WorldWideScience

Sample records for neutron lifetime modeling

  1. Thermo-mechanical and neutron lifetime modelling and design of Be pebbles in the neutron multiplier for the LIFE engine

    International Nuclear Information System (INIS)

    DeMange, P.; Marian, J.; Caro, M.; Caro, A.

    2009-01-01

    Concept designs for the laser inertial fusion/fission energy (LIFE) engine include a neutron multiplication blanket containing Be pebbles flowing in a molten salt coolant. These pebbles must be designed to withstand the extreme irradiation and temperature conditions in the blanket to enable a reliable and cost-effective operation of LIFE. In this work, we develop design criteria for spherical Be pebbles on the basis of their thermo-mechanical behaviour under continued neutron exposure. We consider the effects of high fluence and fast fluxes on the elastic, thermal and mechanical properties of nuclear-grade Be. Our results suggest a maximum pebble diameter of 30 mm to avoid tensile failure, coated with an anti-corrosive, high-strength metallic shell to avoid failure by pebble contact. Moreover, we find that the operation temperature must always be kept above 450 deg. C to enable creep to relax the stresses induced by swelling. Under these circumstances, we estimate the pebble lifetime to be at least 16 months if uncoated, and up to six years when coated. We identify the sources of uncertainty on the properties used and discuss the advantages of new intermetallic beryllides and their use in LIFE's neutron multiplier. To establish Be-pebble lifetimes with improved confidence, reliable experiments to measure irradiation creep must be performed.

  2. Measuring the neutron lifetime using magnetically trapped neutrons

    Energy Technology Data Exchange (ETDEWEB)

    O' Shaughnessy, C.M.; Golub, R.; Schelhammer, K.W.; Swank, C.M.; Seo, P.-N. [North Carolina State University, 2401 Stinson Drive, Raleigh, NC (United States); Huffman, P.R., E-mail: Paul_Huffman@ncsu.ed [North Carolina State University, 2401 Stinson Drive, Raleigh, NC (United States); Dzhosyuk, S.N.; Mattoni, C.E.H.; Yang, L.; Doyle, J.M. [Harvard University, 17 Oxford Street, Cambridge, MA (United States); Coakley, K.J.; Thompson, A.K.; Mumm, H.P. [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD (United States); Lamoreaux, S.K.; McKinsey, D.N. [Yale University, 217 Prospect Street, New Haven, CT (United States); Yang, G. [University of Maryland, College Park, MD (United States)

    2009-12-11

    The neutron beta-decay lifetime plays an important role both in understanding weak interactions within the framework of the Standard Model and in theoretical predictions of the primordial abundance of {sup 4}He in Big Bang Nucleosynthesis. In previous work, we successfully demonstrated the trapping of ultracold neutrons in a conservative potential magnetic trap. A major upgrade of the apparatus is nearing completion at the National Institute of Standards and Technology Center for Neutron Research (NCNR). In our approach, a beam of 0.89 nm neutrons is incident on a superfluid {sup 4}He target within the minimum field region of an Ioffe-type magnetic trap. A fraction of the neutrons is downscattered in the helium to energies <200neV, and those in the appropriate spin state become trapped. The inverse process is suppressed by the low phonon density of helium at temperatures less than 200 mK, allowing the neutron to travel undisturbed. When the neutron decays the energetic electron ionizes the helium, producing scintillation light that is detected using photomultiplier tubes. Statistical limitations of the previous apparatus will be alleviated by significant increases in field strength and trap volume resulting in twenty times more trapped neutrons.

  3. Measuring the Neutron Lifetime with Magnetically Trapped Ultracold Neutrons

    Science.gov (United States)

    Mumm, H. P.; Huber, M. G.; Yue, A. T.; Thompson, A. K.; Dewey, M. S.; Huffer, C. R.; Huffman, P. R.; Schelhammer, K. W.; O'Shaughnessy, C.; Coakley, K. J.

    2014-03-01

    We describe an experiment to measure the neutron lifetime using a technique with a set of systematic uncertainties largely different than those of previous measurements. In this approach, ultracold neutrons (UCN) are produced by inelastic scattering of cold (0.89 nm) neutrons in a reservoir of superfluid 4He. These neutrons are then confined using a three-dimensional magnetic trap. As the trapped neutrons beta decay, the energetic electrons produced in the decay generate scintillations in the liquid He; each decay is detectable with nearly 100 % efficiency. The neutron lifetime can be directly determined by measuring the scintillation rate as a function of time.

  4. Prompt Neutron Lifetime for the NBSR Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, A.L.; Diamond, D.

    2012-06-24

    In preparation for the proposed conversion of the National Institute of Standards and Technology (NIST) research reactor (NBSR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, certain point kinetics parameters must be calculated. We report here values of the prompt neutron lifetime that have been calculated using three independent methods. All three sets of calculations demonstrate that the prompt neutron lifetime is shorter for the LEU fuel when compared to the HEU fuel and longer for the equilibrium end-of-cycle (EOC) condition when compared to the equilibrium startup (SU) condition for both the HEU and LEU fuels.

  5. Measuring the Neutron Lifetime using Magnetically Trapped Ultracold Neutrons

    Science.gov (United States)

    Mumm, H. P.; Coakley, K. J.; Dewey, M. S.; Huber, M. G.; Hughes, P. P.; Thompson, A. K.; Golub, R.; Huffer, C. R.; Huffman, P. R.; O'Shaughnessy, C. M.; Schelhammer, K. W.

    2010-11-01

    The neutron beta-decay lifetime is important in both theoretical predictions of the primordial abundance of ^4He and providing a strong unitarity test of the CKM mixing matrix. We have previously demonstrated trapping of Ultracold Neutrons (UCN) in a magnetic trap, and, though statistically limited, measured a lifetime consistent with the world average. A major upgrade of the apparatus has now been completed at NIST. In our unique approach, a 0.89 nm neutron beam is incident on a superfluid ^4He target within the minimum field region of an Ioffe-type magnetic trap. Neutrons are downscattered by single phonon scattering in liquid helium to near rest and trapped; at sufficiently low temperatures, the low phonon density in the helium suppresses upscatter. The electron accompanying neutron decay produces scintillation in the superfluid helium and can be detected in real time. Previous statistical limitations as well as systematics related to neutron material bottling will be reduced by significant increases in field strength and trap volume. Details of analyses of the systematics as well as the initial performance benchmarks of the new apparatus will be presented.

  6. Component lifetime modelling

    NARCIS (Netherlands)

    Verweij, J.F.; Verweij, J.F.; Brombacher, A.C.; Brombacher, A.C.; Lunenborg, M.M.; Lunenborg, M.M.

    1994-01-01

    There are two approaches to component lifetime modelling. The first one uses a reliability prediction method as described in the (military) handbooks with the appropriate models and parameters. The advantages are: (a) It takes into account all possible failure mechanisms. (b) It is easy to use. The

  7. Neutron lifetime experiments using magnetically trapped neutrons optimal background correction strategies

    CERN Document Server

    Coakley, K J

    2001-01-01

    In the first stage of each run of a neutron lifetime experiment, a magnetic trap is filled with neutrons. In the second stage of each run, decay events plus background events are observed. In a separate experiment, background is measured. The mean lifetime is estimated by fitting a two parameter exponential model to the background-corrected data. For two models of the background signal, I determine the optimal ratio of the number of 'background-only' measurements to the number of primary 'neutron decay plus background' measurements. Further, for each run, I determine the optimal allocation of time for filling and for observing decay events. For the case where the background consists of an activated material (aluminum) plus a stationary Poisson process, the asymptotic standard error of the lifetime estimate computed from the background-corrected data is lower than the asymptotic standard error computed from the uncorrected data. For the case where the background is a stationary Poisson process, background corr...

  8. The definition and computation of average neutron lifetimes

    International Nuclear Information System (INIS)

    Henry, A.F.

    1983-01-01

    A precise physical definition is offered for a class of average lifetimes for neutrons in an assembly of materials, either multiplying or not, or if the former, critical or not. A compact theoretical expression for the general member of this class is derived in terms of solutions to the transport equation. Three specific definitions are considered. Particular exact expressions for these are derived and reduced to simple algebraic formulas for one-group and two-group homogeneous bare-core models

  9. Statistical planning for a neutron lifetime experiment using magnetically trapped neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, K.J. [Nat. Inst. of Stand. and Technol., Boulder, CO (United States). Stat. Eng. Div.

    1998-04-11

    At the NIST cold neutron research facility, a two-stage experiment will be repeated many times. During the first stage of each run cycle, ultracold neutrons will be produced and confined in a magnetic trap filled with superfluid {sup 4}He. Ultracold neutrons will result when cold (8.9 A) neutrons undergo inelastic scattering in the superfluid helium. After filling the trap to a desired level, decay events will be recorded as a function of time. Detection is possible because the charged particles created by neutron decay generate detectable scintillations in the helium. In addition to neutron decay events, background events will be recorded. I model the background as a stationary Poisson process. By Monte Carlo methods, I study the performance of two nonlinear algorithms for estimating the mean lifetime of the neutron. In one method, the event time data are summarized as a histogram where the bin widths vary. I select the time endpoints of the bins so that the expected number of counts per bin contributed by the decay process is approximately constant. In the second method, the lifetime is estimated from the complete sequence of event times. The histogram method yields a less variable estimate than does the complete data estimation method. The allocation of time between the fill and decay stages affects the precision of the estimate. To get the optimal time allocation, I minimize the asymptotic variance of the estimated mean lifetime (estimated from the pooled histogram data from all cycles) given knowledge of the rate at which neutrons enter the trap and parameters which characterize the background. The mean lifetime estimate is biased. I observe bias reduction when estimating the lifetime from data pooled from many cycles (rather than averaging estimates from each of the cycles). (orig.) 14 refs.

  10. Recent Progress Towards a Measurement of the Neutron Lifetime Using Magnetically Trapped Ultracold Neutrons

    Science.gov (United States)

    Schelhammer, K. W.; Huffer, C. R.; Huffman, P. R.; Marley, D. E.; Coakley, K. J.; Huber, Michael; Hughes, P. P.; Mumm, H. P.; Thompson, A. K.; Yue, A. T.; Abrams, N. C.

    2012-03-01

    Free neutron beta decay is a fundamental process in the Standard Model that can be used to test the weak interaction as well as provide information about primordial ^4He abundance. Recent precision measurements of the neutron lifetime have led to reduced confidence in the absolute value of this parameter; due presumably to unknown systematic effects. This work seeks to measure the neutron lifetime using a different technique that employs a superconducting magnetic trap to confine ultracold neutrons. Neutrons are loaded into the trap through the superthermal technique where 1 mEv neutrons down scatter from phonons in liquid helium losing the majority of their energy. Neutrons in the appropriate spin state are then confined by the static magnetic field. During the past year, over 400 run cycles of data were collected using the upgraded apparatus. Analysis of previous data sets was limited due to large numbers of background events relative to the neutron decay signal. An increased number of trapped neutrons as well as a analysis using pulse shape discrimination allows one to significantly increase the overall precision of the measurement. Details of this ongoing analysis will be presented with preliminary results.

  11. Geant4 simulations of NIST beam neutron lifetime experiment

    Science.gov (United States)

    Valete, Daniel; Crawford, Bret; BL2 Collaboration Collaboration

    2017-09-01

    A free neutron is unstable and its decay is described by the Standard Model as the transformation of a down quark into an up quark through the weak interaction. Precise measurements of the neutron lifetime test the validity of the theory of the weak interaction and provide useful information for the predictions of the theory of Big Bang nucleosynthesis of the primordial helium abundance in the universe and the number of different types of light neutrinos Nν. The predominant experimental methods for determination of the neutron lifetime are commonly called `beam' and `bottle' methods, and the most recent uses of each method do not agree with each other within their stated uncertainties. An improved experiment of the beam technique, which uses magnetic and electric fields to trap and guide the decay protons of a beam of cold neutrons to a detector, is in progress at the National Institute of Standards and Technology, Gaithersburg, MD with a precision goal of 0.1. I acknowledge the support of the Cross-Diciplinary Institute at Gettysburg College.

  12. Continued Analysis of the NIST Neutron Lifetime Measurement Using Ultracold Neutrons

    Science.gov (United States)

    Huffer, Craig; Huffman, P. R.; Schelhammer, K. W.; Dewey, M. S.; Huber, M. G.; Hughes, P. P.; Mumm, H. P.; Thompson, A. K.; Coakley, K.; Yue, A. T.; O'Shaughnessy, C. M.; Yang, L.

    2013-10-01

    The neutron lifetime is an important parameter for constraining the Standard Model and providing input for Big Bang Nucleosynthesis. The current disagreement in the most recent generation of lifetime experiments suggests unknown or underestimated systematics and motivates the need for alternative measurement methods as well as additional investigations into potential systematics. Our measurement was performed using magnetically trapped Ultracold Neutrons in a 3.1 T Ioffe type trap configuration. The decay rate of the neutron population is recorded in real time by monitoring visible light resulting from beta decay. Data collected in late 2010 and early 2011 is being analyzed and systematic effects are being investigated. An overview of our current work on the analysis, Monte Carlo simulations, and systematic effects will be provided. This work was supported by the NSF and NIST.

  13. Neutron lifetime experiments using magnetically trapped neutrons: optimal background correction strategies

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, K.J. E-mail: kevin.coakley@nist.gov

    2001-08-21

    In the first stage of each run of a neutron lifetime experiment, a magnetic trap is filled with neutrons. In the second stage of each run, decay events plus background events are observed. In a separate experiment, background is measured. The mean lifetime is estimated by fitting a two parameter exponential model to the background-corrected data. For two models of the background signal, I determine the optimal ratio of the number of 'background-only' measurements to the number of primary 'neutron decay plus background' measurements. Further, for each run, I determine the optimal allocation of time for filling and for observing decay events. For the case where the background consists of an activated material (aluminum) plus a stationary Poisson process, the asymptotic standard error of the lifetime estimate computed from the background-corrected data is lower than the asymptotic standard error computed from the uncorrected data. For the case where the background is a stationary Poisson process, background correction is desirable provided that the background intensity is sufficiently small compared to the rate at which neutrons enter the trap.

  14. Lifetime measurement of prompt neutrons using the neutronic noise analysis

    International Nuclear Information System (INIS)

    Ortiz Servin, J.J.

    1992-01-01

    The purpose of this work is to estimate the life of the prompt neutrons, i, of a nuclear reactor utilizing the neutron noise analysis. This technique carry to development of mathematical model that is valid for lower powers reactor. The equation resulting convey to the observation about power spectrum behaviour respect to the frecquency. In this case, the reactor in study is the Triga Mark III of Nuclear Center of Mexico that it was provided of fission chambers for register the neutron fluxes. These fluxes was digitized and storage in computer disc as signals dependents of time, for later apply the Fourier Transformation and obtain the spectras. The spectras measured to different reactor powers were adjusted to the development equation before, using the method of square minimum and so estimate the parameter i. The analysis of results throw a value of 22.73 +/- 0.92 μs. On the other hand, the calculate value to the resolve the kinetic equation of reactor defer in lower than 4 % about the estimate. Of this, it concludes that the model utilized is trusty with a good mistake margin, moreover of that the technique of Neutron Noise analysis demonstrate be competitive (Author)

  15. Three frequency modulated combination thermal neutron lifetime log and porosity

    International Nuclear Information System (INIS)

    Paap, H.J.; Arnold, D.M.; Smith, M.P.

    1976-01-01

    Methods are disclosed for measuring simultaneously the thermal neutron lifetime of the borehole fluid and earth formations in the vicinity of a well borehole, together with the formation porosity. A harmonically intensity modulated source of fast neutrons is used to irradiate the earth formations with fast neutrons at three different modulation frequencies. Intensity modulated clouds of thermal neutrons at each of the three modulation frequencies are detected by dual spaced detectors and the relative phase shift of the thermal neutrons with respect to the fast neutrons is determined at each of the three modulation frequencies at each detector. These measurements are then combined to determine simultaneously the thermal neutron decay time of the borehole fluid, the thermal neutron decay time of surrounding earth formation media and the porosity of the formation media

  16. 2012 Next Generation Experiments to Measure the Neutron Lifetime Workshop

    CERN Document Server

    2014-01-01

    There is a great interest in improving the limits on neutron lifetime to the level of a precision of 0.1 s. The neutron lifetime is both an important fundamental quantity as well as a parameter influencing important processes such as nucleosynthesis (Helium production in the early universe) and the rate of energy production in the Sun. Aiming to create a roadmap of R&D for a next generation neutron lifetime experiment that can be endorsed by the North American neutron community, the focus of the workshop was on experiments using traps that utilize ultracold neutrons and confinement by a combination of magnetic and/or gravitational interaction in order to avoid systematic uncertainties introduced by neutron interactions with material walls. The papers in this volume summarize the limitations of present experiments, the discussion of new experiments in planning stage, and the discussion of systematic effects that must be addressed to achieve a lifetime measurement at an accuracy of 0.1 second.

  17. Positron lifetime study of neutron-irradiated molybdenum

    International Nuclear Information System (INIS)

    Hinode, Kenji; Tanigawa, Shoichiro; Kumakura, Hiroaki; Doyama, Masao; Shiraishi, Kensuke.

    1978-01-01

    Annealing behavior of fast-neutron-irradiated molybdenum was studied by means of positron lifetime technique. It was found that Stage III annealing can be mainly identified as the vacancy migration process from the detailed analyses of data. The void growth after successive high temperature annealings was clearly detected through the changes of positron lifetime parameters. An attempt to analyse the size distribution of voids from positron lifetime spectra was presented, and discussions on the evaluation of void concentration from positron data are also given. (author)

  18. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core.

    Science.gov (United States)

    Lashkari, A; Khalafi, H; Kazeminejad, H

    2013-05-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change.

  19. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    Science.gov (United States)

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change. PMID:24976672

  20. Neutron lifetime measurement with a double trap for ultra cold neutrons

    International Nuclear Information System (INIS)

    Pichlmaier, A.; Nesvizhevsky, V.; Neumaier, S.; Geltenbort, P.; Schreckenbach, K.; Varlamov, V.

    1997-01-01

    The main troubles met during experiments dealing with free neutrons beta decay lifetime measurement by ultracold neutron storage in a double trap are discussed. The main improvements for the experiment successful realization are considered. These are the following. The neutrons are stored in traps which walls are covered with Fomblin oil. The outer volume serves for preliminary storage and as an ultracold neutrons monochromator by gravity and the absorber plate. The inner volume presents a storage volume of variable size for the neutron lifetime measurement. The neutrons are first filled into the outer trap. Then the storage trap is filled and closed by the shutter against the outer trap. After the storage time the shutter is opened and the remaining ultracold neutrons are counted in the detector. It is shown that while the lifetime in the preliminary storage volume is of the order of 200 sec the lifetime in the main storage volume is typically only 20 % shorter than the lifetime of the free neutron

  1. Prospects for a new cold neutron beam measurement of the neutron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Geoffrey L [ORNL; Snow, William M [ORNL; Dewey, M. [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Gilliam, D [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Nico, Jeffrey S [ORNL; Coakley, K [National Institute of Standards and Technology (NIST), Boulder; Yue, A [University of Tennessee, Knoxville (UTK); Laptev, A [Los Alamos National Laboratory (LANL); Wietfeldt, F [Tulane University

    2009-01-01

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  2. Prospects for a new cold neutron beam measurement of the neutron lifetime

    Science.gov (United States)

    Dewey, M.; Coakley, K.; Gilliam, D.; Greene, G.; Laptev, A.; Nico, J.; Snow, W.; Wietfeldt, F.; Yue, A.

    2009-12-01

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  3. Prospects for a new cold neutron beam measurement of the neutron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, M., E-mail: mdewey@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Coakley, K., E-mail: kevin.coakley@nist.go [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Gilliam, D., E-mail: david.gilliam@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Greene, G., E-mail: greenegl@ornl.go [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Lab, Building 6010, Oak Ridge, TN 37831 (United States); Laptev, A., E-mail: alaptev@nist.go [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Nico, J., E-mail: jnico@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Snow, W., E-mail: wsnow@indiana.ed [Indiana University/IUCF, Bloomington, IN 47408 (United States); Wietfeldt, F., E-mail: few@tulane.ed [Tulane University, New Orleans, LA 70118 (United States); Yue, A., E-mail: ayue@nist.go [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States)

    2009-12-11

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  4. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    OpenAIRE

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parame...

  5. Experimental study of the lifetime and phase transition in neutron-rich Zr 98 ,100 ,102

    Science.gov (United States)

    Ansari, S.; Régis, J.-M.; Jolie, J.; Saed-Samii, N.; Warr, N.; Korten, W.; Zielińska, M.; Salsac, M.-D.; Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T.; Simpson, G. S.; Drouet, F.; Vancraeyenest, A.; de France, G.; Clément, E.; Stezowski, O.; Ur, C. A.; Urban, W.; Regan, P. H.; Podolyák, Zs.; Larijani, C.; Townsley, C.; Carroll, R.; Wilson, E.; Mach, H.; Fraile, L. M.; Paziy, V.; Olaizola, B.; Vedia, V.; Bruce, A. M.; Roberts, O. J.; Smith, J. F.; Scheck, M.; Kröll, T.; Hartig, A.-L.; Ignatov, A.; Ilieva, S.; Lalkovski, S.; Mǎrginean, N.; Otsuka, T.; Shimizu, N.; Togashi, T.; Tsunoda, Y.

    2017-11-01

    Rapid shape changes are observed for neutron-rich nuclei with A around 100. In particular, a sudden onset of ground-state deformation is observed in the Zr and Sr isotopic chains at N = 60: Low-lying states in N ≤58 nuclei are nearly spherical, while those with N ≥60 have a rotational character. Nuclear lifetimes as short as a few picoseconds can be measured using fast-timing techniques with LaBr3(Ce) scintillators, yielding a key ingredient in the systematic study of the shape evolution in this region. We used neutron-induced fission of 241Pu and 235U to study lifetimes of excited states in fission fragments in the A ˜100 region with the EXILL-FATIMA array located at the PF1B cold neutron beam line at the Institut Laue-Langevin. In particular, we applied the generalized centroid difference method to deduce lifetimes of low-lying states for the nuclei 98Zr (N = 58), 100Zr, and 102Zr (N ≥60 ). The results are discussed in the context of the presumed phase transition in the Zr chain by comparing the experimental transition strengths with the theoretical calculations using the interacting boson model and the Monte Carlo shell model.

  6. Optimal proton trapping strategy for a neutron lifetime experiment

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, Kevin J. [Statistical Engineering Division, National Institute of Standards and Technology, 325 Broadway, Boulder, C0 80305 (United States)]. E-mail: kevin.coakley@nist.gov

    2007-07-11

    In a neutron lifetime experiment conducted at the National Institute of Standards and Technology, protons produced by neutron decay events are confined in a proton trap. In each run of the experiment, there is a trapping stage of duration {tau}. After the trapping stage, protons are purged from the trap. A proton detector provides incomplete information because it goes dead after detecting the first of any purged protons. Further, there is a dead time {delta} between the end of the trapping stage in one run and the beginning of the next trapping stage in the next run. Based on the fraction of runs where a proton is detected, I estimate the trapping rate {lambda} by the method of maximum likelihood. I show that the expected value of the maximum likelihood estimate is infinite. To obtain a maximum likelihood estimate with a finite expected value and a well-defined and finite variance, I restrict attention to a subsample of all realizations of the data. This subsample excludes an exceedingly rare realization that yields an infinite-valued estimate of {lambda}. I present asymptotically valid formulas for the bias, root-mean-square prediction error, and standard deviation of the maximum likelihood estimate of {lambda} for this subsample. Based on nominal values of {lambda} and the dead time {delta}, I determine the optimal duration of the trapping stage {tau} by minimizing the root-mean-square prediction error of the estimate.

  7. Neutronic Analyses in Support of the HFIR Beamline Modifications and Lifetime Extension

    Science.gov (United States)

    Remec, I.; Blakeman, E. D.

    2009-08-01

    At the High Flux Isotope Reactor, in operation since 1966 at the Oak Ridge National Laboratory, a larger HB-2 beam tube was installed to enhance capabilities for neutron science research. Neutronic analyses, including dosimetry measurements, radiation transport simulations, and simultaneous neutron and gamma spectrum adjustment calculations, performed to assess the impact of modifications on the PV lifetime are presented.

  8. On the definition of neutron lifetimes in multiplying and non-multiplying systems

    International Nuclear Information System (INIS)

    Spriggs, G.D.; Adams, K.J.; Parsons, D.K.

    1997-01-01

    Historically, the term neutron lifetime has been used in the literature to describe a wide variety of different time intervals associated with a neutron's trek through a given system. This duplication of usage of the term neutron lifetime has undoubtedly resulted in some confusion concerning its physical meaning. In hopes of reducing some of this confusion, we suggest in this work that the various time intervals characterizing the life of a neutron be divided into three general categories: (1) neutron lifespans, (2) reaction rate lifetimes, and (3) neutron generation times. In this report, we define these three different time intervals and give deterministic and Monte Carlo transport expressions that can be used to calculate them

  9. Models for Battery Reliability and Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  10. New measurement of the neutron lifetime with a large gravitational trap

    Science.gov (United States)

    Serebrov, A. P.; Kolomenskiy, E. A.; Fomin, A. K.; Krasnoschekova, I. A.; Vassiljev, A. V.; Prudnikov, D. M.; Shoka, I. V.; Chechkin, A. V.; Chaikovskii, M. E.; Varlamov, V. E.; Ivanov, S. N.; Pirozhkov, A. N.; Geltenbort, P.; Zimmer, O.; Jenke, T.; Van der Grinten, M.; Tucker, M.

    2017-11-01

    The lifetime of the neutron is one of the key physical quantities used to determine the weak interaction parameters and to test predictions of the theory of primary nucleosynthesis. The lifetime of the neutron has been measured in the reported experiment by the method of storing neutrons in a material trap with a gravitational valve. Fomblin grease UT-18 hydrogen-free fluorine polymer has been used as coating. The resistance of the coating to repeated cooling down to 80 K combined with heating up to 300 K has been studied. The probability of losses in the trap is as small as 1.5% of the neutron decay probability. The lifetime of the neutron τn = (881.5 ± 0.7stat ± 0.6syst)s obtained at the new step is in good agreement with a commonly accepted value of (880.2 ± 1.0) s presented by the Particle Data Group.

  11. Statistical Models and Methods for Lifetime Data

    CERN Document Server

    Lawless, Jerald F

    2011-01-01

    Praise for the First Edition"An indispensable addition to any serious collection on lifetime data analysis and . . . a valuable contribution to the statistical literature. Highly recommended . . ."-Choice"This is an important book, which will appeal to statisticians working on survival analysis problems."-Biometrics"A thorough, unified treatment of statistical models and methods used in the analysis of lifetime data . . . this is a highly competent and agreeable statistical textbook."-Statistics in MedicineThe statistical analysis of lifetime or response time data is a key tool in engineering,

  12. Prospects for a new cold neutron beam measurement of theneutron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, M. [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Gilliam, D [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Coakley, K [National Institute of Standards and Technology (NIST), Boulder; Greene, G [University of Tennessee, Knoxville (UTK); Yue, A [University of Tennessee, Knoxville (UTK); Greene, G [Oak Ridge National Laboratory (ORNL); Laptev, A [Los Alamos National Laboratory (LANL); Snow, W [Indiana University Cyclotron Facility, Bloomington, IN; Wietfeldt, F [Tulane University

    2009-01-01

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  13. The reflector effect on the neutron lifetimes in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Gonnelli, Eduardo

    2013-01-01

    The aim of this study is to present the reflector effect on the neutron lifetimes in the IPEN/MB-01 reactor. The proposed method requires an approach which takes into account both the reflector and the core, so that the point kinetics equations, which constitute the theoretical basis of all mathematical development, contemplate both regions of the reactor. From these equations, as known as two regions kinetics point equations, theoretical expressions are obtained for the Auto Power Spectral Densities (APSD), which are used for least squares fit of the experimental data of APSD obtained in several subcritical states. The prompt neutron generation time, the neutron lifetimes in the reflector and the neutron return fraction from the reflector to the core are derived from the fitting. (author)

  14. Neutron equivalent doses and associated lifetime cancer incidence risks for head & neck and spinal proton therapy

    Science.gov (United States)

    Athar, Basit S.; Paganetti, Harald

    2009-08-01

    In this work we have simulated the absorbed equivalent doses to various organs distant to the field edge assuming proton therapy treatments of brain or spine lesions. We have used computational whole-body (gender-specific and age-dependent) voxel phantoms and considered six treatment fields with varying treatment volumes and depths. The maximum neutron equivalent dose to organs near the field edge was found to be approximately 8 mSv Gy-1. We were able to clearly demonstrate that organ-specific neutron equivalent doses are age (stature) dependent. For example, assuming an 8-year-old patient, the dose to brain from the spinal fields ranged from 0.04 to 0.10 mSv Gy-1, whereas the dose to the brain assuming a 9-month-old patient ranged from 0.5 to 1.0 mSv Gy-1. Further, as the field aperture opening increases, the secondary neutron equivalent dose caused by the treatment head decreases, while the secondary neutron equivalent dose caused by the patient itself increases. To interpret the dosimetric data, we analyzed second cancer incidence risks for various organs as a function of patient age and field size based on two risk models. The results show that, for example, in an 8-year-old female patient treated with a spinal proton therapy field, breasts, lungs and rectum have the highest radiation-induced lifetime cancer incidence risks. These are estimated to be 0.71%, 1.05% and 0.60%, respectively. For an 11-year-old male patient treated with a spinal field, bronchi and rectum show the highest risks of 0.32% and 0.43%, respectively. Risks for male and female patients increase as their age at treatment time decreases.

  15. Lifetime Modeling of Thermal Barrier Coatings

    OpenAIRE

    Hille, T.S.

    2009-01-01

    Thermal barrier coatings (TBCs) are applied in gas turbines to enhance their thermal efficiency by isolating the metallic components from the aggressive hot gas. TBC lifetime is limited by damage processes originating at internal interfaces, which may ultimately lead to delamination and spallation. In the present thesis constitutive models are presented for the coating components and the most detrimental failure mechanisms. To simulate the thermomechanical failure response, the numerical mode...

  16. Optimizing design of converters using power cycling lifetime models

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Ørndrup; Munk-Nielsen, Stig

    2015-01-01

    Converter power cycling lifetime depends heavily on converter operation point. A lifetime model of a single power module switched mode power supply with wide input voltage range is shown. A lifetime model is created using a power loss model, a thermal model and a model for power cycling capability...

  17. Heuristic Modeling for TRMM Lifetime Predictions

    Science.gov (United States)

    Jordan, P. S.; Sharer, P. J.; DeFazio, R. L.

    1996-01-01

    Analysis time for computing the expected mission lifetimes of proposed frequently maneuvering, tightly altitude constrained, Earth orbiting spacecraft have been significantly reduced by means of a heuristic modeling method implemented in a commercial-off-the-shelf spreadsheet product (QuattroPro) running on a personal computer (PC). The method uses a look-up table to estimate the maneuver frequency per month as a function of the spacecraft ballistic coefficient and the solar flux index, then computes the associated fuel use by a simple engine model. Maneuver frequency data points are produced by means of a single 1-month run of traditional mission analysis software for each of the 12 to 25 data points required for the table. As the data point computations are required only a mission design start-up and on the occasion of significant mission redesigns, the dependence on time consuming traditional modeling methods is dramatically reduced. Results to date have agreed with traditional methods to within 1 to 1.5 percent. The spreadsheet approach is applicable to a wide variety of Earth orbiting spacecraft with tight altitude constraints. It will be particularly useful to such missions as the Tropical Rainfall Measurement Mission scheduled for launch in 1997, whose mission lifetime calculations are heavily dependent on frequently revised solar flux predictions.

  18. Application of flexible model in neutron dynamics equations

    International Nuclear Information System (INIS)

    Liu Cheng; Zhao Fuyu; Fu Xiangang

    2009-01-01

    Big errors will occur in the modeling by multimode methodology when the available core physical parameter sets are insufficient. In this paper, the fuzzy logic membership function is introduced to figure out the values of these parameters on any point of lifetime through limited several sets of values, and thus to obtain the neutron dynamics equations on any point of lifetime. In order to overcome the effect of subjectivity in the membership function selection on the parameter calculation, quadratic optimization is carried out to the membership function by genetic algorithm, to result in a more accurate neutron kinetics equation on any point of lifetime. (authors)

  19. Development of a new superfluid helium ultra-cold neutron source and a new magnetic trap for neutron lifetime measurements

    International Nuclear Information System (INIS)

    Leung, Kent Kwan Ho

    2013-01-01

    The development of an Ultra-Cold Neutron (UCN) source at the Institut Laue-Langevin (ILL) based on super-thermal down-scattering of a Cold Neutron (CN) beam in superfluid 4 He is described. A continuous flow, self-liquefying 3 He cryostat was constructed. A beryllium coated prototype converter vessel with a vertical, window-less extraction system was tested on the PF1b CN beam at the ILL. Accumulation measurements with a mechanical valve, and continuous measurements with the vessel left open, were made. The development of a new magnetic UCN trap for neutron lifetime (τ β ) measurements is also described. A 1.2 m long octupole made from permanent magnets, with a bore diameter of 94 mm and surface field of 1.3 T, was assembled. This will be combined with a superconducting coil assembly and used with vertical confinement of UCN by gravity. A discussion of the systematic effects, focussing on the cleaning of above-threshold UCNs, is given. The possibility of detecting the charged decay products is also discussed. UCN storage experiments with the magnetic array and a fomblin-coated piston were performed on PF2 at the ILL. These measurements studied depolarization, spectrum cleaning, and loss due to material reflections in the trap experimentally.

  20. Lifetime Modeling of Thermal Barrier Coatings

    NARCIS (Netherlands)

    Hille, T.S.

    2009-01-01

    Thermal barrier coatings (TBCs) are applied in gas turbines to enhance their thermal efficiency by isolating the metallic components from the aggressive hot gas. TBC lifetime is limited by damage processes originating at internal interfaces, which may ultimately lead to delamination and spallation.

  1. Lifetime of {sup 44}Ti as probe for supernova models

    Energy Technology Data Exchange (ETDEWEB)

    Goerres, J.; Meissner, J.; Schatz, H.; Stech, E.; Tischhauser, P.; Wiescher, M. [Univ. of Notre Dame, Notre Dame, IN (United States); Bazin, D.; Harkewicz, R.; Hellstroem, M.; Sherrill, B.; Steiner, M. [Michigan State Univ., East Lansing, MI (United States); Boyd, R.N. [Ohio State Univ., Columbus, OH (United States); Buchmann, L. [TRIUMF, Vancouver, BC (Canada); Hartmann, D.H. [Clemson Univ., Clemson, SC (United States); Hinnefeld, J.D. [Indiana Univ. South Bend, South Bend, IN (United States)

    1998-06-01

    The recent observation of {sup 44}Ti radioactivity in the supernova remnant Cassiopeia A with the Compton Gamma Ray Observatory allows the determination of the absolute amount of {sup 44}Ti. This provides a test for current supernova models. The main uncertainty is the lifetime of {sup 44}Ti. We report a new measurement of the lifetime of {sup 44}Ti applying a novel technique. A mixed radioactive beam containing {sup 44}Ti as well as {sup 22}Na was implanted and the resulting {gamma}-activity was measured. This allowed the determination of the lifetime of {sup 44}Ti relative to the lifetime of {sup 22}Na, {tau} = (87.0 {+-} 1.9) y. With this lifetime, the {sup 44}Ti abundance agrees with theoretical predictions within the remaining observational uncertainties. (orig.)

  2. Lifetime-Aware Cloud Data Centers: Models and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Luca Chiaraviglio

    2016-06-01

    Full Text Available We present a model to evaluate the server lifetime in cloud data centers (DCs. In particular, when the server power level is decreased, the failure rate tends to be reduced as a consequence of the limited number of components powered on. However, the variation between the different power states triggers a failure rate increase. We therefore consider these two effects in a server lifetime model, subject to an energy-aware management policy. We then evaluate our model in a realistic case study. Our results show that the impact on the server lifetime is far from negligible. As a consequence, we argue that a lifetime-aware approach should be pursued to decide how and when to apply a power state change to a server.

  3. Positron annihilation lifetime measurements of vanadium alloy and F82H irradiated with fission and fusion neutrons

    International Nuclear Information System (INIS)

    Sato, K.; Inoue, K.; Yoshiie, T.; Xu, Q.; Wakai, E.; Kutsukake, C.; Ochiai, K.

    2009-01-01

    V-4Cr-4Ti, F82H, Ni and Cu were irradiated with fission and fusion neutrons at room temperature and 473 K. Defect structures were analyzed and compared using positron annihilation lifetime measurement, and microstructural evolution was discussed. The mean lifetime of positrons (the total amount of residual defects) increased with the irradiation dose. The effect of cascade impact was detected in Ni at room temperature. The size and the number of vacancy clusters were not affected by the displacement rate in the fission neutron irradiation at 473 K for the metals studied. The vacancy clusters were not formed in V-4Cr-4Ti irradiated at 473 K in the range of 10 -6 -10 -3 dpa. In F82H irradiated at 473 K, the defect evolution was prevented by pre-existing defects. The mean lifetime of positrons in fission neutron irradiation was longer than that in fusion neutron irradiation in V-4Cr-4Ti at 473 K. It was interpreted that more closely situated subcascades were formed in the fusion neutron irradiation and subcascades interacted with each other, and consequently the vacancy clusters did not grow larger.

  4. Predictive Models of Li-ion Battery Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler; Wood, Eric; Santhanagopalan, Shriram; Kim, Gi-heon; Shi, Ying; Pesaran, Ahmad

    2015-06-15

    It remains an open question how best to predict real-world battery lifetime based on accelerated calendar and cycle aging data from the laboratory. Multiple degradation mechanisms due to (electro)chemical, thermal, and mechanical coupled phenomena influence Li-ion battery lifetime, each with different dependence on time, cycling and thermal environment. The standardization of life predictive models would benefit the industry by reducing test time and streamlining development of system controls.

  5. Modeling and optimization of membrane lifetime in dead-end ultra filtration

    NARCIS (Netherlands)

    Zondervan, Edwin; Roffel, Brian

    2008-01-01

    In this paper, a membrane lifetime model is developed and experimentally validated. The lifetime model is based on the Weibull probability density function. The lifetime model can be used to determine an unambiguous characteristic membrane lifetime. Experimental results showed that membrane lifetime

  6. Neutrons and model membranes

    Science.gov (United States)

    Fragneto, G.

    2012-11-01

    Current research in membrane protein biophysics highlights the emerging role of lipids in shaping membrane protein function. Cells and organisms have developed sophisticated mechanisms for controlling the lipid composition and many diseases are related to the failure of these mechanisms. One of the recent advances in the field is the discovery of the existence of coexisting micro-domains within a single membrane, important for regulating some signaling pathways. Many important properties of these domains remain poorly characterized. The characterization and analysis of bio-interfaces represent a challenge. Performing measurements on these few nanometer thick, soft, visco-elastic and dynamic systems is close to the limits of the available tools and methods. Neutron scattering techniques including small angle scattering, diffraction, reflectometry as well as inelastic methods are rapidly developing for these studies and are attracting an increasing number of biologists and biophysicists at large facilities. This manuscript will review some recent progress in the field and provide perspectives for future developments. It aims at highlighting neutron reflectometry as a versatile method to tackle questions dealing with the understanding and function of biomembranes and their components. The other important scattering methods are only briefly introduced.

  7. Modeling churn using customer lifetime value

    OpenAIRE

    Glady, Nicolas; Baesens, Bart; Croux, Christophe

    2009-01-01

    The definition and modeling of customer loyalty have been central issues in customer relationship management since many years. Recent papers propose solutions to detect customers that are becoming less loyal, also called churners. The churner status is then defined as a function of the volume of commercial transactions. In the context of a Belgian retail financial service company, our first contribution is to redefine the notion of customer loyalty by considering it from a customer-centric vi...

  8. A theoretical model for predicting neutron fluxes for cyclic Neutron ...

    African Journals Online (AJOL)

    A theoretical model has been developed for prediction of thermal neutron fluxes required for cyclic irradiations of a sample to obtain the same activity previously used for the detection of any radionuclide of interest. The model is suitable for radiotracer production or for long-lived neutron activation products where the ...

  9. Lifetime injury prevention: the sport profile model.

    Science.gov (United States)

    Webborn, Nick

    2012-03-01

    Participation in sporting activities carries an injury risk. Conversely, the increased awareness that physical inactivity is a major risk factor for disease has led government agencies and the medical community to encourage increased levels of physical activity. Many people will achieve this through participation in sport. Injury inevitably leads to a reduction in participation on a temporary or permanent basis, but the injury experience may also influence the lifelong physical activity behaviour. Few studies adequately examine the possible long-term consequences of sport participation after the competitive period has been completed, but by understanding the patterns of injuries in different sports one test can develop strategies to prevent and better manage the conditions that occur and promote lifelong physical activity. There is a need to develop models of understanding of injury risk at different life phases and levels of participation in a specific sport. The risk assessment of sport participation has to be relevant to a particular sport, the level of participation, skill, age and potential future health consequences. This article describes a sport-specific model which will improve guidance for coaches and healthcare professionals. It poses questions for sports physicians, healthcare providers, educators and for governing bodies of sports to address in a systematic fashion. Additionally the governing body, as an employer, will need to meet the requirements for risk assessment for professional sport and its ethical responsibility to the athlete.

  10. Tests of prototype magnets and study on a MCP based proton detector for the neutron lifetime experiment PENeLOPE

    International Nuclear Information System (INIS)

    Materne, Stefan

    2013-01-01

    The precision experiment PENeLOPE will store ultra-cold neutrons in a magnetic trap and determine the neutron lifetime via the time-resolved counting of the decay-protons. The thesis reports on training and performance tests of prototypes of the superconducting coils. Additionally, a magnetic field mapper for PENeLOPE was characterized. In the second part of the thesis, microchannel plates (MCPs) were studied with alpha particles and protons as a possible candidate for the decay particle detector in PENeLOPE.

  11. Neutron scattering and models: Titanium

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.

    1997-07-01

    Differential neutron elastic-scattering cross sections of elemental titanium were measured from 4.5 {r_arrow} 10.0 MeV in incident energy increments of {approx} 0.5 MeV. At each energy the measurements were made at forty or more scattering angles distributed between {approx} 17 and 160{degree}. Concurrently, differential neutron inelastic-scattering cross sections were measured for observed excitations of 0.975 {+-} 0.034, 1.497 {+-} 0.033, 2.322 {+-} 0.058, 3.252 {+-} 0.043, 3.700 {+-} 0.093, 4.317 {+-} 0.075 and 4.795 {+-} 0.100 MeV. All of the observed inelastically-scattered neutron groups were composites of contributions from several isotopes and/or levels. The experimental results were used to develop energy-average optical, statistical and coupled-channels models.

  12. Mathematical Model of Lifetime Duration at Insulation of Electrical Machines

    Directory of Open Access Journals (Sweden)

    Mihaela Răduca

    2009-10-01

    Full Text Available Abstract. This paper present a mathematical model of lifetime duration at hydro generator stator winding insulation when at hydro generator can be appear the damage regimes. The estimation to make by take of the programming and non-programming revisions, through the introduction and correlation of the new defined notions.

  13. Remaining lifetime modeling using State-of-Health estimation

    Science.gov (United States)

    Beganovic, Nejra; Söffker, Dirk

    2017-08-01

    Technical systems and system's components undergo gradual degradation over time. Continuous degradation occurred in system is reflected in decreased system's reliability and unavoidably lead to a system failure. Therefore, continuous evaluation of State-of-Health (SoH) is inevitable to provide at least predefined lifetime of the system defined by manufacturer, or even better, to extend the lifetime given by manufacturer. However, precondition for lifetime extension is accurate estimation of SoH as well as the estimation and prediction of Remaining Useful Lifetime (RUL). For this purpose, lifetime models describing the relation between system/component degradation and consumed lifetime have to be established. In this contribution modeling and selection of suitable lifetime models from database based on current SoH conditions are discussed. Main contribution of this paper is the development of new modeling strategies capable to describe complex relations between measurable system variables, related system degradation, and RUL. Two approaches with accompanying advantages and disadvantages are introduced and compared. Both approaches are capable to model stochastic aging processes of a system by simultaneous adaption of RUL models to current SoH. The first approach requires a priori knowledge about aging processes in the system and accurate estimation of SoH. An estimation of SoH here is conditioned by tracking actual accumulated damage into the system, so that particular model parameters are defined according to a priori known assumptions about system's aging. Prediction accuracy in this case is highly dependent on accurate estimation of SoH but includes high number of degrees of freedom. The second approach in this contribution does not require a priori knowledge about system's aging as particular model parameters are defined in accordance to multi-objective optimization procedure. Prediction accuracy of this model does not highly depend on estimated SoH. This model

  14. Predictive Models of Li-ion Battery Lifetime (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A.

    2014-09-01

    Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. Lacking accurate models and tests, lifetime uncertainty must be absorbed by overdesign and warranty costs. Degradation models are needed that predict lifetime more accurately and with less test data. Models should also provide engineering feedback for next generation battery designs. This presentation reviews both multi-dimensional physical models and simpler, lumped surrogate models of battery electrochemical and mechanical degradation. Models are compared with cell- and pack-level aging data from commercial Li-ion chemistries. The analysis elucidates the relative importance of electrochemical and mechanical stress-induced degradation mechanisms in real-world operating environments. Opportunities for extending the lifetime of commercial battery systems are explored.

  15. The neutron optical model potential

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1989-01-01

    The present status of optical model calculations of neutron scattering and interactions is reviewed, with special emphasis on more recent developments and the more promising lines of research. The use of dispersion relations to provide an extra constraint on the potential is discussed, together with their application to studies of the Fermi surface anomaly. The application of potential inversion techniques to determine the form of the potential is also considered. (author). 39 refs, figs

  16. Modeling lifetime of high power IGBTs in wind power applications

    DEFF Research Database (Denmark)

    Busca, Cristian

    2011-01-01

    The wind power industry is continuously developing bringing to the market larger and larger wind turbines. Nowadays reliability is more of a concern than in the past especially for the offshore wind turbines since the access to offshore wind turbines in case of failures is both costly and difficult....... Lifetime modeling of future large wind turbines is needed in order to make reliability predictions about these new wind turbines early in the design phase. By doing reliability prediction in the design phase the manufacturer can ensure that the new wind turbines will live long enough. This paper represents...... an overview of the different aspects of lifetime modeling of high power IGBTs in wind power applications. In the beginning, wind turbine reliability survey results are briefly reviewed in order to gain an insight into wind turbine subassembly failure rates and associated downtimes. After that the most common...

  17. Dynamical modeling and lifetime analysis of geostationary transfer orbits

    Science.gov (United States)

    Wang, Yue; Gurfil, Pini

    2016-11-01

    The dynamics and lifetime reduction of geostationary transfer orbits (GTOs) are of great importance to space debris mitigation. The orbital dynamics, subjected to a complex interplay of multiple perturbations, are complicated and sensitive to the initial conditions and model parameters. In this paper, a simple but effective non-singular orbital dynamics model in terms of Milankovitch elements is derived. The orbital dynamics, which include the Earth oblateness, luni-solar perturbations, and atmospheric drag, are averaged over the orbital motion of the GTO object, or, as needed, also over the orbital motions of the Moon and Sun, to eliminate the short-period terms. After the averaging process, the effect of the atmospheric drag assumes a simple analytical form. The averaged orbital model is verified through a numerical simulation compared with commercial orbit propagators. GTO lifetime reduction by using the luni-solar perturbations is studied. It is shown that the long-period luni-solar perturbation is induced by the precession of the GTO orbital plane and apsidal line, whereas the short-period perturbation is induced by the periodic luni-solar orbital motions. The long- and short-period perturbations are isolated and studied separately, and their global distribution with respect to the orbital geometry is given. The desired initial orbital geometry with a short orbital lifetime is found and verified by a numerical simulation.

  18. Classification of customer lifetime value models using Markov chain

    Science.gov (United States)

    Permana, Dony; Pasaribu, Udjianna S.; Indratno, Sapto W.; Suprayogi

    2017-10-01

    A firm’s potential reward in future time from a customer can be determined by customer lifetime value (CLV). There are some mathematic methods to calculate it. One method is using Markov chain stochastic model. Here, a customer is assumed through some states. Transition inter the states follow Markovian properties. If we are given some states for a customer and the relationships inter states, then we can make some Markov models to describe the properties of the customer. As Markov models, CLV is defined as a vector contains CLV for a customer in the first state. In this paper we make a classification of Markov Models to calculate CLV. Start from two states of customer model, we make develop in many states models. The development a model is based on weaknesses in previous model. Some last models can be expected to describe how real characters of customers in a firm.

  19. Determining of the Optimal Device Lifetime using Mathematical Renewal Models

    Directory of Open Access Journals (Sweden)

    Knežo Dušan

    2016-05-01

    Full Text Available Paper deals with the operations and equipment of the machine in the process of organizing production. During operation machines require maintenance and repairs, while in case of failure or machine wears it is necessary to replace them with new ones. For the process of replacement of old machines with new ones the term renewal is used. Qualitative aspects of the renewal process observe renewal theory, which is mainly based on the theory of probability and mathematical statistics. Devices lifetimes are closely related to the renewal of the devices. Presented article is focused on mathematical deduction of mathematical renewal models and determining optimal lifetime of the devices from the aspect of expenditures on renewal process.

  20. Modelling of neutron sawteeth in Tokamaks

    International Nuclear Information System (INIS)

    Anderson, D.; Hamnen, H.; Lisak, M.

    1990-01-01

    A model is developed to relate the drop in fusion neutron emission during sawtooth discharges in Tokamaks to the properties of the ion temperature and density sawteeth. In particular, the ion profile characteristics are shown to play an important role. The model determines the ion temperature profile exponent and the central ion temperature drop from the drop in neutron emission and the observed radius of inversion for the electron temperature. An extension is also made to line integrated neutron emission measurements as well as to neutron emission from neutral beam heated discharges where the dominating contribution to the neutron emission comes from beam-plasma reactions

  1. Modelling the lifetime economic consequences of glaucoma in France.

    Science.gov (United States)

    Philippe Nordmann, Jean; Lafuma, Antoine; Berdeaux, Gilles

    2009-03-01

    To estimate the lifetime economic consequences of glaucoma in France. A Markov model estimated the average discounted outcome and cost of glaucoma treatment over a patient's lifetime. Clinical states were defined as first- to fourth-line drugs, no treatment, laser therapy, surgery, blindness and death. After each failure (always after the fourth-line drug) patients could receive either laser treatment or surgery followed by no treatment, or a new treatment. A societal perspective was adopted. Sensitivity analyses were performed. Discounted medical costs were euro 7,322 for ocular hypertension treatment (OHT) and euro 8,488 for a glaucoma patient. Social costs of OHT and glaucoma patients exceeded medical costs. First-line use of the most effective drug would reduce medical and social costs. Societal willingness to pay for the vision benefit would equal the medical costs. Treatment initiated with the most effective drug is a cost saving strategy. Public health decisions in glaucoma treatment should take a broad economic view embracing the lifetime duration of the disease. There is still a place both within and outside the healthcare system for therapeutic innovations with important economic consequences that bring high added value to patients.

  2. Neutron scattering and models: molybdenum

    International Nuclear Information System (INIS)

    Smith, A.B.

    1999-01-01

    A comprehensive interpretation of the fast-neutron interaction with elemental and isotopic molybdenum at energies of le 30 MeV is given. New experimental elemental-scattering information over the incident energy range 4.5 r a rrow 10 MeV is presented. Spherical, vibrational and dispersive models are deduced and discussed, including isospin, energy-dependent and mass effects. The vibrational models are consistent with the ''Lane potential''. The importance of dispersion effects is noted. Dichotomies that exist in the literature are removed. The models are vehicles for fundamental physical investigations and for the provision of data for applied purposes. A ''regional'' molybdenum model is proposed. Finally, recommendations for future work are made

  3. Neutron scattering and models : molybdenum.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.

    1999-05-26

    A comprehensive interpretation of the fast-neutron interaction with elemental and isotopic molybdenum at energies of {le} 30 MeV is given. New experimental elemental-scattering information over the incident energy range 4.5 {r_arrow} 10 MeV is presented. Spherical, vibrational and dispersive models are deduced and discussed, including isospin, energy-dependent and mass effects. The vibrational models are consistent with the ''Lane potential''. The importance of dispersion effects is noted. Dichotomies that exist in the literature are removed. The models are vehicles for fundamental physical investigations and for the provision of data for applied purposes. A ''regional'' molybdenum model is proposed. Finally, recommendations for future work are made.

  4. Neutron scattering and models: Silver

    International Nuclear Information System (INIS)

    Smith, A.B.

    1996-07-01

    Differential neutron elastic-scattering cross sections of elemental silver were measured from 1.5 → 10 MeV at ∼ 100 keV intervals up to 3 MeV, at ∼ 200 keV intervals from 3 → 4 MeV, and at ∼ 500 keV intervals above 4 MeV. At ≤ 4 MeV the angular range of the measurements was ∼ 20 0 → 160 0 with 10 measured values below 3 MeV and 20 from 3 → 4 MeV at each incident energy. Above 4 MeV ≥ 40 scattering angles were used distributed between ∼ 17 0 and 16 0 All of the measured elastic distributions included some contributions due to inelastic scattering. Below 4 MeV the measurements determined cross sections for ten inelastically-scattered neutron groups corresponding to observed excitations of 328 ± 13, 419 ± 50, 748 ± 25, 908 ± 26, 115 ± 38, 1286 ± 25, 1507 ± 20, 1632 ± 30, 1835 ± 20 and 1944 ± 26 keV. All of these inelastic groups probably were composites of contributions from the two isotopes 107 Ag and 109 Ag. The experimental results were interpreted in terms of the spherical optical model and of rotational and vibrational coupled-channels models, and physical implications are discussed. In particular, the neutron-scattering results are consistent with a ground-state rotational band with a quadrupole deformation Β 2 = 0.20 ± ∼ 10% for both of the naturally-occurring silver isotopes

  5. A simple model for skewed species-lifetime distributions

    KAUST Repository

    Murase, Yohsuke

    2010-06-11

    A simple model of a biological community assembly is studied. Communities are assembled by successive migrations and extinctions of species. In the model, species are interacting with each other. The intensity of the interaction between each pair of species is denoted by an interaction coefficient. At each time step, a new species is introduced to the system with randomly assigned interaction coefficients. If the sum of the coefficients, which we call the fitness of a species, is negative, the species goes extinct. The species-lifetime distribution is found to be well characterized by a stretched exponential function with an exponent close to 1/2. This profile agrees not only with more realistic population dynamics models but also with fossil records. We also find that an age-independent and inversely diversity-dependent mortality, which is confirmed in the simulation, is a key mechanism accounting for the distribution. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

  6. Shape coexistence in neutron-deficient Hg isotopes studied via lifetime measurements in $^{184,186}$Hg and two-state mixing calculations

    CERN Document Server

    Gaffney, L P; Page, R.D.; Grahn, T.; Scheck, M.; Butler, P.A.; Bertone, P.F.; Bree, N.; Carroll, R.J.; Carpenter, M.P.; Chiara, C.J.; Dewald, A.; Filmer, F.; Fransen, C.; Huyse, M.; Janssens, R.V.F.; Joss, D.T.; Julin, R.; Kondev, F.G.; Nieminen, P.; Pakarinen, J.; Rigby, S.V.; Rother, W.; Van Duppen, P.; Watkins, H.V.; Wrzosek-Lipska, K.; Zhu, S.

    2014-01-01

    The neutron-deficient mercury isotopes, $^{184,186}$Hg, were studied with the Recoil Distance Doppler Shift (RDDS) method using the Gammasphere array and the K\\"oln Plunger device. The Differential Decay Curve Method (DDCM) was employed to determine the lifetimes of the yrast states in $^{184,186}$Hg. An improvement on previously measured values of yrast states up to $8^{+}$ is presented as well as first values for the $9_{3}$ state in $^{184}$Hg and $10^{+}$ state in $^{186}$Hg. $B(E2)$ values are calculated and compared to a two-state mixing model which utilizes the variable moment of inertia (VMI) model, allowing for extraction of spin-dependent mixing strengths and amplitudes.

  7. Modeling a neutron rich nuclei source

    International Nuclear Information System (INIS)

    Mirea, M.; Bajeat, O.; Clapier, F.; Ibrahim, F.; Mueller, A.C.; Pauwels, N.; Proust, J.; Mirea, M.

    2000-01-01

    The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A source of neutron rich nuclei based on the neutron induced fission can be realised using these beams. A theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The model used to determine the fission products takes into account the excitation energy of the target nucleus and the evaporation of prompt neutrons. Results are presented in connection with a converter-target specific geometry. (authors)

  8. Lifetime Neutron Fluence Analysis of the Ringhals Unit 1 Boiling Water Reactor

    Directory of Open Access Journals (Sweden)

    Kulesza Joel A.

    2016-01-01

    Full Text Available This paper describes a neutron fluence assessment considering the entire commercial operating history (35 cycles or ∼ 25 effective full power years of the Ringhals Unit 1 reactor pressure vessel beltline region. In this assessment, neutron (E >1.0 MeV fluence and iron atom displacement distributions were calculated on the moderator tank and reactor pressure vessel structures. To validate those calculations, five in-vessel surveillance chain dosimetry sets were evaluated as well as material samples taken from the upper core grid and wide range neutron monitor tubes to act as a form of retrospective dosimetry. During the analysis, it was recognized that delays in characterizing the retrospective dosimetry samples reduced the amount of reactions available to be counted and complicated the material composition determination. However, the comparisons between the surveillance chain dosimetry measurements (M and calculated (C results show similar and consistent results with the linear average M/C ratio of 1.13 which is in good agreement with the resultant least squares best estimate (BE/C ratios of 1.10 for both neutron (E >1.0 MeV flux and iron atom displacement rate.

  9. Lifetime of molecules in a dark cloud model

    International Nuclear Information System (INIS)

    Sandell, G.

    1978-01-01

    An analysis of the lifetime of the molecules CO, OH, CH, H 2 CO and NH 3 in interstellar dust clouds (A 8m, n 10 4 cm -3 ) is presented. The study is a continuation of an earlier publication (Sandell and Mattila, 1975) and the work on photodissociation (and photo-ionization) is based on the spherical homogeneous dust cloud model presented therein. In the present study, however, the recent albedo curve by Lillie and Witt (1976) is adopted, and several assumptions are made on the run of the albedo curve below 0.15μm, where, so far, no measurements of the albedo exist. The present work also includes the opacity due to molecular hydrogen (H 2 ) and carbon (C). (orig.) [de

  10. LIFETIME PREDICTION FOR MODEL 9975 O-RINGS IN KAMS

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.; Skidmore, E.

