.gov (United States)

    Ferkel, Rick C.; Judge, Lawrence W.; Stodden, David F.; Griffin, Kent

    2014-01-01

    Physical inactivity is expanding across all ages in the United States. Research has documented a deficiency in health-related fitness knowledge (HRFK) among elementary- through college-aged students. The need for a credible and reliable resource that provides research-based information regarding the importance of HRFK is significant. The purpose…

  1. Bringing Physics, Synchrotron Light and Probing Neutrons to the Public: A Collaborative Outreach

    Science.gov (United States)

    Micklavzina, Stanley; Almqvist, Monica; Sörensen, Stacey L.

    2014-01-01

    Stanley Micklavzina, a US physics educator on sabbatical, teams up with a Swedish national research laboratory, a synchrotron radiation experimental group and a university science centre to develop and create educational and public outreach projects. Descriptions of the physics, science centre displays and public demonstrations covering the…

  2. Quantum physics, relativity and complex spacetime towards a new synthesis

    CERN Document Server

    Kaiser, Gerald

    1990-01-01

    A new synthesis of the principles of quantum mechanics and Relativity is proposed in the context of complex differential geometry. The positivity of the energy implies that wave functions and fields can be extended to complex spacetime, and it is shown that this complexification has a solid physical interpretation as an extended phase space. The extended fields can be said to be realistic wavelet transforms of the original fields. A new, algebraic theory of wavelets is developed.

  3. Transit-Related Walking to Work in Promoting Physical Activity.

    Science.gov (United States)

    Yu, Chia-Yuan; Lin, Hsien-Chang

    2015-04-01

    Transit-related walking to work is a potential strategy for incorporating physical activity into daily life and promoting health benefits. This study estimated the transit-related walking time for work trips on the journey to and from work and examined the predictors of transit users who walked to/from transit and the workplace and those who walked 30 minutes or more per day. This study used the 2009 National Household Travel Survey and identified 772 subjects who took transit to/from work, 355 subjects who walked to/from transit and the workplace, and 145 subjects who walked 30 minutes or more per day among the 40,659 workers. Weighted logistic regressions were used for the analysis. Of the people who walked to/from transit and the workplace, 40.9% walked 30 minutes or more per day. The weighted logistic regressions revealed that low-income groups and workers living in high population density areas were more likely to walk to/from transit and the workplace. Workers living in high population density areas were more likely to walk 30 minutes or more per day. Transit-related walking to work provides an opportunity to increase physical activity levels and to meet the physical activity recommendations.

  4. Magnetic field devices for neutron spin transport and manipulation in precise neutron spin rotation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado-Velázquez, M. [Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, 04510 (Mexico); Barrón-Palos, L., E-mail: libertad@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 (Mexico); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Snow, W.M. [Indiana University, Bloomington, IN 47405 (United States)

    2017-05-11

    The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10{sup −7} rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.

  5. Experimental research in neutron physic and thermal-hydraulic at the CDTN Triga reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Amir Z.; Souza, Rose Mary G.P.; Ferreira, Andrea V.; Pinto, Antonio J.; Costa, Antonio C.L.; Rezende, Hugo C., E-mail: amir@cdtn.b, E-mail: souzarm@cdtn.b, E-mail: avf@cdtn.b, E-mail: ajp@cdtn.b, E-mail: aclc@cdtn.b, E-mail: hcr@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The IPR-R1 TRIGA (Training, Research, Isotopes production, General Atomics) at Nuclear Technology Development Center (CDTN) is a pool type reactor cooled by natural circulation of light water and an open surface. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world and characterized by inherent safety. The IPR-R1 is the only Brazilian nuclear research reactor available and able to perform experiments in which interaction between neutronic and thermal-hydraulic areas occurs. The IPR-R1 has started up on November 11th, 1960. At that time the maximum thermal power was 30 kW. The present forced cooling system was built in the 70th and the power was upgraded to 100 kW. Recently the core configuration and instrumentation was upgraded again to 250 kW at steady state, and is awaiting the license of CNEN to operate definitely at this new power. This paper describes the experimental research project carried out in the IPR-R1 reactor that has as objective evaluate the behaviour of the reactor operational parameters, and mainly to investigate the influence of temperature on the neutronic variables. The research was supported by Research Support Foundation of the State of Minas Gerais (FAPEMIG) and Brazilian Council for Scientific and Technological Development (CNPq). The research project meets the recommendations of the IAEA, for safety, modernization and development of strategic plan for research reactors utilization. This work is in line with the strategic objectives of Brazil, which aims to design and construct the Brazilian Multipurpose research Reactor (RMB). (author)

  6. Experimental research in neutron physic and thermal-hydraulic at the CDTN Triga reactor

    International Nuclear Information System (INIS)

    Mesquita, Amir Z.; Souza, Rose Mary G.P.; Ferreira, Andrea V.; Pinto, Antonio J.; Costa, Antonio C.L.; Rezende, Hugo C.

    2011-01-01

    The IPR-R1 TRIGA (Training, Research, Isotopes production, General Atomics) at Nuclear Technology Development Center (CDTN) is a pool type reactor cooled by natural circulation of light water and an open surface. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world and characterized by inherent safety. The IPR-R1 is the only Brazilian nuclear research reactor available and able to perform experiments in which interaction between neutronic and thermal-hydraulic areas occurs. The IPR-R1 has started up on November 11th, 1960. At that time the maximum thermal power was 30 kW. The present forced cooling system was built in the 70th and the power was upgraded to 100 kW. Recently the core configuration and instrumentation was upgraded again to 250 kW at steady state, and is awaiting the license of CNEN to operate definitely at this new power. This paper describes the experimental research project carried out in the IPR-R1 reactor that has as objective evaluate the behaviour of the reactor operational parameters, and mainly to investigate the influence of temperature on the neutronic variables. The research was supported by Research Support Foundation of the State of Minas Gerais (FAPEMIG) and Brazilian Council for Scientific and Technological Development (CNPq). The research project meets the recommendations of the IAEA, for safety, modernization and development of strategic plan for research reactors utilization. This work is in line with the strategic objectives of Brazil, which aims to design and construct the Brazilian Multipurpose research Reactor (RMB). (author)

  7. Body-related self-conscious emotions relate to physical activity motivation and behavior in men.

    Science.gov (United States)

    Castonguay, Andree L; Pila, Eva; Wrosch, Carsten; Sabiston, Catherine M

    2015-05-01

    The aim of this study was to examine the associations between the body-related self-conscious emotions of shame, guilt, and pride and physical activity motivation and behavior among adult males. Specifically, motivation regulations (external, introjected, indentified, intrinsic) were examined as possible mediators between each of the body-related self-conscious emotions and physical activity behavior. A cross-sectional study was conducted with adult men (N = 152; Mage = 23.72, SD = 10.92 years). Participants completed a questionnaire assessing body-related shame, guilt, authentic pride, hubristic pride, motivational regulations, and leisure-time physical activity. In separate multiple mediation models, body-related shame was positively associated with external and introjected regulations and negatively correlated with intrinsic regulation. Guilt was positively linked to external, introjected, and identified regulations. Authentic pride was negatively related to external regulation and positively correlated with both identified and intrinsic regulations and directly associated with physical activity behavior. Hubristic pride was positively associated with intrinsic regulation. Overall, there were both direct and indirect effects via motivation regulations between body-related self-conscious emotions and physical activity (R(2) shame = .15, guilt = .16, authentic pride = .18, hubristic pride = .16). These findings highlight the importance of targeting and understanding self-conscious emotions contextualized to the body and links to motivation and positive health behavior among men. © The Author(s) 2014.

  8. Study of organohalogens in foodstuffs and environmental samples by neutron activation analysis and related techniques

    International Nuclear Information System (INIS)

    Xu, D. D.; Mao, X.Y.; Ouyang, H.; Chai, Z. F.; Zhang, H.; Sun, H. B.

    2004-01-01

    Pine needles and foodstuffs collected from Beijing, China, were analyzed by instrumental neutron activation analysis (INAA) combined with organic solvent extraction for total halogens, extractable organohalogens (EOX) and extractable persistent organohalogens (EPOX). The INAA detection limits are 50 ng, 8 ng and 3.5 ng for Cl, Br and I, respectively. The contents and distribution patterns of organohalogens in these samples are reported. EOCl accounted for 0.013-0.016% and 1.6-2.7% of the total chlorine in yogurt and apples, respectively, which suggested that chlorine in foodstuffs mainly existed as inorganic species and non-extractable organochlorines. EOCl contents in pine needles and foodstuffs were noticeably higher than those of EOBr and EOI. For pine needles, yogurt and apples, 1.6-34%, 23-58% and 29-35% of EOCl remained as extractable persistent organochlorine (EPOCl), respectively. Pine needle containing higher EOCl contents in chemical industrial and traffic hub areas indicated that chemical industries and exhaust emission from vehicle were the main sources of organochlorines in the Beijing's air. The relative proportions of the known organochlorines (such as HCHs, DDTs, chlordanes, heptachlor, HCB and PCBs) to the total EOCl and EPOCl were 0.04-1.6% and 0.7-21.5%, respectively, which implied that the identity of species of a major portion of the EOCl and EPOCl measured in pine needles was unknown. (author)

  9. Polarized Neutron Scattering

    OpenAIRE

    Roessli, B.; Böni, P.

    2000-01-01

    The technique of polarized neutron scattering is reviewed with emphasis on applications. Many examples of the usefulness of the method in various fields of physics are given like the determination of spin density maps, measurement of complex magnetic structures with spherical neutron polarimetry, inelastic neutron scattering and separation of coherent and incoherent scattering with help of the generalized XYZ method.

  10. Tritium solid targets for intense D-T neutron production and its related problems

    International Nuclear Information System (INIS)

    Sumita, Kenji

    1988-01-01

    This review paper is divided into three parts. Firstly, to attain an intense neutron production rate, the construction of a design with a higher tritium-containing surface and an effective cooling system like a rotating target device are discussed. The maximum attainable intensity based on tritium solid targets shall be estimated regarding planning for future D-T sources. Secondly, on the way to carry out some experiments, an absolute intensity calibration and an angular dependent neutron energy spectrum of the neutron source are essential parameters to analyse the results of the experiments. Sometimes the space dependent neutron spectrum is required as well as the space dependent neutron flux near the targets and irradiation samples. The measurement methods and their examples are reviewed for tritium solid targets. The third part is devoted to discuss the protection to tritium contamination problems due to unavoidable release of tritium gas from targets. Performance and effectiveness of tritium collection systems for intense D-T neutron sources shall be discussed in some examples. Tritium contamination incidents due to the faulted film powder of target surface are also reported in some real incident cases. (author). Abstract only

  11. How Einstein Created Relativity out of Physics and Astronomy

    CERN Document Server

    Topper, David

    2013-01-01

    This book tracks the history of the theory of relativity through Einstein’s life, with in-depth studies of its background as built upon by ideas from earlier scientists. The focus points of Einstein’s theory of relativity include its development throughout his life; the origins of his ideas and his indebtedness to the earlier works of Galileo, Newton, Faraday, Mach and others; the application of the theory to the birth of modern cosmology; and his quest for a unified field theory.  Treading a fine line between the technical and popular (but not shying away from the occasional equation), this book explains the entire range of relativity and weaves an up-to-date biography of Einstein throughout. The result is an explanation of the world of relativity, based on an extensive journey into earlier physics and a simultaneous voyage into the mind of Einstein, written for the curious and intelligent reader.

  12. [Relation between physical activity, weight balance and breast cancer].

    Science.gov (United States)

    Maître, Carole

    2013-05-01

    Many epidemiologic studies, with a good methodology, support the evidence of the positive role of regular physical activity on primary and tertiary prevention of breast cancer on the risk of recurrence and mortality. This relation depends on the level of total energy expenditure by week, which helps balance weight on lifetime, an essential part of benefit. The beneficial effects of physical activity are linked to many interrelated additional mechanisms: in a short-term, contraction of skeletal muscles involves aerobic metabolism which utilizes glucose and amino acids like glutamine, improves insulin sensitivity and lowers plasma insulin; in a long-term, physical activity produces favorable changes in body composition, decreasing body fat and increasing lean mass. That is a key point to reduce the intake of energy substrates stimulating carcinogenesis, to improve insulin sensitivity, to change the ratio of leptin and adiponectin, to enhance cellular immunity and to block cellular pathways of cell proliferation and angiogenesis. Maintaining a healthy weight through regular physical activity well balanced with energy intake is it a goal for prevention of breast cancer. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  14. Slow neutron spectroscopy and the grand atlas of the physical world*

    International Nuclear Information System (INIS)

    Brockhouse, B.N.

    1995-01-01

    This lecture was delivered 8 December 1994, on the occasion of the presentation of the 1994 Nobel Prize in Physics. This written version covers the same ground, though sometimes in different order, with a little additional material

  15. Comparison of different methods for activation analysis of geological and pedological samples: Reactor and epithermal neutron activation, relative and monostandard method

    International Nuclear Information System (INIS)

    Alian, A.; Sansoni, B.

    1980-04-01

    Using purely instrumental methods, a comparative study is presented on neutron activation analysis of rock and soil samples by whole reactor neutron spectrum and epithermal neutrons with both relative and monostandard procedures. The latter procedure used with epithermal neutron activation analysis of soil samples necessitated the use of the 'effective resonance integrals' which were determined experimentally. The incorporation of the #betta# factor, representing deviation of reactor epithermal neutron flux from 1/E law, is developed in the present work. The main criteria for the choice of one or more of the procedures studied for a given purpose are also indicated. Analysis of 15 trace elements, Ca and Fe in the standard Japanese granite JG-1 using monostandard epithermal neutron activation gave results in good agreement with the average literature values. (orig./RB) [de

  16. Adolescents' and young adults' physical activity related to built environment

    Directory of Open Access Journals (Sweden)

    Armando Cocca

    2015-06-01

    Full Text Available Objectives. This study aims to analyse physical activity (PA levels of high school and university students; to estimate their perception of built environment with regard to physical PA; and to assess the relation between PA and built environment. Methods. A sociological cross-sectional study with non-experimental design was applied. The International Physical Activity Questionnaire and the Built Environment Characteristics Questionnaire were filled in by a sample of 1.862 students from high schools and the university in Granada, Spain. Results. High school students were significantly more active than university students, the latter reaching insufficient levels of PA. Nevertheless, they consider Granada as a good context for carrying out outdoor exercise. No relations were found between PA levels and built environment. Conclusion. The discrepant outcomes for PA levels and perceived built environment suggest the need of interventions focused on making youth aware of the possibilities that an environment provides to them for exercising. Consequently, environment could have an impact on their health at the same time as youth learn to respect it.

