Finding Maximal Pairs with Bounded Gap
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Lyngsø, Rune B.; Pedersen, Christian N. S.
1999-01-01
. In this paper we present methods for finding all maximal pairs under various constraints on the gap. In a string of length n we can find all maximal pairs with gap in an upper and lower bounded interval in time O(n log n+z) where z is the number of reported pairs. If the upper bound is removed the time reduces...... to O(n+z). Since a tandem repeat is a pair where the gap is zero, our methods can be seen as a generalization of finding tandem repeats. The running time of our methods equals the running time of well known methods for finding tandem repeats....
Glass scintillator pair for compensation neutron logging
International Nuclear Information System (INIS)
Ji Changsong; Li Xuezhi; Yiu Guangduo
1985-01-01
Glass scintillator pair types ST 1604 and ST 1605 for compensation of neutron logging is developed. The neutron sensitive material used is multistick lithium glass scintillators 3 and 4 mm in diameter respectively. Thermoneutron detection efficiencies are 50-60% and 100% respectively. The detection efficiency for 60 Co γ ray is lower than 0.3%. The type ST 1604 and ST 1605 may also be used as high sensitive neutron detectors in an intensive γ ray field
Energy Technology Data Exchange (ETDEWEB)
Krueger, Thomas
2016-10-19
calculate the pairing gaps in neutron matter and provide uncertainty estimates. The formation of heavy elements in the early universe proceeds through the rapid neutron-capture process. This process requires precise knowledge of the properties of very neutron-rich nuclei, which are unstable and at present not accessible in experiments. Thus, one can explore their properties only with theoretical calculations. Currently the only approach to the properties of all nuclei are energy-density functionals (EDFs). All EDFs used today are based on phenomenological models and fits to stable nuclei, which makes their predictive power for unknown (neutron-rich) nuclei unclear. Deriving an ab initio EDF directly from the nuclear forces is an important goal of nuclear theory. A promising approach is the optimised effective potential (OEP) method. We take a step into that direction and calculate neutron drops within the OEP formalism. In addition to the exact-exchange approximation we study for the first time the effect of second-order contributions and compare to quantum Monte Carlo and other results.
Neutron area monitor with TLD pairs
International Nuclear Information System (INIS)
Guzman G, K. A.; Borja H, C. G.; Valero L, C.; Hernandez D, V. M.; Vega C, H. R.
2011-11-01
The response of a passive neutron area monitor with pairs of thermoluminescent dosimeters has been calculated using the Monte Carlo code MCNP5. The response was calculated for one TLD 600 located at the center of a polyethylene cylinder, as moderator. When neutrons collide with the moderator lose their energy reaching the TLD with thermal energies where the ambient dose equivalent is calculated. The response was calculated for 47 monoenergetic neutron sources ranging from 1E(-9) to 20 MeV. Response was calculated using two irradiation geometries, one with an upper source and another with a lateral source. For both irradiation schemes the response was calculated with the TLDs in two positions, one parallel to the source and another perpendicular to the source. The advantage of this passive neutron monitor area is that can be used in locations with intense, pulsed and mixed radiation fields. (Author)
Evolution of shell gaps with neutron richness
International Nuclear Information System (INIS)
Basu, Moumita Ray; Ray, I.; Kshetri, Ritesh; Saha Sarkar, M.; Sarkar, S.
2006-01-01
In the present work, an attempt has been made to coordinate the recent data available over the periodic table, specially near the shell gaps and studied the evolution of the shell gaps as function of neutron numbers and/or other related quantities
Three-Nucleon Forces and Triplet Pairing in Neutron Matter
Papakonstantinou, P.; Clark, J. W.
2017-12-01
The existence of superfluidity of the neutron component in the core of a neutron star, associated specifically with triplet P-wave pairing, is currently an open question that is central to interpretation of the observed cooling curves and other neutron-star observables. Ab initio theoretical calculations aimed at resolving this issue face unique challenges in the relevant high-density domain, which reaches beyond the saturation density of symmetrical nuclear matter. These issues include uncertainties in the three-nucleon (3N) interaction and in the effects of strong short-range correlations—and more generally of in-medium modification of nucleonic self-energies and interactions. A survey of existing solutions of the gap equations in the triplet channel demonstrates that the net impact on the gap magnitude of 3N forces, coupled channels, and mass renormalization shows extreme variation dependent on specific theoretical inputs, in some cases even pointing to the absence of a triplet gap, thus motivating a detailed analysis of competing effects within a well-controlled model. In the present study, we track the effects of the 3N force and in-medium modifications in the representative case of the ^3P_2 channel, based on the Argonne v_{18} two-nucleon (2N) interaction supplemented by 3N interactions of the Urbana IX family. Sensitivity of the results to the input interaction is clearly demonstrated. We point out consistency issues with respect to the simultaneous treatment of 3N forces and in-medium effects, which warrant further investigation. We consider this pilot study as the first step toward a systematic and comprehensive exploration of coupled-channel ^3P F_2 pairing using a broad range of 2N and 3N interactions from the current generation of refined semi-phenomenological models and models derived from chiral effective field theory.
Pairing gaps from nuclear mean-field models
International Nuclear Information System (INIS)
Bender, M.; Rutz, K.; Maruhn, J.A.
2000-01-01
We discuss the pairing gap, a measure for nuclear pairing correlations, in chains of spherical, semi-magic nuclei in the framework of self-consistent nuclear mean-field models. The equations for the conventional BCS model and the approximate projection-before-variation Lipkin-Nogami method are formulated in terms of local density functionals for the effective interaction. We calculate the Lipkin-Nogami corrections of both the mean-field energy and the pairing energy. Various definitions of the pairing gap are discussed as three-point, four-point and five-point mass-difference formulae, averaged matrix elements of the pairing potential, and single-quasiparticle energies. Experimental values for the pairing gap are compared with calculations employing both a delta pairing force and a density-dependent delta interaction in the BCS and Lipkin-Nogami model. Odd-mass nuclei are calculated in the spherical blocking approximation which neglects part of the the core polarization in the odd nucleus. We find that the five-point mass difference formula gives a very robust description of the odd-even staggering, other approximations for the gap may differ from that up to 30% for certain nuclei. (orig.)
Proton-neutron correlations in a broken-pair model
International Nuclear Information System (INIS)
Akkermans, J.N.L.
1981-01-01
In this thesis nuclear-structure calculations are reported which were performed with the broken-pair model. The model which is developed, is an extension of existing broken-pair models in so far that it includes both proton and neutron valence pairs. The relevant formalisms are presented. In contrast to the number-non-conserving model, a proton-neutron broken-pair model is well suited to study the correlations which are produced by the proton-neutron interaction. It is shown that the proton-neutron force has large matrix elements which mix the proton- with neutron broken-pair configurations. This occurs especially for Jsup(PI)=2 + and 3 - pairs. This property of the proton-neutron force is used to improve the spectra of single-closed shell nuclei, where particle-hole excitations of the closed shell are a special case of broken-pair configurations. Using Kr and Te isotopes it is demonstrated that the proton-neutron force gives rise to correlated pair structures, which remain remarkably constant with varying nucleon numbers. (Auth.)
Collective neutrino-pair emission due to Cooper pairing of protons in superconducting neutron stars
International Nuclear Information System (INIS)
Leinson, L.B.
2001-01-01
The neutrino emission due to formation and breaking of Cooper pairs of protons in superconducting cores of neutron stars is considered with taking into account the electromagnetic coupling of protons to ambient electrons. It is shown that collective response of electrons to the proton quantum transition contributes coherently to the complete interaction with a neutrino field and enhances the neutrino-pair production. Our calculation shows that the contribution of the vector weak current to the ννbar emissivity of protons is much larger than that calculated by different authors without taking into account the plasma effects. Partial contribution of the pairing protons to the total neutrino radiation from the neutron star core is very sensitive to the critical temperatures for the proton and neutron pairing. We show domains of these parameters where the neutrino radiation, caused by a singlet-state pairing of protons is dominating
Response of a neutron monitor area with TLDs pairs
Energy Technology Data Exchange (ETDEWEB)
Guzman G, K. A.; Borja H, C. G.; Valero L, C.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A., E-mail: ing_karen_guzman@yahoo.com.mx [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, Jose Gutierrez Abascal 2, E-28006 Madrid (Spain)
2011-10-15
The response of a passive neutron monitor area has been calculated using the Monte Carlo code MCNP5. The response was the amount of n({sup 6}Li, T){alpha} reactions occurring in a TLD-600 located at the center of a cylindrical polyethylene moderator. Fluence, (n, a) and H*(10) responses were calculated for 47 monoenergetic neutron sources. The H*(10) relative response was compared with responses of commercially available neutron monitors being alike. Due to {sup 6}Li cross section (n, {alpha}) reactions are mainly produced by thermal neutrons, however TLD-600 is sensitive to gamma-rays; to eliminate the signal due to photons monitor area was built to hold 2 pairs of TLD-600 and 2 pairs of TLD-700, thus from the difference between TLD-600 and TLD-700 readouts the net signal due to neutrons is obtained. The monitor area was calibrated at the Universidad Politecnica de Madrid using a {sup 241}AmBe neutron source; net TLD readout was compared with the H*(10) measured with a Bert hold Lb-6411. Performance of the neutron monitor area was determined through two independent experiments, in both cases the H*(10) was statistically equal to H*(10) measured with a Bert hold Lb-6411. Neutron monitor area with TLDs pairs can be used in working areas with intense, mixed and pulsed radiation fields. (Author)
Energy gap in S- and D-wave pairing superconductors
International Nuclear Information System (INIS)
Dolgov, O.V.; Golubov, A.A.
1988-01-01
In this paper the ratio of 2Δ g /T c , where Δ g is the gap edge, T c is the critical temperature, is calculated in the framework of the model of strong electron-phonon coupling. Both isotropic and anisotropic pairing cases are considered. It is shown that the isotropic Eliashberg model can not account for the large values of the ratio 2Δ g /T c for the reasonable values of the electron-phonon coupling parameter λ while anisotropic pairing can resolve this problem
Strong Neutron Pairing in core+4n Nuclei.
Revel, A; Marqués, F M; Sorlin, O; Aumann, T; Caesar, C; Holl, M; Panin, V; Vandebrouck, M; Wamers, F; Alvarez-Pol, H; Atar, L; Avdeichikov, V; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Bertulani, C A; Boillos, J M; Boretzky, K; Borge, M J G; Caamaño, M; Casarejos, E; Catford, W N; Cederkäll, J; Chartier, M; Chulkov, L; Cortina-Gil, D; Cravo, E; Crespo, R; Datta Pramanik, U; Díaz Fernández, P; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estradé, A; Farinon, F; Fraile, L M; Freer, M; Galaviz, D; Geissel, H; Gernhäuser, R; Golubev, P; Göbel, K; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Heinz, A; Henriques, A; Ignatov, A; Johansson, H T; Jonson, B; Kahlbow, J; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knyazev, A; Kröll, T; Kurz, N; Labiche, M; Langer, C; Le Bleis, T; Lemmon, R; Lindberg, S; Machado, J; Marganiec, J; Movsesyan, A; Nacher, E; Najafi, M; Nilsson, T; Nociforo, C; Paschalis, S; Perea, A; Petri, M; Pietri, S; Plag, R; Reifarth, R; Ribeiro, G; Rigollet, C; Röder, M; Rossi, D; Savran, D; Scheit, H; Simon, H; Syndikus, I; Taylor, J T; Tengblad, O; Thies, R; Togano, Y; Velho, P; Volkov, V; Wagner, A; Weick, H; Wheldon, C; Wilson, G; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M; Zilges, A; Zuber, K
2018-04-13
The emission of neutron pairs from the neutron-rich N=12 isotones ^{18}C and ^{20}O has been studied by high-energy nucleon knockout from ^{19}N and ^{21}O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay ^{19}N(-1p)^{18}C^{*}→^{16}C+n+n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a ^{14}C core surrounded by four valence neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay ^{21}O(-1n)^{20}O^{*}→^{18}O+n+n, attributed to its formation through the knockout of a deeply bound neutron that breaks the ^{16}O core and reduces the number of pairs.
Determination Of Simulated Pellet To Pellet Gap Using Neutron Radiography
International Nuclear Information System (INIS)
Kusnowo, A.
1996-01-01
The defect on the irradiated fuel element could be detected using neutron radiography. The defect could occurred in pellet to pellet gap, cladding, or even cladding to pellet gap. An investigations has been performed to detect pellet to pellet gap defect that might occur in an irradiated fuel element. An Al foil of 0,1; 0,2; 0,3; und 0,4 mm was inserted between pellets to simulate various pellet to pellet gap. The neutron radiography used had power of 700 kW. The result showed that this simulation represented well enough problems that irradiated fuel element may experience
Neutron pair and proton pair transfer reactions between identical cores in the sulfur region
International Nuclear Information System (INIS)
Mermaz, M.C.
1995-12-01
Optical model and exact finite range distorted-wave Born approximation analyses were performed on neutron pair exchange between identical cores for 32 S and 34 S nuclei and on proton pair exchange between identical cores for 30 Si and 32 S. The extracted spectroscopic factors were compared with theoretical ones deduced from Hartree-Fock calculations on these pair of nuclei. The enhancement of the experimental cross sections with respect to the theoretical ones strongly suggests evidence for a nuclear Josephson effect. (author). 15 refs., 5 figs., 3 tabs
Shell gap reduction in neutron-rich N=17 nuclei
International Nuclear Information System (INIS)
Obertelli, A.; Gillibert, A.; Alamanos, N.; Alvarez, M.; Auger, F.; Dayras, R.; Drouart, A.; France, G. de; Jurado, B.; Keeley, N.; Lapoux, V.; Mittig, W.; Mougeot, X.; Nalpas, L.; Pakou, A.; Patronis, N.; Pollacco, E.C.; Rejmund, F.; Rejmund, M.; Roussel-Chomaz, P.; Savajols, H.; Skaza, F.; Theisen, Ch.
2006-01-01
The spectroscopy of 27 Ne has been investigated through the one-neutron transfer reaction 26 Ne(d,p) 27 Ne in inverse kinematics at 9.7 MeV/nucleon. The results strongly support the existence of a low-lying negative parity state in 27 Ne, which is a signature of a reduced sd-fp shell gap in the N=16 neutron-rich region, at variance with stable nuclei
S-pairing in neutron matter: I. Correlated basis function theory
International Nuclear Information System (INIS)
Fabrocini, Adelchi; Fantoni, Stefano; Illarionov, Alexey Yu.; Schmidt, Kevin E.
2008-01-01
S-wave pairing in neutron matter is studied within an extension of correlated basis function (CBF) theory to include the strong, short range spatial correlations due to realistic nuclear forces and the pairing correlations of the Bardeen, Cooper and Schrieffer (BCS) approach. The correlation operator contains central as well as tensor components. The correlated BCS scheme of [S. Fantoni, Nucl. Phys. A 363 (1981) 381], developed for simple scalar correlations, is generalized to this more realistic case. The energy of the correlated pair condensed phase of neutron matter is evaluated at the two-body order of the cluster expansion, but considering the one-body density and the corresponding energy vertex corrections at the first order of the Power Series expansion. Based on these approximations, we have derived a system of Euler equations for the correlation factors and for the BCS amplitudes, resulting in correlated nonlinear gap equations, formally close to the standard BCS ones. These equations have been solved for the momentum independent part of several realistic potentials (Reid, Argonne v 14 and Argonne v 8 ' ) to stress the role of the tensor correlations and of the many-body effects. Simple Jastrow correlations and/or the lack of the density corrections enhance the gap with respect to uncorrelated BCS, whereas it is reduced according to the strength of the tensor interaction and following the inclusion of many-body contributions
Gap's dimensions in fuel elements from neutron radiography
International Nuclear Information System (INIS)
Notea, A.; Segal, Y.; Trichter, F.
1985-01-01
Quantitative Nondestructive evaluation (QNDE) is of upmost importance in the design and manufacture of nuclear fuel elements. Accurate non-destructive measurements of gaps, cracks, displacements, etc. supply vital information for optimizing fuel manufacturing. Neutron radiography is a powerful NDT method for examining spent fuel elements. However, it turned out that the extraction of dimensions, especially in the submillimetric range is questionable. In this paper neutron radiography of pellet-to-pellet gaps in fuel elements is modelled and two procedures for dimension extraction are presented. It is shown that for a wide gap the dimension is preferable, extracted from the width of the film profile, while for narrow gaps it is preferable to extract it from the maximum of the density profile
Probing the pairing interaction through two-neutron transfer reactions
Directory of Open Access Journals (Sweden)
Margueron J.
2012-12-01
Full Text Available The treatment of the pairing interaction in mean-field-based models is addressed. In particular, the possibility to use pair transfers as A tool to better constrain this interaction is discussed. First, pairing inter-actions with various density dependencies (surface/volume mixing are used in the microscopic Hartree-Fock-Bogoliubov + quasiparticle random-phase approximation model to generate the form factors to be used in reaction calculations. Cross sections for (p,t two-neutron transfer reactions are calculated in the one-step zero-range distorted-wave Born approximation for some Tin isotopes and for incident proton energies from 15 to 35 MeV. Three different surface/volume mixings of A zero-range density-dependent pairing interaction are employed in the microscopic calculations and the sensitivity of the cross sections to the different mixings is analyzed. Differences among the three different theoretical predictions are found espacially for the nucleus 136Sn and they are more important at the incident proton energy of 15 MeV. We thus indicate (p,t two-neutron transfer reactions with very neutron-rich Sn isotopes and at proton energies around 15 MeV as good experimental cases where the surface/volume mixing of the pairing interaction may be probed. In the second part of the manuscript, ground-state to ground-state transitions are investigated. Approximations made to estimate two-nucleon transfer probabilities in ground-state to ground-state transitions and the physical interpretation of these probabilities are discussed. Probabilities are often calculated by approximating both ground states of the initial nucleus A and of the final nucleus A±2 by the same quasiparticle vacuum. We analyze two improvements of this approach. First, the effect of using two different ground states with average numbers of particles A and A±2 is quantified. Second, by using projection techniques, the role of particle number restoration is analyzed. Our analysis
Yields of correlated fragment pairs and neutron multiplicity in spontaneous fission of {sup 242}Pu
Energy Technology Data Exchange (ETDEWEB)
Veselsky, M.; Kliman, J.; Morhaccaron, M. [Institute of Physics of Slovak Academy of Sciences, Dubravska 9, 84228 Bratislava (Slovakia); Ramayya, A.V.; Kormicki, J.; Daniel, A.V. [Physics Department, Vanderbilt University, Nashville (United States)] Rasmussen, J.O. [Lawrence Berkeley National Laboratory, Berkeley (United States)] Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore (United States); Daniel, A.V.; Popeko, G.S.; Oganessian, Yu. Ts. [Joint Institute for Nuclear Research, Dubna (Russia)] Greiner, W. [Institut fur Theoretische Physik, J. W. Goethe Universitaet, Frankfurt a. M. (Germany); Aryaeinejad, R. [Idaho National Engineering Laboratory, Idaho Falls (United States)
1998-10-01
Yields of correlated fragment pairs were obtained in spontaneous fission of {sup 242}Pu. Charge, mass and neutron multiplicity distributions of fragment pairs were determined and compared to available data. The yield of cold fission without neutron emission was determined to about 10{percent} for the set of observed correlated fragment pairs. {copyright} {ital 1998 American Institute of Physics.}
Bremsstrahlung pair-production of positrons with low neutron background
International Nuclear Information System (INIS)
Lessner, E.
1998-01-01
Minimization of component activation is highly desirable at accelerator-based positron sources. Electrons in the 8- to 14-MeV energy range impinging on a target produce photons energetic enough to create electron-positron pairs; however, few of the photons are energetic enough to produce photoneutrons. Slow positron production by low-energy electrons impinging on a multilayer tungsten target with and without electromagnetic extraction between the layers was studied by simulation. The neutron background from 14-MeV electrons is expected to be significantly lower than that encountered with higher-energy electron beams. Numerical results are presented and some ideas for a low-activation slow-positron source are discussed
Pair and single neutron transfer with Borromean 8He
International Nuclear Information System (INIS)
Lemasson, A.; Navin, A.; Rejmund, M.; Keeley, N.; Zelevinsky, V.; Bhattacharyya, S.; Shrivastava, A.; Bazin, D.; Beaumel, D.; Blumenfeld, Y.; Chatterjee, A.; Gupta, D.; France, G. de; Jacquot, B.; Labiche, M.; Lemmon, R.; Nanal, V.; Nyberg, J.; Pillay, R.G.; Raabe, R.
2011-01-01
Direct observation of the survival of 199 Au residues after 2n transfer in the 8 He+ 197 Au system and the absence of the corresponding 67 Cu in the 8 He+ 65 Cu system at various energies are reported. The measurements of the surprisingly large cross sections for 199 Au, coupled with the integral cross sections for the various Au residues, is used to obtain the first model-independent lower limits on the ratio of 2n to 1n transfer cross sections from 8 He to a heavy target. A comparison of the transfer cross sections for 6,8 He on these targets highlights the differences in the interactions of these Borromean nuclei. These measurements for the most neutron-rich nuclei on different targets highlight the need to probe the reaction mechanism with various targets and represent an experimental advance towards understanding specific features of pairing in the dynamics of dilute nuclear systems.
Coexistence of pairing gaps in three-component Fermi gases
International Nuclear Information System (INIS)
Nummi, O H T; Kinnunen, J J; Toermae, P
2011-01-01
We study a three-component superfluid Fermi gas in a spherically symmetric harmonic trap using the Bogoliubov-deGennes method. We predict a coexistence phase in which two pairing field order parameters are simultaneously non-zero, in stark contrast to studies performed for trapped gases using local density approximation. We also discuss the role of atom number conservation in the context of a homogeneous system.
Pairing in exotic neutron-rich nuclei near the drip line and in the crust of neutron stars
Pastore, A.; Margueron, J.; Schuck, P.; Viñas, X.
2013-09-01
Exotic and drip-line nuclei as well as nuclei immersed in a low-density gas of neutrons in the inner crust of neutron stars are systematically investigated with respect to their neutron pairing properties. This is done using Skyrme density-functional and different pairing forces such as a density-dependent contact interaction and a separable form of a finite-range Gogny interaction. Hartree-Fock-Bogoliubov (HFB) and Bardeen-Cooper-Schrieffer (BCS) theories are compared. It is found that neutron pairing is reduced towards the drip line while overcast by strong shell effects. Furthermore, resonances in the continuum can have an important effect counterbalancing the tendency of reduction and leading to a persistence of pairing at the drip line. It is also shown that in these systems the difference between HFB and BCS approaches can be quantitatively large.
Study of neutron-proton pairing in N=Z unstable nuclei through transfer reactions
International Nuclear Information System (INIS)
Le Crom, B.
2016-01-01
A nucleus is described as a set of independent neutrons and protons linked by a mean-field potential. However, in order to have a better description one needs to take into account some residual interactions such as pairing. Neutron-neutron and proton-proton pairings are well-studied but neutron-proton pairing is not well-known. np pairing can be isovector pairing such as nn and pp pairing or isoscalar which is yet unknown. Over-binding of N=Z nuclei could be a manifestation of np pairing. We have studied np pairing through transfer reactions. In this case, the cross-section of np pair transfer is expected to be enhanced in the presence of important np pairing. np pairing is expected to be important in N=Z nuclei with high J orbitals. Since the development of radioactive beam facilities, such beams are only available. The experiment was performed at GANIL with an efficient set-up so as to detect products from the (p, 3 He) transfer reaction. This reaction is affected by isovector and isoscalar np pairing. We used 56 Ni and 52 Fe beams so as to see the effect of the occupancy of 0f 7/2 shell on the np pairing. First, we analysed the data from the 56 Ni(p,d) 55 Ni reaction and we compared the results with the literature to validate analysis procedure. After analysing data from the 56 Ni(p, 3 He) 54 Co reaction and extracting the population of the various states of 54 Co, we obtained information about the relative intensity between isoscalar and isovector np pairing in 56 Ni showing the predominance of isovector np pairing in this nucleus. Moreover, in the framework of developing a new charged particle detector, research on the discrimination of light nuclei using pulse shape analysis was performed and is also presented. (author)
Pairing States of Spin-3/2 Fermions: Symmetry-Enforced Topological Gap Functions
Venderbos, Jörn W. F.; Savary, Lucile; Ruhman, Jonathan; Lee, Patrick A.; Fu, Liang
2018-01-01
We study the topological properties of superconductors with paired j =3/2 quasiparticles. Higher spin Fermi surfaces can arise, for instance, in strongly spin-orbit coupled band-inverted semimetals. Examples include the Bi-based half-Heusler materials, which have recently been established as low-temperature and low-carrier density superconductors. Motivated by this experimental observation, we obtain a comprehensive symmetry-based classification of topological pairing states in systems with higher angular momentum Cooper pairing. Our study consists of two main parts. First, we develop the phenomenological theory of multicomponent (i.e., higher angular momentum) pairing by classifying the stationary points of the free energy within a Ginzburg-Landau framework. Based on the symmetry classification of stationary pairing states, we then derive the symmetry-imposed constraints on their gap structures. We find that, depending on the symmetry quantum numbers of the Cooper pairs, different types of topological pairing states can occur: fully gapped topological superconductors in class DIII, Dirac superconductors, and superconductors hosting Majorana fermions. Notably, we find a series of nematic fully gapped topological superconductors, as well as double- and triple-Dirac superconductors, with quadratic and cubic dispersion, respectively. Our approach, applied here to the case of j =3/2 Cooper pairing, is rooted in the symmetry properties of pairing states, and can therefore also be applied to other systems with higher angular momentum and high-spin pairing. We conclude by relating our results to experimentally accessible signatures in thermodynamic and dynamic probes.
Fast local fragment chaining using sum-of-pair gap costs
DEFF Research Database (Denmark)
Otto, Christian; Hoffmann, Steve; Gorodkin, Jan
2011-01-01
, and rank the fragments to improve the specificity. Results: Here we present a fast and flexible fragment chainer that for the first time also supports a sum-of-pair gap cost model. This model has proven to achieve a higher accuracy and sensitivity in its own field of application. Due to a highly time...... alignment heuristics alone. By providing both the linear and the sum-of-pair gap cost model, a wider range of application can be covered. The software clasp is available at http://www.bioinf.uni-leipzig.de/Software/clasp/....
Surface behaviour of the pairing gap in a slab of nuclear matter
International Nuclear Information System (INIS)
Baldo, M.; Farine, M.; Lombardo, U.; Saperstein, E.E.; Zverev, M.V.; Schuck, P.
2003-01-01
The surface behavior of the pairing gap previously studied for semi-infinite nuclear matter is analyzed in the slab geometry. The gap-shape function is calculated in two cases: a) pairing with the Gogny force in a hard-wall potential and b) pairing with the separable Paris interaction in a Saxon-Woods mean-field potential. It is shown that the surface features are preserved in the case of slab geometry, being almost independent of the width of the slab. It is also demonstrated that the surface enhancement is strengthened as the absolute value of chemical potential vertical stroke μvertical stroke decreases which simulates the approach to the nucleon drip line. (orig.)
Superconducting gap anisotropy and d-wave pairing in YBa2Cu3O7-δ
Verma, Sanjeev K.; Gupta, Anushri; Kumari, Anita; Indu, B. D.
2018-02-01
Considering Born-Mayer-Huggins potential as a most suitable potential to study the dynamical properties of high-temperature superconductors (HTS), the many-body quantum dynamics to obtain phonon Green’s functions has been developed via a Hamiltonian that incorporates the contributions of harmonic electron and phonon fields, phonon field anharmonicities, defects and electron-phonon interactions without considering BCS structure. This enables one to develop the quasiparticle renormalized frequency dispersion in the representative high-temperature cuprate superconductor YBa2Cu3O7-δ. The superconducting gap shows substantial changes with increased doping. The in-plane gap study revealed a v-shape gap with a nodal point along kx = ±ky direction for optimum doping (δ = 0.16) and the nodal point vanished in underdoped and overdoped regimes. The dx2-y2 pairing symmetry is observed at optimum doping with the presence of s or dxy components ( < 3%) in underdoped and overdoped regimes.
Neutron roton pairing effect on some even ven rare-earth proton-rich nuclei
International Nuclear Information System (INIS)
Mokhtari, D.
2004-01-01
The neutron roton pairing effect on some even ven rare-earth proton-rich nuclei is studied. It is taken into account, in the isovector case, within the framework of the generalized Bogoliubov-Valatin transformation, using Woods-Saxon single-particle energies. (author)
Development of Neutron Interferometer with Wide-Gapped ''BSE''s for Precision Measurements
International Nuclear Information System (INIS)
Seki, Y.; Kitaguchi, M.; Hino, M.; Funahashi, H.; Taketani, K.; Otake, Y.; Shimizu, H. M.
2007-01-01
We are developing large-dimensional cold-neutron interferometers with multilayer mirrors in order to investigate small interactions. In particular Jamin type interferometers composed of wide-gapped 'BSE's, which divide the beam completely, can realize the precision measurement of topological Aharonov-Casher effect. We have made a prototype with 200 μm gapped BSEs and confirmed the spatial separation of its two paths at monochromatic cold-neutron beamline MINE2 on JRR-3M reactor in JAEA
Neutron model for the formation of AGN jets with Cetral Radio Gap ...
African Journals Online (AJOL)
In this work, there has been an attempt to explain the formation of jets in some radio sources with gaps at their centers using the neutron “production-to-decay” process. The jet-light-up point is taken to coincide with the end of the lifetime of the neutrons. Calculated intrinsic opening angles for the jets of the selected Active ...
Neutron-proton isovector pairing effect on the nuclear moment of inertia
International Nuclear Information System (INIS)
Mokhtari, D.; Ami, I.; Fellah, M.; Allal, N.H.
2008-01-01
The neutron-proton (n-p) isovector pairing effect on the nuclear moment of inertia has been studied within the framework of the BCS approximation. An analytical expression of the moment of inertia, that explicitly depends upon the n-p pairing, has been established using the Inglis cranking model. The model was first tested numerically for nuclei such as N = Z and whose experimental values of the moment of inertia are known (i.e. such as 16 ≤ Z ≤ 40). It has been shown that the n-p pairing effect is non-negligible and clearly improves the theoretical predictions when compared to those of the pairing between like particles. Secondly, predictions have been established for even-even proton-rich rare-earth nuclei. It has been shown that the n-p pairing effect is non-negligible when N = Z and rapidly decreases with increasing values of (N-Z). (author)
In situ observation of thermal relaxation of interstitial-vacancy pair defects in a graphite gap
International Nuclear Information System (INIS)
Urita, Koki; Suenaga, Kazu; Iijima, Sumio; Sugai, Toshiki; Shinohara, Hisanori
2005-01-01
Direct observation of individual defects during formation and annihilation in the interlayer gap of double-wall carbon nanotubes (DWNT) is demonstrated by high-resolution transmission electron microscopy. The interlayer defects that bridge two adjacent graphen layers in DWNT are stable for a macroscopic time at the temperature below 450 K. These defects are assigned to a cluster of one or two interstitial-vacancy pairs (I-V pairs) and often disappear just after their formation at higher temperatures due to an instantaneous recombination of the interstitial atom with vacancy. Systematic observations performed at the elevated temperatures find a threshold for the defect annihilation at 450-500 K, which, indeed, corresponds to the known temperature for the Wigner energy release
In situ observation of thermal relaxation of interstitial-vacancy pair defects in a graphite gap.
Urita, Koki; Suenaga, Kazu; Sugai, Toshiki; Shinohara, Hisanori; Iijima, Sumio
2005-04-22
Direct observation of individual defects during formation and annihilation in the interlayer gap of double-wall carbon nanotubes (DWNT) is demonstrated by high-resolution transmission electron microscopy. The interlayer defects that bridge two adjacent graphen layers in DWNT are stable for a macroscopic time at the temperature below 450 K. These defects are assigned to a cluster of one or two interstitial-vacancy pairs (I-V pairs) and often disappear just after their formation at higher temperatures due to an instantaneous recombination of the interstitial atom with vacancy. Systematic observations performed at the elevated temperatures find a threshold for the defect annihilation at 450-500 K, which, indeed, corresponds to the known temperature for the Wigner energy release.
International Nuclear Information System (INIS)
Buchs, Gilles; Krasheninnikov, Arkady V; Ruffieux, Pascal; Groening, Pierangelo; Foster, Adam S; Nieminen, Risto M; Groening, Oliver
2007-01-01
The specific, local modification of the electronic structure of carbon nanomaterials is as important for novel electronic device fabrication as the doping in the case of silicon-based electronics. Here, we report low temperature scanning tunneling microscopy and spectroscopy study of semiconducting carbon nanotubes subjected to hydrogen-plasma treatment. We show that plasma treatment mostly results in the creation of paired electronic states in the nanotube band gap. Combined with extensive first-principle simulations, our results provide direct evidence that these states originate from correlated chemisorption of hydrogen adatoms on the tube surface. The energy splitting of the paired states is governed by the adatom-adatom interaction, so that controlled hydrogenation can be used for engineering the local electronic structure of nanotubes and other sp 2 -bonded nanocarbon systems
International Nuclear Information System (INIS)
Perina, Jan Jr.; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; Scalora, Michael
2006-01-01
We have developed a rigorous quantum model of spontaneous parametric down-conversion in a nonlinear 1D photonic-band-gap structure based upon expansion of the field into monochromatic plane waves. The model provides a two-photon amplitude of a created photon pair. The spectra of the signal and idler fields, their intensity profiles in the time domain, as well as the coincidence-count interference pattern in a Hong-Ou-Mandel interferometer are determined both for cw and pulsed pumping regimes in terms of the two-photon amplitude. A broad range of parameters characterizing the emitted down-converted fields can be used. As an example, a structure composed of 49 layers of GaN/AlN is analyzed as a suitable source of photon pairs having high efficiency
Neutron-proton pairing effect on the proton-rich nuclei moment of inertia
International Nuclear Information System (INIS)
Mokhtari, D.; Ami, I.; Fellah, M.; Allal, N.H.; Fellah, M.; Allal, N.H.
2008-01-01
The neutron-proton (n-p) pairing effect on the nuclear moment of inertia is studied within the BCS approximation in the isovector case. An analytical expression of the moment of inertia is established by means of the cranking model. This expression generalizes the usual BCS one (i.e. when only the pairing between like-particles is considered). The moment of inertia of N = Z even-even nuclei, for which experimental values are known, i.e., such as 32 ≤ A ≤ 80, has been numerically evaluated, with and without inclusion of the n-p pairing effect. The used single-particle and Eigen-states are those of a deformed Woods-Saxon mean field. It turns out that the inclusion of the n-p pairing improves the obtained values when compared to the usual BCS approximation, since the average discrepancies with the experimental data are respectively 7% and 37%. (authors)
Neutron-proton pairing effect on the proton-rich nuclei moment of inertia
Energy Technology Data Exchange (ETDEWEB)
Mokhtari, D.; Ami, I.; Fellah, M.; Allal, N.H. [Laboratoire de Physique Theorique, Faculte de Physique, USTHB, Algiers (Algeria); Fellah, M.; Allal, N.H. [Centre de Recherche Nucleaire d' Alger, COMENA, Algiers (Algeria)
2008-07-01
The neutron-proton (n-p) pairing effect on the nuclear moment of inertia is studied within the BCS approximation in the isovector case. An analytical expression of the moment of inertia is established by means of the cranking model. This expression generalizes the usual BCS one (i.e. when only the pairing between like-particles is considered). The moment of inertia of N = Z even-even nuclei, for which experimental values are known, i.e., such as 32 {<=} A {<=} 80, has been numerically evaluated, with and without inclusion of the n-p pairing effect. The used single-particle and Eigen-states are those of a deformed Woods-Saxon mean field. It turns out that the inclusion of the n-p pairing improves the obtained values when compared to the usual BCS approximation, since the average discrepancies with the experimental data are respectively 7% and 37%. (authors)
International Nuclear Information System (INIS)
Pieri, P.; Perali, A.; Strinati, G. C.; Riedl, S.; Altmeyer, A.; Grimm, R.; Wright, M. J.; Kohstall, C.; Sanchez Guajardo, E. R.; Hecker Denschlag, J.
2011-01-01
Radio frequency spectra of a trapped unitary 6 Li gas are reported and analyzed in terms of a theoretical approach that includes both final-state and trap effects. The different strength of the final-state interaction across the trap is crucial for evidencing two main peaks associated with two distinct phases residing in different trap regions. These are the pairing-gap and pseudo-gap phases below the critical temperature T c , which evolve into the pseudo-gap and no-gap phases above T c . In this way, a long standing puzzle about the interpretation of rf spectra for 6 Li in a trap is solved.
New neutron imaging techniques to close the gap to scattering applications
International Nuclear Information System (INIS)
Lehmann, Eberhard H.; Peetermans, S.; Trtik, P.; Betz, B.; Grünzweig, C.
2017-01-01
Neutron scattering and neutron imaging are activities at the strong neutron sources which have been developed rather independently. However, there are similarities and overlaps in the research topics to which both methods can contribute and thus useful synergies can be found. In particular, the spatial resolution of neutron imaging has improved recently, which - together with the enhancement of the efficiency in data acquisition- can be exploited to narrow the energy band and to implement more sophisticated methods like neutron grating interferometry. This paper provides a report about the current options in neutron imaging and describes how the gap to neutron scattering data can be closed in the future, e.g. by diffractive imaging, the use of polarized neutrons and the dark-field imagining of relevant materials. This overview is focused onto the interaction between neutron imaging and neutron scattering with the aim of synergy. It reflects mainly the authors’ experiences at their PSI facilities without ignoring the activities at the different other labs world-wide. (paper)
New neutron imaging techniques to close the gap to scattering applications
Lehmann, Eberhard H.; Peetermans, S.; Trtik, P.; Betz, B.; Grünzweig, C.
2017-01-01
Neutron scattering and neutron imaging are activities at the strong neutron sources which have been developed rather independently. However, there are similarities and overlaps in the research topics to which both methods can contribute and thus useful synergies can be found. In particular, the spatial resolution of neutron imaging has improved recently, which - together with the enhancement of the efficiency in data acquisition- can be exploited to narrow the energy band and to implement more sophisticated methods like neutron grating interferometry. This paper provides a report about the current options in neutron imaging and describes how the gap to neutron scattering data can be closed in the future, e.g. by diffractive imaging, the use of polarized neutrons and the dark-field imagining of relevant materials. This overview is focused onto the interaction between neutron imaging and neutron scattering with the aim of synergy. It reflects mainly the authors’ experiences at their PSI facilities without ignoring the activities at the different other labs world-wide.
D-T neutron streaming experiment simulating narrow gaps in ITER equatorial port
International Nuclear Information System (INIS)
Ochiai, K.; Sato, S.; Wada, M.; Iida, H.; Takakura, K.; Kutsukake, C.; Tanaka, S.; Abe, Y.; Konno, C.
2008-01-01
Under the ITER/ITA task, we have conducted the neutron streaming experiment simulating narrow and deep gaps at boundaries between ITER vacuum vessel and equatorial port plugs. Micro-fission chambers and some activation foils were used to measure fission rates and reaction rates to evaluate the relative fast and slow neutron fluences along the gap in the experimental assembly. The MCNP4C, TORT and Attila codes were used for the experimental analysis. From comparing our measurements and calculations, the following facts were found: (1) in case of a such narrow and deep gap structure, the calculation with MCNP, TORT and Attila codes and FENDL-2.1 is sufficient to predict fast neutron field inside the gap; (2) by scattering neutrons in the experimental room, experimental error considerably increased at the deeper region than 100 cm; (3) angular quadrature set of upward biased U315 and last collided source calculation on TORT and Attila were very important technique for accurate estimation of neutron transport
Core excitations across the neutron shell gap in 207Tl
Directory of Open Access Journals (Sweden)
E. Wilson
2015-07-01
Full Text Available The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations using two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.
Study of subshell gap around N = 70 for neutron-rich nuclei
International Nuclear Information System (INIS)
Hemalatha, M.
2011-01-01
The study and search for new regions of shell closure for nuclei away from stability is a topic of current interest both experimentally and theoretically. There have been few studies predicting a weak spherical subshell gap of 110 Zr (N = 70), for example. This is supported by a recent study indicating that the spherical N = 70 shell gap may not have a large effect at N = 68 for Zr isotopes. It would be, therefore, interesting to know whether there is a subshell closure at N = 70 in the neutron rich region and also for the very neutron-rich nuclei, 110 Zr
Energy Technology Data Exchange (ETDEWEB)
Douici, M.; Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R. [Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria) and Institut des Sciences et Technologie, Centre Universitaire de Khemis Miliana, Route de Theniet-El-Had, 44225 Khemis-Milia (Algeria); Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria) and Centre de Recherche Nucleaire d' Alger, COMENA, BP399 Alger-Gare, Alger (Algeria); Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria)
2012-10-20
The particle-number fluctuation effect on the root-mean-square (rms) proton and neutron radii of even-even N Almost-Equal-To Z nuclei is studied in the isovector neutron-proton (np) pairing case using an exact particle-number projection method and the Woods-Saxon model.
Geometric phase and entanglement of Raman photon pairs in the presence of photonic band gap
International Nuclear Information System (INIS)
Berrada, K.; Ooi, C. H. Raymond; Abdel-Khalek, S.
2015-01-01
Robustness of the geometric phase (GP) with respect to different noise effects is a basic condition for an effective quantum computation. Here, we propose a useful quantum system with real physical parameters by studying the GP of a pair of Stokes and anti-Stokes photons, involving Raman emission processes with and without photonic band gap (PBG) effect. We show that the properties of GP are very sensitive to the change of the Rabi frequency and time, exhibiting collapse phenomenon as the time becomes significantly large. The system allows us to obtain a state which remains with zero GP for longer times. This result plays a significant role to enhance the stabilization and control of the system dynamics. Finally, we investigate the nonlocal correlation (entanglement) between the pair photons by taking into account the effect of different parameters. An interesting correlation between the GP and entanglement is observed showing that the PBG stabilizes the fluctuations in the system and makes the entanglement more robust against the change of time and frequency
Energy Technology Data Exchange (ETDEWEB)
Chao, H E; Lu, W D; Wu, S C
1977-12-01
The cadmium ratio method and pair comparator method provide a solution for the effects on the effective activation factors resulting from the variation of neutron spectrum at different irradiation positions as usually encountered in the single comparator method. The relations between the activation factors and neutron spectrum in terms of cadmium ratio of the comparator Au or of the activation factor of Co-Au pair for the elements, Sc, Cr, Mn, Co, La, Ce, Sm, and Th have been determined. The activation factors of the elements at any irradiation position can then be obtained from the cadmium ratio of the comparator and/or the activation factor of the comparator pair. The relations determined should be able to apply to different reactors and/or different positions of a reactor. It is shown that, for the isotopes /sup 46/Sc, /sup 51/Cr, /sup 56/Mn, /sup 60/Co, /sup 140/La, /sup 141/Ce, /sup 153/Sm and /sup 233/Pa, the thermal neutron activation factors determined by these two methods were generally in agreement with theoretical values. Their I/sub 0//sigma/sub th/ values appeared to agree with literature values also. The methods were applied to determine the contents of elements Sc, Cr, Mn, La, Ce, Sm, and Th in U.S.G.S. Standard Rock G-2, and the results were also in agreement with literature values. The cadmium ratio method and pair comparator method improved the single comparator method, and they are more suitable to analysis for multi-elements of a large number of samples.
Recoil Induced Room Temperature Stable Frenkel Pairs in a-Hafnium Upon Thermal Neutron Capture
Butz, Tilman; Das, Satyendra K.; Dey, Chandi C.; Ghoshal, Shamik
2013-11-01
Ultrapure hafnium metal (110 ppm zirconium) was neutron activated with a thermal neutron flux of 6:6 · 1012 cm-2s-1 in order to obtain 181Hf for subsequent time differential perturbed angular correlation (TDPAC) experiments using the nuclear probe 181Hf(β-) 181Ta. Apart from the expected nuclear quadrupole interaction (NQI) signal for a hexagonal close-packed (hcp) metal, three further discrete NQIs were observed with a few percent fraction each. The TDPAC spectra were recorded for up to 11 half lives with extreme statistical accuracy. The fitted parameters vary slightly within the temperature range between 248 K and 373 K. The signals corresponding to the three additional sites completely disappear after `annealing' at 453 K for one minute. Based on the symmetry of the additional NQIs and their temperature dependencies, they are tentatively attributed to Frenkel pairs produced by recoil due to the emission of a prompt 5:694 MeV -ray following thermal neutron capture and reported by the nuclear probe in three different positions. These Frenkel pairs are stable up to at least 373 K.
International Nuclear Information System (INIS)
Perali, A.; Pieri, P.; Strinati, G. C.