    2009-11-24

    The Savannah River Site (SRS) is currently storing plutonium materials in the K-Area Materials Storage (KAMS) facility. The materials are packaged per the DOE 3013 Standard and transported and stored in KAMS in Model 9975 shipping packages, which include double containment vessels sealed with dual O-rings made of Parker Seals compound V0835-75 (based on Viton{reg_sign} GLT). The outer O-ring of each containment vessel is credited for leaktight containment per ANSI N14.5. O-ring service life depends on many factors, including the failure criterion, environmental conditions, overall design, fabrication quality and assembly practices. A preliminary life prediction model has been developed for the V0835-75 O-rings in KAMS. The conservative model is based primarily on long-term compression stress relaxation (CSR) experiments and Arrhenius accelerated-aging methodology. For model development purposes, seal lifetime is defined as a 90% loss of measurable sealing force. Thus far, CSR experiments have only reached this target level of degradation at temperatures {ge} 300 F. At lower temperatures, relaxation values are more tolerable. Using time-temperature superposition principles, the conservative model predicts a service life of approximately 20-25 years at a constant seal temperature of 175 F. This represents a maximum payload package at a constant ambient temperature of 104 F, the highest recorded in KAMS to date. This is considered a highly conservative value as such ambient temperatures are only reached on occasion and for short durations. The presence of fiberboard in the package minimizes the impact of such temperature swings, with many hours to several days required for seal temperatures to respond proportionately. At 85 F ambient, a more realistic but still conservative value, bounding seal temperatures are reduced to {approx}158 F, with an estimated seal lifetime of {approx}35-45 years. The actual service life for O-rings in a maximum wattage package likely lies

  11. Time-lapse cased hole reservoir evaluation based on the dual-detector neutron lifetime log: the CHES II approach

    International Nuclear Information System (INIS)

    DeVries, M.R.; Fertl, W.

    1977-01-01

    A newly developed cased hole analysis technique provides detailed information on (1) reservoir rock properties, such as porosity, shaliness, and formation permeability, (2) reservoir fluid saturation, (3) distinction of oil and gas pays, (4) state of reservoir depletion, such as cumulative hydrocarbon-feet at present time and cumulative hydrocarbon-feet already depleted (e.g., the sum of both values then giving the cumulative hydrocarbon-feet originally present), and (5) monitoring of hydrocarbon/water and gas/oil contacts behind pipe. The basic well log data required for this type of analysis include the Dual-Detector Neutron Lifetime Log, run in casing at any particular time in the life of a reservoir, and the initial open-hole resistivity log. In addition, porosity information from open-hole porosity log(s) or core data is necessary. Field examples from several areas are presented and discussed in the light of formation reservoir and hydrocarbon production characteristics

  12. Evaluation of Battery Lifetimes using Inhomogeneous Markov Reward Models

    NARCIS (Netherlands)

    Cloth, L.; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.

    2006-01-01

    The usage of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetimes depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  13. SUNSPOT AND STARSPOT LIFETIMES IN A TURBULENT EROSION MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton (New Zealand); Wheatland, M. S. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)

    2017-01-10

    Quantitative models of sunspot and starspot decay predict the timescale of magnetic diffusion and may yield important constraints in stellar dynamo models. Motivated by recent measurements of starspot lifetimes, we investigate the disintegration of a magnetic flux tube by nonlinear diffusion. Previous theoretical studies are extended by considering two physically motivated functional forms for the nonlinear diffusion coefficient D : an inverse power-law dependence D ∝ B {sup −ν} and a step-function dependence of D on the magnetic field magnitude B . Analytical self-similar solutions are presented for the power-law case, including solutions exhibiting “super fast” diffusion. For the step-function case, the heat-balance integral method yields approximate solutions, valid for moderately suppressed diffusion in the spot. The accuracy of the resulting solutions is confirmed numerically, using a method which provides an accurate description of long-time evolution by imposing boundary conditions at infinite distance from the spot. The new models may allow insight into the differences and similarities between sunspots and starspots.

  14. Recording Lifetime Behavior and Movement in an Invertebrate Model

    Science.gov (United States)

    Zou, Sige; Liedo, Pablo; Altamirano-Robles, Leopoldo; Cruz-Enriquez, Janeth; Morice, Amy; Ingram, Donald K.; Kaub, Kevin; Papadopoulos, Nikos; Carey, James R.

    2011-01-01

    Characterization of lifetime behavioral changes is essential for understanding aging and aging-related diseases. However, such studies are scarce partly due to the lack of efficient tools. Here we describe and provide proof of concept for a stereo vision system that classifies and sequentially records at an extremely fine scale six different behaviors (resting, micro-movement, walking, flying, feeding and drinking) and the within-cage (3D) location of individual tephritid fruit flies by time-of-day throughout their lives. Using flies fed on two different diets, full sugar-yeast and sugar-only diets, we report for the first time their behavioral changes throughout their lives at a high resolution. We have found that the daily activity peaks at the age of 15–20 days and then gradually declines with age for flies on both diets. However, the overall daily activity is higher for flies on sugar-only diet than those on the full diet. Flies on sugar-only diet show a stronger diurnal localization pattern with higher preference to staying on the top of the cage during the period of light-off when compared to flies on the full diet. Clustering analyses of age-specific behavior patterns reveal three distinct young, middle-aged and old clusters for flies on each of the two diets. The middle-aged groups for flies on sugar-only diet consist of much younger age groups when compared to flies on full diet. This technology provides research opportunities for using a behavioral informatics approach for understanding different ways in which behavior, movement, and aging in model organisms are mutually affecting. PMID:21559058

  15. Modeling of BN Lifetime Prediction of a System Based on Integrated Multi-Level Information.

    Science.gov (United States)

    Wang, Jingbin; Wang, Xiaohong; Wang, Lizhi

    2017-09-15

    Predicting system lifetime is important to ensure safe and reliable operation of products, which requires integrated modeling based on multi-level, multi-sensor information. However, lifetime characteristics of equipment in a system are different and failure mechanisms are inter-coupled, which leads to complex logical correlations and the lack of a uniform lifetime measure. Based on a Bayesian network (BN), a lifetime prediction method for systems that combine multi-level sensor information is proposed. The method considers the correlation between accidental failures and degradation failure mechanisms, and achieves system modeling and lifetime prediction under complex logic correlations. This method is applied in the lifetime prediction of a multi-level solar-powered unmanned system, and the predicted results can provide guidance for the improvement of system reliability and for the maintenance and protection of the system.

  16. Adequacy of relative and absolute risk models for lifetime risk estimate of radiation-induced cancer

    International Nuclear Information System (INIS)

    McBride, M.; Coldman, A.J.

    1988-03-01

    This report examines the applicability of the relative (multiplicative) and absolute (additive) models in predicting lifetime risk of radiation-induced cancer. A review of the epidemiologic literature, and a discussion of the mathematical models of carcinogenesis and their relationship to these models of lifetime risk, are included. Based on the available data, the relative risk model for the estimation of lifetime risk is preferred for non-sex-specific epithelial tumours. However, because of lack of knowledge concerning other determinants of radiation risk and of background incidence rates, considerable uncertainty in modelling lifetime risk still exists. Therefore, it is essential that follow-up of exposed cohorts be continued so that population-based estimates of lifetime risk are available

  17. Theoretical models of neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1992-01-01

    A brief survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity bar v p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the new models. In particular, the dependencies of N(E) and bar v p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N(E,E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limititations to current and future calculations. Finally, recommendations are presented as to which model should be used currently and which model should be pursued in future efforts

  18. Impact of Lifetime Model Selections on the Reliability Prediction of IGBT Modules in Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Zhang, Yi; Wang, Huai; Wang, Zhongxu

    2017-01-01

    Power cycling in semiconductor modules contributes to repetitive thermal-mechanical stresses, which in return accumulate as fatigue on the devices, and challenge the lifetime. Typically, lifetime models are expressed in number-of-cycles, within which the device can operate without failures under ...

  19. Advanced Models and Controls for Prediction and Extension of Battery Lifetime (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Pesaran, A.

    2014-02-01

    Predictive models of capacity and power fade must consider a multiplicity of degradation modes experienced by Li-ion batteries in the automotive environment. Lacking accurate models and tests, lifetime uncertainty must presently be absorbed by overdesign and excess warranty costs. To reduce these costs and extend life, degradation models are under development that predict lifetime more accurately and with less test data. The lifetime models provide engineering feedback for cell, pack and system designs and are being incorporated into real-time control strategies.

  20. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Čufar, Aljaž, E-mail: aljaz.cufar@ijs.si [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Batistoni, Paola [ENEA, Department of Fusion and Nuclear Safety Technology, I-00044 Frascati, Rome (Italy); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Conroy, Sean [Uppsala University, Department of Physics and Astronomy, PO Box 516, SE-75120 Uppsala (Sweden); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Ghani, Zamir [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Lengar, Igor [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Milocco, Alberto; Packer, Lee [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Pillon, Mario [ENEA, Department of Fusion and Nuclear Safety Technology, I-00044 Frascati, Rome (Italy); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Popovichev, Sergey [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Snoj, Luka [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium–tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle–energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  1. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    Science.gov (United States)

    Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka; JET Contributors

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  2. Prediction of the lifetime productive and reproductive performance of Holstein cows managed for different lactation durations, using a model of lifetime nutrient partitioning

    DEFF Research Database (Denmark)

    Gaillard, Charlotte; Martin, O; Blavy, P

    2016-01-01

    The GARUNS model is a lifetime performance model taking into account the changing physiological priorities of an animal during its life and through repeated reproduction cycles. This dynamic and stochastic model has been previously used to predict the productive and reproductive performance...... of various genotypes of cows across feeding systems. In the present paper, we used this model to predict the lifetime productive and reproductive performance of Holstein cows for different lactation durations, with the aim of determining the lifetime scenario that optimizes cows' performance defined...... by lifetime efficiency (ratio of total milk energy yield to total energy intake) and pregnancy rate. To evaluate the model, data from a 16-mo extended lactation experiment on Holstein cows were used. Generally, the model could consistently fit body weight, milk yield, and milk components of these cows...

  3. Life-time and hierarchy of memory in the dissipative quantum model of brain

    OpenAIRE

    Alfinito, Eleonora; Vitiello, Giuseppe

    1999-01-01

    Some recent developments of the dissipative quantum model of brain are reported. In particular, the time-dependent frequency case is considered with its implications on the different life-times of the collective modes.

  4. A double potential model for neutron halo nuclei

    OpenAIRE

    Abbas, Afsar

    2003-01-01

    It is shown here that loosely bound halo structure of neutron rich nuclei and the ground state spin of single neutron halo nuclei are correlated and are consistently explained if one assumes a double potential shell model for these nuclei.

  5. Modeling and optimization of the lifetime of technologies

    CERN Document Server

    Hritonenko, Natali

    1996-01-01

    Modern economic growth is characterized by structural changes based on the introduction of new technologies into economics. The replacement and renova­ tion of technologies in industrial environments undergoing technical change is clearly one of the key aspects of economic development. The mathematical modeling of evolutionary economics under technical change (TC) has been rigorously considered by many authors during last decades. There is a wide variety of economic approaches and models describing different aspects of technical change. Among these are the models of embodied technical progress [19], [35], [70], [129], endogenous growth models [94], [102], the models of technological innovations [31], [32], [41], and others. The perspective self­ organization evolutionary approach is developed in [20], [38], [122], [123], [124], [126], which unites the aspects of diffusion of new technologies, technological and behavioral diversity of firms, learning mechanisms, age-dependent effects, and other important fea...

  6. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium-Beryllium source

    Energy Technology Data Exchange (ETDEWEB)

    Didi, Abdessamad; Dadouch, Ahmed; Tajmouati, Jaouad; Bekkouri, Hassane [Advanced Technology and Integration System, Dept. of Physics, Faculty of Science Dhar Mehraz, University Sidi Mohamed Ben Abdellah, Fez (Morocco); Jai, Otman [Laboratory of Radiation and Nuclear Systems, Dept. of Physics, Faculty of Sciences, Tetouan (Morocco)

    2017-06-15

    Americium–beryllium (Am-Be; n, γ) is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci), yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources) experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

  7. FPGA implementation of predictive degradation model for engine oil lifetime

    Science.gov (United States)

    Idros, M. F. M.; Razak, A. H. A.; Junid, S. A. M. Al; Suliman, S. I.; Halim, A. K.

    2018-03-01

    This paper presents the implementation of linear regression model for degradation prediction on Register Transfer Logic (RTL) using QuartusII. A stationary model had been identified in the degradation trend for the engine oil in a vehicle in time series method. As for RTL implementation, the degradation model is written in Verilog HDL and the data input are taken at a certain time. Clock divider had been designed to support the timing sequence of input data. At every five data, a regression analysis is adapted for slope variation determination and prediction calculation. Here, only the negative value are taken as the consideration for the prediction purposes for less number of logic gate. Least Square Method is adapted to get the best linear model based on the mean values of time series data. The coded algorithm has been implemented on FPGA for validation purposes. The result shows the prediction time to change the engine oil.

  8. Modeling of Hall Thruster Lifetime and Erosion Mechanisms (Preprint)

    National Research Council Canada - National Science Library

    Cheng, Shannon Y; Martinez-Sanchez, Manuel

    2007-01-01

    ...-limiting factor of the propulsion system. Evolution of the thruster geometry as a result of material removal due to sputtering is modeled by calculating wall erosion rates, stepping the grid boundary by a chosen time step and altering...

  9. Parameter Estimation for a Class of Lifetime Models

    Directory of Open Access Journals (Sweden)

    Xinyang Ji

    2014-01-01

    Full Text Available Our purpose in this paper is to present a better method of parametric estimation for a bivariate nonlinear regression model, which takes the performance indicator of rubber aging as the dependent variable and time and temperature as the independent variables. We point out that the commonly used two-step method (TSM, which splits the model and estimate parameters separately, has limitation. Instead, we apply the Marquardt’s method (MM to implement parametric estimation directly for the model and compare these two methods of parametric estimation by random simulation. Our results show that MM has better effect of data fitting, more reasonable parametric estimates, and smaller prediction error compared with TSM.

  10. Modeling Customer Lifetimes with Multiple Causes of Churn

    OpenAIRE

    Michael Braun; David A. Schweidel

    2011-01-01

    Customer retention and customer churn are key metrics of interest to marketers, but little attention has been placed on linking the different reasons for which customers churn to their value to a contractual service provider. In this paper, we put forth a hierarchical competing-risk model to jointly model when customers choose to terminate their service and why. Some of these reasons for churn can be influenced by the firm (e.g., service problems or price–value trade-offs), but others are unc...

  11. Modeling detector response for neutron depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, K.J. [National Inst. of Standards and Technology, Boulder, CO (United States); Downing, R.G. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Lamaze, G.P. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Hofsaess, H.C. [Konstanz Univ. (Germany); Biegel, J. [Konstanz Univ. (Germany); Ronning, C. [Konstanz Univ. (Germany)

    1995-11-21

    In Neutron Depth Profiling (NDP), inferences about the concentration profile of an element in a material are based on the energy spectrum of charged particles emitted due to specific nuclear reactions. The detector response function relates the depth of emission to the expected energy spectrum of the emitted particles. Here, the detector response function is modeled for arbitrary source and detector geometries based on a model for the stopping power of the material, energy straggling, multiple scattering and random detector measurement error. At the NIST Cold Neutron Research Facility, a NDP spectrum was collected for a diamond-like carbon (DLC) sample doped with boron. A vertical slit was placed in front of the detector for collimation. Based on the computed detector response function, a model for the depth profile of boron is fit to the observed NDP spectrum. The contribution of straggling to overall variability was increased by multiplying the Bohr Model prediction by a ramp factor. The adjustable parameter in the ramp was selected to give the best agreement between the fitted profile and the expected shape of the profile. The expected shape is determined from experimental process control measurements. (orig.).

  12. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium Beryllium source

    OpenAIRE

    Didi, Abdessamad; Dadouch, A.; Jaï, O.; Tajmouati, J.; El Bekkouri, H.

    2017-01-01

    Americium–beryllium (Am-Be; n, γ) is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci), yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: pr...

  13. Strongest model-independent bound on the lifetime of Dark Matter

    CERN Document Server

    Audren, Benjamin; Mangano, Gianpiero; Serpico, Pasquale Dario; Tram, Thomas

    2014-01-01

    Dark Matter is essential for structure formation in the late Universe so it must be stable on cosmological time scales. But how stable exactly? Only assuming decays into relativistic particles, we report an otherwise model independent bound on the lifetime of Dark Matter using current cosmological data. Since these decays affect only the low-$\\ell$ multipoles of the CMB, the Dark Matter lifetime is expected to correlate with the tensor-to-scalar ratio $r$ as well as curvature $\\Omega_k$. We consider two models, including $r$ and $r+\\Omega_k$ respectively, versus data from Planck, WMAP, WiggleZ and Baryon Acoustic Oscillations, with or without the BICEP2 data (if interpreted in terms of primordial gravitational waves). This results in a lower bound on the lifetime of CDM given by 160Gyr (without BICEP2) or 200Gyr (with BICEP2) at 95% confidence level.

  14. Lifetime modelling with a Weibull law: comparison of three Bayesian Methods

    International Nuclear Information System (INIS)

    Billy, F.; Remy, E.; Bousquet, N.; Celeux, G.

    2006-01-01

    For a nuclear power plant, being able to estimate the lifetime of important components is strategic. But data is usually insufficient to do so. Thus, it is relevant to use expertise, together with data, in order to assess the value of lifetime on the grounds of both sources. The Bayesian frame and the choice of a Weibull law to model the random time for replacement are relevant. They have been chosen for this article. Two indicators are computed : the mean lifetime of any component and the mean residual lifetime of a given component, after it has been controlled. Three different Bayesian methods are compared on three sets of data. The article shows that the three methods lead to coherent results and that uncertainties are strongly reduced. The method developed around PMC has two main advantages: it models a conditional dependence of the two parameters of the Weibull law, which enables more coherent results on the prior; it has a parameter that weights the strength of the expertise. This last point is very important to do lifetime assessments, because then, expertise is not used to increase too small samples as much as to do a real extrapolation, far beyond what data itself say. (authors)

  15. Design, Construction, and Modeling of a 252Cf Neutron Irradiator

    Directory of Open Access Journals (Sweden)

    Blake C. Anderson

    2016-01-01

    Full Text Available Neutron production methods are an integral part of research and analysis for an array of applications. This paper examines methods of neutron production, and the advantages of constructing a radioisotopic neutron irradiator assembly using 252Cf. Characteristic neutron behavior and cost-benefit comparative analysis between alternative modes of neutron production are also examined. The irradiator is described from initial conception to the finished design. MCNP modeling shows a total neutron flux of 3 × 105 n/(cm2·s in the irradiation chamber for a 25 μg source. Measurements of the gamma-ray and neutron dose rates near the external surface of the irradiator assembly are 120 μGy/h and 30 μSv/h, respectively, during irradiation. At completion of the project, total material, and labor costs remained below $50,000.

  16. Formation and life-time of memory domains in the dissipative quantum model of brain

    OpenAIRE

    Alfinito, E.; Vitiello, G.

    2000-01-01

    We show that in the dissipative quantum model of brain the time-dependence of the frequencies of the electrical dipole wave quanta leads to the dynamical organization of the memories in space (i.e. to their localization in more or less diffused regions of the brain) and in time (i.e. to their longer or shorter life-time). The life-time and the localization in domains of the memory states also depend on internal parameters and on the number of links that the brain establishes with the external...

  17. Modeling of apparent activation energy and lifetime estimation in NAND flash memory

    International Nuclear Information System (INIS)

    Lee, Kyunghwan; Shin, Hyungcheol; Kang, Myounggon; Hwang, Yuchul

    2015-01-01

    Misunderstanding apparent activation energy (E aa ) can cause serious error in lifetime predictions. In this paper, the E aa is investigated for sub 20 nm NAND flash memory. In a high-temperature (HT) regime, the interface trap (N it ) recovery mechanism has the greatest impact on the charge loss. However, the values of E aa and E a(Nit) have a wide difference. Also, the lifetime of the device cannot be estimated by the Arrhenius model due to the E aa roll-off behavior. For the first time, we reveal the origin of abnormal characteristics on E aa and derive a mathematical formula for E aa as a function of each E a(mechanism) in NAND flash memory. Using the proposed E aa equation, the accurate lifetime for the device is estimated. (paper)

  18. Automatic conversion of CAD model into neutronics model

    International Nuclear Information System (INIS)

    Hu Haimin; Wu Yican; Chen Mingliang; Zheng Shanliang; Zeng Qin; Ding Aiping; Li Ying

    2007-01-01

    It is a time-consuming and error-prone task to prepare neutronics model for the discrete ordinates transport codes (S N codes) in manual way. A more efficient solution is presented in this paper, while shift geometric modeling to computer aided design (CAD) system, and to use an interface program for S N codes to convert the CAD model to neutronics model, and then generate the input file of S N code automatically. The detailed conversion method is described and some kernel algorithms are implemented in SNAM, an interface program between CAD system and S N codes. The method has been used to convert the ITER benchmark model to the input file of S N code successfully. It is shown that the conversion method is a correct, efficient and potential solution for S N code modelling. (author)

  19. A neutron poison tritium breeding controller applied to a water cooled fusion reactor model

    International Nuclear Information System (INIS)

    Morgan, L.W.G.; Packer, L.W.

    2014-01-01

    Highlights: • The issue of a potentially producing a large tritium surplus inventory, within a solid breeder, is addressed. • A possible solution to this problem is presented in the form of a neutron poison based tritium production controller. • The tritium surplus inventory has been modelled by the FATI code for a simplified WCCB model and as a function of time. • It has been demonstrated that the tritium surplus inventory can be managed, which may impact on safety considerations. - Abstract: The generation of tritium in sufficient quantities is an absolute requirement for a next step fusion device such as DEMO due to the scarcity of tritium sources. Although the production of sufficient quantities of tritium will be one of the main challenges for DEMO, within an energy economy featuring several fusion power plants the active control of tritium production may be required in order to manage surplus tritium inventories at power plant sites. The primary reason for controlling the tritium inventory in such an economy would therefore be to minimise the risk and storage costs associated with large quantities of surplus tritium. In order to ensure that enough tritium will be produced in a reactor which contains a solid tritium breeder, over the reactor's lifetime, the tritium breeding rate at the beginning of its lifetime is relatively high and reduces over time. This causes a large surplus tritium inventory to build up until approximately halfway through the lifetime of the blanket, when the inventory begins to decrease. This surplus tritium inventory could exceed several tens of kilograms of tritium, impacting on possible safety and licensing conditions that may exist. This paper describes a possible solution to the surplus tritium inventory problem that involves neutron poison injection into the coolant, which is managed with a tritium breeding controller. A simple PID controller and is used to manage the injection of the neutron absorbing compounds into

  20. The reflector effect on the neutron lifetimes in the IPEN/MB-01 reactor; O efeito do refletor sobre o tempo de vida neutronico no reator IPEN/MB-01

    Energy Technology Data Exchange (ETDEWEB)

    Gonnelli, Eduardo

    2013-07-01

    The aim of this study is to present the reflector effect on the neutron lifetimes in the IPEN/MB-01 reactor. The proposed method requires an approach which takes into account both the reflector and the core, so that the point kinetics equations, which constitute the theoretical basis of all mathematical development, contemplate both regions of the reactor. From these equations, as known as two regions kinetics point equations, theoretical expressions are obtained for the Auto Power Spectral Densities (APSD), which are used for least squares fit of the experimental data of APSD obtained in several subcritical states. The prompt neutron generation time, the neutron lifetimes in the reflector and the neutron return fraction from the reflector to the core are derived from the fitting. (author)

  1. Model of lifetime prediction - Study of the behaviour of polymers and organic matrix composites

    International Nuclear Information System (INIS)

    Colin, X.

    2009-01-01

    The team 'Aging of Organic Materials' of the Process and Engineering Laboratory in Mechanics and Materials (Arts et Metiers, ParisTech) has developed the model of lifetime prediction for the prediction of the behaviour of polymers and organic composites. This model has already given evidence of a real predictive mean for various industrial applications, as for instance the prediction of a rupture under the coupled effect of a mechanical load and a chemical degradation. (O.M.)

  2. Estimating the lifetime cost of childhood obesity in Germany: Results of a Markov Model.

    Science.gov (United States)

    Sonntag, D; Ali, S; Lehnert, T; Konnopka, A; Riedel-Heller, S; König, H-H

    2015-12-01

    Child obesity is a growing public health concern. Excess weight in childhood is known to be associated with a high risk of obesity and obesity-related comorbidities in adulthood. This study quantifies lifetime excess costs of overweight and obese adults in Germany taking the history of obesity in childhood into account. A two-stage Markov cohort state transition model was developed. At stage 1, the distribution of body mass index (BMI) categories was tracked from childhood (ages 3-17) to adulthood (age 17 and up). Based on these results, it was distinguished whether adults had been normal in weight or overweight/obese as child. At stage 2, age-specific and lifetime costs from age 18 onwards were simulated in two further Markov cohort models, one for each of the two BMI groups. Model parameter values were obtained from the German Interview and Examination Survey for Children and Adolescents (KiGGS), the German Microcensus 2009 and published literature. When compared with normal weight adults, lifetime excess costs are higher among adults who had been overweight or obese at any point during childhood. For 18-year-old women (men), who have been overweight/obese during their childhood (ages 3-17), undiscounted lifetime excess costs are estimated at €19,479 (€14,524), with 60% (67%) occurring beyond age 60. Discounted (3%) lifetime excess costs are considerably lower, amounting to €4262 for men and €7028 for women. Because childhood obesity determines healthcare costs occurring in adulthood, interventions preventing the persistence of child obesity and obesity-related comorbidities during adulthood could have a substantial impact on reducing the burden of the obesity epidemic. © 2015 World Obesity.

  3. Neutron matter with a model interaction

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Shaginyan, V.R.

    2000-01-01

    An infinite system of neutrons interacting by a model pair potential is considered. We investigate a case when this potential is sufficiently strong attractive, so that its scattering length a tends to infinity, a →-∞. It appeared, that if the structure of the potential is simple enough, including no finite parameters, reliable evidences can be presented that such a system is completely unstable at any finite density. The incompressibility as a function of the density is negative, reaching zero value when the density tends to zero. If the potential contains a sufficiently strong repulsive core then the system possesses an equilibrium density. The main features of a theory describing such systems are considered. (orig.)

  4. Neutron matter with a model interaction

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; A.F. Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Shaginyan, V.R. [Petersburg Institute of Nuclear Physics, 188350 Gatchina (Russian Federation); Department of Physics, University of Washington, Seattle, WA 98195 (United States)

    2000-05-01

    An infinite system of neutrons interacting by a model pair potential is considered. We investigate a case when this potential is sufficiently strong attractive, so that its scattering length a tends to infinity, a {yields}-{infinity}. It appeared, that if the structure of the potential is simple enough, including no finite parameters, reliable evidences can be presented that such a system is completely unstable at any finite density. The incompressibility as a function of the density is negative, reaching zero value when the density tends to zero. If the potential contains a sufficiently strong repulsive core then the system possesses an equilibrium density. The main features of a theory describing such systems are considered. (orig.)

  5. Predicting the breakdown strength and lifetime of nanocomposites using a multi-scale modeling approach

    Science.gov (United States)

    Huang, Yanhui; Zhao, He; Wang, Yixing; Ratcliff, Tyree; Breneman, Curt; Brinson, L. Catherine; Chen, Wei; Schadler, Linda S.

    2017-08-01

    It has been found that doping dielectric polymers with a small amount of nanofiller or molecular additive can stabilize the material under a high field and lead to increased breakdown strength and lifetime. Choosing appropriate fillers is critical to optimizing the material performance, but current research largely relies on experimental trial and error. The employment of computer simulations for nanodielectric design is rarely reported. In this work, we propose a multi-scale modeling approach that employs ab initio, Monte Carlo, and continuum scales to predict the breakdown strength and lifetime of polymer nanocomposites based on the charge trapping effect of the nanofillers. The charge transfer, charge energy relaxation, and space charge effects are modeled in respective hierarchical scales by distinctive simulation techniques, and these models are connected together for high fidelity and robustness. The preliminary results show good agreement with the experimental data, suggesting its promise for use in the computer aided material design of high performance dielectrics.

  6. A preliminary model for estimating the first wall lifetime of a fusion reactor

    International Nuclear Information System (INIS)

    Daenner, W.

    1975-02-01

    The estimation of the first wall lifetime is a necessary basis for predicting the availability of a fusion power plant. In order to do this, an analytical model was prepared and programmed for the computer which calculates the temperature and stress load of the first wall from the principal design parameters and quotes them against the relevant material properties. Neither the analytical model nor the information about the material performance is yet complete so that the answers obtained from the program are very preliminary. This situation is underlined by the results of sample calculations performed for the CTRD blanket module cell. The results obtained for vanadium and vanadium alloys show a strong dependence of the lifetime on the irradiation creep and the ductility of these materials. Completion of this model is envisaged as soon as the missing information becomes available. (orig.) [de

  7. Study of creep-fatigue behavior in a 1000 MW rotor using a phenomenological lifetime model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nailong; Wang, Weizhe; Jiang, Jishen; Liu, Yingzheng [School of Mechanical Engineering, Shanghai (China)

    2017-02-15

    In this study, the phenomenological lifetime model was applied to part of an ultra-supercritical steam turbine rotor model to predict its lifetime as a post processing of the finite element method. To validate the accuracy and adaptation of the post processing program, stress strain hysteresis loops of a cylinderal model under service-like load cycle conditions in cycle N = 1 and 300 were constructed, and the comparison of the results with experimental data on the same cylinderal specimen showed them to be satisfactory. The temperature and von Mises stress distributions of the rotor during a startup-running-shutdown-natural cool process were numerically studied using ABAQUS and the damage caused by the interaction of creep and fatigue was subsequently computed and discussed. It was found that the maximum damage appeared at the inlet notch zone, with the blade groove areas and the front notch areas also suffering a large damage amplitude.

  8. Lifetime of dynamic heterogeneity in strong and fragile kinetically constrained spin models

    International Nuclear Information System (INIS)

    Leonard, Sebastien; Berthier, Ludovic

    2005-01-01

    Kinetically constrained spin models are schematic coarse-grained models for the glass transition which represent an efficient theoretical tool to study detailed spatio-temporal aspects of dynamic heterogeneity in supercooled liquids. Here, we study how spatially correlated dynamic domains evolve with time and compare our results to various experimental and numerical investigations. We find that strong and fragile models yield different results. In particular, the lifetime of dynamic heterogeneity remains constant and roughly equal to the alpha relaxation time in strong models, while it increases more rapidly in fragile models when the glass transition is approached

  9. Beyond R 0: Demographic Models for Variability of Lifetime Reproductive Output

    Science.gov (United States)

    Caswell, Hal

    2011-01-01

    The net reproductive rate measures the expected lifetime reproductive output of an individual, and plays an important role in demography, ecology, evolution, and epidemiology. Well-established methods exist to calculate it from age- or stage-classified demographic data. As an expectation, provides no information on variability; empirical measurements of lifetime reproduction universally show high levels of variability, and often positive skewness among individuals. This is often interpreted as evidence of heterogeneity, and thus of an opportunity for natural selection. However, variability provides evidence of heterogeneity only if it exceeds the level of variability to be expected in a cohort of identical individuals all experiencing the same vital rates. Such comparisons require a way to calculate the statistics of lifetime reproduction from demographic data. Here, a new approach is presented, using the theory of Markov chains with rewards, obtaining all the moments of the distribution of lifetime reproduction. The approach applies to age- or stage-classified models, to constant, periodic, or stochastic environments, and to any kind of reproductive schedule. As examples, I analyze data from six empirical studies, of a variety of animal and plant taxa (nematodes, polychaetes, humans, and several species of perennial plants). PMID:21738586

  10. Constraints on mirror models of dark matter from observable neutron-mirror neutron oscillation

    Science.gov (United States)

    Mohapatra, Rabindra N.; Nussinov, Shmuel

    2018-01-01

    The process of neutron-mirror neutron oscillation, motivated by symmetric mirror dark matter models, is governed by two parameters: n -n‧ mixing parameter δ and n -n‧ mass splitting Δ. For neutron mirror neutron oscillation to be observable, the splitting between their masses Δ must be small and current experiments lead to δ ≤ 2 ×10-27 GeV and Δ ≤10-24 GeV. We show that in mirror universe models where this process is observable, this small mass splitting constrains the way that one must implement asymmetric inflation to satisfy the limits of Big Bang Nucleosynthesis on the number of effective light degrees of freedom. In particular we find that if asymmetric inflation is implemented by inflaton decay to color or electroweak charged particles, the oscillation is unobservable. Also if one uses SM singlet fields for this purpose, they must be weakly coupled to the SM fields.

  11. Statistical Methods for Detecting and Modeling General Patterns and Relationships in Lifetime Data

    Energy Technology Data Exchange (ETDEWEB)

    Kvaloey, Jan Terje

    1999-04-01

    In this thesis, the author tries to develop methods of detecting and modeling general patterns and relationships in lifetime data. Tests with power against nonmonotonic trends and nonmonotonic co variate effects are considered, and nonparametric regression methods which allow estimation of fairly general nonlinear relationships are studied. Practical uses of some of the methods are illustrated although in a medical rather than engineering or technological context.

  12. Direct mass and lifetime measurements of neutron-rich nuclei up to A∼100 using the TOFI spectrometer at LAMPF

    International Nuclear Information System (INIS)

    Lind, V.G.

    1993-01-01

    This project was directed toward the study of neutron-rich nuclei using the experimental facilities at LAMPF, which is a part of LANL. The principal results of the investigation include the discovery of many new isotopes along with a measurement of their masses and in particular those nuclides in the Z = 7--19 and 14 --26 regions of the chart of the nuclides.Thirty-four new nuclides were detected and studied with their masses being measured with relatively high accuracy, and an additional twenty-six that were previously known and measured were remeasured to an improved accuracy. Besides providing new information about the mass surface in new and extended redons of the chart of the nuclides, this investigation enabled properties and previously unknown structure of some of the nuclei to be determined such as nuclear deformation among some of the nuclides. Also a study of the neutron pairing gaps and the proton pairing gaps among these nuclides was made. Other developments also achieved included instrument (TOFI) improvements and upgrades and theoretical investigations into the masses of the hadrons

  13. Spatial Multiplication Model as an alternative to the Point Model in Neutron Multiplicity Counting

    Energy Technology Data Exchange (ETDEWEB)

    Hauck, Danielle K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzl, Vladimir [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-26

    The point model is commonly used in neutron multiplicity counting to relate the correlated neutron detection rates (singles, doubles, triples) to item properties (mass, (α,n) reaction rate and neutron multiplication). The point model assumes that the probability that a neutron will induce fission is a constant across the physical extent of the item. However, in reality, neutrons near the center of an item have a greater probability of inducing fission then items near the edges. As a result, the neutron multiplication has a spatial distribution.

  14. Studies on Mathematical Models of Wet Adhesion and Lifetime Prediction of Organic Coating/Steel by Grey System Theory

    Directory of Open Access Journals (Sweden)

    Fandi Meng

    2017-06-01

    Full Text Available A rapid degradation of wet adhesion is the key factor controlling coating lifetime, for the organic coatings under marine hydrostatic pressure. The mathematical models of wet adhesion have been studied by Grey System Theory (GST. Grey models (GM (1, 1 of epoxy varnish (EV coating/steel and epoxy glass flake (EGF coating/steel have been established, and a lifetime prediction formula has been proposed on the basis of these models. The precision assessments indicate that the established models are accurate, and the prediction formula is capable of making precise lifetime forecasting of the coatings.

  15. Proton-neutron correlations in a broken-pair model

    International Nuclear Information System (INIS)

    Akkermans, J.N.L.

    1981-01-01

    In this thesis nuclear-structure calculations are reported which were performed with the broken-pair model. The model which is developed, is an extension of existing broken-pair models in so far that it includes both proton and neutron valence pairs. The relevant formalisms are presented. In contrast to the number-non-conserving model, a proton-neutron broken-pair model is well suited to study the correlations which are produced by the proton-neutron interaction. It is shown that the proton-neutron force has large matrix elements which mix the proton- with neutron broken-pair configurations. This occurs especially for Jsup(PI)=2 + and 3 - pairs. This property of the proton-neutron force is used to improve the spectra of single-closed shell nuclei, where particle-hole excitations of the closed shell are a special case of broken-pair configurations. Using Kr and Te isotopes it is demonstrated that the proton-neutron force gives rise to correlated pair structures, which remain remarkably constant with varying nucleon numbers. (Auth.)

  16. Neutron transport model for standard calculation experiment

    International Nuclear Information System (INIS)

    Lukhminskij, B.E.; Lyutostanskij, Yu.S.; Lyashchuk, V.I.; Panov, I.V.

    1989-01-01

    The neutron transport calculation algorithms in complex composition media with a predetermined geometry are realized by the multigroups representations within Monte Carlo methods in the MAMONT code. The code grade was evaluated with benchmark experiments comparison. The neutron leakage spectra calculations in the spherical-symmetric geometry were carried out for iron and polyethylene. The MAMONT code utilization for metrological furnishes of the geophysics tasks is proposed. The code is orientated towards neutron transport and secondary nuclides accumulation calculations in blankets and geophysics media. 7 refs.; 2 figs

  17. Study of behavior and determination of customer lifetime value(CLV) using Markov chain model

    Science.gov (United States)

    Permana, Dony; Indratno, Sapto Wahyu; Pasaribu, Udjianna S.

    2014-03-01

    Customer Lifetime Value or CLV is a restriction on interactive marketing to help a company in arranging financial for the marketing of new customer acquisition and customer retention. Additionally CLV can be able to segment customers for financial arrangements. Stochastic models for the fairly new CLV used a Markov chain. In this model customer retention probability and new customer acquisition probability play an important role. This model is originally introduced by Pfeifer and Carraway in 2000 [1]. They introduced several CLV models, one of them only involves customer and former customer. In this paper we expand the model by adding the assumption of the transition from former customer to customer. In the proposed model, the CLV value is higher than the CLV value obtained by Pfeifer and Caraway model. But our model still requires a longer convergence time.

  18. Neutron model for the formation of AGN jets with Cetral Radio Gap ...

    African Journals Online (AJOL)

    In this work, there has been an attempt to explain the formation of jets in some radio sources with gaps at their centers using the neutron “production-to-decay” process. The jet-light-up point is taken to coincide with the end of the lifetime of the neutrons. Calculated intrinsic opening angles for the jets of the selected Active ...

  19. A large animal model for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Gavin, P.R.; Kraft, S.L.; DeHaan, C.E.; Moore, M.P.; Griebenow, M.L.

    1992-01-01

    An epithermal neutron beam is needed to treat relatively deep seated tumors. The scattering characteristics of neutrons in this energy range dictate that in vivo experiments be conducted in a large animal to prevent unacceptable total body irradiation. The canine species has proven an excellent model to evaluate the various problems of boron neutron capture utilizing an epithermal neutron beam. This paper discusses three major components of the authors study: (1) the pharmacokinetics of borocaptate sodium (NA 2 B 12 H 11 SH or BSH) in dogs with spontaneously occurring brain tumors, (2) the radiation tolerance of normal tissues in the dog using an epithermal beam alone and in combination with borocaptate sodium, and (3) initial treatment of dogs with spontaneously occurring brain tumors utilizing borocaptate sodium and an epithermal neutron beam

  20. Stochastic Modeling and Simulation of Marginally Trapped Neutrons

    Science.gov (United States)

    Coakley, K. J.

    2014-03-01

    For a magnetic trapping experiment, I present an efficient method for simulating experimental β-decay rates that accounts for loss of marginally trapped neutrons due to wall collisions and other possible loss mechanisms. Monte Carlo estimates of time-dependent survival probability functions for the wall loss mechanism are based on computer intensive tracking of marginally trapped neutrons with a symplectic integration method and a physical model for the loss probability of a neutron when it collides with a trap boundary. The simulation is highly efficient because after all relevant survival probabilities are determined, observed neutron decay events are quickly simulated by sampling from probability distribution functions associated with each survival probability function of interest. That is, computer intensive and time-consuming numerical simulation of a large number of additional neutron trajectories is not necessary.

  1. Converter-level FEM simulation for lifetime prediction of an LED driver with improved thermal modelling

    DEFF Research Database (Denmark)

    Niu, H.; Wang, H.; Ye, X.

    2017-01-01

    application. A converter-level finite element simulation (FEM) simulation is carried out to obtain the ambient temperature of electrolytic capacitors and power MOSFETs used in the LED driver, which takes into account the impact of the driver enclosure and the thermal coupling among different components....... Therefore, the proposed method bridges the link between the global ambient temperature profile outside of the enclosure and the local ambient temperature profiles of the components of interest inside the driver. A quantitative comparison of the estimated annual lifetime consumptions of MOSFETs...... and capacitors are given based on the proposed thermal modelling process, and the datasheet thermal impedance models and the global ambient temperature....

  2. Permeability log using new lifetime measurements

    International Nuclear Information System (INIS)

    Dowling, D.J.; Boyd, J.F.; Fuchs, J.A.

    1975-01-01

    Comparative measurements of thermal neutron decay time are obtained for a formation after irradiation with a pulsed neutron source. Chloride ions in formation fluids are concentrated by the electrosmosis effect using charged poles on a well logging sonde. The formation is irradiated with fast neutrons and a first comparative measure of the thermal neutron decay time or neutron lifetime is taken. The chloride ions are then dispersed by acoustic pumping with a magnetostrictive transducer. The formation is then again irradiated with fast neutrons and a comparative measure of neutron lifetime is taken. The comparison is a function of the variation in chloride concentration between the two measurements which is related to formation permeability

  3. MR-ToF isobar separation for mass and life-time measurements of neutron-rich zinc at ISOLTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Audi, Georges; Lunney, David; Wang, Meng [CSNSMIN2P3-CNRS, Universite de Paris Sud, Orsay (France); Beck, Dietrich; Herfurth, Frank; Kluge, Juergen; Ramirez, Enrique Minaya; Neidherr, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Blaum, Klaus; Boehm, Christine; Borgmann, Christopher; Cakirli, R. Burcu; Eliseev, Sergey [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Breitenfeldt, Martin [Leuven Univ. (Belgium). Inst. voor Kern- en Stralingsfysika; Cocolios, Thomas Elias; Kowalska, Magdalena [CERN, Geneva (Switzerland); George, Sebastian; Schwarz, Stefan [NSCL, Michigan State University, East Lansing, MI (United States); Herlert, Alexander [FAIR GmbH, Darmstadt (Germany); Kreim, Susanne [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); CERN, Geneva (Switzerland); Naimi, Sarah [RIKEN Research Facility (Japan); Rosenbusch, Marco; Schweikhard, Lutz; Wienholtz, Frank; Wolf, Robert N. [Ernst-Moritz-Arndt-Universitaet, Greifswald (Germany); Stanja, Juliane; Zuber, Kai [Technische Universitaet, Dresden (Germany)

    2012-07-01

    High-precision Penning-trap mass measurements of short-lived nuclei are performed with ISOLTRAP at the on-line isotope separator ISOLDE/CERN. An important prerequisite to achieve relative uncertainties of {delta}m/m=10{sup -8} is the availability of purely isobaric ion ensembles. To enhance the purity of radioactive ion beams, a multi-reflection time-of-flight mass separator developed at the University of Greifswald has recently been implemented at the ISOLTRAP setup. A mass resolving power of R=2.10{sup 5} and a contaminant reduction of four orders of magnitude by use of a Bradbury-Nielsen ion gate have been achieved. The performance of the combined setup (including an RFQ ion buncher, the MR-ToF MS and the two Penning traps) in both offline tests as well as in first applications with radioactive ion beams is presented. Furthermore, the physics case and recent results of mass measurements of neutron-rich Zinc are shown.

  4. Temperature dependence of o-Ps annihilation lifetime in non-uniform cylindrical pores in comparison with ETE model

    Energy Technology Data Exchange (ETDEWEB)

    Khaghani, Morteza, E-mail: m.khaghani@pgs.usb.ac.ir; Mehmandoost-Khajeh-Dad, Ali Akbar, E-mail: mehmandoost@phys.usb.ac.ir

    2017-04-01

    Highlights: • Using the well known multi-physics program COMSOL calculating o-Ps annihilation lifetime in complex geometries. • Investigation of shape non-uniformity of cylindrical pores on o-Ps annihilation lifetime. • Verifying temperature dependency of o-Ps lifetime in non-uniform cylindrical pores. • Suggesting PALS at low temperature as a method to verify pore uniformity in porous material. - Abstract: Ortho-positronium (o-Ps) annihilation lifetime was calculated in non-uniform cylinder-shaped pores by solving Schrodinger equation using a well-known multi-physics program called COMSOL. The o-Ps annihilation lifetime variation in terms of temperature was calculated on the basis of ETE model via a numerical method. The COMSOL simulations indicate that as long as the pore is uniform cylinder-shaped, the results agree with those of two-dimensional ETE model, whereas deformations in the cylinder shape (indentation or protrusion) change the temperature behavior of ETE model and, thereby, higher values are predicted for o-Ps lifetime in the pore at lower temperatures. The geometry of the non-uniform cylinder-shaped pores, which is accompanied by empirical evidence, can be used for the analysis of empirical results obtained from positron lifetime spectroscopy in different temperatures.

  5. The Standard Model and the neutron beta-decay

    CERN Document Server

    Abele, H

    2000-01-01

    This article reviews the relationship between the observables in neutron beta-decay and the accepted modern theory of particle physics known as the Standard Model. Recent neutron-decay measurements of various mixed American-British-French-German-Russian collaborations try to shed light on the following topics: the coupling strength of charged weak currents, the universality of the electroweak interaction and the origin of parity violation.

  6. Bayesian Network Model with Application to Smart Power Semiconductor Lifetime Data.

    Science.gov (United States)

    Plankensteiner, Kathrin; Bluder, Olivia; Pilz, Jürgen

    2015-09-01

    In this article, Bayesian networks are used to model semiconductor lifetime data obtained from a cyclic stress test system. The data of interest are a mixture of log-normal distributions, representing two dominant physical failure mechanisms. Moreover, the data can be censored due to limited test resources. For a better understanding of the complex lifetime behavior, interactions between test settings, geometric designs, material properties, and physical parameters of the semiconductor device are modeled by a Bayesian network. Statistical toolboxes in MATLAB® have been extended and applied to find the best structure of the Bayesian network and to perform parameter learning. Due to censored observations Markov chain Monte Carlo (MCMC) simulations are employed to determine the posterior distributions. For model selection the automatic relevance determination (ARD) algorithm and goodness-of-fit criteria such as marginal likelihoods, Bayes factors, posterior predictive density distributions, and sum of squared errors of prediction (SSEP) are applied and evaluated. The results indicate that the application of Bayesian networks to semiconductor reliability provides useful information about the interactions between the significant covariates and serves as a reliable alternative to currently applied methods. © 2015 Society for Risk Analysis.

  7. On a fluid model of neutron star

    Czech Academy of Sciences Publication Activity Database

    Ducomet, B.; Nečasová, Šárka

    2009-01-01

    Roč. 55, č. 1 (2009), s. 153-193 ISSN 0430-3202 R&D Projects: GA AV ČR IAA100190804 Institutional research plan: CEZ:AV0Z10190503 Keywords : initial boundary value problem * spherical case * neutron star Subject RIV: BA - General Mathematics

  8. Methods for processing of pulsed neutron logging data

    International Nuclear Information System (INIS)

    Iskenderov, V.G.

    1975-01-01

    Conditions were examined for calculating the lifetime of thermal neutrons in neutron-neutron logging by selecting optimum values for the time lag. The dispersion and mean square error of the calculated lifetime values for thermal neutrons are evaluated

  9. Profit-Based Model Selection for Customer Retention Using Individual Customer Lifetime Values.

    Science.gov (United States)

    Óskarsdóttir, María; Baesens, Bart; Vanthienen, Jan

    2018-03-01

    The goal of customer retention campaigns, by design, is to add value and enhance the operational efficiency of businesses. For organizations that strive to retain their customers in saturated, and sometimes fast moving, markets such as the telecommunication and banking industries, implementing customer churn prediction models that perform well and in accordance with the business goals is vital. The expected maximum profit (EMP) measure is tailored toward this problem by taking into account the costs and benefits of a retention campaign and estimating its worth for the organization. Unfortunately, the measure assumes fixed and equal customer lifetime value (CLV) for all customers, which has been shown to not correspond well with reality. In this article, we extend the EMP measure to take into account the variability in the lifetime values of customers, thereby basing it on individual characteristics. We demonstrate how to incorporate the heterogeneity of CLVs when CLVs are known, when their prior distribution is known, and when neither is known. By taking into account individual CLVs, our proposed approach of measuring model performance gives novel insights when deciding on a customer retention campaign. The method is dependent on the characteristics of the customer base as is compliant with modern business analytics and accommodates the data-driven culture that has manifested itself within organizations.

  10. Lifetime modelling for MCrAlY coatings in industrial gas turbine blades

    Directory of Open Access Journals (Sweden)

    Krukovsky Pavel

    2004-01-01

    Full Text Available A novel theoretical and experimental approach for lifetime modelling of MCrAlY coatings for stationary gas turbines has been undertaken using the Inverse Problem Solution (IPS technique. With this technique feasible experimental data acquired after a defined experimental time t e are used as input values for the model parameters estimation. In the first stage of the approach a model, based on the oxidation and diffusion processes (Fick's first and second law was assumed, which considers the Al concentration profile across the coating. The measured average Al concentration profiles in the two-phase g+b and g - regions of coating as well as base metal were used as input values for the model parameters estimation and calculational prediction of the long term diffusion and oxidation behavior of the coating was performed. The time, when the b-NiAl phase is completely consumed was assumed as the coating lifetime end. Exposure experiments were carried out with a NiCoCrAlY coating (200 micron thickness with 8% Al in air at 900 °C and 950 °C, currently up to 10000 h. The oxide scale is growing continuously and no other oxides were observed. The average and b-NiAl phase concentration profiles of Al across the coating thickness were determined by electron microprobe and image analysis systems in the initial state after 700 and 10000 h of oxidation. The concentration profile measured after 700 h was used as input values for the model parameters estimation in order to calculate the Al and b-NiAl phase concentration profiles after 10000 h. The computational forecast for 10000 h at 950 °C and 900 °C are in good agreement with the measured data. The approach was applied for NiCoCrAlY (200 micron thickness coating lifetime modelling at 950 °C and 900 °C as well as for different coating thicknesses at 950 °C.

  11. Nuclear lifetimes

    International Nuclear Information System (INIS)

    Caraca, J.M.G.

    1976-01-01

    The importance of the results obtained in experiments of measurement of lifetimes for a detailed knowledge of nuclear structure is referred. Direct methods of measurement of nuclear lifetimes are described, namely, electronic methods, recoil-distance method, doppler shift atenuation method and blocking-method. A brief reference is made to indirect methods for measurement of life-times

  12. Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: New Life for Pulsar Glitch Models.

    Science.gov (United States)

    Watanabe, Gentaro; Pethick, C J

    2017-08-11

    Calculations of the effects of band structure on the neutron superfluid density in the crust of neutron stars made under the assumption that the effects of pairing are small [N. Chamel, Phys. Rev. C 85, 035801 (2012)PRVCAN0556-2813] lead to moments of inertia of superfluid neutrons so small that the crust alone is insufficient to account for the magnitude of neutron star glitches. Inspired by earlier work on ultracold atomic gases in an optical lattice, we investigate fermions with attractive interactions in a periodic lattice in the mean-field approximation. The effects of band structure are suppressed when the pairing gap is of order or greater than the strength of the lattice potential. By applying the results to the inner crust of neutron stars, we conclude that the reduction of the neutron superfluid density is considerably less than previously estimated and, consequently, it is premature to rule out models of glitches based on neutron superfluidity in the crust.

  13. Remark on: the neutron spherical optical-model absorption.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A. B.; Nuclear Engineering Division

    2007-06-30

    The energy-dependent behavior of the absorption term of the spherical neutron optical potential for doubly magic {sup 208}Pb and the neighboring {sup 209}Bi is examined. These considerations suggest a phenomenological model that results in an intuitively attractive energy dependence of the imaginary potential that provides a good description of the observed neutron cross sections and that is qualitatively consistent with theoretical concepts. At the same time it provides an alternative to some of the arbitrary assumptions involved in many conventional optical-model interpretations reported in the literature and reduces the number of the parameters of the model.

  14. Studies and modeling of cold neutron sources

    International Nuclear Information System (INIS)

    Campioni, G.

    2004-11-01

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources

  15. VHTR core modeling: coupling between neutronic and thermal-hydraulics

    International Nuclear Information System (INIS)

    Limaiem, I.; Damian, F.; Raepsaet, X.; Studer, E.

    2005-01-01

    Following the present interest in the next generation nuclear power plan (NGNP), Cea is deploying special effort to develop new models and qualify its research tools for this next generation reactors core. In this framework, the Very High Temperature Reactor concept (VHTR) has an increasing place in the actual research program. In such type of core, a strong interaction exists between neutronic and thermal-hydraulics. Consequently, the global core modelling requires accounting for the temperature feedback in the neutronic models. The purpose of this paper is to present the new neutronic and thermal-hydraulics coupling model dedicated to the High Temperature Reactors (HTR). The coupling model integrates a new version of the neutronic scheme calculation developed in collaboration between Cea and Framatome-ANP. The neutronic calculations are performed using a specific calculation processes based on the APOLLO2 transport code and CRONOS2 diffusion code which are part of the French reactor physics code system SAPHYR. The thermal-hydraulics model is characterised by an equivalent porous media and 1-D fluid/3-D thermal model implemented in the CAST3M/ARCTURUS code. The porous media approach involves the definition of both homogenous and heterogeneous models to ensure a correct temperature feedback. This study highlights the sensitivity of the coupling system's parameters (radial/axial meshing and data exchange strategy between neutronic and thermal-hydraulics code). The parameters sensitivity study leads to the definition of an optimal coupling system specification for the VHTR. Besides, this work presents the first physical analysis of the VHTR core in steady-state condition. The analysis gives information about the 3-D power peaking and the temperature coefficient. Indeed, it covers different core configurations with different helium distribution in the core bypass. (authors)

  16. Constraints on mirror models of dark matter from observable neutron-mirror neutron oscillation

    Directory of Open Access Journals (Sweden)

    Rabindra N. Mohapatra

    2018-01-01

    Full Text Available The process of neutron-mirror neutron oscillation, motivated by symmetric mirror dark matter models, is governed by two parameters: n−n′ mixing parameter δ and n−n′ mass splitting Δ. For neutron mirror neutron oscillation to be observable, the splitting between their masses Δ must be small and current experiments lead to δ≤2×10−27 GeV and Δ≤10−24 GeV. We show that in mirror universe models where this process is observable, this small mass splitting constrains the way that one must implement asymmetric inflation to satisfy the limits of Big Bang Nucleosynthesis on the number of effective light degrees of freedom. In particular we find that if asymmetric inflation is implemented by inflaton decay to color or electroweak charged particles, the oscillation is unobservable. Also if one uses SM singlet fields for this purpose, they must be weakly coupled to the SM fields.

  17. Neutron-multiplicity experiments for enhanced fission modelling

    Science.gov (United States)

    Al-Adili, Ali; Tarrío, Diego; Hambsch, Franz-Josef; Göök, Alf; Jansson, Kaj; Solders, Andreas; Rakapoulos, Vasileios; Gustavsson, Cecilia; Lantz, Mattias; Mattera, Andrea; Oberstedt, Stephan; Prokofiev, Alexander V.; Sundén, Erik A.; Vidali, Marzio; Österlund, Michael; Pomp, Stephan

    2017-09-01

    The nuclear de-excitation process of fission fragments (FF) provides fundamental information for the understanding of nuclear fission and nuclear structure in neutron-rich isotopes. The variation of the prompt-neutron multiplicity, ν(A), as a function of the incident neutron energy (En) is one of many open questions. It leads to significantly different treatments in various fission models and implies that experimental data are analyzed based on contradicting assumptions. One critical question is whether the additional excitation energy (Eexc) is manifested through an increase of ν(A) for all fragments or for the heavy ones only. A systematic investigation of ν(A) as a function of En has been initiated. Correlations between prompt-fission neutrons and fission fragments are obtained by using liquid scintillators in conjunction with a Frisch-grid ionization chamber. The proof-of-principle has been achieved on the reaction 235U(nth,f) at the Van De Graff (VdG) accelerator of the JRC-Geel using a fully digital data acquisition system. Neutrons from 252Cf(sf) were measured separately to quantify the neutron-scattering component due to surrounding shielding material and to determine the intrinsic detector efficiency. Prelimenary results on ν(A) and spectrum in correlation with FF properties are presented.

  18. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium–Beryllium source

    Directory of Open Access Journals (Sweden)

    Abdessamad Didi

    2017-06-01

    Full Text Available Americium–beryllium (Am-Be; n, γ is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci, yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

  19. ARMA modelling of neutron stochastic processes with large measurement noise

    International Nuclear Information System (INIS)

    Zavaljevski, N.; Kostic, Lj.; Pesic, M.

    1994-01-01

    An autoregressive moving average (ARMA) model of the neutron fluctuations with large measurement noise is derived from langevin stochastic equations and validated using time series data obtained during prompt neutron decay constant measurements at the zero power reactor RB in Vinca. Model parameters are estimated using the maximum likelihood (ML) off-line algorithm and an adaptive pole estimation algorithm based on the recursive prediction error method (RPE). The results show that subcriticality can be determined from real data with high measurement noise using much shorter statistical sample than in standard methods. (author)

  20. Validation of the MCNP computational model for neutron flux distribution with the neutron activation analysis measurement

    Science.gov (United States)

    Tiyapun, K.; Chimtin, M.; Munsorn, S.; Somchit, S.

    2015-05-01

    The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using the MCNP computer code model. The reaction rate using in the experiment includes 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminium (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with cadmium were irradiated in 9 locations in the core referred to as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modelled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using the MCNP geometrical model was below 10%. In conclusion the MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.

  1. Study of neutron-rich Mo isotopes by the projected shell model ...

    Indian Academy of Sciences (India)

    also predicts a decrease in the quantum of triaxiality with increasing neutron number and angular momentum for odd mass neutron-rich Mo isotopes. Keywords. Neutron-rich nuclei; electromagnetic quantities; projected shell model. PACS Nos 21.60.Cs; 21.10.Ky; 21.10.Re; 27.60.+j. 1. Introduction. Neutron-rich nuclei in the ...

  2. Implementation of mathematical model of thermal behavior of electronic components for lifetime estimation based on multi-level simulation

    Directory of Open Access Journals (Sweden)

    Frivaldsky Michal

    2017-06-01

    Full Text Available The main purpose of the paper is the proposal of multi-level simulation, suited for the evaluation of the lifetime of critical electronic devices (electrolytic capacitors. The aim of this issue is to imagine about the expected operation of complex and expensive power electronic systems, when the failure of the most critical component occurs. For that reason, various operational conditions and various physical influences must be considered (e.g. mechanical, humidity, electrical, heat stress, where nonlinearities are naturally introduced. Verification of the proposal is given, whereby the life-time estimation of an electrolytic capacitor operated in a DC-DC converter during various operational conditions is shown. At this point electrical and heat stress is considered for lifetime influence. First, the current state in the field of mathematical modeling of the lifetime for electrolytic capacitors, considering main phenomena is introduced. Next, individual sub-models for multi-level simulation purposes are developed, including a thermal simulation model and electrical simulation model. Several complexities of individual models are mutually compared in order to evaluate their accuracy and suitability for further use. Proper simulation tools have been mutually linked and data transfer was secured, in order to have the possibility of investigation of a lifetime depend on the changes of various variables.