  17. Health-related physical fitness in healthy untrained men

    DEFF Research Database (Denmark)

    Milanović, Zoran; Pantelić, Saša; Sporiš, Goran

    2015-01-01

    The purpose of this study was to determine the effects of recreational soccer (SOC) compared to moderate-intensity continuous running (RUN) on all health-related physical fitness components in healthy untrained men. Sixty-nine participants were recruited and randomly assigned to one of three groups...... weeks and consisted of three 60-min sessions per week. All participants were tested for each of the following physical fitness components: maximal aerobic power, minute ventilation, maximal heart rate, squat jump (SJ), countermovement jump with arm swing (CMJ), sit-and-reach flexibility, and body...... improvements in maximal aerobic power after 12 weeks of soccer training and moderate-intensity running, partly due to large decreases in body mass. Additionally soccer training induced pronounced positive effects on jump performance and flexibility, making soccer an effective broad-spectrum fitness training...

  18. Experimental methods of reactor physics; Methodes experimentales de physique des reacteurs a neutrons thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Breton, D; Lafore, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    This paper is a synthesis of various experimental methods in use with the reactors of the Commissariat a l'Energie Atomique. The main techniques used are mentioned and the difficulties encountered and the accuracy obtained are particularly dwelt upon. The application of these various methods to reactors in order to obtain specific results is also indicated. This paper consists of five parts. I - General methods. Macroscopic and microscopic flux distribution (anisotropy effect), power distribution, etc... II - Kinetic measurements a) pulsed neutron technique: apparatus and accuracy; application to {lambda}t and to anti reactivity measurements; application to graphite, light water and beryllium oxide. b) oscillation techniques: equipment and accuracy; application to the measurements of effective cross sections and resonance integrals. c) fluctuations: apparatus and technique of measurement. III - Poison methods. Description of methods for introducing and extracting the poison, difficulties encountered with light and heavy water, measurement of temperature coefficients and anti-reactivity. IV - Spectra measurements. Choice and development of foils, problems of measurement, application to spectral measurements for thermalization studies, application to dosimetry. V - Experimental shielding measurements. The technique and apparatus recently developed in this field are presented. (authors) [French] Cette communication fait une synthese des differentes methodes experimentales mises en oeuvre sur les reacteurs du CEA. Elle presente les principales techniques utilisees et insiste plus particulierement sur les difficultes rencontrees et la precision obtenue; elle indique egalement l'application de ces differentes methodes sur les reacteurs, en vue de l'obtention des resultats determines. Elle comporte cinq parties: I - METHODES GENERALES: Distribution de flux macroscopique et microscopique (effet d'anisotropie), distribution de puissance, etc... II - MESURES CINETIQUES: a

  19. An accurate metric for the spacetime around neutron stars

    OpenAIRE

    Pappas, George

    2016-01-01

    The problem of having an accurate description of the spacetime around neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a neutron star. Furthermore, an accurate appropriately parameterised metric, i.e., a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to inf...

  20. Reference neutron radiations. Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field

    International Nuclear Information System (INIS)

    2000-01-01

    ISO 8529 consists of the following parts, under the general title Reference neutron radiations: Part 1: Characteristics and methods of production; Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field; Part 3: Calibration of area and personal dosimeters and determination of response as a function of energy and angle of incidence. This Part 2. of ISO 8529 takes as its starting point the neutron sources described in ISO 8529-1. It specifies the procedures to be used for realizing the calibration conditions of radiation protection devices in neutron fields produced by these calibration sources, with particular emphasis on the corrections for extraneous effects (e.g., the neutrons scattered from the walls of the calibration room). In this part of ISO 8529, particular emphasis is placed on calibrations using radionuclide sources (clauses 4 to 6) due to their widespread application, with less details given on the use of accelerator and reactor sources (8.2 and 8.3). This part of ISO 8529 then leads to ISO 8529-3 which gives conversion coefficients and the general rules and procedures for calibration

  1. Use of cold neutrons for condensed matter research at the neutron guide laboratory ELLA in Juelich

    International Nuclear Information System (INIS)

    Schaetzler, R.; Monkenbusch, M.

    1998-01-01

    Cold neutrons produced in the FRJ-2 DIDO reactor are guided into the external hall ELLA. It hosts 10 instruments that are red by three major neutron guides. Cold neutrons allow for diffraction and small angle scattering experiments resolving mesoscopic structures (1 to 100 nm). Contrast variation by isotopic substitution in chemically identical species yields information uniquely accessible bi neutrons. Inelastic scattering of cold neutrons allows investigating slow molecular motions because the low neutron velocity results in large relative velocity changes even at small energy transfers. The SANS machines and the HADAS reflectometer serve as structure probes and the backscattering BSS1 and spin-echo spectrometers NSE as main dynamics probes. Besides this the diffuse scattering instrument DNS and the lattice parameter determination instrument LAP deal mainly with crystals and their defects. Finally the beta-NMR and the EKN position allow for methods other than scattering employing nuclear reactions for solid state physics, chemistry and biology/medicine. (author)

  2. Effect of some soil physical properties on water holding capacity, neutron probe calibration and salt movement

    International Nuclear Information System (INIS)

    Razzouk, A. K.

    2010-04-01

    This study was conducted in tow areas representing in silty soil in Southern Syria (Draa), loamy and sandy soil in Eastern Syria (Deir Al zour) to compare the soil effect on the calibration of the neutron probe, correlation coefficient, soil characteristics curve, soil solution content of nitrates, potassium and sodium for the estimation of the optimum sampling time of soil solution by porous ceramic cups. Regression analysis results showed that the three soils curves, in which the soil contained the lowest content of clay had a high correlation coefficient and decreased with increasing the clay content. Whereas, the correlation coefficient in sandy soil was 0.96 while decreased to 0.79 in silty soil. The hydraulic head increased with decreasing the water content, which was obvious in the three soils characteristic curves. The NO - 3 content decreased due to the plants roots absorption and leaching to deeper layers, while the NO - 3 content in the surfaces layer significantly decreased in the sandy soil. Results showed that equilibrium between the soil solution and the NO - 3 content in the solution in porous cups occurred within 8 days. (author)

  3. Effect of some soil physical properties on water holding capacity, neutron probe calibration and salt movement

    International Nuclear Information System (INIS)

    Razzouk, A.

    2010-01-01

    This study was conducted in tow areas representing in silty soil in Southern Syria (Dra'a), loamy and sandy soil in Eastern Syria (Deir Al zour) to compare the soil effect on the calibration of the neutron probe, correlation coefficient, soil characteristics curve, soil solution content of nitrates, potassium and sodium for the estimation of the optimum sampling time of soil solution by porous ceramic cups. Regression analysis results showed that the three soils curves, in which the soil contained the lowest content of clay had a high correlation coefficient and decreased with increasing the clay content. Whereas, the correlation coefficient in sandy soil was 0.96 while decreased to 0.79 in silty soil. The hydraulic head increased with decreasing the water content, which was obvious in the three soils characteristic curves. The NO 3 content decreased due to the plants roots absorption and leaching to deeper layers, while the NO 3 content in the surfaces layer significantly decreased in the sandy soil. Results showed that equilibrium between the soil solution and the NO 3 content in the solution in porous cups occurred within 8 days. (author)

  4. Solving the neutron diffusion equation on combinatorial geometry computational cells for reactor physics calculations

    International Nuclear Information System (INIS)

    Azmy, Y. Y.

    2004-01-01

    An approach is developed for solving the neutron diffusion equation on combinatorial geometry computational cells, that is computational cells composed by combinatorial operations involving simple-shaped component cells. The only constraint on the component cells from which the combinatorial cells are assembled is that they possess a legitimate discretization of the underlying diffusion equation. We use the Finite Difference (FD) approximation of the x, y-geometry diffusion equation in this work. Performing the same combinatorial operations involved in composing the combinatorial cell on these discrete-variable equations yields equations that employ new discrete variables defined only on the combinatorial cell's volume and faces. The only approximation involved in this process, beyond the truncation error committed in discretizing the diffusion equation over each component cell, is a consistent-order Legendre series expansion. Preliminary results for simple configurations establish the accuracy of the solution to the combinatorial geometry solution compared to straight FD as the system dimensions decrease. Furthermore numerical results validate the consistent Legendre-series expansion order by illustrating the second order accuracy of the combinatorial geometry solution, the same as standard FD. Nevertheless the magnitude of the error for the new approach is larger than FD's since it incorporates the additional truncated series approximation. (authors)

  5. Physical, mechanical and neutron shielding properties of h-BN/Gd2O3/HDPE ternary nanocomposites

    Science.gov (United States)

    İrim, Ş. Gözde; Wis, Abdulmounem Alchekh; Keskin, M. Aker; Baykara, Oktay; Ozkoc, Guralp; Avcı, Ahmet; Doğru, Mahmut; Karakoç, Mesut

    2018-03-01

    In order to prepare an effective neutron shielding material, not only neutron but also gamma absorption must be taken into account. In this research, a polymer nanocomposite based novel type of multifunctional neutron shielding material is designed and fabricated. For this purpose, high density polyethylene (HDPE) was compounded with different amounts of hexagonal boron nitride (h-BN) and Gd2O3 nanoparticles having average particle size of 100 nm using melt-compounding technique. The mechanical, thermal and morphological properties of nanocomposites were investigated. As filler content increased, the absorption of both neutron and gamma fluxes increased despite fluctuating neutron absorption curves. Adding h-BN and Gd2O3 nano particles had a significant influence on both neutron and gamma attenuation properties (Σ, cm-1 and μ/ρ, cm-2/g) of ternary shields and they show an enhancement of 200-280%, 14-52% for neutron and gamma radiations, respectively, in shielding performance.

  6. Introduction to the basic concepts of modern physics special relativity, quantum and statistical physics

    CERN Document Server

    Becchi, Carlo Maria

    2016-01-01

    This is the third edition of a well-received textbook on modern physics theory. This book provides an elementary but rigorous and self-contained presentation of the simplest theoretical framework that will meet the needs of undergraduate students. In addition, a number of examples of relevant applications and an appropriate list of solved problems are provided.Apart from a substantial extension of the proposed problems, the new edition provides more detailed discussion on Lorentz transformations and their group properties, a deeper treatment of quantum mechanics in a central potential, and a closer comparison of statistical mechanics in classical and in quantum physics. The first part of the book is devoted to special relativity, with a particular focus on space-time relativity and relativistic kinematics. The second part deals with Schrödinger's formulation of quantum mechanics. The presentation concerns mainly one-dimensional problems, but some three-dimensional examples are discussed in detail. The third...

  7. Astrophysics related programs at center for underground physics (CUP)

    Science.gov (United States)

    Kim, Yeongduk

    2018-04-01

    We are developing experimental programs related to particle astrophysics at the Center for Underground Physics (CUP); searching for neutrino-less double beta decay (0νββ) of 100Mo nuclei and sterile neutrinos in the mass range of eV using reactor neutrinos. Expected sensitivities of AMoRE double beta decay experiment and the results from recent NEOS experiment are described. Utilizing the facilities for ultra-low radioactivity measurement at the center, we are planning to measure the decay of 180mTa which is important to the nucleosynthesis of heavy nuclei.

  8. Study of a nTHGEM-based thermal neutron detector

    Science.gov (United States)

    Li, Ke; Zhou, Jian-Rong; Wang, Xiao-Dong; Xiong, Tao; Zhang, Ying; Xie, Yu-Guang; Zhou, Liang; Xu, Hong; Yang, Gui-An; Wang, Yan-Feng; Wang, Yan; Wu, Jin-Jie; Sun, Zhi-Jia; Hu, Bi-Tao

    2016-07-01

    With new generation neutron sources, traditional neutron detectors cannot satisfy the demands of the applications, especially under high flux. Furthermore, facing the global crisis in 3He gas supply, research on new types of neutron detector as an alternative to 3He is a research hotspot in the field of particle detection. GEM (Gaseous Electron Multiplier) neutron detectors have high counting rate, good spatial and time resolution, and could be one future direction of the development of neutron detectors. In this paper, the physical process of neutron detection is simulated with Geant4 code, studying the relations between thermal conversion efficiency, boron thickness and number of boron layers. Due to the special characteristics of neutron detection, we have developed a novel type of special ceramic nTHGEM (neutron THick GEM) for neutron detection. The performance of the nTHGEM working in different Ar/CO2 mixtures is presented, including measurements of the gain and the count rate plateau using a copper target X-ray source. A detector with a single nTHGEM has been tested for 2-D imaging using a 252Cf neutron source. The key parameters of the performance of the nTHGEM detector have been obtained, providing necessary experimental data as a reference for further research on this detector. Supported by National Natural Science Foundation of China (11127508, 11175199, 11205253, 11405191), Key Laboratory of Neutron Physics, CAEP (2013DB06, 2013BB04) and CAS (YZ201512)

  9. Nanodiamond Foils for H- Stripping to Support the Spallation Neutron Source (SNS) and Related Applications

    Energy Technology Data Exchange (ETDEWEB)

    Vispute, R D [Blue Wave Semiconductors; Ermer, Henry K [Blue Wave Semiconductors; Sinsky, Phillip [Blue Wave Semiconductors; Seiser, Andrew [Blue Wave Semiconductors; Shaw, Robert W [ORNL; Wilson, Leslie L [ORNL; Harris, Gary [Howard University; Piazza, Fabrice [Pontifica Universidad Catolica Madre y Maestra, Dominican Republic

    2013-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a single nanodiamond foil about the size of a postage stamp is critical to the entire operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control over film thickness. The results are discussed in the light of development

  10. Fast neutron reactor noise analysis: beginning failure detection and physical parameter estimation

    International Nuclear Information System (INIS)

    Le Guillou, G.