2008-01-01
The radio-frequency spectra of ultracold Fermi atoms are calculated by including final-state interactions affecting the excited level of the transition and compared with the experimental data. A competition is revealed between pairing-gap effects which tend to push the oscillator strength toward high frequencies away from threshold and final-state effects which tend instead to pull the oscillator strength toward threshold. As a result of this competition, the position of the peak of the spectra cannot be simply related to the value of the pairing gap, whose extraction thus requires support from theoretical calculations
Coherence features of the spin-aligned neutron-proton pair coupling scheme
International Nuclear Information System (INIS)
Qi, C; Blomqvist, J; Bäck, T; Cederwall, B; Johnson, A; Liotta, R J; Wyss, R
2012-01-01
The seniority scheme has been shown to be extremely useful for the classification of nuclear states in semi-magic nuclei. The neutron-proton (np) correlation breaks the seniority symmetry in a major way. As a result, the corresponding wave function is a mixture of many components with different seniority quantum numbers. In this paper, we show that the np interaction may favor a new kind of coupling in N=Z nuclei, i.e. the so-called isoscalar spin-aligned np pair mode. Shell model calculations reveal that the ground and low-lying yrast states of the N=Z nuclei 92 Pd and 96 Cd may be mainly built upon such spin-aligned np pairs, each carrying the maximum angular momentum J=9 allowed by the shell 0 g 9/2 which is dominant in this nuclear region.
High energy radiation from neutron stars
International Nuclear Information System (INIS)
Ruderman, M.
1985-04-01
Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs
International Nuclear Information System (INIS)
Roca, Antoaneta; Liu, Yuan-Hao; Wojnecki, Cecile; Green, Stuart; Nievaart, Sander; Ghani, Zamir; Moss, Ray
2009-01-01
The dual ionisation chamber technique is the recommended method for mixed field dosimetry of epithermal neutron beams. This paper presents initial data from an ongoing inter-comparison study involving two identical pairs of ionisation chambers used at the BNCT facilities of Petten, NL and of University of Birmingham, UK. The goal of this study is to evaluate the photon, thermal neutron and epithermal neutron responses of both pairs of TE(TE) (Exradin T2 type) and Mg(Ar) (Exradin M2 type) ionisation chambers in similar experimental conditions. At this stage, the work has been completed for the M2 type chambers and is intended to be completed for the T2 type chambers in the near future.
Photoproduction of π{sup 0} -pairs off protons and off neutrons
Energy Technology Data Exchange (ETDEWEB)
Dieterle, M.; Oberle, M.; Garni, S.; Kaeser, A.; Keshelashvili, I.; Krusche, B.; Maghrbi, Y.; Pheron, F.; Rostomyan, T.; Strub, T.; Walford, N.K.; Werthmueller, D.; Witthauer, L. [University of Basel, Department of Physics, Basel (Switzerland); Ahrens, J.; Arends, H.J.; Bartolome, P.A.; Heid, E.; Jahn, O.; Ostrick, M.; Otte, P.; Schumann, S.; Thomas, A. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); Annand, J.R.M.; Glazier, D.I.; Hamilton, D.; Howdle, D.; Livingston, K.; MacGregor, I.J.D.; Mancell, J.; McGeorge, J.C.; McNicoll, E.; Robinson, J. [University of Glasgow, SUPA School of Physics and Astronomy, Glasgow (United Kingdom); Bantawa, K.; Manley, D.M. [Kent State University, Kent, Ohio (United States); Beck, R.; Nikolaev, A. [University of Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Bekrenev, V. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Berghaeuser, H.; Drexler, P.; Metag, V.; Novotny, R.; Thiel, M. [University of Giessen, II. Physikalisches Institut, Giessen (Germany); Braghieri, A.; Costanza, S.; Mushkarenkov, A.; Pedroni, P. [INFN Sezione di Pavia, Pavia (Italy); Branford, D.; Jude, T.C.; Sikora, M.H.; Watts, D.P. [University of Edinburgh, SUPA School of Physics, Edinburgh (United Kingdom); Briscoe, W.J.; Demissie, B.; Marinides, Z. [The George Washington University, Center for Nuclear Studies, Washington, DC (United States); Brudvik, J.; Starostin, A. [University of California Los Angeles, Los Angeles, California (United States); Cherepnya, S.; Fil' kov, L.V. [Lebedev Physical Institute, Moscow (Russian Federation); Downie, E.J. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); University of Glasgow, SUPA School of Physics and Astronomy, Glasgow (United Kingdom); The George Washington University, Center for Nuclear Studies, Washington, DC (United States); Fix, A. [Tomsk Polytechnic University, Laboratory of Mathematical Physics, Tomsk (Russian Federation); Hornidge, D.; Middleton, D.G. [Mount Allison University, New Brunswick (Canada); Huber, G.M. [University of Regina, Regina (Canada); Kashevarov, V.L. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); Lebedev Physical Institute, Moscow (Russian Federation); Kondratiev, R.; Lisin, V.; Polonski, A. [Institute for Nuclear Research, Moscow (Russian Federation); Korolija, M.; Mekterovic, D.; Micanovic, S.; Supek, I. [Rudjer Boskovic Institute, Zagreb (Croatia); Oussena, B. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); The George Washington University, Center for Nuclear Studies, Washington, DC (United States); Prakhov, S. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); The George Washington University, Center for Nuclear Studies, Washington, DC (United States); University of California Los Angeles, Los Angeles, California (United States); Sober, D.I. [The Catholic University of America, Washington, DC (United States); Unverzagt, M. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); University of Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Collaboration: The A2 Collaboration
2015-11-15
Total cross sections, angular distributions, and invariant-mass distributions have been measured for the photoproduction of π{sup 0}π{sup 0} pairs off free protons and off nucleons bound in the deuteron. The experiments were performed at the MAMI accelerator facility in Mainz using the Glasgow photon tagging spectrometer and the Crystal Ball/TAPS detector. The accelerator delivered electron beams of 1508 and 1557MeV, which produced bremsstrahlung in thin radiator foils. The tagged photon beam covered energies up to 1400 MeV. The data from the free proton target are in good agreement with previous measurements and were only used to test the analysis procedures. The results for differential cross sections (angular distributions and invariant-mass distributions) for free and quasi-free protons are almost identical in shape, but differ in absolute magnitude up to 15%. Thus, moderate final-state interaction effects are present. The data for quasi-free neutrons are similar to the proton data in the second resonance region (final-state invariant masses up to ∼ 1550 MeV), where both reactions are dominated by the N(1520)3/2{sup -} → Δ(1232)3/2{sup +}π decay. At higher energies, angular and invariant-mass distributions are different. A simple analysis of the shapes of the invariant-mass distributions in the third resonance region is consistent with strong contributions of an N{sup *} → Nσ decay for the proton, while the reaction is dominated by a sequential decay via a Δπ intermediate state for the neutron. The data are compared to predictions from the Two-Pion-MAID model and the Bonn-Gatchina coupled-channel analysis. (orig.)
Measuring a ballooning gap size of irradiated fuels by the indirect method of neutron radiography
Energy Technology Data Exchange (ETDEWEB)
Sim, Cheul Muu; Lee, Seung Wook; Lim, In Cheol; Hong, Kwang Pyo; Kim, Young Jin
2003-11-01
An indirect method of a neutron radiography is mobilized for inspecting post irradiated nuclear fuel pins, UO{sub 2}Si clad with Al, which swallowing, crack, ballooning, plug gap, thinning and so on, occurred. The system of an indirect method consists of a cask of carrying fuel pins, Dy converter, linear controller of converter, camera of monitoring fuel cassette. The nuclear sample pins of RISO and KAERI are exposed for 25 min. at the first exposure room, 10{sup 7} cm{sup 2}/sec flux. An activation image formed in the Dy foil is subsequently transferred in a dark room for a more than 8 hours to SR film using the decay radiation. Due to L/D ratio an unsharpness of 9.82{approx}14{mu}m and a magnification of 1.0003 are given. After digitizing an image of SR film, the ballooning gap of plug is discernible by H/V filter of image processing.
Measuring a ballooning gap size of irradiated fuels by the indirect method of neutron radiography
International Nuclear Information System (INIS)
Sim, Cheul Muu; Lee, Seung Wook; Lim, In Cheol; Hong, Kwang Pyo; Kim, Young Jin
2003-11-01
An indirect method of a neutron radiography is mobilized for inspecting post irradiated nuclear fuel pins, UO 2 Si clad with Al, which swallowing, crack, ballooning, plug gap, thinning and so on, occurred. The system of an indirect method consists of a cask of carrying fuel pins, Dy converter, linear controller of converter, camera of monitoring fuel cassette. The nuclear sample pins of RISO and KAERI are exposed for 25 min. at the first exposure room, 10 7 cm 2 /sec flux. An activation image formed in the Dy foil is subsequently transferred in a dark room for a more than 8 hours to SR film using the decay radiation. Due to L/D ratio an unsharpness of 9.82∼14μm and a magnification of 1.0003 are given. After digitizing an image of SR film, the ballooning gap of plug is discernible by H/V filter of image processing
Effects of interlayer Sn-Sn lone pair interaction on the band gap of bulk and nanosheet SnO
Umezawa, Naoto; Zhou, Wei
2015-03-01
Effects of interlayer lone-pair interactions on the electronic structure of SnO are firstly explored by the density-functional theory. Our comprehensive study reveals that the band gap of SnO opens as increase in the interlayer Sn-Sn distance. The effect is rationalized by the character of band edges which consists of bonding and anti-bonding states from interlayer lone pair interactions. The band edges for several nanosheets and strained double-layer SnO are estimated. We conclude that the double-layer SnO is a promising material for visible-light driven photocatalyst for hydrogen evolution. This work is supported by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) program.
Effects of pairing correlation on low-lying quasi-particle resonance in neutron drip-line nuclei
Kobayashi, Yoshihiko; Matsuo, Masayuki
2015-01-01
We discuss effects of pairing correlation on quasi-particle resonance. We analyze in detail how the width of low-lying quasi-particle resonance is governed by the pairing correlation in the neutron drip-line nuclei. We consider the 46Si + n system to discuss low-lying p wave quasi-particle resonance. Solving the Hartree-Fock-Bogoliubov equation in the coordinate space with scattering boundary condition, we calculate the phase shift, the elastic cross section, the resonance width and the reson...
The neutron-proton pairing and the moments of inertia of the rare earth even-even nuclei
International Nuclear Information System (INIS)
Calik, A. E.; Deniz, C.; Gerceklioglu, M.
2009-01-01
In this study, the possible effect of the neutron-proton pairing interaction in the heavy nuclei has been investigated in the framework of the BCS model by making a simple approximation. This effect has been searched realistically by calculating the moments of inertia of deformed even-even nuclei. Calculations show that the moments of inertia of rare earth nuclei changed dramatically and approached the experimental values.
Deep donor-acceptor pair recombination in bulk GaP studied by ODMR and DLTS techniques
International Nuclear Information System (INIS)
Awadelkarim, O.O.; Godlewski, M.; Monemar, B.
1989-01-01
Deep level transient spectroscopy (DLTS) and optically detected magnetic resonance (ODMR) are applied to study deep defect levels with photoluminescence bands observed in the near infrared region in S- and Te-doped bulk GaP crystals grown by the liquid encapsulated Czochralski method. The ODMR data suggest that the emission bands with maxima observed at 8000-8200 A (∼ 1.5 eV), common to both materials, and at 7750 A (1.6 eV), present only in GaP:Te, are due to donor-acceptor pair recombinations. The latter band, reported here for the first time, is tentatively associated with deep states observed by DLTS. (author) 19 refs., 5 figs
International Nuclear Information System (INIS)
Abel, W.
1985-02-01
This report describes an interactive program to evaluate neutron diffraction data using the Graphic System (GS) under MVS (TSO). Different evaluation steps may be directed by a CLIST. The present program is limited to cylindrical sample geometry. From the fully corrected static structure factor the pair correlation function g(r) and the radial density function may be calculated from which the mean coordination number can be obtained by numerical integration over the main peak. Producing a hardcopy output on a mechanical plotter is provided. (orig.) [de
International Nuclear Information System (INIS)
Fry-Petit, A. M.; Sheckelton, J. P.; McQueen, T. M.; Rebola, A. F.; Fennie, C. J.; Mourigal, M.; Valentine, M.; Drichko, N.
2015-01-01
For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn 2 Mo 3 O 8 , this approach allows direct assignment of the constrained rotational mode of Mo 3 O 13 clusters and internal modes of MoO 6 polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems
Electrical and optical properties of neutron-irradiated GaP crystals
International Nuclear Information System (INIS)
Kawakubo, T.; Okada, M.
1990-01-01
Infrared absorption, electron paramagnetic resonance (EPR) spectra, and the electrical resistivity of semi-insulating liquid encapsulated Czochralski GaP crystals irradiated by fast neutrons with a dose of 7.6x10 18 n cm -2 have been studied. The electrical resistivity decreases with irradiation from 10 6 Ω cm to 1.5 kΩ cm. The temperature dependence of resistivity at low temperature is fitted to exp(b/T 1/4 ). The strong continuous optical absorption extends to 0.32 eV and its tail spreads until 0.12 eV. The EPR spectrum exhibits a broad singlet at 77 K and a doublet with five line structures at room temperature, which is attributed to antisite defects P Ga . The strong infrared absorption begins to be annealed at 150 degree C, and the EPR broad singlet decreases with anneals in the same temperature range. The strong infrared absorption is assumed to arise from interstitial phosphorus clusters. A discussion is given concerning the species responsible for the EPR singlet
Energy Technology Data Exchange (ETDEWEB)
Sakae, Takeji; Manabe, Tohru; Kitamura, Yasunori; Nohtomi, Akihiro [Kyushu Univ., Fukuoka (Japan); Sakamoto, Sigeyasu
1996-07-01
Simulation by the Monte Carlo method is applied to estimate the wall effect in a thermal neutron counter having a new function for discriminating the effect. The counter is designed to have paralleled electrodes with micro-gap structure. A resistive anode is used for position sensing on the center of a set of the three electrode. The structure can be made by simple arrangement of anode and cathode wires on an insulator plane. The calculation shows discrimination of the wall effect can be achieved by coincident counting of two or three elements included in the counter. By using the coincident counting, the thickness of the neutron counter can be made into 1 mm with the information of the total energy created in the neutron detection. (author)
Dependence of two-neutron momentum densities on total pair momentum
Energy Technology Data Exchange (ETDEWEB)
Carlson, Joseph A [Los Alamos National Laboratory; Wiringa, R B [ANL; Schiavilla, R [JEFFERSON LAB; Pieper, Steven C [ANL
2008-01-01
Two-nucleon momentum distributions are calculated for the ground states of {sup 3}He and {sup 4}He as a function of the nucleons' relative and total momenta. We use variational Monte Carlo wave functions derived from a realistic Hamiltonian with two- and three-nucleon potentials. The momentum distribution of pp pairs is found to be much smaller than that of pn pairs for values of the relative momentum in the range (300--500) MeV/c and vanishing total momentum. Howeer, as the totalmomentum increases to 400 MeV/c, the ratio of pp to pn pairs in this relative momentum range grows and approaches the limit 1/2 for {sup 3}He and 1/4 for {sup 4}He, corresponding to the ratio of pp to pn pairs in these nuclei. This behavior should be easily observable in two-nucleon knock-out processes, such as A(e, e'pN).
Evidence of pair correlations in actinide neutron-induced fission cross sections
International Nuclear Information System (INIS)
Maslov, V.M.
2000-01-01
It is shown that irregularities in fission cross sections in MeV incident neutron energy region could be attributed to the interplay of few-quasiparticle excitations in the level density of the fissioning and residual nuclei. It is suggested the intrinsic quasiparticle state density modelling approach both at stable and saddle-point deformations. The experimental manifestation of few-quasiparticle irregularities in the level density depends on the fission barrier structure and internal excitation energy at the saddle point, corresponding to the higher barrier hump. The explicit evidence is observed in case of fissile and non-fissile target nuclides [ru
International Nuclear Information System (INIS)
Ofengeim, D D; Kaminker, A D; Yakovlev, D G
2015-01-01
We derive an analytic approximation for the emissivity of neutrino-pair bremsstrahlung (NPB) due to scattering of electrons by atomic nuclei in a neutron star (NS) crust of any realistic composition. The emissivity is expressed through generalized Coulomb logarithm by introducing an effective potential of electron-nucleus scattering. In addition, we study the conditions at which NPB in the crust is affected by strong magnetic fields and outline the main effects of the fields on neutrino emission in NSs. The results can be used for modelling of many phenomena in NSs, such as cooling of young isolated NSs, thermal relaxation of accreting NSs with overheated crust in soft X-ray transients and evolution of magnetars. (paper)
International Nuclear Information System (INIS)
Meftunoglu, E.; Gerceklioglu, M.; Erbil, H.H.; Kuliev, A.A.
1998-01-01
In this work, the effect of a special type of neutron-proton pairing interaction on the moments of inertia of some deformed nuclei in the rare earth region is investigated. First, making a perturbative approximation, we assume that the form of the equations of the BCS theory and usual Bogolyubov transformations are unchanged. Second, we use a phenomenological method for the strength of this neutron-proton pairing interaction introducing a parameter. Calculations show that this interaction is important for the ground-state moments of inertia and that it could be effectual in other nuclear phenomena. (author)
Thermal-neutron capture by protons accompanied by e+e- pair production
International Nuclear Information System (INIS)
Rekalo, M.P.
1985-01-01
Viewing the deuteron as an elementary particle with unit spin and positive spatial parity, we introduce five electromagnetic form factors (three transverse and two longitudinal) characterizing thermal-neutron capture in the reaction n+p→d+e + +e - . All of the observable characteristics of the process n+p→d+e + +e - involving polarized nucleons are calculated in terms of these form factors. The form factors of the transition n+p→d+γ* (γ* is a virtual photon) are related to the nucleon electromagnetic form factors and the characteristics of the dnp vertex using the relativistic impulse approximation. Here only two form factors (one transverse and one longitudinal) turn out to be leading
Gamow-Teller transitions and neutron-proton-pair transfer reactions
Van Isacker, P.; Macchiavelli, A. O.
2018-05-01
We propose a schematic model of nucleons moving in spin-orbit partner levels, j = l ± 1/2, to explain Gamow-Teller and two-nucleon transfer data in N = Z nuclei above 40Ca. Use of the LS coupling scheme provides a more transparent approach to interpret the structure and reaction data. We apply the model to the analysis of charge-exchange, 42Ca(3He,t)42Sc, and np-transfer, 40Ca(3He,p)42Sc, reactions data to define the elementary modes of excitation in terms of both isovector and isoscalar pairs, whose properties can be determined by adjusting the parameters of the model (spin-orbit splitting, isovector pairing strength and quadrupole matrix element) to the available data. The overall agreement with experiment suggests that the approach captures the main physics ingredients and provides the basis for a boson approximation that can be extended to heavier nuclei. Our analysis also reveals that the SU(4)-symmetry limit is not realized in 42Sc.
Inelastic neutron scattering in the spin wave energy gap of the polydomain γ-Mn(12%Ge) alloy
International Nuclear Information System (INIS)
Jankowska-Kisielinska, J.; Mikke, K.
1999-01-01
The subject of the present experiment was the investigation of the inelastic neutron scattering (INS) for energy transfers lower than and close to the energy gap of the spin wave spectrum for long wavelengths. The aim was a search for the excitations at the magnetic Brillouin zone (MBZ) boundary in polydomain Mn(12%Ge) alloy. The present measurements were performed by a 3-axis spectrometer at Maria Reactor at IEA in Swierk. We observed the INS in the polydomain Mn(12%Ge) alloy for energies smaller than and close to the energy gap value of the spin wave spectrum at room temperature. The observed intensity can be treated as a sum of intensity of neutrons scattered on spin waves around magnetic Brillouin zone centre and that of neutrons scattered on fluctuations at the zone boundary. The intensity of both components for energies 2-6 MeV was found to be of the same order. For higher energies spin waves around magnetic zone centre dominate. (author)
Neutron diffraction study of the pressure-induced magnetic ordering in the spin gap system TlCuCl3
International Nuclear Information System (INIS)
Oosawa, Akira; Osakabe, Toyotaka; Kakurai, Kazuhisa; Tanaka, Hidekazu
2003-01-01
Neutron elastic scattering measurements have been performed under a hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl 3 . Below the ordering temperature T N = 16.9 K for the hydrostatic pressure P = 1.48 GPa, magnetic Bragg reflections were observed at reciprocal lattice points Q = (h, 0, l) with integer h and odd l, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap close due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P = 1.48 GPa was determined. (author)
Energy Technology Data Exchange (ETDEWEB)
Chen, Y [College of Medicine, Chang Gung University, Linkou, Taoyuan, Taiwan (China); Lin, Y [College of Medicine, Chang Gung University, Linkou, Taoyuan, Taiwan (China); Medical Physics Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan (China); Chen, H [College of Medicine, Chang Gung University, Linkou, Taoyuan, Taiwan (China); Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan (China); Tsai, H [College of Medicine, Chang Gung University, Linkou, Taoyuan, Taiwan (China); Medical Physics Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan (China); Healthy Aging Research Center, Chang Gung University, Linkou, Taoyuan, Taiwan (China)
2015-06-15
Purpose: Secondary fast neutrons and gamma rays are mainly produced due to the interaction of the primary proton beam with the beam delivery nozzle. These secondary radiation dose to patients and radiation workers are unwanted. The purpose of this study is to estimate the neutron and gamma dose equivalent out of the treatment volume during the wobbling proton therapy system. Methods: Two types of thermoluminescent (TL) dosimeters, TLD-600 ({sup 6}LiF: Mg, Ti) and TLD-700 ({sup 7}LiF: Mg, Ti) were used in this study. They were calibrated in the standard neutron and gamma sources at National Standards Laboratory. Annealing procedure is 400°C for 1 hour, 100°C for 2 hours and spontaneously cooling down to the room temperature in a programmable oven. Two-peak method (a kind of glow curve analysis technique) was used to evaluate the TL response corresponding to the neutron and gamma dose. The TLD pairs were placed outside the treatment field at the neutron-gamma mixed field with 190-MeV proton beam produced by the wobbling system through the polyethylene plate phantom. The results of TLD measurement were compared to the Monte Carlo simulation. Results: The initial experiment results of calculated dose equivalents are 0.63, 0.38, 0.21 and 0.13 mSv per Gy outside the field at the distance of 50, 100, 150 and 200 cm. Conclusion: The TLD-600 and TLD-700 pairs are convenient to estimate neutron and gamma dosimetry during proton therapy. However, an accurate and suitable glow curve analysis technique is necessary. During the wobbling system proton therapy, our results showed that the neutron and gamma doses outside the treatment field are noticeable. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1C0682)
International Nuclear Information System (INIS)
Chen, Y; Lin, Y; Chen, H; Tsai, H
2015-01-01
Purpose: Secondary fast neutrons and gamma rays are mainly produced due to the interaction of the primary proton beam with the beam delivery nozzle. These secondary radiation dose to patients and radiation workers are unwanted. The purpose of this study is to estimate the neutron and gamma dose equivalent out of the treatment volume during the wobbling proton therapy system. Methods: Two types of thermoluminescent (TL) dosimeters, TLD-600 ( 6 LiF: Mg, Ti) and TLD-700 ( 7 LiF: Mg, Ti) were used in this study. They were calibrated in the standard neutron and gamma sources at National Standards Laboratory. Annealing procedure is 400°C for 1 hour, 100°C for 2 hours and spontaneously cooling down to the room temperature in a programmable oven. Two-peak method (a kind of glow curve analysis technique) was used to evaluate the TL response corresponding to the neutron and gamma dose. The TLD pairs were placed outside the treatment field at the neutron-gamma mixed field with 190-MeV proton beam produced by the wobbling system through the polyethylene plate phantom. The results of TLD measurement were compared to the Monte Carlo simulation. Results: The initial experiment results of calculated dose equivalents are 0.63, 0.38, 0.21 and 0.13 mSv per Gy outside the field at the distance of 50, 100, 150 and 200 cm. Conclusion: The TLD-600 and TLD-700 pairs are convenient to estimate neutron and gamma dosimetry during proton therapy. However, an accurate and suitable glow curve analysis technique is necessary. During the wobbling system proton therapy, our results showed that the neutron and gamma doses outside the treatment field are noticeable. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1C0682)
Structure of neutron-rich nuclei around the N = 50 shell-gap closure
Faul, T.; Duchêne, G.; Thomas, J.-C.; Nowacki, F.; Huyse, M.; Van Duppen, P.
2010-04-01
The structure of neutron-rich nuclei in the vicinity of 78Ni have been investigated via the β-decay of 71,73,75Cu isotopes (ISOLDE, CERN). Experimental results have been compared with shell-model calculations performed with the ANTOINE code using a large (2p3/21f5/22p1/21g9/2) valence space and a 56/28Ni28 core.
Zhao, Yumin
1997-07-01
By the techniques of the Wick theorem for coupled clusters, the no-energy-weighted electromagnetic sum-rule calculations are presented in the sdg neutron-proton interacting boson model, the nuclear pair shell model and the fermion-dynamical symmetry model. The project supported by Development Project Foundation of China, National Natural Science Foundation of China, Doctoral Education Fund of National Education Committee, Fundamental Research Fund of Southeast University
Energy Technology Data Exchange (ETDEWEB)
Henry, S., E-mail: s.henry@physics.ox.ac.uk; Pipe, M.; Cottle, A.; Clarke, C.; Divakar, U.; Lynch, A.
2014-11-01
The cryoEDM neutron electric dipole moment experiment requires a SQUID magnetometry system with pick-up loops inside a magnetically shielded volume connected to SQUID sensors by long (up to 2 m) twisted-wire pairs (TWPs). These wires run outside the main shield, and therefore must run through superconducting capillaries to screen unwanted magnetic pick-up. We show that the average measured transverse magnetic pick-up of a set of lengths of TWPs is equivalent to a loop area of 5.0×10{sup −6} m{sup 2}/m, or 14 twists per metre. From this we set the requirement that the magnetic shielding factor of the superconducting capillaries used in the cryoEDM system must be greater than 8.0×10{sup 4}. The shielding factor—the ratio of the signal picked-up by an unshielded TWP to that induced in a shielded TWP—was measured for a selection of superconducting capillaries made from solder wire. We conclude the transverse shielding factor of a uniform capillary is greater than 10{sup 7}. The measured pick-up was equal to, or less than that due to direct coupling to the SQUID sensor (measured without any TWP attached). We show that discontinuities in the capillaries substantially impair the magnetic shielding, yet if suitably repaired, this can be restored to the shielding factor of an unbroken capillary. We have constructed shielding assemblies for cryoEDM made from lengths of single core and triple core solder capillaries, joined by a shielded Pb cylinder, incorporating a heater to heat the wires above the superconducting transition as required.
Z dependence of the N=152 deformed shell gap: In-beam γ-ray spectroscopy of neutron-rich 245,246Pu
International Nuclear Information System (INIS)
Makii, H.; Ishii, T.; Asai, M.; Tsukada, K.; Toyoshima, A.; Ichikawa, S.; Matsuda, M.; Makishima, A.; Kaneko, J.; Toume, H.; Shigematsu, S.; Kohno, T.; Ogawa, M.
2007-01-01
We have measured in-beam γ rays in the neutron-rich 246 Pu 152 and 245 Pu 151 nuclei by means of 244 Pu( 18 O, 16 O) 246 Pu and 244 Pu( 18 O, 17 O) 245 Pu neutron transfer reactions, respectively. The γ rays emitted from 246 Pu ( 245 Pu) were identified by selecting the kinetic energy of scattered 16 O ( 17 O) detected by Si ΔE-E detectors. The ground-state band of 246 Pu was established up to the 12 + state. We have found that the shell gap of N=152 is reduced in energy with decreasing atomic number by extending the systematics of the one-quasiparticle energies in N=151 nuclei into those in 245 Pu. This reduction of the shell gap clearly affects the 2 + energy of the ground-state band of 246 Pu
Gamow-Teller transitions and proton-neutron pair correlation in N =Z odd-odd p -shell nuclei
Morita, Hiroyuki; Kanada-En'yo, Yoshiko
2017-10-01
We have studied the Gamow-Teller (GT) transitions from N =Z +2 neighbors to N =Z odd-odd nuclei in the p -shell region by using isospin-projected and β γ -constraint antisymmetrized molecular dynamics combined with the generator coordinate method. The calculated GT transition strengths from 0+1 states to 1+0 states such as 6He(01+1 ) →6Li(11+0 ) , 10Be(01+1 ) →10B(11+0 ) , and 14C(01+1 ) →14N(12+0 ) exhaust more than 50% of the sum rule. These N =Z +2 initial states and N =Z odd-odd final states are found to dominantly have S =0 ,T =1 n n pairs and S =1 ,T =0 p n pairs, respectively. Based on the two-nucleon (N N ) pair picture, we can understand the concentration of the GT strengths as the spin-isospin-flip transition n n (S =0 ,T =1 )→p n (S =1 ,T =0 ) in L S coupling. The GT transition can be a good probe to identify the spin-isospin partner states with n n pairs and p n pairs of N =Z +2 and N =Z odd-odd nuclei, respectively.
Watanabe, Gentaro; Pethick, C. J.
2017-08-01
Calculations of the effects of band structure on the neutron superfluid density in the crust of neutron stars made under the assumption that the effects of pairing are small [N. Chamel, Phys. Rev. C 85, 035801 (2012)] lead to moments of inertia of superfluid neutrons so small that the crust alone is insufficient to account for the magnitude of neutron star glitches. Inspired by earlier work on ultracold atomic gases in an optical lattice, we investigate fermions with attractive interactions in a periodic lattice in the mean-field approximation. The effects of band structure are suppressed when the pairing gap is of order or greater than the strength of the lattice potential. By applying the results to the inner crust of neutron stars, we conclude that the reduction of the neutron superfluid density is considerably less than previously estimated and, consequently, it is premature to rule out models of glitches based on neutron superfluidity in the crust.
Watanabe, Gentaro; Pethick, C J
2017-08-11
Calculations of the effects of band structure on the neutron superfluid density in the crust of neutron stars made under the assumption that the effects of pairing are small [N. Chamel, Phys. Rev. C 85, 035801 (2012)PRVCAN0556-2813] lead to moments of inertia of superfluid neutrons so small that the crust alone is insufficient to account for the magnitude of neutron star glitches. Inspired by earlier work on ultracold atomic gases in an optical lattice, we investigate fermions with attractive interactions in a periodic lattice in the mean-field approximation. The effects of band structure are suppressed when the pairing gap is of order or greater than the strength of the lattice potential. By applying the results to the inner crust of neutron stars, we conclude that the reduction of the neutron superfluid density is considerably less than previously estimated and, consequently, it is premature to rule out models of glitches based on neutron superfluidity in the crust.
Pairing properties of realistic effective interactions
Directory of Open Access Journals (Sweden)
Gargano A.
2016-01-01
Full Text Available We investigate the pairing properties of an effective shell-model interaction defined within a model space outside 132Sn and derived by means of perturbation theory from the CD-Bonn free nucleon-nucleon potential. It turns out that the neutron pairing component of the effective interaction is significantly weaker than the proton one, which accounts for the large pairing gap difference observed in the two-valence identical particle nuclei 134Sn and 134Te. The role of the contribution arising from one particle-one hole excitations in determining the pairing force is discussed and its microscopic structure is also analyzed in terms of the multipole decomposition.
International Nuclear Information System (INIS)
Jaafar Abdullah
1993-01-01
The procedure is intended for the neutron gauging inspection of gap between the bottom plate and the foundation of bulk storage tanks, which potentially exhibit uneven sinking of the bottom plate and the foundation. Its describes the requirements for the performance of neutron back scattered inspection techniques (or radiometric non-destructive evaluation techniques), using an isotopic neutron source associated with neutron detecting systems, to detect and size the gap between the bottom plate and the foundations as well as to quantify the presence of hydrogenous materials (e.g. oil or water) underneath the bottom plate. This procedure is not only outline the requirements for the neutron gauging inspection, but also describes the requirements which shall be taken into account in formulating the radiation safety and emergency procedures for the neutron gauging inspection works
Duboué-Dijon, Elise; Mason, Philip E; Fischer, Henry E; Jungwirth, Pavel
2018-04-05
Magnesium and zinc dications possess the same charge and have an almost identical size, yet they behave very differently in aqueous solutions and play distinct biological roles. It is thus crucial to identify the origins of such different behaviors and to assess to what extent they can be captured by force-field molecular dynamics simulations. In this work, we combine neutron scattering experiments in a specific mixture of H 2 O and D 2 O (the so-called null water) with ab initio molecular dynamics simulations to probe the difference in the hydration structure and ion-pairing properties of chloride solutions of the two cations. The obtained data are used as a benchmark to develop a scaled-charge force field for Mg 2+ that includes electronic polarization in a mean field way. We show that using this electronic continuum correction we can describe aqueous magnesium chloride solutions well. However, in aqueous zinc chloride specific interaction terms between the ions need to be introduced to capture ion pairing quantitatively.
Determination of the pairing-strength constants in the isovector plus isoscalar pairing case
Mokhtari, D.; Fellah, M.; Allal, N. H.
2016-05-01
A method for the determination of the pairing-strength constants, in the neutron-proton (n-p) isovector plus isoscalar pairing case, is proposed in the framework of the BCS theory. It is based on the fitting of these constants to reproduce the experimentally known pairing gap parameters as well as the root-mean-squared (r.m.s) charge radii values. The method is applied to some proton-rich even-even nuclei. The single-particle energies used are those of a deformed Woods-Saxon mean field. It is shown that the obtained value of the ratio GnpT=0/G npT=1 is of the same order as the ones, arbitrary chosen, of some previous works. The effect of the inclusion of the isoscalar n-p pairing in the r.m.s matter radii is then numerically studied for the same nuclei.
Energy Technology Data Exchange (ETDEWEB)
Oosawa, Akira; Osakabe, Toyotaka; Kakurai, Kazuhisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fujisawa, Masashi [Tokyo Inst. of Technology, Dept. of Physics, Tokyo (Japan); Tanaka, Hidekazu [Tokyo Inst. of Technolgy, Research Center for Low Temperature Physics, Tokyo (Japan)
2003-05-01
Neutron elastic scattering measurements have been performed under a hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl{sub 3}. Below the ordering temperature T{sub N} = 16.9 K for the hydrostatic pressure P = 1.48 GPa, magnetic Bragg reflections were observed at reciprocal lattice points Q = (h, 0, l) with integer h and odd l, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap close due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P = 1.48 GPa was determined. (author)
Oosawa, A; Kakurai, K; Fujisawa, M; Tanaka, H
2003-01-01
Neutron elastic scattering measurements have been performed under a hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl sub 3. Below the ordering temperature T sub N = 16.9 K for the hydrostatic pressure P = 1.48 GPa, magnetic Bragg reflections were observed at reciprocal lattice points Q = (h, 0, l) with integer h and odd l, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap close due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P = 1.48 GPa was determined. (author)
Magnetic Fluctuations in Pair-Density-Wave Superconductors
Christensen, Morten H.; Jacobsen, Henrik; Maier, Thomas A.; Andersen, Brian M.
2016-04-01
Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d -wave superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La1.905 Ba0.095 CuO4 [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].
Energy Technology Data Exchange (ETDEWEB)
2017-04-25
Gap Resolution is a software package that was developed to improve Newbler genome assemblies by automating the closure of sequence gaps caused by repetitive regions in the DNA. This is done by performing the follow steps:1) Identify and distribute the data for each gap in sub-projects. 2) Assemble the data associated with each sub-project using a secondary assembler, such as Newbler or PGA. 3) Determine if any gaps are closed after reassembly, and either design fakes (consensus of closed gap) for those that closed or lab experiments for those that require additional data. The software requires as input a genome assembly produce by the Newbler assembler provided by Roche and 454 data containing paired-end reads.
Effects of the particle-number projection on the isovector pairing energy
International Nuclear Information System (INIS)
Allal, N.H.; Fellah, M.; Oudih, M.R.; Benhamouda, N.
2006-01-01
The usual neutron-proton BCS wave function is simultaneously projected on both the good neutron and proton numbers using a discrete projection operator. The projected energy of the system is deduced as a limit of rapidly convergent sequence. It is numerically studied for the N=Z nuclei of which ''experimental'' pairing gaps may be deduced from the experimental odd-even mass differences. It then appears that the particle-number fluctuation effect is even more important than in the case of pairing between like-particles. (orig.)
International Nuclear Information System (INIS)
Tokura, Y.; Koshihara, S.; Arima, T.; Takagi, H.; Ishibashi, S.; Ido, T.; Uchida, S.
1990-01-01
Spectra of optical conductivity and magnon Raman scattering have been investigated in single crystals of a parent family of cuprate superconductors with various types of Cu-O single-layer networks. The analysis of the spectra shows the systematic dependence of the charge-transfer gaps and covalent character of Cu-O bonds on the pattern of the Cu-O network, while the spin-exchange energy is rather convergent for all the single-CuO 2 -sheet compounds
1S0 proton superfluidity in neutron star matter: Impact of bulk properties
International Nuclear Information System (INIS)
Tanigawa, Tomonori; Matsuzaki, Masayuki; Chiba, Satoshi
2004-01-01
We study the 1 S 0 proton pairing gap in neutron star matter putting emphasis on influence of the Dirac effective mass and the proton fraction on the gap within the relativistic Hartree-Bogoliubov model. The gap equation is solved using the Bonn-B potential as a particle-particle channel interaction. It is found that the maximal pairing gap Δ max is 1-2 MeV, which has a strong correlation with the Dirac effective mass. Hence we suggest that it serves as a guide to narrow down parameter sets of the relativistic effective field theory. Furthermore, the more slowly protons increase with density in the core region of neutron stars, the wider the superfluid range and the slightly lower the peak of the gap become
Prospects of detecting baryon and quark superfluidity from cooling neutron stars
Page; Prakash; Lattimer; Steiner
2000-09-04
Baryon and quark superfluidity in the cooling of neutron stars are investigated. Future observations will allow us to constrain combinations of the neutron or Lambda-hyperon pairing gaps and the star's mass. However, in a hybrid star with a mixed phase of hadrons and quarks, quark gaps larger than a few tenths of an MeV render quark matter virtually invisible for cooling. If the quark gap is smaller, quark superfluidity could be important, but its effects will be nearly impossible to distinguish from those of other baryonic constituents.
International Nuclear Information System (INIS)
Jha, S.S.; Rajagopal, A.K.
1997-01-01
Anisotropy and the wave-vector dependence of the energy gap function determine many important properties of a superconductor. Starting from first principles, we present here a complete analysis of possible symmetries of the superconducting gap function E g (k) at the Fermi surface in high-T c layered superconductors with either a simple orthorhombic or a tetragonal unit cell. This is done within the framework of Gorkov close-quote s mean-field theory of superconductivity in the so-called open-quotes layer representationclose quotes introduced by us earlier. For N conducting cuprate layers, J=1,2,hor-ellipsis,N, in each unit cell, the spin-singlet order parameters Δ JJ (k) can be expanded in terms of possible basis functions of all the irreducible representations relevant to layered crystals, which are obtained here. In layered materials, the symmetry is restricted to the translational lattice periodicity in the direction perpendicular to the layers and the residual point group and translational symmetries for the two-dimensional unit cell in each layer of the three-dimensional unit cell. We derive an exact general relation to determine different branches of the energy gap function E g (k) at the Fermi surface in terms of Δ JJ (k), which include both intralayer and interlayer order parameters. For N=2, we also obtain an exact expression for quasiparticle energies E p (k), p=1,2, in the superconducting state in the presence of intralayer and complex interlayer order parameters as well as complex tunneling matrix elements between the two layers in the unit cell, which need not be equivalent. The form of the possible basis functions are also listed in terms of cylindrical coordinates k t ,φ,k z to take advantage of the orthogonality of functions with respect to φ integrations. (Abstract Truncated)
International Nuclear Information System (INIS)
Shimizu, Yoshifumi
2009-01-01
Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)
Junctionless Cooper pair transistor
Energy Technology Data Exchange (ETDEWEB)
Arutyunov, K. Yu., E-mail: konstantin.yu.arutyunov@jyu.fi [National Research University Higher School of Economics , Moscow Institute of Electronics and Mathematics, 101000 Moscow (Russian Federation); P.L. Kapitza Institute for Physical Problems RAS , Moscow 119334 (Russian Federation); Lehtinen, J.S. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, FI-02044 VTT (Finland)
2017-02-15
Highlights: • Junctionless Cooper pair box. • Quantum phase slips. • Coulomb blockade and gate modulation of the Coulomb gap. - Abstract: Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current–voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.
International Nuclear Information System (INIS)
Tamagaki, Ryozo
2007-01-01
According to the formulation developed in I, we calculate energy gaps of the baryonic 3 P 2 -dominant superfluidity under the combined pion condensation with Δ-mixing at moderately high density in neutron star interior. Adopting a baryon-baryon potential extended from a 'root' NN potential to be workable in the N+Δ space, we obtain the concrete form of the pairing interaction matrix elements between the quasi-baryon pairs, which constitute a two-dimensional angular-momentum stretched state and a charge triplet. With use of OPEG-B as a 'root' NN potential and an available set of the parameters representing the combined pion condensation, we study the properties of two-dimensional pairing potentials and the matrix elements of pairing interaction. We find that the strong attraction of pairing interaction for the quasi-neutron pairs is brought about by the spin-orbit potential and the spin- and isospin-dependent core terms of the central potential, whose effects are enhanced due to the pion condensation. The quasi-neutron pair plays a decisive role to bring about meaningful energy gaps, while the coupling between different quasi-baryon pairs plays no important role, as a consequence of a unique feature of the combined pion condensation we adopt. We numerically solve the energy gap equation for baryon density of (2-6) times the nuclear density and clarify substantial aspects of resulting superfluid energy gaps, and discuss related problems by taking into account possible change in the factors affecting the energy gaps, such as baryon-baryon potentials, some of the pion condensation parameters and an effective mass of the quasi-particle. Standing on these results, we can say that the 3 P 2 -dominant superfluid is realized with the critical temperatures T c of the order of 10 9 K, equivalent to the energy gaps of the order of 0.1 MeV, under the combined pion condensation in neutron star matter. The key point of the recognition lies in the aspects that the
Tamagaki, R.; Takatsuka, T.
2007-05-01
According to the formulation developed in I, we calculate energy gaps of the baryonic (3) P_2-dominant superfluidity under the combined pion condensation with Delta-mixing at moderately high density in neutron star interior. Adopting a baryon-baryon potential extended from a ``root" NN potential to be workable in the N + Delta space, we obtain the concrete form of the pairing interaction matrix elements between the quasi-baryon pairs, which constitute a two-dimensional angular-momentum stretched state and a charge triplet. With use of OPEG-B as a ``root" NN potential and an available set of the parameters representing the combined pion condensation, we study the properties of two-dimensional pairing potentials and the matrix elements of pairing interaction. We find that the strong attraction of pairing interaction for the quasi-neutron pairs is brought about by the spin-orbit potential and the spin- and isospin-dependent core terms of the central potential, whose effects are enhanced due to the pion condensation. The quasi-neutron pair plays a decisive role to bring about meaningful energy gaps, while the coupling between different quasi-baryon pairs plays no important role, as a consequence of a unique feature of the combined pion condensation we adopt. We numerically solve the energy gap equation for baryon density of (2-6) times the nuclear density and clarify substantial aspects of resulting superfluid energy gaps, and discuss related problems by taking into account possible change in the factors affecting the energy gaps, such as baryon-baryon potentials, some of the pion condensation parameters and an effective mass of the quasi-particle. Standing on these results, we can say that the (3) P_2-dominant superfluid is realized with the critical temperatures T_c of the order of 10(9) K, equivalent to the energy gaps of the order of 0.1 MeV, under the combined pion condensation in neutron star matter. The key point of the recognition lies in the aspects that the
Nuclear reactor neutron shielding
Speaker, Daniel P; Neeley, Gary W; Inman, James B
2017-09-12
A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.
Neutron data evaluation of {sup 238}U
Energy Technology Data Exchange (ETDEWEB)
Maslov, V.M.; Porodzinskij, Y.V.; Hasegawa, Akira; Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-08-01
Cross sections for neutron-induced reactions on {sup 238}U are calculated by using the Hauser-Feshbach-Moldauer theory, the coupled channel model and the double-humped fission barrier model. The direct excitation of ground state band levels is calculated with a rigid-rotator model. The direct excitation of vibrational octupole and K = 2{sup +} quadrupole bands is included using a soft (deformable) rotator model. The competition of inelastic scattering to fission reaction is shown to be sensitive to the target nucleus level density at excitations above the pairing gap. As for fission, (n,2n), (n,3n), and (n,4n) reactions, secondary neutron spectra data are consistently reproduced. Pre-equilibrium emission of first neutron is included. Shell effects in the level densities are shown to be important for estimation of energy dependence of non-emissive fission cross section. (author). 105 refs.