  3. Mathematical models for volume rendering and neutron transport

    International Nuclear Information System (INIS)

    Max, N.

    1994-09-01

    This paper reviews several different models for light interaction with volume densities of absorbing, glowing, reflecting, or scattering material. They include absorption only, glow only, glow and absorption combined, single scattering of external illumination, and multiple scattering. The models are derived from differential equations, and illustrated on a data set representing a cloud. They are related to corresponding models in neutron transport. The multiple scattering model uses an efficient method to propagate the radiation which does not suffer from the ray effect

  4. A simple testable model of baryon number violation: Baryogenesis, dark matter, neutron-antineutron oscillation and collider signals

    Science.gov (United States)

    Allahverdi, Rouzbeh; Dev, P. S. Bhupal; Dutta, Bhaskar

    2018-04-01

    We study a simple TeV-scale model of baryon number violation which explains the observed proximity of the dark matter and baryon abundances. The model has constraints arising from both low and high-energy processes, and in particular, predicts a sizable rate for the neutron-antineutron (n - n bar) oscillation at low energy and the monojet signal at the LHC. We find an interesting complementarity among the constraints arising from the observed baryon asymmetry, ratio of dark matter and baryon abundances, n - n bar oscillation lifetime and the LHC monojet signal. There are regions in the parameter space where the n - n bar oscillation lifetime is found to be more constraining than the LHC constraints, which illustrates the importance of the next-generation n - n bar oscillation experiments.

  5. Solving inverse problem for Markov chain model of customer lifetime value using flower pollination algorithm

    Science.gov (United States)

    Al-Ma'shumah, Fathimah; Permana, Dony; Sidarto, Kuntjoro Adji

    2015-12-01

    Customer Lifetime Value is an important and useful concept in marketing. One of its benefits is to help a company for budgeting marketing expenditure for customer acquisition and customer retention. Many mathematical models have been introduced to calculate CLV considering the customer retention/migration classification scheme. A fairly new class of these models which will be described in this paper uses Markov Chain Models (MCM). This class of models has the major advantage for its flexibility to be modified to several different cases/classification schemes. In this model, the probabilities of customer retention and acquisition play an important role. From Pfeifer and Carraway, 2000, the final formula of CLV obtained from MCM usually contains nonlinear form of the transition probability matrix. This nonlinearity makes the inverse problem of CLV difficult to solve. This paper aims to solve this inverse problem, yielding the approximate transition probabilities for the customers, by applying metaheuristic optimization algorithm developed by Yang, 2013, Flower Pollination Algorithm. The major interpretation of obtaining the transition probabilities are to set goals for marketing teams in keeping the relative frequencies of customer acquisition and customer retention.

  6. Application of stochastic models to determine customers lifetime value for a Brazilian supermarkets network

    Directory of Open Access Journals (Sweden)

    Annibal Parracho Sant'Anna

    2008-12-01

    Full Text Available This paper studies strategies to access customer lifetime value (CLV. Traditionally, heuristics based on recency, frequency and monetary value variables (RFM are used to determine the best customers. Here, some forms of directly exploring these parameters to predict CLV are compared to an approach based on fitting a stochastic model. The model employed is a composition of a model for the number of transactions along the residual lifetime and a model for the value spent. New evidence is raised on the effect of aggregating transactions monthly. The data analyzed refer to two years of purchases of a group of customers of the same entrance cohort of a fidelity program cadastre of a supermarkets network in Rio de Janeiro. Using the first year to calibrate and the second year to validate the models, good fit of both models to the series of individual data and coherent CLV predictions are obtained.Este artigo estuda estratégias para avaliar o valor do tempo de vida do cliente (CLV. Tradicionalmente, heurísticas baseadas em variáveis medindo recência, freqüência e valor monetário (RFM são utilizadas para determinar os melhores clientes. Aqui, algumas formas de explorar diretamente estes parâmetros para predizer o CLV são comparadas com uma abordagem baseada no ajustamento de um modelo estocástico. O modelo utilizado é uma composição de um modelo para o número de transações ao longo da vida útil residual e um modelo para o valor gasto. Nova evidência é levantada sobre o efeito de agregação das transações mensalmente. Os dados analisados referem-se a dois anos da compras de um grupo de clientes da mesma coorte de ingresso no cadastro de um programa de fidelidade de uma rede de supermercados do Rio de Janeiro. Usando o primeiro ano para calibrar e o segundo ano para validar os modelos, bom ajuste dos dois modelos para as séries de dados individuais e previsões coerentes para o CLV são obtidas.

  7. Lifetime measurements

    International Nuclear Information System (INIS)

    Fossan, D.B.; Warburton, E.K.

    1974-01-01

    Lifetime measurements are discussed, concentrating on the electronic technique, the recoil distance method (RDM), and the Doppler shift attenuation method (DSAM). A brief review of several indirect timing techniques is given, and their specific advantages and applicability are considered. The relationship between lifetimes of nuclear states and the nuclear structure information obtained from them is examined. A short discussion of channeling and microwave methods of lifetime measurement is presented. (23 figures, 171 references) (U.S.)

  8. Species abundance distributions in neutral models with immigration or mutation and general lifetimes.

    Science.gov (United States)

    Lambert, Amaury

    2011-07-01

    We consider a general, neutral, dynamical model of biodiversity. Individuals have i.i.d. lifetime durations, which are not necessarily exponentially distributed, and each individual gives birth independently at constant rate λ. Thus, the population size is a homogeneous, binary Crump-Mode-Jagers process (which is not necessarily a Markov process). We assume that types are clonally inherited. We consider two classes of speciation models in this setting. In the immigration model, new individuals of an entirely new species singly enter the population at constant rate μ (e.g., from the mainland into the island). In the mutation model, each individual independently experiences point mutations in its germ line, at constant rate θ. We are interested in the species abundance distribution, i.e., in the numbers, denoted I(n)(k) in the immigration model and A(n)(k) in the mutation model, of species represented by k individuals, k = 1, 2, . . . , n, when there are n individuals in the total population. In the immigration model, we prove that the numbers (I(t)(k); k ≥ 1) of species represented by k individuals at time t, are independent Poisson variables with parameters as in Fisher's log-series. When conditioning on the total size of the population to equal n, this results in species abundance distributions given by Ewens' sampling formula. In particular, I(n)(k) converges as n → ∞ to a Poisson r.v. with mean γ/k, where γ : = μ/λ. In the mutation model, as n → ∞, we obtain the almost sure convergence of n (-1) A(n)(k) to a nonrandom explicit constant. In the case of a critical, linear birth-death process, this constant is given by Fisher's log-series, namely n(-1) A(n)(k) converges to α(k)/k, where α : = λ/(λ + θ). In both models, the abundances of the most abundant species are briefly discussed.

  9. Parameterized Radiation Transport Model for Neutron Detection in Complex Scenes

    Science.gov (United States)

    Lavelle, C. M.; Bisson, D.; Gilligan, J.; Fisher, B. M.; Mayo, R. M.

    2013-04-01

    There is interest in developing the ability to rapidly compute the energy dependent neutron flux within a complex geometry for a variety of applications. Coupled with sensor response function information, this capability would allow direct estimation of sensor behavior in multitude of operational scenarios. In situations where detailed simulation is not warranted or affordable, it is desirable to possess reliable estimates of the neutron field in practical scenarios which do not require intense computation. A tool set of this kind would provide quantitative means to address the development of operational concepts, inform asset allocation decisions, and exercise planning. Monte Carlo and/or deterministic methods provide a high degree of precision and fidelity consistent with the accuracy with which the scene is rendered. However, these methods are often too computationally expensive to support the real-time evolution of a virtual operational scenario. High fidelity neutron transport simulations are also time consuming from the standpoint of user setup and post-simulation analysis. We pre-compute adjoint solutions using MCNP to generate a coarse spatial and energy grid of the neutron flux over various surfaces as an alternative to full Monte Carlo modeling. We attempt to capture the characteristics of the neutron transport solution. We report on the results of brief verification and validation measurements which test the predictive capability of this approach over soil and asphalt concrete surfaces. We highlight the sensitivity of the simulated and experimental results to the material composition of the environment.

  10. MEASURING NEUTRON STAR RADII VIA PULSE PROFILE MODELING WITH NICER

    Energy Technology Data Exchange (ETDEWEB)

    Özel, Feryal; Psaltis, Dimitrios; Bauböck, Michi [Astronomy Department, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Arzoumanian, Zaven [Center for Research and Exploration in Space Science and Technology/USRA, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Morsink, Sharon, E-mail: fozel@email.arizona.edu [Department of Physics, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E1 (Canada)

    2016-11-20

    The Neutron-star Interior Composition Explorer is an X-ray astrophysics payload that will be placed on the International Space Station . Its primary science goal is to measure with high accuracy the pulse profiles that arise from the non-uniform thermal surface emission of rotation-powered pulsars. Modeling general relativistic effects on the profiles will lead to measuring the radii of these neutron stars and to constraining their equation of state. Achieving this goal will depend, among other things, on accurate knowledge of the source, sky, and instrument backgrounds. We use here simple analytic estimates to quantify the level at which these backgrounds need to be known in order for the upcoming measurements to provide significant constraints on the properties of neutron stars. We show that, even in the minimal-information scenario, knowledge of the background at a few percent level for a background-to-source countrate ratio of 0.2 allows for a measurement of the neutron star compactness to better than 10% uncertainty for most of the parameter space. These constraints improve further when more realistic assumptions are made about the neutron star emission and spin, and when additional information about the source itself, such as its mass or distance, are incorporated.

  11. The neutron electric dipole moment in the cloudy bag model

    International Nuclear Information System (INIS)

    Morgan, M.A.; Miller, G.A.

    1986-01-01

    An evaluation of the neutron electric dipole moment (NEDM), using the cloudy bag model (CBM) shows that two CP-violating effects (a quark mass term and a pion-quark interaction) have contributions that are about equal in magnitude, but opposite in sign. This cancellation allows the upper limit on the θ parameter to increase by about an order of magnitude. (orig.)

  12. Thermalization time in a model of neutron star

    OpenAIRE

    Ducomet, B.; Nečasová, Š. (Šárka)

    2011-01-01

    We consider an initial boundary value problem for the equation describing heat conduction in a spherical model of neutron star considered by Lattimer et al. We estimate the asymptotic decay of the solution, which provides a plausible estimate for a "thermalization time" for the system.

  13. Semiclassical model of cross section for fast neutrons

    International Nuclear Information System (INIS)

    Rosato, A.; D'Oliveira, A.A.

    1977-01-01

    A study for main aspects of fast neutron scattering is presented and, a semiclassical approximation applying to several pratic cases is described. The obtained results are compared with experimental data for deformed nuclei, and, with theoretical data based on optical model without treatment of deformations. (M.C.K.) [pt

  14. Wind Turbine Blade Life-Time Assessment Model for Preventive Planning of Operation and Maintenance

    Directory of Open Access Journals (Sweden)

    Mihai Florian

    2015-09-01

    Full Text Available Out of the total wind turbine failure events, blade damage accounts for a substantial part, with some studies estimating it at around 23%. Current operation and maintenance (O&M practices typically make use of corrective type maintenance as the basic approach, implying high costs for repair and replacement activities as well as large revenue losses, mainly in the case of offshore wind farms. The recent development and evolution of condition monitoring techniques, as well as the fact that an increasing number of installed turbines are equipped with online monitoring systems, offers a large amount of information on the blades structural health to the decision maker. Further, inspections of the blades are often performed in connection with service. In light of the obtained information, a preventive type of maintenance becomes feasible, with the potential of predicting the blades remaining life to support O&M decisions for avoiding major failure events. The present paper presents a fracture mechanics based model for estimating the remaining life of a wind turbine blade, focusing on the crack propagation in the blades adhesive joints. A generic crack propagation model is built in Matlab based on a Paris law approach. The model is used within a risk-based maintenance decision framework to optimize maintenance planning for the blades lifetime.

  15. A Point Kinetics Model for Estimating Neutron Multiplication of Bare Uranium Metal in Tagged Neutron Measurements

    Science.gov (United States)

    Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.

    2017-07-01

    An extension of the point kinetics model is developed to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If the detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. The spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.

  16. A CTRW-based model of time-resolved fluorescence lifetime imaging in a turbid medium.

    Science.gov (United States)

    Chernomordik, Victor; Gandjbakhche, Amir H; Hassan, Moinuddin; Pajevic, Sinisa; Weiss, George H

    2010-12-01

    We develop an analytic model of time-resolved fluorescent imaging of photons migrating through a semi-infinite turbid medium bounded by an infinite plane in the presence of a single stationary point fluorophore embedded in the medium. In contrast to earlier models of fluorescent imaging in which photon motion is assumed to be some form of continuous diffusion process, the present analysis is based on a continuous-time random walk (CTRW) on a simple cubic lattice, the object being to estimate the position and lifetime of the fluorophore. Such information can provide information related to local variations in pH and temperature with potential medical significance. Aspects of the theory were tested using time-resolved measurements of the fluorescence from small inclusions inside tissue-like phantoms. The experimental results were found to be in good agreement with theoretical predictions provided that the fluorophore was not located too close to the planar boundary, a common problem in many diffusive systems.

  17. Global-mean BC lifetime as an indicator of model skill? Constraining the vertical aerosol distribution using aircraft observations

    Science.gov (United States)

    Lund, M. T.; Samset, B. H.; Skeie, R. B.; Berntsen, T.

    2017-12-01

    Several recent studies have used observations from the HIPPO flight campaigns to constrain the modeled vertical distribution of black carbon (BC) over the Pacific. Results indicate a relatively linear relationship between global-mean atmospheric BC residence time, or lifetime, and bias in current models. A lifetime of less than 5 days is necessary for models to reasonably reproduce these observations. This is shorter than what many global models predict, which will in turn affect their estimates of BC climate impacts. Here we use the chemistry-transport model OsloCTM to examine whether this relationship between global BC lifetime and model skill also holds for a broader a set of flight campaigns from 2009-2013 covering both remote marine and continental regions at a range of latitudes. We perform four sets of simulations with varying scavenging efficiency to obtain a spread in the modeled global BC lifetime and calculate the model error and bias for each campaign and region. Vertical BC profiles are constructed using an online flight simulator, as well by averaging and interpolating monthly mean model output, allowing us to quantify sampling errors arising when measurements are compared with model output at different spatial and temporal resolutions. Using the OsloCTM coupled with a microphysical aerosol parameterization, we investigate the sensitivity of modeled BC vertical distribution to uncertainties in the aerosol aging and scavenging processes in more detail. From this, we can quantify how model uncertainties in the BC life cycle propagate into uncertainties in its climate impacts. For most campaigns and regions, a short global-mean BC lifetime corresponds with the lowest model error and bias. On an aggregated level, sampling errors appear to be small, but larger differences are seen in individual regions. However, we also find that model-measurement discrepancies in BC vertical profiles cannot be uniquely attributed to uncertainties in a single process or

  18. Exactly solvable models of proton and neutron interacting bosons

    International Nuclear Information System (INIS)

    Lerma, S.H.; Errea, B.; Dukelsky, J.; Pittel, S.; Van Isacker, P.

    2006-01-01

    We describe a class of exactly-solvable models of interacting bosons based on the algebra SO(3, 2). Each copy of the algebra represents a system of neutron and proton bosons in a given bosonic level interacting via a pairing interaction. The model that includes s and d bosons is a specific realization of the IBM2, restricted to the transition regime between vibrational and γ-soft nuclei. By including additional copies of the algebra, we can generate proton-neutron boson models involving other boson degrees of freedom, while still maintaining exact solvability. In each of these models, we can study not only the states of maximal symmetry, but also those of mixed symmetry, albeit still in the vibrational to γ-soft transition regime. Furthermore, in each of these models we can study some features of F-spin symmetry breaking. We report systematic calculations as a function of the pairing strength for models based on s,d, and g bosons and on s,d, and f bosons. The formalism of exactly-solvable models based on the SO(3, 2) algebra is not limited to systems of proton and neutron bosons, however, but can also be applied to other scenarios that involve two species of interacting bosons

  19. Lifetime of a spacecraft around a synchronous system of asteroids using a dipole model

    Science.gov (United States)

    dos Santos, Leonardo Barbosa Torres; de Almeida Prado, Antonio F. Bertachini; Sanchez, Diogo Merguizo

    2017-11-01

    Space missions allow us to expand our knowledge about the origin of the solar system. It is believed that asteroids and comets preserve the physical characteristics from the time that the solar system was created. For this reason, there was an increase of missions to asteroids in the past few years. To send spacecraft to asteroids or comets is challenging, since these objects have their own characteristics in several aspects, such as size, shape, physical properties, etc., which are often only discovered after the approach and even after the landing of the spacecraft. These missions must be developed with sufficient flexibility to adjust to these parameters, which are better determined only when the spacecraft reaches the system. Therefore, conducting a dynamic investigation of a spacecraft around a multiple asteroid system offers an extremely rich environment. Extracting accurate information through analytical approaches is quite challenging and requires a significant number of restrictive assumptions. For this reason, a numerical approach to the dynamics of a spacecraft in the vicinity of a binary asteroid system is offered in this paper. In the present work, the equations of the Restricted Synchronous Four-Body Problem (RSFBP) are used to model a binary asteroid system. The main objective of this work is to construct grids of initial conditions, which relates semi-major axis and eccentricity, in order to quantify the lifetime of a spacecraft when released close to the less massive body of the binary system (modeled as a rotating mass dipole). We performed an analysis of the lifetime of the spacecraft considering several mass ratios of a binary system of asteroids and investigating the behavior of a spacecraft in the vicinity of this system. We analyze direct and retrograde orbits. This study investigated orbits that survive for at least 500 orbital periods of the system (which is approximately one year), then not colliding or escaping from the system during this

  20. Lifetime effectiveness of mifamurtide addition to chemotherapy in nonmetastatic and metastatic osteosarcoma: a Markov process model analysis.

    Science.gov (United States)

    Song, Hyun Jin; Lee, Jun Ah; Han, Euna; Lee, Eui-Kyung

    2015-09-01

    The mortality and progression rates in osteosarcoma differ depending on the presence of metastasis. A decision model would be useful for estimating long-term effectiveness of treatment with limited clinical trial data. The aim of this study was to explore the lifetime effectiveness of the addition of mifamurtide to chemotherapy for patients with metastatic and nonmetastatic osteosarcoma. The target population was osteosarcoma patients with or without metastasis. A Markov process model was used, whose time horizon was lifetime with a starting age of 13 years. There were five health states: disease-free (DF), recurrence, post-recurrence disease-free, post-recurrence disease-progression, and death. Transition probabilities of the starting state, DF, were calculated from the INT-0133 clinical trials for chemotherapy with and without mifamurtide. Quality-adjusted life-years (QALY) increased upon addition of mifamurtide to chemotherapy by 10.5 % (10.13 and 9.17 QALY with and without mifamurtide, respectively) and 45.2 % (7.23 and 4.98 QALY with and without mifamurtide, respectively) relative to the lifetime effectiveness of chemotherapy in nonmetastatic and metastatic osteosarcoma, respectively. Life-years gained (LYG) increased by 10.1 % (13.10 LYG with mifamurtide and 11.90 LYG without mifamurtide) in nonmetastatic patients and 42.2 % (9.43 LYG with mifamurtide and 6.63 LYG without mifamurtide) in metastatic osteosarcoma patients. The Markov model analysis showed that chemotherapy with mifamurtide improved the lifetime effectiveness compared to chemotherapy alone in both nonmetastatic and metastatic osteosarcoma. Relative effectiveness of the therapy was higher in metastatic than nonmetastatic osteosarcoma over lifetime. However, absolute lifetime effectiveness was higher in nonmetastatic than metastatic osteosarcoma.

  1. Modeling solid-state boron carbide low energy neutron detectors

    International Nuclear Information System (INIS)

    Lundstedt, C.; Harken, A.; Day, E.; Robertson, B.W.; Adenwalla, S.

    2006-01-01

    Two independent techniques for modeling boron-based solid-state neutron detectors are presented-one using the GEANT4 Monte Carlo toolkit and the other one an analytical approach using a simplified physical model. Results of these techniques are compared for three different types of solid-state boron carbide detector. These results provide the basis for distinguishing between conversion layer and other solid-state detectors

  2. The continuum shell-model neutron states of Pb

    Indian Academy of Sciences (India)

    even magic core nucleus 208Pb. For the discrete low-lying excited states, the depletion of the shell-model ... nucleon moves. The matrix elements of K(r) has been kept fixed at 50 MeV and this has been discussed in the following section. The shell-model neutron state |j2)has been coupled with the vibrational |λπ)spin state.

  3. Endurance degradation and lifetime model of p-channel floating gate flash memory device with 2T structure

    Science.gov (United States)

    Wei, Jiaxing; Liu, Siyang; Liu, Xiaoqiang; Sun, Weifeng; Liu, Yuwei; Liu, Xiaohong; Hou, Bo

    2017-08-01

    The endurance degradation mechanisms of p-channel floating gate flash memory device with two-transistor (2T) structure are investigated in detail in this work. With the help of charge pumping (CP) measurements and Sentaurus TCAD simulations, the damages in the drain overlap region along the tunnel oxide interface caused by band-to-band (BTB) tunneling programming and the damages in the channel region resulted from Fowler-Nordheim (FN) tunneling erasure are verified respectively. Furthermore, the lifetime model of endurance characteristic is extracted, which can extrapolate the endurance degradation tendency and predict the lifetime of the device.

  4. Fatigue lifetime investigations on aluminium 2024 under two stage cyclic loading by means of experiments and three microstructural models

    International Nuclear Information System (INIS)

    Burkart, K.; Schleicher, M.; Jansen, C.; Bomas, H.; Mayr, P.

    2000-01-01

    The aim of this work is to achieve information about the development of fatigue failure in the aluminium alloy 2024. The attention was focused on short fatigue cracks under cyclic loading and the occurring load sequence effects on lifetime under two-level cyclic loading. Following the experiments, a revision of three different microstructural crack growth models, which were found in the literature, was made. Based on the data of constant-level cyclic loading, predictions of two-level cyclic loading behaviour were made and compared with the experimentally measured crack propagation rates and reached lifetimes. (orig.) [de

  5. Application of nuclear models to neutron nuclear cross section calculations

    International Nuclear Information System (INIS)

    Young, P.G.

    1983-01-01

    Nuclear theory is used increasingly to supplement and extend the nuclear data base that is available for applied studies. Areas where theoretical calculations are most important include the determination of neutron cross sections for unstable fission products and transactinide nuclei in fission reactor or nuclear waste calculations and for meeting the extensive dosimetry, activation, and neutronic data needs associated with fusion reactor development, especially for neutron energies above 14 MeV. Considerable progress has been made in the use of nuclear models for data evaluation and, particularly, in the methods used to derive physically meaningful parameters for model calculations. Theoretical studies frequently involve use of spherical and deformed optical models, Hauser-Feshbach statistical theory, preequilibrium theory, direct-reaction theory and often make use of gamma-ray strength function models and phenomenological (or microscopic) level density prescriptions. The development, application and limitations of nuclear models for data evaluation are discussed in this paper, with emphasis on the 0.1 to 50 MeV energy range. (Auth.)

  6. MCNP modelling of a combined neutron/gamma counter

    International Nuclear Information System (INIS)

    Bourva, L.C-A.; Croft, S.; Ottmar, H.; Weaver, D.R.

    1999-01-01

    A series of Monte Carlo neutron calculations for a combined gamma/passive neutron coincidence counter has been performed. This type of device, part of a suite of non-destructive assay instruments utilised for the enforcement of the Euratom nuclear safeguards within the European Union, is to be used for high accuracy measurements of the plutonium content of small samples of nuclear materials. The multi-purpose Monte Carlo N-particle (MCNP) code version 4B has been used to model in detail the neutron coincidence detector and to investigate the leakage self-multiplication of PuO 2 and mixed U-Pu oxide (MOX) reference samples used to calibrate the instrument. The MCNP calculations have been used together with a neutron coincidence counting interpretative model to determine characteristic parameters of the detector. A comparative study to both experimental and previous numerical results has been performed. Sensitivity curves of the variation of the detector's efficiency, ε, to, α, the ratio of (α,n) to spontaneous fission neutron emission rate and to f R , the reals coincidence gate utilisation factor, are presented. Sources of the inaccuracy in the calculations have not yet been fully investigated, because of the vast parameter space to be considered, but values of the coincidence gate utilisation factor derived directly from the MCNP data have been found to be overestimated by about 8.2%. Once bias-corrected, the trends of the real coincidence counts rate as a function of sample mass for three types of sample could be matched to experimental results within 0.33%. This result confirms the possible use of MCNP to calculate response trends accurately for a wide variety of source materials, given a limited experimental calibration set

  7. Monte Carlo modeling of neutron imaging at the SINQ spallation source

    International Nuclear Information System (INIS)

    Lebenhaft, J.R.; Lehmann, E.H.; Pitcher, E.J.; McKinney, G.W.

    2003-01-01

    Modeling of the Swiss Spallation Neutron Source (SINQ) has been used to demonstrate the neutron radiography capability of the newly released MPI-version of the MCNPX Monte Carlo code. A detailed MCNPX model was developed of SINQ and its associated neutron transmission radiography (NEUTRA) facility. Preliminary validation of the model was performed by comparing the calculated and measured neutron fluxes in the NEUTRA beam line, and a simulated radiography image was generated for a sample consisting of steel tubes containing different materials. This paper describes the SINQ facility, provides details of the MCNPX model, and presents preliminary results of the neutron imaging. (authors)

  8. Neutron electric dipole moment in the minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Inui, T.; Mimura, Y.; Sakai, N.; Sasaki, T.

    1995-01-01

    The neutron electric dipole moment (EDM) due to the single quark EDM and to the transition EDM is calculated in the minimal supersymmetric standard model. Assuming that the Cabibbo-Kobayashi-Maskawa matrix at the grand unification scale is the only source of CP violation, complex phases are induced in the parameters of soft supersymmetry breaking at low energies. The chargino one-loop diagram is found to give the dominant contribution of the order of 10 -27 similar 10 -29 e.cm for the quark EDM, assuming the light chargino mass and the universal scalar mass to be 50 GeV and 100 GeV, respectively. Therefore the neutron EDM in this class of model is difficult to measure experimentally. The gluino one-loop diagram also contributes due to the flavor changing gluino coupling. The transition EDM is found to give dominant contributions for certain parameter regions. (orig.)

  9. The Impact of Mission Profile Models on the Predicted Lifetime of IGBT Modules in the Modular Multilevel Converter

    DEFF Research Database (Denmark)

    Zhang, Yi; Wang, Huai; Wang, Zhongxu

    2017-01-01

    The reliability aspect study of Modular Multilevel Converter (MMC) is of great interest in industry applications, such as offshore wind. Lifetime prediction of key components is an important tool to design MMC with fulfilled reliability specifications. While many efforts have been made to the lif......The reliability aspect study of Modular Multilevel Converter (MMC) is of great interest in industry applications, such as offshore wind. Lifetime prediction of key components is an important tool to design MMC with fulfilled reliability specifications. While many efforts have been made...... and electrical power modeling methods on the estimated lifetime of IGBT modules in an MMC for offshore wind power application. In a 30 MW MMC case study, an annual wind speed profile with a resolution of 1 s/data, 10 minute/data, and 1 hour/data are considered, respectively. A method to re-generate higher...... used in the MMC, resulting in significant differences. The study serves as a first step to quantify the impact of mission profile modeling on lifetime prediction, and to provide a guideline on mission profile collection for the presented application....

  10. DC-Obesity: A New Model for Estimating Differential Lifetime Costs of Overweight and Obesity by Socioeconomic Status.

    Science.gov (United States)

    Sonntag, Diana; Jarczok, Marc N; Ali, Shehzad

    2017-09-01

    The aim of this study was to quantify the magnitude of lifetime costs of overweight and obesity by socioeconomic status (SES). Differential Costs (DC)-Obesity is a new model that uses time-to-event simulation and the Markov modeling approach to compare lifetime excess costs of overweight and obesity among individuals with low, middle, and high SES. SES was measured by a multidimensional aggregated index based on level of education, occupational class, and income by using longitudinal data of the German Socioeconomic Panel (SOEP). Random-effects meta-analysis was applied to combine estimates of (in)direct costs of overweight and obesity. DC-Obesity brings attention to opposite socioeconomic gradients in lifetime costs due to obesity compared to overweight. Compared to individuals with obesity and high SES, individuals with obesity and low SES had lifetime excess costs that were two times higher (€8,526). In contrast, these costs were 20% higher in groups with overweight and high SES than in groups with overweight and low SES (€2,711). The results of this study indicate that SES may play a pivotal role in designing cost-effective and sustainable interventions to prevent and treat overweight and obesity. DC-Obesity may help public policy planners to make informed decisions about obesity programs targeted at vulnerable SES groups. © 2017 The Obesity Society.

  11. Verification of an effective dose equivalent model for neutrons

    International Nuclear Information System (INIS)

    Tanner, J.E.; Piper, R.K.; Leonowich, J.A.; Faust, L.G.

    1991-10-01

    Since the effective dose equivalent, based on the weighted sum of organ dose equivalents, is not a directly measurable quantity, it must be estimated with the assistance of computer modeling techniques and a knowledge of the radiation field. Although extreme accuracy is not necessary for radiation protection purposes, a few well-chosen measurements are required to confirm the theoretical models. Neutron measurements were performed in a RANDO phantom using thermoluminescent dosemeters, track etch dosemeters, and a 1/2-in. (1.27-cm) tissue equivalent proportional counter in order to estimate neutron doses and dose equivalents within the phantom at specific locations. The phantom was exposed to bare and D 2 O-moderated 252 Cf neutrons at the Pacific Northwest Laboratory's Low Scatter Facility. The Monte Carlo code MCNP with the MIRD-V mathematical phantom was used to model the human body and calculate organ doses and dose equivalents. The experimental methods are described and the results of the measurements are compared to the calculations. 8 refs., 3 figs., 3 tabs

  12. Dynamic modeling of the advanced neutron source reactor

    International Nuclear Information System (INIS)

    March-Leuba, J.; Ibn-Khayat, M.

    1990-01-01

    The purpose of this paper is to provide a summary description and some applications of a computer model that has been developed to simulate the dynamic behavior of the advanced neutron source (ANS) reactor. The ANS dynamic model is coded in the advanced continuous simulation language (ACSL), and it represents the reactor core, vessel, primary cooling system, and secondary cooling systems. The use of a simple dynamic model in the early stages of the reactor design has proven very valuable not only in the development of the control and plant protection system but also of components such as pumps and heat exchangers that are usually sized based on steady-state calculations

  13. Plant model of KIPT neutron source facility simulator

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yan [Argonne National Lab. (ANL), Argonne, IL (United States); Wei, Thomas Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Grelle, Austin L. [Argonne National Lab. (ANL), Argonne, IL (United States); Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system is coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.

  14. a Theoretical Model of a Superheated Liquid Droplet Neutron Detector.

    Science.gov (United States)

    Harper, Mark Joseph

    Neutrons can interact with the atoms in superheated liquid droplets which are suspended in a viscous matrix material, resulting in the formation of charged recoil ions. These ions transfer energy to the liquid, sometimes resulting in the droplets vaporizing and producing observable bubbles. Devices employing this mechanism are known as superheated liquid droplet detectors, or bubble detectors. The basis of bubble detector operation is identical to that of bubble chambers, which have been well characterized by researchers such as Wilson, Glaser, Seitz, and others since the 1950's. Each of the microscopic superheated liquid droplets behaves like an independent bubble chamber. This dissertation presents a theoretical model which considers the three principal aspects of detector operation: nuclear reactions, charged particle energy deposition, and thermodynamic bubble formation. All possible nuclear reactions were examined and those which could reasonably result in recoil ions sufficiently energetic to vaporize a droplet were analyzed in detail. Feasible interactions having adequate cross sections include elastic and inelastic scattering, n-proton, and n-alpha reactions. Ziegler's TRansport of Ions in Matter (TRIM) code was used to calculate the ions' stopping powers in various compounds based on the ionic energies predicted by standard scattering distributions. If the ions deposit enough energy in a small enough volume then the entire droplet will vaporize without further energy input. Various theories as to the vaporization of droplets by ionizing radiation were studied and a novel method of predicting the critical (minimum) energy was developed. This method can be used to calculate the minimum required stopping power for the ion, from which the threshold neutron energy is obtainable. Experimental verification of the model was accomplished by measuring the response of two different types of bubble detectors to monoenergetic thermal neutrons, as well as to neutrons

  15. Tabulated Neutron Star Equations of State Modelled within the Chiral Mean Field Model

    Science.gov (United States)

    Dexheimer, V.

    2017-12-01

    In this special issue article, I review some of the accomplishments of the chiral mean field (CMF) model, which contains nucleon, hyperon, and quark degrees of freedom, and its applications to proto-neutron and neutron stars. I also present a set of equation of state and particle population tables built using the CMF model subject to physical constraints necessary to reproduce different environments, such as those present in cold neutron stars, core-collapse supernova explosions, and different stages of compact star mergers.

  16. Performance of neutron kinetics models for ADS transient analyses

    International Nuclear Information System (INIS)

    Rineiski, A.; Maschek, W.; Rimpault, G.

    2002-01-01

    Within the framework of the SIMMER code development, neutron kinetics models for simulating transients and hypothetical accidents in advanced reactor systems, in particular in Accelerator Driven Systems (ADSs), have been developed at FZK/IKET in cooperation with CE Cadarache. SIMMER is a fluid-dynamics/thermal-hydraulics code, coupled with a structure model and a space-, time- and energy-dependent neutronics module for analyzing transients and accidents. The advanced kinetics models have also been implemented into KIN3D, a module of the VARIANT/TGV code (stand-alone neutron kinetics) for broadening application and for testing and benchmarking. In the paper, a short review of the SIMMER and KIN3D neutron kinetics models is given. Some typical transients related to ADS perturbations are analyzed. The general models of SIMMER and KIN3D are compared with more simple techniques developed in the context of this work to get a better understanding of the specifics of transients in subcritical systems and to estimate the performance of different kinetics options. These comparisons may also help in elaborating new kinetics models and extending existing computation tools for ADS transient analyses. The traditional point-kinetics model may give rather inaccurate transient reaction rate distributions in an ADS even if the material configuration does not change significantly. This inaccuracy is not related to the problem of choosing a 'right' weighting function: the point-kinetics model with any weighting function cannot take into account pronounced flux shape variations related to possible significant changes in the criticality level or to fast beam trips. To improve the accuracy of the point-kinetics option for slow transients, we have introduced a correction factor technique. The related analyses give a better understanding of 'long-timescale' kinetics phenomena in the subcritical domain and help to evaluate the performance of the quasi-static scheme in a particular case. One

  17. Benchmark of the neutronic model used in Maanshan compact simulator

    International Nuclear Information System (INIS)

    Hu, C.-H.; Gone, J.-K.; Ko, H.-T.

    2004-01-01

    The Maanshan compact simulator has adopted a three dimensional kinetic model CONcERT, which was developed by GP International Inc. (GPI) in 1991 for real-time neutronic analysis. Maanshan Nuclear Power Plant utilizes a Westinghouse nuclear steam supply system with three-loop pressurized water reactor. There are 157 fuel assemblies and 52 full-length Rod Cluster Control Assemblies in the reactor core. The control of excess reactivity and power peaking is provided by soluble boron in moderator and burnable absorber rods in fuel assemblies. The neutronic model of CONcERT is based on solving a modified time-dependent two-group diffusion equations coupled to the equations of six-group delayed neutron precursor concentrations. The validation of CONcERT for the Maanshan plant is separated into two groups. The first group compared (1) boron endpoints for different control bank inserted conditions, (2) control rod differential and integral worths and (3) temperature coefficients with the measurements in the Low Power Physical Test (LPPT). The second group compared critical boron concentration and power distribution in high power condition with the measurements. In addition, xenon and samarium equilibrium worths at different power levels as well as the time dependent changes of their worth after the reactor scram are illustrated. (author)

  18. Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers.

    Science.gov (United States)

    Bernuzzi, Sebastiano; Dietrich, Tim; Nagar, Alessandro

    2015-08-28

    In the context of neutron star mergers, we study the gravitational wave spectrum of the merger remnant using numerical relativity simulations. Postmerger spectra are characterized by a main peak frequency f2 related to the particular structure and dynamics of the remnant hot hypermassive neutron star. We show that f(2) is correlated with the tidal coupling constant κ(2)^T that characterizes the binary tidal interactions during the late-inspiral merger. The relation f(2)(κ(2)^T) depends very weakly on the binary total mass, mass ratio, equation of state, and thermal effects. This observation opens up the possibility of developing a model of the gravitational spectrum of every merger unifying the late-inspiral and postmerger descriptions.

  19. Charged ρ Meson Condensate in Neutron Stars within RMF Models

    Directory of Open Access Journals (Sweden)

    Konstantin A. Maslov

    2017-12-01

    Full Text Available Knowledge of the equation of state (EoS of cold and dense baryonic matter is essential for the description of properties of neutron stars (NSs. With an increase of the density, new baryon species can appear in NS matter, as well as various meson condensates. In previous works, we developed relativistic mean-field (RMF models with hyperons and Δ -isobars, which passed the majority of known experimental constraints, including the existence of a 2 M ⊙ neutron star. In this contribution, we present results of the inclusion of ρ − -meson condensation into these models. We have shown that, in one class of the models (so-called KVOR-based models, in which the additional stiffening procedure is introduced in the isoscalar sector, the condensation gives only a small contribution to the EoS. In another class of the models (MKVOR-based models with additional stiffening in isovector sector, the condensation can lead to a first-order phase transition and a substantial decrease of the NS mass. Nevertheless, in all resulting models, the condensation does not spoil the description of the experimental constraints.

  20. Numerical stability analysis of coupled neutronics and thermal-hydraulics schemes and new neutronic feedback-reactions model

    International Nuclear Information System (INIS)

    Guertin, Chantal

    1995-01-01

    This thesis is part of the validation process of using coupled 3D neutronics and thermal-hydraulics codes for studying accidental situations with boiling. First part is dedicated to a numerical stability analysis of neutronics and thermal-hydraulics coupled schemes. Both explicit and semi-implicit coupling schemes were applied to solve the set of equations describing the linearized neutronics and thermal-hydraulics of point reactor. Point reactor modelling was preferred to obtain analytical expressions of eigenvalues of the discretized Systems. Stability criteria, based on eigenvalues, was calculated as well as neutronic and thermalhydraulic responses of the System following insertion of a reactivity step. Results show no severe restriction of time domain, stability wise. Actual transient calculations using coupled neutronics and thermal-hydraulics codes, like COCCINELLE and THYC developed at Electricite de France, do not show stability problems. Second part introduces surface spline as a new neutronic feedback model. The cross influences of feedback parameters is now taken into account. Moderator temperature and density were modeled. This method, simple and accurate, allows an homogeneous description of cross-sections overall operating reactor situations including accidents with boiling. (author) [fr

  1. Desired lifetime and end-of-life desires across adulthood from 20 to 90: a dual-source information model.

    Science.gov (United States)

    Lang, Frieder R; Baltes, Paul B; Wagner, Gert G

    2007-09-01

    How long do people want to live, and how does scientific research on aging affect such desires? A dual-source information model proposes that aging expectations and desires are informed differently by two sources: personal experiences on the one hand, and scientific and societal influences on the other. Two studies with independent German national samples explored desires regarding length of life and end of life among adults between the ages of 20 and 90. FINDINGS ARE: First, desired lifetime is consistent at around 85 years with few age differences. Second, experimental induction of good or bad news from research on aging has little effect in Study 1. Third, interest in science has moderating effects on desired lifetime in Study 2. Fourth, there is a high prevalence of a strong desire to control the "when and how" of one's death, although only 11% of the individuals completed a living will. Findings are consistent with the dual-source information model.

  2. Performance modeling of parallel algorithms for solving neutron diffusion problems

    International Nuclear Information System (INIS)

    Azmy, Y.Y.; Kirk, B.L.

    1995-01-01

    Neutron diffusion calculations are the most common computational methods used in the design, analysis, and operation of nuclear reactors and related activities. Here, mathematical performance models are developed for the parallel algorithm used to solve the neutron diffusion equation on message passing and shared memory multiprocessors represented by the Intel iPSC/860 and the Sequent Balance 8000, respectively. The performance models are validated through several test problems, and these models are used to estimate the performance of each of the two considered architectures in situations typical of practical applications, such as fine meshes and a large number of participating processors. While message passing computers are capable of producing speedup, the parallel efficiency deteriorates rapidly as the number of processors increases. Furthermore, the speedup fails to improve appreciably for massively parallel computers so that only small- to medium-sized message passing multiprocessors offer a reasonable platform for this algorithm. In contrast, the performance model for the shared memory architecture predicts very high efficiency over a wide range of number of processors reasonable for this architecture. Furthermore, the model efficiency of the Sequent remains superior to that of the hypercube if its model parameters are adjusted to make its processors as fast as those of the iPSC/860. It is concluded that shared memory computers are better suited for this parallel algorithm than message passing computers

  3. Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations

    Science.gov (United States)

    Samset, B. H.; Myhre, G.; Herber, A.; Kondo, Y.; Li, S.-M.; Moteki, N.; Koike, M.; Oshima, N.; Schwarz, J. P.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Berntsen, T. K.; Bian, H.; Chin, M.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Schulz, M.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2014-11-01

    Atmospheric black carbon (BC) absorbs solar radiation, and exacerbates global warming through exerting positive radiative forcing (RF). However, the contribution of BC to ongoing changes in global climate is under debate. Anthropogenic BC emissions, and the resulting distribution of BC concentration, are highly uncertain. In particular, long-range transport and processes affecting BC atmospheric lifetime are poorly understood. Here we discuss whether recent assessments may have overestimated present-day BC radiative forcing in remote regions. We compare vertical profiles of BC concentration from four recent aircraft measurement campaigns to simulations by 13 aerosol models participating in the AeroCom Phase II intercomparison. An atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in remote ocean regions, in line with other recent studies. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in AeroCom Phase II median direct BC forcing, from fossil fuel and biofuel burning, over the industrial era. The sensitivity of modelled forcing to BC vertical profile and lifetime highlights an urgent need for further flight campaigns, close to sources and in remote regions, to provide improved quantification of BC effects for use in climate policy.

  4. Modeled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations

    Science.gov (United States)

    Samset, B. H.; Myhre, G.; Herber, A.; Kondo, Y.; Li, S.-M.; Moteki, N.; Koike, M.; Oshima, N.; Schwarz, J. P.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Berntsen, T. K.; Bian, H.; Chin, M.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Schulz, M.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2014-08-01

    Atmospheric black carbon (BC) absorbs solar radiation, and exacerbates global warming through exerting positive radiative forcing (RF). However, the contribution of BC to ongoing changes in global climate is under debate. Anthropogenic BC emissions, and the resulting distribution of BC concentration, are highly uncertain. In particular, long range transport and processes affecting BC atmospheric lifetime are poorly understood. Here we discuss whether recent assessments may have overestimated present day BC radiative forcing in remote regions. We compare vertical profiles of BC concentration from four recent aircraft measurement campaigns to simulations by 13 aerosol models participating in the AeroCom Phase II intercomparision. An atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in remote ocean regions, in line with other recent studies. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in AeroCom Phase II median direct BC forcing, from fossil fuel and biofuel burning, over the industrial era. The sensitivity of modeled forcing to BC vertical profile and lifetime highlights an urgent need for further flight campaigns, close to sources and in remote regions, to provide improved quantification of BC effects for use in climate policy.

  5. Neutron beta decay measurements planned for the SNS

    Science.gov (United States)

    Pocanic, Dinko

    2009-10-01

    A cold neutron beam line, dedicated to fundamental neutron physics (FnPB), is presently being completed at the Oak Ridge, TN, Spallation Neutron Source. Among other experiments, the beamline will host a comprehensive set of precise studies of the neutron beta decay. Neutron beta decay is characterised by the decay rate (or its inverse, the neutron lifetime), and a set of decay parameters describing the kinematical and spin correlations among the participating particles. Within the standard model (SM), the neutron lifetime and three decay parameters (a, A, and B) are fixed by two parameters: the Vud element of the Cabibbo-Kobayashi-Maskawa mixing matrix, and λ=GA/GV, the ratio of axial vector and vector nucleon form factors. This overdetermined system provides a unique opportunity to explore possible departures from the simple SM, as well as the nature of such departures, e.g., left-right supersymmetric extensions, leptoquarks, non-(V-A) admixtures, etc., with broad implications in subatomic physics. The FnPB neutron beta decay program will include measurements of the neutron lifetime, continuing the present NIST experiment, a measurement of a, the electron-neutrino correlation, and b, the Fierz interference term, (the ``Nab'' experiment), along with measurements of A and B, the correlations between neutron spin and electron and neutrino momenta, respectively, (the ``abBA'' experiment). Current plans for these experiments will be discussed in detail.

  6. Degradation Behavior of Lithium-Ion Batteries Based on Lifetime Models and Field Measured Frequency Regulation Mission Profile

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Swierczynski, Maciej Jozef; Stroe, Ana-Irina

    2016-01-01

    Energy storage systems based on Lithium-ion (Li-ion) batteries have been proposed as an environmentally friendly alternative to traditional conventional generating units for providing grid frequency regulation. One major challenge regarding the use of Lithium-ion batteries in such applications...... of the Li-ion battery and its degradation behavior is required. Thus, this paper aims to investigate, based on a laboratory developed lifetime model, the degradation behavior of the performance parameters (i.e., capacity and power capability) of a Li-ion battery cell when it is subjected to a field measured...... is their higher cost—in comparison with other storage technologies or with the traditional frequency regulation methods—combined with performance-degradation uncertainties. In order to surpass this challenge and to allow for optimal sizing and proper operation of the battery, accurate knowledge about the lifetime...

  7. Contribution to the prompt fission neutron spectrum modeling. Uncertainty propagation on a vessel fluence calculation

    International Nuclear Information System (INIS)

    Berge, Leonie

    2015-01-01

    these uncertainties on the calculated spectrum, and obtaining realistic uncertainties without having to artificially raise them, as it is sometimes necessary in Bayesian adjustments. The experimental uncertainty propagation also impacts the spectrum correlation matrix. We present the result for thermal neutron-induced fission of 235 U and 239 Pu. For the Madland-Nix model with constant inverse cross-section, the prompt neutron mean energy is 1.979 MeV for 235 U and 2.087 MeV for 239 Pu. The last aspect of this work is the calculation of the impact of the PFNS and its covariance matrix on a reactor vessel flux. This calculation is of major importance, since the vessel fluence estimation determines the vessel integrity, and therefore determines the reactor lifetime. We observe the importance of the PFNS correlation terms, to compute in particular the vessel flux uncertainty above 1 MeV, which is of the order of 6% (uncertainty only due to PFNS). (author) [fr

  8. Neutron density optimal control of A-1 reactor analoque model

    International Nuclear Information System (INIS)

    Grof, V.

    1975-01-01

    Two applications are described of the optimal control of a reactor analog model. Both cases consider the control of neutron density. Control loops containing the on-line controlled process, the reactor of the first Czechoslovak nuclear power plant A-1, are simulated on an analog computer. Two versions of the optimal control algorithm are derived using modern control theory (Pontryagin's maximum principle, the calculus of variations, and Kalman's estimation theory), the minimum time performance index, and the quadratic performance index. The results of the optimal control analysis are compared with the A-1 reactor conventional control. (author)

  9. Falsification of Leggett's model using neutron matter waves

    International Nuclear Information System (INIS)

    Hasegawa, Yuji; Sponar, Stephan; Durstberger-Rennhofer, Katharina; Badurek, Gerald; Schmitzer, Claus; Bartosik, Hannes; Klepp, Jürgen

    2012-01-01

    According to Bell's theorem, no theory based on the joint assumption of realism and locality can reproduce certain predictions of quantum mechanics. Another class of realistic models, proposed by Leggett, that demands realism but abandons reliance on locality, is predicted to be in conflict with quantum mechanics. In this paper, we report on an experimental test of a contextual realistic model analogous to the model of Leggett performed with matter waves, more precisely with neutrons. Correlation measurements of the spin-energy entangled single-particle system show violation of a Leggett-type inequality by more than 7.6 standard deviations. Our experimental data falsify the contextual realistic model and are fully in favor of quantum mechanics. (paper)

  10. Verification of an effective dose equivalent model for neutrons

    International Nuclear Information System (INIS)

    Tanner, J.E.; Piper, R.K.; Leonowich, J.A.; Faust, L.G.

    1992-01-01

    Since the effective dose equivalent, based on the weighted sum of organ dose equivalents, is not a directly measurable quantity, it must be estimated with the assistance of computer modelling techniques and a knowledge of the incident radiation field. Although extreme accuracy is not necessary for radiation protection purposes, a few well chosen measurements are required to confirm the theoretical models. Neutron doses and dose equivalents were measured in a RANDO phantom at specific locations using thermoluminescence dosemeters, etched track dosemeters, and a 1.27 cm (1/2 in) tissue-equivalent proportional counter. The phantom was exposed to a bare and a D 2 O-moderated 252 Cf neutron source at the Pacific Northwest Laboratory's Low Scatter Facility. The Monte Carlo code MCNP with the MIRD-V mathematical phantom was used to model the human body and to calculate the organ doses and dose equivalents. The experimental methods are described and the results of the measurements are compared with the calculations. (author)

  11. Lifetime Models for Lithium-ion Batteries used in Virtual Power Plant Applications

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan

    The penetration of wind power into the power system has been increasing in recent years. However, despite its environmental friendliness, the wind power grid integration at a large scale faces several limitations, mainly caused by the characteristics of the wind (i.e. intermittent, variable......; however, because of their advantages, which include fast response, high efficiency, long lifetime and environmental friendliness, Lithium-ion (Li-ion) batteries represent suitable candidates for integration within VPPs, especially when they are required to provide short- and medium-time services...

  12. Neutron electric dipole moment and extension of the standard model

    International Nuclear Information System (INIS)

    Oshimo, Noriyuki

    2001-01-01

    A nonvanishing value for the electric dipole moment (EDM) of the neutron is a prominent signature for CP violation. The EDM induced by the Kobayashi-Maskawa mechanism of the standard model (SM) has a small magnitude and its detection will be very difficult. However, since baryon asymmetry of the universe cannot be accounted for by the SM, there should exist some other source of CP violation, which may generate a large magnitude for the EDM. One of the most hopeful candidates for physics beyond the SM is the supersymmetric standard model, which contains such sources of CP violation. This model suggests that the EDM has a magnitude not much smaller than the present experimental bounds. Progress in measuring the EDM provides very interesting information about extension of the SM. (author)

  13. The electric dipole moment of the neutron in the left-right supersymmetric model

    International Nuclear Information System (INIS)

    Frank, M.

    1999-01-01

    We calculate the neutron electric dipole moment (EDM) in the left-right supersymmetric model, including one-loop contributions from the chargino, the neutralino and the gluino diagrams. We discuss the dependence of the EDM on the phases of the model, as well as on the mass parameters in the left and right sectors. The neutron EDM imposes different conditions on the supersymmetric spectrum from either the electron EDM, or the neutron EDM in the minimal supersymmetric standard model. The neutron EDM may be a clue to an extended gauge structure in supersymmetry. (author)

  14. Thermal states of neutron stars with a consistent model of interior

    Science.gov (United States)

    Fortin, M.; Taranto, G.; Burgio, G. F.; Haensel, P.; Schulze, H.-J.; Zdunik, J. L.

    2018-04-01

    We model the thermal states of both isolated neutron stars and accreting neutron stars in X-ray transients in quiescence and confront them with observations. We use an equation of state calculated using realistic two-body and three-body nucleon interactions, and superfluid nucleon gaps obtained using the same microscopic approach in the BCS approximation. Consistency with low-luminosity accreting neutron stars is obtained, as the direct Urca process is operating in neutron stars with mass larger than 1.1 M⊙ for the employed equation of state. In addition, proton superfluidity and sufficiently weak neutron superfluidity, obtained using a scaling factor for the gaps, are necessary to explain the cooling of middle-aged neutron stars and to obtain a realistic distribution of neutron star masses.

  15. Effects of Orbital Lifetime Reduction on the Long-Term Earth Satellite Population as Modeled by EVOLVE 4.0

    Science.gov (United States)

    Krisko, Paula H.; Opiela, John N.; Liou, Jer-Chyi; Anz-Meador, Phillip D.; Theall, Jeffrey R.

    1999-01-01

    The latest update of the NASA orbital debris environment model, EVOLVE 4.0, has been used to study the effect of various proposed debris mitigation measures, including the NASA 25-year guideline. EVOLVE 4.0, which includes updates of the NASA breakup, solar activity, and the orbit propagator models, a GEO analysis option, and non-fragmentation debris source models, allows for the statistical modeling and predicted growth of the particle population >1 mm in characteristic length in LEO and GEO orbits. The initial implementation of this &odel has been to study the sensitivity of the overall LEO debris environment to mitigation measures designed to limit the lifetime of intact objects in LEO orbits. The mitigation measures test matrix for this study included several commonly accepted testing schemes, i.e., the variance of the maximum LEO lifetime from 10 to 50 years, the date of the initial implementation of this policy, the shut off of all explosions at some specified date, and the inclusion of disposal orbits. All are timely studies in that all scenarios have been suggested by researchers and satellite operators as options for the removal of debris from LEO orbits.

  16. Modeling lifetime costs and health outcomes attributable to secondhand smoke exposure at home among Korean adult women.

    Science.gov (United States)

    Lee, Jiyae; Han, Ah Ram; Choi, Dalwoong; Lim, Kyung-Min; Bae, SeungJin

    2017-05-17

    The aim of this research is to estimate lifetime costs and health consequences for Korean adult women who were exposed to secondhand smoke (SHS) at home. A Markov model was developed to project the lifetime healthcare costs and health outcomes of a hypothetical cohort of Korean women who are 40 years old and were married to current smokers. The Korean epidemiological data were used to reflect the natural history of SHS-exposed and non-exposed women. The direct healthcare costs (in 2014 US dollars) and quality-adjusted life years (QALYs) were annually discounted at 5% to reflect time preference. The time horizon of the analysis was lifetime and the cycle length was 1 year. Deterministic and probabilistic sensitivity analyses were conducted. In the absence of SHS exposure, Korean women will live 41.32 years or 34.56 QALYs before discount, which corresponded to 17.29 years or 15.35 QALYs after discount. The SHS-exposed women were predicted to live 37.91 years and 31.08 QALYs before discount and 16.76 years and 14.62 QALYs after discount. The estimated lifetime healthcare cost per woman in the SHS non-exposed group was US$11 214 before the discount and US$2465 after discount. The negative impact of SHS exposure on health outcomes and healthcare costs escalated as the time horizon increased, suggesting that the adverse impact of SHS exposure may have higher impact on the later part of the lifetime. The result was consistent across a wide range of assumptions. Life expectancy might underestimate the impact of SHS exposure on health outcomes, especially if the time horizon of the analysis is not long enough. Early intervention on smoking behaviour could substantially reduce direct healthcare costs and improve quality of life attributable to SHS exposure. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Calculation of delayed-neutron energy spectra in a QRPA-Hauser-Feshbach model

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Los Alamos National Laboratory; Moller, Peter [Los Alamos National Laboratory; Wilson, William B [Los Alamos National Laboratory

    2008-01-01

    Theoretical {beta}-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after {beta} decay to the granddaughter residual are more accurately calculated than in previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra agree reasonably well with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors.

  18. Modeling the expected lifetime and evolution of a deme's principal genetic sequence.

    Science.gov (United States)

    Clark, Brian

    2014-03-01

    The principal genetic sequence (PGS) is the most common genetic sequence in a deme. The PGS changes over time because new genetic sequences are created by inversions, compete with the current PGS, and a small fraction become PGSs. A set of coupled difference equations provides a description of the evolution of the PGS distribution function in an ensemble of demes. Solving the set of equations produces the survival probability of a new genetic sequence and the expected lifetime of an existing PGS as a function of inversion size and rate, recombination rate, and deme size. Additionally, the PGS distribution function is used to explain the transition pathway from old to new PGSs. We compare these results to a cellular automaton based representation of a deme and the drosophila species, D. melanogaster and D. yakuba.

  19. Lifetime measurements in the picosecond range: Achievements and Perspectives

    International Nuclear Information System (INIS)

    Kruecken, Reiner

    1999-01-01

    This contribution will review the recoil distance method (RDM), its current range of applications as well as future perspectives for the measurement of lifetimes in the picosecond range of excited nuclear levels. Recent Doppler-shift lifetime experiments with large gamma-ray spectrometers have achieved a new level of precision and sensitivity, providing new insights into nuclear structure physics. High precision RDM measurements of near-yrast states in various mass regions have revealed dynamic shape effects beyond the framework of collective models and have also allowed to study the interaction between coexisting shapes. The measurement of lifetimes in superdeformed bands has shown that lifetimes can be measured for nuclear excitations, which are only populated with a few percent of the production cross-section of a nucleus. These experiments have also enabled us to study the mechanism of the decay-out of superdeformed bands. Another example for the need of precise lifetime measurements is the recent verifications of the concept of 'magnetic rotation' in nuclei by the experimental observation of the characteristic drop of B(M1) values as a function of angular momentum. These recent breakthroughs have also opened new perspectives for the use of the RDM technique for more exotic regions of nuclei and nuclear excitations. Here the measurement of lifetimes in neutron rich nuclei, which are not accessible with conventional nuclear reactions using stable beams and targets, is of special interest. Possible experimental approaches and simple estimates for the feasibility of such experiments will be presented. (author)

  20. Improved generation lifetime model for the electrical characterization of single- and double-gate SOI nMOSFETs

    International Nuclear Information System (INIS)

    Galeti, M; Martino, J A; Simoen, E; Claeys, C

    2008-01-01

    This work proposes a refined technique for the extraction of the generation lifetime in single- and double-gate partially depleted SOI nMOSFETs. The model presented in this paper, based on the drain current switch-off transients, takes into account the influence of the laterally non-uniform channel doping, caused by the presence of the halo implanted region, and the amount of charge controlled by the drain and source junctions on the floating body effect when the channel length is reduced. The obtained results for single-gate (SG) devices are compared with two-dimensional numerical simulations and experimental data, extracted for devices fabricated in a 0.1 µm SOI CMOS technology, showing excellent agreement. The improved model to determine the generation lifetime in double-gate (DG) devices beyond the considerations previously presented also consider the influence of the silicon layer thickness on the drain current transient. The extracted data through the improved model for DG devices were compared with measurements and two-dimensional numerical simulations of the SG devices also presenting a good adjustment with the channel length reduction and the same tendency with the silicon layer thickness variation

  1. Modelled Black Carbon Radiative Forcing and Atmospheric Lifetime in AeroCom Phase II Constrained by Aircraft Observations

    Energy Technology Data Exchange (ETDEWEB)

    Samset, B. H.; Myhre, G.; Herber, Andreas; Kondo, Yutaka; Li, Shao-Meng; Moteki, N.; Koike, Makoto; Oshima, N.; Schwarz, Joshua P.; Balkanski, Y.; Bauer, S.; Bellouin, N.; Berntsen, T.; Bian, Huisheng; Chin, M.; Diehl, Thomas; Easter, Richard C.; Ghan, Steven J.; Iversen, T.; Kirkevag, A.; Lamarque, Jean-Francois; Lin, Guang; Liu, Xiaohong; Penner, Joyce E.; Schulz, M.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, Kostas; Zhang, Kai

    2014-11-27

    Black carbon (BC) aerosols absorb solar radiation, and are generally held to exacerbate global warming through exerting a positive radiative forcing1. However, the total contribution of BC to the ongoing changes in global climate is presently under debate2-8. Both anthropogenic BC emissions and the resulting spatial and temporal distribution of BC concentration are highly uncertain2,9. In particular, long range transport and processes affecting BC atmospheric lifetime are poorly understood, leading to large estimated uncertainty in BC concentration at high altitudes and far from emission sources10. These uncertainties limit our ability to quantify both the historical, present and future anthropogenic climate impact of BC. Here we compare vertical profiles of BC concentration from four recent aircraft measurement campaigns with 13 state of the art aerosol models, and show that recent assessments may have overestimated present day BC radiative forcing. Further, an atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in transport dominated remote regions. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in the multi-model median direct BC forcing from fossil fuel and biofuel burning over the industrial era.

