WorldWideScience

Sample records for neutron irradiated condition

  1. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  2. Microstructural defects in EUROFER 97 after different neutron irradiation conditions

    Directory of Open Access Journals (Sweden)

    Christian Dethloff

    2016-12-01

    Full Text Available Characterization of irradiation induced microstructural evolution is essential for assessing the applicability of structural steels like the Reduced Activation Ferritic/Martensitic steel EUROFER 97 in upcoming fusion reactors. In this work Transmission Electron Microscopy (TEM is used to determine the defect microstructure after different neutron irradiation conditions. In particular dislocation loops, voids and precipitates are analyzed concerning defect nature, density and size distribution after irradiation to 15 dpa at 300 °C in the mixed spectrum High Flux Reactor (HFR. New results are combined with previously obtained data from irradiation in the fast spectrum BOR-60 reactor (15 and 32 dpa, 330 °C, which allows for assessment of dose and dose rate effects on the aforementioned irradiation induced defects and microstructural characteristics.

  3. Neutron irradiation effects on plasma facing materials

    Science.gov (United States)

    Barabash, V.; Federici, G.; Rödig, M.; Snead, L. L.; Wu, C. H.

    2000-12-01

    This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed.

  4. Neutron irradiation effects on plasma facing materials

    International Nuclear Information System (INIS)

    Barabash, V.; Federici, G.; Roedig, M.; Snead, L.L.; Wu, C.H.

    2000-01-01

    This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed

  5. How to improve the irradiation conditions for the International Fusion Materials Irradiation Facility

    CERN Document Server

    Daum, E

    2000-01-01

    The accelerator-based intense D-Li neutron source International Fusion Materials Irradiation Facility (IFMIF) provides very suitable irradiation conditions for fusion materials development with the attractive option of accelerated irradiations. Investigations show that a neutron moderator made of tungsten and placed in the IFMIF test cell can further improve the irradiation conditions. The moderator softens the IFMIF neutron spectrum by enhancing the fraction of low energy neutrons. For displacement damage, the ratio of point defects to cascades is more DEMO relevant and for tritium production in Li-based breeding ceramic materials it leads to a preferred production via the sup 6 Li(n,t) sup 4 He channel as it occurs in a DEMO breeding blanket.

  6. Neutron irradiation of bacteriophage λ

    International Nuclear Information System (INIS)

    Bozin, D.; Milosevic, M. . E-mail address of corresponding author: bozinde@vin.bg.ac.yu

    2005-01-01

    Double strand breaks (DSB) are the most dangerous lesions in DNA caused by irradiation, but many other lesions, usually called mutations, have not been clearly identified. These lesions, like DSB, can be the source of serious chromosomal damages and finally - cell death. Growing interest in heavy particles for radiotherapy and radioprotection encourages the search of the molecular basis of their action. In this respect, we chose bacteriophage λ1390 as the model system for the study of consequences of neutron irradiation. This derivative of λ phage possesses an unique ability to reversibly reorganize their genome in response to various selective pressures. The phages were irradiated with 13 Gy of mixed neutrons (7.5 Gy from fast and 5.6 Gy from thermal neutrons) and phages genomes were tested to DSB and mutations. Additionally, the stability of λ capsid proteins were tested. After all tests, we can conclude that, under our conditions, low flux of neutrons does not induce neither DNA strand break or DNA mutation nor the stability of λ capsid proteins. (author)

  7. Neutron irradiation control in the neutron transmutation doping process in HANARO using SPND

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Gi-Doo; Kim, Myong-Seop [Korea Atomic Energy Research Institute, Yuseong, Daejeon, 305-353, (Korea, Republic of)

    2015-07-01

    The neutron irradiation control method by using self-powered neutron detector (SPND) is developed for the neutron transmutation doping (NTD) application in HANARO. An SPND is installed at a fixed position of the upper part of the sleeve in HANARO NTD hole for real-time monitoring of the neutron irradiation. It is confirmed that the SPND is significantly affected by the in-core condition and surroundings of the facility. Furthermore, the SPND signal changes about 15% throughout a whole cycle according to the change of the control rod position. But, it is also confirmed that the variation of the neutron flux on the silicon ingots inside the irradiation can is not so big while moving of the control rod. Accordingly, the relationship between the ratio of the neutron flux to the SPND signal output and the control rod position is established. In this procedure, the neutron flux measurement by using zirconium foil is utilized. The real NTD irradiation experiments are performed using the established relationship. The irradiated neutron fluence can be controlled within ±1.3% of the target one. The mean value of the irradiation/target ratio of the fluence is 0.9992, and the standard deviation is 0.0071. Thus, it is confirmed that the extremely accurate irradiation would be accomplished. This procedure can be useful for the SPND application installed at the fixed position to the field requiring the extremely high accuracy. (authors)

  8. EPR of alanine irradiated by neutrons

    International Nuclear Information System (INIS)

    Pivovarov, S.P.; Seredavina, T.A.; Zhdanov, S.V.; Mul'gin, S.I.; Zhakparov, R.K.

    2001-01-01

    In the work the first results of EPR studies of alanine, irradiated with diverse doses at neutron cyclotron generator different conditions and on the critical reactor stand are presented. A dose linearity dependence of EPR signal is observing, the methods of γ-background contribution separation are discussed. Obtain results is giving the basis to recommendation of alanine as an effective detector irradiation. However it is demanded the farther study on clarification of radiation sensitivity value dependence on the neutron energy spectrum form

  9. Nuclear irradiation parameters of beryllium under fusion, fission and IFMIF irradiation conditions

    International Nuclear Information System (INIS)

    Fischer, U.; Chen, Y.; Leichtle, D.; Simakov, S.; Moeslang, A.; Vladimirov, P.

    2004-01-01

    A computational analysis is presented of the nuclear irradiation parameters for Beryllium under irradiation in typical neutron environments of fission and fusion reactors, and of the presently designed intense fusion neutron source IFMIF. The analysis shows that dpa and Tritium production rates at fusion relevant levels can be achieved with existing high flux fission reactors while the achievable Helium production is too low. The resulting He-Tritium and He/dpa ratios do not meet typical fusion irradiation conditions. Irradiation simulations in the medium flux test modules of the IFMIF neutron source facility were shown to be more suitable to match fusion typical irradiation conditions. To achieve sufficiently high production rates it is suggested to remove the creep-fatigue testing machine together with the W spectra shifter plate and move the tritium release module upstream towards the high flux test module. (author)

  10. Neutron irradiation facility and its characteristics

    International Nuclear Information System (INIS)

    Oyama, Yukio; Noda, Kenji

    1995-01-01

    A neutron irradiation facility utilizing spallation reactions with high energy protons is conceived as one of the facilities in 'Proton Engineering center (PEC)' proposed at JAERI. Characteristics of neutron irradiation field of the facility for material irradiation studies are described in terms of material damage parameters, influence of the pulse irradiation, irradiation environments other than neutronics features, etc., comparing with the other sorts of neutron irradiation facilities. Some perspectives for materials irradiation studies using PEC are presented. (author)

  11. Neutron and gamma irradiation damage to organic materials.

    Energy Technology Data Exchange (ETDEWEB)

    White, Gregory Von, II; Bernstein, Robert

    2012-04-01

    This document discusses open literature reports which investigate the damage effects of neutron and gamma irradiation on polymers and/or epoxies - damage refers to reduced physical chemical, and electrical properties. Based on the literature, correlations are made for an SNL developed epoxy (Epon 828-1031/DDS) with an expected total fast-neutron fluence of {approx}10{sup 12} n/cm{sup 2} and a {gamma} dosage of {approx}500 Gy received over {approx}30 years at < 200 C. In short, there are no gamma and neutron irradiation concerns for Epon 828-1031/DDS. To enhance the fidelity of our hypotheses, in regards to radiation damage, we propose future work consisting of simultaneous thermal/irradiation (neutron and gamma) experiments that will help elucidate any damage concerns at these specified environmental conditions.

  12. Study of damages by neutron irradiation in lithium aluminates

    International Nuclear Information System (INIS)

    Palacios G, O.

    1999-01-01

    Lithium aluminates proposed to the production of tritium in fusion nuclear reactors, due to the thermal stability that they present as well as the behavior of the aluminium to the irradiation. As a neutron flux with profile (≅ 14 Mev) of a fusion reactor is not available. A irradiation experiment was designed in order to know the micro and nano structure damages produced by fast and thermal neutrons in two irradiation positions of the fusion nuclear reactor Triga Mark III: CT (Thermal Column) and SIFCA (System of Irradiation Fixed of Capsules). In this work samples of lithium aluminate were characterized by XRD (X-Ray Diffraction), TEM (Transmission Electron Microscopy) and SEM (Scanning Electron Microscopy). Two samples were prepared by two methods: a) coalition method and b) peroxide method. This characterization comprised original and irradiated samples. The irradiated sample amounted to 4 in total: one for each preparation method and one for each irradiation position. The object of this analysis was to correlate with the received neutron dose the damages suffered by the samples with the neutron irradiation during long periods (440 H), in their micro and nano structure aspects; in order to understand the changes as a function of the irradiation zone (with thermal and fast neutron flux) and the preparation methods of the samples and having as an antecedent the irradiation in SIFCA position by short times (2h). The obtained results are referred to the stability of γ -aluminate phase, under given conditions of irradiation and defined nano structure arrangement. They also refer to the proposals of growth mechanism and nucleation of new phases. The error associated with the measurement of neutron dose is also discussed. (Author)

  13. Fast neutron irradiation deteriorates hippocampus-related memory ability in adult mice.

    Science.gov (United States)

    Yang, Miyoung; Kim, Hwanseong; Kim, Juhwan; Kim, Sung-Ho; Kim, Jong-Choon; Bae, Chun-Sik; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-03-01

    Object recognition memory and contextual fear conditioning task performance in adult C57BL/6 mice exposed to cranial fast neutron irradiation (0.8 Gy) were examined to evaluate hippocampus-related behavioral dysfunction following acute exposure to relatively low doses of fast neutrons. In addition, hippocampal neurogenesis changes in adult murine brain after cranial irradiation were analyzed using the neurogenesis immunohistochemical markers Ki-67 and doublecortin (DCX). In the object recognition memory test and contextual fear conditioning, mice trained 1 and 7 days after irradiation displayed significant memory deficits compared to the sham-irradiated controls. The number of Ki-67- and DCX-positive cells decreased significantly 24 h post-irradiation. These results indicate that acute exposure of the adult mouse brain to a relatively low dose of fast neutrons interrupts hippocampal functions, including learning and memory, possibly by inhibiting neurogenesis.

  14. Neutron irradiation of seeds 2

    Energy Technology Data Exchange (ETDEWEB)

    1968-10-01

    The irradiation of seeds with the fast neutron of research reactors has been hampered by difficulties in accurately measuring dose and in obtaining repeatable and comparable results. Co-ordinated research under an international program organized by the FAO and IAEA has already resulted in significant improvements in methods of exposing seeds in research reactors and in obtaining accurate dosimetry. This has been accomplished by the development of a standard reactor facility for the neutron irradiation of seeds and standard methods for determining fast-neutron dose and the biological response after irradiation. In this program various divisions of the IAEA and the Joint FAO/IAEA Division co-operate with a number of research institutes and reactor centres throughout the world. Results of the preliminary experiments were reported in Technical Reports Series No. 76, ''Neutron Irradiation of Seeds''. This volume contains the proceedings of a meeting of co-operators in the FAO/IAEA Neutron Seed Irradiation Program and other active scientists in this field. The meeting was held in Vienna from 11 to 15 December 1967. Refs, figs and tabs.

  15. Neutron irradiation of seeds 2

    International Nuclear Information System (INIS)

    1968-01-01

    The irradiation of seeds with the fast neutron of research reactors has been hampered by difficulties in accurately measuring dose and in obtaining repeatable and comparable results. Co-ordinated research under an international program organized by the FAO and IAEA has already resulted in significant improvements in methods of exposing seeds in research reactors and in obtaining accurate dosimetry. This has been accomplished by the development of a standard reactor facility for the neutron irradiation of seeds and standard methods for determining fast-neutron dose and the biological response after irradiation. In this program various divisions of the IAEA and the Joint FAO/IAEA Division co-operate with a number of research institutes and reactor centres throughout the world. Results of the preliminary experiments were reported in Technical Reports Series No. 76, ''Neutron Irradiation of Seeds''. This volume contains the proceedings of a meeting of co-operators in the FAO/IAEA Neutron Seed Irradiation Program and other active scientists in this field. The meeting was held in Vienna from 11 to 15 December 1967. Refs, figs and tabs

  16. Neutron Flux Characterization of Irradiation Holes for Irradiation Test at HANARO

    Directory of Open Access Journals (Sweden)

    Yang Seong Woo

    2016-01-01

    Full Text Available The High flux Advanced Neutron Application ReactOr (HANARO is a unique research reactor in the Republic of Korea, and has been used for irradiation testing since 1998. To conduct irradiation tests for nuclear materials, the irradiation holes of CT and OR5 have been used due to a high fast-neutron flux. Because the neutron flux must be accurately calculated to evaluate the neutron fluence of irradiated material, it was conducted using MCNP. The neutron flux was measured using fluence monitor wires to verify the calculated result. Some evaluations have been conducted, however, more than 20% errors have frequently occurred at the OR irradiation hole, while a good agreement between the calculated and measured data was shown at the CT irradiation hole.

  17. Emulation of neutron irradiation effects with protons: validation of principle

    International Nuclear Information System (INIS)

    Was, G.S.; Busby, J.T.; Allen, T.; Kenik, E.A.; Jensson, A.; Bruemmer, S.M.; Gan, J.; Edwards, A.D.; Scott, P.M.; Andreson, P.L.