Energy Technology Data Exchange (ETDEWEB)
Firestone, Millicent Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-02-23
Neutron & X-ray scattering provides nano- to meso-scale details of complex fluid structure; 1D electronic density maps dervied from SAXS yield molecular level insights; Neutron reflectivity provides substructure details of substrate supported complex fluids; Complex fluids composition can be optimized to support a wide variety of both soluble and membrane proteins; The water gap dimensions can be finely tuned through polymer component.
Sagan, Bruce E.; Savage, Carla D.
2012-01-01
We introduce the notion of a Mahonian pair. Consider the set, P^*, of all words having the positive integers as alphabet. Given finite subsets S,T of P^*, we say that (S,T) is a Mahonian pair if the distribution of the major index, maj, over S is the same as the distribution of the inversion number, inv, over T. So the well-known fact that maj and inv are equidistributed over the symmetric group, S_n, can be expressed by saying that (S_n,S_n) is a Mahonian pair. We investigate various Mahonia...
Kansas Data Access and Support Center — The Kansas GAP Analysis Land Cover database depicts 43 land cover classes for the state of Kansas. The database was generated using a two-stage hybrid classification...
Tulasi, Delali; Adotey, Dennis; Affum, Andrews; Carboo, Derick; Serfor-Armah, Yaw
2013-10-01
Total As content and the As species distribution in water and sediments from the Kwabrafo stream, a major water body draining the Obuasi gold mining community in southwestern Ghana, have been investigated. Total As content was determined by instrumental neutron activation analysis (INAA). Ion-pair reverse phase high-performance liquid chromatography-neutron activation analysis (HPLC-NAA) was used for speciation of As species. Solid phase extraction with phosphate buffer was used to extract soluble As species from lyophilized sediment. The mass balance after phosphate extraction of soluble As species in sediment varied from 89 to 96 %. Compositionally appropriate reference material International Atomic Energy Agency (IAEA)-Lake Sediment (SL)-1 was used to check the validity of INAA method for total As determination. The measured values are in good agreement with the IAEA recommended value and also within the 95 % confidence interval. The accuracy of the measurement in terms of relative deviation from the IAEA recommended value was ±0.83 %. "In-house" prepared As(III) and As(V) standards were used to validate the HPLC-INAA method used for the As species determination. Total As concentration in the water samples ranged from 1.15 to 9.20 mg/L. As(III) species in water varied from 0.13 to 0.7 mg/L, while As(V) species varied from 0.79 to 3.85 mg/L. Total As content in sediment ranged from 2,134 to 3,596 mg/kg dry mass. The levels of As(III) and As(V) species in the sediment ranges from 138 to 506 mg/kg dry mass and 156 to 385 mg/kg dry mass, respectively.
International Nuclear Information System (INIS)
Irvine, J.M.
1978-01-01
The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)
2002-01-01
We propose to perform Coulomb excitation experiments of neutron-rich nuclei in the vicinity of $^{68}$Ni towards $^{78}$Ni using the REX-ISOLDE facility coupled with the highly efficient MINIBALL array. Major changes in the structure of the atomic nucleus are expected around the N = 40 subshell closure. Recent B(E2) measurements suggested that $^{68}$Ni behaves like a doubly magic nucleus while neutron-rich Zn isotopes with N>38 exhibit a sudden increase of B(E2) values which may be the signature of deformation. We would like to check and test these predictions for neutron-rich nuclei in the vicinity of N = 40 and N = 50 shell closures like $^{72}$Zn, $^{74}$Zn, $^{76}$Zn, $^{68}$Ni, $^{70}$Ni. Our calculations show that an energy upgrade from 2.2 to 3 MeV/nucleon will be of crucial importance for a part of our study while some nuclei can still be very efficiently studied at an energy of 2.2 MeV/nucleon. Therefore, to perform our experiment in an efficient way, we request 21 shifts of beam time before the ene...
International Nuclear Information System (INIS)
Chela-Flores, J.
1981-08-01
A many-body approach to hadron structure is presented, in which we consider two parton species: spin-0 (b-partons), and spin-1/2 (f-partons). We extend a boson and a fermion pairing scheme for the b-, and f-partons respectively, into a Yang-Mills gauge theory. The main feature of this theory is that the gauge field is not identified with the usual gluon field variable in QCD. We study the confinement problem of the hadron constituents, and obtain, for low temperatures, partons that are confined by energy gaps. As the critical temperatures for the corresponding phase transitions are approached, the energy gap gradually disappears, and confinement is lost. The theory goes beyond the non-relativistic harmonic oscillator quark model, in the sense of giving physical reasons why a non-relativistic approximation is adequate in describing the internal dynamics of hadron structure. (author)
International Nuclear Information System (INIS)
Sauvage-Letessier, J.; Quentin, P.; Flocard, H.
1981-01-01
The deformation properties of several isotopes of the elements Os, Pt and Hg have been computed by means of Hartree-Fock plus BCS calculations. The Hartree-Fock potential has been derived from the Skyrme interaction S III. Two approximations have been used for the treatment of pairing correlations: the constant (versus deformation) gap method and the constant (versus deformation) pairing matrix element method. A good agreement with experimental data is obtained for ground state deformation properties except for the exact location of the prolate-oblate transition as a function of the neutron number. For one nucleus 184 Hg, the pairing matrix elements have been calculated from the Gogny interaction D1, in order to study their single particle state- and deformation-dependence. From these results, the validity of the two approximations used for pairing correlations, is discussed
Neutrons from Antiproton Irradiation
DEFF Research Database (Denmark)
Bassler, Niels; Holzscheiter, Michael; Petersen, Jørgen B.B.
the neutron spectrum. Additionally, we used a cylindrical polystyrene loaded with several pairs of thermoluminescent detectors containing Lithium-6 and Lithium-7, which effectively detects thermalized neutrons. The obtained results are compared with FLUKA imulations. Results: The results obtained...... spectrum is very low, and does not pose a problem for radiation therapy. However, the contribution from fast neutrons is much more significant. The dose equivalent contribution from neutrons originate from the patient alone and reaches levels which are found in passive moderated proton therapy. The exact...
Sailor, V.L.; Aichroth, R.W.
1962-12-01
The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)
Above-threshold structure in {sup 244}Cm neutron-induced fission cross section
Energy Technology Data Exchange (ETDEWEB)
Maslov, V.M. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)
1997-03-01
The quasi-resonance structure appearing above the fission threshold in neutron-induced fission cross section of {sup 244}Cm(n,f) is interpreted. It is shown to be due to excitation of few-quasiparticle states in fissioning {sup 245}Cm and residual {sup 244}Cm nuclides. The estimate of quasiparticle excitation thresholds in fissioning nuclide {sup 245}Cm is consistent with pairing gap and fission barrier parameters. (author)
Directory of Open Access Journals (Sweden)
P. Zhang
2014-07-01
Full Text Available We report the observation by angle-resolved photoemission spectroscopy of an impurity state located inside the superconducting gap of Ba_{0.6}K_{0.4}Fe_{2}As_{2} and vanishing above the superconducting critical temperature, for which the spectral weight is confined in momentum space near the Fermi wave-vector positions. We demonstrate, supported by theoretical simulations, that this in-gap state originates from weak scattering between bands with opposite sign of the superconducting-gap phase. This weak scattering, likely due to off-plane nonmagnetic (Ba, K disorder, occurs mostly among neighboring Fermi surfaces, suggesting that the superconducting-gap phase changes sign within holelike (and electronlike bands. Our results impose severe restrictions on the models promoted to explain high-temperature superconductivity in these materials.
Baryon superfluidity and neutrino emissivity of neutron stars
International Nuclear Information System (INIS)
Takatsuka, Tatsuyuki; Tamagaki, Ryozo
2004-01-01
For neutron stars with hyperon-mixed cores, neutrino emissivity is studied using the properties of neutron star matter determined under the equation of state, which is obtained by introducing a repulsive three-body force universal for all the baryons so as to assure the maximum mass of neutron stars compatible with observations. The case without a meson condensate is treated. We choose the inputs provided by nuclear physics, with a reliable allowance. Paying attention to the density dependence of the critical temperatures of the baryon superfluids, which reflect the nature of the baryon-baryon interaction and control neutron star cooling, we show what neutrino emission processes are efficient in regions both with and without hyperon mixing. By comparing the calculated emissivities with respect to densities, we can conclude that at densities lower than about 4 times the nuclear density, the Cooper-pair process arising from the neutron 3 P 2 superfluid dominates, while at higher densities the hyperon direct Urca process dominates. For the hyperon direct Urca process to be a candidate responsible for rapid cooling compatible with observations, a moderately large energy gap of the Λ-particle 1 S 0 superfluid is required to suppress its large emissivity. The implications of these results are discussed in the relation to thermal evolution of neutron stars. (author)
Model for pairing phase transition in atomic nuclei
International Nuclear Information System (INIS)
Schiller, A.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.
2002-01-01
A model is developed which allows the investigation and classification of the pairing phase transition in atomic nuclei. The regions of the parameter space are discussed for which a pairing phase transition can be observed. The model parameters include number of particles, attenuation of pairing correlations with increasing seniority, single-particle level spacing, and pairing gap parameter
Burgio, G. F.
2018-03-01
We discuss the structure of Neutron Stars by modelling the homogeneous nuclear matter of the core by a suitable microscopic Equation of State, based on the Brueckner-Hartree-Fock many-body theory, and the crust, including the pasta phase, by the BCPM energy density functional which is based on the same Equation of State. This allows for a uni ed description of the Neutron Star matter over a wide density range. A comparison with other uni ed approaches is discussed. With the same Equation of State, which features strong direct Urca processes and using consistent nuclear pairing gaps as well as effective masses, we model neutron star cooling, in particular the current rapid cooldown of the neutron star Cas A. We nd that several scenarios are possible to explain the features of Cas A, but only large and extended proton 1 S 0 gaps and small neutron 3 PF 2 gaps can accommodate also the major part of the complete current cooling data.
International Nuclear Information System (INIS)
Williams, W.G.
1988-01-01
The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)
International Nuclear Information System (INIS)
Allen, L.S.
1977-01-01
A borehole logging tool includes a steady-state source of fast neutrons, two epithermal neutron detectors, and two thermal neutron detectors. A count rate meter is connected to each neutron detector. A first ratio detector provides an indication of the porosity of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two epithermal neutron detectors. A second ratio detector provides an indication of both porosity and macroscopic absorption cross section of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two thermal neutron detectors. By comparing the signals of the two ratio detectors, oil bearing zones and salt water bearing zones within the formation being logged can be distinguished and the amount of oil saturation can be determined. 6 claims, 2 figures
Off-shell pairing correlations from meson-exchange theory of nuclear forces
International Nuclear Information System (INIS)
Sedrakian, Armen
2003-01-01
We develop a model of off-mass-shell pairing correlations in nuclear systems, which is based on the meson-exchange picture of nuclear interactions. The temporal retardations in the model are generated by the Fock-exchange diagrams. The kernel of the complex gap equation for baryons is related to the in-medium spectral function of mesons, which is evaluated nonperturbatively in the random phase approximation. The model is applied to the low-density neutron matter in neutron star crusts by separating the interaction into a long-range one-pion-exchange component and a short-range component parametrized in terms of Landau Fermi liquid parameters. The resulting Eliashberg-type coupled nonlinear integral equations are solved by an iterative procedure. We find that the self-energies extend to off-shell energies of the order of several tens of MeV. At low energies the damping of the neutron pair correlations due to the coupling to the pionic modes is small, but becomes increasingly important as the energy is increased. We discuss an improved quasiclassical approximation under which the numerical solutions are obtained
Magicity of neutron-rich nuclei within relativistic self-consistent approaches
Directory of Open Access Journals (Sweden)
Jia Jie Li
2016-02-01
Full Text Available The formation of new shell gaps in intermediate mass neutron-rich nuclei is investigated within the relativistic Hartree–Fock–Bogoliubov theory, and the role of the Lorentz pseudo-vector and tensor interactions is analyzed. Based on the Foldy–Wouthuysen transformation, we discuss in detail the role played by the different terms of the Lorentz pseudo-vector and tensor interactions in the appearing of the N=16, 32 and 34 shell gaps. The nuclei 24O, 48Si and 52,54Ca are predicted with a large shell gap and zero (24O, 52Ca or almost zero (48Si, 54Ca pairing gap, making them candidates for new magic numbers in exotic nuclei. We find from our analysis that the Lorentz pseudo-vector and tensor interactions induce very specific evolutions of single-particle energies, which could clearly sign their presence and reveal the need for relativistic approaches with exchange interactions.
Energy Technology Data Exchange (ETDEWEB)
Attar, F.M.D.; Dhole, S.D. [Department of Physics, University of Pune, Pune-411007 (India); Kailas, S. [Nuclear Physics Division, BARC, Mumbai-400085 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune-411007 (India)], E-mail: vnb@physics.unipune.ernet.in
2009-09-15
The cross-sections for formation of isomeric pair, {sup 75}Ge{sup m}({sigma}{sub m}) and {sup 75}Ge{sup g}({sigma}{sub g}), through {sup 76}Ge(n, 2n), {sup 75}As(n, p) and {sup 78}Se(n, {alpha}) reactions were measured at 13.73 MeV, 14.42 MeV and 14.77 MeV neutrons and also estimated using EMPIRE-II and TALYS codes over neutron energies from near threshold to 20 MeV. For each (n, 2n), (n, p) and (n, {alpha}) reaction, the cross-section initially increases with neutron energy, but starts decreasing as the neutron energy exceeds the respective threshold of (n, 3n), (n, pn) and (n, {alpha}n) reactions. The higher values of {sigma}{sub m} relative to {sigma}{sub g} reveal that the transitions of the excited {sup 75}Ge from higher energy levels to metastable state (7{sup +}/2) are favored as compared to unstable ground state (1{sup -}/2). The present values of cross sections for formation of {sup 75}Ge{sup m,g} through (n, 2n) and (n, {alpha}) reactions are lower, and that of (n, p) reaction are higher compared to most of the corresponding literature cross-sections.
Gamma spectrum following neutron capture in {sup 167}Er
Energy Technology Data Exchange (ETDEWEB)
Visser, D.; Khoo, T.L.; Lister, C.J. [and others
1995-08-01
Statistical decay from a highly excited state samples all the lower-lying states and, hence, provides a sensitive measure of the level density. Pairing has a major impact on the level density, e.g. creating a pair gap between the 0- and 2-quasiparticle configurations. Hence the shape of the statistical spectrum contains information on pairing, and can be used to provide information on the reduction of pairing with thermal excitation energy. For this reason, we measured the complete spectrum of {gamma}rays following thermal neutron capture in {sup 167}Er. The experiment was performed at the Brookhaven reactor using Compton-suppressed Ge detectors from TESSA. The spectrum, which was corrected for detector response and efficiency, reveals primary (first-step, high-energy) transitions up to nearly 8 MeV, secondary (last-step, lower-energy) transitions, as we as a continuous statistical component. Effort was expanded to identify all lines from contaminant sources and an upper limit of 5% was tentatively set for their contributions. The spectral shape of the statistical spectrum will be compared with theoretical spectra obtained from a calculation of pairing which accounts for a stepwise reduction of the pair correlations as the number of quasiparticles increases. The primary lines which decay directly to the near-yrast states will also be used to deduce the level densities.
Formation of Singlet Fermion Pairs in the Dilute Gas of Boson-Fermion Mixture
Directory of Open Access Journals (Sweden)
Minasyan V.
2010-10-01
Full Text Available We argue the formation of a free neutron spinless pairs in a liquid helium -dilute neutron gas mixture. We show that the term, of the interaction between the excitations of the Bose gas and the density modes of the neutron, meditate an attractive interaction via the neutron modes, which in turn leads to a bound state on a spinless neutron pair. Due to presented theoretical approach, we prove that the electron pairs in superconductivity could be discovered by Frölich earlier then it was made by the Cooper.
Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik
2013-01-01
Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031
Thermodynamics of pairing phase transition in nuclei
International Nuclear Information System (INIS)
Karim, Afaque; Ahmad, Shakeb
2014-01-01
The pairing gaps, pairing energy, heat capacity and entropy are calculated within BCS (Bardeen- Cooper-Schrieffer) based quasi particle approach, including thermal fluctuations on pairing field within pairing model for all nuclei (light, medium, heavy and super heavy nuclei). Quasi particles approach in BCS theory was introduced and reformulated to study various properties. For thermodynamic behavior of nuclei at finite temperatures, the anomalous averages of creation and annihilation operators are introduced. It is solved self consistently at finite temperatures to obtain BCS Hamiltonian. After doing unitary transformation, we obtained the Hamiltonian in the diagonal form. Thus, one gets temperature dependence gap parameter and pairing energy for nuclei. Moreover, the energy at finite temperatures is the sum of the condensation energy and the thermal energy of fermionic quasi particles. With the help of BCS Hamiltonian, specific heat, entropy and free energy are calculated for different nuclei. In this paper the gap parameter occupation number and pairing energy as a function of temperature which is important for all the light, medium, heavy and super heavy nuclei is calculated. Moreover, the various thermo dynamical quantities like specific heat, entropy and free energy is also obtained for different nuclei. Thus, the thermodynamics of pairing phase transition in nuclei is studied
International Nuclear Information System (INIS)
Steenstrup, S.
Briefly surveys recent developments in research work with ultracold neutrons (neutrons of very low velocity, up to 10 m/s at up to 10 -7 eV and 10 -3 K). Slow neutrons can be detected in an ionisation chamber filled with B 10 F 3 . Very slow neutrons can be used for investigations into the dipole moment of neutrons. Neutrons of large wave length have properties similar to those of light. The limit angle for total reflection is governed by the wave length and by the material. Total reflection can be used to filter ultracold neutrons out of the moderator material of a reactor. Total reflection can also be used to store ultracold neutrons but certain problems with storage have not yet been clarified. Slow neutrons can be made to lose speed in a neutron turbine, and come out as ultracold neutrons. A beam of ultracold neutrons could be used in a neutron microscope. (J.S.)
Directory of Open Access Journals (Sweden)
William Hansen
2014-11-01
Full Text Available Different kinds of omissions sometimes occur, or are perceived to occur, in traditional narratives and in tradition-inspired literature. A familiar instance is when a narrator realizes that he or she does not fully remember the story that he or she has begun to tell, and so leaves out part of it, which for listeners may possibly result in an unintelligible narrative. But many instances of narrative gap are not so obvious. From straightforward, objective gaps one can distinguish less-obvious subjective gaps: in many cases narrators do not leave out anything crucial or truly relevant from their exposition, and yet readers perceive gaps and take steps to fill them. The present paper considers four examples of subjective gaps drawn from ancient Greek literature (the Pandora myth, ancient Roman literature (the Pygmalion legend, ancient Hebrew literature (the Joseph legend, and early Christian literature (the Jesus legend. I consider the quite varied ways in which interpreters expand the inherited texts of these stories, such as by devising names, manufacturing motives, creating backstories, and in general filling in biographical ellipses. Finally, I suggest an explanation for the phenomenon of subjective gaps, arguing that, despite their variety, they have a single cause.
Nucleon-pair approximation to the nuclear shell model
Energy Technology Data Exchange (ETDEWEB)
Zhao, Y.M., E-mail: ymzhao@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Arima, A. [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Musashi Gakuen, 1-26-1 Toyotamakami Nerima-ku, Tokyo 176-8533 (Japan)
2014-12-01
Atomic nuclei are complex systems of nucleons–protons and neutrons. Nucleons interact with each other via an attractive and short-range force. This feature of the interaction leads to a pattern of dominantly monopole and quadrupole correlations between like particles (i.e., proton–proton and neutron–neutron correlations) in low-lying states of atomic nuclei. As a consequence, among dozens or even hundreds of possible types of nucleon pairs, very few nucleon pairs such as proton and neutron pairs with spin zero, two (in some cases spin four), and occasionally isoscalar spin-aligned proton–neutron pairs, play important roles in low-energy nuclear structure. The nucleon-pair approximation therefore provides us with an efficient truncation scheme of the full shell model configurations which are otherwise too large to handle for medium and heavy nuclei in foreseeable future. Furthermore, the nucleon-pair approximation leads to simple pictures in physics, as the dimension of nucleon-pair subspace is always small. The present paper aims at a sound review of its history, formulation, validity, applications, as well as its link to previous approaches, with the focus on the new developments in the last two decades. The applicability of the nucleon-pair approximation and numerical calculations of low-lying states for realistic atomic nuclei are demonstrated with examples. Applications of pair approximations to other problems are also discussed.
Exploring Neutron-Rich Oxygen Isotopes with MoNA
International Nuclear Information System (INIS)
Frank, N.; Gade, A.; Peters, W. A.; Thoennessen, M.; Baumann, T.; Bazin, D.; Lecouey, J.-L.; Scheit, H.; Schiller, A.; Brown, J.; DeYoung, P. A.; Finck, J. E.; Hinnefeld, J.; Howes, R.; Luther, B.
2007-01-01
The Modular Neutron Array (MoNA) was used in conjunction with a large-gap dipole magnet (Sweeper) to measure neutron-unbound states in oxygen isotopes close to the neutron dripline. While no excited states were observed in 24 O, a resonance at 45(2) keV above the neutron separation energy was observed in 23 O
Wang, Qisi; Park, J T; Feng, Yu; Shen, Yao; Hao, Yiqing; Pan, Bingying; Lynn, J W; Ivanov, A; Chi, Songxue; Matsuda, M; Cao, Huibo; Birgeneau, R J; Efremov, D V; Zhao, Jun
2016-05-13
An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.
Staged Z-pinch Experiments at the 1MA Zebra pulsed-power generator: Neutron measurements
Ruskov, Emil; Darling, T.; Glebov, V.; Wessel, F. J.; Anderson, A.; Beg, F.; Conti, F.; Covington, A.; Dutra, E.; Narkis, J.; Rahman, H.; Ross, M.; Valenzuela, J.
2017-10-01
We report on neutron measurements from the latest Staged Z-pinch experiments at the 1MA Zebra pulsed-power generator. In these experiments a hollow shell of argon or krypton gas liner, injected between the 1 cm anode-cathode gap, compresses a deuterium plasma target of varying density. Axial magnetic field Bz neutron Time of Flight (nTOF) detectors are augmented with a large area ( 1400 cm2) liquid scintillator detector to which fast gatedPhotek photomultipliers are attached. Sample data from these neutron diagnostics systems is presented. Consistently high neutron yields YDD >109 are measured, with highest yield of 2.6 ×109 . A pair of horizontally and vertically placed plastic scintillator nTOFs suggest isotropic i.e. thermonuclear origin of the neutrons produced. nTOF data from the liquid scintillator detector was cross-calibrated with the silver activation detector, and can be used for accurate calculation of the neutron yield. Funded by the Advanced Research Projects Agency - Energy, under Grant Number DE-AR0000569.
International Nuclear Information System (INIS)
Sasuga, N.; Okamura, K.; Terakado, T.; Mabuchi, Y.; Nakagawa, T.; Sukegawa, Toshio; Aizawa, C.; Saito, I.; Oka, Yoshiaki
1998-01-01
Each dose rate of neutron and gamma ray in the thermal column of the Yayoi reactor, in which an epithermal neutron field will be used for the boron neutron capture therapy, was measured by using a tissue equivalent ionization chamber and a graphite chamber. The tissue equivalent ionization chamber has some response to both neutron and gamma ray, but the graphite chamber has a few response to the neutron, so called pair ionization chamber method. The epithermal neutron fluxes of the thermal column were calculated by ANISN (one dimensional neutron-gamma transport code). A measured value for gamma dose rate by the pair ionization chamber agrees relevantly with a calculated result. For neutron dose rate, however, the measured value was too much small in comparison with the calculated result. The discrepancy between the measured value and the calculated result for neutron dose rate is discussed in detail in the report. (M. Suetake)
Lue, H F; Meng, J; Zhou, S G
2003-01-01
Properties of single-LAMBDA and double-LAMBDA hypernuclei for even-N Ca isotopes ranging from the proton dripline to the neutron dripline are studied using the relativistic continuum Hartree-Bogolyubov theory with a zero-range pairing interaction. Compared with ordinary nuclei, the addition of one or two LAMBDA-hyperons lowers the Fermi level. The predicted neutron dripline nuclei are, respectively, sup 7 sup 5 subLAMBDA Ca and sup 7 sup 6 sub 2 subLAMBDA Ca, as the additional attractive force provided by the LAMBDA-N interaction shifts nuclei from outside to inside the dripline. Therefore, the last bound hypernuclei have two more neutrons than the corresponding ordinary nuclei. Based on the analysis of two-neutron separation energies, neutron single-particle energy levels, the contribution of continuum and nucleon density distribution, giant halo phenomena due to the pairing correlation, and the contribution from the continuum are suggested to exist in Ca hypernuclei similar to those that appear in ordinary ...
Pairing in the BCS and LN approximations using continuum single particle level density
International Nuclear Information System (INIS)
Id Betan, R.M.; Repetto, C.E.
2017-01-01
Understanding the properties of drip line nuclei requires to take into account the correlations with the continuum spectrum of energy of the system. This paper has the purpose to show that the continuum single particle level density is a convenient way to consider the pairing correlation in the continuum. Isospin mean-field and isospin pairing strength are used to find the Bardeen–Cooper–Schrieffer (BCS) and Lipkin–Nogami (LN) approximate solutions of the pairing Hamiltonian. Several physical properties of the whole chain of the Tin isotope, as gap parameter, Fermi level, binding energy, and one- and two-neutron separation energies, were calculated and compared with other methods and with experimental data when they exist. It is shown that the use of the continuum single particle level density is an economical way to include explicitly the correlations with the continuum spectrum of energy in large scale mass calculation. It is also shown that the computed properties are in good agreement with experimental data and with more sophisticated treatment of the pairing interaction.
International Nuclear Information System (INIS)
Van Well, A.A.
1999-01-01
Neutron research where reflection, refraction, and interference play an essential role is generally referred to as 'neutron optics'. The neutron wavelength, the scattering length density and the magnetic properties of the material determine the critical angle for total reflection. The theoretical background of neutron reflection, experimental methods and the interpretation of reflection data are presented. (K.A.)
Topological Nodal Cooper Pairing in Doped Weyl Metals
Li, Yi; Haldane, F. D. M.
2018-02-01
We generalize the concept of Berry connection of the single-electron band structure to that of a two-particle Cooper pairing state between two Fermi surfaces with opposite Chern numbers. Because of underlying Fermi surface topology, the pairing Berry phase acquires nontrivial monopole structure. Consequently, pairing gap functions have topologically protected nodal structure as vortices in the momentum space with the total vorticity solely determined by the pair monopole charge qp. The nodes of gap function behave as the Weyl-Majorana points of the Bogoliubov-de Gennes pairing Hamiltonian. Their relation with the connection patterns of the surface modes from the Weyl band structure and the Majorana surface modes inside the pairing gap is also discussed. Under the approximation of spherical Fermi surfaces, the pairing symmetry are represented by monopole harmonic functions. The lowest possible pairing channel carries angular momentum number j =|qp|, and the corresponding gap functions are holomorphic or antiholomorphic functions on Fermi surfaces. After projected on the Fermi surfaces with nontrivial topology, all the partial-wave channels of pairing interactions acquire the monopole charge qp independent of concrete pairing mechanism.
Dual origin of pairing in nuclei
Energy Technology Data Exchange (ETDEWEB)
Idini, A. [University of Jyvaskyla, Department of Physics (Finland); Potel, G. [Michigan State University, National Superconducting Cyclotron Laboratory (United States); Barranco, F. [Escuela Superior de Ingenieros, Universidad de Sevilla, Departamento de Fìsica Aplicada III (Spain); Vigezzi, E., E-mail: enrico.vigezzi@mi.infn.it [INFN Sezione di Milano (Italy); Broglia, R. A. [Università di Milano, Dipartimento di Fisica (Italy)
2016-11-15
The pairing correlations of the nucleus {sup 120}Sn are calculated by solving the Nambu–Gor’kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong {sup 1}S{sub 0} short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- (v{sub p}{sup bare}) and long-range (v{sub p}{sup ind}) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.
Dual origin of pairing in nuclei
Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.
2016-11-01
The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu-Gor'kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- ( v p bare) and long-range ( v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.
DEFF Research Database (Denmark)
Lyles, Marjorie; Pedersen, Torben; Petersen, Bent
2003-01-01
The study explores what factors influence the reduction of managers' perceivedknowledge gaps in the context of the environments of foreign markets. Potentialdeterminants are derived from traditional internationalization theory as well asorganizational learning theory, including the concept...... of absorptive capacity. Building onthese literature streams a conceptual model is developed and tested on a set of primarydata of Danish firms and their foreign market operations. The empirical study suggeststhat the factors that pertain to the absorptive capacity concept - capabilities ofrecognizing......, assimilating, and utilizing knowledge - are crucial determinants ofknowledge gap elimination. In contrast, the two factors deemed essential in traditionalinternationalization process theory - elapsed time of operations and experientiallearning - are found to have no or limited effect.Key words...
Proton-neutron interaction at N≅Z. First observation of the Tz = 1 nucleus 4694Pd48 in beam
International Nuclear Information System (INIS)
Gorska, M.; Grzywacz, R.; Rejmund, M.; Foltescu, D.; Roth, H.; Skeppstedt, Oe.; Schubart, R.; Grawe, H.; Heese, J.; Maier, K.H.; Spohr, K.; Fossan, D.B.
1996-01-01
Neutron deficient nuclei close to N ≅ Z are expected to exhibit a new kind of pairing based on the T=0, I=1, I max configuration, which in the (p 1/2 , g 9/2 )shell model space below 100 Sn is governed by the g 2 9/2 proton (π)-neutron(ν) interaction. The experimental data exhibit strongly bound g 2 9/2 , T=0, I=1 + ,9 + . In the experimentally barely studied far from stability upper πg 9/2 shell due to the hole-hole character of the πν interaction spin gap isomers are expected. For this reason the γ decay of isomers produced in the 58 Ni ion beams interaction with 40 Ca target. The 94 Pd isomer has been found as an example of mentioned above spin gap isomers
Neutron radiography with ultracold neutrons
International Nuclear Information System (INIS)
Bates, J.C.
1981-01-01
The neutron transmission factor of very thin films may be low if the neutron energy is comparable to the pseudo-potential of the film material. Surprisingly, perhaps, it is relatively easy to obtain neutrons with such low energies in sufficient numbers to produce neutron radiographs. (orig.)
Neutron Skins and Neutron Stars
Piekarewicz, J.
2013-01-01
The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ("PREX") at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in 208Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron be...
Spin dynamics in the pseudo-gap state of a high-temperature superconductor
Energy Technology Data Exchange (ETDEWEB)
Hinkov, V; Lin, C T; Chen, D P; Keimer, B [Max Planck Inst Solid State Res, D-70569 Stuttgart, (Germany); Bourges, P; Pailhes, S; Sidis, Y [CEA, CNRS, CE Saclay, Lab Leon Brillouin, F-91191 Gif Sur Yvette, (France); Ivanov, A [Inst Max Von Laue Paul Langevin, F-38042 Grenoble, (France); Frost, C D; Perring, T G [Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, (United Kingdom)
2007-07-01
The pseudo-gap is one of the most pervasive phenomena of high-temperature superconductors. It is attributed either to incoherent Cooper pairing setting in above the superconducting transition temperature, Tc, or to a hidden order parameter competing with superconductivity. Here, we use inelastic neutron scattering from under-doped YBa{sub 2}Cu{sub 3}O{sub 6.6} to show that the dispersion relations of spin excitations in the superconducting and pseudo-gap states are qualitatively different. Specifically, the extensively studied 'hour glass' shape of the magnetic dispersions in the superconducting state is no longer discernible in the pseudo-gap state and we observe an unusual 'vertical' dispersion with pronounced in-plane anisotropy. The differences between superconducting and pseudo-gap states are thus more profound than generally believed, suggesting a competition between these two states. Whereas the high-energy excitations are common to both states and obey the symmetry of the copper oxide square lattice, the low-energy excitations in the pseudo-gap state may be indicative of collective fluctuations towards a state with broken orientational symmetry predicted in theoretical work. (authors)
Experimental results on RPC neutron sensitivity
Energy Technology Data Exchange (ETDEWEB)
Abbrescia, M.; Altieri, S.; Baratti, V.; Barnaba, O.; Belli, G.; Bruno, G.; Colaleo, A.; De Vecchi, C.; Guida, R. E-mail: roberto.guida@pv.infn.it; Iaselli, G.; Imbres, E.; Loddo, F.; Maggi, M.; Marangelli, B.; Musitelli, G.; Nardo, R.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Ratti, S.; Riccardi, C.; Romano, F.; Torre, P.; Vicini, A.; Vitulo, P
2003-08-01
RPC neutron sensitivity has been studied during two tests done with different neutrons energies. In the first test, neutrons from spontaneous fission events of {sup 252}Cf were used (average energy 2 MeV); while in the second test neutrons were produced using a 50 MeV deuteron beam on a 1 cm thick beryllium target (average energy 20 MeV). Preliminary results show that the neutron sensitivity in double gap mode is (0.52{+-}0.03)x10{sup -3} at about 2 MeV and (5.3{+-}0.5)x10{sup -3} at about 20 MeV.
Nuclear pairing reduction due to rotation and blocking
International Nuclear Information System (INIS)
Wu, X.; Zhang, Z. H.; Zeng, J. Y.; Lei, Y. A.
2011-01-01
Nuclear pairing gaps of normally deformed and superdeformed nuclei are investigated using the particle-number-conserving (PNC) formalism for the cranked shell model, in which the blocking effects are treated exactly. Both rotational frequency ω dependence and seniority (number of unpaired particles) ν dependence of the pairing gap Δ-tilde are investigated. For the ground-state bands of even-even nuclei, PNC calculations show that, in general, Δ-tilde decreases with increasing ω, but the ω dependence is much weaker than that calculated by the number-projected Hartree-Fock-Bogolyubov approach. For the multiquasiparticle bands (seniority ν>2), the pairing gaps stay almost ω independent. As a function of the seniority ν, the bandhead pairing gaps Δ-tilde(ν,ω=0) decrease slowly with increasing ν. Even for the highest seniority ν bands identified so far, Δ-tilde(ν,ω=0) remains greater than 70% of Δ-tilde(ν=0,ω=0).
Elizondo-Decanini, Juan M.
2016-08-02
Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and the switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.
International Nuclear Information System (INIS)
Vanhavere, F.
2001-01-01
The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding
Energy Technology Data Exchange (ETDEWEB)
Vanhavere, F
2001-04-01
The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding.
Strong pairing approximation in comparison with the exact solutions to the pairing Hamiltonian
Directory of Open Access Journals (Sweden)
Lunyov A.V.
2016-01-01
Full Text Available Results of the Strong Pairing Approximation (SPA as a method with the exact particle number conservation are compared with those of the quasiparticle method (QM. It is shown that SPA comes to the same equations as QM for the gap parameter, chemical potential and one- and two-quasiparticle states. Calculations are performed for 14864Gd84 as an example, and compared with the exact solutions to the pairing Hamiltonian.
Pairing phase transition and thermodynamical quantities in 148,149Sm
International Nuclear Information System (INIS)
Razavi, R.; Behkami, A.N.; Dehghani, V.
2014-01-01
The nuclear level densities and entropies in 148,149 Sm have been calculated in the framework of the superconducting theory that includes modified nuclear pairing gap. For modified pairing gap parameter the smooth transition from the BCS to the Fermi type distributions is used. By applying modified pairing gap, the extracted S-shaped heat capacity as a function of nuclear temperature exhibits a physical and smoother behavior instead of the singular behavior predicted by the BCS equations at critical temperature
Accelerator based continuous neutron source.
Shapiro, S M; Ruggiero, A G
2003-01-01
Until the last decade, most neutron experiments have been performed at steady-state, reactor-based sources. Recently, however, pulsed spallation sources have been shown to be very useful in a wide range of neutron studies. A major review of neutron sources in the US was conducted by a committee chaired by Nobel laureate Prof. W. Kohn: ''Neutron Sources for America's Future-BESAC Panel on Neutron Sources 1/93''. This distinguished panel concluded that steady state and pulsed sources are complementary and that the nation has need for both to maintain a balanced neutron research program. The report recommended that both a new reactor and a spallation source be built. This complementarity is recognized worldwide. The conclusion of this report is that a new continuous neutron source is needed for the second decade of the 20 year plan to replace aging US research reactors and close the US neutron gap. it is based on spallation production of neutrons using a high power continuous superconducting linac to generate pr...
International Nuclear Information System (INIS)
Hrdlicka, Z.
1977-01-01
Neutron radiography is a radiographic method using a neutron beam of a defined geometry. The neutron source usually consists of a research reactor, a specialized neutron radiography reactor or the 252 Cf radioisotope source. There are two types of the neutron radiography display system, viz., a system producing neutron radiography images by a photographic process or a system allowing a visual display, eg., using a television monitor. The method can be used wherever X-ray radiography is used except applications in the radiography of humans. The neutron radiography unit at UJV uses the WWR-S reactor as the neutron source and both types of the above mentioned display system. (J.P.)
International Nuclear Information System (INIS)
Kredov, B.M.
1979-01-01
The history of the neutron is displayed on the basis of contributions by scientists who produced outstanding results in neutron research (part 1), of summarizing discoveries and theories which led to the discovery of the neutron and the resulting development of nuclear physics (part 2), and of fundamental papers written by Rutherford, Chadwick, Iwanenko, and others (appendix). Of interest to physicists, historians, and students
International Nuclear Information System (INIS)
Charlton, J.S.
1986-01-01
The way in which neutrons interact with matter such as slowing-down, diffusion, neutron absorption and moderation are described. The use of neutron techniques in industry, in moisture gages, level and interface measurements, the detection of blockages, boron analysis in ore feedstock and industrial radiography are discussed. (author)
BCS @ 50: derivation of gap equations in different lattice geometries
International Nuclear Information System (INIS)
Saurabh Basu
2007-07-01
We rigorously derive BCS gap equations for a square, triangular and a honeycomb lattice using a two-dimensional t-J model. The gap equations in all the three lattice geometries look usual, with band indices appearing and a minor modification in the separable pair potential for the (two band) honeycomb lattice. In each case, the gap equation is solved (self consistently with the number equation) at low densities assuming singlet pairing. (author)
Pairing correlations in nuclei
International Nuclear Information System (INIS)
Baba, C.V.K.
1988-01-01
There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs
SUSANS With Polarized Neutrons.
Wagh, Apoorva G; Rakhecha, Veer Chand; Strobl, Makus; Treimer, Wolfgang
2005-01-01
Super Ultra-Small Angle Neutron Scattering (SUSANS) studies over wave vector transfers of 10(-4) nm(-1) to 10(-3) nm(-1) afford information on micrometer-size agglomerates in samples. Using a right-angled magnetic air prism, we have achieved a separation of ≈10 arcsec between ≈2 arcsec wide up- and down-spin peaks of 0.54 nm neutrons. The SUSANS instrument has thus been equipped with the polarized neutron option. The samples are placed in a uniform vertical field of 8.8 × 10(4) A/m (1.1 kOe). Several magnetic alloy ribbon samples broaden the up-spin neutron peak significantly over the ±1.3 × 10(-3) nm(-1) range, while leaving the down-spin peak essentially unaltered. Fourier transforms of these SUSANS spectra corrected for the instrument resolution, yield micrometer-range pair distribution functions for up- and down-spin neutrons as well as the nuclear and magnetic scattering length density distributions in the samples.
International Nuclear Information System (INIS)
Witala, H.; Hueber, D.; Gloeckle, W.; Tornow, W.; Gonzalez Trotter, D.E.
1996-01-01
Data for the neutron-neutron final-state-interaction cross section obtained recently in a kinematically complete neutron-deuteron breakup experiment have been reanalyzed using rigorous solutions of the three-nucleon Faddeev equations with realistic nucleon-nucleon interactions. A discrepancy was found with respect to a recent analysis based on the W-matrix approximation to the Paris potential. We also estimate theoretical uncertainties in extracting the neutron-neutron scattering length resulting from the use of different nucleon-nucleon interactions and the possible action of the two pion-exchange three-nucleon force. We find that there exists a certain production angle for the interacting neutron-neutron pair where the uncertainties become minimal. (author)
Secure pairing with biometrics
Buhan, I.R.; Boom, B.J.; Doumen, J.M.; Hartel, Pieter H.; Veldhuis, Raymond N.J.
Secure pairing enables two devices that share no prior context with each other to agree upon a security association, which they can use to protect their subsequent communication. Secure pairing offers guarantees of the association partner identity and it should be resistant to eavesdropping and to a
Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.
2011-01-01
Pairings on elliptic curves are being used in an increasing number of cryptographic applications on many different devices and platforms, but few performance numbers for cryptographic pairings have been reported on embedded and mobile devices. In this paper we give performance numbers for affine and
International Nuclear Information System (INIS)
Balantekin, A. B.; Pehlivan, Y.
2007-01-01
We give the exact solution of orbit dependent nuclear pairing problem between two nondegenerate energy levels using the Bethe ansatz technique. Our solution reduces to previously solved cases in the appropriate limits including Richardson's treatment of reduced pairing in terms of rational Gaudin algebra operators
International Nuclear Information System (INIS)
Valles, James
2008-01-01
Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.
DEFF Research Database (Denmark)
Dalgas, Karina Märcher
2015-01-01
pair-sending families in the Philippines, this dissertation examines the long-term trajectories of these young Filipinas. It shows how the au pairs’ local and transnational family relations develop over time and greatly influence their life trajectories. A focal point of the study is how au pairs...... that Filipina au pairs see their stay abroad as an avenue of personal development and social recognition, I examine how the au pairs re-position themselves within their families at home through migration, and how they navigate between the often conflicting expectations of participation in the sociality......Since 2000, thousands of young Filipino migrants have come to Denmark as au pairs. Officially, they are there to “broaden their cultural horizons” by living temporarily with a Danish host family, but they also conduct domestic labor in exchange for food and money, which allows them to send...
ΛΛ pairing in NΛ composite matter
International Nuclear Information System (INIS)
Tanigawa, Tomonori; Matsuzaki, Masayuki; Chiba, Satoshi
2002-01-01
ΛΛ pairing correlation in binary mixed matter of nucleons and lambdas is studied within the relativistic Hartree-Bogoliubov model. Λ hyperons to be paired up are immersed in background nucleons in normal state. A phenomenological ΛΛ interaction, which is derived relativistically from the Lagrangian of the system, is adopted to the gap equation. It is found that increasing the nucleon density makes the ΛΛ pairing gap suppressed. This result suggests a mechanism, specific to relativistic models, of its dependence on the nucleon density. (author)
ΛΛ pairing in NΛ composite matter
International Nuclear Information System (INIS)
Tanigawa, Tomonori; Matsuzaki, Masayuki; Chiba, Satoshi
2003-01-01
ΛΛ pairing correlation in binary mixed matter of nucleons and lambdas is studied within the relativistic Hartree-Bogoliubov model. Λ hyperons to be paired up are immersed in background nucleons in normal state. A phenomenological ΛΛ interaction, which is derived relativistically from the Lagrangian of the system, is adopted to the gap equation. It is found that increasing the nucleon density makes the ΛΛ pairing gap suppressed. This result suggests a mechanism, specific to relativistic models, of its dependence on the nucleon density. (author)
{lambda}{lambda} pairing in N{lambda} composite matter
Energy Technology Data Exchange (ETDEWEB)
Tanigawa, Tomonori [Japan Society for the Promotion of Science, Tokyo (Japan); Matsuzaki, Masayuki [Japan Atomic Energy Research Inst., Tokyo (Japan); Chiba, Satoshi [Fukuoka Univ. of Education, Dept. of Physics, Munakata, Fukuoka (Japan)
2002-09-01
{lambda}{lambda} pairing correlation in binary mixed matter of nucleons and lambdas is studied within the relativistic Hartree-Bogoliubov model. {lambda} hyperons to be paired up are immersed in background nucleons in normal state. A phenomenological {lambda}{lambda} interaction, which is derived relativistically from the Lagrangian of the system, is adopted to the gap equation. It is found that increasing the nucleon density makes the {lambda}{lambda} pairing gap suppressed. This result suggests a mechanism, specific to relativistic models, of its dependence on the nucleon density. (author)
Development of Cold Neutron Activation Station at HANARO Cold Neutron Source
International Nuclear Information System (INIS)
Sun, G. M.; Hoang, S. M. T.; Moon, J. H.; Chung, Y. S.; Cho, S. J.; Lee, K. H.; Park, B. G.; Choi, H. D.