    1975-01-01

    The analysis of the signals fluctuations coming from a power nuclear reactor (a breeder), by correlation methods and spectral analysis has two principal applications: on line estimation of physical parameters (reactivity coefficients); beginning failures (little boiling, abnormal mechanic vibrations). These two applications give important informations to the reactor core control and permit a good diagnosis [fr

  11. Neutron Electric Dipole Moment Experiments

    OpenAIRE

    Peng, Jen-Chieh

    2008-01-01

    The neutron electric dipole moment (EDM) provides unique information on CP violation and physics beyond the Standard Model. We first review the history of experimental searches for neutron electric dipole moment. The status of future neutron EDM experiments, including experiments using ultra-cold neutrons produced in superfluid helium, will then be presented.

  12. Physical and relational bullying and victimization: Differential relations with adolescent dating and sexual behavior.

    Science.gov (United States)

    Dane, Andrew V; Marini, Zopito A; Volk, Anthony A; Vaillancourt, Tracy

    2017-04-01

    Taking an evolutionary psychological perspective, we investigated whether involvement in bullying as a perpetrator or victim was more likely if adolescents reported having more dating and sexual partners than their peers, an indication of greater engagement in competition for mates. A total of 334 adolescents (173 boys, 160 girls) between the ages of 12 and 16 years (M = 13.6, SD = 1.3), recruited from community youth organizations, completed self-report measures of physical and relational bullying and victimization, as well as dating and sexual behavior. As predicted, pure physical bullying was positively associated with the number of dating and sexual partners, primarily for adolescent boys. Adolescent girls with more dating partners had greater odds of being relational bully-victims, in line with predictions. Finally, adolescent girls with more sexual partners were at greater risk of being physically victimized by peers, and greater involvement with dating and sexual partners was associated with higher odds of being a physical bully-victim. Results are discussed with respect to evolutionary theory and research in which adolescent boys may display strength and athleticism through physical bullying to facilitate intersexual selection, whereas relational bullying may be employed as a strategy to engage in intrasexual competition with rivals for mates. Aggr. Behav. 43:111-122, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Evaluation of the fusion-related neutron nuclear data for JENDL-3

    International Nuclear Information System (INIS)

    Chiba, Satoshi

    1988-01-01

    Status of the neutron nuclear data evaluations for JENDL-3 will be described for nuclides important in the development of D-T fusion reactors. In this article, however, only explanation of the evaluations for the very light mass region will be presented to avoid overlapping with what are given in another papers submitted to this seminar. Emphases are placed on the tritium production cross sections, inelastic scattering cross sections including the double-differential neutron emission spectrum (DDX), threshold reaction cross sections and photon production cross sections. The methods employed to prepare JENDL-3T library and their results will be summarized. (author)

  14. Influence of a health-related physical fitness model on students' physical activity, perceived competence, and enjoyment.

    Science.gov (United States)

    Fu, You; Gao, Zan; Hannon, James; Shultz, Barry; Newton, Maria; Sibthorp, Jim

    2013-12-01

    This study was designed to explore the effects of a health-related physical fitness physical education model on students' physical activity, perceived competence, and enjoyment. 61 students (25 boys, 36 girls; M age = 12.6 yr., SD = 0.6) were assigned to two groups (health-related physical fitness physical education group, and traditional physical education group), and participated in one 50-min. weekly basketball class for 6 wk. Students' in-class physical activity was assessed using NL-1000 pedometers. The physical subscale of the Perceived Competence Scale for Children was employed to assess perceived competence, and children's enjoyment was measured using the Sport Enjoyment Scale. The findings suggest that students in the intervention group increased their perceived competence, enjoyment, and physical activity over a 6-wk. intervention, while the comparison group simply increased physical activity over time. Children in the intervention group had significantly greater enjoyment.

  15. Measurement of Relative Biological Effectiveness (RBE) for the Radiation Beam from Neutron Source Reactor YAYOI -Comparisons with Cyclotron Neutron and 60Co Gamma Ray-

    OpenAIRE

    HIROAKI, WAKABAYASHI; SHOZO, SUZUKI; AKIRA, ITO; Nuclear Engineering Research Laboratory, Faculty of Engineering, the University of Tokyo; Institute of Medical Science, the University of Tokyo; Institute of Medical Science, the University of Tokyo

    1983-01-01

    Radiation biology and/or therapy research and development for a research reactor beam need specific RBEs of neutrons as well as of specific reactions. RBEs for reactor beams measured in situ condition are interesting because actual radiation effects on each biological system are different depending on detailed conditions of irradiation. A small powered research reactor (Fast Neutron Source Reactor: YAYOI) was examined here as a neutron beam source for obtaining survival curves in a manner usu...

  16. Development and verification of the neutron diffusion solver for the GeN-Foam multi-physics platform

    International Nuclear Information System (INIS)

    Fiorina, Carlo; Kerkar, Nordine; Mikityuk, Konstantin; Rubiolo, Pablo; Pautz, Andreas

    2016-01-01

    Highlights: • Development and verification of a neutron diffusion solver based on OpenFOAM. • Integration in the GeN-Foam multi-physics platform. • Implementation and verification of acceleration techniques. • Implementation of isotropic discontinuity factors. • Automatic adjustment of discontinuity factors. - Abstract: The Laboratory for Reactor Physics and Systems Behaviour at the PSI and the EPFL has been developing in recent years a new code system for reactor analysis based on OpenFOAM®. The objective is to supplement available legacy codes with a modern tool featuring state-of-the-art characteristics in terms of scalability, programming approach and flexibility. As part of this project, a new solver has been developed for the eigenvalue and transient solution of multi-group diffusion equations. Several features distinguish the developed solver from other available codes, in particular: object oriented programming to ease code modification and maintenance; modern parallel computing capabilities; use of general unstructured meshes; possibility of mesh deformation; cell-wise parametrization of cross-sections; and arbitrary energy group structure. In addition, the solver is integrated into the GeN-Foam multi-physics solver. The general features of the solver and its integration with GeN-Foam have already been presented in previous publications. The present paper describes the diffusion solver in more details and provides an overview of new features recently implemented, including the use of acceleration techniques and discontinuity factors. In addition, a code verification is performed through a comparison with Monte Carlo results for both a thermal and a fast reactor system.

  17. Chemical and physical structures of proteinoids and related polyamino acids

    Science.gov (United States)

    Mita, Hajime; Kuwahara, Yusuke; Nomoto, Shinya

    Studies of polyamino acid formation pathways in the prebiotic condition are important for the study of the origins of life. Several pathways of prebiotic polyamino acid formation have been reported. Heating of monoammonium malate [1] and heating of amino acids in molten urea [2] are important pathways of the prebiotic peptide formation. The former case, globular structure called proteinoid microsphere is formed in aqueous conditions. The later case, polyamino acids are formed from unrestricted amino acid species. Heating of aqueous aspargine is also interesting pathway for the prebiotic polyamino acid formation, because polyamino acid formation proceeds in aqueous condition [3]. In this study, we analyzed the chemical structure of the proteinoids and related polyamino acids formed in the above three pathways using with mass spectrometer. In addition, their physical structures are analyzed by the electron and optical microscopes, in order to determine the self-organization abilities. We discuss the relation between the chemical and the physical structures for the origins of life. References [1] Harada, K., J. Org. Chem., 24, 1662 (1959), Fox, S. W., Harada, K., and Kendrick, J., Science, 129, 1221 (1959). [2] Terasaki, M., Nomoto, S., Mita, H., and Shimoyama, A., Chem. Lett., 480 (2002), Mita, H., Nomoto, S., Terasaki, M., Shimoyama, A., and Yamamoto, Y., Int. J. Astrobiol., 4, 145 (2005). [3] Kovacs, K and Nagy, H., Nature, 190, 531 (1961), Munegumi, T., Tanikawa, N., Mita, H. and Harada, K., Viva Origino, 22, 109 (1994).

  18. Neutron source investigations in support of the cross section program at the Argonne Fast-Neutron Generator

    International Nuclear Information System (INIS)

    Meadows, J.W.; Smith, D.L.

    1980-05-01

    Experimental methods related to the production of neutrons for cross section studies at the Argonne Fast-Neutron Generator are reviewed. Target assemblies commonly employed in these measurements are described, and some of the relevant physical properties of the neutron source reactions are discussed. Various measurements have been performed to ascertain knowledge about these source reaction that is required for cross section data analysis purposes. Some results from these studies are presented, and a few specific examples of neutron-source-related corrections to cross section data are provided. 16 figures, 3 tables

  19. Neutron radiography

    International Nuclear Information System (INIS)

    Alaa eldin, M.T.

    2011-01-01

    The digital processing of the neutron radiography images gives the possibility for data quantification. In this case an exact relation between the measured neutron attenuation and the real macroscopic attenuation coefficient for every point of the sample is required. The assumption that the attenuation of the neutron beam through the sample is exponential is valid only in an ideal case where a monochromatic beam, non scattering sample and non background contribution are assumed. In the real case these conditions are not fulfilled and in dependence on the sample material we have more or less deviation from the exponential attenuation law. Because of the high scattering cross-sections of hydrogen (σs=80.26 barn) for thermal neutrons, the problem with the scattered neutrons at quantitative radiography investigations of hydrogenous materials (as PE, Oil, H 2 O, etc) is not trivial. For these strong scattering materials the neutron beam attenuation is no longer exponential and a dependence of the macroscopic attenuation coefficient on the material thickness and on the distance between the sample and the detector appears. When quantitative radiography (2 D) or tomography investigations (3 D) are performed, some image correction procedures for a description of the scattering effect are required. This thesis presents a method that can be used to enhance the neutron radiography image for objects with high scattering materials like hydrogen, carbon and other light materials. This method uses the Monte Carlo code, MCNP5, to simulate the neutron radiography process and get the flux distribution for each pixel of the image and determine the scattered neutrons distribution that causes the image blur and then subtract it from the initial image to improve its quality.

  20. Intense fusion neutron sources

    International Nuclear Information System (INIS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-01-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10 15 -10 21 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10 20 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  1. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  2. Progress report of the neutron and nuclear physics division for the year 1984

    International Nuclear Information System (INIS)

    1985-10-01

    This progress report gives a presentation of the nuclear physics work carried out in the Service de Physique Neutronique et Nucleaire (C.E. Bruyeres-le-Chatel) during the year 1984. It comprises a part about technical work and equipments and a second part on measurement, interpretation and evaluation of nuclear data. The third part is devoted to more theoretical works: bound state and scattering nuclear models, field theory and astrophysics [fr

  3. Association between health-related quality of life, physical fitness, and physical activity in older adults recently discharged from hospital.

    Science.gov (United States)

    Brovold, Therese; Skelton, Dawn A; Sylliaas, Hilde; Mowe, Morten; Bergland, Astrid

    2014-07-01

    The purpose of this study was to determine the relationship among health-related quality of life (HRQOL), physical fitness, and physical activity in older patients after recent discharge from hospital. One hundred fifteen independent-living older adults (ages 70-92 years) were included. HRQOL (Medical Outcomes Study 36-item Short Form Health Survey), physical activity (Physical Activity Scale for the Elderly), and physical fitness (Senior Fitness Test) were measured 2-4 weeks after discharge. Higher levels of physical activity and physical fitness were correlated with higher self-reported HRQOL. Although cause and effect cannot be determined from this study, the results suggest that a particular focus on the value of physical activity and physical fitness while in hospital and when discharged from hospital may be important to encourage patients to actively preserve independence and HRQOL. It may be especially important to target those with lower levels of physical activity, poorer physical fitness, and multiple comorbidities.

  4. Middle Atlantic neutron therapy trail

    International Nuclear Information System (INIS)

    Rogers, C.

    1975-01-01

    A consortium of therapeutic radiologists in the Middle Atlantic States and physicists at the Naval Research Laboratory has been established to investigate the use of fast neutron beams in the control of some tumors. Many radiobiology experiments have indicated that neutron beams may have an advantage in the control of local tumors over that of conventional forms of radiotherapy. In preparation for clinical radiotherapy trials, extensive measurements have quantified the various physical characteristics of the NRL cyclotron-produced neutron beam. Techniques have been developed for the absolute determination of delivered dose at depth in tissue for this beam, accounting for the relatively small component of dose delivered by gamma rays, as well as that by the neutrons. A collimator system has been designed to allow the precise field definition necessary for optimum therapy treatment planning. A dose control and monitor unit has been engineered and has demonstrated a reproducibility of 0.2 percent. The relative biological effectiveness of this neutron bean has been studied with several biological systems to aid in determining proper radiotherapeutic dose levels. The objective of these studies is a full-scale clinical radiotherapy trial to test neutron effectiveness as compared to that of conventional radiotherapy, after a pilot study in man

  5. RELATION BETWEEN THE PHYSICAL WORKING CAPACITY (PWC170 AND STATIC RELATIVE STRENGTH

    Directory of Open Access Journals (Sweden)

    Abdulla Elezi

    2012-09-01

    Full Text Available Determining the relationship within the segments, and establish the correlation between the functional and motor areas may be important for programming load both in education and in sports and recreation. For this reason we set goals and work this year. The main objective of this research is to determine association and motor characteristics impact on functional ability (physical work capacity. The sample is defined as a sample of 263 respondents drawn from the population of secondary schools: Gymnasium Zenel Hajdini; Marin Barleti and Mehmet Isai in city of Gjilan. Nine tests were used to estimate motoric capabilities and a test of functional capacity of aerobic-type (physical work capacity. To determine the relation between the predictor (motor variables and criterion variables (physical working capacity - PWC170 it is prepared the regression analysis of the manifest space. Analyses were made to the program SPSS 12.0 for Windows. The connection of the entire system of variables static relative strength with a score of Physics working capacity (PWC170 on a bicycle ergo meter as aerobic type variable explains the coefficient of multiple correlations, which is RO 0.394. Regression analysis indicates that the better results on a bicycle ergo meter will have respondents who score better in tests of static relative strength of the leg (at the test isometric muscle contraction quadriceps thighs and static tests of the relative strength of arm and shoulder area (at the test of isometric contraction triceps muscle circumference.