    2002-01-01

    denuded zones were only observed in neutron-irradiated samples. No cavities were observed for either irradiating particle. For both irradiating particles, hardening increased with dose for both heats, showing a more rapid increase and approach to saturation for heat B. In normal oxygenated water chemistry (NWC) at 288 deg. C, stress corrosion cracking in the 304 alloy was first observed at about 1.0 dpa and increased with dose. The 316 alloy was remarkably resistant to IASCC for both particle types. In hydrogen treated, de-oxygenated water (HWC), proton-irradiated samples of the 304 alloy exhibited IG cracking at 1.0 dpa compared to about 3.0 dpa for neutron-irradiated samples, although differences in specimen geometry, test condition and test duration can account for this difference. Cracking in heat P in HWC occurred at about 5.0 dpa for both irradiating particles. Thus, in all aspects of radiation effects, including grain boundary microchemistry, dislocation loop microstructure, radiation hardening and SCC behavior, proton-irradiation results were in good agreement with neutron-irradiation results, providing validation of the premise that the totality of neutron-irradiation effects can be emulated by proton irradiation of appropriate energy

  18. Tensile and fracture toughness test results of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R.; Moons, F.; Puzzolante, J.L. [Centre d`Etude de l`Energie Nucleaire, Mol (Belgium)

    1998-01-01

    Tensile and fracture toughness test results of four Beryllium grades are reported here. The flow and fracture properties are investigated by using small size tensile and round compact tension specimens. Irradiation was performed at the BR2 material testing reactor which allows various temperature and irradiation conditions. The fast neutron fluence (>1 MeV) ranges between 0.65 and 2.45 10{sup 21} n/cm{sup 2}. In the meantime, un-irradiated specimens were aged at the irradiation temperatures to separate if any the effect of temperature from irradiation damage. Test results are analyzed and discussed, in particular in terms of the effects of material grade, test temperature, thermal ageing and neutron irradiation. (author)

  19. Neutron irradiation damage in transition metal carbides

    International Nuclear Information System (INIS)

    Matsui, Hisayuki; Nesaki, Kouji; Kiritani, Michio

    1991-01-01

    Effects of neutron irradiation on the physical properties of light transition metal carbides, TiC x , VC x and NbC x , were examined, emphasizing the characterization of irradiation induced defects in the nonstoichiometric composition. TiC x irradiated with 14 MeV (fusion) neutrons showed higher damage rates with increasing C/Ti (x) ratio. A brief discussion is made on 'cascade damage' in TiC x irradiated with fusion neutrons. Two other carbides (VC x and NbC x ) were irradiated with fission reactor neutrons. The irradiation effects on VC x were not so simple, because of the complex irradiation behavior of 'ordered' phases. For instance, complete disordering was revealed in an ordered phase, 'V 8 C 7 ', after an irradiation dose of 10 25 n/m 2 . (orig.)

  20. Self-ion emulation of high dose neutron irradiated microstructure in stainless steels

    Science.gov (United States)

    Jiao, Z.; Michalicka, J.; Was, G. S.

    2018-04-01

    Solution-annealed 304L stainless steel (SS) was irradiated to 130 dpa at 380 °C, and to 15 dpa at 500 °C and 600 °C, and cold-worked 316 SS (CW 316 SS) was irradiated to 130 dpa at 380 °C using 5 MeV Fe++/Ni++ to produce microstructures and radiation-induced segregation (RIS) for comparison with that from neutron irradiation at 320 °C to 46 dpa in the BOR60 reactor. For the 304L SS alloy, self-ion irradiation at 380 °C produced a dislocation loop microstructure that was comparable to that by neutron irradiation. No voids were observed in either the 380 °C self-ion irradiation or the neutron irradiation conditions. Irradiation at 600 °C produced the best match to radiation-induced segregation of Cr and Ni with the neutron irradiation, consistent with the prediction of a large temperature shift by Mansur's invariant relations for RIS. For the CW 316 SS alloy irradiated to 130 dpa at 380 °C, both the irradiated microstructure (dislocation loops, precipitates and voids) and RIS reasonably matched the neutron-irradiated sample. The smaller temperature shift for RIS in CW 316 SS was likely due to the high sink (dislocation) density induced by the cold work. A single self-ion irradiation condition at a dose rate ∼1000× that in reactor does not match both dislocation loops and RIS in solution-annealed 304L SS. However, a single irradiation temperature produced a reasonable match with both the dislocation/precipitate microstructure and RIS in CW 316 SS, indicating that sink density is a critical factor in determining the temperature shift for self-ion irradiations.

  1. Neutronic Modelling in Support of the Irradiation Programmes

    International Nuclear Information System (INIS)

    Koonen, E.

    2005-01-01

    Irradiation experiments are generally conducted to determine some specific characteristics of the concerned fuels and structural materials under well defined irradiation conditions. For the determination of the latter the BR2 division has an autonomous reactor physics cell and has implemented the required computational tools. The major tool used is a three-dimensional full-scale Monte Carlo model of the BR2 reactor developed under MCNP-4C for the simulation of irradiation conditions. The objectives of work performed by SCK-CEN are to evaluate and adjust irradiation conditions by adjustments of the environment, differential rod positions, axial and azimuthal positioning of the samples, global power level, ...; to deliver reliable, well defined irradiation condition and fluence data during and after irradiation; to assist the designer of new irradiation devices by simulations and neutronic optimisations of design options; to provide computational support to related projects as a way to valorise the capabilities that the BR2 reactor can offer

  2. New facility for post irradiation examination of neutron irradiated beryllium

    International Nuclear Information System (INIS)

    Ishitsuka, Etsuo; Kawamura, Hiroshi

    1995-01-01

    Beryllium is expected as a neutron multiplier and plasma facing materials in the fusion reactor, and the neutron irradiation data on properties of beryllium up to 800 degrees C need for the engineering design. The acquisition of data on the tritium behavior, swelling, thermal and mechanical properties are first priority in ITER design. Facility for the post irradiation examination of neutron irradiated beryllium was constructed in the hot laboratory of Japan Materials Testing Reactor to get the engineering design data mentioned above. This facility consist of the four glove boxes, dry air supplier, tritium monitoring and removal system, storage box of neutron irradiated samples. Beryllium handling are restricted by the amount of tritium;7.4 GBq/day and 60 Co;7.4 MBq/day

  3. Comparison of deuterium retention for ion-irradiated and neutron-irradiated tungsten

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Kobayashi, Makoto; Okuno, Kenji; Shimada, Masashi; Calderoni, Pattrick; Oda, Takuji; Hara, Masanori; Hatano, Yuji; Watanabe, Hideo

    2014-01-01

    The behavior of D retentions for Fe 2+ irradiated tungsten with the damage of 0.025-3 dpa was compared with that for neutron irradiated tungsten with 0.025 dpa. The D 2 TDS spectra for Fe 2+ irradiated tungsten consisted of two desorption stages at 450 K and 550 K although that for neutron irradiated tungsten was composed of three stages and addition desorption stage was found around 750 K. The desorption rate of major desorption stage at 550 K increased as the number of dpa by Fe 2+ irradiation increased. In addition, the first desorption stage at 450 K was only found for the damaged samples, indicating that the second stage would be based on intrinsic defects or vacancy produced by Fe 2+ irradiation and the first stage should be the accumulation of D in mono vacancy leading to the lower activation energy, where the dislocation loop and vacancy was produced. The third one was only found for the neutron irradiation, showing the D trapping by void or vacancy cluster and the diffusion effect is also contributed due to high FWHM of TDS spectrum. It can be said that the D 2 TDS spectra for Fe 2+ -irradiated tungsten could not represent that for neutron-irradiated one, showing that the deuterium trapping and desorption mechanism for neutron-irradiated tungsten has a difference from that for ion-irradiated one. (author)

  4. Neutron and gamma irradiation effects on power semiconductor switches

    Science.gov (United States)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  5. Study on neutron irradiation behavior of beryllium as neutron multiplier

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    More than 300 tons beryllium is expected to be used as a neutron multiplier in ITER, and study on the neutron irradiation behavior of beryllium as the neutron multiplier with Japan Materials Testing Reactor (JMTR) were performed to get the engineering data for fusion blanket design. This study started as the study on the tritium behavior in beryllium neutron reflector in order to make clear the generation mechanism on tritium of JMTR primary coolant since 1985. These experiences were handed over to beryllium studies for fusion study, and overall studies such as production technology of beryllium pebbles, irradiation behavior evaluation and reprocessing technology have been started since 1990. In this presentation, study on the neutron irradiation behavior of beryllium as the neutron multiplier with JMTR was reviewed from the point of tritium release, thermal properties, mechanical properties and reprocessing technology. (author)

  6. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    International Nuclear Information System (INIS)

    Andreani, C.; Pietropaolo, A.; Salsano, A.; Gorini, G.; Tardocchi, M.; Paccagnella, A.; Gerardin, S.; Frost, C. D.; Ansell, S.; Platt, S. P.

    2008-01-01

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10 7 . Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays

  7. Hyper-thermal neutron irradiation field for neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kanda, Keiji

    1994-01-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum of a Maxwell distribution higher than the room temperature of 300 K, has been studied in order to improve the thermal neutron flux distribution in a living body for a deep-seated tumor in neutron capture therapy (NCT). Simulation calculations using MCNP-V3 were carried out in order to investigate the characteristics of the hyper-thermal neutron irradiation field. From the results of simulation calculations, the following were confirmed: (i) The irradiation field of the hyper-thermal neutrons is feasible by using some scattering materials with high temperature, such as Be, BeO, C, SiC and ZrH 1.7 . Especially, ZrH 1.7 is thought to be the best material because of good characteristics of up-scattering for thermal neutrons. (ii) The ZrH 1.7 of 1200 K yields the hyper-thermal neutrons of a Maxwell-like distribution at about 2000 K and the treatable depth is about 1.5 cm larger comparing with the irradiation of the thermal neutrons of 300 K. (iii) The contamination by the secondary gamma-rays from the scattering materials can be sufficiently eliminated to the tolerance level for NCT through the bismuth layer, without the larger change of the energy spectrum of hyper-thermal neutrons. ((orig.))

  8. An investigation of neutron irradiation test on superplastic zirconia-ceramic materials

    International Nuclear Information System (INIS)

    Shibata, Taiju; Ishihara, Masahiro; Baba, Shinichi; Hayashi, Kimio

    2000-05-01

    A neutron irradiation test on superplastic ceramic materials at high temperature has been proposed as an innovative basic research on high-temperature engineering using the High Temperature Engineering Test Reactor (HTTR). For the effective execution of the test, we reviewed the superplastic deformation mechanism of ceramic materials and discussed neutron irradiation effects on the superplastic deformation process of stabilized Tetragonal Zirconia Polycrystal (TZP), which is a representative superplastic ceramic material. As a result, we pointed out that the decrease in the activation energy for superplastic deformation is expected by the radiation-enhanced diffusion. We selected a fast neutron fluence of 5x10 20 n/cm 2 and an irradiation temperature of about 600degC as test conditions for the first irradiation test on TZP and decided to perform a preliminary irradiation test by the Japan Materials Testing Reactor (JMTR). Moreover, we estimated the radioactivity of irradiated TZP and indicated that it is in the order of 10 10 Bq/g (about 0.3 Ci/g) immediately after irradiation to a thermal neutron fluence of 3x10 20 n/cm 2 and that it decays to about 1/100 in a year. (author)

  9. Neutron irradiation of sapphire for compressive strengthening. II. Physical properties changes

    Energy Technology Data Exchange (ETDEWEB)

    Regan, Thomas M. E-mail: thomas_regan@uml.edu; Harris, Daniel C. E-mail: harrisdc@navair.navy.mil; Blodgett, David W.; Baldwin, Kevin C.; Miragliotta, Joseph A.; Thomas, Michael E.; Linevsky, Milton J.; Giles, John W.; Kennedy, Thomas A.; Fatemi, Mohammad; Black, David R.; Lagerloef, K. Peter D

    2002-01-01

    Irradiation of sapphire with fast neutrons (0.8-10 MeV) at a fluence of 10{sup 22}/m{sup 2} increased the c-axis compressive strength and the c-plane biaxial flexure strength at 600 deg. C by a factor of {approx}2.5. Both effects are attributed to inhibition of r-plane twin propagation by damage clusters resulting from neutron impact. The a-plane biaxial flexure strength and four-point flexure strength in the c- and m-directions decreased by 10-23% at 600 deg. C after neutron irradiation. Neutron irradiation had little or no effect on thermal conductivity, infrared absorption, elastic constants, hardness, and fracture toughness. A featureless electron paramagnetic resonance signal at g=2.02 was correlated with the strength increase: This signal grew in amplitude with increasing neutron irradiation, which also increased the compressive strength. Annealing conditions that reversed the strengthening also annihilated the g=2.02 signal. A signal associated with a paramagnetic center containing two Al nuclei was not correlated with strength. Ultraviolet and visible color centers also were not correlated with strength in that they could be removed by annealing at temperatures that were too low to reverse the compressive strengthening effect of neutron irradiation.

  10. Applications of neutron irradiation

    International Nuclear Information System (INIS)

    Ito, Yasuo

    1999-01-01

    The present state of art of applications of neutron irradiation is overviewed taking neutron activation analysis, prompt gamma-ray analysis, fission/alpha track methods, boron neutron capture therapy as examples. What is common among them is that the technologies are nearly matured for wide use by non- nuclear scientists. But the environment around research reactors is not prospective. These applications should be encouraged by incorporating in the neutron science society. (author)

  11. Behavior under irradiation of super-mirror for neutron guides

    International Nuclear Information System (INIS)

    N'Guy-Marechal, K.

    1997-10-01

    The aim of this work is to study the aging of NiCx/Ti super-mirror multilayers used in neutron guides under thermal neutron irradiation. These multilayers allow an increase of the apparent critical angle of total reflection by creating constructive interferences. Neutrons fluxes are thus increased in neutron guides made with a super-mirror coating. Thin films of one and ten bilayers have been deposited on a silicon and a borosilicate glass substrate. We have then studied the evolution of their optical, structural and mechanical properties after irradiation and annealing. After irradiation, a decrease in neutron reflectivity has been observed, due to the interdiffusion of both materials: this phenomenon was particularly important in the coatings deposited on a glass substrate. X-ray diffraction and X-ray absorption spectroscopy have shown that the structural evolutions of both nickel and titanium do not depend on the substrate. Nickel layers remain face-centered cubic after treatment, whereas the initially hexagonal closed-packed titanium becomes face-centered cubic with a texture in the [111] direction. This phase transformation has been attributed to the formation of a TiH compound containing as much as 50% hydrogen. Despite these structural changes, stress relaxation has occurred after irradiation in our layers. On the contrary, the mean stress that we have determined in previous samples, elaborated in another laboratory, has increased after irradiation. Comparison of both results shows that stress evolution is linked to the deposition conditions. As stress remains almost unchanged after annealing, we may conclude that only irradiation defects, and not heating, lead to stress evolution. Our samples being very similar to real neutron guides, we can extend the results we have obtained in this work to real super-mirrors. (author)

  12. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    Science.gov (United States)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic

  13. Irradiation system for neutron capture therapy using the small accelerator

    International Nuclear Information System (INIS)

    Kobayashi, Tooru; Hoshi, Masaharu

    2002-01-01

    Neutron capture therapy (NCT) is to kill tumor cells that previously incorporated the stable isotope which generates heavy charged particles with a short range and a high linear energy transfer (LET) on neutron irradiation. Boron-10 is ordinarily used as such an isotope. The tumor tissue is neutron-irradiated at craniotomy after preceding craniotomy for tumor extraction: therefore two surgeries are required for the present NCT in Japan. The reactions 10 B(n, αγ) 7 Li and 7 Li (p, n) 7 Be are thought preferential for patients and doctors if a convenient small accelerator, not the reactor used at present, is available in the hospital because only one craniotomy is sufficient. Authors' examinations of the system for NCT using the small accelerator involve irradiation conditions, desirable energy spectrum of neutron, characterization of thermal and epi-thermal neutrons, social, practical and technical comparison of the reactor and accelerator, and usefulness of the reaction 7 Li (p, n) 7 Be. The system devoted to the NCT is awaited in future. (K.H.)