2012-01-01
A new cold neutron source at the HANARO Research Reactor had been constructed in the framework of a five-year project, and ended in 2009. It has seven neutron guides, among which five guides were already allocated for a number of neutron scattering instruments. A new two-year project to develop a Cold Neutron Activation Station (CONAS) was carried out at the two neutron guides since May 2010, which was supported by the program of the Ministry of Education, Science and Technology, Korea. Fig. 1 shows the location of CONAS. CONAS is a complex facility including several radioanalytical instruments utilizing neutron capture reaction to analyze elements in a sample. It was designed to include three instruments like a CN-PGAA (Cold Neutron - Prompt Gamma Activation Analysis), a CN-NIPS (Cold Neutron - Neutron Induced Pair Spectrometer), and a CN-NDP (Cold Neutron - Neutron-induced prompt charged particle Depth Profiling). Fig. 2 shows the conceptual configuration of the CONAS concrete bioshield and the instruments. CN-PGAA and CN-NIPS measure the gamma-rays promptly emitted from the sample after neutron capture, whereas CN-NDP is a probe to measure the charged particles emitted from the sample surface after neutron capture. For this, we constructed two cold neutron guides called CG1 and CG2B guides from the CNS
International Nuclear Information System (INIS)
Hiraoka, Eiichi
1988-01-01
The thermal neutron absorption coefficient is essentially different from the X-ray absorption coefficient. Each substance has a characteristic absorption coefficient regardless of its density. Neutron deams have the following features: (1) neutrons are not transmitted efficiently by low molecular weight substances, (2) they are transmitted efficiently by heavy metals, and (3) the transmittance differs among isotopes. Thus, neutron beams are suitable for cheking for foreign matters in heavy metals and testing of composites consisting of both heavy and light materials. A neutron source generates fast neutrons, which should be converted into thermal neutrons by reducing their energy. Major neutron souces include nuclear reactors, radioisotopes and particle accelerators. Photographic films and television systems are mainly used to observe neutron transmission images. Computers are employed for image processing, computerized tomography and three-dimensional analysis. The major applications of neutron radiography include inspection of neclear fuel; evaluation of material for airplane; observation of fuel in the engine and oil in the hydraulic systems in airplanes; testing of composite materials; etc. (Nogami, K.)
Pseudo Nambu–Goldstone modes in neutron stars
Energy Technology Data Exchange (ETDEWEB)
Kojo, Toru, E-mail: torujj@mail.ccnu.edu.cn
2017-06-10
If quarks and gluons are either gapped or confined in neutron stars (NSs), the most relevant light modes are Nambu–Goldstone (NG) modes. We study NG modes within a schematic quark model whose parameters at high density are constrained by the two-solar mass constraint. Our model has the color-flavor-locked phase at high density, with the effective couplings as strong as in hadron physics. We find that strong coupling effects make NG modes more massive than in weak coupling predictions, and would erase several phenomena caused by the stressed pairings in mismatched Fermi surfaces. For instance, we found that charged kaons, which are dominated by diquark and anti-diquark components, are not light enough to condense at strong coupling. Implications for gravitational wave signals for NS–NS mergers are also briefly discussed.
Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN
2011-04-05
A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.
Wu, Yican
2017-01-01
This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...
International Nuclear Information System (INIS)
Poortmans, F.
1977-01-01
Experimental work in the field of low-energy neutron physics can be subdivided into two classes: 1)Study of the decay process of the compound-nucleus state as for example the study of the capture gamma rays and of the neutron induced fission process; 2)Study of the reaction mechanism, mainly by measuring the reaction cross-sections and resonance parameters. These neutron cross-sections and resonance parameters are also important data required for many technological applications especially for reactor development programmes. In general, the second class of experiments impose other requirements on the neutron spectrometer than the first class. In most cases, a better neutron energy resolution and a broader neutron energy range are required for the study of the reaction mechanism than for the study of various aspects of the decay process. (author)
Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars
Wambach, J.; Anisworth, T. L.; Pines, D.
1993-01-01
A microscopic model for the quaisiparticle interaction in neutron matter is presented. Both particle-particle (pp) and particle-hole (ph) correlation are are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for the particle hole interaction and the scattering amplitude on the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the S-1 gap parameter for neutron superfluidity and comment briefly on neutron-star implications.
Mesoscopic pairing without superconductivity
Hofmann, Johannes
2017-12-01
We discuss pairing signatures in mesoscopic nanowires with a variable attractive pairing interaction. Depending on the wire length, density, and interaction strength, these systems realize a simultaneous bulk-to-mesoscopic and BCS-BEC crossover, which we describe in terms of the parity parameter that quantifies the odd-even energy difference and generalizes the bulk Cooper pair binding energy to mesoscopic systems. We show that the parity parameter can be extracted from recent measurements of conductance oscillations in SrTiO3 nanowires by Cheng et al. [Nature (London) 521, 196 (2015), 10.1038/nature14398], where it marks the critical magnetic field that separates pair and single-particle currents. Our results place the experiment in the fluctuation-dominated mesoscopic regime on the BCS side of the crossover.
Investigations into nuclear pairing
International Nuclear Information System (INIS)
Clark, R.M.
2006-01-01
This paper is divided in two main sections focusing on different aspects of collective nuclear behavior. In the first section, solutions are considered for the collective pairing Hamiltonian. In particular, an approximate solution at the critical point of the pairing transition from harmonic vibration (normal nuclear behavior) to deformed rotation (superconducting behavior) in gauge space is found by analytic solution of the Hamiltonian. The eigenvalues are expressed in terms of the zeros of Bessel functions of integer order. The results are compared to the pairing bands based on the Pb isotopes. The second section focuses on the experimental search for the Giant Pairing Vibration (GPV) in nuclei. After briefly describing the origin of the GPV, and the reasons that the state has remained unidentified, a novel idea for populating this state is presented. A recent experiment has been performed using the LIBERACE+STARS detector system at the 88-Inch Cyclotron of LBNL to test the idea. (Author)
Magnetic Pair Creation Transparency in Pulsars
Story, Sarah; Baring, M. G.
2013-04-01
The Fermi gamma-ray pulsar database now exceeds 115 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the well established population characteristics is the common occurrence of exponential turnovers in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide lower bounds to the typical altitude of GeV band emission. We explore such constraints due to single-photon pair creation transparency below the turnover energy. We adopt a semi-analytic approach, spanning both domains when general relativistic influences are important and locales where flat spacetime photon propagation is modified by rotational aberration effects. Our work clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths. The altitude bounds, typically in the range of 2-6 neutron star radii, provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. For the Crab pulsar, which emits pulsed radiation up to energies of 120 GeV, we obtain a lower bound of around 15 neutron star radii to its emission altitude.
International Nuclear Information System (INIS)
Prillinger, G.; Konynenburg, R.A. van
1998-01-01
As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 6, LWR-PV neutron transport calculations and dosimetry methods and how they are combined to evaluate the neutron exposure of the steel of pressure vessels are discussed. An effort to correlate neutron exposure parameters with damage is made
International Nuclear Information System (INIS)
Preszler, A.M.; Moon, S.; White, R.S.
1976-01-01
Additional calibrations of the University of California double-scatter neutron and additional analysis corrections lead to the slightly changed neutron fluxes reported here. The theoretical angular distributions of Merker (1975) are in general agreement with our experimental fluxes but do not give the peaks for vertical upward and downward moving neutrons. The theoretical neutron escape current J 2 /sub pi/ (Merker, 1972; Armstrong et al., 1973) is in agreement with the experimental values from 10 to 100 MeV. Our experimental fluxes agree with those of the Kanbach et al. (1974) in the overlap region from 70 to 100 MeV
Ignatovich, V K
2005-01-01
A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.
International Nuclear Information System (INIS)
Herrmann, W.A.
1998-01-01
The Munich FRM II neutron source currently under construction is to replace the FRM I research reactor in Munich, also known as 'atomic egg'. The project is executed by the Free State of Bavaria as a construction project of the Munich Technical University and managed by the University. As main contractor for the construction project, Siemens AG is also co-applicant in the licensing procedure under the Atomic Energy Act for the construction phase. The project is carried out to build a modern high flux neutron source required for a broad range of applications in research and technology mainly with thermal and cold neutrons. The 'neutron gap' existing in Germany is to be closed with the FRM II. As a national research installation, the FRM II is available to all interested scientists from a variety of disciplines. (orig.) [de
Exotic Paired States with Anisotropic Spin-Dependent Fermi Surfaces
International Nuclear Information System (INIS)
Feiguin, Adrian E.; Fisher, Matthew P. A.
2009-01-01
We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired carriers, similar to the Sarma state in polarized mixtures, but in our case the system is unpolarized. We propose the possible existence of an exotic 'Cooper-pair Bose-metal' phase, which has a gap for single fermion excitations but gapless and uncondensed 'Cooper-pair' excitations residing on a 'Bose surface' in momentum space.
A number-projected model with generalized pairing interaction in application to rotating nuclei
Energy Technology Data Exchange (ETDEWEB)
Satula, W. [Warsaw Univ. (Poland)]|[Joint Institute for Heavy Ion Research, Oak Ridge, TN (United States)]|[Univ. of Tennessee, Knoxville, TN (United States)]|[Royal Institute of Technology, Stockholm (Sweden); Wyss, R. [Royal Institute of Technology, Stockholm (Sweden)
1996-12-31
A cranked mean-field model that takes into account both T=1 and T=0 pairing interactions is presented. The like-particle pairing interaction is described by means of a standard seniority force. The neutron-proton channel includes simultaneously correlations among particles moving in time reversed orbits (T=1) and identical orbits (T=0). The coupling between different pairing channels and nuclear rotation is taken into account selfconsistently. Approximate number-projection is included by means of the Lipkin-Nogami method. The transitions between different pairing phases are discussed as a function of neutron/proton excess, T{sub z}, and rotational frequency, {Dirac_h}{omega}.
Neutron dosimetry; Dosimetria de neutrons
Energy Technology Data Exchange (ETDEWEB)
Fratin, Luciano
1993-12-31
A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is
Neutron dosimetry; Dosimetria de neutrons
Energy Technology Data Exchange (ETDEWEB)
Fratin, Luciano
1994-12-31
A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is
International Nuclear Information System (INIS)
Wende, C.W.J.
1976-01-01
A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield
International Nuclear Information System (INIS)
Firk, F.W.K.
1976-01-01
Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei
International Nuclear Information System (INIS)
Beynon, T.D.
1986-01-01
the paper concerns neutron holography, which allows an image to be constructed of the surfaces, as well as the interiors, of objects. The technique of neutron holography and its applications are described. Present and future use of the method is briefly outlined. (U.K.)
[Paired kidneys in transplant].
Regueiro López, Juan C; Leva Vallejo, Manuel; Prieto Castro, Rafael; Anglada Curado, Francisco; Vela Jiménez, Francisco; Ruiz García, Jesús
2009-02-01
Many factors affect the graft and patient survival on the renal transplant outcome. These factors depend so much of the recipient and donor. We accomplished a study trying to circumvent factors that depend on the donor. We checked the paired kidneys originating of a same donor cadaver. We examined the risk factors in the evolution and follow-up in 278 couples of kidney transplant. We describe their differences, significance, the graft and patient survival, their functionality in 3 and 5 years and the risk factors implicated in their function. We study immunogenic and no immunogenic variables, trying to explain the inferior results in the grafts that are established secondly. We regroup the paired kidneys in those that they did not show paired initial function within the same couple. The results yield a discreet deterioration in the graft and patient survival for second group establish, superior creatinina concentration, without obtaining statistical significance. The Cox regression study establishes the early rejection (inferior to three months) and DR incompatibility values like risk factors. This model of paired kidneys would be able to get close to best-suited form for risk factors analysis in kidney transplant from cadaver donors, if more patients examine themselves in the same way. The paired kidneys originating from the same donor do not show the same function in spite of sharing the same conditions of the donor and perioperative management.
Influence of pairing in double beta decay of 48Ca
Indian Academy of Sciences (India)
Proton–neutron pairing is expected to play a significant role in the calculation of ... probability, one can only extract upper limit for the effective electron–neutrino mass .... The matrices for (FN,Z(θ))αβ and (fN,Z)αβ have been developed. In the.
International Nuclear Information System (INIS)
Cason, J.L. Jr.; Shaw, C.B.
1975-01-01
A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap
International Nuclear Information System (INIS)
Berthoud, Georges; Ducros, Gerard; Feron, Damien; Guerin, Yannick; Latge, Christian; Limoge, Yves; Santarini, Gerard; Seiler, Jean-Marie; Vernaz, Etienne; Coste-Delclaux, Mireille; M'Backe Diop, Cheikh; Nicolas, Anne; Andrieux, Catherine; Archier, Pascal; Baudron, Anne-Marie; Bernard, David; Biaise, Patrick; Blanc-Tranchant, Patrick; Bonin, Bernard; Bouland, Olivier; Bourganel, Stephane; Calvin, Christophe; Chiron, Maurice; Damian, Frederic; Dumonteil, Eric; Fausser, Clement; Fougeras, Philippe; Gabriel, Franck; Gagnier, Emmanuel; Gallo, Daniele; Hudelot, Jean-Pascal; Hugot, Francois-Xavier; Dat Huynh, Tan; Jouanne, Cedric; Lautard, Jean-Jacques; Laye, Frederic; Lee, Yi-Kang; Lenain, Richard; Leray, Sylvie; Litaize, Olivier; Magnaud, Christine; Malvagi, Fausto; Mijuin, Dominique; Mounier, Claude; Naury, Sylvie; Nicolas, Anne; Noguere, Gilles; Palau, Jean-Marc; Le Pallec, Jean-Charles; Peneliau, Yannick; Petit, Odile; Poinot-Salanon, Christine; Raepsaet, Xavier; Reuss, Paul; Richebois, Edwige; Roque, Benedicte; Royer, Eric; Saint-Jean, Cyrille de; Santamarina, Alain; Serot, Olivier; Soldevila, Michel; Tommasi, Jean; Trama, Jean-Christophe; Tsilanizara, Aime; Behar, Christophe; Provitina, Olivier; Lecomte, Michael; Forestier, Alain; Bender, Alexandra; Parisot, Jean-Francois; Finot, Pierre
2013-10-01
This bibliographical note presents a reference book which addresses the study of neutron transport in matter, the study of conditions for a chain reaction and the study of modifications of matter composition due to nuclear reactions. This book presents the main nuclear data, their measurement, assessment and processing, and the spallation. It proposes an overview of methods applied for the study of neutron transport: basic equations and their derived forms, deterministic methods and Monte Carlo method of resolution of the Boltzmann equation, methods of resolution of generalized Bateman equations, methods of time resolution of space kinetics coupled equations. It presents the main calculation codes, discusses the qualification and experimental aspects, and gives an overview of neutron transport applications: neutron transport calculation of reactors, neutron transport coupled with other disciplines, physics of fuel cycle, criticality
Neutrino-antineutrino pair production by hadronic bremsstrahlung
Bacca, Sonia
2016-09-01
I will report on recent calculations of neutrino-antineutrino pair production from bremsstrahlung processes in hadronic collisions and consider temperature conditions relevant for core collapse supernovae. Earlier studies on bremsstrahlung from neutron-neutron collisions showed that the approximation used in typical supernova simulation to model this process differs by about a factor of 2 from predictions based on chiral effective field theory, where the chiral expansion of two-body forces is considered up to the next-to-next-to-next-to-leading order. When the density of neutrons is large enough this process may compete with other non-hadronic reactions in the production of neutrinos, in particular in the case of μ and τ neutrinos, which are not generated by charged-current reactions. A natural question to ask is then: what is the effect of neutrino pair production from collisions of neutrons with finite nuclei? To tackle this question, we recently have addressed the case of neutron- α collisions, given that in the P-wave channels the neutron- α scattering features a resonance near 1 MeV. We find that the resonance leads to an enhanced contribution in the neutron spin structure function at temperatures in the range of 0 . 1 - 4 MeV. For significant density fractions of α in this temperature range, this process is competitive with contributions from neutron-neutron scattering. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. This work was supported in parts by the Natural Sciences and Engineering Research Council (Grant Number SAPIN-2015-0003).
International Nuclear Information System (INIS)
Riesler, Rudi
1995-01-01
Standard radiotherapy uses Xrays or electrons which have low LET (linear energy transfer); in contrast, particles such as neutrons with high LET have different radiobiological responses. In the late 1960s, clinical trials by Mary Catterall at the Hammersmith Hospital in London indicated that fast neutron radiation had clinical advantages for certain malignant tumours. Following these early clinical trials, several cyclotron facilities were built in the 1980s for fast neutron therapy, for example at the University of Washington, Seattle, and at UCLA. Most of these newer machines use extracted cyclotron proton beams in the range 42 to 66 MeV with beam intensities of 15 to 60 microamps. The proton beams are transported to dedicated therapy rooms, where neutrons are produced from beryllium targets. Second-generation clinical trials showed that accurate neutron beam delivery to the tumour site is more critical than for photon therapy. In order to achieve precise beam geometries, the extracted proton beams have to be transported through a gantry which can rotate around the patient and deliver beams from any angle; also the neutron beam outline (''field shape'') must be adjusted to extremely irregular shapes using a flexible collimation system. A therapy procedure has to be appropriately organized, with physicians, radiotherapists, nurses, medical physicists and other staff in attendance; other specialized equipment, such as CT or MRI scanners and radiation simulators must be made available. Neutron therapy is usually performed only in radiation oncology departments of major medical centres
International Nuclear Information System (INIS)
Alaa eldin, M.T.
2011-01-01
The digital processing of the neutron radiography images gives the possibility for data quantification. In this case an exact relation between the measured neutron attenuation and the real macroscopic attenuation coefficient for every point of the sample is required. The assumption that the attenuation of the neutron beam through the sample is exponential is valid only in an ideal case where a monochromatic beam, non scattering sample and non background contribution are assumed. In the real case these conditions are not fulfilled and in dependence on the sample material we have more or less deviation from the exponential attenuation law. Because of the high scattering cross-sections of hydrogen (σs=80.26 barn) for thermal neutrons, the problem with the scattered neutrons at quantitative radiography investigations of hydrogenous materials (as PE, Oil, H 2 O, etc) is not trivial. For these strong scattering materials the neutron beam attenuation is no longer exponential and a dependence of the macroscopic attenuation coefficient on the material thickness and on the distance between the sample and the detector appears. When quantitative radiography (2 D) or tomography investigations (3 D) are performed, some image correction procedures for a description of the scattering effect are required. This thesis presents a method that can be used to enhance the neutron radiography image for objects with high scattering materials like hydrogen, carbon and other light materials. This method uses the Monte Carlo code, MCNP5, to simulate the neutron radiography process and get the flux distribution for each pixel of the image and determine the scattered neutrons distribution that causes the image blur and then subtract it from the initial image to improve its quality.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Frustrated Lewis Pairs : Enabling via inability. Sanjoy Mukherjee ... Author Affiliations. Sanjoy Mukherjee Pakkirisamy Thilagar1. Department of Inorgainic and Physical Chemistry Indian Institute of Science Bangalore 560 012, India.
DEFF Research Database (Denmark)
Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel
2015-01-01
In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...
Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.; Abdalla, M.; Lange, T.
2013-01-01
We report on relative performance numbers for affine and projective pairings on a dual-core Cortex A9 ARM processor. Using a fast inversion in the base field and doing inversion in extension fields by using the norm map to reduce to inversions in smaller fields, we find a very low ratio of
Energy Technology Data Exchange (ETDEWEB)
Lopez-Arrietea, M. G.; Solis, M. A.; De Llano, M. [Universidad Nacional Autonoma de Mexico, Mexico, D.F (Mexico)
2001-02-01
Excited cooper pairs formed in a many-fermion system are those with nonzero total center-of mass momentum (CMM). They are normally neglected in the standard Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity for being too few compared with zero CMM pairs. However, a Bose-Einstein condensation picture requires both zero and nonzero CMM pairs. Assuming a BCS model interaction between fermions we determine the populations for all CMM values of Cooper pairs by actually calculating the number of nonzero-CMM pairs relative to that of zero-CMM ones in both 2D and 3D. Although this ratio decreases rapidly with CMM, the number of Cooper pairs for any specific CMM less than the maximum (or breakup of the pair) momentum turns out to be typically larger than about 95% of those with zero-CMM at zero temperature T. Even at T {approx}100 K this fraction en 2D is still as large as about 70% for typical quasi-2D cuprate superconductor parameters. [Spanish] Los pares de cooper excitados formados en un sistema de muchos electrones, son aquellos con momentos de centro de masa (CMM) diferente de cero. Normalmente estos no son tomados en cuenta en la teoria estandar de la superconductividad de Bardeen-Cooper-Schrieffer (BCS) al suponer que su numero es muy pequeno comparados con los pares de centro de masa igual a cero. Sin embargo, un esquema de condensacion Bose-Einstein requiere de ambos pares, con CMM cero y diferente de cero. Asumiendo una interaccion modelo BCS entre los fermiones, determinamos la poblacion de pares cooper con cada uno de todos los posibles valores del CMM calculando el numero de pares con momentos de centro de masa diferente de cero relativo a los pares de CMM igual a cero, en 2D y 3D. Aunque esta razon decrece rapidamente con el CMM, el numero de pares de cooper para cualquier CMM especifico menor que el momento maximo (o rompimiento de par) es tipicamente mas grande que el 95% de aquellos con CMM cero. Aun a T {approx}100 K esta fraccion en 2D es
Physics of neutron star interiors
International Nuclear Information System (INIS)
Blaschke, D.
2001-01-01
Neutron stars are the densest observable bodies in our universe. Born during the gravitational collapse of luminous stars - a birth heralded by spectacular supernova explosions - they open a window on a world where the state of the matter and the strength of the fields are anything but ordinary. This book is a collection of pedagogical lectures on the theory of neutron stars, and especially their interiors, at the forefront of current research. It adresses graduate students and researchers alike, and should be particularly suitable as a text bridging the gap between standard textbook material and the research literature
International Nuclear Information System (INIS)
Buckel, G.
1983-01-01
The objectives are the development, testing and cultivation of reliable, efficient and user-optimized neutron-physical calculation methods and conformity with users' requirements concerning design of power reactors, planning and analysis of experiments necessary for their protection as well as research on physical key problems. A short outline of available computing programmes for the following objectives is given: - Provision of macroscopic group constants, - Calculation of neutron flux distribution in transport theory and diffusion approximation, - Evaluation of neutron flux-distribution, - Execution of disturbance calculations for the determination reactivity coefficients, and - graphical representation of results. (orig./RW) [de
S-wave pairing of Λ hyperons in dense matter
International Nuclear Information System (INIS)
Balberg, S.; Barnea, N.; Barnea, N.
1998-01-01
In this work we calculate the 1 S 0 gap energies of Λ hyperons in neutron star matter. The calculation is based on a solution of the BCS gap equation for an effective G-matrix parametrization of the Λ-Λ interaction with a nuclear matter background, presented recently by Lanskoy and Yamamoto. We find that a gap energy of a few tenths of a MeV is expected for Λ Fermi momenta up to about 1.3fm -1 . Implications for neutron star matter are examined, and suggest the existence of a Λ 1 S 0 superfluid between the threshold baryon density for Λ formation and the baryon density where the Λ fraction reaches 15 endash 20%. copyright 1998 The American Physical Society
Multi-pair states in electron–positron pair creation
Energy Technology Data Exchange (ETDEWEB)
Wöllert, Anton, E-mail: woellert@mpi-hd.mpg.de; Bauke, Heiko, E-mail: heiko.bauke@mpi-hd.mpg.de; Keitel, Christoph H.
2016-09-10
Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.
Multi-pair states in electron–positron pair creation
International Nuclear Information System (INIS)
Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.
2016-01-01
Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.
A Detector for 2-D Neutron Imaging for the Spallation Neutron Source
International Nuclear Information System (INIS)
Britton, Charles L. Jr.; Bryan, W.L.; Wintenberg, Alan Lee; Clonts, Lloyd G.; Warmack, Robert J. Bruce; McKnight, Timothy E.; Frank, Steven Shane; Cooper, Ronald G.; Dudney, Nancy J.; Veith, Gabriel M.
2006-01-01
We have designed, built, and tested a 2-D pixellated thermal neutron detector. The detector is modeled after the MicroMegas-type structure previously published for collider-type experiments. The detector consists of a 4X4 square array of 1 cm 2 pixels each of which is connected to an individual preamplifier-shaper-data acquisition system. The neutron converter is a 10B film on an aluminum substrate. We describe the construction of the detector and the test results utilizing 252Cf sources in Lucite to thermalize the neutrons. Drift electrode (Aluminum) Converter (10B) 3 mm Conversion gap neutron (-900 V)
DEFF Research Database (Denmark)
Klösgen-Buchkremer, Beate Maria
2014-01-01
of desired information. In the course, an introduction into the method and an overview on selected instruments at large scale facilities will be presented. Examples will be given that illustrate the potential of the method, mostly based on organic films. Results from the investigation of layered films......Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... films or films with magnetic properties. The reason is the peculiar property of neutron light since the mass of a neutron is close to the one of a proton, and since it bears a magnetic moment. The optical properties of matter, when interacting with neutrons, are described by a refractive index...
International Nuclear Information System (INIS)
Furrer, A.
1993-01-01
This report contains the text of 16 lectures given at the Summer School and the report on a panel discussion entitled ''the relative merits and complementarities of x-rays, synchrotron radiation, steady- and pulsed neutron sources''. figs., tabs., refs
International Nuclear Information System (INIS)
Strelkov, A.V.
2004-01-01
The report is devoted to neutron storage (NS) and describes the history of experiments on the NS development. Great attention is paid to ultracold neutron (UCN) storage. The experiments on the UCN generation, transport, spectroscopy, storage and detection are described. Experiments on searching the UCN electric-dipole moment and electric charge are continued. Possible using of UCN for studying the nanoparticles is discussed [ru
International Nuclear Information System (INIS)
Bayon, G.
1989-01-01
Neutronography or neutron radiography, a non-destructive test method which is similar in its principle to conventional X-ray photography, presently occupies a marginal position among non-destructive test methods (NDT) (no source of suitable performance or cost). Neutron radiography associated with the ORPHEE reactor permits industrial testing; it can very quickly meet a cost requirement comparable to that of conventional test methods. In 1988, 2500 parts were tested on this unit [fr
Pairing correlations in N ∝Z pf-shell nuclei
International Nuclear Information System (INIS)
Langanke, K.; Dean, D.J.; Koonin, S.E.; Radha, P.B.
1997-01-01
We perform shell model Monte Carlo calculations to study pair correlations in the ground states of N=Z nuclei with masses A=48-60. We find that T=1, J π =0 + proton-neutron correlations play an important, and even dominant role, in the ground states of odd-odd N=Z nuclei, in agreement with experiment. By studying pairing in the ground states of 52-58 Fe, we observe that the isovector proton-neutron correlations decrease rapidly with increasing neutron excess. In contrast, both the proton, and trivially the neutron correlations increase as neutrons are added. We also study the thermal properties and the temperature dependence of pair correlations for 50 Mn and 52 Fe as exemplars of odd-odd and even-even N=Z nuclei. While for 52 Fe results are similar to those obtained for other even-even nuclei in this mass range, the properties of 50 Mn at low temperatures are strongly influenced by isovector neutron-proton pairing. In coexistence with these isovector pair correlations, our calculations also indicate an excess of isoscalar proton-neutron pairing over the mean-field values. The isovector neutron-proton correlations rapidly decrease with temperatures and vanish for temperatures above T=700 keV, while the isovector correlations among like-nucleons persist to higher temperatures. Related to the quenching of the isovector proton-neutron correlations, the average isospin decreases from 1, appropriate for the ground state, to 0 as the temperature increases. (orig.)
Response functions of superfluid neutron matter
Energy Technology Data Exchange (ETDEWEB)
Keller, Jochen; Sedrakian, Armen [Institut fuer Theoretische Physik, Goethe Universitaet, 60438 Frankfurt/Main (Germany)
2011-07-01
We investigate the response of pair-correlated neutron matter under conditions relevant to neutron stars to external weak probes and compute its neutrino emissivity in vector and axialvector channels. To derive the response functions we sum up an infinite chain of particle-hole ladder diagrams within finite-temperature Green's function theory. The polarization tensor of matter is evaluated in the limit of small momentum transfers. The calculated neutrino emission via the weak neutral current processes of pair-breaking and recombination of Cooper-pairs in neutron stars causes a cooling of their baryonic interior, and represents an important mechanism for the thermal evolution of the star within a certain time domain.
Pulsar Pair Cascades in Magnetic Fields with Offset Polar Caps
Harding, Alice K.; Muslimov, Alex G.
2012-01-01
Neutron star magnetic fields may have polar caps (PC) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L(sub sd). We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L(sub pair) is proportional to L(sub sd), with L(sub pair) approximates 10(exp -3) L(sub sd) for normal pulsars and L(sub pair) approximates 10(exp -2) L(sub sd) for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.
Criticality effects of longitudinal gaps in poison for storage/transport casks
International Nuclear Information System (INIS)
Wells, A.H.
1985-01-01
A series of criticality calculations was performed with the AMPX/KENO system to determine the sensitivity of the NAC S/T cask 31 assembly basket, which is optimized for a design-basis fuel enrichment of 3.7 wt % 235 U, to axial gaps in the boron neutron poison. The results of these calculations show that axial gaps in the boron cause no statistically detectable change in k/sub eff/ until a minimum gap size is reached. The minimum gap size to change k/sub eff/ is dependent on the basket segment length, because a longer segment length results in fewer gaps for a given active fuel length. Longer segment lengths are less sensitive to gaps in the neutron poison. A typical segment length of 12 to 18 in. is projected for a casting of aluminum/boron alloy, indicating that axial gaps in the neutron poison of 1 in. would be acceptable. This gap thickness is much greater than the intersegment gap produced by modern casting techniques. The investigation described here demonstrated that an axial gap in neutron poison is acceptable for basket castings of large storage/transport casks. A precedent for such gaps is the NLI-6502 cask, so a cask basket with intersegment gaps should be licensable
International Nuclear Information System (INIS)
Endo, Hiroshi.
1993-01-01
The device of the present invention detects neutrons in a reactor container under a high temperature and reduces the noise level in an FBR type reactor. That is, the detection section comprises a high heat resistant vessel containing a scintillator therein for detecting neutrons. Neutron signals sent from the detection section are inputted to a neutron measuring section by way of a signal transmission section. The detection section is disposed at the inside of the reactor container. Further, the signal transmission section is connected optically to the detection section. With such a constitution, since the detection section comprising the high temperature resistant vessel is disposed at the inside of the reactor container, neutron fluxes can be detected and measured at high sensitivity even under a high temperature circumstance. Since the signal transmission section is optically connected to the detection section, influence of radiation rays upon transmission of the neutron detection signals can be reduced. Accordingly, the noise level can be kept low. (I.S.)
International Nuclear Information System (INIS)
Fayer, Michael J.; Gee, Glendon W.
2005-01-01
The neutron probe is a standard tool for measuring soil water content. This article provides an overview of the underlying theory, describes the methodology for its calibration and use, discusses example applications, and identifies the safety issues. Soil water makes land-based life possible by satisfying plant water requirements, serving as a medium for nutrient movement to plant roots and nutrient cycling, and controlling the fate and transport of contaminants in the soil environment. Therefore, a successful understanding of the dynamics of plant growth, nutrient cycling, and contaminant behavior in the soil requires knowledge of the soil water content as well as its spatial and temporal variability. After more than 50 years, neutron probes remain the most reliable tool available for field monitoring of soil water content. Neutron probes provide integrated measurements over relatively large volumes of soil and, with proper access, allow for repeated sampling of the subsurface at the same locations. The limitations of neutron probes include costly and time-consuming manual operation, lack of data automation, and costly regulatory requirements. As more non-radioactive systems for soil water monitoring are developed to provide automated profiling capabilities, neutron-probe usage will likely decrease. Until then, neutron probes will continue to be a standard for reliable measurements of field water contents in soils around the globe
Neutron-neutron probe for uranium exploration
International Nuclear Information System (INIS)
Smith, R.C.
1979-01-01
A neutron activation probe for assaying the amount of fissionable isotopes in an ore body is described which comprises a casing which is movable through a borehole in the ore body, a neutron source and a number of delayed neutron detectors arranged colinearly in the casing below the neutron source for detecting delayed neutrons
International Nuclear Information System (INIS)
Lind, V.G.
1993-01-01
This project was directed toward the study of neutron-rich nuclei using the experimental facilities at LAMPF, which is a part of LANL. The principal results of the investigation include the discovery of many new isotopes along with a measurement of their masses and in particular those nuclides in the Z = 7--19 and 14 --26 regions of the chart of the nuclides.Thirty-four new nuclides were detected and studied with their masses being measured with relatively high accuracy, and an additional twenty-six that were previously known and measured were remeasured to an improved accuracy. Besides providing new information about the mass surface in new and extended redons of the chart of the nuclides, this investigation enabled properties and previously unknown structure of some of the nuclei to be determined such as nuclear deformation among some of the nuclides. Also a study of the neutron pairing gaps and the proton pairing gaps among these nuclides was made. Other developments also achieved included instrument (TOFI) improvements and upgrades and theoretical investigations into the masses of the hadrons
Effects of pairing correlation on nuclear level density parameter and nucleon separation energy
International Nuclear Information System (INIS)
Rajesekaran, T.R.; Selvaraj, S.
2002-01-01
A systematic study of effects of pairing correlations on nuclear level density parameter 'a' and neutron separation energy S N is presented for 152 Gd using statistical theory of nuclei with deformation, collective and noncollective rotational degrees of freedom, shell effects, and pairing correlations
Sequence and expression analysis of gaps in human chromosome 20
DEFF Research Database (Denmark)
Minocherhomji, Sheroy; Seemann, Stefan; Mang, Yuan
2012-01-01
/or overlap disease-associated loci, including the DLGAP4 locus. In this study, we sequenced ~99% of all three unfinished gaps on human chr 20, determined their complete genomic sizes and assessed epigenetic profiles using a combination of Sanger sequencing, mate pair paired-end high-throughput sequencing......The finished human genome-assemblies comprise several hundred un-sequenced euchromatic gaps, which may be rich in long polypurine/polypyrimidine stretches. Human chromosome 20 (chr 20) currently has three unfinished gaps remaining on its q-arm. All three gaps are within gene-dense regions and...... and chromatin, methylation and expression analyses. We found histone 3 trimethylated at Lysine 27 to be distributed across all three gaps in immortalized B-lymphocytes. In one gap, five novel CpG islands were predominantly hypermethylated in genomic DNA from peripheral blood lymphocytes and human cerebellum...
The prototype GAPS (pGAPS) experiment
Energy Technology Data Exchange (ETDEWEB)
Mognet, S.A.I., E-mail: mognet@astro.ucla.edu [University of California, Los Angeles, CA 90095 (United States); Aramaki, T. [Columbia University, New York, NY 10027 (United States); Bando, N. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Boggs, S.E.; Doetinchem, P. von [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Fuke, H. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Gahbauer, F.H.; Hailey, C.J.; Koglin, J.E.; Madden, N. [Columbia University, New York, NY 10027 (United States); Mori, K.; Okazaki, S. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Ong, R.A. [University of California, Los Angeles, CA 90095 (United States); Perez, K.M.; Tajiri, G. [Columbia University, New York, NY 10027 (United States); Yoshida, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Zweerink, J. [University of California, Los Angeles, CA 90095 (United States)
2014-01-21
The General Antiparticle Spectrometer (GAPS) experiment is a novel approach for the detection of cosmic ray antiparticles. A prototype GAPS (pGAPS) experiment was successfully flown on a high-altitude balloon in June of 2012. The goals of the pGAPS experiment were: to test the operation of lithium drifted silicon (Si(Li)) detectors at balloon altitudes, to validate the thermal model and cooling concept needed for engineering of a full-size GAPS instrument, and to characterize cosmic ray and X-ray backgrounds. The instrument was launched from the Japan Aerospace Exploration Agency's (JAXA) Taiki Aerospace Research Field in Hokkaido, Japan. The flight lasted a total of 6 h, with over 3 h at float altitude (∼33km). Over one million cosmic ray triggers were recorded and all flight goals were met or exceeded.
The prototype GAPS (pGAPS) experiment
International Nuclear Information System (INIS)
Mognet, S.A.I.; Aramaki, T.; Bando, N.; Boggs, S.E.; Doetinchem, P. von; Fuke, H.; Gahbauer, F.H.; Hailey, C.J.; Koglin, J.E.; Madden, N.; Mori, K.; Okazaki, S.; Ong, R.A.; Perez, K.M.; Tajiri, G.; Yoshida, T.; Zweerink, J.
2014-01-01
The General Antiparticle Spectrometer (GAPS) experiment is a novel approach for the detection of cosmic ray antiparticles. A prototype GAPS (pGAPS) experiment was successfully flown on a high-altitude balloon in June of 2012. The goals of the pGAPS experiment were: to test the operation of lithium drifted silicon (Si(Li)) detectors at balloon altitudes, to validate the thermal model and cooling concept needed for engineering of a full-size GAPS instrument, and to characterize cosmic ray and X-ray backgrounds. The instrument was launched from the Japan Aerospace Exploration Agency's (JAXA) Taiki Aerospace Research Field in Hokkaido, Japan. The flight lasted a total of 6 h, with over 3 h at float altitude (∼33km). Over one million cosmic ray triggers were recorded and all flight goals were met or exceeded
Pair breaking and charge relaxation in superconductors
International Nuclear Information System (INIS)
Nielson, J.B.; Pethick, C.J.; Rammer, J.; Smith, H.
1982-01-01
We present a general formalism based on the quasiclassical Green's function for calculating charge imbalance in nonequilibrium superconductors. Our discussion is sufficiently general that it applies at arbitrary temperatures, and under conditions when the width of quasiparticle states are appreciable due to pair breaking processes, and when strong coupling effects are significant. As a first application we demonstrate in detail how in the limit of smallpair breaking and for a weak coupling superconductor the collision term in the formalism reduces to the one in the quasiparticle Boltzmann equation. We next treat the case of charge imbalance generated by tunnel injection, with pair breaking by phonons and magnetic impurities. Over the range of temperatures investigated exerimentally to date, the calculated charge imbalance is rather close to that evaluated using the Boltzmann equation, even if pair braeking is so strong as almost to destroy superconductivity. Finally we consider charge imbalance generated by the combined influence of a supercurrent and a temperature gradient. We give calculations for a dirty superconductor with scattering by phonons as the pair breaking mechanism, and the results give a reasonable account of the experimental data of Clarke, Fjordboge, and Lindelof. We carry out calculations for the case of impurity scattering along which are valid not only in the clean and dirty limits, but also for intermediate situations. These enable us to see how the large contribution to the charge imbalance found for energies close to the gap edge in the clean case is reduced with increasing impurity scattering
Prompt neutron fission spectrum mean energies for the fissile nuclides and 252Cf
International Nuclear Information System (INIS)
Holden, N.E.
1985-01-01
The international standard for a neutron spectrum is that produced from the spontaneous fission of 252 Cf, while the thermal neutron induced fission neutron spectra for the four fissile nuclides, 233 U, 235 U, 239 Pu, and 241 Pu are of interest from the standpoint of nuclear reactors. The average neutron energies of these spectra are tabulated. The individual measurements are recorded with the neutron energy range measured, the method of detection as well as the average neutron energy for each author. Also tabulated are the measurements of the ratio of mean energies for pairs of fission neutron spectra. 75 refs., 9 tabs
Outer crust of nonaccreting cold neutron stars
International Nuclear Information System (INIS)
Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen
2006-01-01
The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars
International Nuclear Information System (INIS)
Hrasko, P.; Foeldy, L.; Toth, A.
1986-07-01
Electron-positron pair production in strong Coulomb fields is outlined. It is shown that the singular behaviour of the adiabatic basis can be removed if solutions of the time dependent external field Dirac equation are used as a basis to expand the fermion field operator. This latter 'asymptotic basis' makes it possible to introduce Feynman-propagator. Applying the reduction technique, the computation of all of the basic quantities can be reduced to the solution of an integral equation. The positron spectrum for separable potential model with Lorentzian time dependence and for potential jump is analyzed in the pole approximation. (author)
Pairing correlations around scission
International Nuclear Information System (INIS)
Krappe, H.J.; Fadeev, S.
2001-01-01
To describe pairing correlations in a fissioning system one commonly projects the BCS wave function separately onto good particle numbers in each fragment in the exit channel, but only onto the total number of particles in the parent system. We propose to interpolate between these limiting situations by the generator-coordinate method with the particle-number difference between the nascent fragments as the generator coordinate. Model calculations are presented for the Hill-Wheeler-box potential with a δ-function diaphragm to mimic scission
DEFF Research Database (Denmark)
Dalgas, Karina Märcher
2016-01-01
Ethnographers are increasingly making use of Facebook to acquire access and general acquaintance with their field of study. However, little has been written on how Facebook is used methodologically in research that does not have social media sites as the main focus of interest. This article argues...... the au pairs resist and embrace such dominant representations, and on how such representations are ascribed different meanings in the transnational social fields of which the migrant are a part. The article is based on ethnographic fieldwork conducted between 2010 and 2014 in Denmark, the Philippines...
International Nuclear Information System (INIS)
Barton, J.P.
1993-01-01
Neutron radiography (or radiology) is a diverse filed that uses neutrons of various energies, subthermal, thermal, epithermal or fast in either steady state or pulsed mode to examine objects for industrial, medical, or other purposes, both microscopic and macroscopic. The applications include engineering design, biological studies, nondestructive inspection and materials evaluation. In the past decade, over 100 different centers in some 30 countries have published reports of pioneering activities using reactors, accelerators and isotopic neutron sources. While film transparency and electronic video are most common imaging methods for static or in motion objects respectively, there are other important data gathering techniques, including track etch, digital gauging and computed tomography. A survey of the world-wide progress shows the field to be gaining steadily in its diversity, its sophistication and its importance. (author)
Pair distribution function and structure factor of spherical particles
International Nuclear Information System (INIS)
Howell, Rafael C.; Proffen, Thomas; Conradson, Steven D.
2006-01-01
The availability of neutron spallation-source instruments that provide total scattering powder diffraction has led to an increased application of real-space structure analysis using the pair distribution function. Currently, the analytical treatment of finite size effects within pair distribution refinement procedures is limited. To that end, an envelope function is derived which transforms the pair distribution function of an infinite solid into that of a spherical particle with the same crystal structure. Distributions of particle sizes are then considered, and the associated envelope function is used to predict the particle size distribution of an experimental sample of gold nanoparticles from its pair distribution function alone. Finally, complementing the wealth of existing diffraction analysis, the peak broadening for the structure factor of spherical particles, expressed as a convolution derived from the envelope functions, is calculated exactly for all particle size distributions considered, and peak maxima, offsets, and asymmetries are discussed
Wigner, E.P.; Weinberg, A.W.; Young, G.J.
1958-04-15
A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.
International Nuclear Information System (INIS)
Bartko, J.; Schoch, K.F. Jr.; Congedo, T.V.; Anderson, S.L. Jr.
1989-01-01
This patent describes a nuclear reactor. It comprises a reactor core; a thermal shield surrounding the reactor core; a pressure vessel surrounding the thermal shield; a neutron dosimeter positioned outside of the thermal shield, the neutron dosimeter comprising a layer of fissile material and a second layer made of a material having an electrical conductivity which permanently varies as a function of its cumulative ion radiation dose; and means, outside the pressure vessel and electrically connected to the layer of second material, for measuring electrical conductivity of the layer of second material
The composite N1 component to gaps in noise.
Pratt, Hillel; Bleich, Naomi; Mittelman, Nomi
2005-11-01
To indicate whether the double peaked N(1) to gaps in continuous white noise is a composite of onset and offset responses to transients or whether it reflects higher processing such as change or mismatch detection and to assess the role of attention in this process. Evoked potentials were recorded to two binaural stimulus types: (1) gaps of different durations randomly distributed in continuous white noise; and (2) click pairs at intervals identical to those between gap onsets and offsets in the continuous noise stimulus. Potentials to these stimuli were recorded while subjects read a text and while detecting gaps in noise or click pairs. Potentials were detected to all click pairs and to gaps of 5 ms or longer, corresponding to the subjects' psychoacoustic gap detection threshold. With long gap durations of 200-800 ms, distinct potentials to gap onset and gap offset were observed. The waveforms to all click pairs and to offsets of long gaps were similar and single-peaked, while potentials to gaps of 10 ms and longer, and potentials to onsets of long gaps were double-peaked, consisting of two N(1) negativities, 60 ms apart, irrespective of gap duration. The first (N(1a)), was more frontal in its distribution and similar to that of clicks. The second (N(1b)) peak's distribution was more central/temporal and its source locations and time course of activity were distinct. No effects of attention on any of the varieties and constituents of N(1) were observed. Comparing potentials to gap onsets, to click pairs and to gap offsets, suggests that potentials to gap onsets involve not only sound onset/offset responses (N(1), N(1a)) but also the subsequent pre-attentive perception of the cessation of an ongoing sound (N(1b)). We propose that N(1b) is distinct from change or mismatch detection and is associated with termination of an ongoing continuous stimulus. We propose to call it the N(egation)-process. A constituent of the N(1) complex is shown to be associated with the
Quantitative neutron radiography using neutron absorbing honeycomb
International Nuclear Information System (INIS)
Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.