  2. Lifetime learning and lifetime education

    Directory of Open Access Journals (Sweden)

    Aljana Lepšina

    2008-12-01

    Full Text Available Effective education and lifetime learning are becoming a key to competitive, knowledge-based economy. Our country is at present, such as other European countries facing new approaches and developments in the area of education along with changes and difficulties. Third-level is known for an increased number of students, weak financial backing of universities, initial difficulties with Bologna Agreement and increased competitiveness in Europe. It is necessary to improve the education quality, encourage life-long learning and increase investments into research and development.

  3. Positron lifetimes in deformed copper

    International Nuclear Information System (INIS)

    Hinode, Kenji; Tanigawa, Shoichiro; Doyama, Masao

    1976-01-01

    Positron lifetime measurements were performed for Cu samples with different densities of lattice defects. The lifetime spectra were successfully resolved into two components with the help of the well established analysis program. Obtained results were quite consistent with those expected from the trapping model. The positron trapping mechanism from free to trapped states and the initial condition of the model were especially checked. Deduced values obtained for tau sub(c) (lifetime of free positrons) and tau sub(t) (lifetime of trapped positrons) were 122+-5 psec and 176+-5 psec, respectively. (auth.)

  4. Neutronic Modelling in Support of the Irradiation Programmes

    International Nuclear Information System (INIS)

    Koonen, E.

    2005-01-01

    Irradiation experiments are generally conducted to determine some specific characteristics of the concerned fuels and structural materials under well defined irradiation conditions. For the determination of the latter the BR2 division has an autonomous reactor physics cell and has implemented the required computational tools. The major tool used is a three-dimensional full-scale Monte Carlo model of the BR2 reactor developed under MCNP-4C for the simulation of irradiation conditions. The objectives of work performed by SCK-CEN are to evaluate and adjust irradiation conditions by adjustments of the environment, differential rod positions, axial and azimuthal positioning of the samples, global power level, ...; to deliver reliable, well defined irradiation condition and fluence data during and after irradiation; to assist the designer of new irradiation devices by simulations and neutronic optimisations of design options; to provide computational support to related projects as a way to valorise the capabilities that the BR2 reactor can offer

  5. Application of a simple analytical model to estimate effectiveness of radiation shielding for neutrons

    International Nuclear Information System (INIS)

    Frankle, S.C.; Fitzgerald, D.H.; Hutson, R.L.; Macek, R.J.; Wilkinson, C.A.

    1993-01-01

    Neutron dose equivalent rates have been measured for 800-MeV proton beam spills at the Los Alamos Meson Physics Facility. Neutron detectors were used to measure the neutron dose levels at a number of locations for each beam-spill test, and neutron energy spectra were measured for several beam-spill tests. Estimates of expected levels for various detector locations were made using a simple analytical model developed for 800-MeV proton beam spills. A comparison of measurements and model estimates indicates that the model is reasonably accurate in estimating the neutron dose equivalent rate for simple shielding geometries. The model fails for more complicated shielding geometries, where indirect contributions to the dose equivalent rate can dominate

  6. Innovative three-dimensional neutronics analyses directly coupled with cad models of geometrically complex fusion systems

    International Nuclear Information System (INIS)

    Sawan, M.; Wilson, P.; El-Guebaly, L.; Henderson, D.; Sviatoslavsky, G.; Bohm, T.; Kiedrowski, B.; Ibrahim, A.; Smith, B.; Slaybaugh, R.; Tautges, T.

    2007-01-01

    both the poloidal and toroidal directions. The final optics system of the HAPL power plant includes several metallic and dielectric mirrors that are sensitive to radiation. Although some of these mirrors are not in the direct line-of-sight of the neutron source, radiation scattering and streaming through the laser beam ports requires an assessment of the nuclear environment at the final optics to predict their lifetime. Detailed CAD models of the ITER FWS modules were analyzed to produce high resolution maps of nuclear heating, radiation damage and helium production. These clearly show the impact of the design heterogeneity details with the many coolant channels embedded in the module. In addition, hot spots produced in the vacuum vessel behind the module as a result of streaming through these coolant channels were evaluated. These examples will be presented to demonstrate the applicability of the tool to nuclear analysis of complex fusion systems

  7. Lifetimes of flame balls dragged by model turbulent flows: Role of velocity gradient fluctuations.

    Science.gov (United States)

    D'Angelo, Yves; Joulin, Guy

    2004-03-01

    An isolated combustion spot-known as a flame ball (FB)-is considered while it is advected by a turbulent flow of a lean premixture of such a light fuel as hydrogen. A Batchelor approximation for the surrounding Lagrangian flow is made. This in principle gives one an access to the FB lifetime t(life) and to its response to the ambiant Lagrangian rate-of-strain tensor g(t), by means of a nonlinear and forced integro-differential equation for the current FB radius. For a diagonal g(t) deduced from random Markov processes of the Ornstein-Uhlenbeck type, or linearly filtered versions thereof, extensive numerical simulations and approximate theoretical analyses agree that (i) flame balls can definitely live for much longer than their time of spontaneous expansion/collapse; (ii) large enough values of t(life) are compatible with Poisson statistics; (iii) the variations of with the characteristics of g(t) mirror the latter's statistics, more precisely that of trace(g(2)). Open problems, dealing with a nondiagonal g(t), ignition-related transients and/or collective effects, finally are evoked.

  8. Neutron Skin Thickness of 48Ca from a Nonlocal Dispersive Optical-Model Analysis

    Science.gov (United States)

    Mahzoon, M. H.; Atkinson, M. C.; Charity, R. J.; Dickhoff, W. H.

    2017-12-01

    A nonlocal dispersive optical-model analysis has been carried out for neutrons and protons in 48Ca. Elastic-scattering angular distributions, total and reaction cross sections, single-particle energies, the neutron and proton numbers, and the charge distribution have been fitted to extract the neutron and proton self-energies both above and below the Fermi energy. From the single-particle propagator resulting from these self-energies, we have determined the charge and neutron matter distributions in 48Ca. A best fit neutron skin of 0.249 ±0.023 fm is deduced, but values up to 0.33 fm are still consistent. The energy dependence of the total neutron cross sections is shown to have a strong sensitivity to the skin thickness.

  9. Calculational analysis of errors for various models of an experiment on measuring leakage neutron spectra

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Deeva, V.V.; Prokof'eva, Z.A.

    1990-01-01

    Analysis is made for the effect of mathematical model accuracy of the system concerned on the calculation results using the BRAND program system. Consideration is given to the impact of the following factors: accuracy of neutron source energy-angular characteristics description, various degrees of system geometry approximation, adequacy of Monte-Carlo method estimation to a real physical neutron detector. The calculation results analysis is made on the basis of the experiments on leakage neutron spectra measurement in spherical lead assemblies with the 14 MeV-neutron source in the centre. 4 refs.; 2 figs.; 10 tabs

  10. Calculation of spherical models of lead with a source of 14 MeV-neutrons

    International Nuclear Information System (INIS)

    Markovskij, D.V.; Borisov, A.A.

    1989-01-01

    Neutron transport calculations for spherical models of lead have been done with the one-dimensional code BLANK realizing the direct Monte Carlo method in the whole range of neutron energies and they are compared with the experimental results. 6 refs, 10 figs, 3 tabs

  11. Modeling interactions of intermediate-energy neutrons in a plastic scintillator array with GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Kohley, Z., E-mail: zkohley@gmail.com [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Lunderberg, E.; DeYoung, P.A. [Department of Physics, Hope College, Holland, MI 49423 (United States); Roeder, B.T. [LPC-Caen, ENSICAEN, IN2P3/CNRS et Universite de Caen, 14050 Caen cedex (France); Baumann, T. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Christian, G.; Mosby, S.; Smith, J.K.; Snyder, J.; Spyrou, A.; Thoennessen, M. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2012-08-01

    A Monte Carlo simulation of a large-area neutron time-of-flight detector, built on the GEANT4 framework, has been compared with an experimental measurement of the {sup 16}B{yields}{sup 15}B+n decay produced from a 55 MeV/u{sup 17}C beam. The ability of the Monte Carlo simulation to reproduce the intermediate-energy neutron interactions within the detector has been explored using both the stock GEANT4 physics processes and a custom neutron interaction model, MENATE{sub R}. The stock GEANT4 physics processes were unable to reproduce the experimental observables, while excellent agreement was obtained through the inclusion of the MENATE{sub R} model within GEANT4. The differences between the two approaches are shown to be related to the modeling of the neutron-carbon inelastic reactions. Additionally, the use of MENATE{sub R} provided accurate reproduction of experimental signals associated with neutron scattering within the detector. These results provide validation of the Monte Carlo simulation for modeling measurements of multiple neutrons where the identification and removal of false neutron signals, due to multiple neutron scattering, are required.

  12. Projected shell model study of neutron- deficient 122Ce

    Indian Academy of Sciences (India)

    Recently, Smith et al [1] have communicated the existence of neutron-deficient 122Ce and its excited states have been reported up to spin 14¯h. The band has been as- signed to 122Ce by detecting γ-rays in coincidence with evaporated charged particles and neutrons. The nucleus is believed to have large ground state ...

  13. Groundwater age and lifetime expectancy modelling approach for site characterization and performance assessment of radwaste repository in clay formation

    International Nuclear Information System (INIS)

    Cornaton, F.; Perrochet, P.; Benabderrahmane, H.

    2010-01-01

    Document available in extended abstract form only. A deep geological repository of high level and long lived radwaste requires an understanding of the far field and near field groundwater flow and of the transport properties, at actual and future climatic conditions. Andra, French National radioactive waste management Agency, is developing since last 15 years an integrated multi-scale hydrogeological model of whole Paris basin of 200000 km 2 of area (regional scale) to produce a regional flow field associated to groundwater behavior. It includes locally the Meuse/Haute Marne clay site of about 250 km 2 of area in the eastern part of the Paris basin that was chosen for the emplacement of a repository. The Callovo-Oxfordian host formation is a clay layer characterized by a very low permeability of the order 10 -14 m/s, a mean thickness of 130 m at about 500 m depth, and is embedded by calcareous aquifer formations (Dogger and Oxfordian). The hydrogeological conceptual model is based on stratigraphic and petro-physic modeling of the Paris basin and is accounting for the structural, geological, hydrogeological and geochemical data in an integrated way. This model represents 27 hydrogeological units at the scale of the Paris Basin, and it is refined at the scale of the sector to represent 27 different layers that range in age from the Trias to the Portlandian. The finite element flow and transport simulator Ground Water (GW) is used to solve for groundwater flow at steady-state in a 3 Million elements model, considering current climatic conditions. The model is calibrated against about 1250 hydraulic head measurements, and results in maximum absolute hydraulic head differences of 20 meters at the regional scale and 3 meters at the local scale. The calibrated reference model includes transmissive major faults as well as structures acting as barrier to flow. Groundwater age (the time elapsed since recharge) and lifetime expectancy (the time remaining prior to exit) are

  14. Electro-thermal Modeling for Junction Temperature Cycling-Based Lifetime Prediction of a Press-Pack IGBT 3L-NPC-VSC Applied to Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    Reliability is a critical criterion for multi-MW wind turbines, which are being employed with increasing numbers in wind power plants, since they operate under harsh conditions and have high maintenance cost due to their remote locations. In this study, the wind turbine grid-side converter...... prediction, the converter electro-thermal model including electrical, power loss, and dynamical thermal models is developed with the main focus on the thermal modeling regarding converter topology, switch technology, and physical structure. Moreover, these models are simplified for their practical...... implementation in computation platforms. Finally, the converter lifetimes for wind power profiles are predicted using the IGBT lifetime model available. Hence, the developed electrothermal model’s suitability for the lifetime predictions is shown....

  15. Initial Experimental Verification of the Neutron Beam Modeling for the LBNL BNCT Facility

    International Nuclear Information System (INIS)

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; McDonald, R.J.; Smith, A.R.; Stone, N.A.; Vuji, J.

    1999-01-01

    In preparation for future clinical BNCT trials, neutron production via the 7Li(p,n) reaction as well as subsequent moderation to produce epithermal neutrons have been studied. Proper design of a moderator and filter assembly is crucial in producing an optimal epithermal neutron spectrum for brain tumor treatments. Based on in-phantom figures-of-merit,desirable assemblies have been identified. Experiments were performed at the Lawrence Berkeley National Laboratory's 88-inch cyclotron to characterize epithermal neutron beams created using several microampere of 2.5 MeV protons on a lithium target. The neutron moderating assembly consisted of Al/AlF3 and Teflon, with a lead reflector to produce an epithermal spectrum strongly peaked at 10-20 keV. The thermal neutron fluence was measured as a function of depth in a cubic lucite head phantom by neutron activation in gold foils. Portions of the neutron spectrum were measured by in-air activation of six cadmium-covered materials (Au, Mn, In, Cu, Co, W) with high epithermal neutron absorption resonances. The results are reasonably reproduced in Monte Carlo computational models, confirming their validity

  16. Modelization and treatment of signals issued of neutronic detectors: neutrons and gamma separation

    International Nuclear Information System (INIS)

    Ousi Benomar, K.

    1994-01-01

    In this thesis we present an original methodology permitting to separate the neutron and the gamma response of a detector. This methodology use algorithms based on the utilisation of statistics of superior order (Campbell theorem generalization). 45 figs., 54 refs., 1 annexe

  17. Physical model study of neutron noise induced by vibration of reactor internals

    International Nuclear Information System (INIS)

    Liu Jinhui; Gu Fangyu

    1999-01-01

    The author presents a physical model of neutron noise induced by reactor internals vibration in frequency domain. Based on system control theory, the reactor dynamic equations are coupled with random vibration equation, and non-linear terms are also taken into accounted while treating the random vibration. Experiments carried out on a zero-power reactor show that the model can be used to describe dynamic character of neutron noise induced by internals' vibration. The model establishes a method to help to determine internals'vibration features, and to diagnosis anomalies through neutron noise

  18. MCNP-REN - A Monte Carlo Tool for Neutron Detector Design Without Using the Point Model

    International Nuclear Information System (INIS)

    Abhold, M.E.; Baker, M.C.

    1999-01-01

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo N-Particle code (MCNP) was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP - Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program (TAP) predict neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of MOX fresh fuel made using the Underwater Coincidence Counter (UWCC) as well as measurements of HEU reactor fuel using the active neutron Research Reactor Fuel Counter (RRFC) are compared with calculations. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions

  19. Modeling delayed neutron monitoring systems for fast breeder reactors

    International Nuclear Information System (INIS)

    Bunch, W.L.; Tang, E.L.

    1983-10-01

    The purpose of the present work was to develop a general expression relating the count rate of a delayed neutron monitoring system to the introduction rate of fission fragments into the sodium coolant of a fast breeder reactor. Most fast breeder reactors include a system for detecting the presence of breached fuel that permits contact between the sodium coolant and the mixed oxide fuel. These systems monitor for the presence of fission fragments in the sodium that emit delayed neutrons. For operational reasons, the goal is to relate the count rate of the delayed neutron monitor to the condition of the breach in order that appropriate action might be taken

  20. Development of Neutronics Model for ShinKori Unit 1 Simulator

    International Nuclear Information System (INIS)

    Hong, JinHyuk; Lee, MyeongSoo; Lee, SeungHo; Suh, JungKwan; Hwang, DoHyun

    2008-01-01

    ShinKori-Unit 1 and 2 is being built in the Kori site which will be operated at 2815 MWt of thermal core power. The purpose of this paper is to report on the performance of the developed neutronics model of ShinKori Unit 1 and 2. Also this report includes the convenient tool (XS2R5) for processing the large quantity of information received from the DIT/ROCS model and generating cross-sections. The neutronics model is based on the NESTLE code inserted to RELAP5/MOD3 thermal-hydraulics analysis code which was funded as FY-93 LDRD Project 7201 and is running on the commercial simulator environment tool (the 3KeyMaster TM of the WSC). As some examples for the verification of the developed neutronics model, some figures are provided. The output of the developed neutronics model is in accord with the Preliminary Safety Analysis Report (PSAR) of the reference plant

  1. Why do general circulation models overestimate the aerosol cloud lifetime effect? A case study comparing CAM5 and a CRM

    Science.gov (United States)

    Zhou, Cheng; Penner, Joyce E.

    2017-01-01

    Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 27 May 2011 at the southern Great Plains (SGP) measurement site established by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program using a single-column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP in CAM is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near the cloud top, resulting in an overall decrease in LWP. Our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.

  2. Long-lifetime Martian orbit selection using a time-dependent model of the Martian atmosphere

    Science.gov (United States)

    Culp, R. D.; Stewart, A. I.; Chow, C.-C.; Uphoff, C.

    1984-01-01

    A mathematical model of the time-dependent Martian atmosphere has been developed in order to accurately calculate the effects of aerodynamic drag on a low altitude satellite. The time-dependent properties of the model include solar activity effects, dust storm effects, seasonal and diurnal variations, and annual motion effects. Position effects are accounted for through Martian latitude and longitude. Expected values of mass density, temperature, scale height, and the estimated standard deviation of the mass density are provided. An example of the use of the model in selecting an orbit for the Mars Geochemical/Climatology Orbiter is given.

  3. Long-lifetime Martian orbit selection using a time-dependent model of the Martian atmosphere

    Science.gov (United States)

    Culp, R. D.; Stewart, A. I.; Chow, C.-C.; Uphoff, C.

    1984-08-01

    A mathematical model of the time-dependent Martian atmosphere has been developed in order to accurately calculate the effects of aerodynamic drag on a low altitude satellite. The time-dependent properties of the model include solar activity effects, dust storm effects, seasonal and diurnal variations, and annual motion effects. Position effects are accounted for through Martian latitude and longitude. Expected values of mass density, temperature, scale height, and the estimated standard deviation of the mass density are provided. An example of the use of the model in selecting an orbit for the Mars Geochemical/Climatology Orbiter is given.

  4. Time-dependent model of the Martian atmosphere for use in orbit lifetime and sustenance studies

    Science.gov (United States)

    Culp, R. D.; Stewart, A. I.

    1984-01-01

    A time-dependent model of the Martian atmosphere suitable for calculation of long-term aerodynamic effects on low altitude satellites is presented. The atmospheric model is both position dependent, through latitude and longitude effects, and time dependent. The time dependency includes diurnal and seasonal effects, effects of annual motion, long and short term solar activity effects, and periodic dust storm effects. Nine constituent gases are included in the model. Uncertainties in exospheric temperature, turbidity, and turbopause altitude are used to produce bounds on the expected density. A computer model - a Fortran subroutine which, when given the Julian date, Cartesian position of the sun and the spacecraft in aerocentric coordinates, returns the local values of mass density, temperature, scale height, and upper and lower bounds on the mass density is presented.

  5. Time-dependent model of the Martian atmosphere for use in orbit lifetime and sustenance studies

    Science.gov (United States)

    Culp, R. D.; Stewart, A. I.

    1984-09-01

    A time-dependent model of the Martian atmosphere suitable for calculation of long-term aerodynamic effects on low altitude satellites is presented. The atmospheric model is both position dependent, through latitude and longitude effects, and time dependent. The time dependency includes diurnal and seasonal effects, effects of annual motion, long and short term solar activity effects, and periodic dust storm effects. Nine constituent gases are included in the model. Uncertainties in exospheric temperature, turbidity, and turbopause altitude are used to produce bounds on the expected density. A computer model - a Fortran subroutine which, when given the Julian date, Cartesian position of the sun and the spacecraft in aerocentric coordinates, returns the local values of mass density, temperature, scale height, and upper and lower bounds on the mass density is presented.

  6. Sulfate geoengineering impact on methane transport and lifetime: results from the Geoengineering Model Intercomparison Project (GeoMIP)

    Science.gov (United States)

    Visioni, Daniele; Pitari, Giovanni; Aquila, Valentina; Tilmes, Simone; Cionni, Irene; Di Genova, Glauco; Mancini, Eva

    2017-09-01

    Sulfate geoengineering (SG), made by sustained injection of SO2 in the tropical lower stratosphere, may impact the CH4 abundance through several photochemical mechanisms affecting tropospheric OH and hence the methane lifetime. (a) The reflection of incoming solar radiation increases the planetary albedo and cools the surface, with a tropospheric H2O decrease. (b) The tropospheric UV budget is upset by the additional aerosol scattering and stratospheric ozone changes: the net effect is meridionally not uniform, with a net decrease in the tropics, thus producing less tropospheric O(1D). (c) The extratropical downwelling motion from the lower stratosphere tends to increase the sulfate aerosol surface area density available for heterogeneous chemical reactions in the mid-to-upper troposphere, thus reducing the amount of NOx and O3 production. (d) The tropical lower stratosphere is warmed by solar and planetary radiation absorption by the aerosols. The heating rate perturbation is highly latitude dependent, producing a stronger meridional component of the Brewer-Dobson circulation. The net effect on tropospheric OH due to the enhanced stratosphere-troposphere exchange may be positive or negative depending on the net result of different superimposed species perturbations (CH4, NOy, O3, SO4) in the extratropical upper troposphere and lower stratosphere (UTLS). In addition, the atmospheric stabilization resulting from the tropospheric cooling and lower stratospheric warming favors an additional decrease of the UTLS extratropical CH4 by lowering the horizontal eddy mixing. Two climate-chemistry coupled models are used to explore the above radiative, chemical and dynamical mechanisms affecting CH4 transport and lifetime (ULAQ-CCM and GEOSCCM). The CH4 lifetime may become significantly longer (by approximately 16 %) with a sustained injection of 8 Tg-SO2 yr-1 starting in the year 2020, which implies an increase of tropospheric CH4 (200 ppbv) and a positive indirect radiative

  7. Sulfate geoengineering impact on methane transport and lifetime: results from the Geoengineering Model Intercomparison Project (GeoMIP

    Directory of Open Access Journals (Sweden)

    D. Visioni

    2017-09-01

    Full Text Available Sulfate geoengineering (SG, made by sustained injection of SO2 in the tropical lower stratosphere, may impact the CH4 abundance through several photochemical mechanisms affecting tropospheric OH and hence the methane lifetime. (a The reflection of incoming solar radiation increases the planetary albedo and cools the surface, with a tropospheric H2O decrease. (b The tropospheric UV budget is upset by the additional aerosol scattering and stratospheric ozone changes: the net effect is meridionally not uniform, with a net decrease in the tropics, thus producing less tropospheric O(1D. (c The extratropical downwelling motion from the lower stratosphere tends to increase the sulfate aerosol surface area density available for heterogeneous chemical reactions in the mid-to-upper troposphere, thus reducing the amount of NOx and O3 production. (d The tropical lower stratosphere is warmed by solar and planetary radiation absorption by the aerosols. The heating rate perturbation is highly latitude dependent, producing a stronger meridional component of the Brewer–Dobson circulation. The net effect on tropospheric OH due to the enhanced stratosphere–troposphere exchange may be positive or negative depending on the net result of different superimposed species perturbations (CH4, NOy, O3, SO4 in the extratropical upper troposphere and lower stratosphere (UTLS. In addition, the atmospheric stabilization resulting from the tropospheric cooling and lower stratospheric warming favors an additional decrease of the UTLS extratropical CH4 by lowering the horizontal eddy mixing. Two climate–chemistry coupled models are used to explore the above radiative, chemical and dynamical mechanisms affecting CH4 transport and lifetime (ULAQ-CCM and GEOSCCM. The CH4 lifetime may become significantly longer (by approximately 16 % with a sustained injection of 8 Tg-SO2 yr−1 starting in the year 2020, which implies an increase of tropospheric CH4 (200 ppbv and

  8. Reliability model of SNS linac (spallation neutron source-ORNL)

    International Nuclear Information System (INIS)

    Pitigoi, A.; Fernandez, P.

    2015-01-01

    A reliability model of SNS LINAC (Spallation Neutron Source at Oak Ridge National Laboratory) has been developed using risk spectrum reliability analysis software and the analysis of the accelerator system's reliability has been performed. The analysis results have been evaluated by comparing them with the SNS operational data. This paper presents the main results and conclusions focusing on the definition of design weaknesses and provides recommendations to improve reliability of the MYRRHA ( linear accelerator. The reliability results show that the most affected SNS LINAC parts/systems are: 1) SCL (superconducting linac), front-end systems: IS, LEBT (low-energy beam transport line), MEBT (medium-energy beam transport line), diagnostics and controls; 2) RF systems (especially the SCL RF system); 3) power supplies and PS controllers. These results are in line with the records in the SNS logbook. The reliability issue that needs to be enforced in the linac design is the redundancy of the systems, subsystems and components most affected by failures. For compensation purposes, there is a need for intelligent fail-over redundancy implementation in controllers. Enough diagnostics has to be implemented to allow reliable functioning of the redundant solutions and to ensure the compensation function

  9. Influence of delayed neutron parameter calculation accuracy on results of modeled WWER scram experiments

    International Nuclear Information System (INIS)

    Artemov, V.G.; Gusev, V.I.; Zinatullin, R.E.; Karpov, A.S.

    2007-01-01

    Using modeled WWER cram rod drop experiments, performed at the Rostov NPP, as an example, the influence of delayed neutron parameters on the modeling results was investigated. The delayed neutron parameter values were taken from both domestic and foreign nuclear databases. Numerical modeling was carried out on the basis of SAPFIR 9 5andWWERrogram package. Parameters of delayed neutrons were acquired from ENDF/B-VI and BNAB-78 validated data files. It was demonstrated that using delay fraction data from different databases in reactivity meters led to significantly different reactivity results. Based on the results of numerically modeled experiments, delayed neutron parameters providing the best agreement between calculated and measured data were selected and recommended for use in reactor calculations (Authors)

  10. On the neutron electric dipole moment in the Weinberg CP-violation model

    International Nuclear Information System (INIS)

    Anselm, A.A.; Bunakov, V.E.; Gudkov, V.P.; Uraltsev, N.G.

    1985-01-01

    The neutron EDM in the Weinberg CP-violation model is shown to be dominated by the neutral Higgs boson interaction and to exceed the present experimental limitations by 2-3 orders of magnitude. (orig.)

  11. Studies and modeling of cold neutron sources; Etude et modelisation des sources froides de neutron

    Energy Technology Data Exchange (ETDEWEB)

    Campioni, G

    2004-11-15

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources.

  12. Wind turbine blade life-time assessment model for preventive planning of operation and maintenance

    DEFF Research Database (Denmark)

    Florian, Mihai; Sørensen, John Dalsgaard

    2014-01-01

    of information on the blades structural health to the decision maker. Further, inspections of the blades are often performed in connection with service. In light of the obtained information, a preventive type of maintenance becomes feasible, with the potential of predicting the blades remaining life to support O......&M decisions for avoiding major failure events. The present paper presents a fracture mechanics based model for estimating the remaining life of a wind turbine blade, focusing on the crack propagation in the blades adhesive joints. A generic crack propagation model is built in Matlab based on a Paris law...

  13. Characterization and Lifetime Performance Modeling of Acrylic Foam Tape for Structural Glazing Applications

    OpenAIRE

    Townsend, Benjamin William

    2008-01-01

    This thesis presents the results of testing and modeling conducted to characterize the performance of 3Mâ ¢ VHBâ ¢ structural glazing tape in both shear and tension. Creep rupture testing results provided the failure time at a given static load and temperature, and ramp-to-fail testing results provided the ultimate load resistance at a given rate of strain and temperature. Parallel testing was conducted on three structural silicone sealants to compare performance. Using the time temperature ...

  14. An upgraded drift–diffusion model for evaluating the carrier lifetimes in radiation-damaged semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Lopez, J., E-mail: fjgl@us.es [Dept of Atomic, Molecular and Nuclear Physics, University of Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); CNA (U. Sevilla, J. Andalucia, CSIC), Av. Thomas A. Edison 7, 41092 Sevilla (Spain); Jimenez-Ramos, M.C.; Rodriguez-Ramos, M. [CNA (U. Sevilla, J. Andalucia, CSIC), Av. Thomas A. Edison 7, 41092 Sevilla (Spain); Forneris, J. [Physics Dept./NIS Centre, University of Torino, INFN-Sez. di Torino, via P. Giuria 1, 10125 Torino (Italy); Ceballos, J. [Institute of Microelectronics of Seville, IMSE-CNM (CSIC/University of Seville), Seville 41092 (Spain)

    2016-03-15

    The transport properties of a series of n- and p-type Si diodes have been studied by the ion beam induced charge (IBIC) technique using a 4 MeV proton microbeam. The samples were irradiated with 17 MeV protons at fluences ranging from 1 × 10{sup 12} to 1 × 10{sup 13} p/cm{sup 2} in order to produce a uniform profile of defects with depth. The analysis of the charge collection efficiency (CCE) as a function of the reverse bias voltage has been carried out using an upgraded drift–diffusion (D–D) model which takes into account the possibility of carrier recombination not only in the neutral substrate, as the simple D–D model assumes, but also within the depletion region. This new approach for calculating the CCE is fundamental when the drift length of carriers cannot be considered as much greater that the thickness of the detector due to the ion induced damage. From our simulations, we have obtained the values of the carrier lifetimes for the pristine and irradiated diodes, which have allowed us to calculate the effective trapping cross sections using the one dimension Shockley–Read–Hall model. The results of our calculations have been compared to the data obtained using a recently developed Monte Carlo code for the simulation of IBIC analysis, based on the probabilistic interpretation of the excess carrier continuity equations.

  15. Theoretical model application to the evaluation of fission neutron data up to 20 MeV incidence energy

    International Nuclear Information System (INIS)

    Ruben, A.; Maerten, H.; Seeliger, D.

    1990-01-01

    A complex statistical theory of fission neutron emission combined with a phenomenological fission model has been used to calculate fission neutron data for 238 U. Obtained neutron multiplicities and energy spectra as well as average fragment energies for incidence energies from threshold to 20 MeV (including multiple-chance fission) are compared with traditional data representations. (author). 19 refs, 6 figs

  16. Irradiation creep lifetime analysis on first wall structure materials for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Bing; Peng, Lei, E-mail: penglei@ustc.edu.cn; Zhang, Xiansheng; Shi, Jingyi; Zhan, Jie

    2017-05-15

    Fusion reactor first wall services on the conditions of high surface heat flux and intense neutron irradiation. For China Fusion Engineering Test Reactor (CFETR) with high duty time factor, it is important to analyze the irradiation effect on the creep lifetime of the main candidate structure materials for first wall, i.e. ferritic/martensitic steel, austenite steel and oxide dispersion strengthened steel. The allowable irradiation creep lifetime was evaluated with Larson-Miller Parameter (LMP) model and finite element method. The results show that the allowable irradiation creep lifetime decreases with increasing of surface heat flux, first wall thickness and inlet coolant temperature. For the current CFETR conceptual design, the lifetime is not limited by thermal creep or irradiation creep, which indicated the room for design parameters optimization.

  17. Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model

    International Nuclear Information System (INIS)

    Deman, G.; Konakli, K.; Sudret, B.; Kerrou, J.; Perrochet, P.; Benabderrahmane, H.

    2016-01-01

    The study makes use of polynomial chaos expansions to compute Sobol' indices within the frame of a global sensitivity analysis of hydro-dispersive parameters in a simplified vertical cross-section of a segment of the subsurface of the Paris Basin. Applying conservative ranges, the uncertainty in 78 input variables is propagated upon the mean lifetime expectancy of water molecules departing from a specific location within a highly confining layer situated in the middle of the model domain. Lifetime expectancy is a hydrogeological performance measure pertinent to safety analysis with respect to subsurface contaminants, such as radionuclides. The sensitivity analysis indicates that the variability in the mean lifetime expectancy can be sufficiently explained by the uncertainty in the petrofacies, i.e. the sets of porosity and hydraulic conductivity, of only a few layers of the model. The obtained results provide guidance regarding the uncertainty modeling in future investigations employing detailed numerical models of the subsurface of the Paris Basin. Moreover, the study demonstrates the high efficiency of sparse polynomial chaos expansions in computing Sobol' indices for high-dimensional models. - Highlights: • Global sensitivity analysis of a 2D 15-layer groundwater flow model is conducted. • A high-dimensional random input comprising 78 parameters is considered. • The variability in the mean lifetime expectancy for the central layer is examined. • Sparse polynomial chaos expansions are used to compute Sobol' sensitivity indices. • The petrofacies of a few layers can sufficiently explain the response variance.

  18. Model for neutron total cross-section at low energies for nuclear grade graphite

    International Nuclear Information System (INIS)

    Galván Josa, V.M.; Dawidowski, J.; Santisteban, J.R.; Malamud, F.; Oliveira, R.G.

    2015-01-01

    At subthermal neutron energies, polycrystalline graphite shows a large total cross-section due to small angle scattering processes. In this work, a new methodology to determine pore size distributions through the neutron transmission technique at subthermal energies is proposed and its sensitivity is compared with standard techniques. A simple model based on the form factor for spherical particles, normally used in the Small Angle Neutron Scattering technique, is employed to calculate the contribution of small angle effect to the total scattering cross-section, with the width and center of the radii distributions as free parameters in the model. Small Angle X-ray Scattering experiments were performed to compare results as a means to validate the method. The good agreement reached reveals that the neutron transmission technique is a useful tool to explore small angle scattering effects. This fact can be exploited in situations where large samples must be scanned and it is difficult to investigate them with conventional methods. It also opens the possibility to apply this method in energy-resolved neutron imaging. Also, since subthermal neutron transmission experiments are perfectly feasible in small neutron sources, the present findings open new possibilities to the work done in such kind of facilities

  19. A Monte Carlo Model for Neutron Coincidence Counting with Fast Organic Liquid Scintillation Detectors

    International Nuclear Information System (INIS)

    Gamage, Kelum A.A.; Joyce, Malcolm J.; Cave, Frank D.

    2013-06-01

    Neutron coincidence counting is an established, nondestructive method for the qualitative and quantitative analysis of nuclear materials. Several even-numbered nuclei of the actinide isotopes, and especially even-numbered plutonium isotopes, undergo spontaneous fission, resulting in the emission of neutrons which are correlated in time. The characteristics of this i.e. the multiplicity can be used to identify each isotope in question. Similarly, the corresponding characteristics of isotopes that are susceptible to stimulated fission are somewhat isotope-related, and also dependent on the energy of the incident neutron that stimulates the fission event, and this can hence be used to identify and quantify isotopes also. Most of the neutron coincidence counters currently used are based on 3 He gas tubes. In the 3 He-filled gas proportional-counter, the (n, p) reaction is largely responsible for the detection of slow neutrons and hence neutrons have to be slowed down to thermal energies. As a result, moderator and shielding materials are essential components of many systems designed to assess quantities of fissile materials. The use of a moderator, however, extends the die-away time of the detector necessitating a larger coincidence window and, further, 3 He is now in short supply and expensive. In this paper, a simulation based on the Monte Carlo method is described which has been performed using MCNPX 2.6.0, to model the geometry of a sector-shaped liquid scintillation detector in response to coincident neutron events. The detection of neutrons from a mixed-oxide (MOX) fuel pellet using an organic liquid scintillator has been simulated for different thicknesses of scintillators. In this new neutron detector, a layer of lead has been used to reduce the gamma-ray fluence reaching the scintillator. The effect of lead for neutron detection has also been estimated by considering different thicknesses of lead layers. (authors)

  20. A Proactive Aging/Asset Management Model to Optimize Equipment Maintenance Resources Over Plant Lifetime

    International Nuclear Information System (INIS)

    Meyer, Theodore A.; Perdue, Robert K.; Woodcock, Joel; Elder, G. Gary

    2002-01-01

    Experience has shown that proactive aging/asset management can best be defined as an ongoing process. Station goals directly supported by such a process include reducing Unplanned Capability Loss Factor and gaining the optimum value from maintenance and aging management budgets. An effective aging/asset management process must meet evolving and sometimes conflicting requirements for efficient and reliable nuclear power plant operation. The process should identify most likely contributors before they fail, and develop cost-effective contingencies. Current trends indicate the need for focused tools that give quantitative input to decision-making. Opposing goals, such as increasing availability while optimizing aging management budgets, must be balanced. Recognizing the importance of experience in reducing the uncertainty inherent in predicting equipment degradation rates, nuclear industry demographics suggest the need to capture existing expert knowledge in a usable form. The Proactive Aging/Asset Management Process has been developed to address these needs. The proactive approach is a process supported by tools. The process identifies goals and develops criteria - including safety, costs, and power production - that are used to prioritize systems and equipment across the plant. The process then draws upon tools to most effectively meet the plant's goals. The Proactive Aging/Asset Management Model TM is one software-enabled tool designed for mathematical optimization. Results assist a plant in developing a plant-wide plan of aging management activities. This paper describes the proactive aging/asset management process and provides an overview of the methodology that has been incorporated in a model to perform a plant-wide optimization of aging management activities. (authors)

  1. Establishment of primary cultures for mouse ameloblasts as a model of their lifetime

    International Nuclear Information System (INIS)

    Suzawa, Tetsuo; Itoh, Nao; Takahashi, Naoyuki; Katagiri, Takenobu; Morimura, Naoko; Kobayashi, Yasuna; Yamamoto, Toshinori; Kamijo, Ryutaro

    2006-01-01

    To understand how the properties of ameloblasts are spatiotemporally regulated during amelogenesis, two primary cultures of ameloblasts in different stages of differentiation were established from mouse enamel epithelium. Mouse primary ameloblasts (MPAs) prepared from immature enamel epithelium (MPA-I) could proliferate, whereas those from mature enamel epithelium (MPA-M) could not. MPA-M but not MPA-I caused apoptosis during culture. The mRNA expression of amelogenin, a marker of immature ameloblasts, was down-regulated, and that of enamel matrix serine proteiase-1, a marker of mature ameloblasts, was induced in MPA-I during culture. Using green fluorescence protein as a reporter, a visualized reporter system was established to analyze the promoter activity of the amelogenin gene. The region between -1102 bp and -261 bp was required for the reporter expression in MPA-I. These results suggest that MPAs are valuable in vitro models for investigation of ameloblast biology, and that the visualized system is useful for promoter analysis in MPAs

  2. Modeling, analysis and prediction of neutron emission spectra from acoustic cavitation bubble fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, R.P. [Purdue University, West Lafayette, IN 47907 (United States)], E-mail: rusi@purdue.edu; Lapinskas, J.; Xu, Y. [Purdue University, West Lafayette, IN 47907 (United States); Cho, J.S. [FNC Tech. Locn., Seoul National University (Korea, Republic of); Block, R.C.; Lahey, R.T. [Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Nigmatulin, R.I. [Russian Academy of Sciences, Moscow (Russian Federation)

    2008-10-15

    Self-nucleated and external neutron nucleated acoustic (bubble fusion) cavitation experiments have been modeled and analyzed for neutron spectral characteristics at the detector locations for all separate successful published bubble fusion studies. Our predictive approach was first calibrated and validated against the measured neutron spectrum emitted from a spontaneous fission source ({sup 252}Cf), from a Pu-Be source and from an accelerator-based monoenergetic 14.1 MeV neutrons, respectively. Three-dimensional Monte-Carlo neutron transport calculations of 2.45 MeV neutrons from imploding bubbles were conducted, using the well-known MCNP5 transport code, for the published original experimental studies of Taleyarkhan et al. [Taleyarkhan, et al., 2002. Science 295, 1868; Taleyarkhan, et al., 2004. Phys. Rev. E 69, 036109; Taleyarkhan, et al., 2006a. PRL 96, 034301; Taleyarkhan, et al., 2006b. PRL 97, 149404] as also the successful confirmation studies of Xu et al. [Xu, Y., et al., 2005. Nuclear Eng. Des. 235, 1317-1324], Forringer et al. [Forringer, E., et al., 2006a. Transaction on American Nuclear Society Conference, vol. 95, Albuquerque, NM, USA, November 15, 2006, p. 736; Forringer, E., et al., 2006b. Proceedings of the International Conference on Fusion Energy, Albuquerque, NM, USA, November 14, 2006] and Bugg [Bugg, W., 2006. Report on Activities on June 2006 Visit, Report to Purdue University, June 9, 2006]. NE-213 liquid scintillation (LS) detector response was calculated using the SCINFUL code. These were cross-checked using a separate independent approach involving weighting and convoluting MCNP5 predictions with published experimentally measured NE-213 detector neutron response curves for monoenergetic neutrons at various energies. The impact of neutron pulse-pileup during bubble fusion was verified and estimated with pulsed neutron generator based experiments and first-principle calculations. Results of modeling-cum-experimentation were found to be

  3. Lifetime-dependent effects of bisphenol A on asthma development in an experimental mouse model.

    Directory of Open Access Journals (Sweden)

    Susanne Petzold

    Full Text Available BACKGROUND: Environmental factors are thought to contribute significantly to the increase of asthma prevalence in the last two decades. Bisphenol A (BPA is a xenoestrogen commonly used in consumer products and the plastic industry. There is evidence and an ongoing discussion that endocrine disruptors like BPA may affect human health and also exert alterations on in the immune system. The aim of this study was to investigate age-dependent effects of BPA on the asthma risk using a murine model to explain the controversial results reported till date. METHODS: BALB/c mice were exposed to BPA via the drinking water for different time periods including pregnancy and breastfeeding. To induce an asthma phenotype, mice were sensitized to ovalbumin (OVA, followed by an intrapulmonary allergen challenge. RESULTS: BPA exposure during pregnancy and breastfeeding had no significant effect on asthma development in the offspring. In contrast, lifelong exposure from birth until the last antigen challenge clearly increased eosinophilic inflammation in the lung, airway hyperreactivity and antigen-specific serum IgE levels in OVA-sensitized adult mice compared to mice without BPA exposure. Surprisingly, BPA intake during the sensitization period significantly reduced the development of allergic asthma. This effect was reversed in the presence of a glucocorticoid receptor antagonist. CONCLUSIONS: Our results demonstrate that the impact of BPA on asthma risk is strongly age-dependent and ranges from asthma-promoting to asthma-reducing effects. This could explain the diversity of results from previous studies regarding the observed health impact of BPA.

  4. Relativistic Disc Line: A Tool to Constrain Neutron Star Equation of State Models

    Science.gov (United States)

    Bhattacharyya, Sudip

    2017-09-01

    Relativistic iron Kα spectral emission line from the inner disc of a neutron star Low-Mass X-ray Binary (LMXB) was first detected in 2007. This discovery opened up new ways to probe strong gravity and dense matter. The past decade has seen detections of such a line from many neutron star LMXBs, and confirmation of this line from the same source with several X-ray satellites. These have firmly established the new field of relativistic disc line from neutron star systems in only a decade or so. Fitting the shape of such a line with an appropriate general relativistic model provides the accretion disc inner edge radius to the stellar mass ratio. In this review, we briefly discuss how an accurate measurement of this ratio with a future larger area X-ray instrument can be used to constrain neutron star equation of state models.

  5. Thermal-hydraulic feedback model to calculate the neutronic cross-section in PWR reactions

    International Nuclear Information System (INIS)

    Santiago, Daniela Maiolino Norberto

    2011-01-01

    In neutronic codes,it is important to have a thermal-hydraulic feedback module. This module calculates the thermal-hydraulic feedback of the fuel, that feeds the neutronic cross sections. In the neutronic co de developed at PEN / COPPE / UFRJ, the fuel temperature is obtained through an empirical model. This work presents a physical model to calculate this temperature. We used the finite volume technique of discretized the equation of temperature distribution, while calculation the moderator coefficient of heat transfer, was carried out using the ASME table, and using some of their routines to our program. The model allows one to calculate an average radial temperature per node, since the thermal-hydraulic feedback must follow the conditions imposed by the neutronic code. The results were compared with to the empirical model. Our results show that for the fuel elements near periphery, the empirical model overestimates the temperature in the fuel, as compared to our model, which may indicate that the physical model is more appropriate to calculate the thermal-hydraulic feedback temperatures. The proposed model was validated by the neutronic simulator developed in the PEN / COPPE / UFRJ for analysis of PWR reactors. (author)

  6. Modelling of heterogenous neutron leakages in a nuclear reactor; Modelisation des fuites heterogenes de neutrons dans un reacteur nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Wohleber, X

    1997-11-17

    The TIBERE Model is a neutron leakage method based on B{sub 1} heterogeneous transport equation resolution. In this work, we have studied the influence of the reflection mode at the boundary of the assembly. In particular the White boundary condition has been implemented in the APOLLO2 neutron transport code. We have compared the two TIBERE kinds of boundary conditions (specular and white) with the classical B{sub 1} homogeneous leakage method in the modelling of some reactors. We have remarked the better capability of the TIBERE Model to compute voided assemblies. The white boundary condition is also able to compute a completely voided assembly and, besides, wins a factor 10 in CPU time in comparison with the specular boundary condition. These two heterogenous leakage formalisms have been tested on a partially voided experiment and have shown that the TIBERE Model can compute this kind of situation with a greater precision than the classical B{sub 1} homogeneous leakage method, and with a shorter computational time. (author)

  7. Global well-posedness of infectious disease models without life-time immunity: the cases of cholera and avian influenza.

    Science.gov (United States)

    Yamazaki, Kazuo

    2017-10-27

    We study the systems of partial differential equations with diffusion that model the dynamics of infectious diseases without life-time immunity, in particular the cases of cholera from Wang & Wang (2015, J. Biol. Dyn., 9, 233-261) and avian influenza from Vaidya et al. (2012, Discrete Contin. Dyn. Syst. Ser. B, 17, 2829-2848). In both works, similarly to all others in the literature on various models of infectious diseases and more, it had to be assumed for a technical reason that the diffusivity coefficients of the susceptible, infected and recovered individuals, humans or birds, had to be identical in order to prove the existence of their unique solutions for all time. Considering that such uniform diffusivity strengths among the susceptible, infected and recovered hosts may not always be plausible in real world, we investigate the global well-posedness issue when such conditions are relaxed. In particular for the cholera model from Wang & Wang (2015, J. Biol. Dyn., 9, 233-261), we prove the global well-posedness with no condition on the diffusivity coefficients at all. For the avian influenza model from Vaidya et al. (2012, Discrete Contin. Dyn. Syst. Ser. B, 17, 2829-2848), we prove the global well-posedness with no condition on the diffusivity coefficients if the spatial dimension is one, and under a partial condition that the diffusivity coefficients of the susceptible and the infected hosts are same otherwise. © The author 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  8. Implementation of an Analytical Model for Leakage Neutron Equivalent Dose in a Proton Radiotherapy Planning System

    Directory of Open Access Journals (Sweden)

    John Eley

    2015-03-01

    Full Text Available Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects.

  9. Neutronic modeling of pebble bed reactors in APOLLO2

    International Nuclear Information System (INIS)

    Grimod, M.

    2010-01-01

    ', this bias is small when the core is loaded with UO 2 fuel, with discrepancies on the power shape factors and main nuclide densities in discharged pebbles within ± 1%, except for plutonium isotopes, with an underestimation of 3% for Pu 240 at discard. The spectral differences between the pebbles being mostly linked to the resonance of Pu 240 , this bias is important for the Pu loaded core, where differences up to ± 10% on the power shape factors and on the main nuclide densities are observed. Based on the accumulated experience at CEA on prismatic HTGRs modeling, a coupled neutronic-thermal hydraulic 3D core model of a PBR could be built, associating a multi-pebble geometry to each three-dimensional spectrum zone of the core. (author)

  10. A microscopic description of the S-wave πN-scattering lengths and the (pπ-)-atom lifetime in the quark confinement model

    International Nuclear Information System (INIS)

    Efimov, G.V.; Ivanov, M.A.; Rusetskij, A.G.

    1989-01-01

    The S-wave πN-scattering lengths and the (pπ - )-atom lifetime are in the quark confinement model. Nucleon is treated as a quark-diquark system. The fulfillment of the Weinberg-Tomozawa relations is checked. The agreement is achieved with the experiment and with the results obtained within other approaches. 32 refs.; 5 figs.; 2 tabs

  11. Analysis of inelastic neutron scattering results on model compounds ...

    Indian Academy of Sciences (India)

    Keywords. Vibrational spectroscopy; nitrogenous bases; inelastic neutron scattering. PACS No. 63.20. 1. .... Where, Bz[x(y)] implies that this indole mode has x% of the benzene mode number y (after [10]); similarly .... the momentum transfer vector, Q, is essentially parallel to the incident beam for all energy transfers, at least ...

  12. Physical model of evolution of oxygen subsystem of PLZT-ceramics at neutron irradiation and annealing

    CERN Document Server

    Kulikov, D V; Trushin, Y V; Veber, K V; Khumer, K; Bitner, R; Shternberg, A R

    2001-01-01

    The physical model of evolution of the oxygen subsystem defects of the ferroelectric PLZT-ceramics by the neutron irradiation and isochrone annealing is proposed. The model accounts for the effect the lanthanum content on the material properties. The changes in the oxygen vacancies concentration, calculated by the proposed model, agree well with the polarization experimental behavior by the irradiated material annealing

  13. Coupled 3D neutronics/thermal hydraulics modeling of the SAFARI-1 MTR

    International Nuclear Information System (INIS)

    Rosenkrantz, Adam; Avramova, Maria; Ivanov, Kostadin; Prinsloo, Rian; Botes, Danniëll; Elsakhawy, Khalid

    2014-01-01

    Highlights: • Development of 3D coupled neutronics/thermal–hydraulic model of SAFARI-1. • Verification of 3D steady-state NEM based neutronics model for SAFARI-1. • Verification of 3D COBRA-TF based thermal–hydraulic model of SAFARI-1. • Quantification of the effect of correct modeling of thermal–hydraulic feedback. - Abstract: The purpose of this study was to develop a coupled accurate multi-physics model of the SAFARI-1 Material Testing Reactor (MTR), a facility that is used for both research and the production of medical isotopes. The model was developed as part of the SAFARI-1 benchmarking project as a cooperative effort between the Pennsylvania State University (PSU) and the South African Nuclear Energy Corporation (Necsa). It was created using a multi-physics coupling of state of the art nuclear reactor simulation tools, consisting of a neutronics code and a thermal hydraulics code. The neutronics tool used was the PSU code NEM, and the results from this component were verified using the Necsa neutronics code OSCAR-4, which is utilized for SAFARI-1 core design and fuel management. On average, the multiplication factors of the neutronics models agreed to within 5 pcm and the radial assembly-averaged powers agreed to within 0.2%. The thermal hydraulics tool used was the PSU version of COBRA-TF (CTF) sub-channel code, and the results of this component were verified against another thermal hydraulics code, the RELAP5-3D system code, used at Necsa for thermal–hydraulics analysis of SAFARI-1. Although only assembly-averaged results from RELAP5-3D were available, they fell within the range of values for the corresponding assemblies in the comprehensive CTF solution. This comparison allows for the first time to perform a quantification of steady-state errors for a low-powered MTR with an advanced thermal–hydraulic code such as CTF on a per-channel basis as compared to simpler and coarser-mesh RELAP5-3D modeling. Additionally, a new cross section

  14. Neutron spectroscopy measurements and modeling of neutral beam heating fast ion dynamics

    International Nuclear Information System (INIS)

    Hellesen, C; Sunden, E Andersson; Conroy, S; Ericsson, G; Johnson, M Gatu; Hjalmarsson, A; Kaellne, J; Ronchi, E; Sjoestrand, H; Weiszflog, M; Albergante, M; Ballabio, L; Gorini, G; Tardocchi, M; Giacomelli, L; Jenkins, I; Voitsekhovitch, I

    2010-01-01

    The energy spectrum of the neutron emission from beam-target reactions in fusion plasmas at the Joint European Torus (JET) has been investigated. Different beam energies as well as injection angles were used. Both measurements and simulations of the energy spectrum were done. The measurements were made with the time-of-flight spectrometer TOFOR. Simulations of the neutron spectrum were based on first-principle calculations of neutral beam deposition profiles and the fast ion slowing down in the plasma using the code NUBEAM, which is a module of the TRANSP package. The shape of the neutron energy spectrum was seen to vary significantly depending on the energy of the beams as well as the injection angle and the deposition profile in the plasma. Cross validations of the measured and modeled neutron energy spectra were made, showing a good agreement for all investigated scenarios.

  15. TRIPOLI-4{sup ®} Monte Carlo code ITER A-lite neutronic model validation

    Energy Technology Data Exchange (ETDEWEB)

    Jaboulay, Jean-Charles, E-mail: jean-charles.jaboulay@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Cayla, Pierre-Yves; Fausser, Clement [MILLENNIUM, 16 Av du Québec Silic 628, F-91945 Villebon sur Yvette (France); Damian, Frederic; Lee, Yi-Kang; Puma, Antonella Li; Trama, Jean-Christophe [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France)

    2014-10-15

    3D Monte Carlo transport codes are extensively used in neutronic analysis, especially in radiation protection and shielding analyses for fission and fusion reactors. TRIPOLI-4{sup ®} is a Monte Carlo code developed by CEA. The aim of this paper is to show its capability to model a large-scale fusion reactor with complex neutron source and geometry. A benchmark between MCNP5 and TRIPOLI-4{sup ®}, on the ITER A-lite model was carried out; neutron flux, nuclear heating in the blankets and tritium production rate in the European TBMs were evaluated and compared. The methodology to build the TRIPOLI-4{sup ®} A-lite model is based on MCAM and the MCNP A-lite model. Simplified TBMs, from KIT, were integrated in the equatorial-port. A good agreement between MCNP and TRIPOLI-4{sup ®} is shown; discrepancies are mainly included in the statistical error.

  16. Study of the neutron skin thickness of 208Pb in mean field models

    International Nuclear Information System (INIS)

    Roca-Maza, X; Centelles, M; Vinas, X; Warda, M

    2011-01-01

    We study whether the neutron skin thickness Δr np of 208 Pb originates from the bulk or from the surface of the neutron and proton density distributions in mean field models. We find that the size of the bulk contribution to Δr np of 208 Pb strongly depends on the slope of the nuclear symmetry energy, while the surface contribution does not. We note that most mean field models predict a neutron density for 208 Pb between the halo and skin type limits. We investigate the dependence of parity-violating electron scattering at the kinematics of the PREX experiment on the shape of the nucleon densities predicted by the mean field models for 208 Pb. We find an approximate formula for the parity-violating asymmetry in terms of the central radius and the surface diffuseness of the nucleon densities of 208 Pb in these models.

  17. Limits on Tensor Coupling from Neutron $\\beta$-Decay

    OpenAIRE

    Pattie Jr, Robert W.; Hickerson, Kevin P.; Young, Albert R.

    2013-01-01

    Limits on the tensor couplings generating a Fierz interference term, b, in mixed Gamow-Teller Fermi decays can be derived by combining data from measurements of angular correlation parameters in neutron decay, the neutron lifetime, and $G_{\\text{V}}=G_{\\text{F}} V_{ud}$ as extracted from measurements of the $\\mathcal{F}t$ values from the $0^{+} \\to 0^{+}$ superallowed decays dataset. These limits are derived by comparing the neutron $\\beta$-decay rate as predicted in the standard model with t...

  18. Thermalization time in a model of neutron star

    Czech Academy of Sciences Publication Activity Database

    Ducomet, B.; Nečasová, Šárka

    2011-01-01

    Roč. 16, č. 3 (2011), s. 801-818 ISSN 1531-3492 R&D Projects: GA ČR GA201/08/0012 Institutional research plan: CEZ:AV0Z10190503 Keywords : comressible * heat conducting fluids * one-dimensional symmetry * neutron star Subject RIV: BA - General Mathematics Impact factor: 0.921, year: 2011 http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=6325

  19. Spherical sector model for describing the experimental small-angle neutron scattering data for dendrimers

    International Nuclear Information System (INIS)

    Rogachev, A. V.; Cherny, A. Yu.; Ozerin, A. N.; Gordeliy, V. I.; Kuklin, A. I.

    2007-01-01

    A new model for interpreting the results of small-angle neutron scattering from dendrimer solutions is proposed. The mathematical description is given and the theoretical small-angle scattering curves for spherical sectors with different parameters are presented. It is shown that the model proposed is in good agreement with the experimental results. Comparison of the experimental small-angle neutron scattering curves for polyallylcarbosilane dendrimers of the ninth generation with model scattering curves suggests that the inner dendrimer sphere is permeable to a solvent whose density is lower than the density of the solvent beyond the dendrimer by a factor of at least 2

  20. An alternative model for neutron flux maximization in research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Teruel, F.E.; Rizwan, Uddin [Illinois Univ. at Urbana-Champaign, Urbana, IL (United States)

    2005-07-01

    We present a core design for a new research reactor. The desired characteristics in this pool type research reactor of 10 MW power are: high thermal neutron fluxes, plenty of space to locate facilities in the reflector and an acceptable life cycle. In addition, the design is limited to standard fuel material of low enrichment uranium. Following the design of the German research reactor, FRM-II, which delivers high thermal neutron fluxes, an asymmetric cylindrical core with an inner and outer reflector is developed. This design concept analyzed using MCNP and ORIGEN2, achieves the desired features and allows further improvement. The final design is conservatively characterized by a life cycle of 41 days, a maximum thermal neutron flux peak in the reflector of 3.9 E 14 n.cm{sup -2} s{sup -1} and plenty of space to locate facilities and irradiate materials in the outer and inner reflector. This design may be used as a base for further development. (authors)

  1. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    Science.gov (United States)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  2. Measurement of b hadron lifetimes and effective lifetimes at LHCb

    CERN Document Server

    Eklund, E

    2013-01-01

    This paper presents two recent measurements of b-hadron lifetimes, using 1 fb$^{-1}$ of data collected by LHCb. The effective lifetime of the $B_{s} \\to J/\\Psi K_{S}$ decay is measured and found to be $\\tau_{B_{s} \\to J/\\Psi K_{S}}^{\\rm{eff}} = 1.75 \\pm 0.12~(\\rm{stat})~0.07~(\\rm{syst})~\\rm{ps}$. The result is compatible with the Standard Model prediction and is the first measurement of this quantity. The $\\Lambda_{b}$ lifetime is measured in the $\\Lambda_{b} \\to J/\\Psi p K$ decay using the same data set. The measured quantity is the difference in reciprocal lifetimes of the $B^0$ and $\\Lambda^0_b$ hadrons and found to be $1/\\tau_{\\Lambda_{b}} - 1/\\tau_{B_{d}}= 16.4 \\pm 8.2 \\pm 4.4~\\rm{ns^{-1}}$. Using the world average of the $B^0$ lifetime, this translates into a lifetime ratio of $\\tau_{\\Lambda_{b}}/\\tau_{B_{d}} = 0.976 \\pm 0.012 \\pm 0.006$, which is the precise measurement of this quantity to date.