  14. Alterations in water and electrolyte absorption in the rat colon following neutron irradiation: influence of neutron component and irradiation dose.

    Science.gov (United States)

    Dublineau, I; Ksas, B; Joubert, C; Aigueperse, J; Gourmelon, P; Griffiths, N M

    2002-12-01

    To study the absorptive function of rat colon following whole-body exposure to neutron irradiation, either to the same total dose with varying proportion of neutrons or to the same neutron proportion with an increasing irradiation dose. Different proportions of neutron irradiation were produced from the reactor SILENE using a fissile solution of uranium nitrate (8, 47 and 87% neutron). Water and electrolyte fluxes were measured in the rat in vivo under anaesthesia by insertion into the descending colon of an agarose gel cylinder simulating the faeces. Functional studies were completed by histological analyses. In the first set of experiments, rats received 3.8 Gy with various neutron percentages and were studied from 1 to 14 days after exposure. In the second set of experiments, rats were exposed to increasing doses of irradiation (1-4Gy) with a high neutron percentage (87%n) and were studied at 4 days after exposure. The absorptive capacity of rat colon was diminished by irradiation at 3-5 days, with a nadir at 4 days. The results demonstrate that an increase in the neutron proportion is associated with an amplification of the effects. Furthermore, a delay in the re-establishment of normal absorption was observed with the high neutron proportion (87%n). A dose-dependent reduction of water absorption by rat colon was also observed following neutron irradiation (87%n), with a 50% reduction at 3 Gy. Comparison of this dose-effect curve with the curve obtained following gamma (60)Co-irradiation indicates an RBE of 2.2 for absorptive colonic function in rat calculated at 4 days after exposure.

  15. Intense neutron irradiation facility for fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio; Kato, Yoshio; Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Technical R and D of d-Li stripping type neutron irradiation facilities for development of fusion reactor materials was carried out in Fusion Materials Irradiation Test Facility (FMIT) project and Energy Selective Neutron Irradiation Test Facility (ESNIT) program. Conceptual design activity (CDA) of International Fusion Materials Irradiation Facility (IFMIF), of which concept is an advanced version of FMIT and ESNIT concepts, are being performed. Progress of users` requirements and characteristics of irradiation fields in such neutron irradiation facilities, and outline of baseline conceptual design of IFMIF were described. (author)

  16. Conceptual design, neutronic and radioprotection study of a fast neutron irradiation station at SINQ

    International Nuclear Information System (INIS)

    Zanini, L.; Baluc, N.; Simone, A. De; Eichler, R.; Joray, S.; Manfrin, E.; Pouchon, M.; Rabaioli, S.; Schumann, D.; Welte, J.; Zhernosekov, K.

    2011-12-01

    This comprehensive, illustrated report by the Paul Scherrer Institute PSI in Switzerland documents the proposals concerning the conceptual design, neutronic and radioprotection study of a fast neutron irradiation station at the PSI's Swiss Spallation Neutron Source SINQ facility. The need for fast neutron irradiation is discussed and the possibility of using SINQ as a fast neutron irradiation facility is considered. The production of isotopes, tracers and medical isotopes is discussed, as are fission and fusion reactor technologies. The characteristics of the neutron spectrum in SINQ are discussed. The neutronic and radioprotection calculations for an irradiation station at SINQ are looked at in detail and extensive examples of work done and results obtained are presented and discussed. Radioprotection issues are also looked at. Further contributions in the report cover the hot/cold irradiation station in the SINQ target. An appendix provides detailed drawings of the facility's pneumatic delivery system

  17. Flux effect on neutron irradiation embrittlement of reactor pressure vessel steels irradiated to high fluences

    International Nuclear Information System (INIS)

    Soneda, N.; Dohi, K.; Nishida, K.; Nomoto, A.; Iwasaki, M.; Tsuno, S.; Akiyama, T.; Watanabe, S.; Ohta, T.

    2011-01-01

    Neutron irradiation embrittlement of reactor pressure vessel (RPV) steels is of great concern for the long term operation of light water reactors. In particular, the embrittlement of the RPV steels of pressurized water reactors (PWRs) at very high fluences beyond 6*10 19 n/cm 2 , E > 1 MeV, needs to be understood in more depth because materials irradiated in material test reactors (MTRs) to such high fluences show larger shifts than predicted by current embrittlement correlation equations available worldwide. The primary difference between the irradiation conditions of MTRs and surveillance capsules is the neutron flux. The neutron flux of MTR is typically more than one order of magnitude higher than that of surveillance capsule, but it is not necessarily clear if this difference in neutron flux causes difference in mechanical properties of RPV. In this paper, we perform direct comparison, in terms of mechanical property and microstructure, between the materials irradiated in surveillance capsules and MTRs to clarify the effect of flux at very high fluences and fluxes. We irradiate the archive materials of some of the commercial reactors in Japan in the MTR, LVR-15, of NRI Rez, Czech Republic. Charpy impact test results of the MTR-irradiated materials are compared with the data from surveillance tests. The comparison of the results of microstructural analyses by means of atom probe tomography is also described to demonstrate the similarity / differences in surveillance and MTR-irradiated materials in terms of solute atom behavior. It appears that high Cu material irradiated in a MTR presents larger shifts than those of surveillance data, while low Cu materials present similar embrittlement. The microstructural changes caused by MTR irradiation and surveillance irradiation are clearly different

  18. Effects of non-steady irradiation conditions on fusion materials performance

    International Nuclear Information System (INIS)

    Matsui, H.; Fukumoto, K.; Nagumo, T.; Nita, N.

    2001-01-01

    During startup of fusion reactors, materials are exposed to neutron irradiation under non-steady temperature condition. Since the temperature of irradiation has decisive effects on the microstructural evolution, the non-steady temperature will have important consequences in the performance of fusion reactor materials. In the present study, a series of vanadium based alloys have been irradiated with neutrons in a temperature cycling condition. It has been found from this study that cavity number density is much greater in temperature cycled specimens than in steady temperature irradiation. Keeping the upper temperature constant, cavity number density is greater for smaller difference between the upper and the lower temperature. It follows that relatively small temperature excursions may have rather significant effects on the fusion material performance in service. (author)

  19. Simulating irradiation hardening in tungsten under fast neutron irradiation including Re production by transmutation

    Science.gov (United States)

    Huang, Chen-Hsi; Gilbert, Mark R.; Marian, Jaime

    2018-02-01

    Simulations of neutron damage under fusion energy conditions must capture the effects of transmutation, both in terms of accurate chemical inventory buildup as well as the physics of the interactions between transmutation elements and irradiation defect clusters. In this work, we integrate neutronics, primary damage calculations, molecular dynamics results, Re transmutation calculations, and stochastic cluster dynamics simulations to study neutron damage in single-crystal tungsten to mimic divertor materials. To gauge the accuracy and validity of the simulations, we first study the material response under experimental conditions at the JOYO fast reactor in Japan and the High Flux Isotope Reactor at Oak Ridge National Laboratory, for which measurements of cluster densities and hardening levels up to 2 dpa exist. We then provide calculations under expected DEMO fusion conditions. Several key mechanisms involving Re atoms and defect clusters are found to govern the accumulation of irradiation damage in each case. We use established correlations to translate damage accumulation into hardening increases and compare our results to the experimental measurements. We find hardening increases in excess of 5000 MPa in all cases, which casts doubts about the integrity of W-based materials under long-term fusion exposure.

  20. Apoptosis of nasopharyngeal carcinoma cell line (CNE-2) induced by neutron irradiation

    International Nuclear Information System (INIS)

    Liang Ke; He Shaoqin; Feng Yan; Tang Jinhua; Feng Qinfu; Shen Yu; Yin Weibo; Xu Guozhen; Liu Xinfan; Wang Luhua; Gao Li

    1999-01-01

    Objective: To study the apoptotic response of the nasopharyngeal carcinoma cell line (CNE-2) induced by neutron irradiation. Methods: CNE-2 cells were cultured as usual. Using the techniques of DNA agarose gel electrophoresis and DNA special fluorescent staining, the status of apoptosis in CNE-2 cells after neutron irradiation was detected. Results: It was shown that the apoptosis can be induced in CNE-2 cell after neutron radiation. Six hrs, after different doses of neutron (0/0.667/1.333/2.000/2.667/3.333 Gy) and X-ray 0/2/4/6/8/10 Gy) irradiation the apoptotic rates were 2.4%, 6.3%, 7.1%, 9.5%, 13.5%, 14.6% and 2.4%, 3.8%, 5.7%, 7.8%, 10.4%, 11.7%, respectively; at 48 hrs they were 18.3%, 21.5%, 22.8%, 29.3%, 34.2% and 13.7%, 17.6%, 21.3%, 25.6%, 28.9%, respectively. At 10 hrs after neutron irradiation the DNA ladder of apoptosis could be detected between 0.667-3.333 Gy doses in CNE-2 cells by DNA agarose gel electrophoresis. Conclusion: Neutron radiation can induce apoptosis in tumor cells. Compared with the X-ray, neutron induces apoptosis in larger extent than X-ray in the same condition; meanwhile, apoptosis after irradiation is dose and time dependent

  1. Aging under irradiation of super-mirrors used in neutron guides

    International Nuclear Information System (INIS)

    N'Guy-Marechal, K.

    1997-01-01

    The aim of this work is to study the aging of NiC x /Ti super-mirror multilayers used in neutron guides under thermal neutron irradiation. These multilayers allow an increase of the apparent critical angle of total reflection by creating constructive interferences. Neutrons fluxes are thus increased in neutron guides made with a super-mirror coating. Thin films of one and ten bilayers have been deposited on a silicon and a borosilicate glass substrate. We have then studied the evolution of their optical, structural and mechanical properties after irradiation and annealing. After irradiation, a decrease in neutron reflectivity has been observed, due to the interdiffusion of both materials: this phenomenon was particularly important in the coatings deposited on a glass substrate. X-ray diffraction and X-ray absorption spectroscopy have shown that the structural evolutions of both nickel and titanium do not depend on the substrate. Nickel layers remain face-centered cubic after treatment, whereas the initially hexagonal closed-packed titanium becomes face-centered cubic with a texture in the [111] direction. This phase transformation has been attributed to the formation of a TiH compound containing as much as 50 % hydrogen. Despite these structural changes, stress relaxation has occurred after irradiation in our layers. On the contrary, then mean stress that we have determined in previous samples, elaborated in another laboratory, has increased after irradiation. Comparison of both results shows that stress evolution is linked to the deposition conditions. As stress remains almost unchanged after annealing, we may conclude that only irradiation defects, and not heating, lead to stress evolution. Our samples being very similar to real neutron guides, we can extend the results we have obtained in this work to real super-mirrors. (author)

  2. National Low-Temperature Neutron-Irradiation Facility

    International Nuclear Information System (INIS)

    Coltman, R.R. Jr.; Klabunde, C.E.; Young, F.W. Jr.

    1983-08-01

    The Materials Sciences Division of the United States Department of Energy will establish a National Low Temperature Neutron Irradiation Facility (NLTNIF) which will utilize the Bulk Shielding Reactor (BSR) located at Oak Ridge National Laboratory. The facility will provide high radiation intensities and special environmental and testing conditions for qualified experiments at no cost to users. This report describes the planned experimental capabilities of the new facility

  3. Neutron Dosimetry and Irradiation of Solids; Dosimetrie des neutrons et irradiation des solides

    Energy Technology Data Exchange (ETDEWEB)

    Perriot, G; Schmitt, A P [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-07-01

    Results of work at C.E.A. from 1958 to 1960 are reviewed. The possibilities offered by classical dosimetry methods are discussed. The tests which led to the utilization, for fast neutron dosimetry, of resistivity variations induced in solid W by such neutrons are described. Experimental W irradiation results led to a definition of neutron efficiency which describes the relations between neutron energy and their effects on materials. Possibilities offered by detectors which make use of radiation damage and are sensitive to neutrons at keV energies were explored. In other work, the principal French reactors were classified according to their ability to produce damage in materials such as W. (authors) [French] Dans ce rapport on a presente les resultats essentiels de travaux qui ont ete effectues de 1958 a 1980 par des chercheurs du CEA issus de differents services. En meme temps qu'une revue des possibilites offertes a l'epoque par les methodes classiques de dosimetrie (utilisation des detecteurs par activation), on a decrit les essais qui devaient permettre d'utiliser, a la dosimetrie les neutrons rapides, les variations de resistivite qu'ils creent dans un corps solide (tungstene). L'irradiation du tungstene a montre l'importance qu'il y avait a definir 'l'efficacite' des neutrons, c'est-a-dire leur aptitude plus ou moins grande, selon leur energie, a creer des defauts dans les materiaux. L'efficacite d'un emplacement d'irradiation se trouvant liee au spectre neutronique, on a vu les difficultes qu'il y avait a utiliser les detecteurs par activation des qu'on n'avait plus affaire a un spectre en 1/E ou de fission et on a pu entrevoir les possibilites offertes par les detecteurs utilisant la creation des defauts qui repondent a tous les neutrons d'energies, superieures a quelques keV. Enfin, on a classe les principaux types de Piles Francaises selon leur aptitude a creer plus ou moins rapidement des dommages dans des materiaux comme le tungstene. (auteur)

  4. Monitoring of the Irradiated Neutron Fluence in the Neutron Transmutation Doping Process of Hanaro

    Science.gov (United States)

    Kim, Myong-Seop; Park, Sang-Jun

    2009-08-01

    Neutron transmutation doping (NTD) for silicon is a process of the creation of phosphorus impurities in intrinsic or extrinsic silicon by neutron irradiation to obtain silicon semiconductors with extremely uniform dopant distribution. HANARO has two vertical holes for the NTD, and the irradiation for 5 and 6 inch silicon ingots has been going on at one hole. In order to achieve the accurate neutron fluence corresponding to the target resistivity, the real time neutron flux is monitored by self-powered neutron detectors. After irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of activation detectors. In this work, a neutron fluence monitoring method using zirconium foils with the mass of 10 ~ 50 mg was applied to the NTD process of HANARO. We determined the proportional constant of the relationship between the resistivity of the irradiated silicon and the neutron fluence determined by using zirconium foils. The determined constant for the initially n-type silicon was 3.126 × 1019 n·Ω/cm. It was confirmed that the difference between this empirical value and the theoretical one was only 0.5%. Conclusively, the practical methodology to perform the neutron transmutation doping of silicon was established.