1993-01-01
This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)
Neutronics of pulsed spallation neutron sources
Watanabe, N
2003-01-01
Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...
Dey, Judy Goldberg; Hill, Catherine
2007-01-01
Women have made remarkable gains in education during the past three decades, yet these achievements have resulted in only modest improvements in pay equity. The gender pay gap has become a fixture of the U.S. workplace and is so ubiquitous that many simply view it as normal. "Behind the Pay Gap" examines the gender pay gap for college graduates.…
Assessing Intimacy: The Pair Inventory.
Schaefer, Mark T.; Olson, David H.
1981-01-01
Personal Assessment of Intimacy in Relationships (PAIR) provides systematic information in five types of intimacy: emotional, social, sexual, intellectual and recreational. PAIR can be used with couples in marital therapy and enrichment groups. (Author)
Nuclear pairing reduction due to rotation and blocking
International Nuclear Information System (INIS)
Wu Xi; Zhang Zhenhua; Lei Yi'an; Zeng Jinyan
2010-01-01
Nuclear pairing gaps of well-deformed and superdeformed nuclei are investigated using the particle-number conserving (PNC) formalism for the cranked shell model, in which the blocking effects are treated exactly and no spurious states appear. Both the rotational frequency ω-dependence and seniority ν-dependence of the pairing gap Δ-bar are addressed. For the ground-state bands of even-even nuclei, PNC calculations show that in general Δ-bar decreases with increasing ω, but the ω-dependence is much weaker than that calculated by the number-projected Hartree-Fock-Bogolyubov (NHFB) approach. For the multi quasiparticle bands (seniority ν > 2), the pairing gaps keep almost ω-independent. As a function of the seniority ν, the bandhead pairing gaps Δ-bar (ν, ω = 0) decrease slowly with increasing ν. Even for the highest seniority ν bands identified so far, Δ-bar (ν, ω = 0) keep 70% larger than Δ-bar (ν = 0, ω = 0). (authors)
Neutron bursts from long laboratory sparks
Kochkin, P.; Lehtinen, N. G.; Montanya, J.; Van Deursen, A.; Ostgaard, N.
2016-12-01
Neutron emission in association with thunderstorms and lightning discharges was reported by different investigators from ground-based observation platforms. In both cases such emission is explained by photonuclear reaction, since high-energy gamma-rays in sufficient fluxes are routinely detected from both, lightning and thunderclouds. The required gamma-rays are presumably generated by high-energy electrons in Bremsstrahlung process after their acceleration via cold and/or relativistic runaway mechanisms. This phenomenon attracted moderate scientific attention until fast neutron bursts (up to 10 MeV) from long 1 MV laboratory sparks have been reported. Clearly, with such relatively low applied voltage the electrons are unable to accelerate to the energies required for photo/electro disintegration. Moreover, all known elementary neutron generation processes are not capable to explain this emission right away. We performed an independent laboratory experiment on long sparks with the aim to confirm or disprove the neutron emission from them. The experimental setup was assembled at High-Voltage Laboratory in Barcelona and contained a Marx generator in a cone-cone spark gap configuration. The applied voltage was as low as 800 kV and the gap distance was only 60 cm. Two ns-fast cameras were located near the gap capturing short-exposure images of the pre-breakdown phenomenon at the expected neutron generation time. A plastic scintillation detector sensitive to neutrons was covered in 11 cm of lead and placed near the spark gap. The detector was calibrated and showed good performance in neutron detection. Apart of it, voltage, currents through both electrodes, and three X-ray detectors were also monitored in sophisticated measuring system. We will give an overview of the previous experimental and theoretical work in this topic, and present the results of our new experimental campaign. The conclusions are based on good signal-to-noise ratio measurements and are
Superconducting gap anomaly in heavy fermion systems
International Nuclear Information System (INIS)
Rout, G.C.; Ojha, M.S.; Behera, S.N.
2008-01-01
The heavy fermion system (HFS) is described by the periodic Anderson model (PAM), treating the Coulomb correlation between the f-electrons in the mean-field Hartree-Fock approximation. Superconductivity is introduced by a BCS-type pairing term among the conduction electrons. Within this approximation the equation for the superconducting gap is derived, which depends on the effective position of the energy level of the f-electrons relative to the Fermi level. The latter in turn depends on the occupation probability n f of the f-electrons. The gap equation is solved self-consistently with the equation for n f ; and their temperature dependences are studied for different positions of the bare f-electron energy level, with respect to the Fermi level. The dependence of the superconducting gap on the hybridization leads to a re-entrant behaviour with increasing strength. The induced pairing between the f-electrons and the pairing of mixed conduction and f-electrons due to hybridization are also determined. The temperature dependence of the hybridization parameter, which characterizes the number of electrons with mixed character and represents the number of heavy electrons is studied. This number is shown to be small. The quasi-particle density of states (DOS) shows the existence of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state. (author)
Microscopic study of {sup 1}S{sub 0} superfluidity in dilute neutron matter
Energy Technology Data Exchange (ETDEWEB)
Pavlou, G.E.; Mavrommatis, E. [National and Kapodistrian University of Athens, Physics Department, Division of Nuclear and Particle Physics, Athens (Greece); Moustakidis, C. [Aristotelian University of Thessaloniki, Department of Theoretical Physics, Thessaloniki (Greece); Clark, J.W. [Washington University, McDonnell Center for the Space Sciences and Department of Physics, St. Louis, MO (United States); University of Madeira, Center for Mathematical Sciences, Funchal (Portugal)
2017-05-15
Singlet S-wave superfluidity of dilute neutron matter is studied within the correlated BCS method, which takes into account both pairing and short-range correlations. First, the equation of state (EOS) of normal neutron matter is calculated within the Correlated Basis Function (CBF) method in the lowest cluster order using the {sup 1}S{sub 0} and {sup 3}P components of the Argonne V{sub 18} potential, assuming trial Jastrow-type correlation functions. The {sup 1}S{sub 0} superfluid gap is then calculated with the corresponding component of the Argonne V{sub 18} potential and the optimally determined correlation functions. The dependence of our results on the chosen forms for the correlation functions is studied, and the role of the P-wave channel is investigated. Where comparison is meaningful, the values obtained for the {sup 1}S{sub 0} gap within this simplified scheme are consistent with the results of similar and more elaborate microscopic methods. (orig.)
QSO Pairs across Active Galaxies
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... Several QSO pairs have been reported and their redshifts determined, where the two objects in each pair are located across an active galaxy. The usually accepted explanation of such occurrences is that the pair is ejected from the parent galaxy. Currently interpreted redshifted spectra for both the QSOs ...
Pairing in Fermionic Systems Basic Concepts and Modern Applications
Clark, John W; Alford, Mark
2006-01-01
Cooper pairing of fermions is a profound phenomenon that has become very important in many different areas of physics in the recent past. This book brings together, for the first time, experts from various fields involving Cooper pairing, at the level of BCS theory and beyond, including the study of novel states of matter such as ultracold atomic gases, nuclear systems at the extreme, and quark matter with application to neutron stars. Cross-disciplinary in nature, the book will be of interest to physicists in many different specialties, including condensed matter, nuclear, high-energy, and as
International Nuclear Information System (INIS)
Wende, C.W.J.
1976-01-01
The method of operating a water-cooled neutronic reactor having a graphite moderator is described which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40--60 volume percent of the mixture, in contact with the graphite moderator. 2 claims, 4 figures
Directory of Open Access Journals (Sweden)
Cousin Fabrice
2015-01-01
Full Text Available The specular neutron reflectivity is a technique enabling the measurement of neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5 Å up 5000 Å. It is a scattering technique that averages information on the entire surface and it is therefore not possible to obtain information within the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons makes it particularly interesting in the fields of soft matter, biophysics and magnetic thin films. This course is a basic introduction to the technique and does not address the magnetic reflectivity. It is composed of three parts describing respectively its principle and its formalism, the experimental aspects of the method (spectrometers, samples and two examples related to the materials for energy.
From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam
International Nuclear Information System (INIS)
Khaykovich, B.; Gubarev, M.V.; Bagdasarova, Y.; Ramsey, B.D.; Moncton, D.E.
2011-01-01
We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in X-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We implemented a system containing four nested Ni mirror pairs, which was tested by the focusing of a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.
International Nuclear Information System (INIS)
Greiter, M.
1992-01-01
This dissertation contains a collection of individual articles on various topics. Their significance in the corresponding field as well as connections between them are emphasized in a general and comprehensive introduction. In the first article, the author explores the consequences for macroscopic effective Lagrangians of assuming that the momentum density is proportional to the flow of conserved current. The universal corrections obtained for the macroscopic Lagrangian of a superconductor describe the London Hall effect, and provide a fully consistent derivation of it. In the second article, a heuristic principle is proposed for quantized Hall states: the existence and incompressibility of fractionally quantized Hall states is explained by an argument based on an adiabatic localization of magnetic flux, the process of trading uniform flux for an equal amount of fictitious flux attached to the particles. This principle is exactly implemented in the third article. For a certain class of model Hamiltonians, the author obtains Laughlin's Jastrow type wave functions explicitly from a filled Landau level, by smooth extrapolation in quantum statistics. The generalization of this analysis to the torus geometry shows that theorems restricting the possibilities of quantum statistics on closed surfaces are circumvented in the presence of a magnetic field. In the last article, the existence is proposed of a novel incompressible quantum liquid, a paired Hall state, at a half filled Landau level. This state arises adiabatically from free fermions in zero magnetic field, and reduces to a state previously proposed by Halperin in the limit of tightly bound pairs. It supports unusual excitations, including neutral fermions and charge e/4 anyons with statistical parameter θ = π/8
Methods for absorbing neutrons
Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID
2012-07-24
A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.
Experimental investigation on streaming due to a gap between blanket modules in ITER
International Nuclear Information System (INIS)
Konno, Chikara; Maekawa, Fujio; Oyama, Yukio; Uno, Yoshitomo; Kasugai, Yoshimi; Maekawa, Hiroshi; Ikeda, Yujiro; Wada, Masayuki
2000-01-01
A gap streaming experiment was performed by using a D-T neutron source at FNS/JAERI as the ITER/EDA R and D Task T-218, in order to examine the streaming effects due to gap between shield blanket modules in ITER. The experiment had three phases. The first one defined neutron source characteristics (Source Characterization Experiment), the second (Experiment-l ) aimed at shield for welding part between shield blanket and back plate and the third (Experiment-2) focused on the influence that the gap between shield blanket modules would have on superconducting magnet. The effects of gap streaming were examined in detail experimentally. (author)
Neutron stars as cosmic neutron matter laboratories
International Nuclear Information System (INIS)
Pines, D.
1986-01-01
Recent developments which have radically changed our understanding of the dynamics of neutron star superfluids and the free precession of neutron stars are summarized, and the extent to which neutron stars are cosmic neutron matter laboratories is discussed. 17 refs., 1 tab
Role of pn-pairs interaction in nuclear structure
International Nuclear Information System (INIS)
Nie, G.K.
2004-01-01
Full text: The nuclear structure approach is based on theory of interaction of pn-pairs with suggestion that proton and neutron of one pair have the same nuclear potential. In frame of this model nuclei with N=Z were analyzed in [1,2]. In [1] radii of position of last proton were estimated on difference of proton and neutron separation energies. In [2] a phenomenological formula for calculation of binding energy of alpha- cluster nuclei was found. Present work is devoted to developing the nuclear structure model. Coulomb energy of nuclei with N=Z has been found from sum of differences of separation energies of protons and neutrons belonging to one pairs. From analysis of nuclei 12 C and 16 O the value of energy of Coulomb repulsion between 2 α -clusters has been estimated equal to ε C α =1.925 MeV [3], which means that value of nuclear (meson) interaction between 2 α -clusters is expected to be ε m αα = ε cov αα + ε C α =4.350 MeV. From suggestion that energy of long range Coulomb repulsion is compensated by surface tension energy an equation has been found to calculate radius of position of last proton on value of Z. Charge radii of nuclei from 58 Ni to 208 Bi and further have been calculated with difference from experimental ones in several hundredths of fm. In the approach binding energy of excess neutrons stays beyond the consideration. Therefore, in calculation of binding energies of nuclei the experimental values of separation energies of excess neutrons are used. There is a good agreement between calculated values of binding energies of some isotopes of all known elements as well as separation energies of alpha particle and deuteron and experimental data. The difference from experimental binding energy in most of the cases is about 0.5% and less
Energy Technology Data Exchange (ETDEWEB)
Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-09-15
The objectives of this presentation are to introduce the basic physics of neutron production, interactions and detection; identify the processes that generate neutrons; explain the most common neutron mechanism, spontaneous and induced fission and (a,n) reactions; describe the properties of neutron from different sources; recognize advantages of neutron measurements techniques; recognize common neutrons interactions; explain neutron cross section measurements; describe the fundamental of ^{3}He detector function and designs; and differentiate between passive and active assay techniques.
Multi-pair states in electron–positron pair creation
Directory of Open Access Journals (Sweden)
Anton Wöllert
2016-09-01
Full Text Available Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.
Pair plasma in pulsar magnetospheres
International Nuclear Information System (INIS)
Asseo, Estelle
2003-01-01
The main features of radiation received from pulsars imply that they are neutron stars which contain an extremely intense magnetic field and emit coherently in the radio domain. Most recent studies attribute the origin of the coherence to plasma instabilities arising in pulsar magnetospheres; they mainly concern the linear, or the nonlinear, character of the involved unstable waves. We briefly introduce radio pulsars and specify physical conditions in pulsar emission regions: geometrical properties, magnetic field, pair creation processes and repartition of relativistic charged particles. We point to the main ingredients of the linear theory, extensively explored since the 1970s: (i) a dispersion relation specific to the pulsar case; (ii) the characteristics of the waves able to propagate in relativistic pulsar plasmas; (iii) the different ways in which a two-humped distribution of particles may arise in a pulsar magnetosphere and favour the development of a two-stream instability. We sum up recent improvements of the linear theory: (i) the determination of a 'coupling function' responsible for high values of the wave field components and electromagnetic energy available; (ii) the obtention of new dispersion relations for actually anisotropic pulsar plasmas with relativistic motions and temperatures; (iii) the interaction between a plasma and a beam, both with relativistic motions and temperatures; (iv) the interpretation of observed 'coral' and 'conal' features, associated with the presence of boundaries and curved magnetic field lines in the emission region; (v) the detailed topology of the magnetic field in the different parts of the emission region and its relation to models recently proposed to interpret drifting subpulses observed from PSR 0943+10, showing 20 sub-beams of emission. We relate the nonlinear evolution of the two-stream instability and development of strong turbulence in relativistic pulsar plasmas to the emergence of relativistic solitons, able
Pair potentials in liquid metals
International Nuclear Information System (INIS)
Faber, T.E.
1980-01-01
The argument which justifies the use of a pair potential to describe the structure-dependent term in the energy of liquid metals is briefly reviewed. Because there is an additional term in the energy which depends upon volume rather than structure, and because the pair potential itself is volume-dependent, the relationship between pair potential and observable properties such as pressure, bulk modulus and pair distribution function is more complicated for liquid metals than it is for molecular liquids. Perhaps for this reason, the agreement between pair potentials inferred from observable properties and pair potentials calculated by means of pseudo-potential theory is still far from complete. The pair potential concept is applicable only to simple liquid metals, in which the electron-ion interaction is weak. No attempt is made to discuss liquid transition and rare-earth metals, which are not simple in this sense. (author)
Experimental many-pairs nonlocality
Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian
2017-08-01
Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.
Study on the transmission efficiency of curved neutron guide
International Nuclear Information System (INIS)
Wang Hongli; Zhang Li; Guo Liping; Yang Tonghua; Zhao Zhixiang
2004-01-01
Monte-Carlo simulation program NGT2002 is used to study the transmission efficiency of curved neutron guide from character wavelength, film reflectivity, film material, geometry adjustment error, gap between guides and guide fabricate error, the authors get the transmission efficiency curves of the Ni, supper mirror curved neutron guides, also we have a discuss of how to choose the curved neutron guide's character wavelength. By the simulation results, the authors determine the proper film reflectivity value, guide horizontal geometry adjustment error range, optimized gap value between guide elements and guide width fabricate geometry error range. (authors)
The Effects of a Roommate-Pairing Program on International Student Satisfaction and Academic Success
Tolman, Steven
2017-01-01
While great attention has been given to the growth of international students at U.S. institutions, there is a gap in the literature examining support for this student population within residence halls. To address the gap, this quantitative study evaluated an international roommate-pairing program (IRP) by comparing the residential experience of IRP participants with a control group. The results showed the roommate-pairing program had a positive impact on the residential expe...
Gaps between jets in hadronic collisions
Czech Academy of Sciences Publication Activity Database
Kepka, Oldřich; Marquet, C.; Royon, C.
2011-01-01
Roč. 83, č. 3 (2011), 034036/1-034036/7 ISSN 1550-7998 R&D Projects: GA MŠk LC527; GA MŠk LA08015; GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : pp inclusive reaction * anti-p p annihilation * jet pair production * rapidity gap * quantum chromodynamics perturbation theory * color singlet Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.558, year: 2011
Quinn, Terrance; Sinkala, Zachariah
2014-01-01
We develop a general method for computing extreme value distribution (Gumbel, 1958) parameters for gapped alignments. Our approach uses mixture distribution theory to obtain associated BLOSUM matrices for gapped alignments, which in turn are used for determining significance of gapped alignment scores for pairs of biological sequences. We compare our results with parameters already obtained in the literature.
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2013-01-01
The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2012-01-01
The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
International Nuclear Information System (INIS)
Bespalov, D.F.; Bykovskii, Yu.A.; Vergun, I.I.; Kozlovskii, K.I.; Kozyrev, Yu.P.; Leonov, R.K.; Simagin, B.I.; Tsybin, A.S.; Shikanov, A.Ie.
1986-03-01
The paper describes a new device for generating pulsed neutron fields, utilized in nuclear geophysics for carrying out pulsed neutron logging and activation analysis under field conditions. The invention employs a sealed-off neutron tube with a laser ion source which increases neutron yield to the level of 10 neutrons per second or higher. 2 refs., 1 fig
Development of Optical Fiber Detector for Measurement of Fast Neutron
International Nuclear Information System (INIS)
YAGI, Takahiro; KAWAGUCHI, Shinichi; MISAWA, Tsuyoshi; PYEON, Cheol Ho; UNESAKI, Hironobu; SHIROYA, Seiji; OKAJIMA, Shigeaki; TANI, Kazuhiro
2008-01-01
Measurement of fast neutron flux is important for investigation of characteristic of fast reactors. In order to insert a neutron detector in a narrow space such as a gap of between fuel plates and measure the fast neutrons in real time, a neutron detector with an optical fiber has been developed. This detector consists of an optical fiber whose tip is covered with mixture of neutron converter material and scintillator such as ZnS(Ag). The detector for fast neutrons uses ThO 2 as converter material because 232 Th makes fission reaction with fast neutrons. The place where 232 Th can be used is limited by regulations because 232 Th is nuclear fuel material. The purpose of this research is to develop a new optical fiber detector to measure fast neutrons without 232 Th and to investigate the characteristic of the detector. These detectors were used to measure a D-T neutron generator and fast neutron flux distribution at Fast Critical Assembly. The results showed that the fast neutron flux distribution of the new optical fiber detector with ZnS(Ag) was the same as it of the activation method, and the detector are effective for measurement of fast neutrons. (authors)
International Nuclear Information System (INIS)
1991-02-01
The annual report on hand gives an overview of the research work carried out in the Laboratory for Neutron Scattering (LNS) of the ETH Zuerich in 1990. Using the method of neutron scattering, it is possible to examine in detail the static and dynamic properties of the condensed material. In accordance with the multidisciplined character of the method, the LNS has for years maintained a system of intensive co-operation with numerous institutes in the areas of biology, chemistry, solid-state physics, crystallography and materials research. In 1990 over 100 scientists from more than 40 research groups both at home and abroad took part in the experiments. It was again a pleasure to see the number of graduate students present, who were studying for a doctorate and who could be introduced into the neutron scattering during their stay at the LNS and thus were in the position to touch on central ways of looking at a problem in their dissertation using this modern experimental method of solid-state research. In addition to the numerous and interesting ways of formulating the questions to explain the structure, nowadays the scientific programme increasingly includes particularly topical studies in connection with high temperature-supraconductors and materials research
International Nuclear Information System (INIS)
Thomas, F.J.
1987-01-01
The rationale for the application of neutron radiation for the treatment of malignancies is well established based on radiobiological studies. These factors include the presence of tissue hypoxia, radiation response as a function of cell cycle kinetics, the repair capacity of the malignant cells and the regeneration of malignant cells during a fractionated course of radiation. Despite the constraints under which the clinical trials to date have been conducted, promising results have been obtained. Randomized trials have demonstrated that neutron therapy is the treatment of choice for inoperable salivary gland carcinomas. A randomized trial of the RTOG has demonstrated a probable advantage for neutron radiation in the treatment of advanced prostate carcinomas but is yet to be confirmed. An improvement in local control has also been observed for selected sarcomas. Equivocal or contradictory results have been obtained for squamous cell carcinomas of the head and neck, bronchogenic carcinomas, advanced rectal, transitional cell carcinomas of the bladder and cervical carcinomas. The practical consequences of these radiobiological and clinical observations on the current generation of clinical trials is discussed
Temperature dependence of pair correlations in nuclei in the iron region
International Nuclear Information System (INIS)
Langanke, K.; Dean, D.J.; Oak Ridge National Lab., TN; Radha, P.B.; Koonin, S.E.
1996-01-01
We use the shell-model Monte Carlo approach to study thermal properties and pair correlations in 54,56,58 Fe and in 56 Cr. The calculations are performed with the modified Kuo-Brown interaction in the complete 1p0f model space. We find generally that the proton-proton and neutron-neutron J=0 pairing correlations, which dominate the ground-state properties of even-even nuclei, vanish at temperatures around 1 MeV. This pairing phase transition is accompanied by a rapid increase in the moment of inertia and a partial unquenching of the M1 strength. We find that the M1 strength totally unquenches at higher temperatures, related to the vanishing of isoscalar proton-neutron correlations, which persist to higher temperatures than the pairing between like nucleons. The Gamow-Teller strength is also correlated to the isoscalar proton-neutron pairing and hence also unquenches at a temperature larger than that of the pairing phase transition. (orig.)
Levinson, N
1940-01-01
A typical gap theorem of the type discussed in the book deals with a set of exponential functions { \\{e^{{{i\\lambda}_n} x}\\} } on an interval of the real line and explores the conditions under which this set generates the entire L_2 space on this interval. A typical gap theorem deals with functions f on the real line such that many Fourier coefficients of f vanish. The main goal of this book is to investigate relations between density and gap theorems and to study various cases where these theorems hold. The author also shows that density- and gap-type theorems are related to various propertie
DEFF Research Database (Denmark)
Kramer Overgaard, Majken; Broeng, Jes; Jensen, Monika Luniewska
Bridging the Gap (BtG) is a 2-year project funded by The Danish Industry Foundation. The goal of Bridging the Gap has been to create a new innovation model which will increase the rate at which Danish universities can spinout new technology ventures.......Bridging the Gap (BtG) is a 2-year project funded by The Danish Industry Foundation. The goal of Bridging the Gap has been to create a new innovation model which will increase the rate at which Danish universities can spinout new technology ventures....
Thermoluminescence measurements of neutron streaming through JET Torus Hall ducts
Obryk, Barbara; Batistoni, Paola; Conroy, Sean; Syme, Brian D.; Popovichev, Sergey; Stamatelatos, Ion E.; Vasilopoulou, Theodora; Bilski, Paweł; Contributors, JET EFDA
2014-01-01
Thermoluminescence detectors (TLD) were used for dose measurements at JET. Several hundreds of LiF detectors of various types, standard LiF:Mg,Ti and highly sensitive LiF:Mg,Cu,P were produced. LiF detectors consisting of natural lithium are sensitive to slow neutrons, their response to neutrons being enhanced by 6Li-enriched lithium or suppressed by using lithium consisting entirely of 7Li. Pairs of 6LiF/7LiF detectors allow distinguishing between neutron/non-neutron components of a radiatio...
Neutron generator (HIRRAC) and dosimetry study.
Endo, S; Hoshi, M; Takada, J; Tauchi, H; Matsuura, S; Takeoka, S; Kitagawa, K; Suga, S; Komatsu, K
1999-12-01
Dosimetry studies have been made for neutrons from a neutron generator at Hiroshima University (HIRRAC) which is designed for radiobiological research. Neutrons in an energy range from 0.07 to 2.7 MeV are available for biological irradiations. The produced neutron energies were measured and evaluated by a 3He-gas proportional counter. Energy spread was made certain to be small enough for radiobiological studies. Dose evaluations were performed by two different methods, namely use of tissue equivalent paired ionization chambers and activation of method with indium foils. Moreover, energy deposition spectra in small targets of tissue equivalent materials, so-called lineal energy spectrum, were also measured and are discussed. Specifications for biological irradiation are presented in terms of monoenergetic beam conditions, dose rates and deposited energy spectra.
Cooper pairs' magnetic moment in MCFL color superconductivity
International Nuclear Information System (INIS)
Feng Bo; Ferrer, Efrain J.; Incera, Vivian de la
2011-01-01
We investigate the effect of the alignment of the magnetic moments of Cooper pairs of charged quarks that form at high density in three-flavor quark matter. The high-density phase of this matter in the presence of a magnetic field is known to be the Magnetic Color-Flavor-Locked (MCFL) phase of color superconductivity. We derive the Fierz identities of the theory and show how the explicit breaking of the rotational symmetry by the uniform magnetic field opens new channels of interactions and allows the formation of a new diquark condensate. The new order parameter is a spin-1 condensate proportional to the component in the field direction of the average magnetic moment of the pairs of charged quarks. The magnitude of the spin-1 condensate becomes comparable to the larger of the two scalar gaps in the region of large fields. The existence of the spin-1 condensate is unavoidable, as in the presence of a magnetic field there is no solution of the gap equations with nonzero scalar gaps and zero magnetic moment condensate. This is consistent with the fact that the extra condensate does not break any symmetry that has not already been broken by the known MCFL gaps. The spin-1 condensate enhances the condensation energy of pairs formed by charged quarks and the magnetization of the system. We discuss the possible consequences of the new order parameter on the issue of the chromomagnetic instability that appears in color superconductivity at moderate density.
Spallation Neutron Source (SNS)
Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...
Overview of gap streaming experiments for ITER at JAERI/FNS
International Nuclear Information System (INIS)
Konno, Ch.; Maekawa, F.; Oyama, Y.; Uno, Y.; Kasugai, Y.; Wada, M.; Maekawa, H.; Ikeda, Y.
1998-01-01
Gap streaming experiments were performed by using a D-T neutron source, FNS, at Japan Atomic Energy Research Institute as a part of an ITER/EDA R and D Task (T-218), in order to investigate the influence of neutron streaming due to gap between shielding blanket modules in ITER. The direct gap increased 14-MeV neutron flux by 20 times at the cavity center and rear surface of the experimental assembly, while the offset gap increased by 3 times. On the other hand the increase of neutrons below 1 MeV and gamma-rays was less than a few tens % even for the direct gap assemblies. This result suggests that gap streaming has a large influence on helium production and radiation damage sensitive to high energy neutrons rather than on gamma heating. Calculated values agreed within ±30 % with most of the experimental data. This result demonstrates that the MCNP code with the FENDL/E-1.1 and JENDL Fusion File cross section libraries can be used with reliance for shield designs of ITER for configuration with gap if the geometry is modeled precisely. (authors)
Germanium-doped gallium phosphide obtained by neutron irradiation
Goldys, E. M.; Barczynska, J.; Godlewski, M.; Sienkiewicz, A.; Heijmink Liesert, B. J.
1993-08-01
Results of electrical, optical, electron spin resonance and optically detected magnetic resonance studies of thermal neutron irradiated and annealed at 800 °C n-type GaP are presented. Evidence is found to support the view that the main dopant introduced via transmutation of GaP, germanium, occupies cation sites and forms neutral donors. This confirms the possibility of neutron transmutation doping of GaP. Simultaneously, it is shown that germanium is absent at cation sites. Presence of other forms of Ge-related defects is deduced from luminescence and absorption data. Some of them are tentatively identified as VGa-GeGa acceptors leading to the self-compensation process. This observation means that the neutron transmutation as a doping method in application to GaP is not as efficient as for Si.
Transport coefficients in superfluid neutron stars
Energy Technology Data Exchange (ETDEWEB)
Tolos, Laura [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Frankfurt Institute for Advances Studies. Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Manuel, Cristina [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Sarkar, Sreemoyee [Tata Institute of Fundamental Research, Homi Bhaba Road, Mumbai-400005 (India); Tarrus, Jaume [Physik Department, Technische Universität München, D-85748 Garching (Germany)
2016-01-22
We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.
The Effects of a Roommate-Pairing Program on International Student Satisfaction and Academic Success
Tolman, Steven
2017-01-01
While great attention has been given to the growth of international students at U.S. institutions, there is a gap in the literature examining support for this student population within residence halls. To address the gap, this quantitative study evaluated an international roommate-pairing program (IRP) by comparing the residential experience of…
A nucleon-pair and boson coexistent description of nuclei
Dai, Lianrong; Pan, Feng; Draayer, J. P.
2017-07-01
We study a mixture of s-bosons and like-nucleon pairs with the standard pairing interaction outside an inert core. Competition between the nucleon-pairs and s-bosons is investigated in this scenario. The robustness of the BCS-BEC coexistence and crossover phenomena are examined through an analysis of pf-shell nuclei with realistic single-particle energies, in which two configurations with Pauli blocking of nucleon-pair orbits due to the formation of the s-bosons is taken into account. When the nucleon-pair orbits are considered to be independent of the s-bosons, the BCS-BEC crossover becomes smooth, with the number of the s-bosons noticeably more than that of the nucleon-pairs near the half-shell point, a feature that is demonstrated in the pf-shell for several values of the standard pairing interaction strength. As a further test of the robustness of the BCS-BEC coexistence and crossover phenomena in nuclei, results are given for values of even-even 102-130Sn with 100Sn taken as a core and valence neutron pairs confined within the 1d 5/2, 0g 7/2, 1d 3/2, 2s 1/2, 1h 11/2 orbits in the nucleon-pair orbit and the s-boson independent approximation. The results indicate that the B(E2) values are reproduced well. Supported by National Natural Science Foundation of China (11375080, 11675071), the U.S. National Science Foundation (OCI-0904874 and ACI-1516338), U. S. Department of Energy (DE-SC0005248), the Southeastern Universities Research Association, the China-U. S. Theory Institute for Physics with Exotic Nuclei (CUSTIPEN) (DE-SC0009971), and the LSU-LNNU joint research program (9961) is acknowledged
Pair production from nuclear collisions and cosmic ray transport
International Nuclear Information System (INIS)
Norbury, John W
2006-01-01
Modern cosmic ray transport codes, that are capable of use for a variety of applications, need to include all significant atomic, nuclear and particle reactions at a variety of energies. Lepton pair production from nucleus-nucleus collisions has not been included in transport codes to date. Using the methods of Baur, Bertulani and Baron, the present report provides estimates of electron-positron pair production cross sections for nuclei and energies relevant to cosmic ray transport. It is shown that the cross sections are large compared to other typical processes such as single neutron removal due to strong or electromagnetic interactions. Therefore, lepton pair production may need to be included in some transport code applications involving MeV electrons. (brief report)
Relativistic mean field theory for deformed nuclei with pairing correlations
International Nuclear Information System (INIS)
Geng, Lisheng; Toki, Hiroshi; Sugimoto, Satoru; Meng, Jie
2003-01-01
We develop a relativistic mean field (RMF) description of deformed nuclei with pairing correlations in the BCS approximation. The treatment of the pairing correlations for nuclei whose Fermi surfaces are close to the threshold of unbound states needs special attention. With this in mind, we use a delta function interaction for the pairing interaction to pick up those states whose wave functions are concentrated in the nuclear region and employ the standard BCS approximation for the single-particle states obtained from the BMF theory with deformation. We apply the RMF + BCS method to the Zr isotopes and obtain a good description of the binding energies and the nuclear radii of nuclei from the proton drip line to the neutron drip line. (author)
High energy neutron radiography
International Nuclear Information System (INIS)
Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.
1996-01-01
High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)
DEFF Research Database (Denmark)
Marselis, Randi
2017-01-01
This article focuses on photo projects organised for teenage refugees by the Society for Humanistic Photography (Berlin, Germany). These projects, named Bridge the Gap I (2015), and Bridge the Gap II (2016), were carried out in Berlin and brought together teenagers with refugee and German...
Leviatan, Talma
2008-01-01
There has been a broad wave of change in tertiary calculus courses in the past decade. However, the much-needed change in tertiary pre-calculus programmes--aimed at bridging the gap between high-school mathematics and tertiary mathematics--is happening at a far slower pace. Following a discussion on the nature of the gap and the objectives of a…
Goldin, Claudia
1985-01-01
Despite the great influx of women into the labor market, the gap between men's and women's wages has remained stable at 40 percent since 1950. Analysis of labor data suggests that this has occurred because women's educational attainment compared to men has declined. Recently, however, the wage gap has begun to narrow, and this will probably become…
2013-05-23
period and provide recommendations to guide future research and policy development. 4 DEFINING THE TRANSITIONAL SECURITY GAP There have been...BRIDGING THE TRANSITION GAP A Monograph by MAJ J.D. Hansen United States Army School of Advanced Military Studies United States Army...suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704
Fusion neutronics experiments and analysis
International Nuclear Information System (INIS)
1992-01-01
UCLA has led the neutronics R ampersand D effort in the US for the past several years through the well-established USDOE/JAERI Collaborative Program on Fusion Neutronics. Significant contributions have been made in providing solid bases for advancing the neutronics testing capabilities in fusion reactors. This resulted from the hands-on experience gained from conducting several fusion integral experiments to quantify the prediction uncertainties of key blanket design parameters such as tritium production rate, activation, and nuclear heating, and when possible, to narrow the gap between calculational results and measurements through improving nuclear data base and codes capabilities. The current focus is to conduct the experiments in an annular configuration where the test assembly totally surrounds a simulated line source. The simulated line source is the first-of-a-kind in the scope of fusion integral experiments and presents a significant contribution to the world of fusion neutronics. The experiments proceeded through Phase IIIA to Phase IIIC in these line source simulation experiments started in 1989
The formation of Cooper pairs and the nature of superconducting currents
International Nuclear Information System (INIS)
Weisskopf, V.F.
1979-12-01
A simple physical explanation is given for the formation of Cooper pairs in a superconducting metal, for the origin of the attractive force causing the binding of the pairs, for the forming of a degenerate Bose gas by the Cooper pairs, for the finite energy gap that prevents the ensemble of electrons to change its quantum state at low temperatures, and for the existence of permanent currents in a superconducting wire. (orig.)
The formation of Cooper pairs and the nature of superconducting currents
International Nuclear Information System (INIS)
Weisskopf, V.F.
1981-01-01
A simple physical explanation is given for the formation of Cooper pairs in a superconducting metal, for the origin of the attractive force causing the binding of the pairs, for the forming of a degenerate Bose gas by the Cooper pairs, for the finite energy gap that prevents the ensemble of electrons from changing its quantum state at low temperatures, and for the existence of permanent currents in a superconducting wire. (author)
Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...
International Nuclear Information System (INIS)
Chen, H.T.; Muether, H.; Faessler, A.
1978-01-01
Pairing vibrational and isospin rotational states are described in different approximations based on particle number and isospin projected, proton-proton, neutron-neutron and proton-neutron pairing wave functions and on the generator coordinate method (GCM). The investigations are performed in models for which an exact group theoretical solution exists. It turns out that a particle number and isospin projection is essential to yield a good approximation to the ground state or isospin yrast state energies. For strong pairing correlations (pairing force constant equal to the single-particle level distance) isospin cranking (-ωTsub(x)) yields with particle number projected pairing wave function also good agreement with the exact energies. GCM wave functions generated by particle number and isospin projected BCS functions with different amounts of pairing correlations yield for the lowest T=0 and T=2 states energies which are practically indistinguishable from the exact solutions. But even the second and third lowest energies of charge-symmetric states are still very reliable. Thus it is concluded that also in realistic cases isospin rotational and pairing vibrational states may be described in the framework of the GCM method with isospin and particle number projected generating wave functions. (Auth.)
A weight limit emerges for neutron stars
Cho, Adrian
2018-02-01
Astrophysicists have long wondered how massive a neutron star—the corpse of certain exploding stars—could be without collapsing under its own gravity to form a black hole. Now, four teams have independently deduced a mass limit for neutron stars of about 2.2 times the mass of the sun. To do so, all four groups analyzed last year's blockbuster observations of the merger of two neutron stars, spied on 17 September 2017 by dozens of observatories. That approach may seem unpromising, as it might appear that the merging neutron stars would have immediately produced a black hole. However, the researchers argue that the merger first produced a spinning, overweight neutron star momentarily propped up by centrifugal force. They deduce that just before it collapsed, the short-lived neutron star had to be near the maximum mass for one spinning as a solid body. That inference allowed them to use a scaling relationship to estimate the maximum mass of a nonrotating, stable neutron star, starting from the total mass of the original pair and the amount of matter spewed into space.
Calculations of neutron spectra after neutron-neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Crawford, B E [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Stephenson, S L [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Howell, C R [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G E [North Carolina State University, Raleigh, NC 27695-8202 (United States); Tornow, W [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Furman, W I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lychagin, E V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Muzichka, A Yu [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nekhaev, G V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Strelkov, A V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Sharapov, E I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shvetsov, V N [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)
2004-09-01
A direct neutron-neutron scattering length, a{sub nn}, measurement with the goal of 3% accuracy (0.5 fm) is under preparation at the aperiodic pulsed reactor YAGUAR. A direct measurement of a{sub nn} will not only help resolve conflicting results of a{sub nn} by indirect means, but also in comparison to the proton-proton scattering length, a{sub pp}, shed light on the charge-symmetry of the nuclear force. We discuss in detail the analysis of the nn-scattering data in terms of a simple analytical expression. We also discuss calibration measurements using the time-of-flight spectra of neutrons scattered on He and Ar gases and the neutron activation technique. In particular, we calculate the neutron velocity and time-of-flight spectra after scattering neutrons on neutrons and after scattering neutrons on He and Ar atoms for the proposed experimental geometry, using a realistic neutron flux spectrum-Maxwellian plus epithermal tail. The shape of the neutron spectrum after scattering is appreciably different from the initial spectrum, due to collisions between thermal-thermal and thermal-epithermal neutrons. At the same time, the integral over the Maxwellian part of the realistic scattering spectrum differs by only about 6 per cent from that of a pure Maxwellian nn-scattering spectrum.
Kramers Pairs in configuration interaction
DEFF Research Database (Denmark)
Avery, John Scales; Avery, James Emil
2003-01-01
The theory of symmetry-preserving Kramers pair creation operators is reviewed and formulas for applying these operators to configuration interaction calculations are derived. A new and more general type of symmetry-preserving pair creation operator is proposed and shown to commute with the total ...
Broadband illumination of superconducting pair breaking photon detectors
International Nuclear Information System (INIS)
Guruswamy, T; Goldie, D J; Withington, S
2016-01-01
Understanding the detailed behaviour of superconducting pair breaking photon detectors such as Kinetic Inductance Detectors (KIDs) requires knowledge of the nonequilibrium quasiparticle energy distributions. We have previously calculated the steady state distributions resulting from uniform absorption of monochromatic sub gap and above gap frequency radiation by thin films. In this work, we use the same methods to calculate the effect of illumination by broadband sources, such as thermal radiation from astrophysical phenomena or from the readout system. Absorption of photons at multiple above gap frequencies is shown to leave unchanged the structure of the quasiparticle energy distribution close to the superconducting gap. Hence for typical absorbed powers, we find the effects of absorption of broadband pair breaking radiation can simply be considered as the sum of the effects of absorption of many monochromatic sources. Distribution averaged quantities, like quasiparticle generation efficiency η, match exactly a weighted average over the bandwidth of the source of calculations assuming a monochromatic source. For sub gap frequencies, however, distributing the absorbed power across multiple frequencies does change the low energy quasiparticle distribution. For moderate and high absorbed powers, this results in a significantly larger η–a higher number of excess quasiparticles for a broadband source compared to a monochromatic source of equal total absorbed power. Typically in KIDs the microwave power absorbed has a very narrow bandwidth, but in devices with broad resonance characteristics (low quality factors), this increase in η may be measurable. (paper)
International Nuclear Information System (INIS)
Shirbisheh, Vahid
2012-01-01
As the first step towards developing noncommutative geometry over Hecke C ∗ -algebras, we study property (RD) (Rapid Decay) for Hecke pairs. When the subgroup H in a Hecke pair (G, H) is finite, we show that the Hecke pair (G, H) has (RD) if and only if G has (RD). This provides us with a family of examples of Hecke pairs with property (RD). We also adapt Paul Jolissant’s works in Jolissaint (J K-Theory 2:723–735, 1989; Trans Amer Math Soc 317(1):167–196, 1990) to the setting of Hecke C ∗ -algebras and show that when a Hecke pair (G, H) has property (RD), the algebra of rapidly decreasing functions on the set of double cosets is closed under holomorphic functional calculus of the associated (reduced) Hecke C ∗ -algebra. Hence they have the same K 0 -groups.
Instability of vortex pair leapfrogging
DEFF Research Database (Denmark)
Tophøj, Laust; Aref, Hassan
2013-01-01
Leapfrogging is a periodic solution of the four-vortex problem with two positive and two negative point vortices all of the same absolute circulation arranged as co-axial vortex pairs. The set of co-axial motions can be parameterized by the ratio 0 vortex pair sizes at the time when one...... pair passes through the other. Leapfrogging occurs for α > σ2, where is the silver ratio. The motion is known in full analytical detail since the 1877 thesis of Gröbli and a well known 1894 paper by Love. Acheson ["Instability of vortex leapfrogging," Eur. J. Phys.21, 269-273 (2000...... pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L...
Cooper pair splitters beyond the Coulomb blockade regime
Energy Technology Data Exchange (ETDEWEB)
Amitai, Ehud; Tiwari, Rakesh P.; Nigg, Simon E. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Walter, Stefan [Institute for Theoretical Physics, University Erlangen Nuernberg, Staudtstrasse 7, 91058 Erlangen (Germany); Schmidt, Thomas L. [Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg (Luxembourg)
2016-07-01
We consider the setup of a conventional s-wave Cooper pair splitter. However, we consider the charging energies in the quantum dots to be finite and smaller than the superconducting gap. We find analytically that at low energies the superconductor mediates an inter-dot tunneling term, the spin symmetry of which is influenced by a finite Zeeman field. This effect, together with an electrical tuning scheme of the quantum dot levels, can be used to engineer a non local triplet state on the two quantum dots, thereby extending the non-local state engineering capabilities of the Cooper pair splitter system.
Josephson junction analog and quasiparticle-pair current
DEFF Research Database (Denmark)
Bak, Christen Kjeldahl; Pedersen, Niels Falsig
1973-01-01
A close analogy exists between a Josephson junction and a phase-locked loop. A new type of electrical analog based on this principle is presented. It is shown that the inclusion in this analog of a low-pass filter gives rise to a current of the same form as the Josephson quasiparticle-pair current....... A simple picture of the quasiparticle-pair current, which gives the right dependences, is obtained by assuming a junction cutoff frequency to be at the energy gap. ©1973 American Institute of Physics...
A binary neutron star GRB model
International Nuclear Information System (INIS)
Wilson, J.R.; Salmonson, J.D.; Wilson, J.R.; Mathews, G.J.