  6. A systematic review of financial incentives for physical activity: The effects on physical activity and related outcomes

    OpenAIRE

    Barte, J.C.M.; Wendel-Vos, G.C.W.

    2017-01-01

    The aim of this review is to give an overview of the available evidence on the effects of financial incentives to stimulate physical activity. Therefore, a systematic literature search was performed for randomized trials that investigate the effects of physical-activity-related financial incentives for individuals. Twelve studies with unconditional incentives (eg, free membership sport facility) and conditional incentives (ie, rewards for reaching physical-activity goals) related to physical ...

  7. Textures of iron oxide ores by neutron diffraction and topotactical relation

    International Nuclear Information System (INIS)

    Wagner, F.; Esling, C.; Baro, R.; Englander, M.

    1977-01-01

    Two samples are cut from a polycrystalline haematite block. The first one is directly submitted to texture analysis by neutron diffraction, whereas the second one is first reduced into magnetite. The comparison of both textures is in agreement with a topotactical relationship previously reported for monocrystals. (orig.) [de

  8. Relative biological effectiveness (RBE) of fast neutrons with the Dunning rat prostate tumor R3327-HI

    International Nuclear Information System (INIS)

    Wenz, F.; Lohr, F.; Peschke, P.; Wolber, G.; Hoever, K.H.; Hahn, E.W.

    1993-01-01

    Human prostate tumors are known to be good candidates for neutron therapy. The Dunning rat prostate tumor system R3327 was found in many studies to be an excellent model for human prostate tumors. There is still a paucity of studies on the response of the Dunning tumors to fast neutrons. Tumors of the R3327-HI subline are moderately well differentiated and mucin producing. They show one euploid cell population, a bromodeoxyuridine labelling index of 5%, a potential doubling time of 8.9 days, a volume doubling time of about ten days and a cell loss rate of 10%. Tumors were transplanted s.c. in the distal thigh of Copenhagen rats and treated with 60 Co-photons (10, 20, 30, 40 Gy, 45 cGy/min) and 14-MeV-neutrons (8, 10, 12 Gy, 7 to 11 cGy/min). Tumor volumes were measured twice weekly. Growth delay was defined as time in days until the tumors reached twice their treatment volume. Linear regressions on the median growth delays of the different treatment groups were calculated. The ratio of the neutron- and photon-slopes yielded an RBE of 3.1±0.3. Additionally isoeffect-RBE values between 2.3 and 2.6 were graphically estimated. (orig.) [de

  9. FENDL-3 benchmark test with neutronics experiments related to fusion in Japan

    International Nuclear Information System (INIS)

    Konno, Chikara; Ohta, Masayuki; Takakura, Kosuke; Ochiai, Kentaro; Sato, Satoshi

    2014-01-01

    Highlights: •We have benchmarked FENDL-3.0 with integral experiments with DT neutron sources in Japan. •The FENDL-3.0 is as accurate as FENDL-2.1 and JENDL-4.0 or more. •Some data in FENDL-3.0 may have some problems. -- Abstract: The IAEA supports and promotes the gathering of the best data from evaluated nuclear data libraries for each nucleus involved in fusion reactor applications and compiles these data as FENDL. In 2012, the IAEA released a major update to FENDL, FENDL-3.0, which extends the neutron energy range from 20 MeV to greater than 60 MeV for 180 nuclei. We have benchmarked FENDL-3.0 versus in situ and TOF experiments using the DT neutron source at FNS at the JAEA and TOF experiments using the DT neutron source at OKTAVIAN at Osaka University in Japan. The Monte Carlo code MCNP-5 and the ACE file of FENDL-3.0 supplied from the IAEA were used for the calculations. The results were compared with measured ones and those obtained using the previous version, FENDL-2.1, and the latest version, JENDL-4.0. It is concluded that FENDL-3.0 is as accurate as or more so than FENDL-2.1 and JENDL-4.0, although some data in FENDL-3.0 may be problematic

  10. Irradiations of human melanoma cells by 14 MeV neutrons; survival curves interpretation; physical simulation of neutrons interactions in the cellular medium

    International Nuclear Information System (INIS)

    Bodez, Veronique

    2000-01-01

    14 MeV neutrons are used to irradiate human melanoma cells in order to study survival curves at low dose and low dose rate. We have simulated with the MCNP code, transport of neutrons through the experimental setup to evaluate the contamination of the primary beam by gamma and electrons, for the feasibility of our experiments. We have shown a rapid decrease of the survival curve in the first cGy followed by a plateau for doses up to 30 cGy; after we observed an exponential decrease. This results are observed for the first time, for neutrons at low dose rate (5 cGy/h). In parallel with this experimental point, we have developed a simulation code which permitted the study of neutrons interactions with the cellular medium for individual cells defined as in our experimental conditions. We show that most of the energy is deposited by protons from neutron interactions with external medium, and by heavy ions for interactions into the cell. On the other hand the code gives a good order of magnitude of the dose rate, compared to the experimental values given by silicon diodes. The first results show that we can, using a theory based on induced repair of cells, give an interpretation of the observed experimental plateau. We can give an estimation of the radial distribution of dose for the tracks of charged ions, we show the possibility of calculate interaction cross sections with cellular organelles. Such a work gives interesting perspectives for the future in radiobiology, radiotherapy or radioprotection. (author) [fr

  11. Radiation-related impacts for nuclear plant physical modifications

    International Nuclear Information System (INIS)

    Sciacca, F.; Knudson, R.; Simion, G.; Baca, G.; Behling, H.; Behling, K.; Britz, W.; Cohen, S.

    1989-10-01

    The radiation fields in nuclear power plants present significant obstacles to accomplishing repairs and modifications to many systems and components in these plants. The NRC's generic cost estimating methodology attempts to account for radiation-related impacts by assigning values to the radiation labor productivity factor. This radiation labor productivity factor is then used as a multiplier on the greenfield or new nuclear plant construction labor to adjust for the actual operating plant conditions. The value assigned to the productivity factor is based on the work-site radiation levels. The relationship among ALARA practices, work-place radiation levels, and radiation-related cost impacts previously had not been adequately characterized or verified. The assumptions made concerning the use and application of radiation-reduction measures such as system decontamination and/or the use of temporary shielding can significantly impact estimates of both labor requirements and radiation exposure associated with a particular activity. Overall guidance was needed for analysts as to typical ALARA practices at nuclear power plants and the effects of these practices in reducing work-site dose rates and overall labor requirements. This effort was undertaken to better characterize the physical modification cost and radiological exposure impacts related to the radiation environment of the work place. More specifically, this work sought to define and clarify the quantitative relationships between or among: radiation levels and ALARA practices, such as the use of temporary shielding, decontamination efforts, or the use of robots and remote tools; radiation levels and labor productivity factors; radiation levels, in-field labor hours, and worker radiation exposure; radiation levels and health physics services costs; and radiation levels, labor hours, and anti-contamination clothing and equipment. 48 refs., 4 figs., 4 tabs

  12. Relation between proton and neutron asymptotic normalization coefficients for light mirror nuclei and its relevance for nuclear astrophysics

    International Nuclear Information System (INIS)

    Timofeyuk, N.K.; Johnson, R.C.; Descouvemont, P.

    2006-01-01

    It has been realised recently that charge symmetry of the nucleon-nucleon interaction leads to a certain relation between Asymptotic Normalization Coefficients (ANCs) in mirror-conjugated one-nucleon overlap integrals. This relation can be approximated by a simple analytical formula that involves mirror neutron and proton separation energies, the core charge and the range of the strong nucleon-core interaction. We perform detailed microscopic multi-channel cluster model calculations and compare their predictions to the simple analytical formula as well as to calculations within a single-particle model in which mirror symmetry in potential wells and spectroscopic factors are assumed. The validity of the latter assumptions is verified on the basis of microscopic cluster model calculations. For mirror pairs in which one of the states is above the proton decay threshold, a link exists between the proton partial width and the ANC of the mirror neutron. This link is given by an approximate analytical formula similar to that for a bound-bound mirror pair. We compare predictions of this formula to the results of microscopic cluster model calculations. Mirror symmetry in ANCs can be used to predict cross sections for proton capture at stellar energies using neutron ANCs measured with stable or ''less radioactive'' beams. (orig.)

  13. Moment of inertia, quadrupole moment, Love number of neutron star and their relations with strange-matter equations of state

    Science.gov (United States)

    Bandyopadhyay, Debades; Bhat, Sajad A.; Char, Prasanta; Chatterjee, Debarati

    2018-02-01

    We investigate the impact of strange-matter equations of state involving Λ hyperons, Bose-Einstein condensate of K- mesons and first-order hadron-quark phase transition on moment of inertia, quadrupole moment and tidal deformability parameter of slowly rotating neutron stars. All these equations of state are compatible with the 2 M_{solar} constraint. The main findings of this investigation are the universality of the I- Q and I -Love number relations, which are preserved by the EoSs including Λ hyperons and antikaon condensates, but broken in the presence of a first-order hadron-quark phase transition. Furthermore, it is also noted that the quadrupole moment approaches the Kerr value of a black hole for maximum-mass neutron stars.

  14. Progress report of the Neutron and Nuclear Physics Division for the year 1981

    International Nuclear Information System (INIS)

    1982-05-01

    This progress report gives a presentation of the nuclear physics work carried out in the Service de Physique Neutronique et Nucleaire (C.E. Bruyeres-le-Chatel) during the year 1981. It comprises a part about technical work and equipments and a second part on experiments and their interpretations. The third part is devoted to nuclear data evaluations and processing along with theoretical work. At the end of the report a list is given of the documents issued during the year 1981 and a list of talks given in the laboratory [fr

  15. Atlas of neutron resonances

    CERN Document Server

    Mughabghab, Said

    2018-01-01

    Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z= 1-60, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=1-60, as well as thermal cross sections, capture resonance integrals, average resonance parameters and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections o...

  16. Exciting interdisciplinary physics quarks and gluons, atomic nuclei, relativity and cosmology, biological systems

    CERN Document Server

    2013-01-01

    Nuclear physics is an exciting, broadly faceted field. It spans a wide range of topics, reaching from nuclear structure physics to high-energy physics, astrophysics and medical physics (heavy ion tumor therapy).  New developments are presented in this volume and the status of research is reviewed. A major focus is put on nuclear structure physics, dealing with superheavy elements and with various forms of exotic nuclei: strange nuclei, very neutron rich nuclei, nuclei of antimatter. Also quantum electrodynamics of strong fields is addressed, which is linked to the occurrence of giant nuclear systems in, e.g., U+U collisions. At high energies nuclear physics joins with elementary particle physics. Various chapters address the theory of elementary matter at high densities and temperature, in particular the quark gluon plasma which is predicted by quantum chromodynamics (QCD) to occur in high-energy heavy ion collisions. In the field of nuclear astrophysics, the properties of neutron stars and quark stars are d...

  17. Low physical activity work-related and other risk factors increased the risk of poor physical fitness in cement workers

    Directory of Open Access Journals (Sweden)

    Ditha Diana

    2009-09-01

    Full Text Available Aim Low physical activity causes poor physical fitness, which leads to low productivity. The objective of this study was to determine the effects of low work-related physical activity and other risk factors on physical fitness.Methods This study was done in February 2008. Subjects were workers from 15 departments in PT Semen Padang, West Sumatera (Indonesia. Data on physical activities were collected using the questionnaire from the Student Field Work I Guidebook and Hypertension – Geriatric Integrated Program of the Faculty of Medicine, Universitas Indonesia2003. Physical fitness was measured using the Harvard Step Test.Results A number of 937 male workers aged 18 – 56 years participated in this study. Poor physical fitness was found in 15.9% of the subjects. Low work-related physical activity, smoking, lack of exercise, hypertension, diabetes mellitus, and asthma were dominant risk factors related to poor physical fi tness. Subjects with low compared to high work-related activity had a ten-fold risk of poor physical fitness [adjusted odds ratio (ORa = 10.71; 95% confidence interval (CI = 4.71–24.33]. In term of physical exercise, subjects who had no compared to those who had physical exercise had a six-fold risk of poor physical fitness (ORa = 6.30; 95%CI = 3.69-10.75.Conclusion Low work-related physical activities, smoking, lack of exercise, hypertension, diabetes mellitus, and sthma were correlated to poor physical fi tness. It is, among others, therefore necessary to implement exercises for workers with poor physical fitness. (Med J Indones. 2009;18:201-5Key words: exercise test, occupational healths, physical fitness

  18. Advances in radiation-hydrodynamics and atomic physics simulation for current and new neutron-less targets

    International Nuclear Information System (INIS)

    Velarde, G.; Minguez, E.; Bravo, E.