  5. Chemical reactions induced by fast neutron irradiation

    International Nuclear Information System (INIS)

    Katsumura, Y.

    1989-01-01

    Here, several studies on fast neutron irradiation effects carried out at the reactor 'YAYOI' are presented. Some indicate a significant difference in the effect from those by γ-ray irradiation but others do not, and the difference changes from subject to subject which we observed. In general, chemical reactions induced by fast neutron irradiation expand in space and time, and there are many aspects. In the time region just after the deposition of neutron energy in the system, intermediates are formed densely and locally reflecting high LET of fast neutrons and, with time, successive reactions proceed parallel to dissipation of localized energy and to diffusion of the intermediates. Finally the reactions are completed in longer time region. If we pick up the effects which reserve the locality of the initial processes, a significant different effect between in fast neutron radiolysis and in γ-ray radiolysis would be derived. If we observe the products generated after dissipation and diffusion in longer time region, a clear difference would not be observed. Therefore, in order to understand the fast neutron irradiation effects, it is necessary to know the fundamental processes of the reactions induced by radiations. (author)

  6. Hair dosimetry following neutron irradiation.

    Science.gov (United States)

    Lebaron-Jacobs, L; Gaillard-Lecanu, E; Briot, F; Distinguin, S; Boisson, P; Exmelin, L; Racine, Y; Berard, P; Flüry-Herard, A; Miele, A; Fottorino, R

    2007-05-01

    Use of hair as a biological dosimeter of neutron exposure was proposed a few years ago. To date, the (32)S(n,p)(32)P reaction in hair with a threshold of 2.5 MeV is the best choice to determine the fast neutron dose using body activation. This information is essential with regards to the heterogeneity of the neutron transfer to the organism. This is a very important parameter for individual dose reconstruction from the surface to the deeper tissues. This evaluation is essential to the adapted management of irradiated victims by specialized medical staff. Comparison exercises between clinical biochemistry laboratories from French sites (the CEA and COGEMA) and from the IRSN were carried out to validate the measurement of (32)P activity in hair and to improve the techniques used to perform this examination. Hair was placed on a phantom and was irradiated at different doses in the SILENE reactor (Valduc, France). Different parameters were tested: variation of hair type, minimum weight of hair sample, hair wash before measurement, delivery period of results, and different irradiation configurations. The results obtained in these comparison exercises by the different laboratories showed an excellent correlation. This allowed the assessment of a dose-activity relationship and confirmed the feasibility and the interest of (32)P measurement in hair following fast neutron irradiation.

  7. The intrinsic gettering in neutron irradiation Czochralski-silicon

    CERN Document Server

    Li Yang Xian; Niu Ping Juan; Liu Cai Chi; Xu Yue Sheng; Yang Deren; Que Duan Lin

    2002-01-01

    The intrinsic gettering in neutron irradiated Czochralski-silicon is studied. The result shows that a denuded zone at the surface of the neutron irradiated Czochralski-silicon wafer may be formed through one-step short-time annealing. The width of the denuded zone is dependent on the annealing temperature and the dose of neutron irradiation, while it is irrelated to the annealing time in case the denuded zone is formed. The authors conclude that the interaction between the defects induced by neutron irradiation and the oxygen in the silicon accelerates the oxygen precipitation in the bulk, and becomes the dominating factor of the quick formation of intrinsic gettering. It makes the effect of thermal history as the secondary factor

  8. A neutron irradiator applied to cancer treatment

    International Nuclear Information System (INIS)

    Campos, Tarcisio P.R.; Andrade, Ana P. de

    2000-01-01

    Cancer and the way of treating it with neutron capture therapy are addressed. This paper discusses also the type of neutron facilities used to treat cancer around the world, as follow: discrete neutron sources, accelerators, and nuclear reactors. The major features of an epithermal neutron irradiation facility applied to BNCT treatment are addressed. The main goal is to give another choice of neutron irradiators to be set in a hospital. The irradiation facility embeds a set of 252 Cf neutron source coupled with a homogeneous mixture of uranium-zirconium hydride alloy containing 8.4 wt % uranium enriched to 20% U 235 . The facility delivers an epithermal neutron beam with low background of fast neutron and gamma rays. The N particle transport code (MCNP-4A) has been used during the simulation in order to achieve the desired configurations and to estimate the multiplication factor, k eff . The present facility loaded with 30 mg of 252 Cf neutron source generates an external beam with an intensity of 10 7 n/cm 2 .s on the spectrum of 4 eV to 40 KeV. The 252 Cf - facility coupled with fissile material was able to amplify the epithermal flux to 10 8 n/cm 2 .s, maintaining the figure-of-merits represented by the ratios of the fast dose and gamma dose in air per epithermal neutron flux closed to those values presented by BMRR, MITR-II and Petten Reactor. The medical irradiation facility loaded with 252 Cf- 235 U can be a choice for BNCT. (author)

  9. Detection and measurement of neutron-irradiated gemstones

    International Nuclear Information System (INIS)

    Bunnak, S.; Jerachanchai, S.; Chinudomsub, K.; Saiyut, K.

    1990-01-01

    Color enhance gemstone, neutron-irradiated topaz, was analyzed by gamma spectrometry for examining characteristic and activity. Topaz was irradiated in the wet-tube facility of the Research Reactor TRR/1 which neutron fluence is 2.52x10 17 neutron per square centimeter. After 100 days of decay, topaz was sampling to the qualitative and quantitative analysis using multichannel analyzer of Nuclear Data Model ND65 and hyper pure germanium detector. Calculation and evaluation were done by microcomputer IBM/PC 640 KB RAM. The qualitative analysis showed that the neutron-irradiated topaz has 2 major isotopes, i.e., Ta-182 and Sc-46. Quantitative activity was compared with reference standard source Eu-152 (NBS) and the results were shown in the table 1. The Health Physics Division, OAEP, inspected on 6240.9 gm of the neutron-irradiated topaz using standard release limit 2 nCi/gm (74 Bq/gm). It was found that only 423.9 gm out of the total amount were over the standard release limit

  10. Polarizing neutron by light-irradiated graphene

    International Nuclear Information System (INIS)

    Peng, Feng

    2015-01-01

    We study the spin orientation of the neutron scattered by light-irradiated graphene and calculate the average value of spin z-component of the neutron in terms of a generating functional technique. Our calculation results indicate that there is a remarkable neutron polarization effect when a neutron penetrates graphene irradiated by a circularly polarized light. We analyse the dynamical source of generating this effect from the aspect of photon-mediated interaction between the neutron spin and valley pseudospin. By comparing with the polarization induced by a magnetic field, we find that this polarization may be equivalent to the one led by a magnetic field of several hundred Teslas if the photon frequency is in the X-ray frequency range. This provides an approach of polarizing neutrons. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Materials for cold neutron sources: Cryogenic and irradiation effects

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1990-01-01

    Materials for the construction of cold neutron sources must satisfy a range of demands. The cryogenic temperature and irradiation create a severe environment. Candidate materials are identified and existing cold sources are briefly surveyed to determine which materials may be used. Aluminum- and magnesium-based alloys are the preferred materials. Existing data for the effects of cryogenic temperature and near-ambient irradiation on the mechanical properties of these alloys are briefly reviewed, and the very limited information on the effects of cryogenic irradiation are outlined. Generating mechanical property data under cold source operating conditions is a daunting prospect. It is clear that the cold source material will be degraded by neutron irradiation, and so the cold source must be designed as a brittle vessel. The continued effective operation of many different cold sources at a number of reactors makes it clear that this can be accomplished. 46 refs., 8 figs., 2 tab

  12. Needs of in-situ materials testing under neutron irradiation

    International Nuclear Information System (INIS)

    Noda, K.; Hishinuma, A.; Kiuchi, K.

    1989-01-01

    Under neutron irradiation, the component atoms of materials are displaced as primary knock-on atoms, and the energy of the primary knock-on atoms is consumed by electron excitation and nuclear collision. Elementary irradiation defects accumulate to form damage structure including voids and bubbles. In situ test under neutron irradiation is necessary for investigating into the effect of irradiation on creep behavior, the electric properties of ceramics, transport phenomena and so on. The in situ test is also important to investigate into the phenomena related to the chemical reaction with environment during irradiation. Accelerator type high energy neutron sources are preferable to fission reactors. In this paper, the needs and the research items of in situ test under neutron irradiation using a D-Li stripping type high energy neutron source on metallic and ceramic materials are described. Creep behavior is one of the most important mechanical properties, and depends strongly on irradiation environment, also it is closely related to microstructure. Irradiation affects the electric conductibity of ceramics and also their creep behavior. In this way, in situ test is necessary. (K.I.)

  13. SiC-based neutron detector in quasi-realistic working conditions: efficiency and stability at room and high temperature under fast neutron irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Ferone, Raffaello; Issa, Fatima; Ottaviani, Laurent; Biondo, Stephane; Vervisch, Vanessa [IM2NP, UMR CNRS 7334, Aix-Marseille University, Case 231,13397 Marseille Cedex 20, (France); Szalkai, Dora; Klix, Axel [KIT- Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology Karlsruhe 76344, (Germany); Vermeeren, Ludo [SCK-CEN, Boeretang 200, B-2400 Mol, (Belgium); Saenger, Richard [Schlumberger, Clamart, (France); Lyoussi, Abadallah [CEA, DEN, Departement d' Etudes des Reacteurs, Service de Physique Experimentale, Laboratoire Dosimetrie Capteurs Instrumentation, 13108 Saint-Paul-lez-Durance, (France)

    2015-07-01

    In the framework of the European I SMART project, we have designed and made new SiC-based nuclear radiation detectors able to operate in harsh environments and to detect both fast and thermal neutrons. In this paper, we report experimental results of fast neutron irradiation campaign at high temperature (106 deg. C) in quasi-realistic working conditions. Our device does not suffer from high temperature, and spectra do show strong stability, preserving features. These experiments, as well as others in progress, show the I SMART SiC-based device skills to operate in harsh environments, whereas other materials would strongly suffer from degradation. Work is still demanded to test our device at higher temperatures and to enhance efficiency in order to make our device fully exploitable from an industrial point of view. (authors)

  14. DNA-repair after irradiation of cells with gamma-rays and neutrons

    International Nuclear Information System (INIS)

    Altmann, H.

    1975-11-01

    The structural alterations of calf thymus DNA produced by neutron or gamma irradiation were observed by absorption spectra, sedimentation rate and viscosity measurements. Mixed neutron-gamma irradiation produced fewer single and double strand breaks compared with pure gamma irradiation. RBE-values for mixed neutron-gamma radiation were less than 1, and DNA damage decreased with increasing neutron dose rate. Repair processes of DNA occuring after irradiation were measured in mouse spleen suspensions and human lymphocytes using autoradiographic methods and gradient centrifugations. The number of labelled cells was smaller after mixed neutron-gamma irradiation than after gamma irradiation. The rejoining of strand breaks in alkaline and neutral sucrose was more efficient after gamma irradiation than after mixed neutron-gamma irradiation. Finally, the effect of detergents Tween 80 and Nonident P40 on unscheduled DNA synthesis was studied by autoradiography after mixed neutron-gamma irradiation (Dn=5 krad). The results showed that the DNA synthesis was inhibited by detergent solutions of 0.002%

  15. Study of boron carbide evolution under neutron irradiation

    International Nuclear Information System (INIS)

    Simeone, D.

    1999-01-01

    Owing to its high neutron efficiency, boron carbide (B 4 C) is used as a neutron absorber in control rods of nuclear plants. Its behaviour under irradiation has been extensively studied for many years. It now seems clear that brittleness of the material induced by the 10 B(n,α) 7 Li capture reaction is due to penny shaped helium bubbles associated to a high strain field around them. However, no model explains the behaviour of the material under neutron irradiation. In order to build such a model, this work uses different techniques: nuclear microprobe X-ray diffraction profile analysis and Raman and Nuclear Magnetic Resonance Spectroscopy to present an evolution model of B 4 C under neutron irradiation. The use of nuclear reactions produced by a nuclear microprobe such as the 7 Li(p,p'γ) 7 Li reaction, allows to measure lithium profile in B 4 C pellets irradiated either in Pressurised Water Reactors or in Fast Breeder Reactors. Examining such profiles enables us to describe the migration of lithium atoms out of B 4 C materials under neutron irradiation. The analysis of X-ray diffraction profiles of irradiated B 4 C samples allows us to quantify the concentrations of helium bubbles as well as the strain fields around such bubbles.Furthermore Raman spectroscopy studies of different B 4 C samples lead us to propose that under neutron irradiation. the CBC linear chain disappears. Such a vanishing of this CBC chain. validated by NMR analysis, may explain the penny shaped of helium bubbles inside irradiated B 4 C. (author)

  16. Neutron-irradiation facilities at the Intense Pulsed Neutron Source-I for fusion magnet materials studies

    International Nuclear Information System (INIS)

    Brown, B.S.; Blewitt, T.H.