1998-01-01
In this paper we present the preliminary results of a model for the production of gamma-ray bursts (GRBs) through the compressional heating of binary neutron stars near their last stable orbit prior to merger. Recent numerical studies of the general relativistic (GR) hydrodynamics in three spatial dimensions of close neutron star binaries (NSBs) have uncovered evidence for the compression and heating of the individual neutron stars (NSs) prior to merger 12. This effect will have significant effect on the production of gravitational waves, neutrinos and, ultimately, energetic photons. The study of the production of these photons in close NSBs and, in particular, its correspondence to observed GRBs is the subject of this paper. The gamma-rays arise as follows. Compressional heating causes the neutron stars to emit neutrino pairs which, in turn, annihilate to produce a hot electron-positron pair plasma. This pair-photon plasma expands rapidly until it becomes optically thin, at which point the photons are released. We show that this process can indeed satisfy three basic requirements of a model for cosmological gamma-ray bursts: (1) sufficient gamma-ray energy release (>10 51 ergs) to produce observed fluxes, (2) a time-scale of the primary burst duration consistent with that of a 'classical' GRB (∼10 seconds), and (3) the peak of the photon number spectrum matches that of 'classical' GRB (∼300 keV). copyright 1998 American Institute of Physics
Thermal neutron detectors based on complex oxide crystals
Ryzhikov, V; Volkov, V; Chernikov, V; Zelenskaya, O
2002-01-01
The ways of improvement of spectrometric quality of CWO and GSO crystals have been investigated with the aim of their application in thermal neutron detectors based on radiation capture reactions. The efficiency of the neutron detection by these crystals was measured, and the obtained data were compared with the results for sup 6 LiI(Tl) crystals. It is shown that the use of complex oxide crystals and neutron-absorption filters for spectrometry of thermal and resonance neutrons could be a promising method in combination with computer data processing. Numerical calculations are reported for spectra of gamma-quanta due to radiation capture of the neutrons. To compensate for the gamma-background lines, we used a crystal pair of heavy complex oxides with different sensitivity to neutrons.
Neutron field inside a PET Cyclotron vault room
International Nuclear Information System (INIS)
Vega C, H.R.; Mendez, R.; Iniguez, M.P.; Climent, J.M.; Penuelas, I.; Barquero, R.
2006-01-01
The neutron field around a Positron Emission Tomography cyclotron was investigated during 18 F radioisotope production with an 18 MeV proton beam. In this study the Ion Beam Application cyclotron, model Cyclone 18/9, was utilized. Measurements were carried out with a Bonner sphere neutron spectrometer with pairs of thermoluminescent dosemeters (TLD600 and TLD700) as thermal neutron detector. The TLDs readouts were utilized to unfold the neutron spectra at three different positions inside the cyclotron's vault room. With the spectra the Ambient dose equivalent was calculated. Neutron spectra unfolding were performed with the BUNKIUT code and the UTA4 response matrix. Neutron spectra were also determined by Monte Carlo calculations using a detailed model of cyclotron and vault room. (Author)
The neutron production rate measurement of an indigenously developed compact D-D neutron generator
Directory of Open Access Journals (Sweden)
Das Basanta Kumar
2013-01-01
Full Text Available One electrostatic accelerator based compact neutron generator was developed. The deuterium ions generated by the ion source were accelerated by one accelerating gap after the extraction from the ion source and bombarded to a target. Two different types of targets, the drive - in titanium target and the deuteriated titanium target were used. The neutron generator was operated at the ion source discharge potential at +Ve 1 kV that generates the deuterium ion current of 200 mA at the target while accelerated through a negative potential of 80 kV in the vacuum at 1.3×10-2 Pa filled with deuterium gas. A comparative study for the neutron yield with both the targets was carried out. The neutron flux measurement was done by the bubble detectors purchased from Bubble Technology Industries. The number of bubbles formed in the detector is the direct measurement of the total energy deposited in the detector. By counting the number of bubbles the total dose was estimated. With the help of the ICRP-74 neutron flux to dose equivalent rate conversion factors and the solid angle covered by the detector, the total neutron flux was calculated. In this presentation the operation of the generator, neutron detection by bubble detector and estimation of neutron flux has been discussed.
DEFF Research Database (Denmark)
Persson, Karl Gunnar
This paper challenges the widely held view that sharply falling real transport costs closed the transatlantic gap in grain prices in the second half of the 19th century. Several new results emerge from an analysis of a new data set of weekly wheat prices and freight costs from New York to UK...... markets. Firstly, there was a decline in the transatlantic price gap but it was not sharp and the gap remained substantial. Secondly, the fall in the transatlantic price differential had more to do with improved market and marketing efficiency than with falling transport costs. Thirdly, spurious price...
A spin-transport system for a longitudinally polarized epithermal neutron beam
International Nuclear Information System (INIS)
Crawford, B.E.; Bowman, J.D.; Penttilae, S.I.; Roberson, N.R.
2001-01-01
The TRIPLE (Time Reversal and Parity at Low Energies) collaboration uses a polarized epithermal neutron beam and a capture γ-ray detector to study parity violation in neutron-nucleus reactions. In order to preserve the spin polarization of the neutrons as they travel the 60-m path to the target, the beam pipes are wrapped with wire to produce a solenoidal magnetic field of about 10 G along the beam direction. The flanges and bellows between sections of the beam pipe cause gaps in the windings which in turn produce radial fields that can depolarize the neutron spins. A computer code has been developed that numerically evaluates the effect of these gaps on the polarization. A measurement of the neutron depolarization for neutrons in the actual spin-transport system agrees with a calculation of the neutron depolarization for the TRIPLE system. Features that will aid in designing similar spin-transport systems are discussed
Minnesota Department of Natural Resources — This vector dataset is a detailed (1-acre minimum), hierarchically organized vegetation cover map produced by computer classification of combined two-season pairs of...
Characteristics of Fabricated SiC Neutron Detectors for Neutron Flux Monitoring
Energy Technology Data Exchange (ETDEWEB)
Kim, Han Soo; Ha, Jang Ho; Park, Se Hwan; Lee, Kyu Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Cheol Ho [Hanyang University, Seoul (Korea, Republic of)
2011-05-15
An SPND (Self-powered Neutron Detector) is commonly used for neutron detection in NPP (Nuclear Power Plant) by virtue of un-reactivity for gamma-rays. But it has a drawback, which is that it cannot detect neutrons in real time due to beta emissions (about > 48 s) after reactions between neutrons and {sup 103}Rh in an SPND. And Generation IV reactors such as MSR (Molten-salt reactor), SFR (Sodium-cooled fast reactor), and GFR (Gas-cooled fast reactor) are designed to compact size and integration type. For GEN IV reactor, neutron monitor also must be compact-sized to apply such reactor easily and much more reliable. The wide band-gap semiconductors such as SiC, AlN, and diamond make them an attractive alternative in applications in harsh environments by virtue of the lower operating voltage, faster charge-collection times compared with gas-filled detectors, and compact size.1) In this study, two PIN-type SiC semiconductor neutron detectors, which are for fast neutron detection by elastic and inelastic scattering SiC atoms and for thermal neutron detection by charged particle emissions of 6LiF reaction, were designed and fabricated for NPP-related applications. Preliminary tests such as I-V and alpha response were performed and neutron responses at ENF in HANARO research reactor were also addressed. The application feasibility of the fabricated SiC neutron detector as an in-core neutron monitor was discussed
Pair Fermi contour and high-temperature superconductivity
Belyavsky, V I
2002-01-01
The holes superconducting coupling with the pair high summarized pulse and the relative motion low pulses is considered with an account of the quasi-two-dimensional electron structure of the HTSC-cuprates with the clearly-pronounced nesting of the Fermi contour. The superconducting energy gap and the condensation energy are determined and their dependences on the doping level are qualitatively studied. It is shown that the energy gap takes place in some holes concentration area, limited on both sides. The superconducting state, whereby the condensation energy is positive, originates in the more narrower doping interval inside this area. The hole pair redistribution in the pulse space constitutes the cause of the superconducting state origination by the holes repulsive screened Coulomb interaction. The coupling mechanism discussed hereby, males it possible to explain qualitatively not only the phase diagram basic peculiarities but also the key experimental facts, related to the cuprate HTSC-materials
Neutron matter, symmetry energy and neutron stars
Energy Technology Data Exchange (ETDEWEB)
Stefano, Gandolfi [Los Alamos National Laboratory (LANL); Steiner, Andrew W [ORNL
2016-01-01
Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.
Directional epithermal neutron detector
International Nuclear Information System (INIS)
Givens, W.W.; Mills, W.R. Jr.
1986-01-01
A borehole tool for epithermal neutron die-away logging of subterranean formations surrounding a borehole is described which consists of: (a) a pulsed source of fast neutrons for irradiating the formations surrounding a borehole, (b) at least one neutron counter for counting epithermal neutrons returning to the borehole from the irradiated formations, (c) a neutron moderating material, (d) an outer thermal neutron shield providing a housing for the counter and the moderating material, (e) an inner thermal neutron shield dividing the housing so as to provide a first compartment bounded by the inner thermal neutron shield and a first portion of the outer thermal neutron shield and a second compartment bounded by the inner thermal neutron shield and a second portion of the outer thermal neutron shield, the counter being positioned within the first compartment and the moderating material being positioned within the second compartment, and (f) means for positioning the borehole tool against one side of the borehole wall and azimuthally orienting the borehole tool such that the first chamber is in juxtaposition with the borehole wall, the formation epithermal neutrons penetrating into the first chamber through the first portion of the outer thermal neutron shield are detected by the neutron counter for die-away measurement, thereby maximizing the directional sensitivty of the neutron counter to formation epithermal neutrons, the borehole fluid epithermal neutrons penetrating into the second chamber through the second chamber through the second portion of the outer thermal neutron shield are largely slowed down and lowered in energy by the moderating material and absorbed by the inner thermal neutron shield before penetrating into the first chamber, thereby minimizing the directional sensitivity of the neutron counter to borehole fluid epithermal neutrons
Bartlett, Deborah
2017-01-01
This paper describes the research conducted for the Chartered Institute for Ecology and Environmental Management to identify skills gaps within the profession. It involved surveys of professionals, conference workshops and an investigation into the views of employers regarding graduate recruitment.
Siebentritt, Susanne
2006-01-01
Chalcopyrites, in particular those with a wide band gap, are fascinating materials in terms of their technological potential in the next generation of thin-film solar cells and in terms of their basic material properties. They exhibit uniquely low defect formation energies, leading to unusual doping and phase behavior and to extremely benign grain boundaries. This book collects articles on a number of those basic material properties of wide-gap chalcopyrites, comparing them to their low-gap cousins. They explore the doping of the materials, the electronic structure and the transport through interfaces and grain boundaries, the formation of the electric field in a solar cell, the mechanisms and suppression of recombination, the role of inhomogeneities, and the technological role of wide-gap chalcopyrites.
Lightweight Double Neutron Star Found
Kohler, Susanna
2018-02-01
More than forty years after the first discovery of a double neutron star, we still havent found many others but a new survey is working to change that.The Hunt for PairsThe observed shift in the Hulse-Taylor binarys orbital period over time as it loses energy to gravitational-wave emission. [Weisberg Taylor, 2004]In 1974, Russell Hulse and Joseph Taylor discovered the first double neutron star: two compact objects locked in a close orbit about each other. Hulse and Taylors measurements of this binarys decaying orbit over subsequent years led to a Nobel prize and the first clear evidence of gravitational waves carrying energy and angular momentum away from massive binaries.Forty years later, we have since confirmed the existence of gravitational waves directly with the Laser Interferometer Gravitational-Wave Observatory (LIGO). Nonetheless, finding and studying pre-merger neutron-star binaries remains a top priority. Observing such systems before they merge reveals crucial information about late-stage stellar evolution, binary interactions, and the types of gravitational-wave signals we expect to find with current and future observatories.Since the Hulse-Taylor binary, weve found a total of 16 additional double neutron-star systems which represents only a tiny fraction of the more than 2,600 pulsars currently known. Recently, however, a large number of pulsar surveys are turning their eyes toward the sky, with a focus on finding more double neutron stars and at least one of them has had success.The pulse profile for PSR J1411+2551 at 327 MHz. [Martinez et al. 2017]A Low-Mass DoubleConducted with the 1,000-foot Arecibo radio telescope in Puerto Rico, the Arecibo 327 MHz Drift Pulsar Survey has enabled the recent discovery of dozens of pulsars and transients. Among them, as reported by Jose Martinez (Max Planck Institute for Radio Astronomy) and coauthors in a recent publication, is PSR J1411+2551: a new double neutron star with one of the lowest masses ever measured
Powder neutron diffractometers
International Nuclear Information System (INIS)
Adib, M.
2002-01-01
Basic properties and applications of powder neutron Diffractometers are described for optimum use of the continuous neutron beams. These instruments are equipped with position sensitive detectors, neutron guide tubes, and both high intensity and high resolution modes of operation are possible .The principles of both direct and Fourier reverse time-of-flight neutron Diffractometers are also given
Energy Technology Data Exchange (ETDEWEB)
Baum, J W
1955-03-29
This review summarizes information on the following subjects: (1) physical processes of importance in neutron dosimetry; (2) biological effects of neutrons; (3) neutron sources; and (4) instruments and methods used in neutron dosimetry. Also, possible improvements in dosimetry instrumentation are outlined and discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner [eds.
2010-07-01
The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
Neutron generator control system
International Nuclear Information System (INIS)
Peelman, H.E.; Bridges, J.R.
1981-01-01
A method is described of controlling the neutron output of a neutron generator tube used in neutron well logging. The system operates by monitoring the target beam current and comparing a function of this current with a reference voltage level to develop a control signal used in a series regulator to control the replenisher current of the neutron generator tube. (U.K.)
International Nuclear Information System (INIS)
Luchnik, N.V.; Sevan'kaev, A.V.; Fesenko, Eh.V.
1984-01-01
Gene mutations resulting from neutron effect are considered, but attention is focused on chromosome mutations. Dose curves for different energy of neutrons obtained at different objects are obtained which makes it possible to consider RBE of neutrons depending on their energy and radiation dose and to get some information on the neutron effect on heredity
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
Eicker, Jannis
2017-01-01
Der Gender-Pay-Gap ist eine statistische Kennzahl zur Messung der Ungleichheit zwischen Männern* und Frauen* beim Verdienst. Es gibt zwei Versionen: einen "unbereinigten" und einen "bereinigten". Der "unbereinigte" Gender-Pay-Gap berechnet den geschlechtsspezifischen Verdienstunterschied auf Basis der Bruttostundenlöhne aller Männer* und Frauen* der Grundgesamtheit. Beim "bereinigten" Wert hingegen werden je nach Studie verschiedene Faktoren wie Branche, Position und Berufserfahrung herausger...
Alan Manning
2006-01-01
Empirical research on gender pay gaps has traditionally focused on the role of gender-specific factors, particularly gender differences in qualifications and differences in the treatment of otherwise equally qualified male and female workers (i.e., labor market discrimination). This paper explores the determinants of the gender pay gap and argues for the importance of an additional factor, wage structure, the array of prices set for labor market skills and the rewards received for employment ...
Neutronics of pulsed spallation neutron sources
International Nuclear Information System (INIS)
Watanabe, Noboru
2003-01-01
Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, poisoning, etc are discussed, aiming at a high performance pulsed spallation source
International Nuclear Information System (INIS)
Tarutani, Kohei
1979-01-01
Purpose: To decrease the stresses resulted by the core bendings to the base of an entrance nozzle. Constitution: Three types of round shielding rods of different diameter are arranged in a hexagonal tube. The hexagonal tube is provided with several spacer pads receiving the loads from the core constrain mechanism at its outer circumference, a handling head for a fuel exchanger at its top and an entrance nozzle for self-holding the neutron shieldings and flowing heat-removing coolants at its bottom. The diameters for R 1 , R 2 and R 3 for the round shielding rods are designed as: 0.1 R 1 2 1 and 0.2 R 1 2 1 . Since a plurality of shielding rods of small diameter are provided, soft structure are obtained and a plurality of coolant paths are formed. (Furukawa, Y.)
Pair Cascades and Deathlines in Magnetic Fields with Offset Polar Caps
Harding, Alice K.; Muslimov, Alex G.
2012-01-01
We present results of electron-positron pair cascade simulations in a dipole magnetic field whose polar cap is offset from the dipole axis. In such a field geometry, the polar cap is displaced a small fraction of the neutron star radius from the star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the offset polar cap, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset. We find that the pair multiplicity can change dr;unatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity. The results have some important implications for pulsar particle production, high-energy emission and cosmic-ray contribution.
Miscellaneous neutron techniques
International Nuclear Information System (INIS)
Iddings, F.A.
1976-01-01
Attention is brought to the less often uses of neutrons in the areas of neutron radiography, well logging, and neutron gaging. Emphasis on neutron radiography points toward the isotopic sensitivity of the method versus the classical bulk applications. Also recognized is the ability of neutron radiography to produce image changes that correspond to thickness and density changes obtained in photon radiography. Similarly, neutron gaging applications center on the measurement of radiography. Similarly, neutron gaging applications center on the measurement of water, oil, or plastics in industrial samples. Well logging extends the neutron gaging to encompass many neutron properties and reactions besides thermalization and capture. Neutron gaging also gives information on organic structure and concentrations of a variety of elements or specific compounds in selected matrices
Isoscalar and isovector pairing in a formalism of quartets
Energy Technology Data Exchange (ETDEWEB)
Sambataro, M., E-mail: michelangelo.sambataro@ct.infn.it [Istituto Nazionale di Fisica Nucleare – Sezione di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Sandulescu, N., E-mail: sandulescu@theory.nipne.ro [National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Magurele, Bucharest (Romania); Johnson, C.W., E-mail: cjohnson@mail.sdsu.edu [Department of Physics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1233 (United States)
2015-01-05
Isoscalar (T=0, J=1) and isovector (T=1, J=0) pairing correlations in the ground state of self-conjugate nuclei are treated in terms of alpha-like quartets built by two protons and two neutrons coupled to total isospin T=0 and total angular momentum J=0. Quartets are constructed dynamically via an iterative variational procedure and the ground state is represented as a product of such quartets. It is shown that the quartet formalism describes accurately the ground state energies of realistic isovector plus isoscalar pairing Hamiltonians in nuclei with valence particles outside the {sup 16}O, {sup 40}Ca and {sup 100}Sn cores. Within the quartet formalism we analyze the competition between isovector and isoscalar pairing correlations and find that for nuclei with the valence nucleons above the cores {sup 40}Ca and {sup 100}Sn the isovector correlations account for the largest fraction of the total pairing correlations. This is not the case for sd-shell nuclei for which isoscalar correlations prevail. Contrary to many mean-field studies, isovector and isoscalar pairing correlations mix significantly in the quartet approach.
International Nuclear Information System (INIS)
Hoeye, Gudrun Kristine
1999-01-01
We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l → 4) f-modes we were also able to derive a formula that determines II l+1 from II l and II l-1 to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n c , while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)
Energy Technology Data Exchange (ETDEWEB)
Hoeye, Gudrun Kristine
1999-07-01
We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)
Universal spectral signatures in pnictides and cuprates: the role of quasiparticle-pair coupling.
Sacks, William; Mauger, Alain; Noat, Yves
2017-11-08
Understanding the physical properties of a large variety of high-T c superconductors (SC), the cuprate family as well as the more recent iron-based superconductors, is still a major challenge. In particular, these materials exhibit the 'peak-dip-hump' structure in the quasiparticle density of states (DOS). The origin of this structure is explained within our pair-pair interaction (PPI) model: The non-superconducting state consists of incoherent pairs, a 'Cooper-pair glass' which, due to the PPI, undergoes a Bose-like condensation below T c to the coherent SC state. We derive the equations of motion for the quasiparticle operators showing that the DOS 'peak-dip-hump' is caused by the coupling between quasiparticles and excited pair states, or 'super-quasiparticles'. The renormalized SC gap function becomes energy-dependent and non retarded, reproducing accurately the experimental spectra of both pnictides and cuprates, despite the large difference in gap value.
Gap length distributions by PEPR
International Nuclear Information System (INIS)
Warszawer, T.N.
1980-01-01
Conditions guaranteeing exponential gap length distributions are formulated and discussed. Exponential gap length distributions of bubble chamber tracks first obtained on a CRT device are presented. Distributions of resulting average gap lengths and their velocity dependence are discussed. (orig.)
Dual-sided microstructured semiconductor neutron detectors (DSMSNDs)
International Nuclear Information System (INIS)
Fronk, Ryan G.; Bellinger, Steven L.; Henson, Luke C.; Ochs, Taylor R.; Smith, Colten T.; Kenneth Shultis, J.; McGregor, Douglas S.
2015-01-01
Microstructured semiconductor neutron detectors (MSNDs) have in recent years received much interest as high-efficiency replacements for thin-film-coated thermal neutron detectors. The basic device structure of the MSND involves micro-sized trenches that are etched into a vertically-oriented pvn-junction diode that are backfilled with a neutron converting material. Neutrons absorbed within the converting material induce fission of the parent nucleus, producing a pair of energetic charged-particle reaction products that can be counted by the diode. The MSND deep-etched microstructures produce good neutron-absorption and reaction-product counting efficiencies, offering a 10× improvement in intrinsic thermal neutron detection efficiency over thin-film-coated devices. Performance of present-day MSNDs are nearing theoretical limits; streaming paths between the conversion-material backfilled trenches, allow a considerable fraction of neutrons to pass undetected through the device. Dual-sided microstructured semiconductor neutron detectors (DSMSNDs) have been developed that utilize a complementary second set of trenches on the back-side of the device to count streaming neutrons. DSMSND devices are theoretically capable of greater than 80% intrinsic thermal neutron detection efficiency for a 1-mm thick device. The first such prototype DSMSNDs, presented here, have achieved 29.48±0.29% nearly 2× better than MSNDs with similar microstructure dimensions.
The two-proton shell gap in Sn isotopes
International Nuclear Information System (INIS)
Fleischer, P.; Kluepfel, P.; Reinhard, P.-G.; Cornelius, T.; Schramm, S.; Maruhn, J.A.; Buervenich, T.J.
2004-01-01
We present an analysis of two-proton shell gaps in Sn isotopes. As theoretical tool we use self-consistent mean-field models, namely the relativistic mean-field model and the Skyrme-Hartree-Fock approach, both with two different pairing forces, a delta interaction (DI) model and a density-dependent delta interaction (DDDI). We investigate the influence of nuclear deformation as well as collective correlations and find that both effects contribute significantly. Moreover, we find a further significant dependence on the pairing force used. The inclusion of deformation plus correlation effects and the use of DDDI pairing provides agreement with the data. (orig.)
Rapid Cooling of the Neutron Star in Cassiopeia A Triggered by Neutron Superfluidity in Dense Matter
International Nuclear Information System (INIS)
Page, Dany; Prakash, Madappa; Lattimer, James M.; Steiner, Andrew W.
2011-01-01
We propose that the observed cooling of the neutron star in Cassiopeia A is due to enhanced neutrino emission from the recent onset of the breaking and formation of neutron Cooper pairs in the 3 P 2 channel. We find that the critical temperature for this superfluid transition is ≅0.5x10 9 K. The observed rapidity of the cooling implies that protons were already in a superconducting state with a larger critical temperature. This is the first direct evidence that superfluidity and superconductivity occur at supranuclear densities within neutron stars. Our prediction that this cooling will continue for several decades at the present rate can be tested by continuous monitoring of this neutron star.
Evidence for Consistency of the Glycation Gap in Diabetes
Nayak, Ananth U.; Holland, Martin R.; Macdonald, David R.; Nevill, Alan; Singh, Baldev M.
2011-01-01
OBJECTIVE Discordance between HbA1c and fructosamine estimations in the assessment of glycemia is often encountered. A number of mechanisms might explain such discordance, but whether it is consistent is uncertain. This study aims to coanalyze paired glycosylated hemoglobin (HbA1c)-fructosamine estimations by using fructosamine to determine a predicted HbA1c, to calculate a glycation gap (G-gap) and to determine whether the G-gap is consistent over time. RESEARCH DESIGN AND METHODS We include...
The TUNL neutron-neutron scattering length experiment
International Nuclear Information System (INIS)
Trotter, D.E.G.; Tornow, W.; Howell, C.R.
1995-01-01
Since an accurate value for the neutron-neutron (nn) scattering length a nn is of fundamental interest, its determination should not rely on one source of experimental information only. Besides the π d capture reaction, the nd breakup reaction has been the classical reaction used for determining a nn . However, none of the published values for a nn obtained from kinematically complete nd → n+n+p breakup data are based on a rigorous treatment of the three-nucleon continuum. In addition, the scale uncertainty associated with the existing nd breakup cross-section data in the region of the nn final-state interaction peak is too large to allow for a meaningful reanalysis. Therefore, a new kinematically complete nd breakup experiment is underway at TUNL at an incident neutron energy of 13 MeV. State-of-the-art three-nucleon continuum calculations will be used to analyze the data. In order to investigate the possible influence of three-nucleon force effects, a nn will be determined from data taken at four production angles of the nn pair between 20.5 degrees and 43 degrees (lab)
Occurrence of hyperson superfluidity in neutron star cores
International Nuclear Information System (INIS)
Takatsuka, Tatsuyuki; Nishizaki, Shigeru; Yamamoto, Yasuo; Tamagaki, Ryozo
2006-01-01
Superfluidity of Λ and Σ - admixed in neutron star (NS) cores is investigated realistically for hyperon (Y)-mixed NS models obtained using a G-matrix-based effective interaction approach. Numerical results for the equation of state (EOS) with the mixing ratios of the respective components and the hyperon energy gaps including the temperature dependence are presented. These are meant to serve as physical inputs for Y-cooling calculations of NSs. By paying attention to the uncertainties of the EOS and the YY interactions, it is shown that both Λ and Σ - are superfluid as soon as they appear although the magnitude of the critical temperature and the density region where superfluidity exists depend considerably on the YY pairing potential. Considering momentum triangle condition and the occurrence of superfluidity, it is found that a so-called hyperon cooling'' (neutrino-emission from direct Urca process including Y) combined with Y-superfluidity may be able to account for observations of the colder class of NSs. It is remarked that Λ-hyperons play a decisive role in the hyperon cooling scenario. Some comments are given regarding the consequences of the less attractive ΛΛ interaction recently suggested by the ''NAGARA event'' 6 ΛΛ He. (author)
A new neutron reflectometer at Australia's HIFAR research reactor
International Nuclear Information System (INIS)
James, M.; Nelson, A.; Schulz, J.C.; Jones, M.J.; Studer, A.J.; Hathaway, P.
2005-01-01
A new neutron reflectometer has been built at Australia's 10MW HIFAR research reactor. The X172 reflectometer operates in a monochromatic, angular dispersive mode collecting reflectivity data as a function of angle. The incident neutron beam is monochromated by a pair of pyrolytic graphite crystals (λ=2.43A) before being collimated using a pair of motorised sintered B 4 C slits. Detection of the reflected neutron beam is via a 10-atmosphere, helium-3, linear position sensitive detector. Examples of data collected using the X172 reflectometer at air-solid and solid-liquid interfaces are given. Neutron reflectivity values as low as 10 -5 have been measured on this instrument
The representation of neutron polarization
International Nuclear Information System (INIS)
Byrne, J.
1979-01-01
Neutron beam polarization representation is discussed under the headings; transfer matrices, coherent parity violation for neutrons, neutron spin rotation in helical magnetic fields, polarization and interference. (UK)
Pulsed neutron sources for epithermal neutrons
International Nuclear Information System (INIS)
Windsor, C.G.
1978-01-01
It is shown how accelerator based neutron sources, giving a fast neutron pulse of short duration compared to the neutron moderation time, promise to open up a new field of epithermal neutron scattering. The three principal methods of fast neutron production: electrons, protons and fission boosters will be compared. Pulsed reactors are less suitable for epithermal neutrons and will only be briefly mentioned. The design principle of the target producing fast neutrons, the moderator and reflector to slow them down to epithermal energies, and the cell with its beam tubes and shielding will all be described with examples taken from the new Harwell electron linac to be commissioned in 1978. A general comparison of pulsed neutron performance with reactors is fraught with difficulties but has been attempted. Calculation of the new pulsed source fluxes and pulse widths is now being performed but we have taken the practical course of basing all comparisons on extrapolations from measurements on the old 1958 Harwell electron linac. Comparisons for time-of-flight and crystal monochromator experiments show reactors to be at their best at long wavelengths, at coarse resolution, and for experiments needing a specific incident wavelength. Even existing pulsed sources are shown to compete with the high flux reactors in experiments where the hot neutron flux and the time-of-flight methods can be best exploited. The sources under construction can open a new field of inelastic neutron scattering based on energy transfer up to an electron volt and beyond
Role of pn-pairs in nuclear structure
International Nuclear Information System (INIS)
Nie, G.K.
2003-01-01
An α-cluster model of nuclear structure based on power of proton + neutron (pn)-pairs to bind themselves to α-clusters is proposed. The α-cluster is taken as the perfect condition of coupling of 2 pn- pairs, reminding complete electron shell in atomic physics. Pn-pairs create 2 other types of coupling of considerably less power between pn-pairs of nearby α-clusters ε α c and between pn-pair not bound into α-cluster with pn-pairs of nearby cluster ε pn c . Last two types of coupling are called covalent because of reminding similar electron coupling in chemistry. According the model nucleus is a liquid drop consisting of molecules, which are α-clusters, tied by covalent coupling with those ones which are in close vicinity. Then in case of even-even nuclei spin of the nucleus has to be zero I=0 + as sum of spinless particles. In case of nucleus has some nucleons (i) in intermolecular space, I=Σj i ; with taking into account that there is coupling of p and n in pn-pair. Therefore for 6 Li (1=0)I=2·1/2=1 + . The values ε α c , ε pn c and binding energy of the pn-pair itself ε pn have been estimated from analysis of binding energy of nuclei 6 Li, 10 B and 12 C. With the values the binding energy of the other nuclei with N=Z up to 58 Cu have been described with difference between experimental values and model ones in average less than 0.4 MeV. The structure reveals some regular forms, in which every cluster has reduced amount of covalent coupling, 3 or 4, and free pn-pair has 6 covalent coupling with 3 nearby clusters pn-pairs. Then the magic numbers are supposed to be the matter of geometry, when total amount of covalent couplings is optimal (minimal for the amount of clusters), α- clusters are placed in the same fixed distant from center of mass. It means that protons of the clusters can be considered as belonging to one shell. In the cluster model single particle effects have to be considered as single particle binding in one of the surface
Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.
2015-05-01
Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g (r ) inferred from neutron scattering measurements of the differential cross section d/σ d Ω from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.
International Nuclear Information System (INIS)
M.L. Johnson
2005-01-01
The purpose of this document is to review the existing SRTC design against the ''Nuclear Safety Design Bases for License Application'' (NSDB) [Ref. 10] requirements and to identify codes and standards and supplemental requirements to meet these requirements. If these codes and standards and supplemental requirements can not fully meet these safety requirements then a ''gap'' is identified. These gaps will be identified here and addressed using the ''Site Rail Transfer Cart (SRTC) Design Development Plan'' [Ref. 14]. The codes and standards, supplemental requirements, and design development requirements are provided in the SRTC and associated rails gap analysis table in Appendix A. Because SRTCs are credited with performing functions important to safety (ITS) in the NSDB [Ref. 10], design basis requirements are applicable to ensure equipment is available and performs required safety functions when needed. The gap analysis table is used to identify design objectives and provide a means to satisfy safety requirements. To ensure that the SRTC and rail design perform required safety Functions and meet performance criteria, this portion of the gap analysis table supplies codes and standards sections and the supplemental requirements and identifies design development requirements, if needed
Neutron generator ion source pulser
International Nuclear Information System (INIS)
Peelman, H.E.
1987-01-01
This patent describes, for use with a pulsed neutron generator in a logging tool lowered in a borehole, a pulsed high voltage source having an output terminal adapted to be connected to pulse neutron generator. The power supply comprises: (a) high voltage supply means; (b) field effect transistor means comprising at least a pair of field effect transistors serially connected between the high voltage supply means and ground; (c) an output terminal between the two transistors of the field effect transistor means, the output terminal adapted to be connected by a conductor to provide pulsed high voltage to a neutron generator; (d) control pulse forming means connected to the gates of the respective two transistors, the pulse forming means forming control pulses selectively switching the transistors off and on in timed sequence to thereby connect the output terminal to the high voltage supply means, and (e) diode means connected to the gates of the transistors to limit gate voltage for operation of the transistors
Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J
2015-09-11
A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n) 3 He and D(d,n) 3 He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9 Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.
Physical aspects on the neutron irradiation. 4. Dosimetry with ionization chamber
International Nuclear Information System (INIS)
Hiraoka, Takeshi; Takada, Masashi
2008-01-01
Absolute measurements of the absorbed dose for irradiation are generally made using ionization chambers, which should be calibrated by the standard radiation source. The neutron dose measurements are not simple since gamma rays always contaminate the neutron flux and a variety of charged particles are induced by neutrons. Following subjects are described: (1) The method by ICRU 45 to estimate total dose of neutrons and gamma ray, (2) The method to measure the neutron dose and the gamma ray dose separately using paired ionization-chambers, and (3) The calibration of ionization chambers. The stability of the standard ionization-chambers is also presented. (K.Y.)
Self-energy dispersion effects on neutron matter superfluidity
International Nuclear Information System (INIS)
Zuo Wei
2001-01-01
The effects of the dispersion and ground state correlation of the single particle self-energy on neutron matter superfluidity have been investigated in the framework of the Extended Brueckner-Hartree-Fock and the generalized BCS approaches. A sizable reduction of the energy gap is found due to the energy dependence of the self-energy. And the inclusion of the ground state correlations in the self-energy suppresses further the neutron matter superfluidity
Transportable, Low-Dose Active Fast-Neutron Imaging
Energy Technology Data Exchange (ETDEWEB)
Mihalczo, John T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wright, Michael C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McConchie, Seth M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Archer, Daniel E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Palles, Blake A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-08-01
This document contains a description of the method of transportable, low-dose active fast-neutron imaging as developed by ORNL. The discussion begins with the technique and instrumentation and continues with the image reconstruction and analysis. The analysis discussion includes an example of how a gap smaller than the neutron production spot size and detector size can be detected and characterized depending upon the measurement time.
Pairing induced superconductivity in holography
Bagrov, Andrey; Meszena, Balazs; Schalm, Koenraad
2014-09-01
We study pairing induced superconductivity in large N strongly coupled systems at finite density using holography. In the weakly coupled dual gravitational theory the mechanism is conventional BCS theory. An IR hard wall cut-off is included to ensure that we can controllably address the dynamics of a single confined Fermi surface. We address in detail the interplay between the scalar order parameter field and fermion pairing. Adding an explicitly dynamical scalar operator with the same quantum numbers as the fermion-pair, the theory experiences a BCS/BEC crossover controlled by the relative scaling dimensions. We find the novel result that this BCS/BEC crossover exposes resonances in the canonical expectation value of the scalar operator. This occurs not only when the scaling dimension is degenerate with the Cooper pair, but also with that of higher derivative paired operators. We speculate that a proper definition of the order parameter which takes mixing with these operators into account stays finite nevertheless.
DEFF Research Database (Denmark)
Hansen, Flemming Yssing; Carneiro, K.
1977-01-01
A simple numerical method, which unifies the calculation of structure factors from X-ray or neutron diffraction data with the calculation of reliable pair distribution functions, is described. The objective of the method is to eliminate systematic errors in the normalizations and corrections of t...
DEFF Research Database (Denmark)
Aviv, Abraham; Shay, Jerry; Christensen, Kaare
2005-01-01
In this Perspective, we focus on the greater longevity of women as compared with men. We propose that, like aging itself, the longevity gender gap is exceedingly complex and argue that it may arise from sex-related hormonal differences and from somatic cell selection that favors cells more...... resistant to the ravages of time. We discuss the interplay of these factors with telomere biology and oxidative stress and suggest that an explanation for the longevity gender gap may arise from a better understanding of the differences in telomere dynamics between men and women....
Multi-quasiparticle isomers near stability and reduced pairing
Energy Technology Data Exchange (ETDEWEB)
Dracoulis, G.D. [Australian National Univ., Canberra (Australia)
1996-12-31
The proximity of high-{Omega} orbitals near both proton and neutron Fermi surfaces in nuclei near Z = 74 and N = 104 results in high-K states competing with collective rotation of low-seniority configurations to generate the yrast line. In favorable situations it is possible to observe both the intrinsic states and associated rotational bands. The band properties allow characterization of the configurations and evaluation of orbital and seniority-dependent effects, including pairing reduction and consequent loss of nuclear superfluidity.
Development of pair distribution function analysis
International Nuclear Information System (INIS)
Vondreele, R.; Billinge, S.; Kwei, G.; Lawson, A.
1996-01-01
This is the final report of a 3-year LDRD project at LANL. It has become more and more evident that structural coherence in the CuO 2 planes of high-T c superconducting materials over some intermediate length scale (nm range) is important to superconductivity. In recent years, the pair distribution function (PDF) analysis of powder diffraction data has been developed for extracting structural information on these length scales. This project sought to expand and develop this technique, use it to analyze neutron powder diffraction data, and apply it to problems. In particular, interest is in the area of high-T c superconductors, although we planned to extend the study to the closely related perovskite ferroelectric materials andother materials where the local structure affects the properties where detailed knowledge of the local and intermediate range structure is important. In addition, we planned to carry out single crystal experiments to look for diffuse scattering. This information augments the information from the PDF
Energy Technology Data Exchange (ETDEWEB)
Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-11-01
Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10{sup 2} to 10{sup 3} times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)
Layered semiconductor neutron detectors
Mao, Samuel S; Perry, Dale L
2013-12-10
Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.
International Nuclear Information System (INIS)
Niimura, Nobuo
1997-01-01
Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10 2 to 10 3 times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)
International Nuclear Information System (INIS)
Ambardanishvili, T.S.; Kolomiitsev, M.A.; Zakharina, T.Y.; Dundua, V.J.; Chikhladze, N.V.
1973-01-01
The present invention concerns a neutron activation detector made from a moulded and hardened composition. According to the invention, that composition contains an activable substance constituted by at least two chemical elements and/or compounds of at least two chemical elements. Each of these chemical elements is capable of reacting with the neutrons forming radio-active isotopes with vatious levels of energy during desintegration. This neutron detector is mainly suitable for measuring integral thermal neutron and fast neutron fluxes during irradiation of the sample, and also for measuring the intensities of neutron fields [fr
International Nuclear Information System (INIS)
Frank, A.
1983-01-01
The history is briefly presented of the research so far of very slow neutrons and their basic properties are explained. The methods are described of obtaining very slow neutrons and the problems of their preservation are discussed. The existence of very slow neutrons makes it possible to perform experiments which may deepen the knowledge of the fundamental properties of neutrons. Their wavelength approximates that of visible radiation. The possibilities and use are discussed of neutron optical systems (neutron microscope) which could be an effective instrument for the study of the detailed arrangement, especially of organic substances. (B.S.)
International Nuclear Information System (INIS)
Najzer, M.; Pauko, M.; Glumac, B.; Acquah, I.N.; Moskon, F.
1977-01-01
An analysis of requirements and possibilities for experimental neutron spectrum determination during the reactor pressure vessel surveil lance programme is given. Fast neutron spectrum and neutron dose rate were measured in the Fast neutron irradiation facility of our TRIGA reactor. It was shown that the facility can be used for calibration of neutron dosimeters and for irradiation of samples sensitive to neutron radiation. The investigation of the unfolding algorithm ITER was continued. Based on this investigations are two specialized unfolding program packages ITERAD and ITERGS written this year. They are able to unfold data from activation detectors and NaI(T1) gamma spectrometer respectively
Neutrons individual monitoring: 18 years of experience
International Nuclear Information System (INIS)
Goncalves, Sergio Alves; Mauricio, Claudia Lucia de Pinho; Moura Junior, Jose; Martins, Marcelo Marques; Meira, Nilton Ferreira; Diz, Ricardo; Seda, Rosangela Pinto Guimaraes
2002-01-01
The Thermoluminescent Dosimetry Laboratory of the Departamento de Monitoracao Individual of the Instituto de Radioprotecao e Dosimetria (LDT/DEMIN/IRD) is the only one in Brazil that operates routinely a whole body external individual monitoring service for neutrons. An albedo type monitor is used with thermoluminescent detectors pairs of 6 LiF:Mg,Ti and 7 LiF:Mg,Ti, made by Harshaw/Bicron and named, respectively, TLD-600 and TLD-700. In its 18 years of activities, the laboratory has ever made a great effort to be continuously updated. Equipment and procedures have been updated and optimized in order to guarantee the quality of all measurements. Nowadays, the neutron individual monitoring service evaluates doses of about 300 workers occupationally exposed to neutrons in several facilities of different areas of Brazil. The system history and the results obtained by the service in international intercomparisons and in its routine monitoring are presented in this work. (author)
Small angle neutron scattering by polymer solutions
International Nuclear Information System (INIS)
Farnoux, B.; Jannink, G.
1980-08-01
Small angle neutron scattering is an experimental technique introduced since about 10 years for the observation of the polymer conformation in all the concentration range from dilute solution to the melt. After a brief recall of the elementary relations between scattering amplitude, index of refraction and scattered intensity, two concepts related to this last quantity (the contrast and the pair correlation function) are discussed in details
Accreting neutron stars by QFT
Chen, Shao-Guang
the negative charge from ionosphere electrons again rotate, thereby come into being the solar basal magnetic field. The solar surface plasma with additional electrons get the dynamic balance between the upwards force of stable positive charge distribution in the solar upside gas and the downwards force of the vacuum net nuν _{0} flux pressure (solar gravity). When the Jupiter enter into the connecting line of the Sun and the center of the Galaxy, the pressure (solar gravity) observed from earth will weaken because of the Jupiter stop (shield) the net nuν _{0} flux which shoot to Sun from the center of Galaxy. The dynamic balance of forces on the solar surface plasma at once is broken and the plasma will upwards eject as the solar wind with redundant negative charge. At the same time, the solar surface remain a cavity as a sunspot whorl with the positive electric potential relative to around plasma. The whorl is caused by the reaction of plasma eject front and upwards with the different velocity at different latitude of solar rotation, it leads to the cavity around in the downwards and backwards helix movement. The solar rotation more slow, when the cavity is filled by around plasma in the reverse turn direction and return to carry-over negative charge, the Jupiter at front had been produced a new cavity carry-over positive charge, so we had observe the sunspot pair with different whorl directions and different magnetic polarity. Jupiter possess half mass of all planets in solar system, its action to stop net nuν _{0} flux is primary, so that Jupiter’s period of 11.8 sidereal years accord basically with the period of sunspot eruptions. In my paper ‘Nonlinear superposition of strong gravitational field of compact stars’(E15-0039-08), according to QFT it is deduced that: let q is a positive shielding coefficient, 1- q show the gravity weaken degree, the earth (104 km) as a obstructing layer q = 4.6*10 (-10) . A spherical shell of neutron star as obstructing
Search for neutron emission during the electrolysis of heavy water
International Nuclear Information System (INIS)
Coelho, P.R.P.; Saxena, R.N.; Morato, S.P.; Goldman, I.D.; Pinho, A.G. de; Nascimento, I.C.
1990-03-01
A liquid scintillator detector NE 213 with pulse shape discrimination technique was used to observe neutrons during the electrolysis of heavy water with a palladium cathode. From the measured fore and background couting rates, a neutron emission rate of (8.2 ± 2.9) x 10 -3 n/(sec.g.) Pd was determined implying (2.9 ± 1.0) x 10 -24 fusions / [(dd pair).sec.] as compared to ≅ 10 -23 fusion/ [(dd pair).sec.] reported by Jones et al. using titanium electrode. (author) [pt
Neutron stochastic transport theory with delayed neutrons
International Nuclear Information System (INIS)
Munoz-Cobo, J.L.; Verdu, G.
1987-01-01
From the stochastic transport theory with delayed neutrons, the Boltzmann transport equation with delayed neutrons for the average flux emerges in a natural way without recourse to any approximation. From this theory a general expression is obtained for the Feynman Y-function when delayed neutrons are included. The single mode approximation for the particular case of a subcritical assembly is developed, and it is shown that Y-function reduces to the familiar expression quoted in many books, when delayed neutrons are not considered, and spatial and source effects are not included. (author)
Vacuum Outer-Gap Structure in Pulsar Outer Magnetospheres
International Nuclear Information System (INIS)
Gui-Fang, Lin; Li, Zhang
2009-01-01
We study the vacuum outer-gap structure in the outer magnetosphere of rotation-powered pulsars by considering the limit of trans-field height through a pair production process. In this case, the trans-field height is limited by the photon-photon pair production process and the outer boundary of the outer gap can be extended outside the light cylinder. By solving self-consistently the Poisson equation for electrical potential and the Boltzmann equations of electrons/positrons and γ-rays in a vacuum outer gap for the parameters of Vela pulsar, we obtain an approximate geometry of the outer gap, i.e. the trans-field height is limited by the pair-production process and increases with the radial distance to the star and the width of the outer gap starts at the inner boundary (near the null charge surface) and ends at the outer boundary which locates inside or outside the light cylinder depending on the inclination angle. (geophysics, astronomy, and astrophysics)
Nuclear scissors mode with pairing
International Nuclear Information System (INIS)
Balbutsev, E. B.; Malov, L. A.; Schuck, P.; Urban, M.; Vinas, X.