  3. Fission neutrons experiments, evaluation, modeling and open problems

    CERN Document Server

    Kornilov, Nikolay

    2014-01-01

    Although the fission of heavy nuclei was discovered over 75 years ago, many problems and questions still remain to be addressed and answered. The reader will be presented with an old, but persistent problem of this field: The contradiction between Prompt Fission Neutron (PFN) spectra measured with differential (microscopic) experiments and integral (macroscopic and benchmark) experiments (the Micro-Macro problem). The difference in average energy is rather small ~3% but it is stable and we cannot explain the difference due to experimental uncertainties. Can we measure the PFN spectrum with hig

  4. Compact extended model for doppler broadening of neutron absorption resonances in solids

    International Nuclear Information System (INIS)

    Villanueva, A. J; Granada, J.R

    2009-01-01

    We present a simplified compact model for calculating Doppler broadening of neutron absorption resonances in an incoherent Debye solid. Our model extends the effective temperature gas model to cover the whole range of energies and temperatures, and reduces the information of the dynamical system to a minimum content compatible with a much better accuracy of the calculation. This model is thus capable of replacing the existing algorithm in standard codes for resonance cross sections preparation aimed at neutron and reactor physics calculations. The model is applied to the 238 U 6.671 eV effective broadened cross section. We also show how this model can be used for thermometry in an improved fashion compared to the effective temperature gas model. Experimental data of the same resonance at low and high temperatures are also shown and the performances of each model are put to the test on this basis. [es

  5. REFRACTIVE NEUTRON LENS

    OpenAIRE

    Petrov, P. V.; Kolchevsky, N. N.

    2013-01-01

    Compound concave refractive lenses are used for focusing neutron beam. Investigations of spectral and focusing properties of a refractive neutron lens are presented. Resolution of the imaging system on the base of refractive neutron lenses depends on material properties and parameters of neutron source. Model of refractive neutron lens are proposed. Results of calculation diffraction resolution and focal depth of refractive neutron lens are discussed.

  6. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  7. Polarized neutron diffraction - a tool for testing extinction models: application to yttrium iron garnet

    International Nuclear Information System (INIS)

    Bonnet, M.; Delapalme, A.; Becker, P.

    1976-01-01

    This paper shows that polarized neutron experiments, which do not depend on any scale factor, are very dependent on extinction and provide original tests for extinction models. Moon, Koehler, Cable and Child (1972) have formulated the problem and proposed a first-order solution applicable only when the extinction is small. In the first part, some analytical derivations of secondary extinction corrections are discussed, using the formalism of Becker and Coppens (1974). In the second part, the main principles governing polarized neutron diffraction are briefly reviewed, with a special discussion of extinction problems. The method is then applied to the case of yttrium iron garnet (YIG). This experiment shows the technique of polarized neutrons to be very powerful for testing extinction models and for deciding whether the crystal behaves dynamically or kinematically (following Kato's criterion). (Auth.)

  8. Characterisation of polycrystal deformation by numerical modelling and neutron diffraction measurements

    DEFF Research Database (Denmark)

    Clausen, Bjørn

    , that the effect of the elastic anisotropy is limited to the very early stages of plasticity (εP neutron diffraction mea-surements of elastic lattice strains...... reflections. The self-consistent model is used to determine the most suitable reflection for technological applications of neutron diffraction, where focus is on the volume av-erage stress state in engineering components. To be able to successfully convert the measured elastic lattice strains for a specific...... the smallest build-up of residual lattice strains. Below 5% deforma-tion the deviations from linearity and the residual strains are below the normal strain resolution of a neutron diffraction measurement. The model predictions have pinpointed, that the selection of the reflection is crucial for the validity...

  9. Neutron and gamma sensitivities of self-powered detectors: Monte Carlo modelling

    International Nuclear Information System (INIS)

    Vermeeren, Ludo

    2015-01-01

    This paper deals with the development of a detailed Monte Carlo approach for the calculation of the absolute neutron sensitivity of SPNDs, which makes use of the MCNP code. We will explain the calculation approach, including the activation and beta emission steps, the gamma-electron interactions, the charge deposition in the various detector parts and the effect of the space charge field in the insulator. The model can also be applied for the calculation of the gamma sensitivity of self-powered detectors and for the radiation-induced currents in signal cables. The model yields detailed information on the various contributions to the sensor currents, with distinct response times. Results for the neutron sensitivity of various types of SPNDs are in excellent agreement with experimental data obtained at the BR2 research reactor. For typical neutron to gamma flux ratios, the calculated gamma induced SPND currents are significantly lower than the neutron induced currents. The gamma sensitivity depends very strongly upon the immediate detector surroundings and on the gamma spectrum. Our calculation method opens the way to a reliable on-line determination of the absolute in-pile thermal neutron flux. (authors)

  10. Neutron and gamma sensitivities of self-powered detectors: Monte Carlo modelling

    Energy Technology Data Exchange (ETDEWEB)

    Vermeeren, Ludo [SCK-CEN, Nuclear Research Centre, Boeretang 200, B-2400 Mol, (Belgium)

    2015-07-01

    This paper deals with the development of a detailed Monte Carlo approach for the calculation of the absolute neutron sensitivity of SPNDs, which makes use of the MCNP code. We will explain the calculation approach, including the activation and beta emission steps, the gamma-electron interactions, the charge deposition in the various detector parts and the effect of the space charge field in the insulator. The model can also be applied for the calculation of the gamma sensitivity of self-powered detectors and for the radiation-induced currents in signal cables. The model yields detailed information on the various contributions to the sensor currents, with distinct response times. Results for the neutron sensitivity of various types of SPNDs are in excellent agreement with experimental data obtained at the BR2 research reactor. For typical neutron to gamma flux ratios, the calculated gamma induced SPND currents are significantly lower than the neutron induced currents. The gamma sensitivity depends very strongly upon the immediate detector surroundings and on the gamma spectrum. Our calculation method opens the way to a reliable on-line determination of the absolute in-pile thermal neutron flux. (authors)

  11. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    International Nuclear Information System (INIS)

    Comer, G.L.; Joynt, R.

    2003-01-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of 'relativistic': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons

  12. Batteries 2020 – Lithium - ion battery first and second life ageing, validated battery models, lifetime modelling and ageing assessment of thermal parameters

    DEFF Research Database (Denmark)

    Timmermans, Jean-Marc; Nikolian, Alexandros; De Hoog, Joris

    2016-01-01

    The European Project “Batteries 2020” unites nine partners jointly working on research and the development of competitive European automotive batteries. The project aims at increasing both the energy density and lifetime of large format pouch lithium-ion batteries towards the goals targeted...... for automotive batteries (250 Wh/kg at cell level, over 4000 cycles at 80% depth of discharge). Three parallel strategies are followed in order to achieve those targets: (i) Highly focused materials development; two improved generations of NMC cathode materials allows to improve the performance, stability...... and cyclability of state of the art battery cells. (ii) Better understanding of the ageing phenomena; a robust and realistic testing methodology has been developed and was carried out. Combined accelerated, real driving cycle tests, real field data, post - mortem analysis, modelling and validation with real...

  13. Neutronic computational modeling of the ASTRA critical facility using MCNPX

    International Nuclear Information System (INIS)

    Rodriguez, L. P.; Garcia, C. R.; Milian, D.; Milian, E. E.; Brayner, C.

    2015-01-01

    The Pebble Bed Very High Temperature Reactor is considered as a prominent candidate among Generation IV nuclear energy systems. Nevertheless the Pebble Bed Very High Temperature Reactor faces an important challenge due to the insufficient validation of computer codes currently available for use in its design and safety analysis. In this paper a detailed IAEA computational benchmark announced by IAEA-TECDOC-1694 in the framework of the Coordinated Research Project 'Evaluation of High Temperature Gas Cooled Reactor (HTGR) Performance' was solved in support of the Generation IV computer codes validation effort using MCNPX ver. 2.6e computational code. In the IAEA-TECDOC-1694 were summarized a set of four calculational benchmark problems performed at the ASTRA critical facility. Benchmark problems include criticality experiments, control rod worth measurements and reactivity measurements. The ASTRA Critical Facility at the Kurchatov Institute in Moscow was used to simulate the neutronic behavior of nuclear pebble bed reactors. (Author)

  14. Reduction of bias in neutron multiplicity assay using a weighted point model

    Energy Technology Data Exchange (ETDEWEB)

    Geist, W. H. (William H.); Krick, M. S. (Merlyn S.); Mayo, D. R. (Douglas R.)

    2004-01-01

    Accurate assay of most common plutonium samples was the development goal for the nondestructive assay technique of neutron multiplicity counting. Over the past 20 years the technique has been proven for relatively pure oxides and small metal items. Unfortunately, the technique results in large biases when assaying large metal items. Limiting assumptions, such as unifoh multiplication, in the point model used to derive the multiplicity equations causes these biases for large dense items. A weighted point model has been developed to overcome some of the limitations in the standard point model. Weighting factors are detemiined from Monte Carlo calculations using the MCNPX code. Monte Carlo calculations give the dependence of the weighting factors on sample mass and geometry, and simulated assays using Monte Carlo give the theoretical accuracy of the weighted-point-model assay. Measured multiplicity data evaluated with both the standard and weighted point models are compared to reference values to give the experimental accuracy of the assay. Initial results show significant promise for the weighted point model in reducing or eliminating biases in the neutron multiplicity assay of metal items. The negative biases observed in the assay of plutonium metal samples are caused by variations in the neutron multiplication for neutrons originating in various locations in the sample. The bias depends on the mass and shape of the sample and depends on the amount and energy distribution of the ({alpha},n) neutrons in the sample. When the standard point model is used, this variable-multiplication bias overestimates the multiplication and alpha values of the sample, and underestimates the plutonium mass. The weighted point model potentially can provide assay accuracy of {approx}2% (1 {sigma}) for cylindrical plutonium metal samples < 4 kg with {alpha} < 1 without knowing the exact shape of the samples, provided that the ({alpha},n) source is uniformly distributed throughout the

  15. B meson lifetime measurement

    International Nuclear Information System (INIS)

    Piccolo, M.

    1989-01-01

    The lifetime of hadrons containing b-quark has been the subject of extensive experimental work and theoretical speculation; its importance is due to implications on some of the fundamental parameters of the Standard Model, such as the top quark mass and the mixing angles. Since the pioneer measurements of the MAC and MARK II collaborations at PEP in 1983 the progress has been impressive; but many issues still remain open and await further study. In this paper the field's present status is discussed. An overview of the theoretical motivations for this measurements in the Standard Model framework is done. Then the experimental techniques used are reviewed, emphasizing the most recent measurements. A comparison of the results obtained is done and systematic errors are discussed. In conclusion there are some remarks on the further developments foreseen in the near future

  16. Neutron-/sup 90/Zr mean field from a dispersive optical model analysis

    International Nuclear Information System (INIS)

    Delaroche, J.P.; Wang, Y.; Rapaport, J.

    1989-01-01

    Elastic scattering cross sections have been measured for 8, 10, and 24 MeV neutrons incident on /sup 90/Zr. These measurements, together with other neutron elastic scattering and total cross section data available up to 29 MeV, are used in grid searches to obtain an optical model potential which contains a dispersion relation term. This potential is then extrapolated toward negative energies to predict bound single-particle state properties. An overall good description of the data at positive and negative energies is achieved

  17. Innovative Technological Materials Structural Properties by Neutron Scattering, Synchrotron Radiation and Modeling

    CERN Document Server

    Skrzypek, Jacek J

    2010-01-01

    This book provides at first ideas on the answers that neutrons and Synchrotron Radiation could give in innovative materials science and technology. In particular, non-conventional, unusual or innovative neutron and x-ray scattering experiments (from both the scientific and the instrumental point of view) will be described which either have novel applications or provide a new insight into material science and technology. Moreover, a capability of the existing and the enhanced constitutive models and numerical procedures to predict complex behaviour of the novel multifunctional materials is examined.

  18. Innovative technological materials. Structural properties by neutron scattering, synchrotron radiation and modeling

    International Nuclear Information System (INIS)

    Rustichelli, Franco; Skrzypek, Jacek J.

    2010-01-01

    This book provides at first ideas on the answers that neutrons and Synchrotron Radiation could give in innovative materials science and technology. In particular, non-conventional, unusual or innovative neutron and X-ray scattering experiments (from both the scientific and the instrumental point of view) are described which either have novel applications or provide a new insight into material science and technology. Moreover, a capability of the existing and the enhanced constitutive models and numerical procedures to predict complex behaviour of the novel multifunctional materials is examined. (orig.)

  19. Model-Based Least Squares Reconstruction of Coded Source Neutron Radiographs: Integrating the ORNL HFIR CG1D Source Model

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [ORNL; Gregor, Jens [University of Tennessee, Knoxville (UTK); Bingham, Philip R [ORNL

    2014-01-01

    At the present, neutron sources cannot be fabricated small and powerful enough in order to achieve high resolution radiography while maintaining an adequate flux. One solution is to employ computational imaging techniques such as a Magnified Coded Source Imaging (CSI) system. A coded-mask is placed between the neutron source and the object. The system resolution is increased by reducing the size of the mask holes and the flux is increased by increasing the size of the coded-mask and/or the number of holes. One limitation of such system is that the resolution of current state-of-the-art scintillator-based detectors caps around 50um. To overcome this challenge, the coded-mask and object are magnified by making the distance from the coded-mask to the object much smaller than the distance from object to detector. In previous work, we have shown via synthetic experiments that our least squares method outperforms other methods in image quality and reconstruction precision because of the modeling of the CSI system components. However, the validation experiments were limited to simplistic neutron sources. In this work, we aim to model the flux distribution of a real neutron source and incorporate such a model in our least squares computational system. We provide a full description of the methodology used to characterize the neutron source and validate the method with synthetic experiments.

  20. Importance estimation in Monte Carlo modelling of neutron and photon transport

    International Nuclear Information System (INIS)

    Mickael, M.W.

    1992-01-01

    The estimation of neutron and photon importance in a three-dimensional geometry is achieved using a coupled Monte Carlo and diffusion theory calculation. The parameters required for the solution of the multigroup adjoint diffusion equation are estimated from an analog Monte Carlo simulation of the system under investigation. The solution of the adjoint diffusion equation is then used as an estimate of the particle importance in the actual simulation. This approach provides an automated and efficient variance reduction method for Monte Carlo simulations. The technique has been successfully applied to Monte Carlo simulation of neutron and coupled neutron-photon transport in the nuclear well-logging field. The results show that the importance maps obtained in a few minutes of computer time using this technique are in good agreement with Monte Carlo generated importance maps that require prohibitive computing times. The application of this method to Monte Carlo modelling of the response of neutron porosity and pulsed neutron instruments has resulted in major reductions in computation time. (Author)

  1. Simulation of complete neutron scattering experiments: from model systems to liquid germanium

    International Nuclear Information System (INIS)

    Hugouvieux, V.

    2004-11-01

    In this thesis, both theoretical and experimental studies of liquids are done. Neutron scattering enables structural and dynamical properties of liquids to be investigated. On the theoretical side, molecular dynamics simulations are of great interest since they give positions and velocities of the atoms and the forces acting on each of them. They also enable spatial and temporal correlations to be computed and these quantities are also available from neutron scattering experiments. Consequently, the comparison can be made between results from molecular dynamics simulations and from neutron scattering experiments, in order to improve our understanding of the structure and dynamics of liquids. However, since extracting reliable data from a neutron scattering experiment is difficult, we propose to simulate the experiment as a whole, including both instrument and sample, in order to gain understanding and to evaluate the impact of the different parasitic contributions (absorption, multiple scattering associated with elastic and inelastic scattering, instrument resolution). This approach, in which the sample is described by its structure and dynamics as computed from molecular dynamics simulations, is presented and tested on isotropic model systems. Then liquid germanium is investigated by inelastic neutron scattering and both classical and ab initio molecular dynamics simulations. This enables us to simulate the experiment we performed and to evaluate the influence of the contributions from the instrument and from the sample on the detected signal. (author)

  2. Model-Independent Calculation of Radiative Neutron Capture on Lithium-7

    NARCIS (Netherlands)

    Rupak, Gautam; Higa, Renato

    2011-01-01

    The radiative neutron capture on lithium-7 is calculated model independently using a low-energy halo effective field theory. The cross section is expressed in terms of scattering parameters directly related to the S-matrix elements. It depends on the poorly known p-wave effective range parameter

  3. What is the value of the neutron electric dipole moment in the Kobayashi-Maskawa model

    International Nuclear Information System (INIS)

    Khriplovich, I.B.; Zhitnitsky, A.R.

    1982-01-01

    A new mechanism is considered due to which the neutron electric dipole moment Dsub(n) aries in the Kobayashi-Maskawa model. This mechanism leads to the estimate Dsub(n) approx. equal to 2 x 10 -32 e cm, by two orders of magnitude larger than the contributions considered previously. (orig.)

  4. Coupling of 3D neutronics models with the system code ATHLET

    International Nuclear Information System (INIS)

    Langenbuch, S.; Velkov, K.

    1999-01-01

    The system code ATHLET for plant transient and accident analysis has been coupled with 3D neutronics models, like QUABOX/CUBBOX, for the realistic evaluation of some specific safety problems under discussion. The considerations for the coupling approach and its realization are discussed. The specific features of the coupled code system established are explained and experience from first applications is presented. (author)

  5. Predicting neutron damage using TEM with in situ ion irradiation and computer modeling

    Science.gov (United States)

    Kirk, Marquis A.; Li, Meimei; Xu, Donghua; Wirth, Brian D.

    2018-01-01

    We have constructed a computer model of irradiation defect production closely coordinated with TEM and in situ ion irradiation of Molybdenum at 80 °C over a range of dose, dose rate and foil thickness. We have reexamined our previous ion irradiation data to assign appropriate error and uncertainty based on more recent work. The spatially dependent cascade cluster dynamics model is updated with recent Molecular Dynamics results for cascades in Mo. After a careful assignment of both ion and neutron irradiation dose values in dpa, TEM data are compared for both ion and neutron irradiated Mo from the same source material. Using the computer model of defect formation and evolution based on the in situ ion irradiation of thin foils, the defect microstructure, consisting of densities and sizes of dislocation loops, is predicted for neutron irradiation of bulk material at 80 °C and compared with experiment. Reasonable agreement between model prediction and experimental data demonstrates a promising direction in understanding and predicting neutron damage using a closely coordinated program of in situ ion irradiation experiment and computer simulation.

  6. Equation of state for neutron matter in the Quark Compound Bag model

    Science.gov (United States)

    Krivoruchenko, M. I.

    2017-11-01

    The equation of state for neutron matter is derived in the framework of the Quark Compound Bag model, in which the nucleon-nucleon interaction is generated by the s-channel exchange of six-quark Jaffe-Low primitives.

  7. HADES. A computer code for fast neutron cross section from the Optical Model

    International Nuclear Information System (INIS)

    Guasp, J.; Navarro, C.

    1973-01-01

    A FORTRAN V computer code for UNIVAC 1108/6 using a local Optical Model with spin-orbit interaction is described. The code calculates fast neutron cross sections, angular distribution, and Legendre moments for heavy and intermediate spherical nuclei. It allows for the possibility of automatic variation of potential parameters for experimental data fitting. (Author) 55 refs

  8. Gamma and neutron detection modeling in the nuclear detection figure of merit (NDFOM) portal

    Energy Technology Data Exchange (ETDEWEB)

    Stroud, Phillip D [Los Alamos National Laboratory; Saeger, Kevin J [Los Alamos National Laboratory

    2009-01-01

    The Nuclear Detection Figure Of Merit (NDFOM) portal is a database of objects and algorithms for evaluating the performance of radiation detectors to detect nuclear material. This paper describes the algorithms used to model the physics and mathematics of radiation detection. As a first-principles end-to-end analysis system, it starts with the representation of the gamma and neutron spectral fluxes, which are computed with the particle and radiation transport code MCNPX. The gamma spectra emitted by uranium, plutonium, and several other materials of interest are described. The impact of shielding and other intervening material is computed by the method of build-up factors. The interaction of radiation with the detector material is computed by a detector response function approach. The construction of detector response function matrices based on MCNPX simulation runs is described in detail. Neutron fluxes are represented in a three group formulation to treat differences in detector sensitivities to thermal, epithermal, and fast neutrons.

  9. Non-Radial Oscillation Modes of Superfluid Neutron Stars Modeled with CompOSE

    Directory of Open Access Journals (Sweden)

    Prashanth Jaikumar

    2018-03-01

    Full Text Available We compute the principal non-radial oscillation mode frequencies of Neutron Stars described with a Skyrme-like Equation of State (EoS, taking into account the possibility of neutron and proton superfluidity. Using the CompOSE database and interpolation routines to obtain the needed thermodynamic quantities, we solve the fluid oscillation equations numerically in the background of a fully relativistic star, and identify imprints of the superfluid state. Though these modes cannot be observed with current technology, increased sensitivity of future Gravitational-Wave Observatories could allow us to observe these oscillations and potentially constrain or refine models of dense matter relevant to the interior of neutron stars.

  10. Cost effectiveness of primary care referral to a commercial provider for weight loss treatment, relative to standard care: a modelled lifetime analysis.

    Science.gov (United States)

    Fuller, N R; Carter, H; Schofield, D; Hauner, H; Jebb, S A; Colagiuri, S; Caterson, I D

    2014-08-01

    Because of the high prevalence of overweight and obesity, there is a need to identify cost-effective approaches for weight loss in primary care and community settings. To evaluate the long-term cost effectiveness of a commercial weight loss programme (Weight Watchers) (CP) compared with standard care (SC), as defined by national guidelines. A Markov model was developed to calculate the incremental cost-effectiveness ratio (ICER), expressed as the cost per quality-adjusted life year (QALY) over the lifetime. The probabilities and quality-of-life utilities of outcomes were extrapolated from trial data using estimates from the published literature. A health sector perspective was adopted. Over a patient's lifetime, the CP resulted in an incremental cost saving of AUD 70 per patient, and an incremental 0.03 QALYs gained per patient. As such, the CP was found to be the dominant treatment, being more effective and less costly than SC (95% confidence interval: dominant to 6225 per QALY). Despite the CP delaying the onset of diabetes by ∼10 months, there was no significant difference in the incidence of type 2 diabetes, with the CP achieving <0.1% fewer cases than SC over the lifetime. The modelled results suggest that referral to community-based interventions may provide a highly cost-effective approach for those at high risk of weight-related comorbidities.

  11. Neutron-proton pairing and double-β decay in the interacting boson model

    Science.gov (United States)

    Van Isacker, P.; Engel, J.; Nomura, K.

    2017-12-01

    Background: The interacting boson model has been used extensively to calculate the matrix elements governing neutrinoless double-β decay. Studies within other models—the shell model, the quasiparticle random-phase approximation, and nuclear energy-density functional theory—indicate that a good description of neutron-proton pairing is essential for accurate calculations of those matrix elements, even though the isotopes used in experiment have significantly more neutrons than protons. The usual interacting boson model is based only on like-particle pairs, however, and the extent to which it captures neutron-proton pairing is not clear. Purpose: To determine whether neutron-proton pairing should be explicitly included as neutron-proton bosons in interacting-boson-model calculations of neutrinoless double-β decay matrix elements. In this paper we restrict ourselves to nuclei in the lower half of the p f shell, where exact shell model calculations are possible. Method: An isospin-invariant version of the nucleon-pair shell model is applied to carry out shell-model calculations in a large space and in a collective subspace, and to define effective operators in the latter. A democratic mapping is then used to define corresponding boson operators for the interacting boson model, with and without an isoscalar neutron-proton pair boson. Results: Interacting-boson-model calculations with and without the isoscalar boson are carried out for nuclei near the beginning of the p f shell, with a realistic shell-model Hamiltonian and neutrinoless double-β -decay operator as the starting point. Energy spectra and double-β matrix elements are compared to those obtained in the underlying shell model. Conclusions: The isoscalar boson is not important for energy spectra but improves the results for the double-β matrix elements. To be useful at the level of precision we need, the mapping procedure must be further developed to better determine the dependence of the boson

  12. Improvements in the model of neutron calculations for research reactors

    International Nuclear Information System (INIS)

    Calzetta, O.; Leszczynski, F.

    1987-01-01

    Within the research program in the field of neutron physics calculations being carried out in the Nuclear Engineering Division at the Centro Atomico Bariloche, the errors which due to some typical approximations appear in the final results, are being researched. For research MTR type reactors, two approximations, for high and low enrichment are investigated: the treatment of the geometry and the method of few-group cell cross-sections calculation, particularly in the resonance energy region. Commonly, the cell constants used for the entire reactor calculation are obtained making an homogenization of the full fuel elements by means of one-dimensional calculations. An improvement is made that explicitly includes the fuel element frames in the core calculation geometry. Besides, a detailed treatment-in energy and space- is used to find the resonance few-group cross sections, and a comparison of the results with detailed and approximated calculations is made. The least number and the best mesh of energy groups needed for cell calculations is fixed too. (Author)

  13. Improvements in the model of neutron calculations for research reactors

    International Nuclear Information System (INIS)

    Calzetta, Osvaldo; Leszczynski, Francisco

    1987-01-01

    Within the research program in the field of neutron physics calculations being carried out in the Nuclear Engineering Division at the Centro Atomico Bariloche, the errors which due to some typical approximations appear in the final results are researched. For research MTR type reactors, two approximations, for high and low enrichment are investigated: the treatment of the geometry and the method of few-group cell cross-sections calculation, particularly in the resonance energy region. Commonly, the cell constants used for the entire reactor calculation are obtained making an homogenization of the full fuel elements, by one-dimensional calculations. An improvement is made that explicitly includes the fuel element frames in the core calculation geometry. Besides, a detailed treatment-in energy and space- is used to find the resonance few-group cross sections, and a comparison of the results with detailed and approximated calculations is made. The least number and the best mesh of energy groups needed for cell calculations is fixed too. (Author) [es

  14. Neutron-skin thickness of finite nuclei in relativistic mean-field models with chiral limits

    International Nuclear Information System (INIS)

    Jiang Weizhou; Li Baoan; Chen Liewen

    2007-01-01

    We study several structure properties of finite nuclei using relativistic mean-field Lagrangians constructed according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities. The models are consistent with current experimental constraints for the equations of state of symmetric matter at both normal and supranormal densities and of asymmetric matter at subsaturation densities. It is shown that these models can successfully describe the binding energies and charge radii of finite nuclei. Compared to calculations with usual relativistic mean-field models, these models give a reduced thickness of neutron skin in 208 Pb between 0.17 fm and 0.21 fm. The reduction of the predicted neutron skin thickness is found to be due to not only the softening of the symmetry energy but also the scaling property of ρ meson required by the partial restoration of chiral symmetry

  15. Atmospheric lifetimes and Ozone Depletion Potentials of trans-1-chloro-3,3,3-trifluoropropylene and trans-1,2-dichloroethylene in a three-dimensional model

    Directory of Open Access Journals (Sweden)

    K. O. Patten

    2010-11-01

    Full Text Available The chloroalkenes trans-1-chloro-3,3,3-trifluoropropylene (tCFP and trans-1,2-dichloroethylene (tDCE have been proposed as candidate replacements for other compounds in current use that cause concerns regarding potential environmental effects including destruction of stratospheric ozone. Because tCFP and tDCE contain chlorine atoms, the effects of these short-lived compounds on stratospheric ozone must be established. In this study, we derive the atmospheric lifetimes and Ozone Depletion Potentials (ODPs for tCFP and for tDCE assuming emissions from land surfaces at latitudes 30° N to 60° N using the MOZART 3 three-dimensional model of atmospheric chemistry and physics. 53% of the ozone loss due to tCFP and 98% of the ozone loss due to tDCE take place in the troposphere, rather than in the stratosphere as generally expected from longer-lived chlorocarbons. The atmospheric lifetime of tCFP against chemical reaction is 40.4 days, and its ODP is quite small at 0.00034. The tDCE atmospheric lifetime is 12.7 days, and its ODP is 0.00024, which is the lowest ODP found for any chlorocarbon we have studied. Our study suggests that chlorine from tCFP and tDCE are unlikely to affect ozone at quantities likely to be emitted to the atmosphere.

  16. Generalized Thermohydraulics Module GENFLO for Combining With the PWR Core Melting Model, BWR Recriticality Neutronics Model and Fuel Performance Model

    International Nuclear Information System (INIS)

    Miettinen, Jaakko; Hamalainen, Anitta; Pekkarinen, Esko

    2002-01-01

    Thermal hydraulic simulation capability for accident conditions is needed at present in VTT in several programs. Traditional thermal hydraulic models are too heavy for simulation in the analysis tasks, where the main emphasis is the rapid neutron dynamics or the core melting. The GENFLO thermal hydraulic model has been developed at VTT for special applications in the combined codes. The basic field equations in GENFLO are for the phase mass, the mixture momentum and phase energy conservation equations. The phase separation is solved with the drift flux model. The basic variables to be solved are the pressure, void fraction, mixture velocity, gas enthalpy, liquid enthalpy, and concentration of non-condensable gas fractions. The validation of the thermohydraulic solution alone includes large break LOCA reflooding experiments and in specific for the severe accident conditions QUENCH tests. In the recriticality analysis the core neutronics is simulated with a two-dimensional transient neutronics code TWODIM. The recriticality with one rapid prompt peak is expected during a severe accident scenario, where the control rods have been melted and ECCS reflooding is started after the depressurization. The GENFLO module simulates the BWR thermohydraulics in this application. The core melting module has been developed for the real time operator training by using the APROS engineering simulators. The core heatup, oxidation, metal and fuel pellet relocation and corium pool formation into the lower plenum are calculated. In this application the GENFLO model simulates the PWR vessel thermohydraulics. In the fuel performance analysis the fuel rod transient behavior is simulated with the FRAPTRAN code. GENFLO simulates the subchannel around a single fuel rod and delivers the heat transfer on the cladding surface for the FRAPTRAN. The transient boundary conditions for the subchannel are transmitted from the system code for operational transient, loss of coolant accidents and

  17. Light neutron-rich hypernuclei from the importance-truncated no-core shell model

    Science.gov (United States)

    Wirth, Roland; Roth, Robert

    2018-04-01

    We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains - from He5Λ to He11Λ and from Li7Λ to Li12Λ - in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon-nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon.

  18. Empirically testing vaterite structural models using neutron diffraction and thermal analysis.

    Science.gov (United States)

    Chakoumakos, Bryan C; Pracheil, Brenda M; Koenigs, Ryan P; Bruch, Ronald M; Feygenson, Mikhail

    2016-11-18

    Otoliths, calcium carbonate (CaCO 3 ) ear bones, are among the most commonly used age and growth structures of fishes. Most fish otoliths are comprised of the most dense CaCO 3 polymorph, aragonite. Sturgeon otoliths, in contrast, have been characterized as the rare and structurally enigmatic polymorph, vaterite-a metastable polymorph of CaCO 3 . Vaterite is an important material ranging from biomedical to personal care applications although its crystal structure is highly debated. We characterized the structure of Lake Sturgeon otoliths using thermal analysis and neutron powder diffraction, which is used non-destructively. We confirmed that while Lake Sturgeon otoliths are primarily composed of vaterite, they also contain the denser CaCO 3 polymorph, calcite. For the vaterite fraction, neutron diffraction data provide enhanced discrimination of the carbonate group compared to x-ray diffraction data, owing to the different relative neutron scattering lengths, and thus offer the opportunity to uniquely test the more than one dozen crystal structural models that have been proposed for vaterite. Of those, space group P6 5 22 model, a = 7.1443(4)Å, c = 25.350(4)Å, V = 1121.5(2)Å 3 provides the best fit to the neutron powder diffraction data, and allows for a structure refinement using rigid carbonate groups.

  19. Experimental evaluation of a polycrystal deformation modeling scheme using neutron diffraction measurements

    DEFF Research Database (Denmark)

    Clausen, Bjørn; Lorentzen, Torben

    1997-01-01

    The uniaxial behavior of aluminum polycrystals is simulated using a rate-independent incremental self-consistent elastic-plastic polycrystal deformation model, and the results are evaluated by neutron diffraction measurements. The elastic strains deduced from the model show good agreement...... with the experimental results for the 111 and 220 reflections, whereas the predicted elastic strain level for the 200 reflection is, in general, approximately 10 pct too low in the plastic regime....

  20. Origin of the neutron skin thickness of 208Pb in nuclear mean-field models

    International Nuclear Information System (INIS)

    Centelles, M.; Roca-Maza, X.; Vinas, X.; Warda, M.

    2010-01-01

    We study whether the neutron skin thickness Δr np of 208 Pb originates from the bulk or from the surface of the nucleon density distributions, according to the mean-field models of nuclear structure, and find that it depends on the stiffness of the nuclear symmetry energy. The bulk contribution to Δr np arises from an extended sharp radius of neutrons, whereas the surface contribution arises from different widths of the neutron and proton surfaces. Nuclear models where the symmetry energy is stiff, as typical of relativistic models, predict a bulk contribution in Δr np of 208 Pb about twice as large as the surface contribution. In contrast, models with a soft symmetry energy like common nonrelativistic models predict that Δr np of 208 Pb is divided similarly into bulk and surface parts. Indeed, if the symmetry energy is supersoft, the surface contribution becomes dominant. We note that the linear correlation of Δr np of 208 Pb with the density derivative of the nuclear symmetry energy arises from the bulk part of Δr np . We also note that most models predict a mixed-type (between halo and skin) neutron distribution for 208 Pb. Although the halo-type limit is actually found in the models with a supersoft symmetry energy, the skin-type limit is not supported by any mean-field model. Finally, we compute parity-violating electron scattering in the conditions of the 208 Pb parity radius experiment (PREX) and obtain a pocket formula for the parity-violating asymmetry in terms of the parameters that characterize the shape of the 208 Pb nucleon densities.

  1. Lifetime of heavy flavour particles

    International Nuclear Information System (INIS)

    Lueth, V.

    1985-10-01

    Recent measurements of the lifetime of the tau leptons and charm and beauty hadrons are reviewed and their significance for the couplings of the charged weak current, flavour mixing, and models relating quarks to hadron decay are discussed. 70 refs., 17 figs., 5 tabs

  2. Effective-one-body waveforms for binary neutron stars using surrogate models

    Science.gov (United States)

    Lackey, Benjamin D.; Bernuzzi, Sebastiano; Galley, Chad R.; Meidam, Jeroen; Van Den Broeck, Chris

    2017-05-01

    Gravitational-wave observations of binary neutron star systems can provide information about the masses, spins, and structure of neutron stars. However, this requires accurate and computationally efficient waveform models that take ≲1 s to evaluate for use in Bayesian parameter estimation codes that perform 1 07- 1 08 waveform evaluations. We present a surrogate model of a nonspinning effective-one-body waveform model with ℓ=2 , 3, and 4 tidal multipole moments that reproduces waveforms of binary neutron star numerical simulations up to merger. The surrogate is built from compact sets of effective-one-body waveform amplitude and phase data that each form a reduced basis. We find that 12 amplitude and 7 phase basis elements are sufficient to reconstruct any binary neutron star waveform with a starting frequency of 10 Hz. The surrogate has maximum errors of 3.8% in amplitude (0.04% excluding the last 100 M before merger) and 0.043 rad in phase. This leads to typical mismatches of 10-5-10-4 for Advanced LIGO depending on the component masses, with a worst case match of 7 ×10-4 when both stars have masses ≥2 M⊙. The version implemented in the LIGO Algorithm Library takes ˜0.07 s to evaluate for a starting frequency of 30 Hz and ˜0.8 s for a starting frequency of 10 Hz, resulting in a speed-up factor of O (1 03) relative to the original matlab code. This allows parameter estimation codes to run in days to weeks rather than years, and we demonstrate this with a nested sampling run that recovers the masses and tidal parameters of a simulated binary neutron star system.

  3. Numeric modeling of HfO2 neutron flux sensor parameters during sensor burnup in the RBMK-1500 reactor

    International Nuclear Information System (INIS)

    Jurkevicius, A.; Remeikis, V.

    2001-01-01

    The isotopic composition of hafnium in the radial neutron flux sensor of the RBMK-1500 reactor, the rates of the neutron absorption on Hf isotopes and the neutron spectrum in the sensor were numerically modeled. The sequence SAS2 (Shielding Analysis Sequence) from the package SCALE 4.3 was used for calculations. It has been obtained that the main neutron absorber 167 Er isotope practically burns up completely at the 18 MW d/kgU burnup depth, and at that time the capture rate of thermal neutrons in erbium decreases ten-fold. The average neutron flux density was calculated 7.6*10 13 neutrons. Cm -2 S -1 in the RBMK-1500 reactor grating, when the nuclear fuel enriched with 235 U by 2.4% and with Er by 0.4% is used in a fuel assembly. When the sensor burnup reaches 28 MW d/kgU, the neutron absorption rate of 178 Hf exceeds the rate of 177 Hf. The overall neutron absorption rate in hafnium decreases 2.53 times due to the sensor burnup to 56 MW d/kgU. The corrective factors ξ d (I) at different integral flux I of the sensors were calculated. The obtained dependence ξ d (I) calculated numerically was compared to the experimental one determined by processing repeated calibration results of Hf sensors in RBMK-1500 reactors, as well as compared to the theoretical one currently used in the Ignalina NPP special mathematical algorithms. (author)

  4. Preindustrial to Present-Day Changes in Tropospheric Hydroxyl Radical and Methane Lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    Science.gov (United States)

    Naik, V.; Voulgarakis, A.; Fiore, A. M.; Horowitz, L. W.; Lamarque, J.-F.; Lin, M.; Prather, M. J.; Young, P. J.; Bergmann, D.; Cameron-Smith, P. J.; hide

    2013-01-01

    We have analysed time-slice simulations from 17 global models, participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), to explore changes in present-day (2000) hydroxyl radical (OH) concentration and methane (CH4) lifetime relative to preindustrial times (1850) and to 1980. A comparison of modeled and observation-derived methane and methyl chloroform lifetimes suggests that the present-day global multi-model mean OH concentration is overestimated by 5 to 10% but is within the range of uncertainties. The models consistently simulate higher OH concentrations in the Northern Hemisphere (NH) compared with the Southern Hemisphere (SH) for the present-day (2000; inter-hemispheric ratios of 1.13 to 1.42), in contrast to observation-based approaches which generally indicate higher OH in the SH although uncertainties are large. Evaluation of simulated carbon monoxide (CO) concentrations, the primary sink for OH, against ground-based and satellite observations suggests low biases in the NH that may contribute to the high north–south OH asymmetry in the models. The models vary widely in their regional distribution of present-day OH concentrations (up to 34%). Despite large regional changes, the multi-model global mean (mass-weighted) OH concentration changes little over the past 150 yr, due to concurrent increases in factors that enhance OH (humidity, tropospheric ozone, nitrogen oxide (NOx) emissions, and UV radiation due to decreases in stratospheric ozone), compensated by increases in OH sinks (methane abundance, carbon monoxide and non-methane volatile organic carbon (NMVOC) emissions). The large inter-model diversity in the sign and magnitude of preindustrial to present-day OH changes (ranging from a decrease of 12.7% to an increase of 14.6%) indicate that uncertainty remains in our understanding of the long-term trends in OH and methane lifetime. We show that this diversity is largely explained by the different ratio of the

  5. Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP

    Directory of Open Access Journals (Sweden)

    V. Naik

    2013-05-01

    Full Text Available We have analysed time-slice simulations from 17 global models, participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, to explore changes in present-day (2000 hydroxyl radical (OH concentration and methane (CH4 lifetime relative to preindustrial times (1850 and to 1980. A comparison of modeled and observation-derived methane and methyl chloroform lifetimes suggests that the present-day global multi-model mean OH concentration is overestimated by 5 to 10% but is within the range of uncertainties. The models consistently simulate higher OH concentrations in the Northern Hemisphere (NH compared with the Southern Hemisphere (SH for the present-day (2000; inter-hemispheric ratios of 1.13 to 1.42, in contrast to observation-based approaches which generally indicate higher OH in the SH although uncertainties are large. Evaluation of simulated carbon monoxide (CO concentrations, the primary sink for OH, against ground-based and satellite observations suggests low biases in the NH that may contribute to the high north–south OH asymmetry in the models. The models vary widely in their regional distribution of present-day OH concentrations (up to 34%. Despite large regional changes, the multi-model global mean (mass-weighted OH concentration changes little over the past 150 yr, due to concurrent increases in factors that enhance OH (humidity, tropospheric ozone, nitrogen oxide (NOx emissions, and UV radiation due to decreases in stratospheric ozone, compensated by increases in OH sinks (methane abundance, carbon monoxide and non-methane volatile organic carbon (NMVOC emissions. The large inter-model diversity in the sign and magnitude of preindustrial to present-day OH changes (ranging from a decrease of 12.7% to an increase of 14.6% indicate that uncertainty remains in our understanding of the long-term trends in OH and methane lifetime. We show that this diversity is largely explained by the different ratio of the

  6. Neutronics model of the bulk shielding reactor (BSR): validation by comparison of calculations with the experimental measurements

    International Nuclear Information System (INIS)

    Johnson, J.O.; Miller, L.F.; Kam, F.B.K.

    1981-05-01

    A neutronics model for the Oak Ridge National Laboratory Bulk Shielding Reactor (ORNL-SAR) was developed and verified by experimental measurements. A cross-section library was generated from the 218 group Master Library using the AMPX Block Code system. A series of one-, two-, and three-dimensional neutronics calculations were performed utilizing both transport and diffusion theory. Spectral comparison was made with 58 Ni(n,p) reaction. The results of the comparison between the calculational model and other experimental measurements showed agreement within 10% and therefore the model was determined to be adequate for calculating the neutron fluence for future irradiation experiments in the ORNL-BSR

  7. Elastoplastic properties of duplex steel determined using neutron diffraction and self-consistent model

    International Nuclear Information System (INIS)

    Baczmanski, A.; Braham, C.

    2004-01-01

    A new method for determining the parameters characterising elastoplastic deformation of two-phase material is proposed. The method is based on the results of neutron diffraction and mechanical experiments, which are analysed using the self-consistent rate-independent model of elastoplastic deformation. The neutron diffraction method has been applied to determine the lattice strains and diffraction peak broadening in two-phase austeno-ferritic steel during uniaxial tensile test. The elastoplastic model was used to predict evolution of internal stresses and critical resolved shear stresses. Calculations based on this model were successfully compared with experimental results and the parameters characterising elastoplastic deformation were determined for both phases of duplex steel

  8. Application of a simple Ramsauer model for neutron total cross sections

    International Nuclear Information System (INIS)

    Bauer, R.W.; Anderson, J.D.; Grimes, S.M.; Knapp, D.A.; Madsen, V.A.

    1998-01-01

    A companion paper presented arguments that support the applicability of a simple Ramsauer model to describe neutron total cross sections. Such a model yields a simple equation for the energy dependence of the cross section of a given nucleus and also allows extrapolation to nuclei of other A values. Fits of the Ramsauer form to very precise total cross sections recently measured over an extended energy range are presented. Very good fits are obtained for neutron energies between 6 and 60 MeV, suggesting that this approach will be useful for estimating cross sections in cases where experimental data are unavailable. Extension of this model to 120 MeV was only moderately successful

  9. Thermodynamic modelling and in-situ neutron diffraction investigation of the (Nd + Mg + Zn) system

    International Nuclear Information System (INIS)

    Zhu, Zhijun; Gharghouri, Michael A.; Pelton, Arthur D.

    2016-01-01

    Highlights: • All phase diagram and thermodynamic data critically assessed for the (Nd + Mg + Zn) system. • All phases described by optimised thermodynamic models. • In-situ neutron diffraction performed to identify phases and transition temperatures. • Assessments of other (RE + Mg + Zn) systems have been carried out simultaneously. • The final product is a thermodynamic database for multicomponent (Mg + RE + Zn) systems. - Abstract: All available phase diagram data for the (Nd + Mg + Zn) system were critically assessed. In-situ neutron diffraction (ND) experiments were performed on selected samples to identify phases and transition temperatures. A critical thermodynamic evaluation and optimization of the (Nd + Mg + Zn) system was carried out and model parameters for the thermodynamic properties of all phases were obtained. The phase transformation behaviour of selected samples was well resolved from the ND experiments and experimental values were used to refine the thermodynamic model parameters.

  10. Thermodynamic modelling and in-situ neutron diffraction investigation of the (Ce + Mg + Zn) system

    International Nuclear Information System (INIS)

    Zhu, Zhijun; Gharghouri, Michael A.; Medraj, Mamoun; Lee, Soo Yeol; Pelton, Arthur D.

    2016-01-01

    Highlights: • All phase diagram and thermodynamic data critically assessed for the (Ce + Mg + Zn) system. • All phases described by optimized thermodynamic models. • In-situ neutron diffraction performed to identify phases and transition temperatures. • Assessments of other (RE + Mg + Zn) systems have been carried out simultaneously. • The final product is a thermodynamic database for multicomponent (Mg + RE + Zn) systems. - Abstract: All available phase diagram data for the (Ce + Mg + Zn) system were critically assessed. In-situ neutron diffraction (ND) experiments were performed on selected samples to identify phases and transition temperatures. A critical thermodynamic evaluation and optimization of the (Ce + Mg + Zn) system were carried out and model parameters for the thermodynamic properties of all phases were obtained. The phase transformation behaviour of selected samples was well resolved from the ND experiments and experimental data were used to refine the thermodynamic model parameters.

  11. The continuum shell-model neutron states of Pb

    Indian Academy of Sciences (India)

    model states with the collective vibrational states from giant resonances. The particle-vibration coupling model can be applied to understand the spreading pattern of the shell-model states lying in continuum region. The single-particle states are ...

  12. On the reduced lifetime of nitrous oxide due to climate change induced acceleration of the Brewer-Dobson circulation as simulated by the MPI Earth System Model

    Science.gov (United States)

    Kracher, D.; Manzini, E.; Reick, C. H.; Schultz, M. G.; Stein, O.

    2014-12-01

    Greenhouse gas induced climate change will modify the physical conditions of the atmosphere. One of the projected changes is an acceleration of the Brewer-Dobson circulation in the stratosphere, as it has been shown in many model studies. This change in the stratospheric circulation consequently bears an effect on the transport and distribution of atmospheric components such as N2O. Since N2O is involved in ozone destruction, a modified distribution of N2O can be of importance for ozone chemistry. N2O is inert in the troposphere and decays only in the stratosphere. Thus, changes in the exchange between troposphere and stratosphere can also affect the stratospheric sink of N2O, and consequently its atmospheric lifetime. N2O is a potent greenhouse gas with a global warming potential of currently approximately 300 CO2-equivalents in a 100-year perspective. A faster decay in atmospheric N2O mixing ratios, i.e. a decreased atmospheric lifetime of N2O, will also reduce its global warming potential. In order to assess the impact of climate change on atmospheric circulation and implied effects on the distribution and lifetime of atmospheric N2O, we apply the Max Planck Institute Earth System Model, MPI-ESM. MPI-ESM consists of the atmospheric general circulation model ECHAM, the land surface model JSBACH, and MPIOM/HAMOCC representing ocean circulation and ocean biogeochemistry. Prognostic atmospheric N2O concentrations in MPI-ESM are determined by land N2O emissions, ocean-atmosphere N2O exchange and atmospheric tracer transport. As stratospheric chemistry is not explicitly represented in MPI-ESM, stratospheric decay rates of N2O are prescribed from a MACC MOZART simulation. Increasing surface temperatures and CO2 concentrations in the stratosphere impact atmospheric circulation differently. Thus, we conduct a series of transient runs with the atmospheric model of MPI-ESM to isolate different factors governing a shift in atmospheric circulation. From those transient

  13. Modified model of neutron resonances widths distributions. Results of reduced neutron widths approximation for mass region 35 ≤ A ≤ 249

    International Nuclear Information System (INIS)

    Sukhovoj, A.M.; Khitrov, V.A.

    2011-01-01

    The distributions of the reduced neutron widths of s-, p- and d-resonances of nuclei of any type from nuclear mass region 35 ≤ A ≤ 249 were approximated with maximal precision by the model which presents experimental data set as a superposition of a maximum of four independent neutron amplitudes. Under the assumption that each of these amplitudes has the Gauss distribution with the unique maximum there were determined the most probable values of contribution of each amplitude in summary width distribution, their most probable mean values and dispersions. Comparison of the obtained χ 2 values with value χ 2 at description of the experimental data by one distribution of neutron amplitudes with best fitted parameters shows that all widths from more than 157 analyzed data sets can have different types of wave functions

  14. Computing Battery Lifetime Distributions

    NARCIS (Netherlands)

    Cloth, L.; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.

    The usage of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  15. Propagation of neutron-reaction uncertainties through multi-physics models of novel LWR's

    Directory of Open Access Journals (Sweden)

    Hernandez-Solis Augusto

    2017-01-01

    Full Text Available The novel design of the renewable boiling water reactor (RBWR allows a breeding ratio greater than unity and thus, it aims at providing for a self-sustained fuel cycle. The neutron reactions that compose the different microscopic cross-sections and angular distributions are uncertain, so when they are employed in the determination of the spatial distribution of the neutron flux in a nuclear reactor, a methodology should be employed to account for these associated uncertainties. In this work, the Total Monte Carlo (TMC method is used to propagate the different neutron-reactions (as well as angular distributions covariances that are part of the TENDL-2014 nuclear data (ND library. The main objective is to propagate them through coupled neutronic and thermal-hydraulic models in order to assess the uncertainty of important safety parameters related to multi-physics, such as peak cladding temperature along the axial direction of an RBWR fuel assembly. The objective of this study is to quantify the impact that ND covariances of important nuclides such as U-235, U-238, Pu-239 and the thermal scattering of hydrogen in H2O have in the deterministic safety analysis of novel nuclear reactors designs.

  16. The All Boron Carbide Diode Neutron Detector: Experiment and Modeling Approach

    International Nuclear Information System (INIS)

    Sabirianov, Ildar F.; Brand, Jennifer I.; Fairchild, Robert W.

    2008-01-01

    Boron carbide diode detectors, fabricated from two different polytypes of semiconducting boron carbide, will detect neutrons in reasonable agreement with theoretical expectations. The performance of the all boron carbide neutron detector differs, as expected, from devices where a boron rich neutron capture layer is distinct from the diode charge collection region (i.e. a conversion layer solid state detector). Diodes were fabricated from natural abundance boron (20% 10 B and 80% 11 B.) directly on the metal substrates and metal contacts applied to the films as grown. The total boron depth was on the order of 2 microns. This is clearly not a conversion-layer configuration. The diodes were exposed to thermal neutrons generated from a paraffin moderated plutonium-beryllium source in moderated and un-moderated, as well as shielded and unshielded experimental configurations, where the expected energy peaks at at 2.31 MeV and 2.8 MeV were clearly observed, albeit with some incomplete charge collection typical of thinner diode structures. The results are compared with other boron based thin film detectors and literature models. (authors)

  17. Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae

    Science.gov (United States)

    Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.

    2018-01-01

    Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.

  18. Neutron and P, T symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Y. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-05-01

    New ideas for experiments to improve the T-violation limit by a factor of 10 to 100 is discussed for a intensive spallation neutron source. The methods to improve the limit of the right-handed current and the neutron lifetime are also discussed. (author)

  19. A Physical Model of Pulsars as Gravitational Shielding and Oscillating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2015-04-01

    Full Text Available Pulsars are thought to be fast rotating neutron stars, synchronously emitting periodic Dirac-delta-shape radio-frequency pulses and Lorentzian-shape oscillating X-rays. The acceleration of charged particles along the magnetic field lines of neutron stars above the magnetic poles that deviate from the rotating axis initiates coherent beams of ra- dio emissions, which are viewed as pulses of radiation whenever the magnetic poles sweep the viewers. However, the conventional lighthouse model of pulsars is only con- ceptual. The mechanism through which particles are accelerated to produce coherent beams is still not fully understood. The process for periodically oscillating X-rays to emit from hot spots at the inner edge of accretion disks remains a mystery. In addition, a lack of reflecting X-rays of the pulsar by the Crab Nebula in the OFF phase does not support the lighthouse model as expected. In this study, we develop a physical model of pulsars to quantitatively interpret the emission characteristics of pulsars, in accor- dance with the author’s well-developed five-dimensional fully covariant Kaluza-Klein gravitational shielding theory and the physics of thermal and accelerating charged par- ticle radiation. The results obtained from this study indicate that, with the significant gravitational shielding by scalar field, a neutron star nonlinearly oscillates and produces synchronous periodically Dirac-delta-shape radio-frequency pulses (emitted by the os- cillating or accelerating charged particles as well as periodically Lorentzian-shape os- cillating X-rays (as the thermal radiation of neutron stars whose temperature varies due to the oscillation. This physical model of pulsars broadens our understanding of neu- tron stars and develops an innovative mechanism to model the emissions of pulsars.

  20. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    International Nuclear Information System (INIS)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-01-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  1. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    Science.gov (United States)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-03-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  2. Cohesive modelling of the fracture of a neutron irradiated pressure vessel steel

    International Nuclear Information System (INIS)

    Gomez, F.J.; Valiente, A.; Elices, M.

    2003-01-01

    The cohesive fracture process zone model was used to account for the neutron irradiation embrittlement of a pressure vessel steel. The tensile testing and fracture of axisymmetrically notched round specimens were numerically modelled assuming a rectangular traction separation law and the irradiation effects were introduced by due modification of this law. The results corroborate those of the experiments performed in a previous work. The cohesive strength and the cohesive energy of the cohesive model were not considered as adjusting parameters, but they were determined from the data of conventional tensile tests and fracture toughness tests on the assumption that the failure of the specimens in these tests also follows the cohesive model

  3. Numerical Solution of Fractional Neutron Point Kinetics Model in Nuclear Reactor

    Directory of Open Access Journals (Sweden)

    Nowak Tomasz Karol

    2014-06-01

    Full Text Available This paper presents results concerning solutions of the fractional neutron point kinetics model for a nuclear reactor. Proposed model consists of a bilinear system of fractional and ordinary differential equations. Three methods to solve the model are presented and compared. The first one entails application of discrete Grünwald-Letnikov definition of the fractional derivative in the model. Second involves building an analog scheme in the FOMCON Toolbox in MATLAB environment. Third is the method proposed by Edwards. The impact of selected parameters on the model’s response was examined. The results for typical input were discussed and compared.

  4. Computing lifetimes for battery-powered devices

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    The battery lifetime of mobile devices depends on the usage pattern of the battery, next to the discharge rate and the battery capacity. Therefore, it is important to include the usage pattern in battery lifetime computations. We do this by combining a stochastic workload, modeled as a

  5. Applying neutron transmission physics and 3D statistical full-field model to understand 2D Bragg-edge imaging

    Science.gov (United States)

    Xie, Q.; Song, G.; Gorti, S.; Stoica, A. D.; Radhakrishnan, B.; Bilheux, J. C.; Kirka, M.; Dehoff, R.; Bilheux, H. Z.; An, K.

    2018-02-01

    Bragg-edge imaging, which is also known as neutron radiography, has recently emerged as a novel crystalline characterization technique. Modelling of this novel technique by incorporating various features of the underlying microstructure (including the crystallographic texture, the morphological texture, and the grain size) of the material remains a subject of considerable research and development. In this paper, Inconel 718 samples made by additive manufacturing were investigated by neutron diffraction and neutron radiography techniques. The specimen features strong morphological and crystallographic textures and a highly heterogeneous microstructure. A 3D statistical full-field model is introduced by taking details of the microstructure into account to understand the experimental neutron radiography results. The Bragg-edge imaging and the total cross section were calculated based on the neutron transmission physics. A good match was obtained between the model predictions and experimental results at different incident beam angles with respect to the sample build direction. The current theoretical approach has the ability to incorporate 3D spatially resolved microstructural heterogeneity information and shows promise in understanding the 2D neutron radiography of bulk samples. With further development to incorporate the heterogeneity in lattice strain in the model, it can be used as a powerful tool in the future to better understand the neutron radiography data.

  6. Deriving estimates of individual variability in genetic potentials of performance traits for 3 dairy breeds, using a model of lifetime nutrient partitioning

    DEFF Research Database (Denmark)

    Phuong, H N; Martin, O; de Boer, I J M

    2015-01-01

    This study explored the ability of an existing lifetime nutrient partitioning model for simulating individual variability in genetic potentials of dairy cows. Generally, the model assumes a universal trajectory of dynamic partitioning of priority between life functions and genetic scaling...... through sequential lactations were used to derive genetic scaling parameters for each animal by calibrating the model to achieve best fit, cow by cow. The model was able to fit individual curves of body weight, and milk fat, milk protein, and milk lactose concentrations with a high degree of accuracy....... Daily milk yield and dry matter intake were satisfactorily predicted in early and mid lactation, but underpredictions were found in late lactation. Breeds and parities did not significantly affect the prediction accuracy. The means of genetic scaling parameters between Danish Red and Danish Holstein...

  7. Automatic Generation and Validation of an ITER Neutronics Model from CAD Data

    International Nuclear Information System (INIS)

    Tsige-Tamirat, H.; Fischer, U.; Serikov, A.; Stickel, S.

    2006-01-01

    Quality assurance rules request the consistency of the geometry model used in neutronics Monte Carlo calculations and the underlying engineering CAD model. This can be ensured by automatically converting the CAD geometry data into the representation used by Monte Carlo codes such as MCNP. Suitable conversion algorithms have been previously developed at FZK and were implemented into an interface program. This paper describes the application of the interface program to a CAD model of a 40 degree ITER torus sector for the generation of a neutronics geometry model for MCNP. A CAD model provided by ITER consisting of all significant components was analyzed, pre-processed, and converted into MCNP geometry representation. The analysis and pre-processing steps include the checking of the adequacy of the CAD model for neutronics calculations in terms of geometric representation and complexity, and of corresponding corrections. This step is followed by the conversion of the CAD model into MCNP geometry including error detection and correction as well as the completion of the model by voids. The conversion process does not introduce any approximations so that the resulting MCNP geometry is fully equivalent to the original CAD geometry. However, there is a moderate increase of the complexity measured in terms of the number of cell and surfaces. The validity of the converted geometry model was shown by comparing the results of stochastic MCNP volume calculations and the volumes provided by the CAD kernel of the interface programme. Furthermore, successful MCNP test calculations have been performed for verifying the converted ITER model in application calculations. (author)

  8. Modelling of neutron and photon transport in iron and concrete radiation shieldings by the Monte Carlo method - Version 2

    CERN Document Server

    Žukauskaite, A; Plukiene, R; Plukis, A

    2007-01-01

    Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 – γ-ray beams (1-10 MeV), HIMAC and ISIS-800 – high energy neutrons (20-800 MeV) transport in iron and concrete. The results were then compared with experimental data.