    1982-01-01

    The decommissioning of reactor-based neutron sources in the USA has led to the development of a new generation of neutron sources that employ high-energy accelerators. Among the accelerator-based neutron sources presently in operation, the highest-flux source is the Intense Pulsed Neutron Source (IPNS), a user facility at Argonne National Laboratory. Neutrons in this source are produced by the interaction of 400 to 500 MeV protons with either of two 238 U target systems. In the Radiation Effects Facility (REF), the 238 U target is surrounded by Pb for neutron generatjion and reflection. The REF has three separate irradiation thimbles. Two thimbles provide irradiation temperatures between that of liquid He and several hundred degrees centigrade. The third thimble operates at ambient temperature. The large irradiation volume, the neutron spectrum and flux, the ability to transfer samples without warm up, and the dedication of the facilities during the irradiation make this ideally suited for radiation damage studies on components for superconducting fusion magnets. Possible experiments for fusion magnet materials are discussed on cyclic irradiation and annealing of stabilizers in a high magnetic field, mechanical tests on organic insulation irradiated at 4 K, and superconductors measured in high fields after irradiation

  17. Burnup calculation with estimated neutron spectrum of JMTR irradiation field. Development of the burnup calculation method for fuel pre-irradiated in the JMTR

    International Nuclear Information System (INIS)

    Okonogi, Kazunari; Nakamura, Takehiko; Yoshinaga, Makio; Hosoyamada, Ryuji

    1999-03-01

    As a series of the pulse irradiation tests with the irradiated fuel, the high-enriched fuel rods pre-irradiated in the JMTR as well as the fuels irradiated in commercial reactors have been irradiated in the NSRR. In the pre-irradiation at the JMTR, the test fuels were placed at the irradiation holes in the reflector region far from the driver core to keep the linear heat generation rate of the test fuel low. Accordingly, neutron energy spectra of the irradiation holes for the test fuels are softened due to the higher moderator ratio than in those of the ordinary LWR core, which causes quite different burnup characteristics. JMTR post irradiation condition corresponds to the pre-test condition in the NSRR. Therefore, proper understanding of the condition is quite important for the precise evaluating the energy deposition and FP generation in the test. Then, neutron spectra at the JMTR irradiation field were evaluated and its effects on the burnup calculation were quantified. Basing on the configuration of the JMTR core in the operation cycle No.85, neutron diffusion calculations of 107 groups were executed in 2-D slab (X-Y) geometry of CITATION of SRAC95 code system, and neutron energy spectra of the irradiation hole for the test fuels were evaluated. Burnup calculations of Test JMN-1 fuel with the estimated neutron energy spectra were performed and the results were compared to both the measurements and calculation results with the PWR and BWR libraries in ORIGEN2 code. SWAT code was used to collapse the 107 groups spectra into 1 group libraries for the ORIGEN2 use. The calculation results for both the generation and depletion of U, Pu and Nd with the JMTR libraries obtained in the present study were in the reasonably good agreement with the measurements, while in the case of calculation with the PWR and BWR libraries in ORIGEN2, the generation of fission products having mass numbers from 105 to 130 and some actinides were overestimated by about 1.5 to 3.5 times

  18. Impact of neutron irradiation on thermal helium desorption from iron

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xunxiang, E-mail: hux1@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Field, Kevin G. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Taller, Stephen [University of Michigan, Ann Arbor, MI 48109 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wirth, Brian D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States)

    2017-06-15

    The synergistic effect of neutron irradiation and transmutant helium production is an important concern for the application of iron-based alloys as structural materials in fission and fusion reactors. In this study, we investigated the impact of neutron irradiation on thermal helium desorption behavior in high purity iron. Single crystalline and polycrystalline iron samples were neutron irradiated in HFIR to 5 dpa at 300 °C and in BOR-60 to 16.6 dpa at 386 °C, respectively. Following neutron irradiation, 10 keV He ion implantation was performed at room temperature on both samples to a fluence of 7 × 10{sup 18} He/m{sup 2}. Thermal desorption spectrometry (TDS) was conducted to assess the helium diffusion and clustering kinetics by analyzing the desorption spectra. The comparison of He desorption spectra between unirradiated and neutron irradiated samples showed that the major He desorption peaks shift to higher temperatures for the neutron-irradiated iron samples, implying that strong trapping sites for He were produced during neutron irradiation, which appeared to be nm-sized cavities through TEM examination. The underlying mechanisms controlling the helium trapping and desorption behavior were deduced by assessing changes in the microstructure, as characterized by TEM, of the neutron irradiated samples before and after TDS measurements.

  19. Thermal conductivity of beryllium under low temperature high dose neutron irradiation

    International Nuclear Information System (INIS)

    Chakin, V.P.; Latypov, R.N.; Suslov, D.N.; Kupriyanov, I.B.

    2004-01-01

    Thermal conductivity of compact beryllium of several Russian grades such as TE-400, TE-56, TE-30, TIP and DIP differing in the production technology, grain size and impurity content has been investigated. The thermal diffusivity of beryllium was measured on the disks in the initial and irradiated conditions using the pulse method in the range from room temperature to 200degC. The thermal conductivity was calculated using the table values for the beryllium thermal capacity. The specimens and beryllium neutron source fragments were irradiation in the SM reactor at 70degC and 200degC to a neutron fluence of (0.5-11.4)·10 22 cm -2 (E>0.1 MeV) and in the BOR-60 reactor at 400degC to 16·10 22 cm -2 (E>0.1MeV), respectively. The low-temperature irradiation leads to the drop decrease of the beryllium thermal conductivity and the effect depends on the irradiation parameters. The paper analyses the effect of irradiation parameters (temperature, neutron fluence), measurement temperature and structural factors on beryllium conductivity. The experiments have revealed that the short time post-irradiation annealing at high temperature results in partial reduction of the thermal conductivity of irradiated beryllium. (author)

  20. Radiation damage of pixelated photon detector by neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Isamu [KEK, 1-1 Oho Tsukuba 305-0801 (Japan)], E-mail: isamu.nakamura@kek.jp

    2009-10-21

    Radiation Damage of Pixelated Photon Detector by neutron irradiation is reported. MPPC, one of PPD or Geiger-mode APD, developed by Hamamatsu Photonics, is planned to be used in many high energy physics experiments. In such experiments radiation damage is a serious issue. A series of neutron irradiation tests is performed at the Reactor YAYOI of the University of Tokyo. MPPCs were irradiated at the reactor up to 10{sup 12}neutron/cm{sup 2}. In this paper, the effect of neutron irradiation on the basic characteristics of PPD including gain, noise rate, photon detection efficiency is presented.

  1. Induced defects in neutron irradiated GaN single crystals

    International Nuclear Information System (INIS)

    Park, I. W.; Koh, E. K.; Kim, Y. M.; Choh, S. H.; Park, S. S.; Kim, B. G.; Sohn, J. M.

    2005-01-01

    The local structure of defects in undoped, Si-doped, and neutron irradiated free standing GaN bulk crystals, grown by hydride vapor phase epitaxy, has been investigated by employing Raman scattering and cathodoluminescence. The GaN samples were irradiated to a dose of 2 x 10 17 neutrons in an atomic reactor at Korea Atomic Energy Research Institute. There was no appreciable change in the Raman spectra for undoped GaN samples before and after neutron irradiation. However, a forbidden transition, A 1 (TO) mode, appeared for a neutron irradiated Si-doped GaN crystal. Cathodoluminescence spectrum for the neutron irradiated Si-doped GaN crystal became much more broadened than that for the unirradiated one. The experimental results reveal the generation of defects with locally deformed structure in the wurtzite Si-doped GaN single crystal

  2. Design, Construction, and Modeling of a 252Cf Neutron Irradiator

    Directory of Open Access Journals (Sweden)

    Blake C. Anderson

    2016-01-01

    Full Text Available Neutron production methods are an integral part of research and analysis for an array of applications. This paper examines methods of neutron production, and the advantages of constructing a radioisotopic neutron irradiator assembly using 252Cf. Characteristic neutron behavior and cost-benefit comparative analysis between alternative modes of neutron production are also examined. The irradiator is described from initial conception to the finished design. MCNP modeling shows a total neutron flux of 3 × 105 n/(cm2·s in the irradiation chamber for a 25 μg source. Measurements of the gamma-ray and neutron dose rates near the external surface of the irradiator assembly are 120 μGy/h and 30 μSv/h, respectively, during irradiation. At completion of the project, total material, and labor costs remained below $50,000.

  3. Irradiation hardening and localized deformation of neutron-irradiated α-iron single crystals

    International Nuclear Information System (INIS)

    Mughrabi, H.; Stroehle, D.; Wilkens, M.

    1981-01-01

    The early yielding behaviour of neutron-irradiated α iron single crystals orientated for single slip was investigated as a function of neutron dose. In the range of neutron doses between approx. equal to 10 18 and approx. equal to 10 19 n/cm 2 , the irradiation hardening increment was found to be almost constant. Qualitative modifications of this behaviour were observed in the case of predeformed specimens. The localized deformation of the neutron-irradiated specimens by dislocation channelling was investigated by slip-line observations, transmission electron microscopy and X-ray topography. A model of localized deformation is proposed in order to explain the development of the observed asymmetric dislocation double layers which bound the channels and transmit characteristic misorientations. (orig.)

  4. Neutron irradiation therapy machine

    International Nuclear Information System (INIS)

    1980-01-01

    Conventional neutron irradiation therapy machines, based on the use of cyclotrons for producing neutron beams, use a superconducting magnet for the cyclotron's magnetic field. This necessitates complex liquid He equipment and presents problems in general hospital use. If conventional magnets are used, the weight of the magnet poles considerably complicates the design of the rotating gantry. Such a therapy machine, gantry and target facilities are described in detail. The use of protons and deuterons to produce the neutron beams is compared and contrasted. (U.K.)

  5. Effect of neutron irradiation on vitreous carbon

    International Nuclear Information System (INIS)

    Kurolenkin, E.I.; Virgil'ev, Yu.S.; Chugunova, T.K.

    1989-01-01

    The change in mass (m), volume (V), specific electric resistance (ρ), coefficient of linear thermal expansion (α), dynamic elasticity modulus (E), and limit of bending strength (σ) of vitreous carbon are studied upon neutron irradiation. Samples for study were two forms of vitreous carbon obtained by hardening thermally reactive polymers at 900-1,000 degree K. Phenol-formaldehyde (bakelite lacquer A, Bakelite A) and furfural-phenol-formaldehyde (FM-2) resin were used. They were irradiated in the experimental water - water VVR-M reactor between 360-1,030 degree K. The maximal neutron flux was 1.65·10 21 neut/cm 2 . Neutron irradiation of vitreous carbon led to its shrinkage and accompanied weakening. Shrinkage and weakening of vitreous carbon was decreased with an increase of treatment and irradiation temperatures

  6. IFMIF, a fusion relevant neutron source for material irradiation current status

    International Nuclear Information System (INIS)

    Knaster, J.; Chel, S.; Fischer, U.; Groeschel, F.; Heidinger, R.; Ibarra, A.; Micciche, G.; Möslang, A.; Sugimoto, M.; Wakai, E.

    2014-01-01

    The d-Li based International Fusion Materials Irradiation Facility (IFMIF) will provide a high neutron intensity neutron source with a suitable neutron spectrum to fulfil the requirements for testing and qualifying fusion materials under fusion reactor relevant irradiation conditions. The IFMIF project, presently in its Engineering Validation and Engineering Design Activities (EVEDA) phase under the Broader Approach (BA) Agreement between Japan Government and EURATOM, aims at the construction and testing of the most challenging facility sub-systems, such as the first accelerator stage, the Li target and loop, and irradiation test modules, as well as the design of the entire facility, thus to be ready for the IFMIF construction with a clear understanding of schedule and cost at the termination of the BA mid-2017. The paper reviews the IFMIF facility and its principles, and reports on the status of the EVEDA activities and achievements

  7. Biological Effects of Neutron and Proton Irradiations. Vol. II. Proceedings of the Symposium on Biological Effects of Neutron Irradiations

    International Nuclear Information System (INIS)

    1964-01-01

    During recent years the interest in biological effects caused by neutrons has been increasing steadily as a result of the rapid development of neutron technology and the great number of neutron sources being used. Neutrons, because of their specific physical characteristics and biological effects, form a special type of radiation hazard but, at the same time, are a prospective tool for applied radiobiology. This Symposium, held in Brookhaven at the invitation of the United States Government from 7-11 October 1963, provided an opportunity for scientists to discuss the experimental information at present available on the biological action of neutrons and to evaluate future possibilities. It was a sequel to the Symposium on Neutron Detection, Dosimetry and Standardization, which was organized by the International Atomic Energy Agency in December 1962 at Harwell. The Symposium was attended by 128 participants from 17 countries and 6 international organizations. Fifty-four papers were presented. The following subjects were discussed in various sessions: (1) Dosimetry. Estimation of absorbed dose of neutrons in biological material. (2) Biological effects of high-energy protons. (3) Cellular and genetic effects. (4) Pathology of neutron irradiation, including acute and chronic radiation syndromes (mortality, anatomical and histological changes, biochemical and metabolic disturbances) and delayed consequences. (5) Relative biological effectiveness of neutrons evaluated by different biological tests. A Panel on Biophysical Considerations in Neutron Experimentation, with special emphasis on informal discussions, was organized during the Symposium. The views of the Panel are recorded in Volume II of the Proceedings. Many reports were presented on the important subject of the relative effectiveness of the biological action of neutrons, as well as on the general pathology of neutron irradiation and the cellular and genetic effects related to it. Three survey papers considered

  8. Characterization of the fast neutron irradiation facility of the Portuguese Research Reactor after core conversion

    International Nuclear Information System (INIS)

    Marques, J.G.; Sousa, M.; Santos, J.P.; Fernandes, A.C.

    2011-01-01

    The fast neutron irradiation facility of the Portuguese Research Reactor was characterized after the reduction in uranium enrichment and rearrangement of the core configuration. In this work we report on the determination of the hardness parameter and the 1 MeV equivalent neutron flux along the facility, in the new irradiation conditions, following ASTM E722 standard.

  9. Post-irradiation degradation of DNA in electron and neutron-irradiated E. coli B/r; the effect of the radiation sensitizer metronidazole

    Energy Technology Data Exchange (ETDEWEB)

    Cramp, W A; George, A M; Howlett, J [Hammersmith Hospital, London (UK). M.R.C. Cyclotron Unit

    1976-04-01

    Suspensions of E.coli B/r were irradiated under aerobic and anoxic conditions with electrons (7 to 8 MeV, 2 and 20 krad/min, MRC linear accelerator), or with neutrons (average energy 7.5 MeV, 2 krad/min, MRC cyclotron) in an investigation of the effects of the radiosensitizer, metronidazole (Flagyl, 5 or 10 mM) on survival and DNA degradation. These results are compared with those for another electron affinic radiosensitizer, indane trione. Survival studies yielded enhancement ratios, for anoxic irradiation only, of 1.7 (5mM) and 1.9 (10mM) for electrons, and 1.2 (5mM and 10mM) for neutrons. Unlike indane trione, metronidazole had no pronounced inhibitory effect on post-irradiation DNA degradation, either when incubated with the bacteria before irradiation or when present during irradiation. When present under anoxic conditions of irradiation with electrons, some enhancement of degradation was observed. DNA degradation was reduced at higher doses, with a pronounced maxiumum effect, for neutrons as well as for electrons. Metronidazole allowed this degradation to continue and showed some sensitizing action, but did not prevent the decrease in total degradation at high doses. It is therefore difficult to correlate DNA degradation with cell-depth.