    2003-01-01

    We present advances in advanced fusion cycles, atomic physics and radiation hydrodynamics. With ARWEN code we analyze a target design for ICF based on jet production. ARWEN is 2D Adaptive Mesh Refinement fluid dynamic and multigroup radiation transport. We are designing, by using also ARWEN, a target for laboratory simulation of astrophysical phenomena. We feature an experimental device to reproduce collisions of two shock waves, scaled to roughly represent cosmic supernova remnants. Opacity calculations are obtained with ANALOP code, which uses parametric potentials fitting to self-consistent potentials. It includes temperature and density effects by linearized Debye-Hueckel and it treats excited configurations and H+He-like lines. Advanced fusion cycles, as the a neutronic proton-boron 11 reaction, require very high ignition temperatures. Plasma conditions for a fusion-burning wave to propagate at such temperatures are rather extreme and complex, because of the overlapping effects of the main energy transport mechanisms. Calculations on the most appropriate ICF regimes for this purpose are presented. (author)

  19. Study on the energy response to neutrons for a new scintillating-fiber-array neutron detector

    CERN Document Server

    Zhang Qi; Wang Qun; Xie Zhong Shen

    2003-01-01

    The energy response of a new scintillating-fiber-array neutron detector to neutrons in the energy range 0.01 MeV<=E sub n<=14 MeV was modeled by combining a simplified Monte Carlo model and the MCNP 4b code. In order to test the model and get the absolute sensitivity of the detector to neutrons, one experiment was carried out for 2.5 and 14 MeV neutrons from T(p,n) sup 3 He and T(d,n) sup 4 He reactions at the Neutron Generator Laboratory at the Institute of Modern Physics, the Chinese Academy of Science. The absolute neutron fluence was obtained with a relative standard uncertainty 4.5% or 2.0% by monitoring the associated protons or sup 4 He particles, respectively. Another experiment was carried out for 0.5, 1.0, 1.5, 2.0, 2.5 MeV neutrons from T(p,n) sup 3 He reaction, and for 3.28, 3.50, 4.83, 5.74 MeV neutrons from D(d,n) sup 3 He reaction on the Model 5SDH-2 accelerator at China Institute of Atomic Energy. The absolute neutron fluence was obtained with a relative standard uncertainty 5.0% by usin...

  20. Relation of physical activity and self-esteem.

    Science.gov (United States)

    Bobbio, Andrea

    2009-04-01

    The aim of this study was to examine the relation between self-esteem appraisal and physical activity testing a convenience sample of 211 individuals, ages 19 to 35 years and selected from the general population after a brief structured interview. They were grouped by sport habits into three distinct groups named Athletes, Nonathletes, and Sedentary people, and then were examined for significant differences in self-esteem scores measured via the Heatherton and Polivy State Self-esteem Scale which assesses three correlated factors, respectively, Performance, Social, and Appearance. As hypothesized, self-esteem scores between-groups differences emerged for the Appearance factor only, and the Sedentary group scored comparatively lower than the other two groups.

  1. Neutrons for science (NFS) at spiral-2

    International Nuclear Information System (INIS)

    Ridikas, D.

    2005-01-01

    Both cross section measurements and various applications could be realised successfully using the high energy neutrons that will be produced at SPIRAL-2. Two particular cases were examined in more detail, namely: (a) neutron time-of-flight (nToF) measurements with pulsed neutron beams, and (b) material activation-irradiation with high-energy high-intensity neutron fluxes. Thanks to the high energy and high intensity neutron flux available, SPIRAL-2 offers a unique opportunity for material irradiations both for fission and fusion related research, tests of various detection systems and of resistance of electronics components to irradiations, etc. SPIRAL-2 also could be considered as an intermediate step towards new generation dedicated irradiation facilities as IFMIF previewed only beyond 2015. Equally, the interval from 0.1 MeV to 40 MeV for neutron cross section measurements is an energy range that is of particular importance for energy applications, notably accelerator driven systems (ADS) and Gen-IV fast reactors, as well as for fusion related devices. It is also the region where pre-equilibrium approaches are often used to link the low (evaporation) and high energy (intra-nuclear cascade) reaction models. With very intense neutron beams of SPIRAL-2 measurements of very low mass (often radioactive) targets and small cross sections become feasible in short experimental campaigns. Production of radioactive targets for dedicated physics experiments is also an attractive feature of SPIRAL-2. In brief, it was shown that SPIRAL-2 has got a remarkable potential for neutron based research both for fundamental physics and various applications. In addition, in the neutron energy range from a few MeV to, say, 35 MeV this research would have a leading position for the next 10-15 years if compared to other neutron facilities in operation or under construction worldwide. (author)

  2. Relation of Age at Menarche to Physical Activity

    Directory of Open Access Journals (Sweden)

    Egreta Peja

    2016-10-01

    Full Text Available The aim of this study is to determine whether regular physical activity during early puberty is influential in preventing early menarche. This cross sectional study was carried out on 102 post-menarcheal girls aged 11–20 (14.79±0.33. 51 of them were already engaged in competitive sport activities prior to the onset of menstruation (group 1, while the others got engaged in such activities after the onset of menstruation (group 2. All participants provided the year and the month of their first menstrual period. First, we estimated the equality of dispersion between the two groups, by conducting Two Samples for Variances F-test. Second, because no homogeneity of variances between groups was found, they were compared by using Two Samples Assuming Unequal Variances t-test. The difference between groups is statistically significant, as the t statistics (=2.883 is greater than both critical t statistics (one-tail=1.664 two-tail=1.990 and the p value less than 0.05 in both cases (one-tail=0.002 two-tail=0.005. None of the girls in the first group starts to menstruate before 11 years of age and 90% of them are menstruating by age 14, with a median age of 12.95±0.35 years. Age of menarche is lower in the second group with a median age of 12.25±0.31 years, thus approximately 8 months lower than median age for the first group. 11.76% of the girls in the second group start to menstruate before 11 years of age and 90% of them are menstruating by age 13. It is rather, the decline in early matures among those engaged in regular physical activity prior to the onset of menses, that makes the statistically significant correlation between physical activity and age at menarche practically meaningful. Relatively early matures (<11 years have been found to be slightly shorter but up to 5.5 kg heavier in adulthood than are late matures. In addition, a relatively young age at menarche has been associated with an increased risk for breast cancer and spontaneous

  3. Application of the fractional neutron point kinetic equation: Start-up of a nuclear reactor

    International Nuclear Information System (INIS)

    Polo-Labarrios, M.-A.; Espinosa-Paredes, G.

    2012-01-01

    Highlights: ► Neutron density behavior at reactor start up with fractional neutron point kinetics. ► There is a relaxation time associated with a rapid variation in the neutron flux. ► Physical interpretation of the fractional order is related with non-Fickian effects. ► Effect of the anomalous diffusion coefficient and the relaxation time is analyzed. ► Neutron density is related with speed and duration of the control rods lifting. - Abstract: In this paper we present the behavior of the variation of neutron density when the nuclear reactor power is increased using the fractional neutron point kinetic (FNPK) equation with a single-group of delayed neutron precursor. It is considered that there is a relaxation time associated with a rapid variation in the neutron flux and its physical interpretation of the fractional order is related with non-Fickian effects from the neutron diffusion equation point of view. We analyzed the case of increase the nuclear reactor power when reactor is cold start-up which is a process of inserting reactivity by lifting control rods discontinuously. The results show that for short time scales of the start-up the neutronic density behavior with FNPK shows sub-diffusive effects whose absorption are government by control rods velocity. For large times scale, the results shows that the classical equation of the neutron point kinetics over predicted the neutron density regarding to FNPK.

  4. The effect of neutron spectrum on the mechanical and physical properties of pure copper and copper alloys

    DEFF Research Database (Denmark)

    Fabritsiev, S.A.; Pokrovsky, A.S.; Zinkle, S.J.

    1996-01-01

    -irradiated inside a 1.5 mm Cd shroud in order to reduce the thermal neutron flux. The electrical resistivity data could be separated into two components, a solid transmutation component Delta rho(tr) which was proportional to thermal neutron fluence and a radiation defect component Delta rho(rd) which...

  5. Neutron Scattering

    International Nuclear Information System (INIS)

    Fayer, Michael J.; Gee, Glendon W.

    2005-01-01

    The neutron probe is a standard tool for measuring soil water content. This article provides an overview of the underlying theory, describes the methodology for its calibration and use, discusses example applications, and identifies the safety issues. Soil water makes land-based life possible by satisfying plant water requirements, serving as a medium for nutrient movement to plant roots and nutrient cycling, and controlling the fate and transport of contaminants in the soil environment. Therefore, a successful understanding of the dynamics of plant growth, nutrient cycling, and contaminant behavior in the soil requires knowledge of the soil water content as well as its spatial and temporal variability. After more than 50 years, neutron probes remain the most reliable tool available for field monitoring of soil water content. Neutron probes provide integrated measurements over relatively large volumes of soil and, with proper access, allow for repeated sampling of the subsurface at the same locations. The limitations of neutron probes include costly and time-consuming manual operation, lack of data automation, and costly regulatory requirements. As more non-radioactive systems for soil water monitoring are developed to provide automated profiling capabilities, neutron-probe usage will likely decrease. Until then, neutron probes will continue to be a standard for reliable measurements of field water contents in soils around the globe

  6. Neutron techniques in Safeguards

    International Nuclear Information System (INIS)

    Zucker, M.S.

    1982-01-01

    An essential part of Safeguards is the ability to quantitatively and nondestructively assay those materials with special neutron-interactive properties involved in nuclear industrial or military technology. Neutron techniques have furnished most of the important ways of assaying such materials, which is no surprise since the neutronic properties are what characterizes them. The techniques employed rely on a wide selection of the many methods of neutron generation, detection, and data analysis that have been developed for neutron physics and nuclear science in general

  7. Introduction to the basic concepts of modern physics special relativity, quantum and statistical physics

    CERN Document Server

    Becchi, Carlo Maria

    2007-01-01

    These notes are designed as a text book for a course on the Modern Physics Theory for undergraduate students. The purpose is providing a rigorous and self-contained presentation of the simplest theoretical framework using elementary mathematical tools. A number of examples of relevant applications and an appropriate list of exercises and answered questions are also given. The first part is devoted to Special Relativity concerning in particular space-time relativity and relativistic kinematics. The second part deals with Schroedinger's formulation of quantum mechanics. The presentation concerns mainly one dimensional problems, in particular tunnel effect, discrete energy levels and band spectra. The third part concerns the application of Gibbs statistical methods to quantum systems and in particular to Bose and Fermi gasses.

  8. Multi-physical developments for safety related investigations of low moderated boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Schlenker, Markus Thomas

    2014-12-19

    The main objective of this dissertation is the development and optimization of a low moderated boiling water reactor (BWR) core with improved fuel utilization to be incorporated in a Gen II BWR nuclear power plant. The assessment of the new core design is done by comparing it with a full MOX BWR core design regarding neutron physical and thermal-hydraulic design and safety criteria (e.g. inherent reactivity coefficients) and different sustainability parameters (e.g. conversion ratio).

  9. Multi-physical Developments for Safety Related Investigations of Low Moderated Boiling Water Reactors

    OpenAIRE

    Schlenker, Markus Thomas

    2014-01-01

    The main objective of this dissertation is the development and optimization of a low moderated boiling water reactor (BWR) core with improved fuel utilization to be incorporated in a Gen II BWR nuclear power plant. The assessment of the new core design is done by comparing it with a full MOX BWR core design regarding neutron physical and thermal-hydraulic design and safety criteria (e.g. inherent reactivity coefficients) and different sustainability parameters (e.g. conversion ratio).

  10. Survey of trace elements in coals and coal-related materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Ruch, R.R.; Cahill, R.A.; Frost, J.K.; Camp, L.R.; Gluskoter, H.J.

    1977-01-01

    Utilizing primarily instrumental neutron activation analysis and other analytical methods such as neutron-activation analysis with radiochemical separation, emission spectrochemical analysis, atomic absorption spectroscopy, X-ray fluorescence analysis, ion-selective electrode analysis, and American Society for Testing of Materials procedures (ASTM), as many as 61 elements were quantitatively surveyed in 170 U.S. whole coals, 70 washed coals, and 40 bench samples. Data on areal and vertical distributions in various regions were obtained along with extensive information on the mode of occurence of various elements in the coal matrix itself. Efforts have been made to attain the maximal accuracy and precision possible for a wide variety of elements in the inhomogeneous coal matrix. (T.G.)

  11. Neutron-proton bremsstrahlung experiments

    Energy Technology Data Exchange (ETDEWEB)

    Koster, J.E. (Los Alamos National Lab., NM (United States)); Nelson, R.O. (Los Alamos National Lab., NM (United States)); Schillaci, M.E. (Los Alamos National Lab., NM (United States)); Wender, S.A. (Los Alamos National Lab., NM (United States)); Mayo, D. (Univ. of California at Davis, CA (United States)); Brady, F.P. (Univ. of California at Davis, CA (United States)); Romero, J. (Univ. of California at Davis, CA (United States)); Krofcheck, D. (Lawrence Livermore National Lab., CA (United States)); Blann, M. (Lawrence Livermore National Lab., CA (United States)); Anthony, P. (Lawrence Livermore National Lab., CA (United States)); Brown, V.R. (Lawrence Livermore National Lab., CA (United States)); Hansen, L. (Lawrence Livermore National Lab., CA (United States)); Pohl, B. (Lawrence Livermore National Lab., CA (United States)); Sangster, T.C. (Lawrence Livermore National Lab., CA (United States)); Nifenecker, H. (Inst. des Sciences Nucleaires, Grenoble (France)); Pinston,

    1993-06-01

    It is well known that charged particles emit bremsstrahlung radiation when they are accelerated. Classical electron bremsstrahlung occurs when a proton is emitted by an electron accelerated in the field of a nucleus. The bremsstrahlung process also occurs in the scattering of nucleons, for which it is the lowest energy inelastic process that can occur. Like electron bremsstrahlung, nucleon-nucleon bremsstrahlung also requires the exchange of a virtual particle to conserve energy and momentum. In electron bremsstrahlung a virtual photon is exchanged but with two nucleons a meson can be exchanged. Unlike electron bremsstrahlung, in nucleon-nucleon bremsstrahlung the photon can originate from the exchanged meson. This exchange contribution has been shown in calculations to be a significant fraction of bremsstrahlung events. Thus bremsstrahlung serves as a probe of exchange currents in the nucleon-nucleon interaction. Because of a lack of a free neutron target or an intense neutron beam, few measurements of neutron-proton bremsstrahlung exist, each having poor statistical accuracy and poor energy resolution. The white neutron source at the Weapons Neutron Research (WNR) target area at the Los Alamos Meson Physics Facility (LAMPF) produces neutrons with energies from below 50 to above 400 MeV. Using time-of-flight techniques and a liquid hydrogen target, we are measuring the outgoing photons of energies up to 250 MeV at gamma ray angles of around 90 relative to the incident beam. Protons scattered at very forward angles are also detected in coincidence with the gamma rays. (orig.)