2008-01-01
The coupled dynamics of the scissors mode and the isovector giant quadrupole resonance are studied using a generalized Wigner function moments method, taking into account pair correlations. Equations of motion for angular momentum, quadrupole moment, and other relevant collective variables are derived on the basis of the time-dependent Hartree-Fock-Bogolyubov equations. Analytical expressions for energy centroids and transition probabilities are found for the harmonic-oscillator model with the quadrupole-quadrupole residual interaction and monopole pairing force. Deformation dependences of energies and B(M1) values are correctly reproduced. The inclusion of pair correlations leads to a drastic improvement in the description of qualitative and quantitative characteristics of the scissors mode.
Pairing mechanism in oxide superconductors
International Nuclear Information System (INIS)
Hirsch, J.E.
1988-01-01
A useful way to learn about the pairing mechanism that is responsible for high T c superconductivity is to study properties of model Hamiltonians on small systems. The goal is to find the simplest model that can describe the essential physics of high T c superconductivity. The authors have used Monte Carlo simulation and exact diagonalization techniques to study properties of systems of up to 64 sites. Their results show that spin fluctuations and other spin related mechanisms induced by a Hubbard on-site repulsion U are not likely to give rise to pairing, neither in one nor in multiple band models. In contrast, charge fluctuations in a model with both strong U and V (repulsion between Cu and O) are shown to give rise to pairing and it is suggested that this model provides a plausible mechanism for high T c superconductivity
Neutron Brillouin scattering in dense fluids
Energy Technology Data Exchange (ETDEWEB)
Verkerk, P [Technische Univ. Delft (Netherlands); FINGO Collaboration
1997-04-01
Thermal neutron scattering is a typical microscopic probe for investigating dynamics and structure in condensed matter. In contrast, light (Brillouin) scattering with its three orders of magnitude larger wavelength is a typical macroscopic probe. In a series of experiments using the improved small-angle facility of IN5 a significant step forward is made towards reducing the gap between the two. For the first time the transition from the conventional single line in the neutron spectrum scattered by a fluid to the Rayleigh-Brillouin triplet known from light-scattering experiments is clearly and unambiguously observed in the raw neutron data without applying any corrections. Results of these experiments are presented. (author).
Plasma driven neutron/gamma generator
Leung, Ka-Ngo; Antolak, Arlyn
2015-03-03
An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.
Reactor neutron activation analysis of industrial materials
International Nuclear Information System (INIS)
Niese, S.
1983-01-01
The specific application of neutron activation analysis (n.a.a.) for industrial materials is demonstrated by the determination of impurities in BeO, Al, Si, Cu, Ge, GaP, GaAs, steel, and irradiated uranium. A group scheme gives an orientation about the possibilities of n.a.a. The use of different standards, methods for the measurement of low radioactivities and errors caused by recoil reaction and radiation stimulated diffusion are discussed. (author)
Resistive plate chamber neutron and gamma sensitivity measurement with a {sup 252}Cf source
Energy Technology Data Exchange (ETDEWEB)
Abbrescia, M.; Altieri, S.; Baratti, V.; Barnaba, O.; Belli, G.; Bruno, G.; Colaleo, A.; DeVecchi, C.; Guida, R. E-mail: roberto.guida@pv.infn.it; Iaselli, G.; Imbres, E.; Loddo, F.; Maggi, M.; Marangelli, B.; Musitelli, G.; Nardo, R.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Ratti, S.; Riccardi, C.; Romano, F.; Torre, P.; Vicini, A.; Vitulo, P.; Volpe, F
2003-06-21
A bakelite double gap Resistive Plate Chamber (RPC), operating in avalanche mode, has been exposed to the radiation emitted from a {sup 252}Cf source to measure its neutron and gamma sensitivity. One of the two gaps underwent the traditional electrodes surface coating with linseed oil. RPC signals were triggered by fission events detected using BaF{sub 2} scintillators. A Monte Carlo code, inside the GEANT 3.21 framework with MICAP interface, has been used to identify the gamma and neutron contributions to the total number of collected RPC signals. A neutron sensitivity of (0.63{+-}0.02)x10{sup -3} (average energy 2 MeV) and a gamma sensitivity of (14.0{+-}0.5)x10{sup -3} (average energy 1.5 MeV) have been measured in double gap mode. Measurements done in single gap mode have shown that both neutron and gamma sensitivity are independent of the oiling treatment.
QCD pairing in primordial nuggets
Lugones, G.; Horvath, J. E.
2003-08-01
We analyze the problem of boiling and surface evaporation of quark nuggets in the cosmological quark-hadron transition. Recently, it has been shown that QCD pairing modifies the stability properties of strange quark matter. More specifically, strange quark matter in a color-flavor locked state was found to be absolutely stable for a much wider range of the parameters than ordinary unpaired strange quark matter (G. Lugones and J. E. Horvath, Phys. Rev. D, 66, 074017 (2002)). Assuming that primordial quark nuggets are actually formed we analyze the consequences of pairing on the rates of boiling and surface evaporation in order to determine whether they could have survived.
Exclusive electroproduction of pion pairs
International Nuclear Information System (INIS)
Warkentin, N.; Schaefer, A.; Diehl, M.; Ivanov, D. Yu.
2007-01-01
We investigate electroproduction of pion pairs on the nucleon in the framework of QCD factorization for hard exclusive processes. We extend previous analyses by taking the hard-scattering coefficients at next-to-leading order in α s . The dynamics of the produced pion pair is described by two-pion distribution amplitudes, for which we perform a detailed theoretical and phenomenological analysis. In particular, we obtain constraints on these quantities by comparing our results with measurements of angular observables that are sensitive to the interference between two-pion production in the isoscalar and isovector channels. (orig.)
Instantons in lepton pair production
International Nuclear Information System (INIS)
Brandenburg, A.; Ringwald, A.; Utermann, A.
2006-05-01
We consider QCD instanton-induced contributions to lepton pair production in hadron-hadron collisions. We relate these contributions to those known from deep inelastic scattering and demonstrate that they can be calculated reliably for sufficiently large momentum transfer. We observe that the instanton contribution to the angular distribution of the lepton pairs at finite momentum transfer strongly violates the Lam-Tung relation - a relation between coefficient functions of the angular distribution which is valid within the framework of ordinary perturbation theory. The drastic violation of this relation, as seen in experimental data, might be related to such instanton-induced effects. (Orig.)
International Nuclear Information System (INIS)
Adib, M.
2011-01-01
The purpose of filters is to transmit neutrons with selected energy, while remove unwanted ones from the incident neutron beam. This reduces the background, and the number of spurious. The types of commonly used now-a-day neutron filters and their properties are discussed in the present work. There are three major types of neutron filters. The first type is filter of selective thermal neutron. It transmits the main reflected neutrons from a crystal monochromate, while reject the higher order contaminations accompanying the main one. Beams coming from the moderator always contain unwanted radiation like fast neutrons and gamma-rays which contribute to experimental background and to the biological hazard potential. Such filter type is called filter of whole thermal neutron spectrum. The third filter type is it transmits neutrons with energies in the resonance energy range (En . 1 KeV). The main idea of such neutron filter technique is the use of large quantities of a certain material which have the deep interference minima in its total neutron cross-section. By transmitting reactor neutrons through bulk layer of such material, one can obtain the quasimonochromatic neutron lines instead of white reactor spectrum.
McDonald, Judith A.; Thornton, Robert J.
2011-01-01
Course research projects that use easy-to-access real-world data and that generate findings with which undergraduate students can readily identify are hard to find. The authors describe a project that requires students to estimate the current female-male earnings gap for new college graduates. The project also enables students to see to what…
Energy Technology Data Exchange (ETDEWEB)
Bacon, G.E. [Univ. of Sheffield (United Kingdom)
1994-12-31
The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone.
International Nuclear Information System (INIS)
Bacon, G.E.
1994-01-01
The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone
Basics of Neutrons for First Responders
Energy Technology Data Exchange (ETDEWEB)
Rees, Brian G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-02-05
These are slides from a presentation on the basics of neutrons. A few topics covered are: common origins of terrestrial neutron radiation, neutron sources, neutron energy, interactions, detecting neutrons, gammas from neutron interactions, neutron signatures in gamma-ray spectra, neutrons and NaI, neutron fluence to dose (msV), instruments' response to neutrons.
Neutron beam effects on spin-exchange-polarized 3He.
Sharma, M; Babcock, E; Andersen, K H; Barrón-Palos, L; Becker, M; Boag, S; Chen, W C; Chupp, T E; Danagoulian, A; Gentile, T R; Klein, A; Penttila, S; Petoukhov, A; Soldner, T; Tardiff, E R; Walker, T G; Wilburn, W S
2008-08-22
We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal spin-exchange-polarized 3He cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable 3He polarization and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at Los Alamos Neutron Science Center and Institute Laue-Langevin. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as sqrt[phi_{n}], where phi_{n} is the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the concentration of electron-ion pairs but is much larger than expected from earlier work.
Neutron radiography using neutron imaging plate
International Nuclear Information System (INIS)
Chankow, Nares; Wonglee, Sarinrat
2008-01-01
Full text: The aims of this research are to study properties of neutron imaging plate, to obtain a suitable condition for neutron radiography and to use the neutron imaging plate for testing of materials nondestructively. The experiments were carried out by using a neutron beam from the Thai Research Reactor TRR-1/M1 at a power of 1.2 MW. A BAS-ND 2040 FUJI neutron imaging plate and a MX125 Kodak X-ray film/Gadolinium neutron converter screen combination were tested for comparison. It was found that the photostimulated light (PSL) read out of the imaging plate was directly proportional to the exposure time. It was also found that radiography with neutron using the imaging plate was approximately 40 times faster than the conventional neutron radiography using x-ray film/Gd converter screen combination. The sensitivity of the imaging plate to gamma-rays was investigated by using gamma-rays from an 192 Ir and a 60 Co radiographic sources. The imaging plate was found to be 5-6 times less sensitive to gamma-rays than a FUJI BAS-MS 2040 gamma-ray imaging plate. Finally, some specimens were selected to be radiographed with neutrons using the imaging plate and the x-ray film/Gd converter screen combination in comparison to x-rays. Parts containing light elements could be clearly observed by the two neutron radiographic techniques. It could be concluded that the image quality from the neutron imaging plate was comparable to the conventional x-ray film/Gd converter screen combination but the exposure time could be approximately reduced by a factor of 40
Review of neutron data: 10 to 40 MeV
Energy Technology Data Exchange (ETDEWEB)
Haight, R.C.
1977-04-01
Neutron data are reviewed for incident neutron energies between 10 and 40 MeV. A census of the data shows that there are many gaps in this range and that the existing data are primarily for neutron energies around 14 MeV. Aside from total cross sections, there are few data between 10 and 13 MeV and between 15 and 40 MeV. Examples are presented to show the quality of selected data for total, elastic, inelastic, activation, and charged-particle and gamma-ray production cross sections. The spectra of emitted particles are also discussed.
Review of neutron data: 10 to 40 MeV
International Nuclear Information System (INIS)
Haight, R.C.
1977-04-01
Neutron data are reviewed for incident neutron energies between 10 and 40 MeV. A census of the data shows that there are many gaps in this range and that the existing data are primarily for neutron energies around 14 MeV. Aside from total cross sections, there are few data between 10 and 13 MeV and between 15 and 40 MeV. Examples are presented to show the quality of selected data for total, elastic, inelastic, activation, and charged-particle and gamma-ray production cross sections. The spectra of emitted particles are also discussed
Nuclear fission and neutron-induced fission cross-sections
James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E
2013-01-01
Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis
2009-05-01
Army training doctrine, and by adjusting the curriculum of the officer core in order to close the knowledge gap . The author closes by concluding...fight. The research to find these gaps begins with a process trace of doctrine from 1976 to the present, starting with the advent of Active Defense...discovering the one gap , three were found. Upon further examination below, even these initially perceived gaps dissipate under close scrutiny. Gap
The role of spatial organization in preference for color pairs.
Schloss, Karen B; Palmer, Stephen E
2011-01-01
We investigated how spatial organization influences color-pair preference asymmetries: differential preference for one color pair over another when the pairs contain the same colors in opposite spatial configurations. Schloss and Palmer (2011, Attention, Perception, & Psychophysics 73 55-571) found weak figure ground preference asymmetries for small squares centered on large squares in aesthetic ratings. Here, we found robust preference asymmetries using a more sensitive forced-choice task: participants strongly prefer pairs with yellower, lighter figures on bluer, darker grounds (experiment 1). We also investigated which spatial factors influence these preference asymmetries. Relative area of the two component regions is clearly important, and perceived 3-D area of the 2-D displays (ie after the ground is amodally completed behind the figure) is more influential than 2-D area (experiment 2). Surroundedness is not required, because yellowness blueness effects were comparable for pairs in which the figure was surrounded by the ground, and for mosaic arrangements in which the regions were adjacent and separated by a gap (experiment 3). Lightness darkness effects, however, were opposite for figure ground versus mosaic organizations: people prefer figure-ground organizations in which smaller regions are lighter, but prefer mosaic organizations in which smaller regions are darker. Physiological, phenomenological, and ecological explanations of the reported results are discussed.
Importance of interlayer pair tunneling: A variational perspective
International Nuclear Information System (INIS)
Medhi, Amal; Basu, Saurabh
2011-01-01
We study the effect of interlayer pair tunneling in a bilayer superconductor where each layer is described by a two dimensional t-J model and the two layers are connected by the Josephson pair tunneling term. We study this model using a grand canonical variational Monte Carlo (GVMC) method, for which we develop a new algorithm to perform Monte Carlo simulation of a system with fluctuating particle number. The variational wavefunction is taken to be the product of two Gutzwiller projected d-wave BCS wavefunctions with variable particle densities, one for each layer. We calculate the energy of the above state as a function of the d-wave superconducting gap parameter, Δ. We find that the interlayer pair tunneling energy, E perpendicular shows interesting variation with Δ. E perpendicular tends to enhance the optimal value of Δ, thereby the superconducting pairing. However the magnitude of the tunneling energy is found to be too small to have any appreciable effect on the physical properties. While the result is supported by early experiments and hence may appear known to the community, the current work presents a new approach to the problem and confirms the diminished role of interlayer pair tunneling by directly calculating its contribution to superconducting condensation energy.
Two-component Superfluid Hydrodynamics of Neutron Star Cores
Energy Technology Data Exchange (ETDEWEB)
Kobyakov, D. N. [Institute of Applied Physics of the Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); Pethick, C. J., E-mail: dmitry.kobyakov@appl.sci-nnov.ru, E-mail: pethick@nbi.dk [The Niels Bohr International Academy, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)
2017-02-20
We consider the hydrodynamics of the outer core of a neutron star under conditions when both neutrons and protons are superfluid. Starting from the equation of motion for the phases of the wave functions of the condensates of neutron pairs and proton pairs, we derive the generalization of the Euler equation for a one-component fluid. These equations are supplemented by the conditions for conservation of neutron number and proton number. Of particular interest is the effect of entrainment, the fact that the current of one nucleon species depends on the momenta per nucleon of both condensates. We find that the nonlinear terms in the Euler-like equation contain contributions that have not always been taken into account in previous applications of superfluid hydrodynamics. We apply the formalism to determine the frequency of oscillations about a state with stationary condensates and states with a spatially uniform counterflow of neutrons and protons. The velocities of the coupled sound-like modes of neutrons and protons are calculated from properties of uniform neutron star matter evaluated on the basis of chiral effective field theory. We also derive the condition for the two-stream instability to occur.
Development of new neutron spin echo spectrometer using multi-layer film spin splitter
International Nuclear Information System (INIS)
Tasaki, Seiji; Ebisawa, Toru; Hino, Masahiro; Achiwa, Norio
2001-01-01
Neutron spin echo spectrometry is a method using neutron Larmor precession motion in magnetic field, for the measurement of velocity change before and after quasi-elastic scattering of neutron by a sample, such as macromolecules, with high accuracy. The neutron spin echo spectrometer is an interferometer in quantum mechanics, which a neutron is arranged with a parallel or an antiparallel state against magnetic field direction. Intensities of neutron interaction with matters are measured by the superposition of the both spin state components. The contrast losses of interference fringes caused from velocity diversion of incident neutrons are protected by spin echo method, in which a phase shift between the parallel and anti-parallel state neutrons is reduced by reversion of the spin state on the way of neutron path. Neutron beam of high intensity can be measured with a high energy resolution. Strong magnetic field is usually needed to introduce the phase shift between the both spin state components. A multi-layer film spin splitter (MSS) is developed for introducing the phase shift instead of the strong magnetic fields. The MSS consists of three layers, non-magnetic mirror of Ni/Ti, gap layer of Ti (∼1 μm), and magnetic mirror of Permalloy/Ge. Surface roughness of the gap layer leads to diversions of the phase shift, because that the fluctuation of thickness of gap layer is proportional to the phase shift. Characteristics of the MSS are tested as follow: (1) reflectivity of polarized neutron, (2) function check of the MSS, (3) uniformity check of the gap layer, (4) evaluation of the gap layer-thickness. (Suetake, M.)
Development of compact D-D neutron generator
International Nuclear Information System (INIS)
Das, Basanta Kumar; Das, Rashmita; Shyam, Anurag
2011-12-01
In recent years, due to specific features of compact neutron generators, their demand in elemental analysis and detection of the illicit materials has been increased in scientific community. Compact is size, controlled operation and radiation safety like features of neutron generator is suitable for research work with illicit materials. An accelerator based neutron generator can be operated in steady mode as well as in pulse mode. The main embodiment of this type of generator includes ion source, ion acceleration system and target. We are developing such type of neutron generator. This consists of one-in-house developed penning ion source, a single electrode acceleration gap and one deuterated titanium target or virgin titanium target. In this report, we will discuss various physics and technical issues related to the important components of this generator, operation of the generator and neutron detection. (author)
Development of a compact D-D neutron generator
Huang, Z.-W.; Wang, J.-R.; Wei, Z.; Lu, X.-L.; Ma, Z.-W.; Ran, J.-L.; Zhang, Z.-M.; Yao, Z.-E.; Zhang, Y.
2018-01-01
A compact D-D neutron generator was developed at Lanzhou University, China. A duoplasmatron ion source was used to produce a higher-current deuteron beam. The deuteron beam could be accelerated up to 150 keV by a single accelerating gap, and bombarded on a pure molybdenum drive-in target to produce D-D fast neutron. A bias voltage between the target and the extraction-accelerating electrode was produced by a resistance to suppress the secondary electron from the target. The neutron generator has been operated for several hundred hours, and the performances were investigated. The available range of the deuteron beam current was 1.0-4.0 mA. EJ410 scintillator detector system was used to measure the fast neutron yields. D-D neutron yield could reach 2.48×108 n/s under the deuteron beam of 3 mA and 150 keV.
International Nuclear Information System (INIS)
Walter, L.
1983-01-01
Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)
Neutron delayed choice experiments
International Nuclear Information System (INIS)
Bernstein, H.J.
1986-01-01
Delayed choice experiments for neutrons can help extend the interpretation of quantum mechanical phenomena. They may also rule out alternative explanations which static interference experiments allow. A simple example of a feasible neutron test is presented and discussed. (orig.)
International Nuclear Information System (INIS)
1986-01-01
For all stable and experimentally studied radionuclides evaluated data are presented on cross sections of thermal neutrons, on resonance integrals and medium neutron cross sections with energy of 30 KeV. Refs, figs and tabs
Neutron radiography in metallurgy
International Nuclear Information System (INIS)
Rant, J.; Ilic, R.
1977-01-01
The review surveys microneutronographic and neutron-induced autoradiographic techniques and their applications in metallurgy. A brief survey of applications of neutron radiography as a method of non-destructive testing to some macroscopic problems in metallurgy is included. (author)
Guanidinium Pairing Facilitates Membrane Translocation
Czech Academy of Sciences Publication Activity Database
Allolio, Christoph; Baxová, Katarína; Vazdar, M.; Jungwirth, Pavel
2016-01-01
Roč. 120, č. 1 (2016), s. 143-153 ISSN 1520-6106 R&D Projects: GA ČR GA13-06181S Institutional support: RVO:61388963 Keywords : ab initio molecular dynamics * guanidinium * like charge pairing * membrane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.177, year: 2016
Pairing Linguistic and Music Intelligences
DiEdwardo, MaryAnn Pasda
2005-01-01
This article describes how music in the language classroom setting can be a catalyst for developing reading, writing, and understanding skills. Studies suggest that pairing music and linguistic intelligences in the college classroom improves students' grades and abilities to compose theses statements for research papers in courses that emphasize…
Conjugal Pairing in Escherichia Coli
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 8. Conjugal Pairing in Escherichia Coli. Joshua Lederberg. Classics Volume 13 Issue 8 August 2008 pp 793-794. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/013/08/0793-0794 ...
DEFF Research Database (Denmark)
Martinez Peñas, Umberto; Pellikaan, Ruud
2017-01-01
Error-correcting pairs were introduced as a general method of decoding linear codes with respect to the Hamming metric using coordinatewise products of vectors, and are used for many well-known families of codes. In this paper, we define new types of vector products, extending the coordinatewise ...
'Leonard pairs' in classical mechanics
International Nuclear Information System (INIS)
Zhedanov, Alexei; Korovnichenko, Alyona
2002-01-01
Leonard pairs (LP) are matrices with the property of mutual tri-diagonality. We introduce and study a classical analogue of LP. We show that corresponding classical 'Leonard' dynamical variables satisfy non-linear relations of the AW-type with respect to Poisson brackets. (author)
Critical opalescence of neutrons in nonuniform liquid in the gravitation field
International Nuclear Information System (INIS)
Sugakov, V.I.; Chalyj, A.V.; Chernenko, L.M.
1991-01-01
Single elastic scattering of neutrons has been investigated in a liquid near the critical point. Double differential cross sections of neutron scattering are obtained in such a system with allowance for the gravitational effect and in various approximation for the pair correlation function of density fluctuations
Effects of strangeness on the mass-radius of neutron stars in MQMC
International Nuclear Information System (INIS)
Sahoo, H.S.; Mishra, R.N.; Panda, P.K.; Barik, N.
2017-01-01
With the increase of baryon density towards centers of neutron stars, chemical potentials of neutrons become high so that neutrons at Fermi surfaces are changed to hyperons via strangeness non-conserving weak interactions overcoming rest masses of hyperons. In the present attempt we incorporate an additional pair of hidden strange mesons σ∗ and ϕ which couple only to the strange quark and the hyperons of the nuclear matter
Interference Correlations of Hyperons in Neutron-Carbon Interactions
Aleev, A N; Balandin, V P; Bulekov, O V; Eremin, S V; Geshkov, I M; Goudzovski, E A; Grigalashvili, T S; Guriev D K; Ivanchenko, I M; Ivanchenko, Z M; Kekelidze, V D; Khristov, P Z; Kopadze, M V; Kosarev, I G; Kozhenkova, Z I; Kuzmin, N A; Kvatadze, R A; Ljubimov, A L; Loktionov, A A; Lomidze, N L; Madigozhin, D T; Maznyj, V G; Mitsyn, V V; Molokanova, N A; Morozov, A N; Pismenyj, R E; Polenkevich, I A; Ponosov, A K; Ponta, T; Potrebenikov, Yu K; Sergeev, F M; Slepets, L A; Spaskov, V N; Zinchenko, A I
2003-01-01
The interference correlations of \\Lambda-hyperon pairs produced on the carbon target by 20-70 GeV neutrons have been investigated with the EXCHARM spectrometer. Destructive correlations at low relative 4-momenta are observed for \\Lambda\\Lambda-pairs. No correlations of this type are observed for \\Lambda\\bar{\\Lambda}. Comparison with the corresponding data on meson correlations shows a decrease of production area sizes with an increase of particle masses.
Electromagnetic and Radiative Properties of Neutron Star Magnetospheres
Li, Jason G.
2014-05-01
Magnetospheres of neutron stars are commonly modeled as either devoid of plasma in "vacuum'' models or filled with perfectly conducting plasma with negligible inertia in "force-free'' models. While numerically tractable, neither of these idealized limits can simultaneously account for both the plasma currents and the accelerating electric fields that are needed to explain the morphology and spectra of high-energy emission from pulsars. In this work we improve upon these models by considering the structure of magnetospheres filled with resistive plasma. We formulate Ohm's Law in the minimal velocity fluid frame and implement a time-dependent numerical code to construct a family of resistive solutions that smoothly bridges the gap between the vacuum and force-free magnetosphere solutions. We further apply our method to create a self-consistent model for the recently discovered intermittent pulsars that switch between two distinct states: an "on'', radio-loud state, and an "off'', radio-quiet state with lower spin-down luminosity. Essentially, we allow plasma to leak off open field lines in the absence of pair production in the "off'' state, reproducing observed differences in spin-down rates. Next, we examine models in which the high-energy emission from gamma-ray pulsars comes from reconnecting current sheets and layers near and beyond the light cylinder. The reconnected magnetic field provides a reservoir of energy that heats particles and can power high-energy synchrotron radiation. Emitting particles confined to the sheet naturally result in a strong caustic on the skymap and double peaked light curves for a broad range of observer angles. Interpulse bridge emission likely arises from interior to the light cylinder, along last open field lines that traverse the space between the polar caps and the current sheet. Finally, we apply our code to solve for the magnetospheric structure of merging neutron star binaries. We find that the scaling of electromagnetic
Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity
International Nuclear Information System (INIS)
Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori
2016-01-01
Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.
Applications of neutron irradiation
International Nuclear Information System (INIS)
Ito, Yasuo
1999-01-01
The present state of art of applications of neutron irradiation is overviewed taking neutron activation analysis, prompt gamma-ray analysis, fission/alpha track methods, boron neutron capture therapy as examples. What is common among them is that the technologies are nearly matured for wide use by non- nuclear scientists. But the environment around research reactors is not prospective. These applications should be encouraged by incorporating in the neutron science society. (author)
International Nuclear Information System (INIS)
Kuplenikov, Eh.L.; Dovbnya, A.N.; Telegin, Yu.N.; Tsymbal, V.A.; Kandybej, S.S.
2011-01-01
It was given the analysis and generalization of the study results carried out during some decades in many world countries on application of thermal, epithermal and fast neutrons for neutron, gamma-neutron and neutron-capture therapy. The main attention is focused on the practical application possibility of the accumulated experience for the base creation for medical research and the cancer patients effective treatment.
Polarimetric neutron scattering
International Nuclear Information System (INIS)
Tasset, F.
2001-01-01
Polarimetric Neutron Scattering in introduced, both by, explaining methodological issues and the corresponding instrumental developments. After a short overview of neutron spin polarization and the neutron polarization 3d-vector a pictorial approach of the microscopic theory is used to show how a polarized beam interacts with lattice and magnetic Fourier components in a crystal. Examples are given of using Spherical Neutron Polarimetry (SNP) and the corresponding Cryopad polarimeter for the investigation of non-collinear magnetic structures. (R.P.)
International Nuclear Information System (INIS)
Aksenov, V.L.
1994-01-01
The present status and the prospects for development of reactor neutron sources for neutron scattering research in the world are considered. The fields of application of neutron scattering relative to synchrotron radiation, the creation stages of reactors (steady state and pulsed) and their position in comparison with spallation neutron sources at present and in the foreseen future are discussed. (author). 15 refs.; 8 figs.; 3 tabs
International Nuclear Information System (INIS)
1987-03-01
The Conference presentations were divided into sessions devoted to the following topics: white neutron sources, primarily pulsed (6 papers); fast neutron fields (5 papers); Californium-252 prompt fission neutron spectra (14 papers); monoenergetic sources and filtered beams (11 papers); 14 MeV neutron sources (10 papers); selected special application (one paper); and a general interest session (4 papers). Individual abstracts were prepared separately for the papers
Intense fusion neutron sources
International Nuclear Information System (INIS)
Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.
2010-01-01
The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10 15 -10 21 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10 20 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.
Intense fusion neutron sources
Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.
2010-04-01
The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.
Polarized neutron spectrometer
International Nuclear Information System (INIS)
Abov, Yu.G.; Novitskij, V.V.; Alfimenkov, V.P.; Galinskij, E.M.; Mareev, Yu.D.; Pikel'ner, L.B.; Chernikov, A.N.; Lason', L.; Tsulaya, V.M.; Tsulaya, M.I.
2000-01-01
The polarized neutron spectrometer, intended for studying the interaction of polarized neutrons with nuclei and condensed media in the area of energies from thermal up to several electron-volt, is developed at the IBR-2 reactor (JINR, Dubna). Diffraction on the Co(92%)-Fe(8%) magnetized monocrystals is used for the neutron polarization and polarization analysis. The neutron polarization within the whole energy range equals ∼ 95% [ru
Cooper-pair size and binding energy for unconventional superconducting systems
Dinóla Neto, F.; Neto, Minos A.; Salmon, Octavio D. Rodriguez
2018-06-01
The main proposal of this paper is to analyze the size of the Cooper pairs composed by unbalanced mass fermions from different electronic bands along the BCS-BEC crossover and study the binding energy of the pairs. We are considering an interaction between fermions with different masses leading to an inter-band pairing. In addiction to the attractive interaction we have an hybridization term to couple both bands, which in general acts unfavorable for the pairing between the electrons. We get first order phase transitions as the hybridization breaks the Cooper pairs for the s-wave symmetry of the gap amplitude. The results show the dependence of the Cooper-pair size as a function of the hybridization for T = 0 . We also propose the structure of the binding energy of the inter-band system as a function of the two-bands quasi-particle energies.
Isotopic neutron sources for neutron activation analysis
International Nuclear Information System (INIS)
Hoste, J.
1988-06-01
This User's Manual is an attempt to provide for teaching and training purposes, a series of well thought out demonstrative experiments in neutron activation analysis based on the utilization of an isotopic neutron source. In some cases, these ideas can be applied to solve practical analytical problems. 19 refs, figs and tabs
Workshop on polarized neutron filters and polarized pulsed neutron experiments
International Nuclear Information System (INIS)
Itoh, Shinichi
2004-07-01
The workshop was held in KEK by thirty-three participants on April 26, 2004. The polarized neutron filter method was only discussed. It consists of three parts; the first part was discussed on the polarized neutron methods, the second part on the polarized neutron experiments and the third on the pulse neutron spectrometer and polarized neutron experiments. The six papers were presented such as the polarized 3 He neutron spin filter, neutron polarization by proton polarized filter, soft master and neutron scattering, polarized neutron in solid physics, polarization experiments by chopper spectroscope and neutron polarization system in superHRPD. (S.Y.)
A transcript finishing initiative for closing gaps in the human transcriptome
DEFF Research Database (Denmark)
Sogayar, Mari Cleide; Camargo, Anamaria A; Bettoni, Fabiana
2004-01-01
We report the results of a transcript finishing initiative, undertaken for the purpose of identifying and characterizing novel human transcripts, in which RT-PCR was used to bridge gaps between paired EST clusters, mapped against the genomic sequence. Each pair of EST clusters selected...
Directory of Open Access Journals (Sweden)
Sergei Kuchin
2011-03-01
Full Text Available Explaining base pairing is an important element in teaching undergraduate genetics. I propose a teaching approach that aims to close the gap between the mantra “A pairs with T, and G pairs with C” and the “intimidating” chemical diagrams. The approach offers a set of simple “shorthands” for the key bases that can be used to quickly deduce all canonical and wobble pairs that the students need to know. The approach can be further developed to analyze mutagenic mismatch pairing.
Scanning tunneling spectroscopy on neutron irradiated MgB2 thin films
International Nuclear Information System (INIS)
Di Capua, Roberto; Salluzzo, Marco; Vaglio, Ruggero; Ferdeghini, Carlo; Ferrando, Valeria; Putti, Marina; Xi Xiaoxing; Aebersold, Hans U.
2007-01-01
Neutron irradiation was performed on MgB 2 thin films grown by hybrid physical chemical vapor deposition. Samples irradiated with different neutron fluences, having different critical temperatures, were studied by scanning tunneling spectroscopy in order to investigate the effect of the introduced disorder on the superconducting and spectroscopic properties. A monotonic increase of the π gap with increasing disorder was found
Scanning tunneling spectroscopy on neutron irradiated MgB{sub 2} thin films
Energy Technology Data Exchange (ETDEWEB)
Di Capua, Roberto [University of Napoli and CNR-INFM/Coherentia, Via Cinthia, Naples I-80126 (Italy)], E-mail: rdicapua@na.infn.it; Salluzzo, Marco; Vaglio, Ruggero [University of Napoli and CNR-INFM/Coherentia, Via Cinthia, Naples I-80126 (Italy); Ferdeghini, Carlo [CNR-INFM/LAMIA, Via Dodecaneso 33, Genova I-16146 (Italy); Ferrando, Valeria [CNR-INFM/LAMIA, Via Dodecaneso 33, Genova I-16146 (Italy); Pennsylvania State University, University Park, PA 16802 (United States); Putti, Marina [CNR-INFM/LAMIA, Via Dodecaneso 33, Genova I-16146 (Italy); Xi Xiaoxing [Pennsylvania State University, University Park, PA 16802 (United States); Aebersold, Hans U. [Paul Scherrer Institut, Villigen CH-5232 (Switzerland)
2007-09-01
Neutron irradiation was performed on MgB{sub 2} thin films grown by hybrid physical chemical vapor deposition. Samples irradiated with different neutron fluences, having different critical temperatures, were studied by scanning tunneling spectroscopy in order to investigate the effect of the introduced disorder on the superconducting and spectroscopic properties. A monotonic increase of the {pi} gap with increasing disorder was found.
International Nuclear Information System (INIS)
Fraser, J.S.; Bartholomew, G.A.
1983-01-01
The principles and theory of spallation neutron sources are outlined and a comparison is given with other types of neutron source. A summary of the available accelerator types for spallation neutron sources and their advantages and disadvantages is presented. Suitable target materials are discussed for specific applications, and typical target assemblies shown. (U.K.)
Shielded regenerative neutron detector
International Nuclear Information System (INIS)
Terhune, J.H.; Neissel, J.P.
1978-01-01
An ion chamber type neutron detector is disclosed which has a greatly extended lifespan. The detector includes a fission chamber containing a mixture of active and breeding material and a neutron shielding material. The breeding and shielding materials are selected to have similar or substantially matching neutron capture cross-sections so that their individual effects on increased detector life are mutually enhanced
Prototype Neutron Energy Spectrometer
International Nuclear Information System (INIS)
Mitchell, Stephen; Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald
2010-01-01
The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production (ship effect), (a, n) reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.
Prototype Neutron Energy Spectrometer
Energy Technology Data Exchange (ETDEWEB)
Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff
2010-06-16
The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.
International Nuclear Information System (INIS)
Satya Murthy, N.S.; Madhava Rao, L.
1984-01-01
The basic principle for the production of polarised thermal neutrons is discussed and the choice of various crystal monochromators surveyed. Brief mention of broad-spectrum polarisers is made. The application of polarised neutrons to the study of magnetisation density distributions in magnetic crystals, the dynamic concept of polarisation, principle and use of polarisation analysis, the neutron spin-echo technique are discussed. (author)
International Nuclear Information System (INIS)
Deslattes, R.; Dombeck, T.; Greene, G.; Ramsey, N.; Rauch, H.; Werner, S.
1984-01-01
Fundamental physics experiments of merit can be conducted at the proposed intense neutron sources. Areas of interest include: neutron particle properties, neutron wave properties, and fundamental physics utilizing reactor produced γ-rays. Such experiments require intense, full-time utilization of a beam station for periods ranging from several months to a year or more
Neutron detection and radiography
International Nuclear Information System (INIS)
Bollen, R.H.; Van Esch, R.F.
1975-01-01
An improved method of recording neutron images is described which comprises imagewise irradiating with neutrons an intensifying screen containing a gadolinium compound that fluoresces when struck by x-rays and subjecting the fluorescent light pattern resulting from the impact of the neutrons on the screen onto a photographic material. (auth)
Home Page | Facilities | Reference | Software | Conferences | Announcements | Mailing Lists Neutron Scattering Banner Neutron Scattering Software A new portal for neutron scattering has just been established sets KUPLOT: data plotting and fitting software ILL/TAS: Matlab probrams for analyzing triple axis data
International Neutron Radiography Newsletter
DEFF Research Database (Denmark)
Domanus, Joseph Czeslaw
1986-01-01
At the First World Conference on Neutron Radiography i t was decided to continue the "Neutron Radiography Newsletter", published previously by J.P. Barton, as the "International Neutron Radiography Newsletter" (INRNL), with J.C. Doraanus as editor. The British Journal of Non-Destructive Testing...
Roessli, B.; Böni, P.
2000-01-01
The technique of polarized neutron scattering is reviewed with emphasis on applications. Many examples of the usefulness of the method in various fields of physics are given like the determination of spin density maps, measurement of complex magnetic structures with spherical neutron polarimetry, inelastic neutron scattering and separation of coherent and incoherent scattering with help of the generalized XYZ method.
Czech Academy of Sciences Publication Activity Database
Mikula, Pavol; Vrána, Miroslav; Šaroun, Jan; Em, V.; Seong, B. S.
2012-01-01
Roč. 340, 012015 (2012), s. 1-5 ISSN 1742-6588. [5th European Conference on Neutron Scattering. Praha, 17.07.2011-21.07.2011] R&D Projects: GA ČR GAP204/10/0654 EU Projects: European Commission(XE) 226507 - NMI3 Institutional support: RVO:61389005 Keywords : neutron diffraction * bragg reflection * neutron beam Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders
Streaming through the gaps around divertor pipings in ITER
International Nuclear Information System (INIS)
Sato, Satoshi; Seki, Yasushi; Takatsu, Hideyuki; Mori, Seiji; Zimin, S.; Maki, Koichi; Kuroda, Toshimasa.
1993-03-01
Neutron and gamma ray streaming through the annular gap around divertor piping in International Thermonuclear Experimental Reactor (ITER) was investigated. A stepwise gap is proposed near the midpoint of the annular gap in order to reduce the dose rate at the upper port. The optimal step position and width to satisfy the design limit of dose rates were examined. From these studies, the following results were obtained. (1) In case of the straight annular 1 cm wide gap around cooling pipes through the 3 m thick shield, dose rate at the upper port in a day after shutdown is about 4 orders larger than the reference value of 25 μSv/h (2.5 mrem/h) for the biological shielding design. But by providing a step structure with the offset ratio of 2.2 times of the gap width at the midpoint of the shield, the dose rate can be evaluated as low as 1/20 of the biological shielding value 2.5 μSv/h (0.25 mrem/h) including a safety factor of 10 for the reference value. It satisfies the requirement of the shielding design. (2) The optimal step position to minimize the dose rate at the upper port is the midpoint of the shield. (3) The dose rates are not further more reduced even if the offset width is set more than twice of the gap width, and the offset width of twice the gap width is recommended. (author)
Wilders, R.; Jongsma, H. J.
1992-01-01
The electrical properties of gap junctions in cell pairs are usually studied by means of the dual voltage clamp method. The voltage across the junctional channels, however, cannot be controlled adequately due to an artificial resistance and a natural resistance, both connected in series with the gap
Gluon saturation: Survival probability for leading neutrons in DIS
International Nuclear Information System (INIS)
Levin, Eugene; Tapia, Sebastian
2012-01-01
In this paper we discuss the example of one rapidity gap process: the inclusive cross sections of the leading neutrons in deep inelastic scattering with protons (DIS). The equations for this process are proposed and solved, giving the example of theoretical calculation of the survival probability for one rapidity gap processes. It turns out that the value of the survival probability is small and it decreases with energy.
DEFF Research Database (Denmark)
Schmidt, Kjeld; Simone, Carla
2000-01-01
CSCW at large seems to be pursuing two diverging strategies: on one hand a strategy aiming at coordination technologies that reduce the complexity of coordinating cooperative activities by regulating the coordinative interactions, and on the other hand a strategy that aims at radically flexible m...... and blended in the course of real world cooperative activities. On the basis of this discussion the paper outlines an approach which may help CSCW research to bridge this gap....... means of interaction which do not regulate interaction but rather leave it to the users to cope with the complexity of coordinating their activities. As both strategies reflect genuine requirements, we need to address the issue of how the gap can be bridged, that is, how the two strategies can...
International Nuclear Information System (INIS)
Moxon, Suzanne
1999-01-01
The problem of fish going through turbines at hydroelectric power plants and the growing concern over the survival rate of salmon at the US Army Corps operated Bonneville lock and dam on the Columbia river in the Pacific Northwest is discussed. The protection of the fish, the assessment of the hazards facing fish passing through turbines, the development of a new turbine, and improved turbine efficiency that reduces cavitation, turbulence and shear flow are examined. The closing of the gap between the turbine blades, hub and discharge ring to increase efficiency and reduce the risk to fish, and the development of the minimum gap runner (MGR) are described, and the lower maximum permitted power output of MGR is noted. (UK)
Neutrino Processes in Neutron Stars
Directory of Open Access Journals (Sweden)
Kolomeitsev E.E.
2010-10-01
Full Text Available The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modiﬁcations due to collective eﬀects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these ﬁndings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities. The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most eﬃcient one-nucleon and two-nucleon processes. No medium eﬀects are taken into account in this instance. The eﬀects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium eﬀects. It motivates an assumption that masses of the neutron stars are diﬀerent and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all oﬀ-mass-shell eﬀects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong
Gender gap in entrepreneurship
Startienė, Gražina; Remeikienė, Rita
2008-01-01
The article considers a significant global issue - gender gap starting and developing own business. The field of business was for a long time reserved to men, thus, despite of an increasing number of female entrepreneurs during last decade, the number of female entrepreneurs in Europe, including Lithuania, remains lower than the one of male entrepreneurs. According to the data of various statistical sources, an average ratio of enterprises newly established by men and women in EU countries is...
Fairbanks, Terry; Savage, Erica; Adams, Katie; Wittie, Michael; Boone, Edna; Hayden, Andrew; Barnes, Janey; Hettinger, Zach; Gettinger, Andrew
2016-01-01
Summary Objective Decisions made during electronic health record (EHR) implementations profoundly affect usability and safety. This study aims to identify gaps between the current literature and key stakeholders’ perceptions of usability and safety practices and the challenges encountered during the implementation of EHRs. Materials and Methods Two approaches were used: a literature review and interviews with key stakeholders. We performed a systematic review of the literature to identify usability and safety challenges and best practices during implementation. A total of 55 articles were reviewed through searches of PubMed, Web of Science and Scopus. We used a qualitative approach to identify key stakeholders’ perceptions; semi-structured interviews were conducted with a diverse set of health IT stakeholders to understand their current practices and challenges related to usability during implementation. We used a grounded theory approach: data were coded, sorted, and emerging themes were identified. Conclusions from both sources of data were compared to identify areas of misalignment. Results We identified six emerging themes from the literature and stakeholder interviews: cost and resources, risk assessment, governance and consensus building, customization, clinical work-flow and usability testing, and training. Across these themes, there were misalignments between the literature and stakeholder perspectives, indicating major gaps. Discussion Major gaps identified from each of six emerging themes are discussed as critical areas for future research, opportunities for new stakeholder initiatives, and opportunities to better disseminate resources to improve the implementation of EHRs. Conclusion Our analysis identified practices and challenges across six different emerging themes, illustrated important gaps, and results suggest critical areas for future research and dissemination to improve EHR implementation. PMID:27847961
3D2 pairing in asymmetric nuclear matter
International Nuclear Information System (INIS)
Alm, T.
1996-01-01
The superfluid 3 D 2 pairing instability in isospin-asymmetric nuclear matter is studied, using the Paris nucleon-nucleon interaction as an input. It is found that the critical temperature associated with the transition to the superfluid phase becomes strongly suppressed with increasing isospin asymmetry, and vanishes for asymmetry parameter values α (≡(n n -n p )/(n n +n p )) that are larger than several percent. It is shown that for neutron star models based on relativistic, field-theoretical equations of state, a large fraction of their interior may exist in a 3 D 2 -paired superfluid phase. The implications of such a 3 D 2 superfluid in massive neutron stars is discussed with respect to observable pulsar phenomena. Another interesting phenomenon, discussed in the paper, concerns the numerical finding of two critical superfluid temperatures for a given density in the case of isospin-asymmetric matter. Using the BCS cut-off ansatz, a mathematical expression for the critical temperature is derived which confirms this finding analytically. (orig.)
International Nuclear Information System (INIS)
Evdokimovich, V.M.; Evlampiev, S.B.; Korshunov, G.S.; Nikolaev, V.A.; Sviridov, Yu.F.; Khmyrov, V.V.