  10. Neutron resistant irradiation alloy and usage thereof

    International Nuclear Information System (INIS)

    Okada, Osamu; Nakata, Kiyotomo; Kato, Takahiko.

    1997-01-01

    A neutron irradiation embrittlement-resistant alloy comprising a Ti alloy having an average grain size of 2μm or smaller and containing from 30 to 40wt% of Al is subjected to powder solidification and then to isothermal forging at a forging rate of from 50 to 80% at a temperature range of from 1150 to 1500K. Namely, since the Ti-Al type alloy comprises from 30 to 30wt% of Al, optionally, from 1 to 6% of Mn, from 0.1 to 0.5% of Si, from 4 to 16% of V and the balance of Ti, it has excellent specific strength, high durable temperature and excellent neutron irradiation resistance, and has ductility required as structural materials. Accordingly, if the Ti-Al type alloy excellent in embrittlement resistance to neutron irradiation dimensional stability of materials is applied to constitutional parts of a reactor core of a nuclear reactor and a thermonuclear reactor to be exposed under neutron irradiation, high reliability is provided and the amount of activated materials is reduced by improving the working life of the materials. (N.H.)

  11. Design of a permanent Cd-shielded epithermal neutron irradiation site in the Syrian Miniature Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Haddad, Kh.; Haj-Hassan, H.

    2008-01-01

    A Cd-shield (cylindrical shell 1 mm in thickness, 34 mm in diameter and 180 mm in length) was used to design a permanent epithermal neutron irradiation site for epithermal neutron activation analysis (ENAA) in the Syrian Miniature Neutron Source Reactor (MNSR). This site was achieved by shielding the surface of the aluminum tube of one of the outer irradiation sites. The calculated depression ratio of thermal neutron flux was 1/10. Homogeneity of the neutron flux in the first outer irradiation site has been found numerically using the WIMSD4 and CITATION codes and experimentally by irradiating five short copper wires using the outer irradiation capsule. Good agreement was obtained between the calculated and the measured results of the neutron flux distributions. (author)

  12. Design of a permanent Cd-shielded epithermal neutron irradiation site in the Syrian Miniature Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Haddad, Kh.; Haj-Hassan, H.

    2009-01-01

    A Cd-shield (cylindrical shell 1 mm in thickness, 34 mm in diameter and 180 mm in length) was used to design a permanent epithermal neutron irradiation site for epithermal neutron activation analysis (ENAA) in the Syrian Miniature Neutron Source Reactor (MNSR). This site was achieved by shielding the surface of the aluminum tube of one of the outer irradiation sites. The calculated depression ratio of thermal neutron flux was 1/10. Homogeneity of the neutron flux in the first outer irradiation site has been found numerically using the WIMSD4 and CITATION codes and experimentally by irradiating five short copper wires using the outer irradiation capsule. Good agreement was obtained between the calculated and the measured results of the neutron flux distributions. (author)

  13. Fatigue crack propagation in neutron-irradiated ferritic pressure-vessel steels

    International Nuclear Information System (INIS)

    James, L.A.

    1977-01-01

    The results of a number of experiments dealing with fatigue crack propagation in irradiated reactor pressure-vessel steels are reviewed. The steels included ASTM alloys A302B, A533B, A508-2, and A543, as well as weldments in A543 steel. Fluences and irradiation conditions were generally typical of those experienced by most power reactors. In general, the effect of neutron irradiation on the fatigue crack propagation behavior of these steels was neither significantly beneficial nor significantly detrimental

  14. Deuterium Depth Profile in Neutron-Irradiated Tungsten Exposed to Plasma

    International Nuclear Information System (INIS)

    Shimada, Masashi; Cao, G.; Hatano, Y.; Oda, T.; Oya, Y.; Hara, M.; Calderoni, P.

    2011-01-01

    The effect of radiation damage has been mainly simulated using high-energy ion bombardment. The ions, however, are limited in range to only a few microns into the surface. Hence, some uncertainty remains about the increase of trapping at radiation damage produced by 14 MeV fusion neutrons, which penetrate much farther into the bulk material. With the Japan-US joint research project: Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), the tungsten samples (99.99 % pure from A.L.M.T., 6mm in diameter, 0.2mm in thickness) were irradiated to high flux neutrons at 50 C and to 0.025 dpa in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). Subsequently, the neutron-irradiated tungsten samples were exposed to a high-flux deuterium plasma (ion flux: 1021-1022 m-2s-1, ion fluence: 1025-1026 m-2) in the Tritium Plasma Experiment (TPE) at the Idaho National Laboratory (INL). First results of deuterium retention in neutron-irradiated tungsten exposed in TPE have been reported previously. This paper presents the latest results in our on-going work of deuterium depth profiling in neutron-irradiated tungsten via nuclear reaction analysis. The experimental data is compared with the result from non neutron-irradiated tungsten, and is analyzed with the Tritium Migration Analysis Program (TMAP) to elucidate the hydrogen isotope behavior such as retention and depth distribution in neutron-irradiated and non neutron-irradiated tungsten.

  15. A neutron irradiator to perform nuclear activation

    International Nuclear Information System (INIS)

    Zamboni, C. B.; Zahn, G.S.; Figueredo, A. M. G.; Madi, T. F.; Yoriyaz, H.; Lima, R. B.; Shtejer, K.; Dalaqua Jr, L.

    2001-01-01

    The development of appropriate nuclear instrumentation to perform neutron activation analyze (NAA), using thermal and fast neutrons, can be useful to investigate materials outside the reactor premises. Considering this fact, a small size neutron irradiator prototype was developed at IPEN facilities (Instituto de Pesquisas Energeticas e Nucleares - Brazil). Basically, this prototype consists of a cylinder of 1200 mm long and 985 mm diameter (filled with paraffin) with two Am-Be sources (600GBq each) arranged in the longitudinal direction of its geometric center. The material to be irradiated is positioned at a radial direction of the cylinder between the two Am-Be sources. The main advantage of this irradiator is a very stable neutron flux eliminating the use of standard material (measure of the induced activity in the sample by comparative method). This way the process became agile, practical and economic, but quantities at mg levels of samples are necessary to achieve good sensitivity, when the material has a low microscopy neutron cross section. As fast and thermal neutron can be used, the flux distribution, for both, were calculated and the prototype performance is discussed

  16. Neutron irradiation effects in pressure vessel steels and weldments

    Energy Technology Data Exchange (ETDEWEB)

    Ianko, L [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Power; Davies, L M

    1994-12-31

    This paper deals with the effects of neutron irradiation on the steel and welds used for the pressure vessels which house the reactor cores in light water reactors: irradiation effects on mechanical properties and the shift in ductile-brittle transition temperature, importance of the knowledge of the neutron fluence and of the monitoring and surveillance programmes; empirical and mechanistic modelling of irradiation effects and the necessity of data extension to new operational limits; consequences on the manufacturing and structural design of materials and structures; mitigation of irradiation effects by annealing; international activities and programmes in the field of neutron irradiation effects on PV steels and welds. 37 refs., 22 figs.

  17. Damages to gladiolu corm caused by fast neutron irradiation

    International Nuclear Information System (INIS)

    Zhang Zhiwei; Wang Dan; Zhang Dongxue; Zheng Chun

    2007-01-01

    Gladiolus corms were irradiated to 100-500kGy by fast neutrons in the CFBR-II pulsed reactor, Scanning electron microscope images of the irradiated samples revealed significant radiation damages to the gladiolus corms, and the mutagenic effects were studied by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Within the dose range, radiation damage to the corm increased with the dose, with corm epidermis of the samples irradiated in vertical incidence being more serious than those irradiated in side-incidence to the same dose. Biological characters were investigated via field experiments, and the bands of protein subunit were analyzed by SDS-PAGE. The results showed that the fast neutrons irradiation inhibited growth of M1 generation seedling significantly. Protein expression was obviously inhibited by the irradiation. The study indicates that fast neutron induction is an effective way for gladiolus breeding. And the results may lay a foundation for studies on fast neutron mutation breeding. (authors)

  18. Impurity effects in neutron-irradiated simple oxides: Implications for fusion devices

    International Nuclear Information System (INIS)

    Gonzalez, R.; Chen, Y.; Caceres, D.; Vergara, I.

    2006-01-01

    Radiation damage induced by neutron irradiation was studied in undoped MgO crystals and in MgO doped with either iron, hydrogen or lithium impurities. The oxygen-vacancy concentration produced by irradiation increases with neutron fluence. The net production rates resulting from irradiations with 14.8 MeV neutrons are about twice those produced by fission neutrons. In nominally pure crystals, the oxygen-vacancy concentration incurred by the fission-neutron irradiation is higher in crystals with a larger number of inherent impurities (such as iron) due to trapping of interstitials by impurities. Suppression of these defects is observed in MgO:H crystals and attributed to migration of oxygen vacancies to microcavities filled with H 2 gas. In MgO:Li crystals irradiated with neutron fluences below 10 18 n/cm 2 , most of the oxygen vacancies are camouflaged as hydride ions. Nanoindentation experiments show that hardness increases with neutron fluence and is independent of the presence of lithium in the crystal. Comparison between a neutron-irradiated and a thermochemically reduced crystal containing similar concentrations of oxygen vacancies shows that 70% of the neutron-irradiation hardening is produced by interstitials, 30% by oxygen vacancies and a negligible amount by higher-order point defects

  19. Using TRIGA Mark II research reactor for irradiation with thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kolšek, Aljaž, E-mail: aljaz.kolsek@gmail.com; Radulović, Vladimir, E-mail: vladimir.radulovic@ijs.si; Trkov, Andrej, E-mail: andrej.trkov@ijs.si; Snoj, Luka, E-mail: luka.snoj@ijs.si

    2015-03-15

    Highlights: • Monte Carlo N-Particle Transport Code was used to design and perform calculations. • Characterization of the TRIGA Mark II ex-core irradiation facilities was performed. • The irradiation device was designed in the TRIGA irradiation channel. • The use of the device improves the fraction of thermal neutron flux by 390%. - Abstract: Recently a series of test irradiations was performed at the JSI TRIGA Mark II reactor for the Fission Track-Thermoionization Mass Spectrometry (FT-TIMS) method, which requires a well thermalized neutron spectrum for sample irradiation. For this purpose the Monte Carlo N-Particle Transport Code (MCNP5) was used to computationally support the design of an irradiation device inside the TRIGA model and to support the actual measurements by calculating the neutron fluxes inside the major ex-core irradiation facilities. The irradiation device, filled with heavy water, was designed and optimized inside the Thermal Column and the additional moderation was placed inside the Elevated Piercing Port. The use of the device improves the ratio of thermal neutron flux to the sum of epithermal and fast neutron flux inside the Thermal Column Port by 390% and achieves the desired thermal neutron fluence of 10{sup 15} neutrons/cm{sup 2} in irradiation time of 20 h.

  20. F-type centers in neutron-irradiated AIN

    International Nuclear Information System (INIS)

    Atobe, Kozo; Honda, Makoto; Fukuoka, Noboru; Okada, Moritami; Nakagawa, Masuo.

    1990-01-01

    The production of point defects by neutron irradiation and thermal decay in sintered AIN polycrystal are investigated. The absorption band at 370 nm is observed after reactor neutron irradiation to a dose of 10 16 n/cm 2 (E > 0.1 MeV). The defect corresponding to the band is tentatively assigned as an F-type center from the optical absorption and electron spin resonance. (author)

  1. Influence of neutron irradiation on ferromagnetic metallic glasses

    International Nuclear Information System (INIS)

    Miglierini, M.; Nasu, Saburo; Sitek, J.

    1992-01-01

    Transmission 57 Fe Moessbauer spectroscopy is used to study effects of neutron irradiation on magnetic properties of Fe-based ferromagnetic metallic glasses. Elastic stress centers are produced during the process of neutron irradiation as a result of atom mixing. Rearrangement of the atoms causes changes in the average value of the hyperfine field distribution and orientation of the net magnetic moment. They are shown to depend on the composition of the investigated samples. Cr-doped metallic glasses depict transformation from ferromagnetic to paramagnetic state at room temperature after neutron irradiation implying changes in the Curie temperature. Presence of Ni in the samples reduces the effects of radiation damage. (orig.)

  2. Neutron Focusing Mirrors for Neutron Radiography of Irradiated Nuclear Fuel at Idaho National Laboratory

    Science.gov (United States)

    Rai, Durgesh K.; Wu, Huarui; Abir, Muhammad; Giglio, Jeffrey; Khaykovich, Boris

    Post irradiation examination (PIE) of samples irradiated in nuclear reactors is a challenging but necessary task for the development on novel nuclear power reactors. Idaho National Laboratory (INL) has neutron radiography capabilities, which are especially useful for the PIE of irradiated nuclear fuel. These capabilities are limited due to the extremely high gamma-ray radiation from the irradiated fuel, which precludes the use of standard digital detectors, in turn limiting the ability to do tomography and driving the cost of the measurements. In addition, the small 250 kW Neutron Radiography Reactor (NRAD) provides a relatively weak neutron flux, which leads to low signal-to-noise ratio. In this work, we develop neutron focusing optics suitable for the installation at NRAD. The optics would separate the sample and the detector, potentially allowing for the use of digital radiography detectors, and would provide significant intensity enhancement as well. The optics consist of several coaxial nested Wolter mirrors and is suited for polychromatic thermal neutron radiation. Laboratory Directed Research and Development program of Idaho National Laboratory.

  3. Presence of interleukin 6 at the cutaneous level after in vivo neutron irradiation

    International Nuclear Information System (INIS)

    Agay, D.; Pradeau, P.; Edgard, L.; Van Uye, A.; Mestries, J.C.