  12. A short note on physical properties to irradiated nuclear fuel by means of X-ray diffraction and neutron scattering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Yusof, E-mail: yusofabd@nuclearmalaysia.gov.my; Husain, Hishamuddin; Hak, Cik Rohaida Che; Alias, Nor Hayati; Yusof, Mohd Reusmaazran; Kasim, Norasiah Ab; Zali, Nurazila Mat [Malaysian Nuclear Agency, Bangi, Kajang 43000, Selangor (Malaysia); Mohamed, Abdul Aziz [College of Engineering, Universiti Tenaga National, Jalan Ikram-Uniten, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    For nuclear reactor applications, understanding the evolution of the fuel materials microstructure during irradiation are of great importance. This paper reviews the physical properties of irradiated nuclear fuel analysis which are considered to be of most importance in determining the performance behavior of fuel. X-rays diffraction was recognize as important tool to investigate the phase identification while neutron scattering analyses the interaction between uranium and other materials and also investigation of the defect structure.

  13. Instrumental neutron activation analysis of human hair and related radiotracer experiments on washing and leaching

    International Nuclear Information System (INIS)

    Das, H.A.; Hoede, D.; Sloot, H.A. van der; Herber, R.F.M.

    1981-11-01

    The work done under the IAEA-contract 2440/RB is summarized. The aim was to develop a fast and reliable system for the determination of tracer elements in human head hair by instrumental neutron activation analysis (INAA) and radiotracer washing experiments. The standardized procedure for INAA was applied to hair samples collected by the Coronel Laboratory of the University of Amsterdam. The correlation between trace element contents is considered

  14. Investigation of magnon dispersion relations and neutron scattering cross sections with special attention to anisotropy effects

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Kowalska, A.; Laut, Peter

    1967-01-01

    curves are suggested. The magnon cross section for unpolarized neutrons is calculated and shown to be dependent on the anisotropy in the spin interaction. Thus in principle it allows the detection of anisotropy in the exchange interaction. Some remarks are made concerning antiferromagnetic and plane...... for the exchange interaction seem to be necessary for agreement with experimental dispersion curves be obtained. The effect of the anisotropy in the cross section is estimated and shown to be important for small magnon energies....

  15. Neutron in biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10{sup 2} to 10{sup 3} times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  16. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  17. Neutron in biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1997-01-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10 2 to 10 3 times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  18. Neutron Physics Division progress report for period ending February 28, 1977

    International Nuclear Information System (INIS)

    Maienschein, F.C.

    1977-05-01

    Summaries are given of research progress in the following areas: (1) measurements of cross sections and related quantities, (2) cross section evaluations and theory, (3) cross section processing, testing, and sensitivity analysis, (4) integral experiments and their analyses, (5) development of methods for shield and reactor analyses, (6) analyses for specific systems or applications, and (7) information analysis and distribution

  19. Neutron star kicks and asymmetric supernovae

    International Nuclear Information System (INIS)

    Lai, D.

    2001-01-01

    Observational advances over the last decade have left little doubt that neutron stars received a large kick velocity (of order a few hundred to a thousand km s -1 ) at birth. The physical origin of the kicks and the related supernova asymmetry is one of the central unsolved mysteries of supernova research. We review the physics of different kick mechanisms, including hydrodynamically driven, neutrino - magnetic field driven, and electromagnetically driven kicks. The viabilities of the different kick mechanisms are directly related to the other key parameters characterizing nascent neutron stars, such as the initial magnetic field and the initial spin. Recent observational constraints on kick mechanisms are also discussed. (orig.)

  20. PHYSICAL GEOGRAPHY: CONSTRUCTS AND QUESTIONS RELATING TO CURRICULUM AND PEDAGOGY

    Directory of Open Access Journals (Sweden)

    Duncan Hawley

    Full Text Available ABSTRACT:A series of questions are raised to prompt examination of the role and place of physical geography in the school curriculum and its relationship with science; consequently challenging teachers to consider the implications for their pedagogy. An examination of physical geography knowledge illustrates how it is constructed with a plurality of meanings, and a framework for interpreting different meanings and approaches is offered followed by critical discussion of the dominant discourses and teaching approaches adopted in schools. Contexts have played an important role in influencing how physical geography has been taught in schools and the paper discusses the merits of recent trends towards teaching physical geography via issues- based or social contexts, where physical topics are explored for social relevance rather than understanding of the physical processes and drivers. Evidence for and against this approach is outlined and questions raised about whether integrated and applied approaches to teaching physical geography dilute the quality and emphasis of learning and understanding. It is suggested that physical geography, as taught in schools, may need to catch up by adopting a less ‘fixist’ view of the physical world, by which teachers develop a curriculum and pedagogies more appropriately matched to contemporary understandings of physical geography, so enabling students to develop as more informed, critical thinkers when considering the physical world. KEY WORDS:Physical geography, schools, curriculum, pedagogy, knowledge, questions, debate. RÉSUMÉ:Une série de questions sont soulevées pour inciter examen du rôle et la place de la géographie physique dans les programmes scolaires et de sa relation avec la science ; offrant donc un défi pour les enseignants d’examiner les implications de leur enseignement. Un examen de connaissance de la géographie physique illustre comment il est construit avec une pluralité de

  1. Top 10 Research Questions Related to Children Physical Activity Motivation

    Science.gov (United States)

    Chen, Ang

    2013-01-01

    Physical activity is critical to healthy development of children. It is well documented that helping children develop and sustain a physically active lifestyle requires children to become motivated. Many studies have been conducted in the past 2.5 decades on determinants and correlates for children and adolescents' physical activity…

  2. Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Masaru

    2016-12-15

    Late inspiral and merger phases of binary neutron stars are the valuable new experimental fields for exploring nuclear physics because (i) gravitational waves from them will bring information for the neutron-star equation of state and (ii) the matter ejected after the onset of the merger could be the main site for the r-process nucleosynthesis. We will summarize these aspects of the binary neutron stars, describing the current understanding for the merger process of binary neutron stars that has been revealed by numerical-relativity simulations.

  3. Seasonal variations in health-related human physical activity.

    Science.gov (United States)

    Reilly, Thomas; Peiser, Benny

    2006-01-01

    There are profound fluctuations in climate that occur within the annual cycle of seasonal changes. The severity of these changes depends on latitude of location and prevailing topography. Living creatures have evolved means of coping with seasonal extremes. Endogenous circannual cycles, at least in humans, appear to have been masked by mechanisms employed to cope with environmental changes. Physical activity levels tend to be lower in winter than in summer, mediating effects on health-related fitness. In athletes, seasonal changes are dictated by requirements of the annual programme of competitive engagements rather than an inherent circannual rhythm. Injury rates are influenced by seasonal environmental factors, notably in field sports. Season of birth has been related to susceptibility to selected morbidities, including mental ill-health. In age-restricted sports, there is a date-of-birth bias favouring those individuals born early in the competitive year. Trainers and selectors should acknowledge this trend if they are to avoid omitting gifted individuals, born later in the year, from talent development programmes.

  4. Neutron star mergers as a probe of modifications of general relativity with finite-range scalar forces

    Science.gov (United States)

    Sagunski, Laura; Zhang, Jun; Johnson, Matthew C.; Lehner, Luis; Sakellariadou, Mairi; Liebling, Steven L.; Palenzuela, Carlos; Neilsen, David

    2018-03-01

    Observations of gravitational radiation from compact binary systems provide an unprecedented opportunity to test general relativity in the strong field dynamical regime. In this paper, we investigate how future observations of gravitational radiation from binary neutron star mergers might provide constraints on finite-range forces from a universally coupled massive scalar field. Such scalar degrees of freedom (d.o.f.) are a characteristic feature of many extensions of general relativity. For concreteness, we work in the context of metric f (R ) gravity, which is equivalent to general relativity and a universally coupled scalar field with a nonlinear potential whose form is fixed by the choice of f (R ). In theories where neutron stars (or other compact objects) obtain a significant scalar charge, the resulting attractive finite-range scalar force has implications for both the inspiral and merger phases of binary systems. We first present an analysis of the inspiral dynamics in Newtonian limit, and forecast the constraints on the mass of the scalar and charge of the compact objects for the Advanced LIGO gravitational wave observatory. We then perform a comparative study of binary neutron star mergers in general relativity with those of a one-parameter model of f (R ) gravity using fully relativistic hydrodynamical simulations. These simulations elucidate the effects of the scalar on the merger and postmerger dynamics. We comment on the utility of the full waveform (inspiral, merger, postmerger) to probe different regions of parameter space for both the particular model of f (R ) gravity studied here and for finite-range scalar forces more generally.

  5. Associations between different types of physical activity and teachers’ perceived mental, physical, and work-related health

    OpenAIRE

    Bogaert, Inge; De Martelaer, Kristine; Deforche, Benedicte; Clarys, Peter; Zinzen, Evert

    2014-01-01

    Background: The teaching profession is characterized by high levels of stress and physical complaints, which might be improved through regular participation in physical activity (PA). However, the effect of PA on mental and physical health is not always consistent and depends on the type of PA performed. The aim of this study was to examine the mental, physical, and work-related health of Flemish secondary school teachers and identify the impact on those health variables by demographic and te...

  6. Study of variation of materials patients room's door related of neutron flux iradiation

    Science.gov (United States)

    Nirmalasari, Yuliana Dian; Suparmi, A.; Sardjono, Y.

    2017-08-01

    The treatment chamber of patients has been simulating with MCNPX Code. Optimation of simulation design of Irradiation chamber is corresponding to ISO standards for 30 MeV cyclotron generator. The simulation has used the variation of door's materials that was applied at treatment room's door. The variation of materials was Stainless Steel 202 and Pb, the thickness Pb and stainless steel 202 with the thickness were 2 cm, respectively. Neutron flux that was radiated to stainless steel 202 in the sequence was 3.34195 × 105 n . Cm-2 s-1 and 8.41568 × 104 n . Cm-2 s-1, while for Pb was 4.01349 × 105 n . Cm-2 s-1 and 2.58058 × 104 n . Cm-2 s-1. The further, neutron flux that was radiated to Pb and stainless steel 202 with the thickness were 4 cm in sequence was 4.00601 × 105 n . Cm-2 s-1 and 1.71713 × 104 n . Cm-2 s-1 for Pb, while for SS 202 was 3.09925 × 105 n . Cm-2 s-1. From this ratio we concluded that material Pb absorbed higher neutron flux than material Stainless Steel 202. On the other hand, the cost of Pb was more expensive than Stainless Steel 202. In addition, the material Stainless Steel 202 was obtaine more easily than the material Pb. There fore to overcome the economics problem, can try to build the door with stainless still 202 sheet and Pb sheet together. The further, the neutron dose with 2 cm of thickness was 7.69603 × 10-2 Gy and 2.10623 × 10-2 Gy for SS 202, while for Pb was 4.19444 × 10-2 Gy and 1.50581 × 10-2 Gy. While the neutron dose with 4 cm of thickness for SS 202 was 9.39602 × 10-2 Gy and for Pb was 4.46541 × 10-2 Gy and 1.50502 × 10-2 Gy. We recommend that this simulation should be further optimized.

  7. The importance of health-related physical fitness

    Directory of Open Access Journals (Sweden)

    Maria Fátima Glaner

    2003-12-01

    Full Text Available Mechanization and automation, swift communication and transport, computer usage and television viewing have reduced the need for vigorous occupations and discouraged involvement in leisure-time recreational activity. Studies have reported that there is a causal relationship between the risk of chronic disease incidence and mortality and physical activity and/or physical fi tness. Therefore, the aim of this review is to summarize and synthesize the association between health-related physical fi tness (aerobic endurance, fl exibility, strength/ endurance, body fat and chronic diseases. The papers reviewed demonstrate that higher and moderate levels of aerobic endurance, fl exibility, muscular strength/endurance, and desirable body fat levels, are very important for promoting health at all ages, and to avoid early development of chronic diseases. RESUMO A mecanização e a automação, o transporte e a comunicação rápidos, o uso do computador e da televisão têm diminuído atividades vigorosas, inclusive no tempo livre. Estudos reportam que a relação entre o risco de incidência de doenças crônico-degenerativas e a atividade física e/ou a aptidão física é causal. Portanto, o objetivo desta revisão é resumir e sintetizar a associação entre aptidão física relacionada à saúde (aptidão cardiorrespiratória, fl exibilidade, força/resistência muscular e gordura corporal e as doenças crônicodegenerativas. Os estudos mostram que altos e moderados níveis de aptidão cardiorrespiratória, fl exibilidade, força/resistência muscular, e um nível adequado de gordura são muito importantes para promover a saúde em todas idades, bem como evitar o desenvolvimento precoce de doenças crônico-degenerativas.

  8. Horizons of Physics

    Indian Academy of Sciences (India)

    Looking at the growing importance of materials science and the related area of condensed matter physics, the series has articles about diamonds, the role of neutrons in the study of solids, inelastic scattering of. X-rays, high temperature superconductivity, as well as basic crystal structure analysis. Physics at the microscopic ...

  9. Relation between proton and neutron asymptotic normalization coefficients for light mirror nuclei and its relevance for nuclear astrophysics)

    International Nuclear Information System (INIS)

    Timofeyuk, N.K.; Johnson, R.C.; Descouvemont, P.