1980-01-01
A megavolt gas-filled trigatron gap with a sectional gas-discharge chamber having a more than three-fold range of operating voltages is described. The discharge chamber consists of ten sections, each 70 mm thick, made of organic glass. The sections are separated one from another by aluminium gradient rings to which ohmic voltage divider is connected. Insulational sections and gradient rings are braced between themselves by means of metal flanges through gaskets made of oil-resistant rubber with the help of fiberglass-laminate pins. The gap has two electrodes 110 mm in diameter. The trigatron ignition assembly uses a dielectric bushing projecting over the main electrode plane. Use has been made of a gas mixture containing 10% of SF 6 and 90% of air making possible to ensure stable gap operation without readjusting in the voltage range from 0.4 to 1.35 MV. The operation time lag in this range is equal to 10 μs at a spread of [ru
Biological effectiveness of neutrons: Research needs
Energy Technology Data Exchange (ETDEWEB)
Casarett, G.W.; Braby, L.A.; Broerse, J.J.; Elkind, M.M.; Goodhead, D.T.; Oleinick, N.L.
1994-02-01
The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy.
Biological effectiveness of neutrons: Research needs
International Nuclear Information System (INIS)
Casarett, G.W.; Braby, L.A.; Broerse, J.J.; Elkind, M.M.; Goodhead, D.T.; Oleinick, N.L.
1994-02-01
The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy
International Nuclear Information System (INIS)
Petrov, P.V.; Kolchevsky, N.N.
2013-01-01
Model of the refractive neutron lens is proposed. System of N lenses acts as one thin lens with a complex refraction index n*. The maximum number N max of individual lenses for 'thick' neutron lens is calculated. Refractive neutron lens properties (resolution, focal depth) as function of resolution factor F 0 =ρbc/μ and depth of field factor dF 0 =λF 0 =λρbc/μ are calculated. It is shown that micro resolution of the refractive neutron optics is far from the wavelength in size and its open possibilities for progress in refractive neutron optics. (authors)
Neutron scattering. Experiment manuals
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)
International Nuclear Information System (INIS)
Ambardanishvili, T.S.; Kolomiitsev, M.A.; Zakharina, T.Y.; Dundua, V.J.; Chikhladze, N.V.
1976-01-01
An activation neutron detector made as a moulded and cured composition of a material capable of being neutron-activated is described. The material is selected from a group consisting of at least two chemical elements, a compound of at least two chemical elements and their mixture, each of the chemical elements and their mixture, each of the chemical elements being capable of interacting with neutrons to form radioactive isotopes having different radiation energies when disintegrating. The material capable of being neutron-activated is distributed throughout the volume of a polycondensation resin inert with respect to neutrons and capable of curing. 17 Claims, No Drawings
International Nuclear Information System (INIS)
Rai, K.S.F.
1994-01-01
A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures
Pulse neutron logging technique
International Nuclear Information System (INIS)
Bespalov, D.F.; Dylyuk, A.A.
1975-01-01
A new method of neutron-burst logging is proposed, residing in irradiating rocks with fast neutron bursts and registering the integrated flux burst of thermal and/or epithermal neutrons, from the moment of its initiation to that of full absorption. The obtaained value is representative of the rock properties (porosity, hydrogen content). The integrated flux in a burst of thermal and epithermal neutrons can be measured both by way of activation of a reference sample of a known chemical composition during the neutron burst and by recording the radiation of induced activity of the sample within an interval between two bursts. The proposed method features high informative value, accuracy and efficiency
Neutron scattering. Experiment manuals
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2012-01-01
The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, the neutron polarization analyzer DNS, the neutron spin-echo spectrometer J-NSE, the small-angle neutron diffractometers KWS-1/-2, the very-small-angle neutron diffractometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)
Neutron techniques in Safeguards
International Nuclear Information System (INIS)
Zucker, M.S.
1982-01-01
An essential part of Safeguards is the ability to quantitatively and nondestructively assay those materials with special neutron-interactive properties involved in nuclear industrial or military technology. Neutron techniques have furnished most of the important ways of assaying such materials, which is no surprise since the neutronic properties are what characterizes them. The techniques employed rely on a wide selection of the many methods of neutron generation, detection, and data analysis that have been developed for neutron physics and nuclear science in general
International Nuclear Information System (INIS)
Lobov, S.I.; Pavlovskaya, N.G.; Pukhov, S.P.
1991-01-01
High-voltage nanosecond neutron generator for obtaining neutrons in D-T reaction is described. Yield of 6x10 6 neutron/pulse was generated in a sealed gas-filled diode with a target on the cathode by accelerating pulse voltage of approximately 0.5 MV and length at half-height of 0.5 ns and deuterium pressure of 6x10 -2 Torr. Ways of increasing neutron yield and possibilities of creating generators of nanosecond neutron pulses with great service life are considered
Principles of neutron reflection
International Nuclear Information System (INIS)
Felcher, G.P.
1988-08-01
Neutron reflection is perhaps the most developed branch of slow neutrons optics, which in itself is a direct consequence of the undulatory nature of the neutron. After reviewing the basic types of interactions (nuclear and magnetic) between neutrons and matter, the formalism is introduced to calculate the reflectivity from a sample composed of stacked flat layers and, inversely, to calculate the stacking from reflectivity measurements. Finally, a brief survey of the applications of neutron reflection is given, both in technology and in fundamental research. 32 refs., 6 figs
Grazing Incidence Neutron Optics
Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)
2013-01-01
Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.
Neutron scattering. Experiment manuals
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)
Directory of Open Access Journals (Sweden)
Jimmy Boon Som Ong
Full Text Available The "classical model" for sexually transmitted infections treats partnerships as instantaneous events summarized by partner change rates, while individual-based and pair models explicitly account for time within partnerships and gaps between partnerships. We compared predictions from the classical and pair models over a range of partnership and gap combinations. While the former predicted similar or marginally higher prevalence at the shortest partnership lengths, the latter predicted self-sustaining transmission for gonorrhoea (GC and Chlamydia (CT over much broader partnership and gap combinations. Predictions on the critical level of condom use (C(c required to prevent transmission also differed substantially when using the same parameters. When calibrated to give the same disease prevalence as the pair model by adjusting the infectious duration for GC and CT, and by adjusting transmission probabilities for HIV, the classical model then predicted much higher C(c values for GC and CT, while C(c predictions for HIV were fairly close. In conclusion, the two approaches give different predictions over potentially important combinations of partnership and gap lengths. Assuming that it is more correct to explicitly model partnerships and gaps, then pair or individual-based models may be needed for GC and CT since model calibration does not resolve the differences.
Developing neutronics calculation tools for MYRRHA
International Nuclear Information System (INIS)
Van den Eynde, G.
2006-01-01
The design of the Accelerator Driven System MYRRHA requires adequate and specialised tools in the field of neutronics calculations. In order to fill the gaps, several PhD programmes were launched. In 2005 three such PhD projects were running. Each of them focuses on different stages in the computation of a core of MYRRHA. The first project I mprovements of the spallation reaction model , a collaboration with the University of Liege, deals with the characterisation of the spallation neutron source using the INCL (Intra-Nuclear Cascade of Liege) model. Since at high energies, nuclear data are sparse, calculations rely on models. Especially for spallation reactions that occur at proton energies of several hundreds of MeV, models are the only means to evaluate the spallation source in MYRRHA. The second project 'Neutron transport with anisotropic scattering', a collaboration with the Universite Libre de Bruxelles, works on the development of a neutronics code, CASE-BSM, for systems with highly anisotropic scattering. The presence in large amounts of both lead and bismuth atoms in the MYRRHA core results in a highly anisotropic scattering of the neutrons in the bulk of the coolant. Neglecting this effect has large consequences on both global parameters, like keff, as well as on local parameters, like the neutron flux seen by the vessel. The third project, 'ALEPH: An integrated Monte Carlo bun-up tool', a collaboration with Ghent University, treats the last phase of a core calculation: the depletion of the fuel during irradiation. For an experimental machine like MYRRHA it is of utmost importance to have a fast calculational tool to evaluate the incineration of both isotopes present in the fuel as isotopes present in experimental devices. The main objective is to improve the current quality of the neutronics codes focused on ADS applications and to have this knowledge 'in-house'
Pair plasma relaxation time scales.
Aksenov, A G; Ruffini, R; Vereshchagin, G V
2010-04-01
By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.
Thermal neutron moderating device
International Nuclear Information System (INIS)
Takigami, Hiroyuki.
1995-01-01
In a thermal neutron moderating device, superconductive coils for generating magnetic fields capable of applying magnetic fields vertical to the longitudinal direction of a thermal neutron passing tube, and superconductive coils for magnetic field gradient for causing magnetic field gradient in the longitudinal direction of the thermal neutron passing tube are disposed being stacked at the outside of the thermal neutron passing tube. When magnetic field gradient is present vertically to the direction of a magnetic moment, thermal neutrons undergo forces in the direction of the magnetic field gradient in proportion to the magnetic moment. Then, the magnetic moment of the thermal neutrons is aligned with the direction vertical to the passing direction of the thermal neutrons, to cause the magnetic field gradient in the passing direction of the thermal neutrons. The speed of the thermal neutrons can be optionally selected and the wavelength can freely be changed by applying forces to the thermal neutrons and changing the extent and direction of the magnetic field gradient. Superconductive coils are used as the coils for generating magnetic fields and the magnetic field gradient in order to change extremely high energy of the thermal neutrons. (N.H.)
Statistical deprojection of galaxy pairs
Nottale, Laurent; Chamaraux, Pierre
2018-06-01
Aims: The purpose of the present paper is to provide methods of statistical analysis of the physical properties of galaxy pairs. We perform this study to apply it later to catalogs of isolated pairs of galaxies, especially two new catalogs we recently constructed that contain ≈1000 and ≈13 000 pairs, respectively. We are particularly interested by the dynamics of those pairs, including the determination of their masses. Methods: We could not compute the dynamical parameters directly since the necessary data are incomplete. Indeed, we only have at our disposal one component of the intervelocity between the members, namely along the line of sight, and two components of their interdistance, i.e., the projection on the sky-plane. Moreover, we know only one point of each galaxy orbit. Hence we need statistical methods to find the probability distribution of 3D interdistances and 3D intervelocities from their projections; we designed those methods under the term deprojection. Results: We proceed in two steps to determine and use the deprojection methods. First we derive the probability distributions expected for the various relevant projected quantities, namely intervelocity vz, interdistance rp, their ratio, and the product rp v_z^2, which is involved in mass determination. In a second step, we propose various methods of deprojection of those parameters based on the previous analysis. We start from a histogram of the projected data and we apply inversion formulae to obtain the deprojected distributions; lastly, we test the methods by numerical simulations, which also allow us to determine the uncertainties involved.
Mughabghab, Said
2018-01-01
Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z= 1-60, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=1-60, as well as thermal cross sections, capture resonance integrals, average resonance parameters and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections o...
Neutron image intensifier tubes
International Nuclear Information System (INIS)
Verat, M.; Rougeot, H.; Driard, B.
1983-01-01
The most frequently used techniques in neutron radiography employ a neutron converter consisting of either a scintillator or a thin metal sheet. The radiation created by the neutrons exposes a photographic film that is in contact with the converter: in the direct method, the film is exposed during the time that the object is irradiated with neutrons; in the transfer method, the film is exposed after the irradiation of the object with neutrons. In industrial non-destructive testing, when many identical objects have to be checked, these techniques have several disadvantages. Non-destructive testing systems without these disadvantages can be constructed around neutron-image intensifier tubes. A description and the operating characteristics of neutron-image intensifier tubes are given. (Auth.)
Methods of neutron spectrometry
International Nuclear Information System (INIS)
Doerschel, B.
1981-01-01
The different methods of neutron spectrometry are based on the direct measurement of neutron velocity or on the use of suitable energy-dependent interaction processes. In the latter case the measuring effect of a detector is connected with the searched neutron spectrum by an integral equation. The solution needs suitable unfolding procedures. The most important methods of neutron spectrometry are the time-of-flight method, the crystal spectrometry, the neutron spectrometry by use of elastic collisions with hydrogen nuclei, and neutron spectrometry with the aid of nuclear reactions, especially of the neutron-induced activation. The advantages and disadvantages of these methods are contrasted considering the resolution, the measurable energy range, the sensitivity, and the experimental and computational efforts. (author)
International Nuclear Information System (INIS)
Iizumi, Masashi
1993-01-01
As an introduction to the symposium a brief overview will be given about the features of neutrons as a probe. First it will be pointed out that the utilization of neutrons as a probe for investigating the structural and dynamical properties of condensed matters is a benign gift eventuated from the release of atomic energy initiated by Enrico Fermi exactly half century ago. Features of neutrons as a probe are discussed in accordance with the four basic physical properties of neutrons as an elementary particle; (1) no electric charge (the interaction with matter is nuclear), (2) the mass of neutron is 1 amu, (3) spin is 1/2 and (4) neutrons have magnetic dipole moment. Overview will be given on the uniqueness of neutrons as a probe and on the variety in the way they are used in the wide research area from the pure science to the industrial applications. (author)
International Nuclear Information System (INIS)
Endres, G.W.R.; Fix, J.J.; Thorson, M.R.; Nichols, L.L.
1981-01-01
Neutron response of the albedo type dosimeter is strongly dependent on the energy of the incident neutrons as well as the moderating material on the backside of the dosimeter. This study characterizes the response of the Hanford dosimeter for a variety of neutron energies for both a water and Rando phantom (a simulated human body consisting of an actual human skeleton with plastic for body muscles and certain organs). The Hanford dosimeter response to neutrons of different energies is typical of albedo type dosimeters. An approximate two orders of magnitude difference in response is observed between neutron energies of 100 keV and 10 MeV. Methods were described to compensate for the difference in dosimeter response between a laboratory neutron spectrum and the different spectra encountered at various facilities in the field. Generally, substantial field support is necessary for accurate neutron dosimetry
Energy Technology Data Exchange (ETDEWEB)
Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
Neutron diffraction provides an experimental method of directly locating hydrogen atoms in protein which play important roles in physiological functions. However, there are relatively few examples of neutron crystallography in biology since it takes a lot of time to collect a sufficient number of Bragg reflections due to the low flux of neutrons illuminating the sample. In order to overcome the flux problem, we have successfully developed the neutron IP, where the neutron converter, {sup 6}Li or Gd, was mixed with a photostimulated luminescence material on flexible plastic support. Neutron Laue diffraction 2A data from tetragonal lysozyme were collected for 10 days with neutron imaging plates, and 960 hydrogen atoms in the molecule and 157 bound water molecules were identified. These results explain the proposed hydrolysis mechanism of the sugar by the lysozyme molecule and that lysozyme is less active at pH7.0. (author)
GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.
Directory of Open Access Journals (Sweden)
Pablo H C G de Sá
Full Text Available The advent of NGS (Next Generation Sequencing technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer.
Hidden Pair of Supermassive Black Holes
Kohler, Susanna
2015-08-01
Could a pair of supermassive black holes (SMBHs) be lurking at the center of the galaxy Mrk 231? A recent study finds that this may be the case and the unique spectrum of this galaxy could be the key to discovering more hidden binary SMBH systems.Where Are the Binary Supermassive Black Holes?Its believed that most, if not all, galaxies have an SMBH at their centers. As two galaxies merge, the two SMBHs should evolve into a closely-bound binary system before they eventually merge. Given the abundance of galaxy mergers, we would expect to see the kinematic and visual signatures of these binary SMBHs among observed active galactic nuclei yet such evidence for sub-parsec binary SMBH systems remains scarce and ambiguous. This has led researchers to wonder: is there another way that we might detect these elusive systems?A collaboration led by Chang-Shuo Yan (National Astronomical Observatories, Chinese Academy of Sciences) thinks that there is. The group suggests that these systems might have distinct signatures in their optical-to-UV spectra, and they identify a system that might be just such a candidate: Mrk 231.A Binary CandidateProposed model of Mrk 231. Two supermassive black holes, each with their own mini-disk, orbit each other in the center of a circumbinary disk. The secondary black hole has cleared gap in the circumbinary disk as a result of its orbit around the primary black hole. [Yan et al. 2015]Mrk 231 is a galaxy with a disturbed morphology and tidal tails strong clues that it might be in the final stages of a galactic merger. In addition to these signs, Mrk 231 also has an unusual spectrum for a quasar: its continuum emission displays an unexpected drop in the near-UV band.Yan and her collaborators propose that the odd behavior of Mrk 231s spectrum can be explained if the center of the galaxy houses a pair of SMBHs each with its own mini accretion disk surrounded by a circumbinary accretion disk. As the secondary SMBH orbits the primary SMBH (with a
Fast neutron dosimetry. Progress report, July 1, 1979-June 30, 1980
Energy Technology Data Exchange (ETDEWEB)
Attix, F.H.
1980-01-01
Progress is reported in: the development and testing of new gas mixtures more suitable for fast neutron dosimetry using the common A150-type Tissue-equivalent plastic ion chambers; comparison of photon doses determined with a graphite-walled proportional counter and with paired dosimeters irradiated by 14.8-MeV neutrons; a detector for the direct measurement of LET distributions from irradiation with fast neutrons; LET distributions from fast neutron irradiation of TE-plastic and graphite measured in a cylindrically symmetric geometry; progress in development of a tandem fast neutron and /sup 60/Co gamma ray source irradiation facility; an approach to the correlation of cellular response with lineal energy; calculated and measured HTO atmospheric dispersion rates within meters of a release site; application of cavity theory to fast neutrons; and fast neutron dosimetry by thermally stimulated currents in Al/sub 2/O/sub 3/. (GHT)
Fast neutron dosimetry. Progress report, July 1, 1979-June 30, 1980
International Nuclear Information System (INIS)
Attix, F.H.
1980-01-01
Progress is reported in: the development and testing of new gas mixtures more suitable for fast neutron dosimetry using the common A150-type Tissue-equivalent plastic ion chambers; comparison of photon doses determined with a graphite-walled proportional counter and with paired dosimeters irradiated by 14.8-MeV neutrons; a detector for the direct measurement of LET distributions from irradiation with fast neutrons; LET distributions from fast neutron irradiation of TE-plastic and graphite measured in a cylindrically symmetric geometry; progress in development of a tandem fast neutron and 60 Co gamma ray source irradiation facility; an approach to the correlation of cellular response with lineal energy; calculated and measured HTO atmospheric dispersion rates within meters of a release site; application of cavity theory to fast neutrons; and fast neutron dosimetry by thermally stimulated currents in Al 2 O 3
Studies of the neutron single-particle structure of exotic nuclei at the HRIBF
International Nuclear Information System (INIS)
Thomas, J.S.; Bardayan, D.W.; Blackmon, J.C.; Cizewski, J.A.; Greife, U.; Gross, C.J.; Johnson, M.S.; Jones, K.L.; Kozub, R.L.; Liang, J.F.; Livesay, R.J.; Ma, Z.; Moazen, B.H.; Nesaraja, C.D.; Shapira, D.; Smith, M.S.
2004-01-01
The study of neutron single-particle strengths in neutron-rich nuclei is of interest for nuclear structure and nuclear astrophysics. The distribution of single-particle strengths constrains the effective Hamiltonian and pairing interactions and determines neutron interaction rates that are crucial for understanding the synthesis of heavy nuclei in supernovae via the rapid neutron capture process. Particularly important are the neutron single-particle levels in nuclei near closed neutron shells. Radioactive ion beams from the Holifield Radioactive Ion Beam Facility have been used to study (d,p) reactions in inverse kinematics in order to probe neutron single-particle states in exotic nuclei. The results of a measurement with a 82 Ge beam will be presented
Development of a new electronic neutron imaging system
Brenizer, J S; Gibbs, K M; Mengers, P; Stebbings, C T; Polansky, D; Rogerson, D J
1999-01-01
An electronic neutron imaging camera system was developed for use with thermal, epithermal, and fast neutrons in applications that include nondestructive inspection of explosives, corrosion, turbine blades, electronics, low Z components, etc. The neutron images are expected to provide information to supplement that available from X-ray tests. The primary camera image area was a 30x30 cm field-of-view with a spatial resolution approaching 1.6 line pairs/mm (lp/mm). The camera had a remotely changeable second lens to limit the field-of-view to 7.6x7.6 cm for high spatial resolution (at least 4 lp/mm) thermal neutron imaging, but neutron and light scatter will limit resolution for fast neutrons to about 0.5 lp/mm. Remote focus capability enhanced camera set-up for optimum operation. The 75 dB dynamic range camera system included sup 6 Li-based screens for imaging of thermal and epithermal neutrons and ZnS(Ag)-based screens for fast neutron imaging. The fast optics was input to a Super S-25 Gen II image intensifi...
2005-12-01
we would like to web developer; gather comments from GAP researchers and data users. We are * facilitate collaboration among GAP projects by...N.Y. Research Grant #012/01 A. 42 Gap Analysis Bulletin No. 13, December 2005 Ga pAnalysis Smith, S. D., W. A. Brown, C. R. Smith, and M. E. Richmond... GAP will be focusing activities have greatly reduced the habitat available to support on the enduring features of the Great Lakes basin. Influences
The Canadian intense neutron generator
Energy Technology Data Exchange (ETDEWEB)
Tunnicliffe, P R
1967-07-01
Atomic Energy of Canada Ltd. has proposed construction of an Intense Neutron-Generator. The generator would produce uniquely-intense beams of thermal neutrons for solid-state and low-energy nuclear studies and would yield significant quantities of radioisotopes of both research and commercial value; it would also produce copious sources of mesons and energetic nucleons for use in intermediate-energy nuclear physics and in nuclear-structure studies. The primary neutron source of 10{sup 19}/sec would be generated by bombarding a heavy-element target with a continuous beam of 65 mA of 1 GeV protons. The target of circulating and cooled Pb-Bi eutectic would be surrounded by a tank of heavy water moderator yielding a maximum useful flux of 10{sup 16} thermal neutrons/cm{sup 2}/sec in the region where neutron beams can be extracted. This high-energy spallation process for producing neutrons is nearly four times more efficient in producing neutrons per unit of thermal energy released in the neutron source compared with a fission reactor. Nevertheless, if energy costs for producing the 65 MW proton beam are to be within reason, the machine producing the beam must be efficient. A D.C. machine is in principle ideal but practical achievement of 1 GV is not likely within the time desired. An accelerator where the protons gain energy from radio-frequency fields is the most likely prospect. We have selected a linear accelerator as our reference design and detailed theoretical and experimental studies are in progress. The machine is based on the Los Alamos Meson Physics Facility design reoptimized for continuous rather than pulsed operation. It is approximately one mile long and is expected to achieve nearly 50 percent overall efficiency. There are two major portions, an 'Alvarez' Section operating at 200 MHz accelerating the beam to about 150 MeV, followed by a 'Waveguide' section operating at 800 MHz. Protons are initially injected by an 0.75 MV D.C. accelerator. The Alvarez
Optimization of elliptic neutron guides for triple-axis spectroscopy
International Nuclear Information System (INIS)
Janoschek, M.; Boeni, P.; Braden, M.
2010-01-01
In the last decade the performance of neutron guides for the transport of neutrons has been significantly increased. The most recent developments have shown that elliptic guide systems can be used to focus neutron beams while simultaneously reducing the number of neutron reflections, hence, leading to considerable gains in neutron flux. We have carried out Monte-Carlo simulations for a new triple-axis spectrometer that will be built at the end position of the conventional cold guide NL-1 in the neutron guide hall of the research reactor FRM-II in Munich, Germany. Our results demonstrate that an elliptic guide section at the end of a conventional guide can be used to at least maintain the total neutron flux onto the sample, while significantly improving the energy resolution of the spectrometer. The simulation further allows detailed insight how the defining parameters of an elliptic guide have to be chosen to obtain optimum results. Finally, we show that the elliptic guide limits losses in the neutron flux that generally arise at the gaps, where the monochromator system of the upstream instrument is situated.
Andrew F. Haughwout; Richard Peach; Joseph Tracy
2009-01-01
After rising for a decade, the U.S. homeownership rate peaked at 69 percent in the third quarter of 2006. Over the next two and a half years, as home prices fell in many parts of the country and the unemployment rate rose sharply, the homeownership rate declined by 1.7 percentage points. An important question is, how much more will this rate decline over the current economic downturn? To address this question, we propose the concept of the 'homeownership gap' as a gauge of downward pressure o...
International Nuclear Information System (INIS)
Kim, Hark Rho
2005-01-01
HANARO (High-flux Advanced Neutron Application Reactor), which was designed and constructed by indigenous technology, is a world-class multi-purpose research reactor with a design thermal power of 30 MW, providing high neutron flux for various applications in Korea. HANARO has been operated since its first criticality in February 1995, and is now successfully utilized in such areas as neutron beam research, fuel and materials tests, radioisotopes and radiopharmaceuticals production, neutron activation analysis, and neutron transmutation doping, etc. A number of experimental facilities have been developed and installed since the beginning of reactor operation, and R and D activities for installing more facilities are actively under progress. Three flux traps in the core (CT, IR1, IR2), providing a high fast neutron flux, can be used for materials and fuel irradiation tests. They are also proper for production of high specific activity radioisotopes. Four vertical holes in the outer core region, abundant in epithermal neutrons, are used for fuel or material tests and radioisotope production. In the heavy water reflector region, 25 vertical holes with high quality thermal neutrons are located for radioisotope production, neutron activation analysis, neutron transmutation doping and cold neutron source installation. The two largest holes named NTD1 and NTD2 are for neutron transmutation doping, CNS for the cold neutron source installation, and LH for the irradiation of large targets. The high resolution powder diffractometer (HRPD) became operational in 1998, followed by the four circle diffractometer (FCD) in 1999, the residual stress instrument (RSI) in 2000, and the small angle neutron spectrometer (SANS) in 2001, respectively. HRPD and SANS became the most popular instruments these days, attracting wide range of users from academia, institutes and industries. We have made a lot of efforts during the last 10 years to develop some key components such as
Gaps in nonsymmetric numerical semigroups
International Nuclear Information System (INIS)
Fel, Leonid G.; Aicardi, Francesca
2006-12-01
There exist two different types of gaps in the nonsymmetric numerical semigroups S(d 1 , . . . , d m ) finitely generated by a minimal set of positive integers {d 1 , . . . , d m }. We give the generating functions for the corresponding sets of gaps. Detailed description of both gap types is given for the 1st nontrivial case m = 3. (author)
The Politics of Achievement Gaps
DEFF Research Database (Denmark)
Valant, J.; Newark, D. A.
2016-01-01
on achievement gaps have received little attention from researchers, despite playing an important role in shaping policymakers’ behaviors. Drawing on randomized experiments with a nationally representative sample of adults, we explore the public’s beliefs about test score gaps and its support for gap...
Approximating local observables on projected entangled pair states
Schwarz, M.; Buerschaper, O.; Eisert, J.
2017-06-01
Tensor network states are for good reasons believed to capture ground states of gapped local Hamiltonians arising in the condensed matter context, states which are in turn expected to satisfy an entanglement area law. However, the computational hardness of contracting projected entangled pair states in two- and higher-dimensional systems is often seen as a significant obstacle when devising higher-dimensional variants of the density-matrix renormalization group method. In this work, we show that for those projected entangled pair states that are expected to provide good approximations of such ground states of local Hamiltonians, one can compute local expectation values in quasipolynomial time. We therefore provide a complexity-theoretic justification of why state-of-the-art numerical tools work so well in practice. We finally turn to the computation of local expectation values on quantum computers, providing a meaningful application for a small-scale quantum computer.
Topological superfluids with finite-momentum pairing and Majorana fermions.
Qu, Chunlei; Zheng, Zhen; Gong, Ming; Xu, Yong; Mao, Li; Zou, Xubo; Guo, Guangcan; Zhang, Chuanwei
2013-01-01
Majorana fermions (MFs), quantum particles that are their own antiparticles, are not only of fundamental importance in elementary particle physics and dark matter, but also building blocks for fault-tolerant quantum computation. Recently MFs have been intensively studied in solid state and cold atomic systems. These studies are generally based on superconducting pairing with zero total momentum. On the other hand, finite total momentum Cooper pairings, known as Fulde-Ferrell (FF) Larkin-Ovchinnikov (LO) states, were widely studied in many branches of physics. However, whether FF and LO superconductors can support MFs has not been explored. Here we show that MFs can exist in certain types of gapped FF states, yielding a new quantum matter: topological FF superfluids/superconductors. We demonstrate the existence of such topological FF superfluids and the associated MFs using spin-orbit-coupled degenerate Fermi gases and derive their parameter regions. The implementation of topological FF superconductors in semiconductor/superconductor heterostructures is also discussed.
Neutron transportation simulator
International Nuclear Information System (INIS)
Uenohara, Yuzo.
1995-01-01
In the present invention, problems in an existent parallelized monte carlo method is solved, and behaviors of neutrons in a large scaled system are accurately simulated at a high speed. Namely, a neutron transportation simulator according to the monte carlo method simulates movement of each of neutrons by using a parallel computer. In this case, the system to be processed is divided based on a space region and an energy region to which neutrons belong. Simulation of neutrons in the divided regions is allotted to each of performing devices of the parallel computer. Tarry data and nuclear data of the neutrons in each of the regions are memorized dispersedly to memories of each of the performing devices. A transmission means for simulating the behaviors of the neutrons in the region by each of the performing devices, as well as transmitting the information of the neutrons, when the neutrons are moved to other region, to the performing device in a transported portion are disposed to each of the performing devices. With such procedures, simulation for the neutrons in the allotted region can be conducted with small capacity of memories. (I.S.)
Instrumentation with polarized neutrons
International Nuclear Information System (INIS)
Boeni, P.; Muenzer, W.; Ostermann, A.
2009-01-01
Neutron scattering with polarization analysis is an indispensable tool for the investigation of novel materials exhibiting electronic, magnetic, and orbital degrees of freedom. In addition, polarized neutrons are necessary for neutron spin precession techniques that path the way to obtain extremely high resolution in space and time. Last but not least, polarized neutrons are being used for fundamental studies as well as very recently for neutron imaging. Many years ago, neutron beam lines were simply adapted for polarized beam applications by adding polarizing elements leading usually to unacceptable losses in neutron intensity. Recently, an increasing number of beam lines are designed such that an optimum use of polarized neutrons is facilitated. In addition, marked progress has been obtained in the technology of 3 He polarizers and the reflectivity of large-m supermirrors. Therefore, if properly designed, only factors of approximately 2-3 in neutron intensity are lost. It is shown that S-benders provide neutron beams with an almost wavelength independent polarization. Using twin cavities, polarized beams with a homogeneous phase space and P>0.99 can be produced without significantly sacrificing intensity. It is argued that elliptic guides, which are coated with large m polarizing supermirrors, provide the highest flux.
Neutron wave optics studied with ultracold neutrons
International Nuclear Information System (INIS)
Steyerl, A.
1984-01-01
The author discusses experiments demonstrating or utilizing the wave properties of neutrons with wavelengths of about 100 nm. In particular the 'UCN gravity diffractometer' and the gravity spectrometer NESSIE (Neutronen-Schwerkraft-Spectrometrie) are illustrated. (Auth.)
Neutron Optics: Towards Applications for Hot Neutrons
International Nuclear Information System (INIS)
Schanzer, C; Schneider, M; Böni, P
2016-01-01
Supermirrors with large critical angles of reflection, i.e. large index m are an essential ingredient to transport, focus and polarise neutrons over a wide range of energy. Here we summarise the recent developments of supermirror with very large critical angles of reflection and high reflectivity that were conducted at SwissNeutronics as well as their implementation in devices. Approaching critical angles m = 8 times the critical angle of natural nickel makes new applications possible and extends the use of reflection optics towards the regime of hot and epithermal neutrons. Based on comparisons of simulations with experiment we demonstrate future possibilities of applications of large-m supermirrors towards devices for neutrons with short wavelength. (paper)
A polarizing neutron periscope for neutron imaging
International Nuclear Information System (INIS)
Schulz, Michael; Boeni, Peter; Calzada, Elbio; Muehlbauer, Martin; Neubauer, Andreas; Schillinger, Burkhard
2009-01-01
Optical neutron polarizers like guides or benders destroy the collimation of a neutron beam due to multiple reflections or scattering. This makes them unsuitable for their use in polarized neutron radiography, because the beam collimation is essential to obtain high spatial resolution. We have developed a neutron polarizer based on the principle of an optical periscope with a zigzag double reflection on two parallel high-m supermirror polarizers. If the supermirrors are perfectly parallel and flat, the beam collimation is left unchanged by such a device. A first proof of concept version of this type of polarizer was built and tested. We expect to achieve a beam polarization of up to 99% with an improved version yet to be built.
Array detector for neutron pre-emission investigations
International Nuclear Information System (INIS)
Petrascu, M.; Cruceru, I.; Bordeanu, C.
1999-01-01
It was predicted that in a fusion experiment induced by 11 Li halo nuclei on light targets, due to the very large dimension of 11 Li, one may expect that the valence neutrons will not be absorbed together with the 9 Li core, but will be emitted in the early stage of the fusion process. The experiment aiming at checking this expectation was performed at the RIKEN-RIPS facility. It was found from neutron energy spectra measurements, that an important number of fusions, more than 30%, are preceded by the pre-emission of one or two neutrons. In the position spectra measurements a very narrow neutron component has been found. This component is much narrower than that calculated by using the Cluster Shell Model Approximation (COSMA). The recent results of time- position coincidence measurements show that within the narrow component the neutrons are pre-emitted predominantly as neutron pairs. The Program Advisory Committee of RIKEN has approved a new measurement at RIKEN Ring Cyclotron aiming at investigation of neutron-neutron coincidences by using a new neutron array detector. This detector has been recently accomplished within the collaboration existing between IFIN-HH, Romania and RIKEN, Japan. The array system consists of 81 4 x 4 x 12 cm 3 BC400 plastic scintillators each coupled to XP2972 Phototubes. The mounting and the testing of the new neutron array detector will be done at RIKEN. The components of one of the 81 elements of the array detector are shown in a photo. The Monte Carlo calculated neutron detection efficiencies as a function of energy are shown. This detector will be used for the investigation of neutron-neutron coincidences in the case of Si( 11 Li, fusion) reaction. The cross- talk between adjacent and non adjacent detectors will be determined by using a 9 Li beam. As it is known in the case of Si( 9 Li, fusion) the neutrons are of evaporation origin, and since these neutrons are emitted in 4 π the chance for detecting 2 coincident neutrons in the
Continuous unitary transformation approach to pairing interactions in statistical physics
Directory of Open Access Journals (Sweden)
T.Domański
2008-06-01
Full Text Available We apply the flow equation method to the study of the fermion systems with pairing interactions which lead to the BCS instability signalled by the appearance of the off-diagonal order parameter. For this purpose we rederive the continuous Bogoliubov transformation in a fashion of renormalization group procedure where the low and high energy sectors are treated subsequently. We further generalize this procedure to the case of fermions interacting with the discrete boson mode. Andreev-type interactions are responsible for developing a gap in the excitation spectrum. However, the long-range coherence is destroyed due to strong quantum fluctuations.
Pulsed neutron porosity logging system
International Nuclear Information System (INIS)
Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.
1978-01-01
An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations and, during the bursts, the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity
International Nuclear Information System (INIS)
Tanigawa, Tomonori; Matsuzaki, Masayuki; Chiba, Satoshi
2003-01-01
We calculate a ΛΛ pairing gap in binary mixed matter of nucleons and Λ hyperons within the relativistic Hartree-Bogoliubov model. Λ hyperons to be paired up are immersed in background nucleons in a normal state. The gap is calculated with a one-boson-exchange interaction obtained from a relativistic Lagrangian. It is found that at background density ρ N =2.5ρ 0 the ΛΛ pairing gap is very small, and that a denser background makes it rapidly suppressed. This result suggests a mechanism, specific to mixed matter dealt with relativistic models, of its dependence on the nucleon density. An effect of weaker ΛΛ attraction on the gap is also examined in connection with the revised information of the ΛΛ interaction
Bouncing neutrons and the neutron centrifuge
International Nuclear Information System (INIS)
Watson, P J S
2003-01-01
The recent observation of the quantum state of the neutron bouncing freely under gravity allows some novel experiments. A possible method of purifying the ground state is given. We investigate two possible applications. It appears that the state could not be used to set better limits on the electric dipole moment of the neutron. However, it would be possible to use the state to set limits on modifications of gravity at short distances
Charge Aspects of Composite Pair Superconductivity
Flint, Rebecca
2014-03-01
Conventional Cooper pairs form from well-defined electronic quasiparticles, making the internal structure of the pair irrelevant. However, in the 115 family of superconductors, the heavy electrons are forming as they pair and the internal pair structure becomes as important as the pairing mechanism. Conventional spin fluctuation mediated pairing cannot capture the direct transition from incoherent local moments to heavy fermion superconductivity, but the formation of composite pairs favored by the two channel Kondo effect can. These composite pairs are local d-wave pairs formed by two conduction electrons in orthogonal Kondo channels screening the same local moment. Composite pairing shares the same symmetries as magnetically mediated pairing, however, only composite pairing necessarily involves a redistribution of charge within the unit cell originating from the internal pair structure, both as a monopole (valence change) and a quadrupole effect. This redistribution will onset sharply at the superconducting transition temperature. A smoking gun test for composite pairing is therefore a sharp signature at Tc - for example, a cusp in the Mossbauer isomer shift in NpPd5Al2 or in the NQR shift in (Ce,Pu)CoIn5.
Lewis-Fernández, Roberto; Raggio, Greer A.; Gorritz, Magdaliz; Duan, Naihua; Marcus, Sue; Cabassa, Leopoldo J.; Humensky, Jennifer; Becker, Anne E.; Alarcón, Renato D.; Oquendo, María A.; Hansen, Helena; Like, Robert C.; Weiss, Mitchell; Desai, Prakash N.; Jacobsen, Frederick M.; Foulks, Edward F.; Primm, Annelle; Lu, Francis; Kopelowicz, Alex; Hinton, Ladson; Hinton, Devon E.
2015-01-01
Growing awareness of health and health care disparities highlights the importance of including information about race, ethnicity, and culture (REC) in health research. Reporting of REC factors in research publications, however, is notoriously imprecise and unsystematic. This article describes the development of a checklist to assess the comprehensiveness and the applicability of REC factor reporting in psychiatric research publications. The 16-itemGAP-REACH© checklist was developed through a rigorous process of expert consensus, empirical content analysis in a sample of publications (N = 1205), and interrater reliability (IRR) assessment (N = 30). The items assess each section in the conventional structure of a health research article. Data from the assessment may be considered on an item-by-item basis or as a total score ranging from 0% to 100%. The final checklist has excellent IRR (κ = 0.91). The GAP-REACH may be used by multiple research stakeholders to assess the scope of REC reporting in a research article. PMID:24080673
Lissuaer, D
One of the more congested areas in the ATLAS detector is the GAP region (the area between the Barrel Calorimeter and the End Cap calorimeter) where Inner Detector services, LAr Services and some Tile services all must co-habitat in a very limited area. It has been clear for some time that the space in the GAP region is not sufficient to accommodate all that is needed. In the last few month additional problems of routing all the services to Z=0 have been encountered due to the very limited space between the Tile Calorimeter and the first layer of Muon chambers. The Technical Management Board (TMB) and the Executive Board (EB) decided in the middle of March to establish a Task Force to look at this problem and come up with a solution within well-specified guidelines. The task force consisted of experts from the ID, Muon, Liquid Argon and Tile systems in addition to experts from the Technical Coordination team and the Physics coordinator. The task force held many meetings and in general there were some very l...
International Nuclear Information System (INIS)
Snyder, A.V.
1992-01-01
It's a predicament. For the most part, investor-owned electric utilities trade at a deep discount to the actual (that is, replacement-cost) value to their assets. That's because most utilities fail to earn real returns large enough to justify raising and investing capital. The result is a value gap, where overall market value is significantly lower than the replacement costs of the assets. This gap is wider for utilities than for virtually any other industry in our economy. In addition to providing education and awareness, senior management must determine which businesses and activities create value and which diminish it. Then, management must allocate capital and human resources appropriately, holding down investments in value-diminishing areas until they can improve their profitability, and aggressively investing in value-enhancing businesses while preserving their profitability. But value management must not stop with resource-allocation decisions. To create a lasting transition to a value management philosophy, the utility's compensation system must also change: executives will have motivation to create value when compensation stems from this goal, not from such misleading accounting measures as earnings-per-share growth or ROE. That requires clear value-creation goals, and the organization must continuously evaluate top management's performance in light of the progress made toward those goals
Status of spallation neutron source
Energy Technology Data Exchange (ETDEWEB)
Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-03-01
Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)
Kinetic equations with pairing correlations
International Nuclear Information System (INIS)
Fauser, R.
1995-12-01
The Gorkov equations are derived for a general non-equilibrium system. The Gorkov factorization is generalized by the cumulant expansion of the 2-particle correlation and by a generalized Wick theorem in the case of a perturbation expansion. A stationary solution for the Green functions in the Schwinger-Keldysh formalism is presented taking into account pairing correlations. Especially the effects of collisional broadening on the spectral functions and Green functions is discussed. Kinetic equations are derived in the quasi-particle approximation and in the case of particles with width. Explicit expressions for the self-energies are given. (orig.)
Endocrine factors of pair bonding.
Stárka, L
2007-01-01
Throughout literature--fiction and poetry, fine arts and music--falling in love and enjoying romantic love plays a central role. While several psychosocial conceptions of pair attachment consider the participation of hormones, human endocrinology has dealt with this theme only marginally. According to some authors in addictology, falling in love shows some signs of hormonal response to stressors with changes in dopamine and serotonin signalling and neurotrophin (transforming growth factor b) concentration. Endorphins, oxytocin and vasopressin may play a role during the later phases of love. However, proof of hormonal events associated with love in humans has, until recently, been lacking.
DEFF Research Database (Denmark)
Christensen, Ole; Goh, Say Song
2012-01-01
The time–frequency analysis of a signal is often performed via a series expansion arising from well-localized building blocks. Typically, the building blocks are based on frames having either Gabor or wavelet structure. In order to calculate the coefficients in the series expansion, a dual frame...... is needed. The purpose of the present paper is to provide constructions of dual pairs of frames in the setting of the Hilbert space of periodic functions L2(0,2π). The frames constructed are given explicitly as trigonometric polynomials, which allows for an efficient calculation of the coefficients...
Directory of Open Access Journals (Sweden)
Shenglan Chen
2014-06-01
Full Text Available This paper examines the effects of board affiliation on the corporate pay gap. Using a sample of Chinese listed firms from 2005 to 2011, we find that boards with a greater presence of directors appointed by block shareholders have lower pay gaps. Furthermore, the governance effects of board affiliation with and without pay are distinguished. The empirical results show that board affiliation without pay is negatively related to the pay gap, while board affiliation with pay is positively related to the pay gap. Overall, the results shed light on how block shareholders affect their companies’ pay gaps through board affiliation.
Effect of anitiferromagnetism on superconducting gap of cuprates
International Nuclear Information System (INIS)
Rout, G.C.; Panda, B.N.; Bishoyi, K.C.
2000-01-01
The interplay between superconductivity (SC) and antiferromagnetism (AF) is studied in strongly correlated systems: R 2-x M x CuO 4 (R = Nd, La, Pr, Gd; M = Sr, Ge). It is assumed that superconductivity arises due to BCS pairing mechanism in presence of AF in Cu lattices of Cu-O planes. Temperature dependence of SC gap as well as staggered magnetic field are calculated analytically and solved self-consistently with respect to half-filled band situation for different model parameters λ 1 , and λ 2 being SC and AF coupling parameters respectively. The SC gap is studied in the coexistent phase of SC and AFM. (author)
DEFF Research Database (Denmark)
Dalgas, Karina Märcher
2016-01-01
Most Filipina au pairs in Denmark send remittances back home, and for many, au pairing forms part of longer-term migration trajectories. This article explores how Filipina au pairs try to carve out a future for themselves abroad. It shows that they navigate within tight webs of financial interdep......Most Filipina au pairs in Denmark send remittances back home, and for many, au pairing forms part of longer-term migration trajectories. This article explores how Filipina au pairs try to carve out a future for themselves abroad. It shows that they navigate within tight webs of financial...
International Nuclear Information System (INIS)
Brunckhorst, Elin
2009-01-01
The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a 10 B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with 6 Li and 7 Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined with an
Energy Technology Data Exchange (ETDEWEB)
Brunckhorst, Elin
2009-02-26
The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a {sup 10}B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with {sup 6}Li and {sup 7}Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined
Prototype Stilbene Neutron Collar
Energy Technology Data Exchange (ETDEWEB)
Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-26
A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs ^{235}U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.