    1994-01-01

    In this study we investigated the in situ localization of IL-6 in mixed neutron-gamma irradiated baboons belly skin. Using immunohistochemical methods, we demonstrated the presence of IL-6 as early as the first day after the irradiation day. However experimental conditions did not allow us to conclude to a causality relation between irradiation and IL-6 cutaneous presence. (author)

  4. Design of small-animal thermal neutron irradiation facility at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Liu, H.B.

    1996-01-01

    The broad beam facility (BBF) at the Brookhaven Medical Research Reactor (BMRR) can provide a thermal neutron beam with flux intensity and quality comparable to the beam currently used for research on neutron capture therapy using cell-culture and small-animal irradiations. Monte Carlo computations were made, first, to compare with the dosimetric measurements at the existing BBF and, second, to calculate the neutron and gamma fluxes and doses expected at the proposed BBF. Multiple cell cultures or small animals could be irradiated simultaneously at the so-modified BBF under conditions similar to or better than those individual animals irradiated at the existing thermal neutron irradiation Facility (TNIF) of the BMRR. The flux intensity of the collimated thermal neutron beam at the proposed BBF would be 1.7 x 10 10 n/cm 2 ·s at 3-MW reactor power, the same as at the TNIF. However, the proposed collimated beam would have much lower gamma (0.89 x 10 -11 cGy·cm 2 /n th ) and fast neutron (0.58 x 10 -11 cGy·cm 2 /n th ) contaminations, 64 and 19% of those at the TNIF, respectively. The feasibility of remodeling the facility is discussed

  5. Neutron Absorbing Ability Variation in Neutron Absorbing Material Caused by the Neutron Irradiation in Spent Fuel Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hee Dong; Han, Seul Gi; Lee, Sang Dong; Kim, Ki Hong; Ryu, Eag Hyang; Park, Hwa Gyu [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2014-10-15

    In spent fuel storage facility like high density spent fuel storage racks and dry storage casks, spent fuels are stored with neutron absorbing materials installed as a part of those facilities, and they are used for absorbing neutrons emitted from spent fuels. Usually structural material with neutron absorbing material of racks and casks are located around spent fuels, so it is irradiated by neutrons for long time. Neutron absorbing ability could be changed by the variation of nuclide composition in neutron absorbing material caused by the irradiation of neutrons. So, neutron absorbing materials are continuously faced with spent fuels with boric acid solution or inert gas environment. Major nuclides in neutron absorbing material are Al{sup 27}, C{sup 12}, B{sup 11}, B{sup 10} and they are changed to numerous other ones as radioactive decay or neutron absorption reaction. The B{sup 10} content in neutron absorbing material dominates the neutron absorbing ability, so, the variation of nuclide composition including the decrease of B{sup 10} content is the critical factor on neutron absorbing ability. In this study, neutron flux in spent fuel, the activation of neutron absorbing material and the variation of nuclide composition are calculated. And, the minimum neutron flux causing the decrease of B{sup 10} content is calculated in spent fuel storage facility. Finally, the variation of neutron multiplication factor is identified according to the one of B{sup 10} content in neutron absorbing material. The minimum neutron flux to impact the neutron absorbing ability is 10{sup 10} order, however, usual neutron flux from spent fuel is 10{sup 8} order. Therefore, even though neutron absorbing material is irradiated for over 40 years, B{sup 10} content is little decreased, so, initial neutron absorbing ability could be kept continuously.

  6. DAMAGE IN MOLYBDENUM ASSOCIATED WITH NEUTRON IRRADIATION AND SUBSEQUENT POST-IRRADIATION ANNEALING

    Energy Technology Data Exchange (ETDEWEB)

    Mastel, B.

    1963-07-23

    Molybdemum containing carbon was studied in an attempt to establish the combined effect of impurity content and neutron irradiation on the properties and structure of specific metals. Molybdenum foils were punched into discs and heat treated in vacuum. They were then slow-cooled and irradiated. After irradiation and subsequent decay of radioactivity to a low level the foils were subjected to x-ray diffraction measurements. Cold-worked foils with less than 10 ppm carbon showed no change in microstructure due to irradiation. Molybdenum foils that were annealed prior to irradiation showed spot defects. In foils containing up to 500 ppm carbon, it was concluded that the small loops present after irradiation are due to the clustering of point defects at interstitial carbon atoms, followed by collapse to form a dislocation loop. The amount of lattice expansion after irradiation was strongly dependent on impurity content. Neutron irradiation was found to reduce the number of active slip systems. (M.C.G.)

  7. Review of recent studies on neutron irradiation embrittlement in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Sudo, Akira; Miyazono, Shohachiro

    1983-06-01

    Recent studies in foreign countries (USA, France, FRG and UK) on neutron irradiation embrittlement have been reviewed. These studies are classified into four areas, such as 1) effect of chemical composition on irradiation embrittlement sensitivity, 2) postirradiation heat treatment for embrittlement relief, 3) fracture toughness evaluation of irradiated materials based on fracture mechanics analysis, and 4) effect of irradiation on fatigue crack propagation behavior. The first area mainly includes the studies related to the effects of copper, phosphorus impurities and nickel alloying and synergistic effect of these components, and furthermore, evaluation of Regulatory Guide 1.99 Rev.l. Studies in the second area show the effects of annealing condition (temperature and time) and metallugical condition on embrittlement relief, and evaluation of periodic annealing in the period of irradiation as a promising method for embrittlement control. Studies in the third area show the correlation between fracture toughness and Cv notch ductility changes with neutron irradiation, and J-R curves of irradiated materials based on the elasto-plastic fracture mechanics. In the forth area, most of studies are investigated in air condition but a few studies in reactor-grade water at high temperature and pressure. (author)

  8. A design study on hyper-thermal neutron irradiation field for neutron capture therapy at Kyoto University Reactor

    International Nuclear Information System (INIS)

    Sakurai, Y.; Kobayashi, T.

    2000-01-01

    A study about the installation of a hyper-thermal neutron converter to a clinical collimator was performed, as a series of the design study on a hyper-thermal neutron irradiation field at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. From the parametric-surveys by Monte Carlo calculation, it was confirmed that the practical irradiation field of hyper-thermal neutrons would be feasible by the modifications of the clinical collimator and the bismuth-layer structure. (author)

  9. Mechanical properties and plasticity size effect of Fe-6%Cr irradiated by Fe ions and by neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Hardie, C.D., E-mail: chris.hardie@ukaea.uk [EURATOM/CCFE Association, Culham Centre for Fusion Energy (CCFE), Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Department of Materials, University of Oxford, Oxford, OX1 3PH (United Kingdom); Odette, G.R.; Wu, Y. [UCSB Department of Mechanical Engineering, 2343 Engineering II Building, Santa Barbara, CA 93106-5070 (United States); Akhmadaliev, S. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, D-01328 Dresden (Germany); Roberts, S.G. [EURATOM/CCFE Association, Culham Centre for Fusion Energy (CCFE), Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Department of Materials, University of Oxford, Oxford, OX1 3PH (United Kingdom)

    2016-12-15

    The mechanical behaviour of Fe6%Cr in the un-irradiated, self-ion irradiated and neutron irradiated conditions was measured and compared. Irradiations were performed to the same dose and at the same temperature but to very different damage rates for both methods. The materials were tested using nanoindentation and micromechanical testing, and compared with microstructural observations from Transmission Electron Microscopy (TEM) and Atom Probe Tomography (APT) reported elsewhere. Irradiated and un-irradiated micro-cantilevers with a wide range of dimensions were used to study the interrelationships between irradiation hardening and size effects in small-scale plasticity. TEM and APT results identified that the dislocation loop densities were ∼2.9 × 10{sup 22}m{sup −3} for the neutron irradiated material and only 1.4 × 10{sup 22}m{sup −3} for the ion irradiated material. Cr segregation to loops was only found for the neutron-irradiated material. The nanoindentation hardness increase due to neutron irradiation was 3 GPa and that due to ion irradiation 1 GPa. The differences between the effects of the two irradiation types are discussed, taking into account inconsistencies in damage calculations, and the differences in PKA spectra, dose rate and transmutation products for the two irradiation types.

  10. Thermogravimetric analysis of reactor-neutrons-irradiated LEXAN polycarbonate film

    International Nuclear Information System (INIS)

    Kalsi, P.C.

    2000-01-01

    The effects of reactor-neutrons irradiation on the thermogravimetric (TG) analysis of LEXAN polycarbonate film in air were studied. Irradiation enhances the degradation rate and the effect increases further with increasing neutron fluence. The kinetics of the different steps of degradation were also evaluated from the TG curves. The activation energy values calculated for all the degradation stages decrease on irradiation. (author)

  11. Neutron irradiation test of copper alloy/stainless steel joint materials

    International Nuclear Information System (INIS)

    Yamada, Hirokazu; Kawamura, Hiroshi

    2006-01-01

    As a study about the joint technology of copper alloy and stainless steel for utilization as cooling piping in International Thermonuclear Experimental Reactor (ITER), Al 2 O 3 -dispersed strengthened copper or CuCrZr was jointed to stainless steel by three kinds of joint methods (casting joint, brazing joint and friction welding method) for the evaluation of the neutron irradiation effect on joints. A neutron irradiation test was performed to three types of joints and each copper alloy. The average value of fast neutron fluence in this irradiation test was about 2 x 10 24 n/m 2 (E>1 MeV), and the irradiation temperature was about 130degC. As post-irradiation examinations, tensile tests, hardness tests and observation of fracture surface after the tensile tests were performed. All type joints changed to be brittle by the neutron irradiation effect like each copper alloy material, and no particular neutron irradiation effect due to the effect of joint process was observed. On the casting and friction welding, hardness of copper alloy near the joint boundary changed to be lower than that of each copper alloy by the effect of joint procedure. However, tensile strength of joints was almost the same as that of each copper alloy before/after neutron irradiation. On the other hand, tensile strength of joints by brazing changed to be much lower than CuAl-25 base material by the effect of joint process before/after neutron irradiation. Results in this study showed that the friction welding method and the casting would be able to apply to the joint method of piping in ITER. This report is based on the final report of the ITER Engineering Design Activities (EDA). (author)

  12. Neutron irradiation effect of thermally-sensitized stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hide, Kouitiro [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1998-03-01

    Intergranular stress corrosion cracking (IGSCC) susceptibility of irradiated thermally-sensitized Type 304 Stainless Steels (SSs) was studied as a function of neutron fluence and correlated with mechanical responses of the materials. Neutron irradiation was carried out to neutron fluences up to 1.1 x 10{sup 24} n/m{sup 2} (E > 1MeV) at the light water reactor temperature in the Japan Material Test Reactor. The irradiated specimens were examined by slow strain rate stress corrosion cracking tests in 290degC pure water of 0.2 ppm dissolved oxygen concentration and microhardness measurements. The IGSCC susceptibility of the irradiated specimens increased with neutron fluence up to 1.1 x 10{sup 24} n/m{sup 2}. From an attempt to correlate the IGSCC susceptibility with the mechanical properties, an excellent correlation was identified between the susceptibility and microhardness increments at the grain boundary relative to the grain center. While intergranular corrosion rate of thermally sensitized SS increased with neutron fluence up to 1.1 x 10{sup 24} n/m{sup 2}, that of solution annealed SS did not change. The incremental grain boundary hardening and degradation of intergranular corrosion resistance may presumably be the major factors affecting IGSCC performance. (author)

  13. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Makoto, E-mail: makoto.fukuda@qse.tohoku.ac.jp [Tohoku University, Sendai, 980-8579 (Japan); Kiran Kumar, N.A.P.; Koyanagi, Takaaki; Garrison, Lauren M. [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Snead, Lance L. [Massachusetts Institute of Technology, Cambridge, MA, 02139 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Hasegawa, Akira [Tohoku University, Sendai, 980-8579 (Japan)

    2016-10-15

    Neutron irradiation to single crystal pure tungsten was performed in the mixed spectrum High Flux Isotope Reactor (HFIR). To investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ∼90–∼800 °C and fast neutron fluences were 0.02–9.00 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. The hardness and microstructure changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). Irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten. - Highlights: • The microstructure and irradiation hardening of single crystal pure W irradiated in HFIR was investigated. • The neutron energy spectrum influence was evaluated by comparing the HFIR results with previous work in Joyo and JMTR. • In the dose range up to ∼1 dpa, the neutron energy spectrum influence of irradiation hardening was not clear. • In the dose range above 1 dpa, the neutron energy influence on irradiation hardening and microstructural development was clearly observed. • The irradiation induced precipitates caused significant irradiation hardening of pure W irradiated in HFIR.

  14. Proceedings of neutron irradiation technical meeting on BNCT

    International Nuclear Information System (INIS)

    2000-10-01

    The 'Neutron Irradiation Technical Meeting for Boron Neutron Capture Therapy (BNCT)' was held on March 13, 2000 at Tokai Research Establishment. The Meeting is aimed to introduce the neutron beam facility for medical irradiation at JRR-4 to Japanese researchers widely, as well as providing an opportunity for young researchers, engineers, medical representatives such surgeons and doctors of pharmacology to present their research activities and to exchange valuable information. JAERI researcher presented the performance and the irradiation technology in the JRR-4 neutron beam facility, while external researchers made various and beneficial presentations containing such accelerator-based BNCT, spectrum-shifter, biological effect, pharmacological development and so on. In this meeting, a special lecture titled 'The Dawn of BNCT and Its Development.' was given by MD, Prof. Takashi Minobe, an executive director of Japan Foundation for Emergency Medicine. The 11 of the presented papers are indexed individually. (J.P.N.)

  15. Micro-Raman and photoluminescence studies of neutron-irradiated gallium nitride epilayers

    International Nuclear Information System (INIS)

    Wang, R.X.; Xu, S.J.; Fung, S.; Beling, C.D.; Wang, K.; Li, S.; Wei, Z.F.; Zhou, T.J.; Zhang, J.D.; Huang Ying; Gong, M.