    2005-01-01

    In this talk, relation between proton and neutron Asymptotic Normalization Coefficients (ANCs) for light mirror nuclei will be discussed. This relation follows from charge symmetry of nucleon-nucleon interactions and is given by a simple approximate analytical formula which involves proton and neutron separation energies, charges of residual nuclei and the range of their strong interaction with the last nucleon. This relation is valid both for particle-bound mirror nuclear levels and for mirror pairs in which one of the levels is a narrow resonance. In the latter case, the width of this resonance is related to the ANC of its mirror particle-stable analog. Our theoretical study of mirror ANCs for several light nuclei within a framework of microscopic two-, three- and four-cluster models, have shown that the ratio of mirror ANCs changes as predicted by the simple approximate analytical formula. We will also compare the results from our microscopic calculations to the predictions of the single-particle model and discuss mirror symmetry of spectroscopic factors and single-particle ANCs. (author)

  10. Entrainment coefficient and effective mass for conduction neutrons in neutron star crust: simple microscopic models

    International Nuclear Information System (INIS)

    Carter, Brandon; Chamel, Nicolas; Haensel, Pawel

    2005-01-01

    In the inner crust of a neutron star, at densities above the 'drip' threshold, unbound 'conduction' neutrons can move freely past through the ionic lattice formed by the nuclei. The relative current density ni=nv-bar i of such conduction neutrons will be related to the corresponding mean particle momentum pi by a proportionality relation of the form ni=Kpi in terms of a physically well defined mobility coefficient K whose value in this context has not been calculated before. Using methods from ordinary solid state and nuclear physics, a simple quantum mechanical treatment based on the independent particle approximation, is used here to formulate K as the phase space integral of the relevant group velocity over the neutron Fermi surface. The result can be described as an 'entrainment' that changes the ordinary neutron mass m to a macroscopic effective mass per neutron that will be given-subject to adoption of a convention specifying the precise number density n of the neutrons that are considered to be 'free'-by m-bar =n/K. The numerical evaluation of the mobility coefficient is carried out for nuclear configurations of the 'lasagna' and 'spaghetti' type that may be relevant at the base of the crust. Extrapolation to the middle layers of the inner crust leads to the unexpected prediction that m-bar will become very large compared with m

  11. Physical start up of the Dalat nuclear research reactor with the core configuration having a central neutron trap; Khoi dong vat ly lo phan ung hat nhan Da Lat voi cau hinh vung hoat co bay notron

    Energy Technology Data Exchange (ETDEWEB)

    Hien, Pham Duy; Huy, Ngo Quang; Long, Vu Hai; Mai, Tran Khanh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    After the reactor has reached physical criticality with the core configuration exempt from central neutron trap on 1 November 1983, the core configuration with a central neutron trap has been arranged in the reactor and the reactor has reached physical criticality with this core configuration at 17h48 on 18 December 1983. The integral worths of different control rods are determined with accuracy. 2 refs., 24 figs., 18 tabs.

  12. k0-measurements and related nuclear data compilation for (n, γ) reactor neutron activation analysis Pt. 3b

    International Nuclear Information System (INIS)

    Corte, F. de; Simonits, A.

    1989-01-01

    k 0 -factors and related nuclear data are tabulated for 112 radionuclides of interest in (n, γ) reactor neutron activation analysis. Whenever relevant, critical comments are made with respect to the accuracy of literature data for e. g. isotopic abundances, half-lives, absolute gamma-intensities and 2200 m · s -1 (n, γ) cross sections. As to the latter, a comparison is made with the values calculated from the experimentally determined k 0 -factors, by introduction of selected literature data for the input parameters. References to the table (79 pages) include 156 items. (author) 7 refs.; 1 tab

  13. Effects of fast-neutron damage from 0 to 42 x 1021 neutrons/CM2 on the physical properties of near-isotropic grades of graphite

    International Nuclear Information System (INIS)

    Cook, W.H.; Kennedy, C.R.; Eatherly, W.P.

    1975-01-01

    The characterization of property changes in various grades of near-isotropic, ''binderless'' grades of graphite as functions of fluence accumulated at 715 0 C from 0 to 42 x 10 21 neutrons/cm 2 (E greater than 50 keV) was made. Generally, the average coefficients of thermal expansion (CTE) from 20 to 600 0 C and the room-temperature values for strengths, fracture strains, Young's moduli, shear moduli, and calculated figures of merit (FOM) for resistance to thermal shock all ultimately decreased with fluence. (U.S.)

  14. Reactor Neutron Sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.

    1994-01-01

    The present status and the prospects for development of reactor neutron sources for neutron scattering research in the world are considered. The fields of application of neutron scattering relative to synchrotron radiation, the creation stages of reactors (steady state and pulsed) and their position in comparison with spallation neutron sources at present and in the foreseen future are discussed. (author). 15 refs.; 8 figs.; 3 tabs

  15. Evolution of magnetized, differentially rotating neutron stars: Simulations in full general relativity

    International Nuclear Information System (INIS)

    Duez, Matthew D.; Liu, Yuk Tung; Shapiro, Stuart L.; Stephens, Branson C.; Shibata, Masaru

    2006-01-01

    We study the effects of magnetic fields on the evolution of differentially rotating neutron stars, which can be formed in stellar core collapse or binary neutron star coalescence. Magnetic braking and the magnetorotational instability (MRI) both act on differentially rotating stars to redistribute angular momentum. Simulations of these stars are carried out in axisymmetry using our recently developed codes which integrate the coupled Einstein-Maxwell-MHD equations. We consider stars with two different equations of state (EOS), a gamma-law EOS with Γ=2, and a more realistic hybrid EOS, and we evolve them adiabatically. Our simulations show that the fate of the star depends on its mass and spin. For initial data, we consider three categories of differentially rotating, equilibrium configurations, which we label normal, hypermassive and ultraspinning. Normal configurations have rest masses below the maximum achievable with uniform rotation, and angular momentum below the maximum for uniform rotation at the same rest mass. Hypermassive stars have rest masses exceeding the mass limit for uniform rotation. Ultraspinning stars are not hypermassive, but have angular momentum exceeding the maximum for uniform rotation at the same rest mass. We show that a normal star will evolve to a uniformly rotating equilibrium configuration. An ultraspinning star evolves to an equilibrium state consisting of a nearly uniformly rotating central core, surrounded by a differentially rotating torus with constant angular velocity along magnetic field lines, so that differential rotation ceases to wind the magnetic field. In addition, the final state is stable against the MRI, although it has differential rotation. For a hypermassive neutron star, the MHD-driven angular momentum transport leads to catastrophic collapse of the core. The resulting rotating black hole is surrounded by a hot, massive, magnetized torus undergoing quasistationary accretion, and a magnetic field collimated along

  16. Hormone receptor densities in relation to 10B neutron capture therapy

    International Nuclear Information System (INIS)

    Hechter, O.; Schwartz, I.L.

    1982-01-01

    This presentation is a theoretical discussion of the possibility that appropriate steroid-carborane derivatives might be used to selectively deliver boron-10 ( 10 B) to tumor cells with sex-hormone receptors in sufficient concentration for effective neutron capture theory (NCT) of hormone-dependent mammary and prostatic cancer. The results indicate the concentrations of androgen receptors (AR) and progesterone receptors (PR) in malignant prostatic cells or of estrogen receptors (ER) in malignant mammary cells are two low to achieve nuclear 10 B concentrations of 1 + g per g of tumor by using a steroid ligand coupled to a single carborane cage

  17. Relative measurement of the fluxes of thermal, resonant and rapid neutrons in reactor G1

    International Nuclear Information System (INIS)

    Carle, R.; Mazancourt, T. de

    1957-01-01

    We sought to determine the behavior of the thermal, resonant and rapid neutron fluxes in the multiplier-reflector transition region, in the two principal directions of the system. We have also measured the variation of these different fluxes in the body of the multiplier medium in a canal filled with graphite and in an empty canal. The results are given in the form of curves representing: - the variation of the ratio of the thermal flux to the rapid flux in axial and radial transitions - the behavior of the thermal and resonant fluxes and the variation of their ratio in the same regions. (author) [fr

  18. Analysis of zirconium and nickel based alloys and zirconium oxides by relative and internal monostandard neutron activation analysis methods

    International Nuclear Information System (INIS)

    Shinde, Amol D.; Acharya, Raghunath; Reddy, Annareddy V. R.

    2017-01-01

    The chemical characterization of metallic alloys and oxides is conventionally carried out by wet chemical analytical methods and/or instrumental methods. Instrumental neutron activation analysis (INAA) is capable of analyzing samples nondestructively. As a part of a chemical quality control exercise, Zircaloys 2 and 4, nimonic alloy, and zirconium oxide samples were analyzed by two INAA methods. The samples of alloys and oxides were also analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and direct current Arc OES methods, respectively, for quality assurance purposes. The samples are important in various fields including nuclear technology. Samples were neutron irradiated using nuclear reactors, and the radioactive assay was carried out using high-resolution gamma-ray spectrometry. Major to trace mass fractions were determined using both relative and internal monostandard (IM) NAA methods as well as OES methods. In the case of alloys, compositional analyses as well as concentrations of some trace elements were determined, whereas in the case of zirconium oxides, six trace elements were determined. For method validation, British Chemical Standard (BCS)-certified reference material 310/1 (a nimonic alloy) was analyzed using both relative INAA and IM-NAA methods. The results showed that IM-NAA and relative INAA methods can be used for nondestructive chemical quality control of alloys and oxide samples

  19. Analysis of zirconium and nickel based alloys and zirconium oxides by relative and internal monostandard neutron activation analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Amol D.; Acharya, Raghunath; Reddy, Annareddy V. R. [Bhabha Atomic Research Centre, Mumbai (India)

    2017-04-15

    The chemical characterization of metallic alloys and oxides is conventionally carried out by wet chemical analytical methods and/or instrumental methods. Instrumental neutron activation analysis (INAA) is capable of analyzing samples nondestructively. As a part of a chemical quality control exercise, Zircaloys 2 and 4, nimonic alloy, and zirconium oxide samples were analyzed by two INAA methods. The samples of alloys and oxides were also analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and direct current Arc OES methods, respectively, for quality assurance purposes. The samples are important in various fields including nuclear technology. Samples were neutron irradiated using nuclear reactors, and the radioactive assay was carried out using high-resolution gamma-ray spectrometry. Major to trace mass fractions were determined using both relative and internal monostandard (IM) NAA methods as well as OES methods. In the case of alloys, compositional analyses as well as concentrations of some trace elements were determined, whereas in the case of zirconium oxides, six trace elements were determined. For method validation, British Chemical Standard (BCS)-certified reference material 310/1 (a nimonic alloy) was analyzed using both relative INAA and IM-NAA methods. The results showed that IM-NAA and relative INAA methods can be used for nondestructive chemical quality control of alloys and oxide samples.

  20. Relative light yield and temporal response of a stilbene-doped bibenzyl organic scintillator for neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J. A.; Goldblum, B. L., E-mail: bethany@nuc.berkeley.edu; Brickner, N. M.; Daub, B. H.; Kaufman, G. S.; Bibber, K. van; Vujic, J. [Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States); Bernstein, L. A.; Bleuel, D. L.; Caggiano, J. A.; Hatarik, R.; Phillips, T. W.; Zaitseva, N. P. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Wender, S. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-05-21

    The neutron time-of-flight (nTOF) diagnostics used to characterize implosions at the National Ignition Facility (NIF) has necessitated the development of novel scintillators that exhibit a rapid temporal response and high light yield. One such material, a bibenzyl-stilbene mixed single-crystal organic scintillator grown in a 99.5:0.5 ratio in solution, has become the standard scintillator used for nTOF diagnostics at NIF. The prompt fluorescence lifetime and relative light yield as a function of proton energy were determined to calibrate this material as a neutron detector. The temporal evolution of the intensity of the prompt fluorescent response was modeled using first-order reaction kinetics and the prompt fluorescence decay constant was determined to be 2.46 ± 0.01 (fit) ± 0.13 (systematic) ns. The relative response of the bibenzyl-stilbene mixed crystal generated by recoiling protons was measured, and results were analyzed using Birks' relation to quantify the non-radiative quenching of excitation energy in the scintillator.

  1. Method of assaying uranium with prompt fission and thermal neutron borehole logging adjusted by borehole physical characteristics

    International Nuclear Information System (INIS)

    Barnard, R.W.; Jensen, D.H.

    1982-01-01

    Uranium formations are assayed by prompt fission neutron logging techniques. The uranium in the formation is proportional to the ratio of epithermal counts to thermal or eqithermal dieaway. Various calibration factors enhance the accuracy of the measurement

  2. Fast-neutron dosimetry. Progress report, 1 July 1982-30 June 1983

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.; Attix, F.H.; Gould, M.N.

    1983-01-01

    Several aspects of neutron and related photon radiological physics are being actively investigated. These research topics relate to measurement techniques, basic data values and theoretical discussions. In addition, a modest radiobiological effort is pursued concurrently. The unique coupled neutron/photon source provides an excellent tool for this latter work

  3. Neutrons as a probe

    International Nuclear Information System (INIS)

    Iizumi, Masashi

    1993-01-01

    As an introduction to the symposium a brief overview will be given about the features of neutrons as a probe. First it will be pointed out that the utilization of neutrons as a probe for investigating the structural and dynamical properties of condensed matters is a benign gift eventuated from the release of atomic energy initiated by Enrico Fermi exactly half century ago. Features of neutrons as a probe are discussed in accordance with the four basic physical properties of neutrons as an elementary particle; (1) no electric charge (the interaction with matter is nuclear), (2) the mass of neutron is 1 amu, (3) spin is 1/2 and (4) neutrons have magnetic dipole moment. Overview will be given on the uniqueness of neutrons as a probe and on the variety in the way they are used in the wide research area from the pure science to the industrial applications. (author)

  4. Relation between sedimentation behaviour of DNA-membrane complexes and DNA single- and double-strand breaks after irradiation with gamma-rays, pulse neutrons and 12C ions

    International Nuclear Information System (INIS)

    Erzgraber, G.; Lapidus, I.L.