  9. An assessment of the feasibility of using Monte Carlo calculations to model a combined neutron/gamma electronic personal dosemeter

    International Nuclear Information System (INIS)

    Tanner, J.E.; Witts, D.; Tanner, R.J.; Bartlett, D.T.; Burgess, P.H.; Edwards, A.A.; More, B.R.

    1995-01-01

    A Monte Carlo facility has been developed for modelling the response of semiconductor devices to mixed neutron-photon fields. This utilises the code MCNP for neutron and photon transport and a new code, STRUGGLE, which has been developed to model the secondary charged particle transport. It is thus possible to predict the pulse height distribution expected from prototype electronic personal detectors, given the detector efficiency factor. Initial calculations have been performed on a simple passivated implanted planar silicon detector. This device has also been irradiated in neutron, gamma and X ray fields to verify the accuracy of the predictions. Good agreement was found between experiment and calculation. (author)

  10. Model-based design evaluation of a compact, high-efficiency neutron scatter camera

    Science.gov (United States)

    Weinfurther, Kyle; Mattingly, John; Brubaker, Erik; Steele, John

    2018-03-01

    This paper presents the model-based design and evaluation of an instrument that estimates incident neutron direction using the kinematics of neutron scattering by hydrogen-1 nuclei in an organic scintillator. The instrument design uses a single, nearly contiguous volume of organic scintillator that is internally subdivided only as necessary to create optically isolated pillars, i.e., long, narrow parallelepipeds of organic scintillator. Scintillation light emitted in a given pillar is confined to that pillar by a combination of total internal reflection and a specular reflector applied to the four sides of the pillar transverse to its long axis. The scintillation light is collected at each end of the pillar using a photodetector, e.g., a microchannel plate photomultiplier (MCP-PM) or a silicon photomultiplier (SiPM). In this optically segmented design, the (x , y) position of scintillation light emission (where the x and y coordinates are transverse to the long axis of the pillars) is estimated as the pillar's (x , y) position in the scintillator "block", and the z-position (the position along the pillar's long axis) is estimated from the amplitude and relative timing of the signals produced by the photodetectors at each end of the pillar. The neutron's incident direction and energy is estimated from the (x , y , z) -positions of two sequential neutron-proton scattering interactions in the scintillator block using elastic scatter kinematics. For proton recoils greater than 1 MeV, we show that the (x , y , z) -position of neutron-proton scattering can be estimated with alternative designs of this proposed single-volume scatter camera made of pillars of plastic scintillator (SVSC-PiPS), studying the effect of pillar dimensions, scintillator material (EJ-204, EJ-232Q and stilbene), and photodetector (MCP-PM vs. SiPM) response vs. time. We demonstrate that the most precise estimates of incident neutron direction and energy can be obtained using a combination of

  11. Modeling and Simulation Optimization and Feasibility Studies for the Neutron Detection without Helium-3 Project

    Energy Technology Data Exchange (ETDEWEB)

    Ely, James H.; Siciliano, Edward R.; Swinhoe, Martyn T.; Lintereur, Azaree T.

    2013-01-01

    This report details the results of the modeling and simulation work accomplished for the ‘Neutron Detection without Helium-3’ project during the 2011 and 2012 fiscal years. The primary focus of the project is to investigate commercially available technologies that might be used in safeguards applications in the relatively near term. Other technologies that are being developed may be more applicable in the future, but are outside the scope of this study.

  12. Cobalt, fast neutrons and physical models: Nuclear data and measurements series

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.; Lawson, R.D.

    1987-07-01

    Energy-averaged neutron total cross sections of cobalt were measured from ≅0.5 to 12.0 MeV. Differential elastic- and inelastic-scattering cross sections were measured from ≅1.5 to 10.0 MeV over the scattering-angle range ≅18 0 to 160 0 , with sufficient detail to define the energy-averaged behavior. Inelastic neutron groups were observed corresponding to ''levels'' at: 1115 +- 29, 1212 +- 24, 1307 +- 24, 1503 +- 33, 1778 +- 40, 2112 +- 40, 2224 +- 35, 2423 +- 39, 2593 +- 41 and 2810 keV. The experimental results were interpreted in terms of the spherical optical-statistical and coupled-channels models. An unusually successful description of observables was achieved over a wide energy range ( 20.0 MeV) with a spherical model having energy-dependent strengths and geometries. The energy dependencies are large below ≅7.0 MeV (i.e., ≅19.0 MeV above the Fermi energy), but become smaller and similar to those reported for ''global'' potentials at higher energies. The imaginary strength is large and decreases with energy. These imaginary-potential characteristics are attributed to neutron shell closure and collective-vibrational processes. The weak-coupling model also offers an explanation of the unusual negative energy slope and relatively small radius of the imaginary potential. The spherical optical model derived from the neutron-scattering results was extrapolated to bound energies using the dispersion relationship and the method of moments. The resulting real-potential strength and radius peak at ≅-10.0 MeV, while concurrently the real diffuseness is at a minimum. The extrapolated potential is ≅8% larger than that implied by reported particle-state energies, and ≅13% smaller than indicated by hole-state energies. 68 refs., 15 figs., 1 tab

  13. Systematic Assessment of Neutron and Gamma Backgrounds Relevant to Operational Modeling and Detection Technology Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Archer, Daniel E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hornback, Donald Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Jeffrey O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nicholson, Andrew D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peplow, Douglas E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ayaz-Maierhafer, Birsen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This report summarizes the findings of a two year effort to systematically assess neutron and gamma backgrounds relevant to operational modeling and detection technology implementation. The first year effort focused on reviewing the origins of background sources and their impact on measured rates in operational scenarios of interest. The second year has focused on the assessment of detector and algorithm performance as they pertain to operational requirements against the various background sources and background levels.

  14. Effects of low-dose gamma and neutron radiation on genotoxicity and cytotoxicity of reticulocytes in a mouse model

    International Nuclear Information System (INIS)

    Phan, N.; McFarlane, N.M.; Lemon, J.; Boreham, D.R.

    2008-01-01

    Using a successful new automation of micronucleated reticulocyte (MN-RET) scoring, the effects of low-dose (< 1.0 Gy) gamma and neutron radiation on genotoxicity and cytotoxicity of reticulocytes (RET) in a mouse model were investigated. Gamma and neutron irradiation induced significant (p<0.001) increases in the levels of %MN-RET and decreases in the levels of %RET (p<0.001) as the dose level increased. Increasing dose levels showed that gamma radiation induced significantly (p<0.05) more %MN-RET and more %RET than neutron radiation. The results suggest that neutron irradiation may be more cytotoxic (less %RET) than gamma irradiation; however, gamma irradiation may be producing cells with more chromosomal aberrations (more %MN-RET) than neutron irradiation. (author)

  15. A systematics of optical model compound nucleus formation cross sections for neutrons, proton, deuteron, 3He and alpha particle incidents

    International Nuclear Information System (INIS)

    Murata, Toru

    2000-01-01

    Simple formulae to reproduce the optical model compound nucleus formation cross sections for neutron, proton, deuteron, triton, 3 He and alpha particles are presented for target nuclei of light to medium weight mass region. (author)

  16. Multigroup multi-layer models of neutron reflection and transmission for reactor transport calculations with anisotropic scattering

    International Nuclear Information System (INIS)

    Abreu, Marcos Pimenta de

    2006-01-01

    In this article, we extend the one-speed multi-layer models to neutron reflection and transmission developed in our earlier work (de Abreu, M.P., 2005. Multi-layer models to neutron reflection and transmission for whole-core transport calculations, Annals of Nuclear Energy 32, 215) to multigroup transport theory. We begin by considering a two-layer boundary region, and we develop for such a region discrete ordinates models to the diffuse reflection and transmission of neutrons for multigroup nuclear reactor core problems with anisotropic scattering. We perform numerical experiments to show that our models to neutron reflection and transmission can be used to replace efficiently and accurately two nonactive boundary layers in whole-core transport calculations. We conclude this article with an inductive extension of our two-layer results to a boundary region with an arbitrary number of layers

  17. Proton radioactivity lifetimes using Skyrme interactions

    International Nuclear Information System (INIS)

    Routray, T.R.; Tripathy, S.K.; Mishra, Abhishek; Basu, D.N.

    2011-01-01

    The phenomena of proton radioactivity is recent and has been possible with the advent of the radioactive ion beams facilities. The neutron deficient nuclei lying above the proton drip line has positive Q values for protons and are spontaneous proton emitters. This limits the possibilities of the creation of ever more exotic nuclei in the proton rich side of the β stability valley. Limited number of works have been done in calculating the half lives of proton emitting nuclei using different models. But calculation of lifetimes of the proton emitting nuclei using Skyrme interaction has not yet been reported. More than 110 Skyrme sets are available, constructed for different purposes, all having the common feature of giving finite nuclei ground state properties and saturation conditions in nuclear matter. Skyrme sets constructed in the late 90's, particularly the construction of SLy sets and others Skyrme sets developed thereafter, have additional care in constraining the parameters for applications to nuclear matter under extreme conditions. Stone et al. have analyzed the Skyrme sets on the basis of available constraints and have sorted out finally 27 Skyrmes sets which can be admitted for calculation of isospin rich dense nuclear matter. The objective of the work is to examine the predictions of the Skyrme sets on the half lives of the proton emitters

  18. Neutron physics

    International Nuclear Information System (INIS)

    Beckurts, K.H.; Wirtz, K.

    1974-01-01

    This textbook consists of four sections which deal with the following subjects: 1. Production of neutrons and their interactions with the nuclei; neutron sources; neutron detectors; cross-section measurements. 2. Theory of neutron interactions with macroscopic media; neutron slowing down; space distribution of moderated neutrons; neutron thermalization; neutron scattering. 3. Radioactive probe measurements of thermal neutron fluxes; activation by means of epithermal neutrons; threshold detectors of fast neutrons; neutron calibration. 4. Neutron energy; slowing down kernels; neutron age; diffusion length and absorption of neutrons

  19. Neutron star evolutions using tabulated equations of state with a new execution model

    Science.gov (United States)

    Anderson, Matthew; Kaiser, Hartmut; Neilsen, David; Sterling, Thomas

    2012-03-01

    The addition of nuclear and neutrino physics to general relativistic fluid codes allows for a more realistic description of hot nuclear matter in neutron star and black hole systems. This additional microphysics requires that each processor have access to large tables of data, such as equations of state, and in large simulations the memory required to store these tables locally can become excessive unless an alternative execution model is used. In this talk we present neutron star evolution results obtained using a message driven multi-threaded execution model known as ParalleX as an alternative to using a hybrid MPI-OpenMP approach. ParalleX provides the user a new way of computation based on message-driven flow control coordinated by lightweight synchronization elements which improves scalability and simplifies code development. We present the spectrum of radial pulsation frequencies for a neutron star with the Shen equation of state using the ParalleX execution model. We present performance results for an open source, distributed, nonblocking ParalleX-based tabulated equation of state component capable of handling tables that may even be too large to read into the memory of a single node.

  20. Proto-neutron stars with delta-resonances using the Zimanyi-Moszkowski model

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Luzinete Vilanova da Silva [Secretaria de Educacao, Cultura e Desportos do Estado de Roraima (SECD), RR (Brazil); Oliveira, Jose Carlos Teixeira de [Centro Federal de Educacao Tecnologica (CEFET-RJ), Rio de Janeiro, RJ (Brazil); Duarte, Sergio Barbosa [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: In the present work we obtained the equation of state to be used to study the structure of proto-neutron stars. To this end, we adopted the model of Zimanyi-Moszkowski in the mean field approximation. In this model the equation of state consists of the octet of baryons of spin 1/2 (n, p, {Lambda}{sup 0}, {Sigma}{sup -}, {Sigma}{sup 0}, {Sigma}{sup +}, {Xi}{sup -}, {Xi}{sup 0}) and of the baryonic resonances of spin 3/2, represented by the delta matter ({Delta}{sup -}, {Delta}{sup 0}, {Delta}{sup +}, {Delta}{sup +}+ and by {Omega}{sup -}, in the baryonic sector. In the leptonic sector we consider the electrons, the muons and the trapped neutrinos. Thus, we studied the effects of the corresponding neutrinos on the equation of state during the initial formation of a neutron star. We discuss the structure of the proto-neutron stars including the delta resonances in their composition, and compared the results at the cooling phase induced by escape of neutrinos. From the equation of state obtained with this model we solve numerically the equation TOV (Tolman-Oppenheimer-Volkoff) and so we obtained the values of the maximum mass, before and after cooling. (author)

  1. Customer Lifetime Value Measurement

    OpenAIRE

    Sharad Borle; Siddharth S. Singh; Dipak C. Jain

    2008-01-01

    The measurement of customer lifetime value is important because it is used as a metric in evaluating decisions in the context of customer relationship management. For a firm, it is important to form some expectations as to the lifetime value of each customer at the time a customer starts doing business with the firm, and at each purchase by the customer. In this paper, we use a hierarchical Bayes approach to estimate the lifetime value of each customer at each purchase occasion by jointly mod...

  2. Influence of fuel loading on neutron field in WWER-440 reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Stacho, M.; Slugen, V.; Farkas, G.; Sojak, S. [Department of Nuclear Physics and Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)

    2010-07-01

    One of the limiting factors in terms of nuclear power plant lifetime is reactor pressure vessel neutron load. Neutron embrittlement as the most important ageing effect on the reactor pressure vessel is mainly caused by fast neutron spectra. The work is focused on mapping of neutron fields in the reactor pressure vessel of WWER-440/V-213 reactor using MCNP5 transport code. The calculation of neutron fields was performed using detailed full-core MCNP model of WWER-440 reactor developed at our department. Analysis of fuel loading pattern and burn-up influence on neutron flux density distribution in the reactor pressure vessel was realized. The fuel composition corresponds to fuel cycles of Bohunice and Mochovce nuclear power plants. The goal of this work was to improve the assessment of WWER-440 reactor pressure vessel radiation degradation and following evaluation possibility of its lifetime extension and comparison of neutron flux and neutron spectra in the most loaded place of reactor pressure vessel and surveillance specimen area. (authors)

  3. Analysis of inelastic neutron scattering results on model compounds ...

    Indian Academy of Sciences (India)

    J Tomkinson heterobicyclic molecules could form a reasonable base of model compounds to un- derstand the eigenvectors of one interesting molecular system; the nitrogenous het- erocyclic bases of the nucleotides. Low energy molecular vibrational eigenvectors involve atomic displacements over the molecule as a whole ...

  4. Neutronic modeling for a Gas-cooled Fast Reactor assuming coated fuel particles

    International Nuclear Information System (INIS)

    Golfier, H.; Buiron, C.; Poinot, B.; Pothet, J. F.; Salavy, E.; Studer

    2004-01-01

    The modeling of gas cooled fast reactor (GCFR) with the SAPHYR system and in particular APOLLO2 code assuming coated fuel particles, was investigated. It aims to estimate the APOLLO2 code accuracy, solving the neutron transport equation in range of fast neutron reactors. A two level PIJ/SN APOLLO2 scheme is proposed in which the first level is devoted to the self-shielding and the leakage calculation on a cell configuration. The efficiency of a new treatment of adsorption and scattering rates in the self-shielding module of the multigroup transport code APOLLO2 has been evaluated. The results show that two-level scheme provides promising results with 172-group cross section libraries, which confirm the APOLLO2 scheme as a tool for reactor designs. (authors)

  5. Neutron diffraction measurements and modeling of residual strains in metal matrix composites

    Science.gov (United States)

    Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.

    1996-01-01

    Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.

  6. Mean fluorescence lifetime and its error

    Energy Technology Data Exchange (ETDEWEB)

    Fiserova, Eva [Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacky University in Olomouc, tr. 17. listopadu 12, CZE-77146 Olomouc (Czech Republic); Kubala, Martin, E-mail: mkubala@prfnw.upol.cz [Department of Biophysics, Faculty of Science, Palacky University in Olomouc, tr. 17. listopadu 12, CZE-77146 Olomouc (Czech Republic)

    2012-08-15

    Mean excited-state lifetime is one of the fundamental fluorescence characteristics and enters as an important parameter into numerous calculations characterizing molecular interactions, such as e.g. FRET or fluorescence quenching. Our experiments demonstrated that the intensity-weighted mean fluorescence lifetime is very robust characteristic, in contrast to the amplitude-weighted one, which value is dependent on the data quality and particularly on the used fitting model. For the first time, we also report the procedure for the error estimation for both the intensity- and amplitude-weighted mean fluorescence lifetimes. Furthermore, we present a method for estimation of the mean fluorescence lifetime directly from the fluorescence-decay curve recorded by TCSPC (Time-Correlated Single-Photon Counting) method. For its simplicity and low computational demands, it could be a useful tool in the high-throughput applications, such as FACS, FLIM-FRET or HPLC detectors. - Highlights: Black-Right-Pointing-Pointer Intensity-weighted mean fluorescence lifetime is very robust characteristic. Black-Right-Pointing-Pointer The amplitude-weighted mean lifetime depends on the selection of fitting model. Black-Right-Pointing-Pointer Rigorous procedure for estimation of confidence intervals for mean lifetime. Black-Right-Pointing-Pointer The mean lifetime can be estimated directly from the TCSPC histogram.

  7. Modeling the Effects of Meteorological Conditions on the Neutron Flux

    Science.gov (United States)

    2017-05-22

    from the readings online so for the purpose of the model estimation the four missing values were imputed. Then all the data in MATLAB was placed into a...Naval Academy’s machine shop to be manufactured. By 21SEP17, the brackets where finished and ready to be mounted the station. But due to having... shop made it to those dimensions. When the brackets where attempted to be placed on the pipe they would not fit because the pipe was really a 178

  8. Comparison of CdZnTe neutron detector models using MCNP6 and Geant4

    Science.gov (United States)

    Wilson, Emma; Anderson, Mike; Prendergasty, David; Cheneler, David

    2018-01-01

    The production of accurate detector models is of high importance in the development and use of detectors. Initially, MCNP and Geant were developed to specialise in neutral particle models and accelerator models, respectively; there is now a greater overlap of the capabilities of both, and it is therefore useful to produce comparative models to evaluate detector characteristics. In a collaboration between Lancaster University, UK, and Innovative Physics Ltd., UK, models have been developed in both MCNP6 and Geant4 of Cadmium Zinc Telluride (CdZnTe) detectors developed by Innovative Physics Ltd. Herein, a comparison is made of the relative strengths of MCNP6 and Geant4 for modelling neutron flux and secondary γ-ray emission. Given the increasing overlap of the modelling capabilities of MCNP6 and Geant4, it is worthwhile to comment on differences in results for simulations which have similarities in terms of geometries and source configurations.

  9. Estimating the long-term effects of in vitro fertilization in Greece: an analysis based on a lifetime-investment model

    Directory of Open Access Journals (Sweden)

    Fragoulakis V

    2013-06-01

    Full Text Available Vassilis Fragoulakis, Nikolaos ManiadakisNational School of Public Health, Department of Health Services Management, Athens, GreeceObjective: To quantify the economic effects of a child conceived by in vitro fertilization (IVF in terms of net tax revenue from the state's perspective in Greece.Methods: Based on previous international experience, a mathematical model was developed to assess the lifetime productivity of a single individual and his/her lifetime transactions with governmental agencies. The model distinguished among three periods in the economic life cycle of an individual: (1 early life, when the government primarily contributes resources through child tax credits, health care, and educational expenses; (2 employment, when individuals begin returning resources through taxes; and (3 retirement, when the government expends additional resources on pensions and health care. The cost of a live birth with IVF was based on the modification of a previously published model developed by the authors. All outcomes were discounted at a 3% discount rate. The data inputs – namely, the economic or demographic variables – were derived from the National Statistical Secretariat of Greece and other relevant sources. To deal with uncertainty, bias-corrected uncertainty intervals (UIs were calculated based on 5000 Monte Carlo simulations. In addition, to examine the robustness of our results, other one-way sensitivity analyses were also employed.Results: The cost of IVF per birth was estimated at €17,015 (95% UI: €13,932–€20,200. The average projected income generated by an individual throughout his/her productive life was €258,070 (95% UI: €185,376–€339,831. In addition, his/her life tax contribution was estimated at €133,947 (95% UI: €100,126–€177,375, while the discounted governmental expenses for elderly and underage individuals were €67,624 (95% UI: €55,211–€83,930. Hence, the net present value of IVF was €60

  10. Effects of neutron streaming and geometric models on molten fuel recriticality accidents

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1975-10-01

    A postulated fast reactor accident which has been extant for many years is a recriticality following partial or complete core melting. Independently of the cause or probability of such a situation, certain cases can be defined and some facets of the dynamic history of these cases can be described with more than enough accuracy for safety considerations. Calculations were made with the PAD code for systems with 10 vol percent voids and varying reactivity insertion rates. Additionally, two distinct geometric and equation of state models were investigated in conjunction with a model which accounted for possible neutron streaming reactivity effects. Significant results include fission and kinetic energy, temperatures and pressures

  11. Aquelarre. A computer code for fast neutron cross sections from the statistical model

    International Nuclear Information System (INIS)

    Guasp, J.

    1974-01-01

    A Fortran V computer code for Univac 1108/6 using the partial statistical (or compound nucleus) model is described. The code calculates fast neutron cross sections for the (n, n'), (n, p), (n, d) and (n, α reactions and the angular distributions and Legendre moments.for the (n, n) and (n, n') processes in heavy and intermediate spherical nuclei. A local Optical Model with spin-orbit interaction for each level is employed, allowing for the width fluctuation and Moldauer corrections, as well as the inclusion of discrete and continuous levels. (Author) 67 refs

  12. Coupled neutronics and thermal hydraulics modelling in reactor dynamics codes TRAB-3D and HEXTRAN

    International Nuclear Information System (INIS)

    Kyrki-Rajamaeki, R.; Raety, H.

    1999-01-01

    The reactor dynamics codes for transient and accident analyses inherently include the coupling of neutronics and thermal hydraulics modelling. In Finland a number of codes with 1D and 3D neutronic models have been developed, which include models also for the cooling circuits. They have been used mainly for the needs of Finnish power plants, but some of the codes have also been utilized elsewhere. The continuous validation, simultaneous development, and experiences obtained in commercial applications have considerably improved the performance and range of application of the codes. The fast operation of the codes has enabled realistic analysis of 3D core combined to a full model of the cooling circuit even in such long reactivity scenarios as ATWS. The reactor dynamics methods are developed further and new more detailed models are created for tasks related to increased safety requirements. For thermal hydraulics calculations, an accurate general flow model based on a new solution method has been developed. Although mainly intended for analysis purposes, the reactor dynamics codes also provide reference solutions for simulator applications. As computer capability increases, these more sophisticated methods can be taken into use also in simulator environments. (author)

  13. Modeling of neutron and photon transport in iron and concrete radiation shields by using Monte Carlo method

    CERN Document Server

    Žukauskaitėa, A; Plukienė, R; Ridikas, D

    2007-01-01

    Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 (AVF cyclotron of Research Center of Nuclear Physics, Osaka University, Japan) – γ-ray beams (1-10 MeV), HIMAC (heavy-ion synchrotron of the National Institute of Radiological Sciences in Chiba, Japan) and ISIS-800 (ISIS intensive spallation neutron source facility of the Rutherford Appleton laboratory, UK) – high energy neutron (20-800 MeV) transport in iron and concrete. The calculation results were then compared with experimental data.compared with experimental data.

  14. Refined model of the {Fe9} magnetic molecule from low-temperature inelastic neutron scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, Larry [Francis Marion University; Demmel, Franz [Rutherford Appleton Laboratory; Luban, Marshall [Ames Laboratory; Timco, Grigore A [The University of Manchester; Tuna, Floriana [The University of Manchester; Winpenny, Richard E [The University of Manchester

    2014-06-01

    We present a refined model of the {Fe9} tridiminished icosahedron magnetic molecule system. This molecule was originally modeled as being composed of two ({Fe3} and {Fe6}) clusters, with the Fe3+ ions within each cluster being coupled via exchange interactions, but with no coupling between the clusters. The present inelastic neutron scattering (INS) measurements were used to probe the low-lying energy spectrum of {Fe9}, and these results demonstrate that the previously published model of two uncoupled clusters is incomplete. To achieve agreement between the experiment and theory, we have augmented the model with relatively small exchange coupling between the clusters. A combination of Lanczos matrix diagonalization and quantum Monte Carlo simulations have been used to achieve good agreement between the experimental data and the improved model of the full {Fe9} system despite the complexity of this model (with Hilbert space dimension >107).

  15. Neutron scattering from elemental indium, the optical model, and the bound-state potential

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, S. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Guenther, P.T.; Lawson, R.D.; Smith, A.B. (Argonne National Lab., IL (USA))

    1990-06-01

    Neutron differential elastic-scattering cross sections of elemental indium are measured from 4.5 to 10 MeV at incident-energy intervals of {approx}500 keV. Seventy or more differential values are obtained at each incident energy, distributed between {approx}18{degree} and 160{degree}. These experimental results are combined with lower-energy values previously obtained at this laboratory, and with 11 and 14 MeV results in the literature, to form a comprehensive elastic-scattering database extending from {approx}1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50--82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of article states, but does not do well for hole states. The latter shortcoming is attributed to the holes states having occupational probabilities sufficiently different from unity, so that the exclusion principle become a factor, and to the rearrangement of the neutron core. 68 refs.

  16. Neutron scattering from elemental indium, the optical model, and the bound-state potential

    International Nuclear Information System (INIS)

    Chiba, S.; Guenther, P.T.; Lawson, R.D.; Smith, A.B.

    1990-01-01

    Neutron differential elastic-scattering cross sections of elemental indium are measured from 4.5 to 10 MeV at incident-energy intervals of ∼500 keV. Seventy or more differential values are obtained at each incident energy, distributed between ∼18 degree and 160 degree. These experimental results are combined with lower-energy values previously obtained at this laboratory, and with 11 and 14 MeV results in the literature, to form a comprehensive elastic-scattering database extending from ∼1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50--82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of article states, but does not do well for hole states. The latter shortcoming is attributed to the holes states having occupational probabilities sufficiently different from unity, so that the exclusion principle become a factor, and to the rearrangement of the neutron core. 68 refs

  17. Coupled Model of channels in parallel and neutron kinetics in two dimensions

    International Nuclear Information System (INIS)

    Cecenas F, M.; Campos G, R.M.; Valle G, E. del

    2004-01-01

    In this work an arrangement of thermohydraulic channels is presented that represent those four quadrants of a nucleus of reactor type BWR. The channels are coupled to a model of neutronic in two dimensions that allow to generate the radial profile of power of the reactor. Nevertheless that the neutronic pattern is of two dimensions, it is supplemented with axial additional information when considering the axial profiles of power for each thermo hydraulic channel. The stationary state is obtained the one it imposes as frontier condition the same pressure drop for all the channels. This condition is satisfied to iterating on the flow of coolant in each channel to equal the pressure drop in all the channels. This stationary state is perturbed later on when modifying the values for the effective sections corresponding to an it assembles. The calculation in parallel of the neutronic and the thermo hydraulic is carried out with Vpm (Virtual parallel machine) by means of an outline teacher-slave in a local net of computers. (Author)

  18. A time-dependent neutron transport model and its coupling to thermal-hydraulics

    International Nuclear Information System (INIS)

    Pautz, A.

    2001-01-01

    A new neutron transport code for time-dependent analyses of nuclear systems has been developed. The code system is based on the well-known Discrete Ordinates code DORT, which solves the steady-state neutron/photon transport equation in two dimensions for an arbitrary number of energy groups and the most common regular geometries. For the implementation of time-dependence a fully implicit first-order scheme was employed to minimize errors due to temporal discretization. This requires various modifications to the transport equation as well as the extensive use of elaborated acceleration mechanisms. The convergence criteria for fluxes, fission rates etc. had to be strongly tightened to ensure the reliability of results. To perform coupled analyses, an interface to the GRS system code ATHLET has been developed. The nodal power densities from the neutron transport code are passed to ATHLET to calculate thermal-hydraulic system parameters, e.g. fuel and coolant temperatures. These are in turn used to generate appropriate nuclear cross sections by interpolation of pre-calculated data sets for each time step. Finally, to demonstrate the transient capabilities of the coupled code system, the research reactor FRM-II has been analysed. Several design basis accidents were modelled, like the loss of off site power, loss of secondary heat sink and unintended control rod withdrawal. (author)

  19. Standard model treatment of the radiative corrections to the neutron β-decay

    International Nuclear Information System (INIS)

    Bunatyan, G.G.

    2003-01-01

    Starting with the basic Lagrangian of the Standard Model, the radiative corrections to the neutron β-decay are acquired. The electroweak interactions are consistently taken into consideration amenably to the Weinberg-Salam theory. The effect of the strong quark-quark interactions on the neutron β-decay is parametrized by introducing the nucleon electromagnetic form factors and the weak nucleon transition current specified by the form factors g V , g A , ... The radiative corrections to the total decay probability W and to the asymmetry coefficient of the momentum distribution A are obtained to constitute δW ∼ 8.7 %, δA ∼ -2 %. The contribution to the radiative corrections due to allowance for the nucleon form factors and the nucleon excited states amounts up to a few per cent of the whole value of the radiative corrections. The ambiguity in description of the nucleon compositeness is surely what causes the uncertainties ∼ 0.1 % in evaluation of the neutron β-decay characteristics. For now, this puts bounds to the precision attainable in obtaining the element V ud of the CKM matrix and the g V , g A , ... values from experimental data processing

  20. Structure of Aqueous Trehalose Solution by Neutron Diffraction and Structural Modeling.

    Science.gov (United States)

    Olsson, Christoffer; Jansson, Helén; Youngs, Tristan; Swenson, Jan

    2016-12-15

    The molecular structure of an aqueous solution of the disaccharide trehalose (C 12 H 22 O 11 ) has been studied by neutron diffraction and empirical potential structure refinement modeling. Six different isotope compositions with 33 wt % trehalose (corresponding to 38 water molecules per trehalose molecule) were measured to ensure that water-water, trehalose-water, and trehalose-trehalose correlations were accurately determined. In fact, this is the first neutron diffraction study of an aqueous trehalose solution in which also the nonexchangeable hydrogen atoms in trehalose are deuterated. With this approach, it was possible to determine that (1) there is a substantial hydrogen bonding between trehalose and water (∼11 hydrogen bonds per trehalose molecule), which is in contrast to previous neutron diffraction studies, and (2) there is no tendency of clustering of trehalose, in contrast to what is generally observed by molecular dynamics simulations and experimentally found for other disaccharides. Thus, the results give the structural picture that trehalose prefers to interact with water and participate in a hydrogen-bonded network. This strong network character of the solution might be one of the key reasons for its extraordinary stabilization effect on biological materials.

  1. Numerical modeling of radioactive neutron capture influence of Hf isotopic composition dynamics rate in the RBMK-1500 reactor

    CERN Document Server

    Jurkevicius, A; Auzelyte, V; Remeikis, V

    2000-01-01

    The nuclide composition of the nuclear fuel and isotopic composition of the hafnium in the radial neutron flux detectors of the RBMK-1500 reactor were numerically modelled. The sequence SAS2 from package SCALE 4.3 was used for calculations. The nuclear fuel nuclide concentrations, the concentration of Hf isotopes, the neutron absorption rate on Hf isotopes and summary absorption rate dependences on the fuel assembly burn up are presented. (author)

  2. SU-E-T-249: Neutron Model Upgrade for Radiotherapy Patients Monitoring Using a New Online Detector

    Energy Technology Data Exchange (ETDEWEB)

    Irazola, L; Sanchez Doblado, F. [Departamento de Fisiologia Medica y Biofisica, Universidad de Sevilla (Spain); Servicio de Radiofisica, Hospital Universitario Virgen Macarena, Sevilla (Spain); Lorenzoli, M; Pola, A. [Politecnico di Milano, Departimento di Ingegneria Nuclear, Milano (Italy); Terron, J.A. [Servicio de Radiofisica, Hospital Universitario Virgen Macarena, Sevilla (Spain); Bedogni, R. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare (INFN) (Italy); Sanchez Nieto, B. [Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago (Chile); Romero-Exposito, M. [Departamento de Fisica, Universitat Autonoma de Barcelona (Spain)

    2014-06-01

    Purpose: The purpose of this work is to improve the existing methodology to estimate neutron equivalent dose in organs during radiotherapy treatments, based on a Static Random Access Memory neutron detector (SRAMnd) [1]. This is possible thanks to the introduction of a new digital detector with improved characteristics, which is able to measure online the neutron fluence rate in the presence of an intense photon background [2]. Its reduced size, allows the direct estimation of doses in specific points inside an anthropomorphic phantom (NORMA) without using passive detectors as TLD or CR-39. This versatility will allow not only to improve the existing models (generic abdomen and H and N [1]) but to generate more specific ones for any technique. Methods: The new Thermal Neutron Rate Detector (TNRD), based on a diode device sensitized to thermal neutrons, have been inserted in 16 points of the phantom. These points are distributed to infer doses to specific organs. Simultaneous measurements of these devices and a reference one, located in front of the gantry, have been performed for the mentioned generic treatments, in order to improve the existing model. Results: These new devices have shown more precise since they agree better with Monte Carlo simulations. The comparison of the thermal neutron fluence, measured with TNRD, and the existing models, converted from events to fluence, shows an average improvement of (3.90±3.37) % for H and N and (12.61±9.43) % for abdomen, normalized to the maximum value. Conclusion: This work indicates the potential of these new devices for more precise neutron equivalent dose estimation in organs, as a consequence of radiotherapy treatments. The simplicity of the process makes possible to establish more specific models that will provide a better dose estimation. References[1] Phys Med Biol 2012; 57:6167–6191.[2] A new active thermal neutron detector. Radiat. Prot. Dosim. (in press)

  3. Neutron spectra and cross sections for ice and clathrate generated from the synthetic spectrum and synthetic model for molecular solids

    International Nuclear Information System (INIS)

    Petriw, S; Cantargi, F; Granada, R

    2006-01-01

    We present here a Synthetic Model for Molecular Solids, aimed at the description of the interaction of thermal neutrons with this kind of systems.Simple representations of the molecular dynamical modes are used, in order to produce a fair description of neutron scattering kernels and cross sections with a minimum set of input data. Using those spectra, we have generated thermal libraries for M C N P [es

  4. Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    Energy Technology Data Exchange (ETDEWEB)

    Baudron, Anne-Marie, E-mail: anne-marie.baudron@cea.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex (France); Lautard, Jean-Jacques, E-mail: jean-jacques.lautard@cea.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex (France); Maday, Yvon, E-mail: maday@ann.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions and Institut Universitaire de France, F-75005, Paris (France); Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); Brown Univ, Division of Applied Maths, Providence, RI (United States); Riahi, Mohamed Kamel, E-mail: riahi@cmap.polytechnique.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CMAP, Inria-Saclay and X-Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Salomon, Julien, E-mail: salomon@ceremade.dauphine.fr [CEREMADE, Univ Paris-Dauphine, Pl. du Mal. de Lattre de Tassigny, F-75016, Paris (France)

    2014-12-15

    In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity of the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.

  5. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress

    International Nuclear Information System (INIS)

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters

  6. A stochastic model for neutron simulation considering the spectrum and nuclear properties with continuous dependence of energy

    International Nuclear Information System (INIS)

    Camargo, Dayana Queiroz de

    2011-01-01

    This thesis has developed a stochastic model to simulate the neutrons transport in a heterogeneous environment, considering continuous neutron spectra and the nuclear properties with its continuous dependence on energy. This model was implemented using Monte Carlo method for the propagation of neutrons in different environment. Due to restrictions with respect to the number of neutrons that can be simulated in reasonable computational processing time introduced the variable control volume along the (pseudo-) periodic boundary conditions in order to overcome this problem. The choice of class physical Monte Carlo is due to the fact that it can decompose into simpler constituents the problem of solve a transport equation. The components may be treated separately, these are the propagation and interaction while respecting the laws of energy conservation and momentum, and the relationships that determine the probability of their interaction. We are aware of the fact that the problem approached in this thesis is far from being comparable to building a nuclear reactor, but this discussion the main target was to develop the Monte Carlo model, implement the code in a computer language that allows extensions of modular way. This study allowed a detailed analysis of the influence of energy on the neutron population and its impact on the life cycle of neutrons. From the results, even for a simple geometrical arrangement, we can conclude the need to consider the energy dependence, i.e. an spectral effective multiplication factor should be introduced each energy group separately. (author)

  7. Evaluation of neutron streaming in fast breeder reactor fuel assembly by double heterogeneous modelling

    International Nuclear Information System (INIS)

    Unesaki, Hironobu; Takeda, Toshikazu

    1988-01-01

    Neutron streaming in a fast breeder reactor fuel assembly caused by the double heterogeneity structure is estimated by double heterogeneous modelling. The conventional pin cell model, a two-region subassembly model and the exact pin cluster model are used to take into account the streaming effect caused by the pin cell structure and the surrounding wrapper tube structure. The heterogeneity of wrapper tube and its surrounding sodium is explicitly considered. The streaming effect is evaluated based on Benoist's diffusion coefficient. The total streaming effect caused by the double heterogeneity structure of a fuel subassembly is found to be -0.2 % dk/kk' for k eff , which is almost twice that obtained from the conventional pin cell model of -0.1 % dk/kk'. (author)

  8. Lifetime of a black hole

    International Nuclear Information System (INIS)

    Carlitz, R.D.; Willey, R.S.

    1987-01-01

    We study the constraints placed by quantum mechanics upon the lifetime of a black hole. In the context of a moving-mirror analog model for the Hawking radiation process, we conclude that the period of Hawking radiation must be followed by a much longer period during which the remnant mass (of order m/sub P/) may be radiated away. We are able to place a lower bound on the time required for this radiation process, which translates into a lower bound for the lifetime of the black hole. Particles which are emitted during the decay of the remnant, like the particles which comprise the Hawking flux, may be uncorrelated with each other. But each particle emitted from the decaying remnant is correlated with one particle emitted as Hawking radiation. The state which results after the remnant has evaporated is one which locally appears to be thermal, but which on a much larger scale is marked by extensive correlations

  9. Luminosity lifetime in the Tevatron

    International Nuclear Information System (INIS)

    Jackson, G.; Finley, D.; Johnson, R.P.; Kerns, Q.; McCarthy, J.; Siemann, R.; Zhang, P.

    1988-01-01

    Since the inauguration of colliding proton-antiproton operations in 1987, the Tevatron has exhibited luminosity lifetimes shorter than expected. During a typical colliding beam storage period, called a store, luminosity is calculated periodically by measuring the charge and emittances of each bunch. The growth of the transverse bunch emittances is the dominant cause of luminosity deterioration. Throughout, this period, the position spectrum of the bunches exhibited betatron signals larger than expected from Schottky noise. A model assuming externally driven betatron oscillations explains both the betatron signals and the emittance growth. A program is underway to improve the Tevatron luminosity lifetime. The abort kickers have been identified as sources of emittance growth, and some quadrupole power supplies are further candidates. Because the horizontal dispersion through the RF cavities is nonzero, RF phase noise has been investigated. Noise in the main dipole regulation circuit has also been studied. 13 refs., 4 figs

  10. Neutronic analysis for bolometers in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, A., E-mail: alejandro.suarez@iter.org [CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Reichle, R.; Loughlin, M.; Polunovskiy, E.; Walsh, M. [ITER Organization, Route de Vinon sur Verdon, 13115, St. Paul lez Durance (France)

    2013-10-15

    Highlights: ► Radiation damage calculations for the bolometers in ITER. ► Redesign of the bolometric diagnostic in EPP01. ► New bolometer radiation damage values in EPP01 in the safe zone. -- Abstract: Neutronic considerations in ITER have such importance that they drive the design of many diagnostics and components of the machine, and bolometers are not an exception. Bolometer cameras will be installed on the vacuum vessel, viewing the plasma through the gaps between blanket modules, divertor, equatorial and upper port plugs. The ITER reference bolometer sensors are of a resistive type. For this study it is assumed that they are composed of a thin silicon nitride carrier film and platinum resistors disposed in a Wheatstone bridge configuration. Their assumed radiation hardness is 0.1 dpa. Neutronic calculations were performed with the Monte Carlo program MCNP5, the FENDL 2.1 nuclear data library and the latest B-lite ITER neutronic model with the appropriate modifications using the CAD to MCNP converter MCAM. A complete characterization of the neutron fluxes in all the bolometer locations and the calculation of neutron damage were performed. Values above the failure threshold damage were obtained for some of the bolometers, leading to a complete redesign of some parts of the bolometric system in order to extend its lifetime.

  11. An evaluation of the ENDF/GASKET model for thermal neutron scattering in heavy water

    International Nuclear Information System (INIS)

    Abbate, M.J.; Antunez, H.M.

    1977-06-01

    The ENDF/GASKET model for computing thermal neutron scattering was selected for studies undertaken with the purpose of getting thoroughly acquainted with the behavior of the heavy water as a moderator. As a first step in its evaluation, the scattering law S(α,β) was computed with ENDF/GASKET. A comparison of the values so obtained with others previously measured or computed showed that the model is not completely satisfactory in this respect. This is attributed to coherent scattering not included in the model and to the need of improving its frequency spectrum. Any way, the experimental values show serious descrepancies and it is difficult to reach definitive conclusions. The Legendre moments of the double differential cross section and its microscopic values were also computed. As it was found by other authors, the incoherent approximation of ENDF/GASKET results in a drastic departure from the measured total cross section below 0,006 eV. In addition, the discrepancies between measured and calculated average μ, might also imply that the coherence effects are appreciable at higher energies. Also decay constance and diffusion parameters were computed for D 2 O (100%), and these agree well with values of other sources. The measurement and computation of neutron spectra in heavy water is presently intented for the sake of completing evaluation. So far two alternatives are foreseen for further work: the improvement of ENDF/GASKET, or the evaluation of the more recent Jarvis model. (author) [es

  12. Statistical model analysis of fast-neutron-induced fission of U isotopes

    International Nuclear Information System (INIS)

    Lestone, J.P.; Gavron, A.

    1994-01-01

    We have obtained the first experimental evidence of the washing out of the collective level density enhancement associated with the amma deformation of the triaxial first barrier in the U isotope cross sections at neutron energies up to ∼20 MeV, with a statistical model which uses level densities obtained from Nilsson model singles particle levels, we find that it is necessary to (1) wash out the triaxial level density enhancement at an excitation energy of ∼7 MeV above the triaxial barriers with a width of ∼1 MeV, and (2) incorporate the effects of preequilibrium emission. These results imply a γ deformation of the first barriers in the range 10 degree--20 degree. Above an incoming neutron energy of ∼20 MeV where insufficient data exist to constrain optical model potentials, our statistical model U(n,f) cross sections increasingly overestimate the experimental data. A satisfactory reproduction of all the available U(n,f) cross sections above ∼20 MeV is obtained by scaling our calculated compound nucleus formation cross sections. This scaling factor falls from 1.0 at ∼20 MeV to 0.82 at 100 MeV

  13. Lifetime of organic photovoltaics

    DEFF Research Database (Denmark)

    Corazza, Michael; Krebs, Frederik C; Gevorgyan, Suren A.

    2015-01-01

    tests. Comparison of the indoor and outdoor lifetimes was performed by means of the o-diagram, which constitutes the initial steps towards establishing a method for predicting the lifetime of an organic photovoltaic device under real operational conditions based on a selection of accelerated indoor...... tests. Acceleration factors were determined using the ISOS-protocols, which enabled reproducible data acquisition between different laboratories and operators within the OPV community. A semi-automatic filtering method was employed for processing data acquired in outdoor tests. It was found...... results reveal that while the accelerated ageing studies reveal days and weeks of lifetime for the studied samples, in outdoor real operational conditions the samples demonstrate stability up to months and seasons....

  14. Neutron detection by scintillation of noble-gas excimers

    Science.gov (United States)

    McComb, Jacob Collin

    Neutron detection is a technique essential to homeland security, nuclear reactor instrumentation, neutron diffraction science, oil-well logging, particle physics and radiation safety. The current shortage of helium-3, the neutron absorber used in most gas-filled proportional counters, has created a strong incentive to develop alternate methods of neutron detection. Excimer-based neutron detection (END) provides an alternative with many attractive properties. Like proportional counters, END relies on the conversion of a neutron into energetic charged particles, through an exothermic capture reaction with a neutron absorbing nucleus (10B, 6Li, 3He). As charged particles from these reactions lose energy in a surrounding gas, they cause electron excitation and ionization. Whereas most gas-filled detectors collect ionized charge to form a signal, END depends on the formation of diatomic noble-gas excimers (Ar*2, Kr*2,Xe* 2) . Upon decaying, excimers emit far-ultraviolet (FUV) photons, which may be collected by a photomultiplier tube or other photon detector. This phenomenon provides a means of neutron detection with a number of advantages over traditional methods. This thesis investigates excimer scintillation yield from the heavy noble gases following the boron-neutron capture reaction in 10B thin-film targets. Additionally, the thesis examines noble-gas excimer lifetimes with relationship to gas type and gas pressure. Experimental data were collected both at the National Institute of Standards and Technology (NIST) Center for Neutron Research, and on a newly developed neutron beamline at the Maryland University Training Reactor. The components of the experiment were calibrated at NIST and the University of Maryland, using FUV synchrotron radiation, neutron imaging, and foil activation techniques, among others. Computer modeling was employed to simulate charged-particle transport and excimer photon emission within the experimental apparatus. The observed excimer

  15. Computational toxicology: Physiologically based pharmacokinetic models (PBPK) for lifetime exposure and bioaccumulation of polybrominated diphenyl ethers (PBDEs) in marine mammals

    International Nuclear Information System (INIS)

    Weijs, Liesbeth; Covaci, Adrian; Yang, Raymond S.H.; Das, Krishna; Blust, Ronny

    2012-01-01

    Due to migration of harbour porpoises towards more polluted areas like the North Sea and their sensitivity towards pollution, there is a need for proper conservation measures for this species. As a consequence, knowledge about the pollutant’s kinetics is required. The present study is the first to investigate the kinetics of PBDEs in marine mammals using PBPK modeling as a non-destructive tool for describing the chemical’s kinetics in a protected animal species. The models were developed and parameterized using data from the literature and Black Sea harbour porpoises through computer optimization. The predictability of these models in time was assessed by reverse dosimetry modeling using data from North Sea porpoises (1990–2008). From these predictions, PBDE 99 levels were found to decrease the fastest, followed by PBDE 153, 47 and 100. Results show that the PBPK models can be applied for harbour porpoises from different regions and also simulate time trends. - Highlights: ► PBPK modeling is a non-invasive and non-destructive tool for risk assessment. ► PBPK modeling was used to study the kinetics of several PBDEs in harbour porpoises. ► Harbour porpoises are sensitive to pollution and therefore ideal model organisms. ► Black Sea data were used for model parameterization. ► North Sea data were used for assessing temporal trends (1990–2008). - PBPK models as a non-invasive tool for describing the kinetics of relevant chemicals in organisms can be used for harbour porpoises from different regions and time periods.

  16. Whole core neutronics modeling of a TRIGA reactor using integral transport theory

    International Nuclear Information System (INIS)

    Schwinkendorf, K.N.; Toffer, H.

    1990-01-01

    An innovative analysis approach for performing whole core reactor physics calculations for TRIGA reactors has been employed recently at the Westinghouse Hanford Company. A deterministic transport theory model with sufficient geometric complexity to evaluate asymmetric loading patterns was used. Calculations of this complexity have been performed in the past using Monte Carlo simulation, such as the MCNP code. However, the Monte Carlo calculations are more difficult to prepare and require more computer time. On the Hanford Site CRAY XMP-18 computer, the new methods required less than one-third of the central processing unit time per calculation as compared to an MCNP calculation using 100,000 neutron histories

  17. New Model to describe the interaction of slow neutrons with solid deuterium

    International Nuclear Information System (INIS)

    Granada, J.R

    2009-01-01

    A new scattering kernel to describe the interaction of slow neutrons with solid Deuterium was developed. The main characteristics of that system are contained in the formalism, including the lattice s density of states, the Young-Koppel quantum treatment of the rotations, and the internal molecular vibrations. The elastic processes involving coherent and incoherent contributions are fully described, as well as the spin-correlation effects. The results from the new model are compared with the best available experimental data, showing very good agreement. [es

  18. Relative mass distributions of neutron-rich thermally fissile nuclei within a statistical model

    Science.gov (United States)

    Kumar, Bharat; Kannan, M. T. Senthil; Balasubramaniam, M.; Agrawal, B. K.; Patra, S. K.

    2017-09-01

    We study the binary mass distribution for the recently predicted thermally fissile neutron-rich uranium and thorium nuclei using a statistical model. The level density parameters needed for the study are evaluated from the excitation energies of the temperature-dependent relativistic mean field formalism. The excitation energy and the level density parameter for a given temperature are employed in the convolution integral method to obtain the probability of the particular fragmentation. As representative cases, we present the results for the binary yields of 250U and 254Th. The relative yields are presented for three different temperatures: T =1 , 2, and 3 MeV.

  19. Model-free polarized neutron diffraction study of an acentric crystal: Metamagnetic UCoAl

    International Nuclear Information System (INIS)

    Papoular, R.J.; Delapalme, A.

    1994-01-01

    For the first time, a model-free procedure is developed to analyze polarized neutron diffraction data pertaining to acentric crystals. It consists of a two-step process, featuring first an effective flipping ratio and second a linear inverse problem. The latter is solved either by a new generalized inverse Fourier transform or by using maximum entropy. Using metamagnetic UCoAl as a test case, we find the following results: (i) the U and Co(2) moments increase with an applied magnetic field whereas the Co(1) moment remains almost constant, (ii) the U and Co(2) magnetic densities are weakly anisotropic

  20. Small-angle neutron scattering from multilamellar lipid bilayers: Theory, model, and experiment

    DEFF Research Database (Denmark)

    Lemmich, Jesper; Mortensen, Kell; Ipsen, John Hjorth

    1996-01-01

    Small-angle neutron scattering data obtained from fully hydrated, multilamellar phospholipid bilayers with deuterated acyl chains of different length are presented and analyzed within a paracrystalline theory and a geometric model that permit the bilayer structure to be determined under conditions...... where the lamellar layers are coupled and fluctuating. This theory provides structural information in the region of the solid-fluid bilayer phase transition without invoking the usual decoupling of the scattering intensity function into form and structure factors. Results are presented as a function...

  1. ABAREX -- A neutron spherical optical-statistical-model code -- A user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B. [ed.; Lawson, R.D.

    1998-06-01

    The contemporary version of the neutron spherical optical-statistical-model code ABAREX is summarized with the objective of providing detailed operational guidance for the user. The physical concepts involved are very briefly outlined. The code is described in some detail and a number of explicit examples are given. With this document one should very quickly become fluent with the use of ABAREX. While the code has operated on a number of computing systems, this version is specifically tailored for the VAX/VMS work station and/or the IBM-compatible personal computer.

  2. Modeling of helium bubble nucleation and growth in neutron irradiated boron doped RAFM steels

    International Nuclear Information System (INIS)

    Dethloff, Christian; Gaganidze, Ermile; Svetukhin, Vyacheslav V.; Aktaa, Jarir

    2012-01-01

    Reduced activation ferritic/martensitic (RAFM) steels are promising candidates for structural materials in future fusion technology. In addition to other irradiation defects, the transmuted helium is believed to strongly influence material hardening and embrittlement behavior. A phenomenological model based on kinetic rate equations is developed to describe homogeneous nucleation and growth of helium bubbles in neutron irradiated RAFM steels. The model is adapted to different 10 B doped EUROFER97 based heats, which already had been studied in past irradiation experiments. Simulations yield bubble size distributions, whereby effects of helium generation rate, surface energy, helium sinks and helium density are investigated. Peak bubble diameters under different conditions are compared to preliminary microstructural results on irradiated specimens. Helium induced hardening was calculated by applying the Dispersed Barrier Hardening model to simulated cluster size distributions. Quantitative microstructural investigations of unirradiated and irradiated specimens will be used to support and verify the model.

  3. Modeling of helium bubble nucleation and growth in neutron irradiated boron doped RAFM steels

    Energy Technology Data Exchange (ETDEWEB)

    Dethloff, Christian, E-mail: christian.dethloff@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gaganidze, Ermile [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Svetukhin, Vyacheslav V. [Ulyanovsk State University, Leo Tolstoy Str. 42, 432970 Ulyanovsk (Russian Federation); Aktaa, Jarir [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-07-15

    Reduced activation ferritic/martensitic (RAFM) steels are promising candidates for structural materials in future fusion technology. In addition to other irradiation defects, the transmuted helium is believed to strongly influence material hardening and embrittlement behavior. A phenomenological model based on kinetic rate equations is developed to describe homogeneous nucleation and growth of helium bubbles in neutron irradiated RAFM steels. The model is adapted to different {sup 10}B doped EUROFER97 based heats, which already had been studied in past irradiation experiments. Simulations yield bubble size distributions, whereby effects of helium generation rate, surface energy, helium sinks and helium density are investigated. Peak bubble diameters under different conditions are compared to preliminary microstructural results on irradiated specimens. Helium induced hardening was calculated by applying the Dispersed Barrier Hardening model to simulated cluster size distributions. Quantitative microstructural investigations of unirradiated and irradiated specimens will be used to support and verify the model.

  4. Spallation Neutron Source Drift Tube Linac Resonance Control Cooling System Modeling

    CERN Document Server

    Tang, Johnny Y; Champion, Marianne M; Feschenko, Alexander; Gibson, Paul; Kiselev, Yuri; Kovalishin, A S; Kravchuk, Leonid V; Kvasha, Adolf; Schubert, James P

    2005-01-01

    The Resonance Control Cooling System (RCCS) for the warm linac of the Spallation Neutron Source was designed by Los Alamos National Laboratory. The primary design focus was on water cooling of individual component contributions. The sizing the RCCS water skid was accomplished by means of a specially created SINDA/FLUINT model tailored to these system requirements. A new model was developed in Matlab Simulink and incorporates actual operational values and control valve interactions. Included is the dependence of RF input power on system operation, cavity detuning values during transients, time delays that result from water flows through the heat exchanger, the dynamic process of water warm-up in the cooling system due to dissipated RF power on the cavity surface, differing contributions on the cavity detuning due to drift tube and wall heating, and a dynamic model of the heat exchanger with characteristics in close agreement to the real unit. Because of the Matlab Simulink model, investigation of a wide range ...

  5. FOREWORD: Neutron metrology Neutron metrology

    Science.gov (United States)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    industry, from the initial fuel enrichment and fabrication processes right through to storage or reprocessing, and neutron metrology is clearly important in this area. Neutron fields do, however, occur in other areas, for example where neutron sources are used in oil well logging and moisture measurements. They also occur around high energy accelerators, including photon linear accelerators used for cancer therapy, and are expected to be a more serious problem around the new hadron radiation therapy facilities. Roughly 50% of the cosmic ray doses experienced by fliers at the flight altitudes of commercial aircraft are due to neutrons. Current research on fusion presents neutron metrology with a whole new range of challenges because of the very high fluences expected. One of the most significant features of neutron fields is the very wide range of possible neutron energies. In the nuclear industry, for example, neutrons occur with energies from those of thermal neutrons at a few meV to the upper end of the fission spectrum at perhaps 10 MeV. For cosmic ray dosimetry the energy range extends into the GeV region. This enormous range sets a challenge for designing measuring devices and a parallel challenge of developing measurement standards for characterizing these devices. One of the major considerations when deciding on topics for this special issue was agreeing on what not to include. Modelling, i.e. the use of radiation transport codes, is now a very important aspect of neutron measurements. These calculations are vital for shielding and for instrument design; nevertheless, the topic has only been included here where it has a direct bearing on metrology and the development of standards. Neutron spectrometry is an increasingly important technique for unravelling some of the problems of dose equivalent measurements and for plasma diagnostics in fusion research. However, this topic is at least one step removed from primary metrology and so it was felt that it should not be

  6. Performance criteria of control rod absorbers of new VVER reactors and a possibility to increase their lifetime

    International Nuclear Information System (INIS)

    Zakharov, A.V.; Risovany, V.D.; Vasilchenko, I.N.; Kurakin, K.Y.; Kushmanov, S.A.; Makhin, V.M.

    2015-01-01

    At present, the lifetime of control rod absorbers of the existing VVER-100 and constructed VVER-1200 is designed to be ten years; they are operated as control rods for three years and as scram rods for seven years. The examination of spent absorbers did not show any degradation in their performance so their lifetime specification might be too conservative. The criteria of the control rod absorbers performance, together with an adequate computational model, can be a methodological basis to develop a system to manage the VVER-1000 control rod absorbers lifetime to fully use their design and material capacities. The criteria for control rod absorbers performance can be split into 5 groups: 1) criteria for physical efficiency, 2) criteria for dynamic characteristics, 3) criteria for radiation resistance, 4) criteria for thermo-mechanical resistance and 5) criteria for corrosion resistance. There is a need in an analytical model to define the neutron-physical and thermo-hydraulic operating conditions as well as thermo-mechanical state of an absorbing element. At present, the key components of the model have been developed (neutron physics and thermo-hydraulics) and the thermo-mechanical model is under development. The analytical models have been used for the justification of a design of absorbing elements combining dysprosium hafnate pellets at the bottom and boron carbide at the top

  7. On the Modeling of Local Neutronically-Coupled Flow-Induced Oscillations in Advanced Boiling Water Reactors

    International Nuclear Information System (INIS)

    Aniel-Buchheit, Sylvie; Podowski, Michael Z.

    2006-01-01

    The purpose of this paper is to discuss the development in progress of a complete space- and time-dependent model of the coupled neutron kinetic and reactor thermal-hydraulics. The neutron kinetics model is based on two-group diffusion equations with Doppler and void reactivity feedback effects. This model is coupled with the model of two-phase flow and heat transfer in parallel coolant channels. The modeling concepts considered for this purpose include one-dimensional drift flux and two-fluid models, as well a CFD model implemented in the NPHASE advanced computational multiphase fluid dynamics (CMFD) computer code. Two methods of solution for the overall model are proposed. One is based on direct numerical integration of the spatially-discretized governing equations. The other approach is based on a quasi-analytical modal approach to the neutronics model, in which a complete set of eigenvectors is found for step-wise temporal changes of the cross-sections of core materials (fuel and coolant/moderator). The issues investigated in the paper include details of model formulation, as well as the results of calculations for neutronically-coupled density-wave oscillations. (authors)

  8. Lifetime of kaonium

    International Nuclear Information System (INIS)

    Krewald, S.; Lemmer, R.H.; Sassen, F.P.