    1985-01-01

    The experimental data on sedimentation behaviour of DNA-membrane complexes at radiation of the Chinese hamster cells (V79-4) in a wide dose range of 127 Cs γ-rays, pulse neutrons (reactor IBR-2, Laboratory of Neutron Physics, JINR, Dubna) are accelerated 12 C ions (cyclotron U-200, Laboratory of Nuclear Reactions, JINR, Dubna) are presented An assumption on the role of DNA single- and double-strend breaks in changing the sedimentation properties of DNA-membrane complexes has been confirmed by the experiments with radiation of different quality. The possibility of estimating induction and repair of DNA breaks on the basis of dependence of the relative sedimentation velocity of complexes on the irradiation does is discussed

  5. Explicit Relations of Physical Potentials Through Generalized Hypervirial and Kramers' Recurrence Relations

    Science.gov (United States)

    Sun, Guo-Hua; Dong, Shi-Hai

    2015-06-01

    Based on a Hamiltonian identity, we study one-dimensional generalized hypervirial theorem, Blanchard-like (non-diagonal case) and Kramers' (diagonal case) recurrence relations for arbitrary xκ which is independent of the central potential V(x). Some significant results in diagonal case are obtained for special κ in xκ (κ ≥ 2). In particular, we find the orthogonal relation = δn1n2 (κ = 0), = (En1 - En2)2 (κ = 1), En = + (κ = 2) and -4En + + 4 = 0 (κ = 3). The latter two formulas can be used directly to calculate the energy levels. We present useful explicit relations for some well known physical potentials without requiring the energy spectra of quantum system. Supported in part by Project 20150964-SIP-IPN, COFAA-IPN, Mexico

  6. Physical Properties of Moringa ( Moringa oleifera ) Seeds in relation ...

    African Journals Online (AJOL)

    Physical properties are very important in the design and manufacturing of processing machines. In this research work, the physical properties of Moringa were determined as design parameters for the development of an oil expeller for the crop. The properties were: length, width, thickness, arithmetic and geometric ...

  7. Scope of neutron interferometry

    International Nuclear Information System (INIS)

    Rauch, H.

    1978-01-01

    This paper deals with the interferometry of well separated coherent beams, where the phase of the beams can be manipulated individually. The basic equation of the dynamical neutron diffraction theory are recalled. The various contributions to the interaction of as low neutron with its surroundings are discussed: the various terms denote the nuclear, magnetic, electromagnetic, intrinsic, gravitational, and weak interaction respectively. Applications to nuclear physics, fundamental physics and solid state physics are successively envisaged

  8. Merger of white dwarf-neutron star binaries: Prelude to hydrodynamic simulations in general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios; MacLeod, Morgan; Baumgarte, Thomas W.; Shapiro, Stuart L.

    2009-01-01

    White dwarf-neutron star binaries generate detectable gravitational radiation. We construct Newtonian equilibrium models of corotational white dwarf-neutron star (WDNS) binaries in circular orbit and find that these models terminate at the Roche limit. At this point the binary will undergo either stable mass transfer (SMT) and evolve on a secular time scale, or unstable mass transfer (UMT), which results in the tidal disruption of the WD. The path a given binary will follow depends primarily on its mass ratio. We analyze the fate of known WDNS binaries and use population synthesis results to estimate the number of LISA-resolved galactic binaries that will undergo either SMT or UMT. We model the quasistationary SMT epoch by solving a set of simple ordinary differential equations and compute the corresponding gravitational waveforms. Finally, we discuss in general terms the possible fate of binaries that undergo UMT and construct approximate Newtonian equilibrium configurations of merged WDNS remnants. We use these configurations to assess plausible outcomes of our future, fully relativistic simulations of these systems. If sufficient WD debris lands on the NS, the remnant may collapse, whereby the gravitational waves from the inspiral, merger, and collapse phases will sweep from LISA through LIGO frequency bands. If the debris forms a disk about the NS, it may fragment and form planets.

  9. Reactor physics experiments related to transmutation in the KUCA

    Energy Technology Data Exchange (ETDEWEB)

    Shiroya, Seiji [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1997-11-01

    At the Kyoto University Critical Assembly (KUCA), {sup 237}Np/{sup 235}U fission rate ratios are being measured using the back-to-back type double fission chamber to examine the nuclear data and the computational method for the transmutation of minor actinides (MA) in light water reactors (LWRs). The neutron spectra of cores are systematically being varied by changing the moderator-to-fuel volume ratio (V{sub m}/V{sub f}). The measured data are being compared with the calculated results by SRAC with three different nuclear data files. It has been indicated that the calculated results with JENDL-3.2 agreed better with the measured ones than those with JENDL-3.1 and ENDF/B-VI, although the calculated results underestimated the measured ones by around 10%. (author)

  10. Physical fitness related to age and physical activity in older persons

    NARCIS (Netherlands)

    van Heuvelen, M.J.G.; Kempen, G.I.J.M.; Ormel, J.; Rispens, P

    Objective: This study investigated physical fitness as a function of age and leisure time physical activity (LTPA) in a community-based sample of 624 persons aged 57 yr and older. Methods: LTPA during the last 12 months was assessed through personal interviews. A wide range of physical fitness

  11. Nuclear fusion and neutron processes

    International Nuclear Information System (INIS)

    Orlov, V.V.; Shatalov, G.E.; Sherstnev, K.E.

    1984-01-01

    Problems of providing development of the design of an experimental fusion reactor with necessary neutron-physical data are discussed. Isotope composition of spent fuel in the blanket of a hybride fusion reactor (HFR) is given. Neutron balance of the reactor with Li-blanket and neutron balance of the reactor with Pb-multiplier are disclosed. A simplified scheme of neutron and energy balance in the HFR blanket is given. Development and construction of the experimental power reactor is shown to become the nearest problem of the UTS program. Alongside with other complex physical and technical problems solution of this problem requires realization of a wide program of neutron-physical investigations including measurements with required accuracy of neutron cross sections, development of methodical, program and constant basis of neutron calculations and macroscopic experiments on neutron sources

  12. Actual versus Implied Physics Students: How Students from Traditional Physics Classrooms Related to an Innovative Approach to Quantum Physics

    Science.gov (United States)

    Bøe, Maria Vetleseter; Henriksen, Ellen Karoline; Angell, Carl

    2018-01-01

    Calls for renewal of physics education include more varied learning activities and increased focus on qualitative understanding and history and philosophy of science (HPS) aspects. We have studied an innovative approach implementing such features in quantum physics in traditional upper secondary physics classrooms in Norway. Data consists of 11…

  13. Inelastic Neutron Scattering Measurements of Phonon Dispersion Relations in Andalusite and Sillimanite, Al2SiO5

    International Nuclear Information System (INIS)

    Goel, P.

    2001-01-01

    This paper reports inelastic neutron scattering (INS) measurements of the phonon dispersion relations of the aluminum silicate minerals andalusite and sillimanite, Al 2 SiO 5 . The single crystal INS measurements were undertaken using the Triple-axis-spectrometer at the Dhruva reactor, Trombay for andalusite and at the Oak Ridge National Laboratory, USA for sillimanite. The phonon dispersion relations (upto 50 mev) along various high symmetry directions have been measured and have been analyzed on the basis of lattice dynamics shell model calculations. The calculated structure factors based on the model calculations were used as guides for planning these single crystal measurements and were used to identify regions in reciprocal space with large cross-sections. The calculated structure factors have been very useful in the planning, execution and analysis of the experimental data. The calculated phonon dispersion relations are found to be in good agreement with the measured data

  14. Health-related physical fitness and physical activity in elementary school students.

    Science.gov (United States)

    Chen, Weiyun; Hammond-Bennett, Austin; Hypnar, Andrew; Mason, Steve

    2018-01-30

    This study examined associations between students' physical fitness and physical activity (PA), as well as what specific physical fitness components were more significant correlates to being physically active in different settings for boys and girls. A total of 265 fifth-grade students with an average age of 11 voluntarily participated in this study. The students' physical fitness was assessed using four FitnessGram tests, including Progressive Aerobic Cardiovascular Endurance Run (PACER), curl-up, push-up, and trunk lift tests. The students' daily PA was assessed in various settings using a daily PA log for 7 days. Data was analyzed with descriptive statistics, univariate analyses, and multiple R-squared liner regression methods. Performance on the four physical fitness tests was significantly associated with the PA minutes spent in physical education (PE) class and recess for the total sample and for girls, but not for boys. Performance on the four fitness tests was significantly linked to participation in sports/dances outside school and the total weekly PA minutes for the total sample, boys, and girls. Further, boys and girls who were the most physically fit spent significantly more time engaging in sports/dances and had greater total weekly PA than boys and girls who were not physically fit. In addition, the physically fit girls were more physically active in recess than girls who were not physically fit. Overall, students' performance on the four physical fitness tests was significantly associated with them being physically active during PE and in recess and engaging in sports/dances, as well as with their total weekly PA minutes, but not with their participation in non-organized physical play outside school. ClinicalTrials.gov ID: NCT03015337 , registered date: 1/09/2017, as "retrospectively registered".

  15. Top 10 research questions related to children physical activity motivation.

    Science.gov (United States)

    Chen, Ang

    2013-12-01

    Physical activity is critical to healthy development of children. It is well documented that helping children develop and sustain a physically active lifestyle requires children to become motivated. Many studies have been conducted in the past 2.5 decades on determinants and correlates for children and adolescents' physical activity motivation. The findings have informed researchers and practitioners about motivation sources for children and effective strategies to motivate children in given physical activity settings. Built on the extensive knowledge base and theoretical platforms formed by these research studies, the purpose of this article is to take a look at the current research landscape and provide subjective thoughts about what we still need to know about children's physical activity motivation. The product of this subjective thinking process rendered 10 potential questions for future research on children's physical activity motivation in both in-school and out-of-school settings. These topics encompass those focusing on children's physical activity motivation as a mental dispositional process, those conceptualizing the motivation as an outcome of person-environment interactions, and those attempting to dissect the motivation as an outcome of social-cultural influences and educational policies. It is hoped that the topics can serve researchers interested in children's physical activity motivation as starting blocks from which they can extend their conceptual thinking and identify research questions that are personally meaningful. It is also hoped that the list of potential questions can be helpful to researchers in accomplishing the imperative and significant mission to motivate children to be physically active in the 21st century and beyond.

  16. A model for steady-state and transient determination of subcooled boiling for calculations coupling a thermohydraulic and a neutron physics calculation program for reactor core calculation

    International Nuclear Information System (INIS)

    Mueller, R.G.

    1987-06-01

    Due to the strong influence of vapour bubbles on the nuclear chain reaction, an exact calculation of neutron physics and thermal hydraulics in light water reactors requires consideration of subcooled boiling. To this purpose, in the present study a dynamic model is derived from the time-dependent conservation equations. It contains new methods for the time-dependent determination of evaporation and condensation heat flow and for the heat transfer coefficient in subcooled boiling. Furthermore, it enables the complete two-phase flow region to be treated in a consistent manner. The calculation model was verified using measured data of experiments covering a wide range of thermodynamic boundary conditions. In all cases very good agreement was reached. The results from the coupling of the new calculation model with a neutron kinetics program proved its suitability for the steady-state and transient calculation of reactor cores. (orig.) [de

  17. Project 252Cf-D2O. The multisphere system of neutron dosimetry and spectrometry (M.S.-N.D.S.). Studies of applications to health physics

    International Nuclear Information System (INIS)

    Zaborowski, H.L.

    1976-10-01

    The project 252 Cf-D 2 O is articulated upon the utilization of a 200μg nominal 252 Cf spontaneous neutron fission source, used bare and under D 2 O spherical moderators, giving leakage neutron spectra experimentally known and/or calculated. This project has for objective the applications of those sources to Health Physics, in dosimetry (calibration of ''rad'' and ''rem-meters'') and in spectrometry, associated with the experimental system of measurements made by the generalization of the BONNER Spheres, known as ''the Multisphere System''. This communication describes the normalization method used and the results obtained leading to the adoption of a reference matrix called ''the Log-Normal Multisphere Matrix'' (LN-MM) giving the energies response functions of the generalized system for all the spheres diameters between 40 and 400 millimeters and for all the energies between 0.4eV and 15MeV [fr

  18. Einstein's physics atoms, quanta, and relativity : derived, explained, and appraised

    CERN Document Server

    Cheng, Ta-Pei

    2013-01-01

    Many regard Albert Einstein as the greatest physicist since Newton. What exactly did he do that is so important in physics? We provide an introduction to his physics at a level accessible to an undergraduate physics student. All equations are worked out in detail from the beginning. Einstein's doctoral thesis and his Brownian motion paper were decisive contributions to our understanding of matter as composed of molecules and atoms. Einstein was one of the founding fathers of quantum theory: his photon proposal through the investigation of blackbody radiation, his quantum theory of photoelectri

  19. Relative cataractogenic effects of X rays, fission-spectrum neutrons, and 56Fe particles: A comparison with mitotic effects

    International Nuclear Information System (INIS)

    Riley, E.F.; Lindgren, A.L.; Andersen, A.L.; Miller, R.C.; Ainsworth, E.J.

    1991-01-01

    The eyes of Sprague-Dawley rats were irradiated with doses of 2.5-10 Gy 250-kVp X rays, 1.25-2.25 Gy fission-spectrum neutrons (approximately 0.85 MeV), or 0.1-2.0 Gy 600-MeV/A 56Fe particles. Lens opacifications were evaluated for 51-61 weeks following X and neutron irradiations and for 87 weeks following X and 56Fe-particle irradiations. Average stage of opacification was determined relative to time after irradiation, and the time required for 50% of the irradiated lenses to achieve various stages (T50) was determined as a function of radiation dose. Data from two experiments were combined in dose-effect curves as T50 experimental values taken as percentages of the respective T50 control values (T50-% control). Simple exponential curves best describe dose responsiveness for both high-LET radiations. For X rays, a shallow dose-effect relationship (shoulder) up to 4.5 Gy was followed at higher doses by a steeper exponential dose-effect relationship. As a consequence, RBE values for the high-LET radiations are dose dependent. Dose-effect curves for cataracts were compared to those for mitotic abnormalities observed when quiescent lens epithelial cells were stimulated mechanically to proliferate at various intervals after irradiation. Neutrons were about 1.6-1.8 times more effective than 56Fe particles for inducing both cataracts and mitotic abnormalities. For stage 1 and 2 cataracts, the X-ray Dq was 10-fold greater and the D0 was similar to those for mitotic abnormalities initially expressed after irradiation

  20. Evolution of the solar system - relations to physics and cosmology

    International Nuclear Information System (INIS)

    Treder, H.J.

    1987-01-01

    The Kantian cosmogony 'based on Newtonian principles' is founded on celestial mechanics, statistical mechanics, and atomistical thermodynamics. However, these fundamental physical laws are working in the given cosmos. (author)