    2004-01-01

    The kaon-antikaon system is studied in both the atomic and the strongly interacting sector. We discuss the influence of the structures of the f 0 (980) and the a 0 (980) mesons on the lifetime of kaonium. The strong interactions are generated by vector meson exchange within the framework of the standard SU(3) V xSU(3) A invariant effective Lagrangian. In the atomic sector, the energy levels and decay widths of kaonium are determined by an eigenvalue equation of the Kudryavtsev-Popov type, with the strong interaction effects entering through the complex scattering length for KK-bar scattering and annihilation. The presence of two scalar mesons f 0 (980) and a 0 (980) leads to a ground state energy for the kaonium atom that is shifted above the point Coulomb value by a few hundred eV. The effect on the lifetime for the kaonium decay into two pions is much more dramatic. This lifetime is reduced by two orders of magnitude from 1.2x10 -16 sec for annihilation in a pure Coulomb field down to 3.2x10 -18 sec when the strong interactions are included. The analysis of the two photon decay width of the f 0 (980) suggests a generalization of the molecular picture which reduces the lifetime of kaonium still further to 1.1x10 -18 sec

  9. Implementation of Remaining Useful Lifetime Transformer Models in the Fleet-Wide Prognostic and Health Management Suite

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lybeck, Nancy J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pham, Binh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rusaw, Richard [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Bickford, Randall [Expert Microsystems, Orangevale, CA (United States)

    2015-02-01

    Research and development efforts are required to address aging and reliability concerns of the existing fleet of nuclear power plants. As most plants continue to operate beyond the license life (i.e., towards 60 or 80 years), plant components are more likely to incur age-related degradation mechanisms. To assess and manage the health of aging plant assets across the nuclear industry, the Electric Power Research Institute has developed a web-based Fleet-Wide Prognostic and Health Management (FW-PHM) Suite for diagnosis and prognosis. FW-PHM is a set of web-based diagnostic and prognostic tools and databases, comprised of the Diagnostic Advisor, the Asset Fault Signature Database, the Remaining Useful Life Advisor, and the Remaining Useful Life Database, that serves as an integrated health monitoring architecture. The main focus of this paper is the implementation of prognostic models for generator step-up transformers in the FW-PHM Suite. One prognostic model discussed is based on the functional relationship between degree of polymerization, (the most commonly used metrics to assess the health of the winding insulation in a transformer) and furfural concentration in the insulating oil. The other model is based on thermal-induced degradation of the transformer insulation. By utilizing transformer loading information, established thermal models are used to estimate the hot spot temperature inside the transformer winding. Both models are implemented in the Remaining Useful Life Database of the FW-PHM Suite. The Remaining Useful Life Advisor utilizes the implemented prognostic models to estimate the remaining useful life of the paper winding insulation in the transformer based on actual oil testing and operational data.

  10. Protein a resin lifetime study: Evaluation of protein a resin performance with a model-based approach in continuous capture.

    Science.gov (United States)

    Behere, Ketki; Cha, Bumjoon; Yoon, Seongkyu

    2018-01-22

    A modified shrinking core model (MSCM) has been used to describe the mechanism for the degradation of Protein A resin particles taking place under continuous chromatographic operation. The model is based on the hypothetical shrinkage of the boundary layer of the resin particles, which house the active Protein A ligands within their pores. The caustic during the sanitization phase of chromatography has been determined to cause the Protein A ligand degradation. Protein A resins provided by manufacturers possess unique caustic stability, which has been used in MSCM to appraise the ligand degradation. The kinetic model utilized semiempirical parameters including diffusion constant, rate constant, stoichiometric factor, and reaction order. The parameters were estimated from column breakthrough experiments to simulate continuous Protein A chromatography for three distinct resins. The reaction order has been identified as the key parameter for predicting the degradation kinetics. The recorded reaction orders vary for three different resins with the resin B showing the highest reaction order of 4 and lowest being 1.65 for the resin C. The model can predict the effects of caustic on resin performance and displayed that minimal degradation of the resins A and B occurred, when exposed to 0.1 N and 0.2N NaOH, retaining up to 96% binding capacity after 240 cycles. The adsorption study conducted for the resin B demonstrated the dynamic physical and chemical changes transpiring through the life cycle of the resin, further supported the degradation model. The performance data demonstrate that the resin B exhibits the desirable performance, with higher reaction order indicating slower resin degradation, higher binding capacities, and increased sustenance of this binding capacity for extended duration. The degradation model can be extended to build effective cleaning strategies for continuous downstream processing.

  11. Application of a three-feature dispersed-barrier hardening model to neutron-irradiated Fe–Cr model alloys

    International Nuclear Information System (INIS)

    Bergner, F.; Pareige, C.; Hernández-Mayoral, M.; Malerba, L.; Heintze, C.

    2014-01-01

    An attempt is made to quantify the contributions of different types of defect-solute clusters to the total irradiation-induced yield stress increase in neutron-irradiated (300 °C, 0.6 dpa), industrial-purity Fe–Cr model alloys (target Cr contents of 2.5, 5, 9 and 12 at.% Cr). Former work based on the application of transmission electron microscopy, atom probe tomography, and small-angle neutron scattering revealed the formation of dislocation loops, NiSiPCr-enriched clusters and α′-phase particles, which act as obstacles to dislocation glide. The values of the dimensionless obstacle strength are estimated in the framework of a three-feature dispersed-barrier hardening model. Special attention is paid to the effect of measuring errors, experimental details and model details on the estimates. The three families of obstacles and the hardening model are well capable of reproducing the observed yield stress increase as a function of Cr content, suggesting that the nanostructural features identified experimentally are the main, if not the only, causes of irradiation hardening in these model alloys

  12. Application of a three-feature dispersed-barrier hardening model to neutron-irradiated Fe–Cr model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, F., E-mail: f.bergner@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Pareige, C. [Groupe de Physique des Matériaux, Université et INSA de Rouen, UMR 6634 CNRS, Avenue de l’Université, BP 12, 76801 Saint Etienne du Rouvray (France); Hernández-Mayoral, M. [Division of Materials, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Malerba, L. [SCK-CEN, Nuclear Material Science Institute, Boeretang 200, B-2400 Mol (Belgium); Heintze, C. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany)

    2014-05-01

    An attempt is made to quantify the contributions of different types of defect-solute clusters to the total irradiation-induced yield stress increase in neutron-irradiated (300 °C, 0.6 dpa), industrial-purity Fe–Cr model alloys (target Cr contents of 2.5, 5, 9 and 12 at.% Cr). Former work based on the application of transmission electron microscopy, atom probe tomography, and small-angle neutron scattering revealed the formation of dislocation loops, NiSiPCr-enriched clusters and α′-phase particles, which act as obstacles to dislocation glide. The values of the dimensionless obstacle strength are estimated in the framework of a three-feature dispersed-barrier hardening model. Special attention is paid to the effect of measuring errors, experimental details and model details on the estimates. The three families of obstacles and the hardening model are well capable of reproducing the observed yield stress increase as a function of Cr content, suggesting that the nanostructural features identified experimentally are the main, if not the only, causes of irradiation hardening in these model alloys.

  13. Application of a three-feature dispersed-barrier hardening model to neutron-irradiated Fe-Cr model alloys

    Science.gov (United States)

    Bergner, F.; Pareige, C.; Hernández-Mayoral, M.; Malerba, L.; Heintze, C.

    2014-05-01

    An attempt is made to quantify the contributions of different types of defect-solute clusters to the total irradiation-induced yield stress increase in neutron-irradiated (300 °C, 0.6 dpa), industrial-purity Fe-Cr model alloys (target Cr contents of 2.5, 5, 9 and 12 at.% Cr). Former work based on the application of transmission electron microscopy, atom probe tomography, and small-angle neutron scattering revealed the formation of dislocation loops, NiSiPCr-enriched clusters and α‧-phase particles, which act as obstacles to dislocation glide. The values of the dimensionless obstacle strength are estimated in the framework of a three-feature dispersed-barrier hardening model. Special attention is paid to the effect of measuring errors, experimental details and model details on the estimates. The three families of obstacles and the hardening model are well capable of reproducing the observed yield stress increase as a function of Cr content, suggesting that the nanostructural features identified experimentally are the main, if not the only, causes of irradiation hardening in these model alloys.

  14. Modeling and analysis of hydrogen detonation events in the advanced neutron source reactor containment

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Kim, S.H.; Valenti, S.; Simpson, D.B.; Sawruk, W.

    1994-01-01

    This paper describes salient aspects of the modeling, analyses, and evaluations for hydrogen detonation in selected regions of the Advanced Neutron Source (ANS) containment during hypothetical severe accident conditions. Shock wave generation and transport modeling and analyses were conducted for two stratified configurations in the dome region of the high bay. Principal tools utilized for these purposes were the CTH and CET89 computer codes. Dynamic pressure loading functions were generated for key locations and used for evaluating structural response behavior for which a finite-element model was developed using the ANSYS code. For the range of conditions analyzed in the two critical dome regions, it was revealed that the ANS containment would be able to withstand detonation loads without failure. (author)

  15. Development of neutronic models for the thermal hydraulics coupling of the MSFR and the calculation of effective kinetic parameters

    International Nuclear Information System (INIS)

    Laureau, Axel

    2015-01-01

    In this PhD thesis, we describe the development of innovative neutronic models for their coupling with thermal hydraulics such that they combine precision and reasonable computational times. One of the main cases where this method is applied is the Molten Salt Fast Reactor (MSFR) whose combines a fast neutron spectrum with a thorium cycle. In this fourth generation reactor, the motion of the delayed neutron precursors and the associated phenomena have to be taken into account due to the liquid fuel circulation. The starting point for these developments was the preliminary design of this type of system where a dedicated multi-physical representation was needed to study the reactor performance in steady and transient conditions. As a first step, a stationary coupling was developed. A neutronic model based on a stochastic approach was associated to a CFD (Computational Fluid Dynamics) code to solve the Navier Stokes equations for turbulent flows and the transport of the delayed neutron precursors. The impact of this precursor motion is taken into account by reconstructing the prompt shower that they generate. This approach, called by shower, views the critical reactor as a prompt subcritical reactor that amplifies a source of delayed neutrons. A second step consisted in developing a neutronic model based on a time dependent version of the fission matrices (Transient Fission Matrix or TFM) so as to enable reactor transient studies. With the TFM model, an initial computation of the matrices with a stochastic code (MCNP, SERPENT) allows the characterization of the global spatial and time dependent neutronic response of the reactor with a precision close to that of a Monte Carlo calculation. The information thus obtained is then used to calculate transients, while retaining the advantage of reduced computational time. The TFM model, which can be used for various system concepts, also allows the evaluation of effective kinetic parameters such as the effective fraction of

  16. Simplified geometric model for the calculation of neutron yield in an accelerator of 18 MV for radiotherapy

    International Nuclear Information System (INIS)

    Paredes G, L.C.; Balcazar G, M.; Francois L, J.L.; Azorin N, J.

    2008-01-01

    The results of the neutrons yield in different components of the bolster of an accelerator Varian Clinac 2100C of 18 MV for radiotherapy are presented, which contribute to the radiation of flight of neutrons in the patient and bolster planes. For the calculation of the neutrons yield, a simplified geometric model of spherical cell for the armor-plating of the bolster with Pb and W was used. Its were considered different materials for the Bremsstrahlung production and of neutrons produced through the photonuclear reactions and of electro disintegration, in function of the initial energy of the electron. The theoretical result of the total yield of neutrons is of 1.17x10 -3 n/e, considering to the choke in position of closed, in the patient plane with a distance source-surface of 100 cm; of which 15.73% corresponds to the target, 58.72% to the primary collimator, 4.53% to the levelled filter of Fe, 4.87% to the levelled filter of Ta and 16.15% to the closed choke. For an initial energy of the electrons of 18 MeV, a half energy of the neutrons of 2 MeV was obtained. The calculated values for radiation of experimental neutrons flight are inferior to the maxima limit specified in the NCRP-102 and IEC-60601-201.Ed.2.0 reports. The absorbed dose of neutrons determined through the measurements with TLD dosemeters in the isocenter to 100 cm of the target when the choke is closed one, is approximately 3 times greater that the calculated for armor-plating of W and 1.9 times greater than an armor-plating of Pb. (Author)

  17. Nanostructure evolution of neutron-irradiated reactor pressure vessel steels: Revised Object kinetic Monte Carlo model

    Energy Technology Data Exchange (ETDEWEB)

    Chiapetto, M., E-mail: mchiapet@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Messina, L. [DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-114 21 Stockholm (Sweden); Becquart, C.S. [Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Olsson, P. [KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-114 21 Stockholm (Sweden); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium)

    2017-02-15

    This work presents a revised set of parameters to be used in an Object kinetic Monte Carlo model to simulate the microstructure evolution under neutron irradiation of reactor pressure vessel steels at the operational temperature of light water reactors (∼300 °C). Within a “grey-alloy” approach, a more physical description than in a previous work is used to translate the effect of Mn and Ni solute atoms on the defect cluster diffusivity reduction. The slowing down of self-interstitial clusters, due to the interaction between solutes and crowdions in Fe is now parameterized using binding energies from the latest DFT calculations and the solute concentration in the matrix from atom-probe experiments. The mobility of vacancy clusters in the presence of Mn and Ni solute atoms was also modified on the basis of recent DFT results, thereby removing some previous approximations. The same set of parameters was seen to predict the correct microstructure evolution for two different types of alloys, under very different irradiation conditions: an Fe-C-MnNi model alloy, neutron irradiated at a relatively high flux, and a high-Mn, high-Ni RPV steel from the Swedish Ringhals reactor surveillance program. In both cases, the predicted self-interstitial loop density matches the experimental solute cluster density, further corroborating the surmise that the MnNi-rich nanofeatures form by solute enrichment of immobilized small interstitial loops, which are invisible to the electron microscope.

  18. Dynamic neutron scattering from conformational dynamics. I. Theory and Markov models.

    Science.gov (United States)

    Lindner, Benjamin; Yi, Zheng; Prinz, Jan-Hendrik; Smith, Jeremy C; Noé, Frank

    2013-11-07

    The dynamics of complex molecules can be directly probed by inelastic neutron scattering experiments. However, many of the underlying dynamical processes may exist on similar timescales, which makes it difficult to assign processes seen experimentally to specific structural rearrangements. Here, we show how Markov models can be used to connect structural changes observed in molecular dynamics simulation directly to the relaxation processes probed by scattering experiments. For this, a conformational dynamics theory of dynamical neutron and X-ray scattering is developed, following our previous approach for computing dynamical fingerprints of time-correlation functions [F. Noé, S. Doose, I. Daidone, M. Löllmann, J. Chodera, M. Sauer, and J. Smith, Proc. Natl. Acad. Sci. U.S.A. 108, 4822 (2011)]. Markov modeling is used to approximate the relaxation processes and timescales of the molecule via the eigenvectors and eigenvalues of a transition matrix between conformational substates. This procedure allows the establishment of a complete set of exponential decay functions and a full decomposition into the individual contributions, i.e., the contribution of every atom and dynamical process to each experimental relaxation process.

  19. Shape coexistence from lifetime and branching-ratio measurements in 68,70Ni

    Directory of Open Access Journals (Sweden)

    B.P. Crider

    2016-12-01

    Full Text Available Shape coexistence near closed-shell nuclei, whereby states associated with deformed shapes appear at relatively low excitation energy alongside spherical ones, is indicative of the rapid change in structure that can occur with the addition or removal of a few protons or neutrons. Near 68Ni (Z=28, N=40, the identification of shape coexistence hinges on hitherto undetermined transition rates to and from low-energy 0+ states. In 68,70Ni, new lifetimes and branching ratios have been measured. These data enable quantitative descriptions of the 0+ states through the deduced transition rates and serve as sensitive probes for characterizing their nuclear wave functions. The results are compared to, and consistent with, large-scale shell-model calculations which predict shape coexistence. With the firm identification of this phenomenon near 68Ni, shape coexistence is now observed in all currently accessible regions of the nuclear chart with closed proton shells and mid-shell neutrons.

  20. Development and experimental validation of a monte carlo modeling of the neutron emission from a d-t generator

    Science.gov (United States)

    Remetti, Romolo; Lepore, Luigi; Cherubini, Nadia

    2017-01-01

    An extensive use of Monte Carlo simulations led to the identification of a Thermo Scientific MP320 neutron generator MCNPX input deck. Such input deck is currently utilized at ENEA Casaccia Research Center for optimizing all the techniques and applications involving the device, in particular for explosives and drugs detection by fast neutrons. The working model of the generator was obtained thanks to a detailed representation of the MP320 internal components, and to the potentialities offered by the MCNPX code. Validation of the model was obtained by comparing simulated results vs. manufacturer's data, and vs. experimental tests. The aim of this work is explaining all the steps that led to those results, suggesting a procedure that might be extended to different models of neutron generators.

  1. A measurement of correlation parameters in the decay of polarized free neutrons: The abBA experiment

    Science.gov (United States)

    Barrón-Palos, L.; Chávez, E.; Crawford, C.; Curiel-García, Q.; Huerta, A.; Juárez-Rosete, M. A.; Marín-Lámbarri, D. J.; Martin, E.; Ortiz, M. E.; Penttilä, S. I.; Rodríguez-Zamora, P.; Salas, A.; Tang, Z.; Wilburn, W. S.

    2010-07-01

    The abBA experiment will measure, in the same apparatus, four correlation parameters in the free neutron β-decay: the electron-antineutrino angular correlation (a), the Fierz interference term (6), and the asymmetries, with respect to the neutron spin direction, of the electron (A)and antineutrino (B).The precise determination of these parameters, together with the neutron lifetime, will provide important information about the Standard Model (SM) and will establish constraints for new physics. In this paper we describe the experimental methodology of abBA as well as some of the advances that have been done so far.

  2. A measurement of correlation parameters in the decay of polarized free neutrons: The abBA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Barron-Palos, L; Chavez, E; Curiel-Garcia, Q; Huerta, A; Juarez-Rosete, M A; Marin-Lambarri, D J; Ortiz, M E [Universidad Nacional Autonoma de Mexico, Mexico, D.F. 04510 (Mexico); Crawford, C; Martin, E [University of Kentucky, Lexington, KY 40506 (United States); Penttilae, S I [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Salas, A; Wilburn, W S [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tang, Z [Indiana University, Bloomington, IN 47405 (United States); RodrIguez-Zamora, P, E-mail: libertad@fisica.unam.m

    2010-07-01

    The abBA experiment will measure, in the same apparatus, four correlation parameters in the free neutron {beta}-decay: the electron-antineutrino angular correlation (a), the Fierz interference term (6), and the asymmetries, with respect to the neutron spin direction, of the electron (A)and antineutrino (B).The precise determination of these parameters, together with the neutron lifetime, will provide important information about the Standard Model (SM) and will establish constraints for new physics. In this paper we describe the experimental methodology of abBA as well as some of the advances that have been done so far.

  3. A measurement of correlation parameters in the decay of polarized free neutrons: The abBA experiment

    International Nuclear Information System (INIS)

    Barron-Palos, L; Chavez, E; Curiel-Garcia, Q; Huerta, A; Juarez-Rosete, M A; Marin-Lambarri, D J; Ortiz, M E; Crawford, C; Martin, E; Penttilae, S I; Salas, A; Wilburn, W S; Tang, Z; RodrIguez-Zamora, P

    2010-01-01

    The abBA experiment will measure, in the same apparatus, four correlation parameters in the free neutron β-decay: the electron-antineutrino angular correlation (a), the Fierz interference term (6), and the asymmetries, with respect to the neutron spin direction, of the electron (A)and antineutrino (B).The precise determination of these parameters, together with the neutron lifetime, will provide important information about the Standard Model (SM) and will establish constraints for new physics. In this paper we describe the experimental methodology of abBA as well as some of the advances that have been done so far.

  4. Results from a partial lifetime test of a 40 mm-aperture 17 mm SSC model dipole

    Energy Technology Data Exchange (ETDEWEB)

    Radusewicz, P.; Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Ogitsu, T.; Potter, J.; Puglisi, M.; Sanger, P.; Schermer, R.; Tompkins, J.; Yu, Y.; Zhao, Y.; Zheng, H. [Superconducting Super Collider Lab., Dallas, TX (United States); Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Jain, A.; Kahn, S.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Roher, E.P.; Sampson, W.; Shutt, R.; Thomas, R.; Thompson, P.; Wanderer, P.; Willen, E. [Brookhaven National Lab., Upton, NY (United States); Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J. [Fermi National Accelerator Lab., Batavia, IL (United States); Royett, J.; Scanlan, R.; Taylor, C. [Lawrence Berkeley Lab., CA (United States)

    1992-03-01

    A 40-mm-aperture, 17-m-long Superconducting Super Collider (SSC) model dipole was assembled at Brookhaven National Laboratory (BNL) and tested initially at Fermi National Accelerator Lab (FNAL) and later at BNL. At BNL an extended cycle test was devised to examine the magnet`s performance through numerous cold tests and thermal cycles. This paper discusses the magnet`s mechanical and quench performance and magnet field measurements during the tests.

  5. Results from a partial lifetime test of a 40 mm-aperture 17 mm SSC model dipole

    International Nuclear Information System (INIS)

    Radusewicz, P.; Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Ogitsu, T.; Potter, J.; Puglisi, M.; Sanger, P.; Schermer, R.; Tompkins, J.; Yu, Y.; Zhao, Y.; Zheng, H.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Jain, A.; Kahn, S.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Roher, E.P.; Sampson, W.; Shutt, R.; Thomas, R.; Thompson, P.; Wanderer, P.; Willen, E.; Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Royett, J.; Scanlan, R.; Taylor, C.

    1992-03-01

    A 40-mm-aperture, 17-m-long Superconducting Super Collider (SSC) model dipole was assembled at Brookhaven National Laboratory (BNL) and tested initially at Fermi National Accelerator Lab (FNAL) and later at BNL. At BNL an extended cycle test was devised to examine the magnet's performance through numerous cold tests and thermal cycles. This paper discusses the magnet's mechanical and quench performance and magnet field measurements during the tests

  6. Results from a partial lifetime test of a 40-mm-aperture, 17-m-long SSC model dipole

    International Nuclear Information System (INIS)

    Radusewicz, P.; Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Ogitsu, T.; Potter, J.; Puglisi, M.; Sanger, P.; Schermer, R.; Tompkins, J.; Yu, Y.; Zhao, Y.; Zheng, H.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Jain, A.; Kahn, S.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Roher, E.P.; Sampson, W.; Shutt, R.; Thomas, R.; Thompson, P.; Wanderer, P.; Willen, E.; Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Royett, J.; Scanlan, R.; Taylor, C.

    1992-01-01

    -LA 40-mm-aperture, 17-m-long Superconducting Super Collider (SSC) model dipole was assembled at Brookhaven National Laboratory (BNL) and tested initially at Fermi National Accelerator Lab (FNAL) and later at BNL. At BNL an extended cycle test was devised to examine the magnet's performance through numerous cold tests and thermal cycles. This paper discusses the magnet's mechanical and quench performance and magnet field measurements during the tests

  7. Neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) MCNP ''Benchmark CAD Model'' with the ATTILA discrete ordinance code

    International Nuclear Information System (INIS)

    Youssef, M.Z.; Feder, R.; Davis, I.

    2007-01-01

    The ITER IT has adopted the newly developed FEM, 3-D, and CAD-based Discrete Ordinates code, ATTILA for the neutronics studies contingent on its success in predicting key neutronics parameters and nuclear field according to the stringent QA requirements set forth by the Management and Quality Program (MQP). ATTILA has the advantage of providing a full flux and response functions mapping everywhere in one run where components subjected to excessive radiation level and strong streaming paths can be identified. The ITER neutronics community had agreed to use a standard CAD model of ITER (40 degree sector, denoted ''Benchmark CAD Model'') to compare results for several responses selected for calculation benchmarking purposes to test the efficiency and accuracy of the CAD-MCNP approach developed by each party. Since ATTILA seems to lend itself as a powerful design tool with minimal turnaround time, it was decided to benchmark this model with ATTILA as well and compare the results to those obtained with the CAD MCNP calculations. In this paper we report such comparison for five responses, namely: (1) Neutron wall load on the surface of the 18 shield blanket module (SBM), (2) Neutron flux and nuclear heating rate in the divertor cassette, (3) nuclear heating rate in the winding pack of the inner leg of the TF coil, (4) Radial flux profile across dummy port plug and shield plug placed in the equatorial port, and (5) Flux at seven point locations situated behind the equatorial port plug. (orig.)

  8. Implementation of the neutronics model of HEXTRAN/HEXBU-3D into APROS for WWER calculations

    International Nuclear Information System (INIS)

    Rintala, J.

    2008-01-01

    A new three-dimensional nodal model for neutronics calculation is currently under implementation into APROS - Advanced PROcess Simulation environment - to conform the increasing accuracy requirements. The new model is based on an advanced nodal code HEXTRAN and its static version HEXBU-3D by VTT, Technical Research Centre of Finland. Currently the new APROS is under a testing programme. Later a systematic validation will be performed. In the first phase, a goal is to obtain a fully validated model for VVER-440 calculations. Thus, all the current test calculations are performed by using Loviisa NPP's VVER-440 model of APROS. In future, the model is planned to be applied for the calculations of VVER-1000 type reactors as well as in rectangular fuel geometry. The paper outlines first the general aspects of the method, and then the current situation of the implementation. Because of the identical model with the models of HEXTRAN and HEXBU-3D, the results in the test calculations are compared to the results of those. In the paper, results of two static test calculations are shown. Currently the model works well already in static analyses. Only minor problems with the control assemblies of VVER-440 type reactor still exist but the reasons are known and will be corrected in near future. Dynamical characteristics of the model are up to now tested only by some empirical tests. (author)

  9. Magnetic Hydrogen Atmosphere Models and the Neutron Star RX J1856.5-3754

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wynn C.G.; /MIT, MKI /KIPAC, Menlo Park; Kaplan, David L.; /MIT, MKI; Chang, Philip; /UC, Berkeley, Astron. Dept. /UC, Santa Barbara; van Adelsberg, Matthew; /Cornell; Potekhin, Alexander Y.; /Cornell U., Astron. Dept. /Ioffe Phys. Tech. Inst.

    2006-12-08

    RX J1856.5-3754 is one of the brightest nearby isolated neutron stars, and considerable observational resources have been devoted to it. However, current models are unable to satisfactorily explain the data. We show that our latest models of a thin, magnetic, partially ionized hydrogen atmosphere on top of a condensed surface can fit the entire spectrum, from X-rays to optical, of RX J1856.5-3754, within the uncertainties. In our simplest model, the best-fit parameters are an interstellar column density N{sub H} {approx} 1 x 10{sup 20} cm{sup -2} and an emitting area with R{sup {infinity}} {approx} 17 km (assuming a distance to RX J1856.5-3754 of 140 pc), temperature T{sup {infinity}} {approx} 4.3 x 10{sup 5} K, gravitational redshift z{sub g} {approx} 0.22, atmospheric hydrogen column y{sub H} {approx} 1 g cm{sup -2}, and magnetic field B {approx} (3-4) x 10{sup 12} G; the values for the temperature and magnetic field indicate an effective average over the surface. We also calculate a more realistic model, which accounts for magnetic field and temperature variations over the neutron star surface as well as general relativistic effects, to determine pulsations; we find there exist viewing geometries that produce pulsations near the currently observed limits. The origin of the thin atmospheres required to fit the data is an important question, and we briefly discuss mechanisms for producing these atmospheres. Our model thus represents the most self-consistent picture to date for explaining all the observations of RX J1856.5-3754.

  10. Study of neutron shell structure of even-even 40-56Ca isotopes by the dispersive optical model

    International Nuclear Information System (INIS)

    Bespalova, O.V.; Boboshin, I.N.; Varlamov, V.V.; Ermakova, T.A.; Ishkhanov, B.S.; Romanovskij, E.A.; Spasskaya, T.I.; Timokhina, T.P.

    2005-01-01

    The single-particle energies and occupation probabilities of the bound neutron states in 40,42,44,46,48 Ca isotopes were obtained by the joint evaluation of the stripping and pick-up reaction data. The results were analyzed by the dispersive optical model and a good agreement was achieved. The dispersive optical potential was extrapolated to unstable 50,52,54,56 Ca nuclei. The calculated single-particle energies of the bound neutron states in unstable Ca isotopes were compared with the nuclear shell-model calculations, which predicted new magic number N = 34 for nuclei with Z = 20 [ru

  11. Three-dimensional model of the thermo-hydrodynamic neutron interaction in the core of water reactors (stationary states)

    International Nuclear Information System (INIS)

    Mastrangelo, Victor.

    1977-01-01

    A thermo-hydrodynamic neutron interaction model for permanent working conditions is developed in the case of closed circuits (boiling water reactors) and open circuits (pressurized water reactors). Two numerical convergence acceleration methods are then worked out for the resolution of linear problems by successive iterations. A physical study is devoted to the convergence of the thermo-hydrodynamic neutron interaction process. The model developed is applied to the calculation of the power distribution for the core of a 980 MWe BWR-6 type boiling water power station and to the study of normal and accidental working configurations of the pressurized water core of a 900 MWe PWR-CP1 unit [fr

  12. Experimental techniques and theoretical models for the study of integral 14 MeV neutron cross sections

    International Nuclear Information System (INIS)

    Csikai, J.

    1981-01-01

    Owing to technical reasons, most of the data for fast neutron-induced reactions were measured at 14 MeV and the free parameters in nuclear reaction models have been determined at this energy. The discrepancies between experiment and theory are often due to the unmeasured or unreliable experimental data; therefore, it is important to survey the present techniques used for the measurement of total, elastic, nonelastic and partial nonelastic [(n,xn); (n,x charged); (n,f); (n,γ)] cross sections for 14 MeV neutrons. Systematics in the data as well as theoretical and semi-empirical models are also outlined. (author)

  13. Accelerated lifetime testing methodology for lifetime estimation of Lithium-ion batteries used in augmented wind power plants

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina

    2013-01-01

    The development of lifetime estimation models for Lithium-ion battery cells, which are working under highly variable mission profiles characteristic for wind power plant applications, requires a lot of expenditures and time resources. Therefore, batteries have to be tested under accelerated...... lifetime ageing conditions. This paper presents a three-stage methodology used for accelerated lifetime testing of Lithium-ion batteries. The results obtained at the end of the accelerated ageing process can be used for the parametrization of a performance-degradation lifetime model. In the proposed...... methodology both calendar and cycling lifetime tests are considered since both components are influencing the lifetime of Lithium-ion batteries. The methodology proposes also a lifetime model verification stage, where Lithium-ion battery cells are tested at normal operating conditions using an application...

  14. Filter replacement lifetime prediction

    Science.gov (United States)

    Hamann, Hendrik F.; Klein, Levente I.; Manzer, Dennis G.; Marianno, Fernando J.

    2017-10-25

    Methods and systems for predicting a filter lifetime include building a filter effectiveness history based on contaminant sensor information associated with a filter; determining a rate of filter consumption with a processor based on the filter effectiveness history; and determining a remaining filter lifetime based on the determined rate of filter consumption. Methods and systems for increasing filter economy include measuring contaminants in an internal and an external environment; determining a cost of a corrosion rate increase if unfiltered external air intake is increased for cooling; determining a cost of increased air pressure to filter external air; and if the cost of filtering external air exceeds the cost of the corrosion rate increase, increasing an intake of unfiltered external air.

  15. Changes in Mechanical Properties of SA508 Gr.4N Model Alloys with Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Chul; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The mechanical properties and irradiation embrittlement behavior of SA508 Gr.4N low alloy steel were evaluated. The yield strength and tensile strength were increased with an increase in fluence level, but there is no drastic increase in strength. A significant increase in the transition temperature shifts from the Charpy impact test and fracture toughness test was not observed in SA508 Gr.4N model alloy. The overall irradiation embrittlement behavior of SA508 Gr.4N low alloy steel is almost similar to that of SA508 Gr.3 low alloy steel, and an increase in Ni content by a few percentage points in SA508 Gr.4N model alloys compared to SA508 Gr.3 low alloy steel did not result in an increased embrittlement of these alloys. The yield strength was increased with an increase in the neutron fluence level, and the amount of strength increase was comparable to commercial SA508 Gr.3 low alloy steel.

  16. Biological models in vivo for boron neutronic capture studies as tumors therapy

    International Nuclear Information System (INIS)

    Kreimann, Erica L.; Dagrosa, Maria A.; Schwint, Amanda E.; Itoiz, Maria E.; Pisarev, Mario A.; Farias, Silvia S.; Garavaglia, Ricardo N.; Batistoni, Daniel A.

    1999-01-01

    The use of experimental models for Boron Neutronic Capture studies as Tumors Therapy have as two main objectives: 1) To contribute to the basic knowledge of the biological mechanisms involved to increase the method therapeutical advantage, and 2) To explore the possible application of this therapeutic method to other pathologies. In this frame it was studied the carcinogenesis model of hamster cheek pouch, a type of human buccal cancer. Biodistribution studies of boron compound were performed in tumor, blood and in different precancerous and normal tissues as well as BNCT studies. Results validated this method for BNCT studies and show the capacity of the oral mucosa tumors of selectively concentrate the boron compound, showing a deleterious clear effect on the tumor after 24 hours with BNCT treatment. (author)

  17. An evaporation-based model of thermal neutron induced ternary fission of plutonium

    International Nuclear Information System (INIS)

    Lestone, J.P.

    2008-01-01

    Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~ 1.2 MeV and ~ 10 -22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission. (author)

  18. Study of stress localisation in polycrystalline grains using self-consistent modelling and neutron diffraction

    Science.gov (United States)

    Baczmański, A.; Gaj, A.; Le Joncour, L.; Wroński, S.; François, M.; Panicaud, B.; Braham, C.; Paradowska, A. M.

    2012-08-01

    The time-of-flight neutron diffraction technique and the elastoplastic self-consistent model were used to study the behaviour of single and multi-phase materials. Critical resolved shear stresses and hardening parameters in austenitic and austenitic-ferritic steels were found by analysing the evolution of the lattice strains measured during tensile tests. Special attention was paid to the changes of the grain stresses occurring due to transition from elastic to plastic deformation. Using a new method of data analysis, the variation of the stress localisation tensor as a function of macrostress was measured. The experimental results were successfully compared with model predictions for both phases of the duplex steel and also for the austenitic sample.

  19. Use of shell model calculations in R-matrix studies of neutron-induced reactions

    International Nuclear Information System (INIS)

    Knox, H.D.

    1986-01-01

    R-matrix analyses of neutron-induced reactions for many of the lightest p-shell nuclei are difficult due to a lack of distinct resonance structure in the reaction cross sections. Initial values for the required R-matrix parameters, E,sub(lambda) and γsub(lambdac) for states in the compound system, can be obtained from shell model calculations. In the present work, the results of recent shell model calculations for the lithium isotopes have been used in R-matrix analyses of 6 Li+n and 7 Li+n reactions for E sub(n) 7 Li and 8 Li on the 6 Li+n and 7 Li+n reaction mechanisms and cross sections are discussed. (author)

  20. Cross-section model for cold neutron scattering in solid and liquid methane

    CERN Document Server

    Morishima, N

    2002-01-01

    Incoherent neutron scattering cross-sections for solid CH sub 4 in the temperature range of 20.4-90.7 K and liquid CH sub 4 at temperatures between 90.7 and 111.7 K are evaluated. A space-time correlation approach is used to describe a double-differential scattering cross-section which is basically expressed by a generalized frequency distribution. The cross-section model includes molecular translations and rotations as well as intramolecular vibrations. The former are concerned with very short-time free-gas like translation, short-lived vibration and long-time diffusion (only in liquid state). The latter consists of short-time free rotation and long-time isotropic rotational diffusion. Numerical calculations on double-differential and total cross-sections are carried out for incident neutron energies covered 0.1 mu eV to 10 eV. Good agreement with experimental results at many different temperatures is found.

  1. Neutronic and Thermal-hydraulic Modelling of High Performance Light Water Reactor

    International Nuclear Information System (INIS)

    Seppaelae, Malla

    2008-01-01

    High Performance Light Water Reactor (HPLWR), which is studied in EU project 'HPLWR2', uses water at supercritical pressures as coolant and moderator to achieve higher core outlet temperature and thus higher efficiency compared to present reactors. At VTT Technical Research Centre of Finland, functionality of the thermal-hydraulics in the coupled reactor dynamics code TRAB3D/ SMABRE was extended to supercritical pressures for the analyses of HPLWR. Input models for neutronics and thermal-hydraulics were made for TRAB3D/ SMABRE according to the latest HPLWR design. A preliminary analysis was performed in which the capability of SMABRE in the transition from supercritical pressures to subcritical pressures was demonstrated. Parameterized two-group cross sections for TRAB3D neutronics were received from Hungarian Academy of Sciences KFKI Atomic Energy Research Institute together with a subroutine for handling them. PSG, a new Monte Carlo transport code developed at VTT, was also used to generate two-group constants for HPLWR and comparisons were made with the KFKI cross sections and MCNP calculations. (author)

  2. Dislocation loop formation in model FeCrAl alloys after neutron irradiation below 1 dpa

    Science.gov (United States)

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; Yamamoto, Yukinori; Howard, Richard H.

    2017-11-01

    FeCrAl alloys with varying compositions and microstructures are under consideration for accident-tolerant fuel cladding, but limited details exist on dislocation loop formation and growth for this class of alloys under neutron irradiation. Four model FeCrAl alloys with chromium contents ranging from 10.01 to 17.51 wt % and aluminum contents of 4.78 to 2.93 wt % were neutron irradiated to doses of 0.3-0.8 displacements per atom (dpa) at temperatures of 335-355 °C. On-zone STEM imaging revealed a mixed population of black dots and larger dislocation loops with either a / 2 〈 111 〉 or a 〈 100 〉 Burgers vectors. Weak composition dependencies were observed and varied depending on whether the defect size, number density, or ratio of defect types was of interest. Results were found to mirror those of previous studies on FeCrAl and FeCr alloys irradiated under similar conditions, although distinct differences exist.

  3. Neutronic and Thermal-hydraulic Modelling of High Performance Light Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, Malla [VTT Technical Research Centre of Finland, P.O.Box 1000, FI02044 VTT (Finland)

    2008-07-01

    High Performance Light Water Reactor (HPLWR), which is studied in EU project 'HPLWR2', uses water at supercritical pressures as coolant and moderator to achieve higher core outlet temperature and thus higher efficiency compared to present reactors. At VTT Technical Research Centre of Finland, functionality of the thermal-hydraulics in the coupled reactor dynamics code TRAB3D/ SMABRE was extended to supercritical pressures for the analyses of HPLWR. Input models for neutronics and thermal-hydraulics were made for TRAB3D/ SMABRE according to the latest HPLWR design. A preliminary analysis was performed in which the capability of SMABRE in the transition from supercritical pressures to subcritical pressures was demonstrated. Parameterized two-group cross sections for TRAB3D neutronics were received from Hungarian Academy of Sciences KFKI Atomic Energy Research Institute together with a subroutine for handling them. PSG, a new Monte Carlo transport code developed at VTT, was also used to generate two-group constants for HPLWR and comparisons were made with the KFKI cross sections and MCNP calculations. (author)

  4. On the energy dependence of the optical model of neutron scattering from niobium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Lawson, R.D.

    1986-01-01

    Neutron differential-elastic-scattering cross sections of niobium were measured from 1.5 to 10.0 MeV at intervals of 0 . The observed values were interpreted in the context of the spherical optical-statistical model. It was found that the volume integral of the real potential decreased with energy whereas the integral of the imaginary potential increased. The energy dependence in both cases was consistent with a linear variation. There is a dispersion relationship between the real and imaginary potentials, and when this was used, in conjunction with the experimental imaginary potential, it was possible to predict the observed energy dependence of the real potential to a good degree of accuracy, thus supporting the consistency of the data and its analysis. The real-potential well depths needed to give the correct binding energies of the 2dsub(5/2), 3ssub(1/2), 2dsub(3/2) and 1gsub(7/2) particle states and of the 1gsub(9/2) hole state are in reasonable agreement with those given by a linear extrapolation of our neutron-scattering-based potential. However, the well depths needed to give the observed of the 2psub(3/2), 1fsub(5/2) and 2psub(1/2) hole states are about 10% less than the extrapolated values. (orig.)

  5. Neutron Stress Imaging of Drawn Copper Tube: Comparison with Finite-Element Model

    Science.gov (United States)

    Pirling, T.; Carradò, A.; Brück, S.; Palkowski, H.

    2008-12-01

    Seamless tubes are used for various mechanical applications, often produced by several cold drawing steps to reach the required dimensions. The first process step, for example, extrusion or rolling, typically results in ovality and eccentricity of the tube caused by nonsymmetric material flow and being present during the cold drawing process, i.e., no homogeneous deformation. Because of this nonsymmetrical deformation, and deviations over the length of the tube caused by moving tools, this process step generates inhomogeneous residual stresses. To understand the interconnection between geometrical changes in the tubes and the resulting residual stresses, the residual strain distribution in a copper tube was measured by neutron diffraction. The aim of this study is to evaluate residual stresses generated during cold drawing of copper tubes. This research comprises experimental measurements and numerical analysis. An industrially produced copper tube was cold drawn, and the profile of residual strain over circumference and across wall thickness was measured by neutron diffraction. In parallel, a three-dimensional finite-element model (FEM) was developed to calculate the residual macrostress state generated by the forming process. Good agreement between experimental results and numerical computations was obtained.

  6. The statistical model calculation of prompt neutron spectra from spontaneous fission of {sup 244}Cm and {sup 246}Cm

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimenko, B.F. [V.G. Khlopin Radium Inst., Saint Peterburg (Russian Federation)

    1997-03-01

    The calculations of integral spectra of prompt neutrons of spontaneous fission of {sup 244}Cm and {sup 246}Cm were carried out. The calculations were done by the Statistical Computer Code Complex SCOFIN applying the Hauser-Feschbach method as applied to the description of the de-excitation of excited fission fragments by means of neutron emission. The emission of dipole gamma-quanta from these fragments was considered as a competing process. The average excitation energy of a fragment was calculated by two-spheroidal model of tangent fragments. The density of levels in an excited fragment was calculated by the Fermi-gas model. The quite satisfactory agreement was reached between theoretical and experimental results obtained in frames of Project measurements. The calculated values of average multiplicities of neutron number were 2,746 for {sup 244}Cm and 2,927 for {sup 246}Cm that was in a good accordance with published experimental figures. (author)

  7. Development of a neutronic model for the fuel of a high temperature gas reactor type PBMR

    International Nuclear Information System (INIS)

    Oropeza C, I.; Carmona H, R.; Francois L, J. L.

    2008-01-01

    In this work was developed the neutronic model of a fuel sphere of a nuclear reactor of gas of high temperature to modulate of bed of spheres (PBMR), using the Monte Carlo method with the MCNPx code. In order to be able to verify the fuel model constructed in this investigation, it is used a case of reference, based on an international exercise b enchmark . The benchmark report contains the results sent by different international participants for five phases with respect to the high temperature gas reactor (HTR), fed with uranium, plutonium and thorium. In particular, in first stage of benchmark an infinite adjustment of uranium compound fuel spheres is considered unique, with which our results were compared. This first stage considers two cases: cell calculations with spherical external frontier and cell calculations with cubic external frontier. The objective is to identify any increase in the uncertainty, related to the uranium fuel, that is associated with the plutonium and thorium fuels. In order to validate our results, the values of the neutron multiplication factor were taken in account, in cold and in the heat of the moment from the participants who sent their results obtained with Monte Carlo and deterministic calculations. The model of the fuel sphere developed in this work considers a regular distribution of 15000 Triso particles, in a cubic mesh centered within the sphere. For it was necessary to define the step firstly or p itch o f the cubic mesh. Generally, the results obtained by the participants of benchmark and those of this investigation present good agreement, nevertheless, appear some discrepancies, attributed to factors like different libraries of cross sections used, the nature of the solution: Monte Carlo or deterministic, and the difficulty of some participants to model the external frontier condition of reflection. (Author)

  8. MODELS OF KILONOVA/MACRONOVA EMISSION FROM BLACK HOLE–NEUTRON STAR MERGERS

    International Nuclear Information System (INIS)

    Kawaguchi, Kyohei; Shibata, Masaru; Kyutoku, Koutarou; Tanaka, Masaomi

    2016-01-01

    Black hole–neutron star (BH–NS) mergers are among the most promising gravitational-wave sources for ground-based detectors, and gravitational waves from BH–NS mergers are expected to be detected in the next few years. The simultaneous detection of electromagnetic counterparts with gravitational waves would provide rich information about merger events. Among the possible electromagnetic counterparts from BH–NS mergers is the so-called kilonova/macronova, emission powered by the decay of radioactive r-process nuclei, which is one of the best targets for follow-up observations. We derive fitting formulas for the mass and the velocity of ejecta from a generic BH–NS merger based on recently performed numerical-relativity simulations. We combine these fitting formulas with a new semi-analytic model for a BH–NS kilonova/macronova lightcurve, which reproduces the results of radiation-transfer simulations. Specifically, the semi-analytic model reproduces the results of each band magnitude obtained by the previous radiation-transfer simulations within ∼1 mag. By using this semi-analytic model we found that, at 400 Mpc, the kilonova/macronova is as bright as 22–24 mag for cases with a small chirp mass and a high black hole spin, and >28 mag for a large chirp mass and a low black hole spin. We also apply our model to GRB 130603B as an illustration, and show that a BH–NS merger with a rapidly spinning black hole and a large neutron star radius is favored.

  9. Tokamak D-T neutron source models for different plasma physics confinement modes

    Energy Technology Data Exchange (ETDEWEB)

    Fausser, Clement, E-mail: clement.fausser@cea.fr [CEA, DEN, Saclay, DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette (France); Puma, Antonella Li; Gabriel, Franck [CEA, DEN, Saclay, DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette (France); Villari, Rosaria [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer HCLL DEMO neutronics is based on plasma physics L-mode, but may use H or A mode. Black-Right-Pointing-Pointer Based on Plasma Physics 0D code, H and A-mode D-T neutron sources formulae are proposed. Black-Right-Pointing-Pointer TRANSGEN code is built to create 2D source maps as input for Monte-Carlo codes. Black-Right-Pointing-Pointer A-mode neutronic impact is compared to L-mode at same power on a HCLL DEMO design. Black-Right-Pointing-Pointer Results show TBR and Me slight changes, contrary to NWL profile: from -22% to +11%. - Abstract: Neutronic studies of European demonstration fusion power plant (DEMO) have been so far based on plasma physics low confinement mode (L-mode). Future tokamaks, nevertheless, may likely use alternative confinement modes such as high or advanced confinement modes (H and A-mode). Based on analytical formulae used in plasma physics, H and A-modes D-T neutron sources formulae are proposed in this paper. For that purpose, a tokamak random neutron source generator, TRANSGEN, has been built generating bidimensional (radial and poloidal) neutron source maps to be used as input for neutronics Monte-Carlo codes (TRIPOLI-4 and MCNP5). The impact of such a source on the neutronic behavior of the European DEMO-2007 Helium-cooled lithium-lead reactor concept has been assessed and compared with previous results obtained using a L-mode neutron source. An A-mode neutron source map from TRANSGEN has been used with the code TRIPOLI-4. Assuming the same fusion power, results show that main reactor global neutronic parameters, e.g. tritium breeding ratio and neutron multiplication factor, evolved slightly when compared to present uncertainties margin. However, local parameters, such as the neutron wall loading (NWL), change significantly compared to L-mode shape: from -22% to +11% for NWL.

  10. Health economic evaluation of Human Papillomavirus vaccines in women from Venezuela by a lifetime Markov cohort model

    Directory of Open Access Journals (Sweden)

    Ariel Esteban Bardach

    2017-02-01

    Full Text Available Abstract Background Cervical cancer (CC and genital warts (GW are a significant public health issue in Venezuela. Our objective was to assess the cost-effectiveness of the two available vaccines, bivalent and quadrivalent, against Human Papillomavirus (HPV in Venezuelan girls in order to inform decision-makers. Methods A previously published Markov cohort model, informed by the best available evidence, was adapted to the Venezuelan context to evaluate the effects of vaccination on health and healthcare costs from the perspective of the healthcare payer in an 11-year-old girls cohort of 264,489. Costs and quality-adjusted life years (QALYs were discounted at 5%. Eight scenarios were analyzed to depict the cost-effectiveness under alternative vaccine prices, exchange rates and dosing schemes. Deterministic and probabilistic sensitivity analyses were performed. Results Compared to screening only, the bivalent and quadrivalent vaccines were cost-saving in all scenarios, avoiding 2,310 and 2,143 deaths, 4,781 and 4,431 CCs up to 18,459 GW for the quadrivalent vaccine and gaining 4,486 and 4,395 discounted QALYs respectively. For both vaccines, the main determinants of variations in the incremental costs-effectiveness ratio after running deterministic and probabilistic sensitivity analyses were transition probabilities, vaccine and cancer-treatment costs and HPV 16 and 18 distribution in CC cases. When comparing vaccines, none of them was consistently more cost-effective than the other. In sensitivity analyses, for these comparisons, the main determinants were GW incidence, the level of cross-protection and, for some scenarios, vaccines costs. Conclusions Immunization with the bivalent or quadrivalent HPV vaccines showed to be cost-saving or cost-effective in Venezuela, falling below the threshold of one Gross Domestic Product (GDP per capita (104,404 VEF per QALY gained. Deterministic and probabilistic sensitivity analyses confirmed the robustness of

  11. Health economic evaluation of Human Papillomavirus vaccines in women from Venezuela by a lifetime Markov cohort model.

    Science.gov (United States)

    Bardach, Ariel Esteban; Garay, Osvaldo Ulises; Calderón, María; Pichón-Riviére, Andrés; Augustovski, Federico; Martí, Sebastián García; Cortiñas, Paula; Gonzalez, Marino; Naranjo, Laura T; Gomez, Jorge Alberto; Caporale, Joaquín Enzo

    2017-02-02

    Cervical cancer (CC) and genital warts (GW) are a significant public health issue in Venezuela. Our objective was to assess the cost-effectiveness of the two available vaccines, bivalent and quadrivalent, against Human Papillomavirus (HPV) in Venezuelan girls in order to inform decision-makers. A previously published Markov cohort model, informed by the best available evidence, was adapted to the Venezuelan context to evaluate the effects of vaccination on health and healthcare costs from the perspective of the healthcare payer in an 11-year-old girls cohort of 264,489. Costs and quality-adjusted life years (QALYs) were discounted at 5%. Eight scenarios were analyzed to depict the cost-effectiveness under alternative vaccine prices, exchange rates and dosing schemes. Deterministic and probabilistic sensitivity analyses were performed. Compared to screening only, the bivalent and quadrivalent vaccines were cost-saving in all scenarios, avoiding 2,310 and 2,143 deaths, 4,781 and 4,431 CCs up to 18,459 GW for the quadrivalent vaccine and gaining 4,486 and 4,395 discounted QALYs respectively. For both vaccines, the main determinants of variations in the incremental costs-effectiveness ratio after running deterministic and probabilistic sensitivity analyses were transition probabilities, vaccine and cancer-treatment costs and HPV 16 and 18 distribution in CC cases. When comparing vaccines, none of them was consistently more cost-effective than the other. In sensitivity analyses, for these comparisons, the main determinants were GW incidence, the level of cross-protection and, for some scenarios, vaccines costs. Immunization with the bivalent or quadrivalent HPV vaccines showed to be cost-saving or cost-effective in Venezuela, falling below the threshold of one Gross Domestic Product (GDP) per capita (104,404 VEF) per QALY gained. Deterministic and probabilistic sensitivity analyses confirmed the robustness of these results.

  12. Measurement of Beam Lifetime and Applications for SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaobiao; Corbett, Jeff; /SLAC

    2011-04-05

    Beam lifetime studies for the SPEAR3 storage ring are presented. The three lifetime components are separated with lifetime measurements under various combinations of beam currents and fill patterns and vertical scraper scans. Touschek lifetime is studied with rf voltage scans and with the horizontal or vertical scrapers inserted. The measurements are explained with calculations based on the calibrated lattice model. Quantum lifetime measurements are performed with reduced longitudinal and horizontal apertures, respectively, from which we deduce the radiation energy loss down to a few keV per revolution and the horizontal beam size.

  13. Atlas of neutron resonances

    CERN Document Server

    Mughabghab, Said

    2018-01-01

    Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z= 1-60, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=1-60, as well as thermal cross sections, capture resonance integrals, average resonance parameters and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections o...

  14. Simulation of complete neutron scattering experiments: from model systems to liquid germanium; Simulation complete d'une experience de diffusion de neutrons: des systemes modeles au germanium liquide

    Energy Technology Data Exchange (ETDEWEB)

    Hugouvieux, V

    2004-11-15

    In this thesis, both theoretical and experimental studies of liquids are done. Neutron scattering enables structural and dynamical properties of liquids to be investigated. On the theoretical side, molecular dynamics simulations are of great interest since they give positions and velocities of the atoms and the forces acting on each of them. They also enable spatial and temporal correlations to be computed and these quantities are also available from neutron scattering experiments. Consequently, the comparison can be made between results from molecular dynamics simulations and from neutron scattering experiments, in order to improve our understanding of the structure and dynamics of liquids. However, since extracting reliable data from a neutron scattering experiment is difficult, we propose to simulate the experiment as a whole, including both instrument and sample, in order to gain understanding and to evaluate the impact of the different parasitic contributions (absorption, multiple scattering associated with elastic and inelastic scattering, instrument resolution). This approach, in which the sample is described by its structure and dynamics as computed from molecular dynamics simulations, is presented and tested on isotropic model systems. Then liquid germanium is investigated by inelastic neutron scattering and both classical and ab initio molecular dynamics simulations. This enables us to simulate the experiment we performed and to evaluate the influence of the contributions from the instrument and from the sample on the detected signal. (author)

  15. Covariances for neutron cross sections calculated using a regional model based on local-model fits to experimental data

    International Nuclear Information System (INIS)

    Smith, D.L.; Guenther, P.T.

    1983-11-01

    We suggest a procedure for estimating uncertainties in neutron cross sections calculated with a nuclear model descriptive of a specific mass region. It applies standard error propagation techniques, using a model-parameter covariance matrix. Generally, available codes do not generate covariance information in conjunction with their fitting algorithms. Therefore, we resort to estimating a relative covariance matrix a posteriori from a statistical examination of the scatter of elemental parameter values about the regional representation. We numerically demonstrate our method by considering an optical-statistical model analysis of a body of total and elastic scattering data for the light fission-fragment mass region. In this example, strong uncertainty correlations emerge and they conspire to reduce estimated errors to some 50% of those obtained from a naive uncorrelated summation in quadrature. 37 references

  16. Dispersive versus constant-geometry models of the neutron-208Pb mean field

    International Nuclear Information System (INIS)

    Mahaux, C.; Sartor, R.

    1990-01-01

    Phenomenological optical-model analyses of differential elastic scattering cross sections of neutrons by 208 Pb indicate that the radius of the real part of the potential decreases with increasing energy in the domain 4< E<40 MeV. On the other hand, the experimental total cross section is compatible with a real potential whose radial shape is energy independent. In order to clarify this situation, we compare a 'constant geometry' model whose real part has an energy-independent radial shape with a 'dispersive model' whose real part has an energy-dependent radial shape calculated from the dispersion relation which connects the real and imaginary parts of the field. The following three main features are considered. (i) The junction of the optical-model potential with the shell-model potential at negative energy. (ii) The agreement between the calculated total and differential cross sections and their experimental values. (iii) The extent to which the real part of the optical-model potential can be accurately determined by analyzing the total cross section only. It is concluded that the presently available experimental data support the existence of an energy dependence of the radial shape of the real potential, in keeping with the dispersion relation. A new parametrization of a 'dispersive' mean field is also presented. It does not involve more parameters than the previously published one but takes better account of the physical properties of the spectral functions; it is shown to improve the agreement between predicted and experimental scattering data. (orig.)

  17. Lifetime economic burden of prostate cancer

    Directory of Open Access Journals (Sweden)

    Stokes Michael E

    2011-12-01

    Full Text Available Abstract Background Prostate cancer (PCa is the most common cancer affecting men in the United States. The initial treatment and subsequent monitoring of PCa patients places a large burden on U.S. health care systems. The objectives of this study were to estimate the total and disease-related per-patient lifetime costs using a phase-based model of cancer care for PCa patients enrolled in Medicare. Methods A model was developed to estimate life-time costs for patients diagnosed with PCa. Patients ≥ 65 years old and diagnosed with PCa between calendar years 1991-2002 were selected from the SEER database. Using SEER, we estimated survival times for PCa patients from diagnosis until death. The period of time patients contributed to treatment phases was determined using an algorithm designed to model the natural history of PCa. Costs were obtained from the US SEER-Medicare database and estimated during specific phases of care. Cost estimates were then combined with survival data to yield total and PCa-related life-time costs. Results Overall, the model estimated life-time costs of $110,520 (95% CI 110,324-110,739 per patient. PCa-related costs made up approximately 31% of total costs ($34,432. Conclusions Prostate cancer places a significant burden on U.S. health-care systems with average life-time PCa-related costs in excess of $30,000.

  18. Measurements of heavy quark and lepton lifetimes

    International Nuclear Information System (INIS)

    Jaros, J.A.

    1985-02-01

    The PEP/PETRA energy range has proved to be well-suited for the study of the lifetimes of hadrons containing the b and c quarks and the tau lepton for several reasons. First, these states comprise a large fraction of the total interaction rate in e + e - annihilation and can be cleanly identified. Second, the storage rings have operated at high luminosity and so produced these exotic states copiously. And finally, thanks to the interplay of the Fermi coupling strength, the quark and lepton masses, and the beam energy, the expected decay lengths are in the 1/2 mm range and so are comparatively easy to measure. This pleasant coincidence of cleanly identified and abundant signal with potentially large effects has made possible the first measurements of two fundamental weak couplings, tau → nu/sub tau/W and b → cW. These measurements have provided a sharp test of the standard model and allowed, for the first time, the full determination of the magnitudes of the quark mixing matrix. This paper reviews the lifetime studies made at PEP during the past year. It begins with a brief review of the three detectors, DELCO, MAC and MARK II, which have reported lifetime measurements. Next it discusses two new measurements of the tau lifetime, and briefly reviews a measurement of the D 0 lifetime. Finally, it turns to measurements of the B lifetime, which are discussed in some detail. 18 references, 14 figures, 1 table

  19. Particle size distribution models of small angle neutron scattering pattern on ferro fluids

    International Nuclear Information System (INIS)

    Sistin Asri Ani; Darminto; Edy Giri Rachman Putra

    2009-01-01

    The Fe 3 O 4 ferro fluids samples were synthesized by a co-precipitation method. The investigation of ferro fluids microstructure is known to be one of the most important problems because the presence of aggregates and their internal structure influence greatly the properties of ferro fluids. The size and the size dispersion of particle in ferro fluids were determined assuming a log normal distribution of particle radius. The scattering pattern of the measurement by small angle neutron scattering were fitted by the theoretical scattering function of two limitation models are log normal sphere distribution and fractal aggregate. Two types of particle are detected, which are presumably primary particle of 30 Armstrong in radius and secondary fractal aggregate of 200 Armstrong with polydispersity of 0.47 up to 0.53. (author)

  20. Description of spectrum and electromagnetic transitions in 94Mo through the proton-neutron interacting boson model

    Science.gov (United States)

    Mu, ChengFu; Zhang, DaLi

    2018-01-01

    We investigated the properties of low-lying states in 94Mo within the framework of the proton-neutron interacting boson model (IBM-2), with special focus on the characteristics of mixed-symmetry states. We calculated level energies and M1 and E2 transition strengths. The IBM-2 results agree with the available quantitative and qualitative experimental data on 94Mo. The properties of mixed-symmetry states can be well described by IBM-2 given that the energy of the d proton boson is different from that of the neutron boson, especially for the transition of B( M1; 4 2 + → 4 1 + ).

  1. Analysis of the 48Ca neutron skin using a nonlocal dispersive-optical-model self-energy

    Science.gov (United States)

    Atkinson, Mack; Mahzoon, Hossein; Dickhoff, Willem; Charity, Robert

    2017-09-01

    A nonlocal dispersive-optical-model (DOM) analysis of the 40Ca and 48Ca nuclei has been implemented. The real and imaginary potentials are constrained by fitting to elastic-scattering data, total and reaction cross sections, energy level information, particle number, and the charge densities of 40Ca and 48Ca, respectively. The nonlocality of these potentials permits a proper dispersive self-energy which accurately describes both positive and negative energy observables. 48Ca is of particular interest because it is doubly magic and has a neutron skin due to the excess of neutrons. The DOM neutron skin radius is found to be rskin = 0.245 , which is larger than most previous calculations. The neutron skin is closely related to the symmetry energy which is a crucial part of the nuclear equation of state. The combined analysis of 40Ca and 48Ca energy densities provides a description of the density dependence of the symmetry energy which is compared with the 48Ca neutron skin. Results for 208Pb will also become available in the near future. NSF.

  2. Algorithm development and verification of UASCM for multi-dimension and multi-group neutron kinetics model

    International Nuclear Information System (INIS)

    Si, S.

    2012-01-01

    The Universal Algorithm of Stiffness Confinement Method (UASCM) for neutron kinetics model of multi-dimensional and multi-group transport equations or diffusion equations has been developed. The numerical experiments based on transport theory code MGSNM and diffusion theory code MGNEM have demonstrated that the algorithm has sufficient accuracy and stability. (authors)

  3. Disentangling phase transitions and critical points in the proton–neutron interacting boson model by catastrophe theory

    Directory of Open Access Journals (Sweden)

    J.E. García-Ramos

    2014-09-01

    Full Text Available We introduce the basic concepts of catastrophe theory needed to derive analytically the phase diagram of the proton–neutron interacting boson model (IBM-2. Previous studies [1–3] were based on numerical solutions. We here explain the whole IBM-2 phase diagram including the precise order of the phase transitions in terms of the cusp catastrophe.

  4. On the magnitude of electric dipole moment of a neutron in the Weinberg CP-violation model

    International Nuclear Information System (INIS)

    Ansel'm, A.A.; Bunakov, V.E.; Gudkov, V.P.; Ural'tsev, N.G.

    1984-01-01

    It is shown, that the magnitude of the electric dipole moment of an neutron in the Weinberg CP-violation model is determined by the interaction with neutral Higgs bosons and it exceeds the existing experimental limit by two or three orders

  5. Nuclear mass formula with a neutron skin degree of freedom and finite-range model for the surface energy

    International Nuclear Information System (INIS)

    Moeller, P.; Myers, W.D.

    1984-03-01

    We study the possibility of extending the model used by Moeller and Nix in 1980 to calculate nuclear masses and fission barriers for nuclei throughout the periodic system, to describe compressibility effects and the existence of a neutron skin. 9 references

  6. The energy-dependent backward-forward-isotropic scattering model with some applications to the neutron transport equation

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1985-01-01

    A multigroup formalism is developed for the backward-forward-isotropic scattering model of neutron transport. Some exact solutions are obtained in two-group theory for slab and spherical geometry. The results are useful for benchmark problems involving multigroup anisotropic scattering. (author)

  7. Progress towards magnetic trapping of ultra-cold neutrons

    CERN Document Server

    Huffman, P R; Butterworth, J S; Coakley, K J; Dewey, M S; Dzhosyuk, S N; Gilliam, D M; Golub, R; Greene, G L; Habicht, K; Lamoreaux, S K; Mattoni, C E H; McKinsey, D N; Wietfeldt, F E; Doyle, J M

    2000-01-01

    We report progress towards magnetic trapping of ultra-cold neutrons (UCN) in preparation for a neutron lifetime measurement. UCN will be produced by inelastic scattering of cold (0.89 nm) neutrons in a reservoir of superfluid sup 4 He and confined in a three-dimensional magnetic trap. As the trapped neutrons decay, recoil electrons will generate scintillations in the liquid He, which should be detectable with nearly 100% efficiency. This direct measure of the number of UCN decays vs. time can be used to determine the neutron beta-decay lifetime.

  8. Progress towards magnetic trapping of ultra-cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, P.R.; Brome, C.R.; Butterworth, J.S.; Coakley, K.J.; Dewey, M.S.; Dzhosyuk, S.N.; Gilliam, D.M.; Golub, R.; Greene, G.L.; Habicht, K.; Lamoreaux, S.K.; Mattoni, C.E.H.; McKinsey, D.N.; Wietfeldt, F.E.; Doyle, J.M

    2000-02-11

    We report progress towards magnetic trapping of ultra-cold neutrons (UCN) in preparation for a neutron lifetime measurement. UCN will be produced by inelastic scattering of cold (0.89 nm) neutrons in a reservoir of superfluid {sup 4}He and confined in a three-dimensional magnetic trap. As the trapped neutrons decay, recoil electrons will generate scintillations in the liquid He, which should be detectable with nearly 100% efficiency. This direct measure of the number of UCN decays vs. time can be used to determine the neutron beta-decay lifetime.

  9. Inhibition of tumor growth in a glioma model treated with boron neutron capture therapy

    International Nuclear Information System (INIS)

    Goodman, J.H.; McGregor, J.M.; Clendenon, N.R.; Gahbauer, R.A.; Barth, R.F.; Soloway, A.H.; Fairchild, R.G.

    1990-01-01

    This investigation attempts to determine whether increased survival time seen when the F98 glioma model is treated with boron neutron capture therapy (BNCT) is a result of inhibition of tumor growth caused by radiation-induced alterations in endothelial cells and normal tissue components. This indirect effect of radiation has been called the tumor bed effect. A series of tumor-bearing rats was studied, using a standardized investigational BNCT protocol consisting of 50 mg/kg of Na2B12H11SH injected intravenously 14 to 17 hours before neutron irradiation at 4 x 10(12) n/cm2. Ten rats, serving as controls, received no treatment either before or after tumor implantation. A second group of 10 rats was treated with BNCT 4 days before tumor implantation; these animals received no further treatment. The remaining group of 10 rats received no pretreatment but was treated with BNCT 10 days after implantation. Histological and ultrastructural analyses were performed in 2 animals from each group 17 days after implantation. Survival times of the untreated control animals (mean, 25.8 days) did not differ statistically from the survival times of the rats in the pretreated group (mean, 25.5 days). The rats treated with BNCT after implantation survived significantly longer (P less than 0.02; mean, 33.2 days) than the controls and the preirradiated animals. Tumor size indices calculated from measurements taken at the time of death were similar in all groups. These results indicate that, with this tumor model, BNCT does not cause a tumor bed effect in cerebral tissue. The therapeutic gains observed with BNCT result from direct effects on tumor cells or on the peritumoral neovascularity

  10. Ground tests of the Dynamic Albedo of Neutron instrument operation in the passive mode with a Martian soil model

    Science.gov (United States)

    Shvetsov, V. N.; Dubasov, P. V.; Golovin, D. V.; Kozyrev, A. S.; Krylov, A. R.; Krylov, V. A.; Litvak, M. L.; Malakhov, A. V.; Mitrofanov, I. G.; Mokrousov, M. I.; Sanin, A. B.; Timoshenko, G. N.; Vostrukhin, A. A.; Zontikov, A. O.

    2017-07-01

    The results of the Dynamic Albedo of Neutrons (DAN) instrument ground tests in the passive mode of operation are presented in comparison with the numerical calculations. These test series were conducted to support the current surface measurements of DAN onboard the MSL Curiosity rover. The instrument sensitivity to detect thin subsurface layers of water ice buried at different depths in the analog of Martian soil has been evaluated during these tests. The experiments have been done with a radioisotope Pu-Be neutron source (analog of the MMRTG neutron source onboard the Curiosity rover) and the Martian soil model assembled from silicon-rich window glass pane. Water ice layers were simulated with polyethylene sheets. All experiments have been performed at the test facility built at the Joint Institute for Nuclear Research (Dubna, Russia).

  11. Progress in implementation of the neutronics model of HEXTRAN into APROS

    International Nuclear Information System (INIS)

    Rintala, J.

    2009-01-01

    A new three-dimensional nodal model for neutronics calculation is currently under implementation into APROS - Advanced PROcess Simulation environment - to conform the increasing accuracy requirements. The new model is based on an advanced nodal code HEXTRAN and its static version HEXBU-3D by VTT, Technical Research Centre of Finland. However, several improvements for the model are made and the whole model has been reprogrammed. They don't change the theory basement of the method, but rather makes the implementation more flexible. Currently the computational part of the program is ready and current work concentrates on testing and validation. User interface details and usability issues need also work in the future. In this paper, general information about the improvements of the theory is explained first. Then the latest validation results are given. Currently the dynamical characteristics are tested by calculating the AER's kinetic benchmarks for VVER-440 reactors. In this paper, the results for the first benchmark are shown for two version of the code. The first version is fully HEXTRAN-comparable code to test that the basic structure works as wanted. The second version is the actual improved model for APROS. (author)

  12. Progress in implementation of the neutronics model of HEXTRAN into APROS

    International Nuclear Information System (INIS)

    Jukka Rintala

    2009-01-01

    A new three-dimensional nodal model for neutronics calculation is currently under implementation into APROS - Advanced PROcess Simulation environment - to conform the increasing accuracy requirements. The new model is based on an advanced nodal code HEXTRAN and its static version HEXBU-3D by VTT, Technical Research Centre of Finland. However, several improvements for the model are made and the whole model has been reprogrammed. They don't change the theory basement of the method, but rather makes the implementation more flexible. Currently the computational part of the program is ready and current work concentrates on testing and validation. User interface details and usability issues need also work in the future. In this paper, general information about the improvements of the theory is explained first. Then the latest validation results are given. Currently the dynamical characteristics are tested by calculating the atomic energy research's kinetic benchmarks for WWER-440 reactors. In this paper, the results for the first benchmark are shown for two version of the code. The first version is fully HEXTRAN-comparable code to test that the basic structure works as wanted. The second version is the actual improved model for APROS. (Authors)

  13. LHCb: Measurement of $b$-hadron lifetimes at LHCb

    CERN Multimedia

    Amhis, Y

    2014-01-01

    Lifetimes are among the most fundamental properties of elementary particles. Precision Measurements of $b$-hadron lifetimes are an important tool to test theoretical models such as HQET. These models allow to predict various observables related to B-mixing. Using data collected during Run 1 at the LHC, LHCb measured the lifetime of B-decays including a $J/\\psi$ in the final state.

  14. Effect of the energy spectrum and angular momentum of pre-scission neutrons on the prediction of fission fragment angular anisotropy by the models

    Science.gov (United States)

    Soheyli, Saeed; Khanlari, Marzieh Varasteh

    2016-04-01

    Effects of the various neutron emission energy spectra, as well as the influence of the angular momentum of pre-scission neutrons on theoretical predictions of fission fragment angular anisotropies for several heavy-ion induced fission systems are considered. Although theoretical calculations of angular anisotropy are very sensitive to neutron emission correction, the effects of the different values of kinetic energy of emitted neutrons derived from the various neutron emission energy spectra before reaching to the saddle point on the prediction of fission fragment angular distribution by the model are not significant and can be neglected, since these effects on angular anisotropies of fission fragments for a wide range of fissility parameters and excitation energies of compound nuclei are not more than 10%. Furthermore, the theoretical prediction of fission fragment angular anisotropy is not sensitive to the angular momentum of emitted neutrons.

  15. Spectra and neutron dose of an 18 MV Linac using two geometric models of the head; Espectros y dosis por neutrones de un Linac de 18 MV usando dos modelos geometricos del cabezal

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, M. T.; Pino, F.; Barros, H.; Sajo-Bohus, L. [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Sartenejas, Baruta 1080-A, Caracas (Venezuela, Bolivarian Republic of); Davila, J. [Fisica Medica C. A., Av. Francisco de Miranda s/n, Los Palos Grandes, 1060 Miranda (Venezuela, Bolivarian Republic of); Salcedo, E. [Centro Medico Docente La Trinidad, Av. de El Haltillo, Caracas (Venezuela, Bolivarian Republic of); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Benites R, J. L., E-mail: mariate9590@gmail.com [Centro de Cancerologia de Nayarit, Servicio de Seguridad Radiologica, Calz. de la Cruz 118 Sur, 63000 Tepic, Nayarit (Mexico)

    2015-10-15

    Full text: Using the Monte Carlo method, by MCNP5 code, simulations were performed with different source terms and 2 geometric models of the head to obtain spectra in energy, flow and doses of photo-neutrons at different positions on the stretcher and in the radiotherapy room. The simplest model was a spherical shell of tungsten; the second was the complete model of a heterogeneous head of an accelerator Varian ix. In both models Tosi function was used as a source term. In addition, for the second model Sheikh-Bagheri distribution was used for photons and photo-neutrons were generated. Also in both models the radiotherapy room of Gurve group of the Teaching Medical Center La Trinidad was included, which is equipped with an accelerator Varian Clinic 2100. In this Center passive detectors PADC (Cr-39) were irradiated with neutron converters, with 18 MeV photons radiation. The measured neutron flow was compared with that obtained with Monte Carlo calculations. The Monte Carlo flows are similar to those measured at the isocenter. The simplest model underestimates the neutron flow compared with the calculated flows with the heterogeneous model of the head. (Author)

  16. The Impact of Uncertainties in African Biomass Burning Emission Estimates on Modeling Global Air Quality, Long Range Transport and Tropospheric Chemical Lifetimes

    Directory of Open Access Journals (Sweden)

    Guido R. van der Werf

    2012-02-01

    Full Text Available The chemical composition of the troposphere in the tropics and Southern Hemisphere (SH is significantly influenced by gaseous emissions released from African biomass burning (BB. Here we investigate how various emission estimates given in bottom-up BB inventories (GFEDv2, GFEDv3, AMMABB affect simulations of global tropospheric composition using the TM4 chemistry transport model. The application of various model parameterizations for introducing such emissions is also investigated. There are perturbations in near-surface ozone (O3 and carbon monoxide (CO of ~60–90% in the tropics and ~5–10% in the SH between different inventories. Increasing the update frequency of the temporal distribution to eight days generally results in decreases of between ~5 and 10% in near-surface mixing ratios throughout the tropics, which is larger than the influence of increasing the injection heights at which BB emissions are introduced. There are also associated differences in the long range transport of pollutants throughout the SH, where the composition of the free troposphere in the SH is sensitive to the chosen BB inventory. Analysis of the chemical budget terms reveals that the influence of increasing the tropospheric CO burden due to BB on oxidative capacity of the troposphere is mitigated by the associated increase in NOx emissions (and thus O3 with the variations in the CO/N ratio between inventories being low. For all inventories there is a decrease in the tropospheric chemical lifetime of methane of between 0.4 and 0.8% regardless of the CO emitted from African BB. This has implications for assessing the effect of inter-annual variability in BB on the annual growth rate of methane.

  17. Fluorescence lifetime based bioassays

    Science.gov (United States)

    Meyer-Almes, Franz-Josef

    2017-12-01

    Fluorescence lifetime (FLT) is a robust intrinsic property and material constant of fluorescent matter. Measuring this important physical indicator has evolved from a laboratory curiosity to a powerful and established technique for a variety of applications in drug discovery, medical diagnostics and basic biological research. This distinct trend was mainly driven by improved and meanwhile affordable laser and detection instrumentation on the one hand, and the development of suitable FLT probes and biological assays on the other. In this process two essential working approaches emerged. The first one is primarily focused on high throughput applications employing biochemical in vitro assays with no requirement for high spatial resolution. The second even more dynamic trend is the significant expansion of assay methods combining highly time and spatially resolved fluorescence data by fluorescence lifetime imaging. The latter approach is currently pursued to enable not only the investigation of immortal tumor cell lines, but also specific tissues or even organs in living animals. This review tries to give an actual overview about the current status of FLT based bioassays and the wide range of application opportunities in biomedical and life science areas. In addition, future trends of FLT technologies will be discussed.

  18. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    Science.gov (United States)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic

  19. Exact boson mappings for nuclear neutron (proton) shell-model algebras having SU(3) subalgebras

    International Nuclear Information System (INIS)

    Bonatsos, D.; Klein, A.

    1986-01-01

    In this paper the commutation relations of the fermion pair operators of identical nucleons coupled to spin zero are given for the general nuclear major shell in LST coupling. The associated Lie algebras are the unitary symplectic algebras Sp(2M). The corresponding multipole subalgebras are the unitary algebras U(M), which possess SU(3) subalgebras. Number conserving exact boson mappings of both the Dyson and hermitian form are given for the nuclear neutron (proton) s--d, p--f, s--d--g, and p--f--h shells, and their group theoretical structure is emphasized. The results are directly applicable in the case of the s--d shell, while in higher shells the experimentally plausible pseudo-SU(3) symmetry makes them applicable. The final purpose of this work is to provide a link between the shell model and the Interacting Boson Model (IBM) in the deformed limit. As already implied in the work of Draayer and Hecht, it is difficult to associate the boson model developed here with the conventional IBM model. The differences between the two approaches (due mainly to the effects of the Pauli principle) as well as their physical implications are extensively discussed

  20. Neutron Scattering Provides a New Model for Optimal Morphologies in Organic Photovoltaics: Rivers and Streams

    Science.gov (United States)

    Dadmun, Mark; Henry, Nathan; Yin, Wen; Xiao, Kai; Ankner, John

    2011-03-01

    The current model for the ideal morphology of a conjugated polymer bulk heterojunction organic photovoltaic (OPV) is a phase-separated structure that consists of two pure phases, one an electron donor, the other an acceptor, that form an interpenetrating, bicontinuous, network on the length scale of 10-20 nm. In this talk, neutron scattering experiments that demonstrate that this model is incorrect for the archetypal conjugated polymer bulk heterojunction, poly[3-hexylthiophene] (P3HT) and the fullerene 1-(3-methyloxycarbonyl)propy(1-phenyl [6,6]) C61 (PCBM) will be presented. These studies show that the miscibility of PCBM in P3HT approaches 20 wt%, a result that is counter to the standard model of efficient organic photovoltaics. The implications of this finding on the ideal morphology of conjugated polymer bulk heterojunctions will be discussed, where these results are interpreted to present a model that agrees with this data, and conforms to structural and functional information in the literature. Furthermore, the thermodynamics of conjugated polymer:fullerene mixtures dominate the formation of this hierarchical morphology and must be more thoroughly understood to rationally design and fabricate optimum morphologies for OPV activity.

  1. Development of a 3D consistent 1D neutronics model for reactor core simulation

    International Nuclear Information System (INIS)

    Lee, Ki Bog; Joo, Han Gyu; Cho, Byung Oh; Zee, Sung Quun

    2001-02-01

    In this report a 3D consistent 1D model based on nonlinear analytic nodal method is developed to reproduce the 3D results. During the derivation, the current conservation factor (CCF) is introduced which guarantees the same axial neutron currents obtained from the 1D equation as the 3D reference values. Furthermore in order to properly use 1D group constants, a new 1D group constants representation scheme employing tables for the fuel temperature, moderator density and boron concentration is developed and functionalized for the control rod tip position. To test the 1D kinetics model with CCF, several steady state and transient calculations were performed and compared with 3D reference values. The errors of K-eff values were reduced about one tenth when using CCF without significant computational overhead. And the errors of power distribution were decreased to the range of one fifth or tenth at steady state calculation. The 1D kinetics model with CCF and the 1D group constant functionalization employing tables as a function of control rod tip position can provide preciser results at the steady state and transient calculation. Thus it is expected that the 1D kinetics model derived in this report can be used in the safety analysis, reactor real time simulation coupled with system analysis code, operator support system etc.

  2. A Satellite Mortality Study to Support Space Systems Lifetime Prediction

    Science.gov (United States)

    Fox, George; Salazar, Ronald; Habib-Agahi, Hamid; Dubos, Gregory

    2013-01-01

    Estimating the operational lifetime of satellites and spacecraft is a complex process. Operational lifetime can differ from mission design lifetime for a variety of reasons. Unexpected mortality can occur due to human errors in design and fabrication, to human errors in launch and operations, to random anomalies of hardware and software or even satellite function degradation or technology change, leading to unrealized economic or mission return. This study focuses on data collection of public information using, for the first time, a large, publically available dataset, and preliminary analysis of satellite lifetimes, both operational lifetime and design lifetime. The objective of this study is the illustration of the relationship of design life to actual lifetime for some representative classes of satellites and spacecraft. First, a Weibull and Exponential lifetime analysis comparison is performed on the ratio of mission operating lifetime to design life, accounting for terminated and ongoing missions. Next a Kaplan-Meier survivor function, standard practice for clinical trials analysis, is estimated from operating lifetime. Bootstrap resampling is used to provide uncertainty estimates of selected survival probabilities. This study highlights the need for more detailed databases and engineering reliability models of satellite lifetime that include satellite systems and subsystems, operations procedures and environmental characteristics to support the design of complex, multi-generation, long-lived space systems in Earth orbit.

  3. Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases in BDIX rats

    International Nuclear Information System (INIS)

    Trivillin, V.A.; Garabalino, M.A.; Colombo, L.L.

    2013-01-01

    Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases in BDIX rats Introduction: Boron Neutron Capture Therapy (BNCT) is based on selective tumor uptake of boron compounds, followed by neutron irradiation. BNCT was proposed for the treatment of unresectable, diffuse lung metastases. The aim of the present study was to perform BNCT studies in an experimental model of lung metastases. Materials and Methods: 3 x 106/0.5 ml colon carcinoma cells (DHD/K12/TRb) were injected iv in syngeneic BDIX rats. Three weeks post-inoculation, rats with diffuse lung metastases were used for in vivo BNCT studies in the RA-3 Nuclear Reactor. Based on previous biodistribution studies and computational dosimetry with Monte Carlo simulation, 2 doses were prescribed, i.e. 4 Gy and 8 Gy minimum absorbed dose to tumor. The animals were assigned to 5 experimental groups (n= 4 to 8) at each dose level: T0 (euthanized pre-treatment), BPA-BNCT, Comb-BNCT (BPA+GB-10), Beam only (background dose) and Sham (same manipulation, no treatment). Boron concentration was measured in a blood sample taken pre-irradiation to verify that the value was in the range established in previous biodistribution studies. The animals were followed clinically for 2 weeks after neutron irradiation and then euthanized to assess the response of tumor and normal lung, macroscopically and histologically. To date we have evaluated the end-point weight of lung (normal lung + metastases) and % lung weight/body weight as an indicator of tumor growth. Results: The statistical analysis (ANOVA) of % lung weight/body weight showed statistically significant differences (p<0.05) between groups T0 (0.79 ± 0.38) and Sham (1.87 ± 0.91). No statistically significant differences were observed between the Beam only groups (at both dose levels) and Sham. Similar and statistically significant tumor control was induced in the groups BPA-BNCT Low dose (LD) (0.56 ± 0.11), BPA-BNCT High dose (HD) (0.80 ± 0.16), Comb

  4. Uncertainties in the proton lifetime

    International Nuclear Information System (INIS)

    Ellis, J.; Nanopoulos, D.V.; Rudaz, S.; Gaillard, M.K.

    1980-04-01

    We discuss the masses of the leptoquark bosons m(x) and the proton lifetime in Grand Unified Theories based principally on SU(5). It is emphasized that estimates of m(x) based on the QCD coupling and the fine structure constant are probably more reliable than those using the experimental value of sin 2 theta(w). Uncertainties in the QCD Λ parameter and the correct value of α are discussed. We estimate higher order effects on the evolution of coupling constants in a momentum space renormalization scheme. It is shown that increasing the number of generations of fermions beyond the minimal three increases m(X) by almost a factor of 2 per generation. Additional uncertainties exist for each generation of technifermions that may exist. We discuss and discount the possibility that proton decay could be 'Cabibbo-rotated' away, and a speculation that Lorentz invariance may be violated in proton decay at a detectable level. We estimate that in the absence of any substantial new physics beyond that in the minimal SU(5) model the proton lifetimes is 8 x 10 30+-2 years

  5. Neutronic calculations of hexagonal lattice nuclear reactors: Modelling of the CAREM-25 reactor

    International Nuclear Information System (INIS)

    Pacio, Julio Cesar

    2008-01-01

    This work was carried out in the frame of the Cnea CAREM-25 project (Central Argentina de Elementos Modulares).This project involves the development and construction of an argentinian design nuclear reactor for producing electricity. It's a PWR type (light water moderated and enriched U02 fueled) integrated reactor in an hexagonal lattice.The total power of this prototype is 100 MW thermal. In this frame, the main objective of this work is to consolidate and validate a neutronic line of calculus which can be applied to the CAREM-25 core.At a first analysis at cell level, the different fuel elements were modeled with the Dragon code, obtaining homogenised and condensed cross sections.Then a core level analysis with the Puma code was performed at full power condition and room temperature. A comparison of the obtained results is needed.For this reason, a Monte Carlo analysis (at room temperature) was performed.Also a validation of the Dragon code was carried out on the base of experimental data of WWER type lattices (similars to CAREM).The confidence on the results is then granted and their uncertainties were quantified.The Dragon-Puma line of calculus is then established and the main objective of this work is achieved. A full neutronic analysis should be followed by thermohydraulics calculations in an iterative procedure, and it would be the objective of future works.Finally, a burnup analysis was performed, at cell and core level.The design condition for extraction burnup and fuel cycle duration were verified. [es

  6. Incoherent neutron-scattering determination of hydrogen content : Theory and modeling

    NARCIS (Netherlands)

    Perego, R.C.; Blaauw, M.

    2005-01-01

    Hydrogen concentrations of 0 up to 350?mg/kg in a titanium alloy have been determined at National Institute of Standards and Technology (NIST) with neutron incoherent scattering (NIS) and with cold neutron prompt gamma activation analysis. The latter is a well-established technique, while the former

  7. Observation and modeling of biological colloids with neutron scattering techniques and Monte Carlo simulations

    NARCIS (Netherlands)

    Van Heijkamp, L.F.

    2011-01-01

    In this study non-invasive neutron scattering techniques are used on soft condensed matter, probing colloidal length scales. Neutrons penetrate deeply into matter and have a different interaction with hydrogen and deuterium, allowing for tunable contrast using light and heavy water as solvents. The

  8. Triple-humped fission barrier model for a new 238U neutron cross-section evaluation and first validations

    International Nuclear Information System (INIS)

    Lopez Jimenez, M.J.; Morillon, B.; Romain, P.

    2005-01-01

    A new neutron-induced cross-section evaluation of 238 U from 1 keV up to 200 MeV has been performed using only nuclear reactions models. A new fission penetrability model taking into account a triple humped barrier has been developed. A clear improvement has been observed for K-effective validation tests (up to 30 MeV) with this new evaluation. This improvement is mainly due to a better treatment of the inelastic exit channel

  9. Study on coupling of three-dimension space time neutron kinetics model and RELAP5 and improvement of RELAP5

    International Nuclear Information System (INIS)

    Gui Xuewen; Cai Qi; Luo Bangqi

    2007-01-01

    A two-group three-dimension space-time neutron kinetics model is applied to the RELAP5 code, which replaces the point reactor kinetics model. A visual operation interface is designed to convenience interactive operation between operator and computer. The calculation results and practical applications indicate that the functions and precision of improved RELAP5 are enhanced and can be easily used. The improved RELAP5 has a good application perspective in nuclear power plant simulation. (authors)

  10. Surface roughness effect on ultracold neutron interaction with a wall and implications for computer simulations

    OpenAIRE

    Steyerl, A.; Malik, S. S.; Desai, A. M.; Kaufman, C.

    2009-01-01

    We review the diffuse scattering and the loss coefficient in ultracold neutron reflection from slightly rough surfaces, report a surprising reduction in loss coefficient due to roughness, and discuss the possibility of transition from quantum treatment to ray optics. The results are used in a computer simulation of neutron storage in a recent neutron lifetime experiment that re-ported a large discrepancy of neutron lifetime with the current particle data value. Our partial re-analysis suggest...

  11. Lifetime of silica final lenses subject to HiPER irradiation conditions

    Science.gov (United States)

    Rivera, A.; Garoz, D.; Juarez, R.; Alvarez, J.; González-Arrabal, R.; Perlado, J. M.

    2011-03-01

    The goal of the European laser fusion project, is to build an engineering facility for repetitive laser operation (HiPER 4a) and later a fusion reactor (HiPER 4b). A key aspect for laser fusion energy is the final optics. At the moment, it is based on silica transmission lenses located 8 m away from the chamber center. Lens lifetime depends on the irradiation conditions. We have used a 48 MJ shock ignition target for calculations. We have studied the thermo-mechanical effects of ions and X-rays on the lenses. Ions lead to lens melting and must therefore be mitigated. On the other hand, X-rays (~1% of the energy) does not produce either a significant temperature rise or detrimental stresses. Finally, we calculated the neutron flux and gamma dose rate on the lenses. Next, based on a simple model we studied the formation of color centers in the sample, which lead to optical absorption. Calculations show that simultaneous neutron and gamma irradiation does not significantly increase the optical absorption during the expected lifetime of the HiPER 4a facility. Under severe conditions (HiPER 4b), operation above 800 K or lens refreshing by thermal annealing treatments seem to assure adequate behavior.

  12. Activities for extending the lifetime of MINT research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bokhari, Adnan; Kassim, Mohammad Suhaimi [Malaysian Inst. for Nuclear Technology Research (MINT), Bangi, Kajang (Malaysia)

    1998-10-01

    MINT TRIGA Reactor is a 1-MW swimming pool nuclear reactor commissioned in June 1982. Since then, it has been used for research, isotope production, neutron activation, neutron radiography and manpower training. The total operating time till the end on September 1997 is 16968 hours with cumulative total energy release of 11188 MW-hours. After more than fifteen years of successful operation, some deterioration in components and associated systems has been observed. This paper describes some of the activities carried out to increase the lifetime and to reduce the shutdown time of the reactor. (author)

  13. Configuration and validation of an analytical model predicting secondary neutron radiation in proton therapy using Monte Carlo simulations and experimental measurements.

    Science.gov (United States)

    Farah, J; Bonfrate, A; De Marzi, L; De Oliveira, A; Delacroix, S; Martinetti, F; Trompier, F; Clairand, I

    2015-05-01

    This study focuses on the configuration and validation of an analytical model predicting leakage neutron doses in proton therapy. Using Monte Carlo (MC) calculations, a facility-specific analytical model was built to reproduce out-of-field neutron doses while separately accounting for the contribution of intra-nuclear cascade, evaporation, epithermal and thermal neutrons. This model was first trained to reproduce in-water neutron absorbed doses and in-air neutron ambient dose equivalents, H*(10), calculated using MCNPX. Its capacity in predicting out-of-field doses at any position not involved in the training phase was also checked. The model was next expanded to enable a full 3D mapping of H*(10) inside the treatment room, tested in a clinically relevant configuration and finally consolidated with experimental measurements. Following the literature approach, the work first proved that it is possible to build a facility-specific analytical model that efficiently reproduces in-water neutron doses and in-air H*(10) values with a maximum difference less than 25%. In addition, the analytical model succeeded in predicting out-of-field neutron doses in the lateral and vertical direction. Testing the analytical model in clinical configurations proved the need to separate the contribution of internal and external neutrons. The impact of modulation width on stray neutrons was found to be easily adjustable while beam collimation remains a challenging issue. Finally, the model performance agreed with experimental measurements with satisfactory results considering measurement and simulation uncertainties. Analytical models represent a promising solution that substitutes for time-consuming MC calculations when assessing doses to healthy organs. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. An analytic model for the evolution of a close binary system of neutron (degenerate) stars

    Science.gov (United States)

    Imshennik, V. S.; Popov, D. V.

    1998-03-01

    The evolution of a close binary system of neutron stars is studied in the point-mass approximation with allowance for gravitational radiation and mass exchange between the components of the system. The calculation of mass transfer from the low-mass component of the system based on the known approximations for the radii of the Roche lobe and the low-mass component provides the reliable determination of the characteristics of the system by the end of its evolution, which are virtually independent of the initial ratio of the component masses. The evolution of the system is accompanied by the mass loss from the low-mass component and ends in the explosion of this component at the time when its mass reaches the lower limit for neutron stars (close to 0.1 M_solar). After the explosion, the second component of the system leaves the supernova remnant with the speed and rotation period which are determined almost entirely by the total mass of the system M_t. The assumption about the explosion of the low-mass component and subsequent escape of the high-mass component (pulsar or black hole) from the system have been made in the recently proposed scenario of the explosion of collapsing supernovae with allowance for rotational effects (Imshennik 1992; Imshennik and Nadezhin 1992; Imshennik and Popov 1996). We formulate and substantiate an analytic model for the evolution of the system under consideration, in which virtually all mass exchange between the components occurs under the assumption of quasi-stationary circular orbits with significant energy and angular momentum losses related to gravitational radiation. Such character of the evolution persists until the time the mass of the low-mass component reaches the value of order ~ 0.15 M_solar. The remaining mass (~0.05 M_solar) is lost by this component in the dynamical regime and the given analytic model takes on, strictly speaking, the character of a crude estimate. On the basis of this model, the main features of

  15. Personality, IQ, and Lifetime Earnings

    DEFF Research Database (Denmark)

    Gensowski, Miriam

    2014-01-01

    , as identified in a factor model, significantly affect earnings, but not for young workers. The effects are furthermore heterogeneous by educational attainment. For women, personality traits do not affect family earnings in the same way as own earnings. Personality and IQ also influence earnings indirectly......Talented individuals are seen as drivers of long-term growth, but how do they realize their full potential? In this paper, I show that lifetime earnings of high-IQ men and women are substantially influenced by their personality traits, in addition to intelligence and education. Personality traits...... on detailed background information. This paper complements the literature on investments in education and personality traits by showing that they also have potentially high returns at the high end of the ability distribution....

  16. Probing the conformation of FhaC with small-angle neutron scattering and molecular modeling.

    Science.gov (United States)

    Gabel, Frank; Lensink, Marc F; Clantin, Bernard; Jacob-Dubuisson, Françoise; Villeret, Vincent; Ebel, Christine

    2014-07-01

    Probing the solution structure of membrane proteins represents a formidable challenge, particularly when using small-angle scattering. Detergent molecules often present residual scattering contributions even at their match point in small-angle neutron scattering (SANS) measurements. Here, we studied the conformation of FhaC, the outer-membrane, β-barrel transporter of the Bordetella pertussis filamentous hemagglutinin adhesin. SANS measurements were performed on homogeneous solutions of FhaC solubilized in n-octyl-d17-βD-glucoside and on a variant devoid of the α helix H1, which critically obstructs the FhaC pore, in two solvent conditions corresponding to the match points of the protein and the detergent, respectively. Protein-bound detergent amounted to 142 ± 10 mol/mol as determined by analytical ultracentrifugation. By using molecular modeling and starting from three distinct conformations of FhaC and its variant embedded in lipid bilayers, we generated ensembles of protein-detergent arrangement models with 120-160 detergent molecules. The scattered curves were back-calculated for each model and compared with experimental data. Good fits were obtained for relatively compact, connected detergent belts, which occasionally displayed small detergent-free patches on the outer surface of the β barrel. The combination of SANS and modeling clearly enabled us to infer the solution structure of FhaC, with H1 inside the pore as in the crystal structure. We believe that our strategy of combining explicit atomic detergent modeling with SANS measurements has significant potential for structural studies of other detergent-solubilized membrane proteins. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Dynamic neutron scattering from conformational dynamics. II. Application using molecular dynamics simulation and Markov modeling.

    Science.gov (United States)

    Yi, Zheng; Lindner, Benjamin; Prinz, Jan-Hendrik; Noé, Frank; Smith, Jeremy C

    2013-11-07

    Neutron scattering experiments directly probe the dynamics of complex molecules on the sub pico- to microsecond time scales. However, the assignment of the relaxations seen experimentally to specific structural rearrangements is difficult, since many of the underlying dynamical processes may exist on similar timescales. In an accompanying article, we present a theoretical approach to the analysis of molecular dynamics simulations with a Markov State Model (MSM) that permits the direct identification of structural transitions leading to each contributing relaxation process. Here, we demonstrate the use of the method by applying it to the configurational dynamics of the well-characterized alanine dipeptide. A practical procedure for deriving the MSM from an MD is introduced. The result is a 9-state MSM in the space of the backbone dihedral angles and the side-chain methyl group. The agreement between the quasielastic spectrum calculated directly from the atomic trajectories and that derived from the Markov state model is excellent. The dependence on the wavevector of the individual Markov processes is described. The procedure means that it is now practicable to interpret quasielastic scattering spectra in terms of well-defined intramolecular transitions with minimal a priori assumptions as to the nature of the dynamics taking place.

  18. Elucidation of spin echo small angle neutron scattering correlation functions through model studies.

    Science.gov (United States)

    Shew, Chwen-Yang; Chen, Wei-Ren

    2012-02-14

    Several single-modal Debye correlation functions to approximate part of the overall Debey correlation function of liquids are closely examined for elucidating their behavior in the corresponding spin echo small angle neutron scattering (SESANS) correlation functions. We find that the maximum length scale of a Debye correlation function is identical to that of its SESANS correlation function. For discrete Debye correlation functions, the peak of SESANS correlation function emerges at their first discrete point, whereas for continuous Debye correlation functions with greater width, the peak position shifts to a greater value. In both cases, the intensity and shape of the peak of the SESANS correlation function are determined by the width of the Debye correlation functions. Furthermore, we mimic the intramolecular and intermolecular Debye correlation functions of liquids composed of interacting particles based on a simple model to elucidate their competition in the SESANS correlation function. Our calculations show that the first local minimum of a SESANS correlation function can be negative and positive. By adjusting the spatial distribution of the intermolecular Debye function in the model, the calculated SESANS spectra exhibit the profile consistent with that of hard-sphere and sticky-hard-sphere liquids predicted by more sophisticated liquid state theory and computer simulation. © 2012 American Institute of Physics

  19. Residual Stresses in DC cast Aluminum Billet: Neutron Diffraction Measurements and Thermomechanical Modeling

    Science.gov (United States)

    Drezet, J.-M.; Evans, A.; Pirling, T.

    2011-05-01

    Thermally-induced residual stresses, generated during the industrial Direct Chill casting process of aluminum alloys, can cause both significant safety concerns as well as the formation of defects during down-stream processing. Although these thermally induced strains can be partially relieved by permanent deformation, cracks will be generated either during solidification (hot tears) or post-solidification cooling (cold cracks) when stresses exceed the deformation limit of the alloy. Furthermore, the thermally induced strains result in the presence of large internal stresses within the billet before further processing steps. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. In the present work, the variation in residual elastic strains and stresses in the steady state regime of casting has been measured as a function of radial position using neutron diffraction in an AA6063 grain-refined cylindrical billet. These measurements have been carried out on the same billet section at Poldi at PSI-Villigen and at Salsa at ILL-Grenoble and compare favorably. The results are used to validate a thermo-mechanical finite element casting model and to assess the level of stored elastic energy within the billet.

  20. Structure of naturally hydrated ferrihydrite revealed through neutron diffraction and first-principles modeling

    Science.gov (United States)

    Chappell, Helen F.; Thom, William; Bowron, Daniel T.; Faria, Nuno; Hasnip, Philip J.; Powell, Jonathan J.

    2017-08-01

    Ferrihydrite, with a ``two-line'' x-ray diffraction pattern (2L-Fh), is the most amorphous of the iron oxides and is ubiquitous in both terrestrial and aquatic environments. It also plays a central role in the regulation and metabolism of iron in bacteria, algae, higher plants, and animals, including humans. In this study, we present a single-phase model for ferrihydrite that unifies existing analytical data while adhering to fundamental chemical principles. The primary particle is small (20-50 Å) and has a dynamic and variably hydrated surface, which negates long-range order; collectively, these features have hampered complete characterization and frustrated our understanding of the mineral's reactivity and chemical/biochemical function. Near and intermediate range neutron diffraction (NIMROD) and first-principles density functional theory (DFT) were employed in this study to generate and interpret high-resolution data of naturally hydrated, synthetic 2L-Fh at standard temperature. The structural optimization overcomes transgressions of coordination chemistry inherent within previously proposed structures, to produce a robust and unambiguous single-phase model.

  1. Model for the neutron resonance in HgBa2CuO4 +δ

    Science.gov (United States)

    Montiel, X.; Pépin, C.

    2017-09-01

    We study the spin dynamics of the resonant excitonic state (RES) proposed, within the theory of an emergent SU(2) symmetry, to explain some properties of the pseudogap phase of cuprate superconductors. The RES can be described as a proliferation of particle-hole patches with an internal modulated structure. We model the RES modes as a charge order with multiple 2 pF ordering vectors, where 2 pF connects two opposite sides of the Fermi surface. This simple modelization enables us to propose a comprehensive study of the collective mode observed at the antiferromagnetic wave vector Q =(π ,π ) by inelastic neutron scattering in both the superconducting state and also in the pseudogap regime. In this regime, we show that the dynamic spin susceptibility exhibits a loss of coherence terms except at special wave vectors commensurate with the lattice. We argue that this phenomenon could explain the change of the spin response shape around Q . We demonstrate that the hole dependence of the RES spin dynamics is in agreement with the experimental data in HgBa2CuO4 +δ .

  2. Insight into carrier lifetime impact on band-modulation devices

    Science.gov (United States)

    Parihar, Mukta Singh; Lee, Kyung Hwa; Park, Hyung Jin; Lacord, Joris; Martinie, Sébastien; Barbé, Jean-Charles; Xu, Yue; El Dirani, Hassan; Taur, Yuan; Cristoloveanu, Sorin; Bawedin, Maryline

    2018-05-01

    A systematic study to model and characterize the band-modulation Z2-FET device is developed bringing light to the relevance of the carrier lifetime influence. This work provides guidelines to optimize the Z2-FETs for sharp switching, ESD protection, and 1T-DRAM applications. Lower carrier lifetime in the Z2-FET helps in attaining the sharp switch. We provide new insights into the correlation between generation/recombination, diffusion, electrostatic barriers and carrier lifetime.

  3. Modeling of neutron emission spectroscopy in JET discharges with fast tritons from (T)D ion cyclotron heating

    International Nuclear Information System (INIS)

    Tardocchi, M.; Gorini, G.; Andersson Sunden, E.; Conroy, S.; Ericsson, G.; Gatu Johnson, M.; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Kaellne, J.; Ronchi, E.; Sjoestrand, H.; Weiszflog, M.; Johnson, T.; Lamalle, P. U.

    2006-01-01

    The measurement of fast ion populations is one of the diagnostic capabilities provided by neutron emission spectroscopy (NES). NES measurements were carried out during JET trace tritium campaign with the magnetic proton recoil neutron spectrometer. A favorable plasma scenario is (T)D where the resulting 14 MeV neutron yield is dominated by suprathermal emission from energetic tritons accelerated by radio frequency at their fundamental cyclotron frequency. Information on the triton distribution function has been derived from NES data with a simple model based on two components referred to as bulk (B) and high energy (HE). The HE component is based on strongly anisotropic tritium distribution that can be used for routine best-fit analysis to provide tail temperature values (T HE ). This article addresses to what extent the T HE values are model dependent by comparing the model above with a two-temperature (bi-) Maxwellian model featuring parallel and perpendicular temperatures. The bi-Maxwellian model is strongly anisotropic and frequently used for radio frequency theory

  4. Neutronic and thermal-hydraulic coupling for 3D reactor core modeling combining MCB and fluent

    Directory of Open Access Journals (Sweden)

    Królikowski Igor P.

    2015-09-01

    Full Text Available Three-dimensional simulations of neutronics and thermal hydraulics of nuclear reactors are a tool used to design nuclear reactors. The coupling of MCB and FLUENT is presented, MCB allows to simulate neutronics, whereas FLUENT is computational fluid dynamics (CFD code. The main purpose of the coupling is to exchange data such as temperature and power profile between both codes. Temperature required as an input parameter for neutronics is significant since cross sections of nuclear reactions depend on temperature. Temperature may be calculated in thermal hydraulics, but this analysis needs as an input the power profile, which is a result from neutronic simulations. Exchange of data between both analyses is required to solve this problem. The coupling is a better solution compared to the assumption of estimated values of the temperatures or the power profiles; therefore the coupled analysis was created. This analysis includes single transient neutronic simulation and several steady-state thermal simulations. The power profile is generated in defined points in time during the neutronic simulation for the thermal analysis to calculate temperature. The coupled simulation gives information about thermal behavior of the reactor, nuclear reactions in the core, and the fuel evolution in time. Results show that there is strong influence of neutronics on thermal hydraulics. This impact is stronger than the impact of thermal hydraulics on neutronics. Influence of the coupling on temperature and neutron multiplication factor is presented. The analysis has been performed for the ELECTRA reactor, which is lead-cooled fast reactor concept, where the coolant fl ow is generated only by natural convection

  5. Quantum system lifetimes and measurement perturbations

    International Nuclear Information System (INIS)

    Najakov, E.

    1977-05-01

    The recently proposed description of quantum system decay in terms of repeated measurement perturbations is modified. The possibility of retarded reductions to a unique quantum state, due to ineffective localization of the decay products at initial time measurements, is simply taken into account. The exponential decay law is verified again. A modified equation giving the observed lifetime in terms of unperturbed quantum decay law, measurement frequency and reduction law is derived. It predicts deviations of the observed lifetime from the umperturbed one, together with a dependence on experimental procedures. The influence of different model unperturbed decay laws and reduction laws on this effect is studied

  6. Energy Savings Lifetimes and Persistence

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Ian M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steven R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Todd, Annika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Billingsley, Megan A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-02-01

    This technical brief explains the concepts of energy savings lifetimes and savings persistence and discusses how program administrators use these factors to calculate savings for efficiency measures, programs and portfolios. Savings lifetime is the length of time that one or more energy efficiency measures or activities save energy, and savings persistence is the change in savings throughout the functional life of a given efficiency measure or activity. Savings lifetimes are essential for assessing the lifecycle benefits and cost effectiveness of efficiency activities and for forecasting loads in resource planning. The brief also provides estimates of savings lifetimes derived from a national collection of costs and savings for electric efficiency programs and portfolios.

  7. The lifetime cost of a magnetic refrigerator

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian R.H.; Nielsen, Kaspar Kirstein

    2016-01-01

    The total cost of a 25 W average load magnetic refrigerator using commercial grade Gd is calculated using a numerical model. The price of magnetocaloric material, magnet material and cost of operation are considered, and all influence the total cost. The lowest combined total cost with a device...... lifetime of 15 years is found to be in the range $150-$400 depending on the price of the magnetocaloric and magnet material. The cost of the magnet is largest, followed closely by the cost of operation, while the cost of the magnetocaloric material is almost negligible. For the lowest cost device......, the optimal magnetic field is about 1.4 T, the particle size is 0.23 mm, the length of the regenerator is 40-50 mm and the utilization is about 0.2, for all device lifetimes and material and magnet prices, while the operating frequency vary as function of device lifetime. The considered performance...

  8. Methematical model of a neutron counting system used for the characteristics control of spontaneously fissioning material

    International Nuclear Information System (INIS)

    Bessis, J.

    1986-09-01

    Methods are described for calculating the probabilities, p(m), of detection of m neutrons, inside a split millisecond counting gate, m varying from zero to some units. At the present stage, these methods suppose the source to be very small. Using the generating function concept, they concern both possible modes of the counting system, for opening gates, i.e.: 1) Trigger pulses randomly with regard to the emitted neutrons, 2) Trigger pulses from the detected neutrons themselves. Computed values are finally compared to the measured ones. This comparison seems to be very favourable, since the respective deviations are often lower than 1 % [fr

  9. Neutron spectra produced by moderating an isotopic neutron source

    International Nuclear Information System (INIS)

    Carrillo Nunnez, Aureliano; Vega Carrillo, Hector Rene

    2001-01-01

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2 . From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  10. Lifetime measurement in Proserpine by reactivity modulation (1960)

    International Nuclear Information System (INIS)

    Clouet d'Orval, C.; Tachon, J.; Bertrand, J.; Lecoustey, P.

    1960-01-01

    The measurement method consists in varying the neutron flux periodically by means of an oscillator with cadmium sectors. From the signal received on a detector the lifetime τ can be determined; for various velocities ω, we have: (n/δn) 2 = (β eff /δk) 2 + (τ/δk) 2 ω 2 . Various corrections are involved, in particular the calculation of the rates of different harmonics in the oscillator signal. (author) [fr

  11. Simplified geometric model for the calculation of neutron yield in an accelerator of 18 MV for radiotherapy; Modelo geometrico simplificado para el calculo del rendimiento de neutrones en un acelerador de 18 MV para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L.C.; Balcazar G, M. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Francois L, J.L. [FI-UNAM, 04510 Mexico D.F. (Mexico); Azorin N, J. [UAM-I, 09340 Mexico D.F. (Mexico)

    2008-07-01

    The results of the neutrons yield in different components of the bolster of an accelerator Varian Clinac 2100C of 18 MV for radiotherapy are presented, which contribute to the radiation of flight of neutrons in the patient and bolster planes. For the calculation of the neutrons yield, a simplified geometric model of spherical cell for the armor-plating of the bolster with Pb and W was used. Its were considered different materials for the Bremsstrahlung production and of neutrons produced through the photonuclear reactions and of electro disintegration, in function of the initial energy of the electron. The theoretical result of the total yield of neutrons is of 1.17x10{sup -3} n/e, considering to the choke in position of closed, in the patient plane with a distance source-surface of 100 cm; of which 15.73% corresponds to the target, 58.72% to the primary collimator, 4.53% to the levelled filter of Fe, 4.87% to the levelled filter of Ta and 16.15% to the closed choke. For an initial energy of the electrons of 18 MeV, a half energy of the neutrons of 2 MeV was obtained. The calculated values for radiation of experimental neutrons flight are inferior to the maxima limit specified in the NCRP-102 and IEC-60601-201.Ed.2.0 reports. The absorbed dose of neutrons determined through the measurements with TLD dosemeters in the isocenter to 100 cm of the target when the choke is closed one, is approximately 3 times greater that the calculated for armor-plating of W and 1.9 times greater than an armor-plating of Pb. (Author)

  12. A bimodal flexible distribution for lifetime data

    OpenAIRE

    Ramires, Thiago G.; Ortega, Edwin M. M.; Cordeiro, Gauss M.; Hens, Niel

    2016-01-01

    A four-parameter extended bimodal lifetime model called the exponentiated log-sinh Cauchy distribution is proposed. It extends the log-sinh Cauchy and folded Cauchy distributions. We derive some of its mathematical properties including explicit expressions for the ordinary moments and generating and quantile functions. The method of maximum likelihood is used to estimate the model parameters. We implement the fit of the model in the GAMLSS package and provide the codes. The flexibility of the...

  13. Modelling of neutron absorbers in high temperature reactors by combined transport diffusion methods

    OpenAIRE

    Fen, V.; Lebedev, M.; Sarytchev, V.; Scherer, W.

    1992-01-01

    Today, the neutron-physical description of strong neutron absorbing materials for control and shut-down of nuclear power plants is performed using combined transport and diffusion methods. Two of these approaches are described and compared in this paper. The method of equivalent cross-sections has been developed at the KFA-Jülich Institute for Safety Research and Reactor Technology (ISR) and was widely used for all german HTR reactor concepts. The Obninsk Institute for Nuclear Power Engineeri...

  14. Small-angle neutron scattering modeling of spin disorder in nanoparticles.

    Science.gov (United States)

    Vivas, Laura G; Yanes, Rocio; Michels, Andreas

    2017-10-12

    Magnetic small-angle neutron scattering (SANS) is a powerful technique for investigating magnetic nanoparticle assemblies in nonmagnetic matrices. For such microstructures, the standard theory of magnetic SANS assumes uniformly magnetized nanoparticles (macrospin model). However, there exist many experimental and theoretical studies which suggest that this assumption is violated: deviations from ellipsoidal particle shape, crystalline defects, or the interplay between various magnetic interactions (exchange, magnetic anisotropy, magnetostatics, external field) may lead to nonuniform spin structures. Therefore, a theoretical framework of magnetic SANS of nanoparticles needs to be developed. Here, we report numerical micromagnetic simulations of the static spin structure and related unpolarized magnetic SANS of a single cobalt nanorod. While in the saturated state the magnetic SANS cross section is (as expected) determined by the particle form factor, significant deviations appear for nonsaturated states; specifically, at remanence, domain-wall and vortex states emerge which result in a magnetic SANS signal that is composed of all three magnetization Fourier components, giving rise to a complex angular anisotropy on a two-dimensional detector. The strength of the micromagnetic simulation methodology is the possibility to decompose the cross section into the individual Fourier components, which allows one to draw important conclusions regarding the fundamentals of magnetic SANS.

  15. Load partion in NiTi shape memory alloy polycrystals investigated by in-situ neutron diffraction and micromechanics modelling

    Czech Academy of Sciences Publication Activity Database

    Šittner, Petr; Novák, Václav; Lukáš, Petr; Lugovyy, Dmytro; Neov, Dimitar

    404-407, - (2002), s. 829-834 ISSN 0255-5476 R&D Projects: GA AV ČR IAA1048107; GA ČR GV202/97/K038 Institutional research plan: CEZ:AV0Z1010914 Keywords : shape memory alloy * neutron diffraction * martensitic transformation * NiTi * micromechanics modelling * load partition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.613, year: 2002

  16. Lifetime Improvement by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Schmitt, Jens B.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of their batteries. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to

  17. Lifetime improvement by battery scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of its battery. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to the

  18. PERFORM 60: Prediction of the effects of radiation for reactor pressure vessel and in-core materials using multi-scale modelling - 60 years foreseen plant lifetime

    International Nuclear Information System (INIS)

    Al Mazouzi, A.; Alamo, A.; Lidbury, D.; Moinereau, D.; Van Dyck, S.

    2011-01-01

    Highlights: → Multi-scale and multi-physics modelling are adopted by PERFORM 60 to predict irradiation damage in nuclear structural materials. → PERFORM 60 allows to Consolidate the community and improve the interaction between universities/industries and safety authorities. → Experimental validation at the relevant scale is a key for developing the multi-scale modelling methodology. - Abstract: In nuclear power plants, materials undergo degradation due to severe irradiation conditions that may limit their operational lifetime. Utilities that operate these reactors need to quantify the ageing and potential degradation of certain essential structures of the power plant to ensure their safe and reliable operation. So far, the monitoring and mitigation of these degradation phenomena rely mainly on long-term irradiation programs in test reactors as well as on mechanical or corrosion testing in specialized hot cells. Continuous progress in the physical understanding of the phenomena involved in irradiation damage and progress in computer sciences have now made possible the development of multi-scale numerical tools able to simulate the materials behaviour in a nuclear environment. Indeed, within the PERFECT project of the EURATOM framework program (FP6), a first step has been successfully reached through the development of a simulation platform that contains several advanced numerical tools aiming at the prediction of irradiation damage in both the reactor pressure vessel (RPV) and its internals using available, state-of-the-art-knowledge. These tools allow simulation of irradiation effects on the nanostructure and the constitutive behaviour of the RPV low alloy steels, as well as their fracture mechanics properties. For the more highly irradiated reactor internals, which are commonly produced using austenitic stainless steels, the first partial models were established, describing radiation effects on the nanostructure and providing a first description of the

  19. Storing of free neutrons

    International Nuclear Information System (INIS)

    Trinks, U.

    1978-12-01

    The applied method makes use of the interaction between the magnetic moment μ vector of the neutron and a magnetic field B vector. By means of superconducting magnets there can easily be achieved potential walls of μ B approximately 2 x 10 -7 eV. The principle of magnetic storing was first used for the storage ring NESTOR and showed immediate success: the stored neutrons decreased exponentially with a time constant tau = (907 +- 70) sec corresponding to the natural lifetime of the neutrons within the statistical errors. This means that there occurred no measurable additional losses (e.g. by resonance excitation) Neutrons therefore could be observed in the storage ring during about 5 half-lives (in principle of course longer, too). The orbit dynamics for neutrons in the storage ring is smilar to that in circular accelerators for charged particles. It is so well understood that the problem of the storage ring for uncharged particles (with magnetic moment) may be considered to e solved. (orig./HSI) [de

  20. A Microscopic Theory of the Neutron

    Science.gov (United States)

    Zheng-Johansson, J. X.

    2016-01-01

    A microscopic theory of the neutron, which consists in a neutron model constructed using key relevant experimental observations as input information and the first principles solutions for the basic properties of the model neutron, is proposed within a framework consistent with the Standard Model. The neutron is composed of an electron e and a proton p that are separated at a distance r1 of the order 10-18 m, and are in relative orbital angular motion and Thomas precession highly relativistically, with their reduced mass moving along a quantised circular orbit l = 1, j = ½ of radius vector r1½ = r1rˆ1½ about their mass centre. The associated rotational energy flux has a spin ½ and resembles a confined antineutrino. The particles e, p are attracted with one another predominantly by a central magnetic force produced as result of the particles’ relative precessional-orbital and intrinsic angular motions. The interaction force (resembling the weak force), potential (resembling the Higgs’ field), and a corresponding excitation Hamiltonian (HI), among others, are derived based directly on first principles laws of electromagnetism, quantum mechanics and relativistic mechanics within a unified framework. In particular, the equation for 4/3πr13HI, which is directly comparable with the Fermi constant GF, is predicted as GF = 4/3πr13HI = AoC0 ½/γeγp, where Ao = e2ℏ2/12π𝜖0m0em0pc2, m0em0p are the e, p rest masses, C0½ is a geo-magnetic factor, and γe, γp are the Lorentz factors. Quantitative solution for a stationary meta-stable neutron is found to exist at the extremal point r1m = 2.537 × 10-18 m, at which the GF is a minimum (whence the neutron lifetime is a maximum) and is equal to the experimental value. Solutions for the magnetic moment, effective spin (½), fine structure constant, and intermediate vector boson masses of the neutron are also given in this paper.