    2005-01-01

    GaN epilayers grown on sapphire substrate were irradiated with various dosages of neutrons and were characterized using Micro-Raman and photoluminescence. It was found that the A 1 (LO) peak in the Raman spectra clearly shifted with neutron irradiation dosage. Careful curve fitting of the Raman data was carried out to obtain the carrier concentration which was found to vary with the neutron irradiation dosage. The variation of the full width at half maximum height of the photoluminescence was consistent with the Raman results. The neutron irradiation-induced structural defects (likely to be Ge Ga ) give rise to carrier trap centers which are responsible for the observed reduction in carrier concentration of the irradiated GaN

  16. Irradiation temperature dependence of defect formation of nitrides (A1N and c-BN) during neutron irradiations

    International Nuclear Information System (INIS)

    Atobe, Kozo.; Okada, Moritami; Nakagawa, Masuo

    2000-01-01

    The nitrogen vacancy concentration in the more refractory nitrides (A1N and c-BN) is determined as a function of reactor fluence up to 5.2x10 17 thermal neutrons/cm 2 and a function of the irradiation temperature at 25, 50, 100, 150, 200, 250 K. It is found that there is no remarkable dependence of the defect formation in nitrides on the irradiation temperature. The production of damage in the nitrides is considerably different from that in oxides. From the irradiation experiments using thermal neutron irradiation field, it is suggested in reactor irradiation that the atomic displacements in the nitrides occur predominately from energetic particles of the nuclear reactions with thermal neutrons in addition to the elastic collisions by fast neutron

  17. Positron lifetime study of copper irradiated by energetic protons or energetic neutrons

    International Nuclear Information System (INIS)

    Howell, R.H.

    1979-03-01

    Positron lifetime measurements of pure copper damaged by irradiation with energetic protons and neutrons are presented. Lifetime determinations of the bulk material and various traps were made, and the dependence of the trapping rate on dose and irradiation energy were investigated. The results from the neutron- and proton-irradiated samples point to the existence of traps with similar but distinct lifetime parameters, not varying greatly from values reported in deformation studies. Also, a trap with long lifetime is seen for some proton irradiations, but is never seen for the neutron irradiations. The trapping rate of the short-lifetime trap is a linear function of dose for proton-irradiated samples and nearly so for the neutron irradiation. 1 figure

  18. Microstructure and mechanical properties of neutron irradiated OFHC-copper before and after post-irradiation annealing

    International Nuclear Information System (INIS)

    Singh, B.N.; Edwards, D.J.; Toft, P.

    2001-02-01

    Tensile specimens of OFHC-copper were irradiated with fission neutrons in the DR-3 reactor at Risoe National Laboratory at 100 deg. C to different displacement dose levels in the range of 0.01 to 0.3 dpa (NRT). Some of the specimens were tensile tested in the as-irradiated condition at 100 deg. C whereas other were given a post-irradiation annealing at 300 deg. C for 50 h and subsequently tested at 100 deg. C. Transmission electron microscopy was used to characterize the microstructure of specimens in the as-irradiation as well as irradiation and annealed conditions both before and after tensile deformation. The results show that while the interstitial loop microstructure coarsens with irradiation dose, no significant changes are observed in the population of stacking fault tetrahedra. The results also illustrates that the post-irradiation annealing leads to only a partial recovery and that the level of recovery depends on the irradiation dose level. However, the post-irradiation annealing eliminates the problem of yield drop and reinstates enough uniform elongation to render the material useful again. These results are discussed in terms of the cascade induced source hardening (CISH) and the dispersed barrier hardening (DBH) models. Both technological and scientific implications of these results are considered. (au)

  19. Specific Heat Capacity of Alloy 690 for Simulating Neutron Irradiation

    International Nuclear Information System (INIS)

    Park, Dae Gyu; Kim, Hee Moon; Song, Woong Sub; Baik, Seung Je; Joo, Young Sun; Ahn, Sang Bok; Park, Jin Seok; Lee, Won Jae; Ryu, Woo Seok

    2011-01-01

    The KAERI(Korea Atomic Energy Research Institute) is developing new type of nuclear reactor, so called 'SMART'(System Integrated Modular Advanced Reactor) which has many features of small power and system integrated modular type. Alloy 690 was selected as the candidate material for the heat exchanger tube of the steam generator of SMART. The SMART R and D is now facing the stage of engineering verification and approval of standard design to apply to DEMO reactors. Therefore, the material performance under the relevant environment is required to be evaluated. The important material performance issues are mechanical properties i.e. (fracture toughness, tensile and hardness) and thermal properties i.e. (thermal diffusivity, specific heat capacity and thermal conductivity) for which the engineering database is necessary to design a steam generator. However, the neutron post irradiation characteristics of the alloy 690 are barely known. As a result, PIE(Post Irradiation Examination) of thermal properties are planed and performed successfully. But specific heat capacity measurement is not performed because of not having proper test system for irradiated materials. Therefore in order to verify the effect of neutron irradiation for alloy 690, simulation method is adopted. In general, high energy neutron bombardment in material bring about lattice defects i.e. void, pore and dislocation. Dominant factor to impact to heat capacity is mainly dislocation in material. Therefore, simulation of neutron irradiation is devised by material rolling method in order to make artificial dislocation in alloy 690 as same effect of neutron irradiation. After preparing test specimens, heat capacity measurements are performed and results are compared with rolled materials and un-rolled materials to verify the effect of neutron irradiation simulation. Main interest of simulation is that heat capacity value is changed by neutron irradiation

  20. Neutron and gamma irradiation effects on power semiconductor switches

    International Nuclear Information System (INIS)

    Schwarze, G.E.; Frasca, A.J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN bipolar junction transistors (BJTs), and metal-oxide-semiconductor field effect transistors (MOSFETs)

  1. Calculations on neutron irradiation damage in reactor materials

    International Nuclear Information System (INIS)

    Sone, Kazuho; Shiraishi, Kensuke

    1976-01-01

    Neutron irradiation damage calculations were made for Mo, Nb, V, Fe, Ni and Cr. Firstly, damage functions were calculated as a function of neutron energy with neutron cross sections of elastic and inelastic scatterings, and (n,2n) and (n,γ) reactions filed in ENDF/B-III. Secondly, displacement damage expressed in displacements per atom (DPA) was estimated for neutron environments such as fission spectrum, thermal neutron reactor (JMTR), fast breeder reactor (MONJU) and two fusion reactors (The Conceptual Design of Fusion Reactor in JAERI and ORNL-Benchmark). then, damage cross section in units of dpa. barn was defined as a factor to convert a given neutron fluence to the DPA value, and was calculated for the materials in the above neutron environments. Finally, production rates of helium and hydrogen atoms were calculated with (n,α) and (n,p) cross sections in ENDF/B-III for the materials irradiated in the above reactors. (auth.)

  2. Irradiation creep in reactor graphites for HTR applications. [Neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Veringa, H J; Blackstone, R [Stichting Reactor Centrum Nederland, Petten

    1976-01-01

    A series of restrained shrinkage experiments on a number of graphites in the temperature range 400 to 1400/sup 0/C is described. A description is given of the experimental method and method of data evaluation. The results are compared with data from other sources. Analysis of data confirms that the creep coefficient, which is defined as the radiation induced creep strain per unit stress per unit neutron fluence, is inversely proportional to the pre-irradiation value of the Young's modulus of the material. The radiation creep coefficient increases with temperature in the range 400 to 1400/sup 0/C. It can be represented by the sum of two temperature dependent functions, one of which is inversely proportional to the neutron flux density, the other independent of the neutron flux density. When the data are analysed in this way it is found that the graphites investigated in the present work, although made from widely different starting materials and by different processes, show the same dependence of the irradiation creep coefficient on the temperature and the neutron flux density.

  3. The microstructure of neutron-irradiated Fe-Cr alloys: A small-angle neutron scattering study

    International Nuclear Information System (INIS)

    Heintze, C.; Bergner, F.; Ulbricht, A.; Eckerlebe, H.

    2009-01-01

    Ferritic-martensitic chromium steels are candidate materials for future applications in both Gen-IV fission and fusion technology. Experimental investigation of neutron-irradiated Fe-Cr model alloys is important in order to gain a better understanding of the interplay of chromium content and irradiation behaviour. Small-angle neutron scattering (SANS) is particularly well suited to unfold the size distribution of non-planar irradiation-induced nanoscale features such as defect-solute clusters, nanovoids and α'- particles. This size distribution represents a statistically reliable average over a macroscopic volume. Assumptions on the dominant type of features can be checked against the ratio of magnetic and nuclear scattering. The materials investigated in this work are commercial-purity Fe-Cr alloys of nominal compositions Fe-2.5Cr, Fe-5Cr, Fe- 9Cr and Fe-12.5Cr (at %). Neutron irradiation was performed in the reactor BR2 at Mol (Belgium) at a temperature of 300 deg. C and neutron flux of 9 x 10 13 cm -2 s -1 (E > 1 MeV) [Matijasevic, JNM 377 (2008) 147]. The neutron exposures expressed in units of displacements per atom correspond to 0.6 and 1.5 dpa. A wavelength of 0.58 nm and three detector-sample distances of 1, 4 and 16 m were used in the SANS experiments carried out at the SANS-2 facility of GKSS Geesthacht (Germany). The samples were placed in a saturation magnetic field in order to separate magnetic and nuclear contributions. The scattering curves obtained for the unirradiated conditions of the four Fe-Cr alloys were taken as reference. We have found that the volume fraction of scatterers slightly increases with neutron exposure (Fe-9Cr) or exhibits a saturation-like behaviour (Fe-2.5Cr, Fe-5Cr and Fe-12.5Cr) and that the volume fraction at 1.5 dpa is an increasing function of the chromium level with a slight increase up to 9 at%Cr and a steep increase between 9 and 12.5 at%Cr. The radii of irradiation-induced scatterers are essentially less than 8 nm and

  4. Proceedings of neutron irradiation technical meeting on BNCT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    The 'Neutron Irradiation Technical Meeting for Boron Neutron Capture Therapy (BNCT)' was held on March 13, 2000 at Tokai Research Establishment. The Meeting is aimed to introduce the neutron beam facility for medical irradiation at JRR-4 to Japanese researchers widely, as well as providing an opportunity for young researchers, engineers, medical representatives such surgeons and doctors of pharmacology to present their research activities and to exchange valuable information. JAERI researcher presented the performance and the irradiation technology in the JRR-4 neutron beam facility, while external researchers made various and beneficial presentations containing such accelerator-based BNCT, spectrum-shifter, biological effect, pharmacological development and so on. In this meeting, a special lecture titled 'The Dawn of BNCT and Its Development.' was given by MD, Prof. Takashi Minobe, an executive director of Japan Foundation for Emergency Medicine. The 11 of the presented papers are indexed individually. (J.P.N.)

  5. Neutronics analysis of International Fusion Material Irradiation Facility (IFMIF). Japanese contributions

    International Nuclear Information System (INIS)

    Oyama, Yukio; Noda, Kenji; Kosako, Kazuaki.

    1997-10-01

    In fusion reactor development for demonstration reactor, i.e., DEMO, materials tolerable for D-T neutron irradiation are absolutely required for both mechanical and safety point of views. For this requirement, several kinds of low activation materials were proposed. However, experimental data by actual D-T fusion neutron irradiation have not existed so far because of lack of fusion neutron irradiation facility, except fundamental radiation damage studies at very low neutron fluence. Therefore such a facility has been strongly requested. According to agreement of need for such a facility among the international parties, a conceptual design activity (CDA) of International Fusion Material Irradiation Facility (IFMIF) has been carried out under the frame work of the IEA-Implementing Agreement. In the activity, a neutronics analysis on irradiation field optimization in the IFMIF test cell was performed in three parties, Japan, US and EU. As the Japanese contribution, the present paper describes a neutron source term as well as incident deuteron beam angle optimization of two beam geometry, beam shape (foot print) optimization, and dpa, gas production and heating estimation inside various material loading Module, including a sensitivity analysis of source term uncertainty to the estimated irradiation parameters. (author)

  6. Focusing mirrors for enhanced neutron radiography with thermal neutrons and application for irradiated nuclear fuel

    Science.gov (United States)

    Rai, Durgesh K.; Abir, Muhammad; Wu, Huarui; Khaykovich, Boris; Moncton, David E.

    2018-01-01

    Neutron radiography is a powerful method of probing the structure of materials based on attenuation of neutrons. This method is most suitable for materials containing heavy metals, which are not transparent to X-rays, for example irradiated nuclear fuel and other nuclear materials. Neutron radiography is one of the first non-distractive post-irradiated examination methods, which is applied to gain an overview of the integrity of irradiated nuclear fuel and other nuclear materials. However, very powerful gamma radiation emitted by the samples is damaging to the electronics of digital imaging detectors and has so far precluded the use of modern detectors. Here we describe a design of a neutron microscope based on focusing mirrors suitable for thermal neutrons. As in optical microscopes, the sample is separated from the detector, decreasing the effect of gamma radiation. In addition, the application of mirrors would result in a thirty-fold gain in flux and a resolution of better than 40 μm for a field-of-view of about 2.5 cm. Such a thermal neutron microscope can be useful for other applications of neutron radiography, where thermal neutrons are advantageous.

  7. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source

    Directory of Open Access Journals (Sweden)

    C. Andreani

    2018-02-01

    Full Text Available This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.

  8. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source

    Science.gov (United States)

    Andreani, C.; Senesi, R.; Paccagnella, A.; Bagatin, M.; Gerardin, S.; Cazzaniga, C.; Frost, C. D.; Picozza, P.; Gorini, G.; Mancini, R.; Sarno, M.

    2018-02-01

    This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.

  9. Method of measuring neutron spectra in JMTR exclusively used for irradiation and their evaluation

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi

    1983-01-01

    In the core of the Japan Materials Testing Reactor, about 60 capsules are irradiated. These are the material capsules for irradiating reactor materials, the fuel capsules for irradiating reactor fuel, the RI capsules for producing radioisotopes and so on. In the irradiation experiment using a reactor, the information on the neutron fluence is indispensable, and the neutron fluence in the irradiated specimen part is evaluated with a dosimeter or the nuclear calculation for the core of the JMTR. At the time of irradiating reactor materials, the dosimeter Fe-54 (n,p) Mn-54 is generally used for evaluating the neutron fluence more than 1 MeV. In the case of fuel irradiation, the thermal neutron fluence is evaluated with the dosimeter Co-59 (n,γ) Co-60. It is important to examine in detail neutron spectra by both calculation and experiment in the reactors exclusively used for irradiation such as the JMTR. The neutron irradiation field in the JMTR, neutron spectrum measuring experiment, the neutron flux monitors for standardizing data, the measurement of X-ray and gamma ray, neutron guess spectrum, the compilation of neutron cross section for SAND 2, and the unfolding of neutron spectra are reported. The degree of agreement of the neutron fluence more than 1 MeV by measurement and calculation was +- 10 to 20 %. (Kako, I.)

  10. Nuclear data needs for neutron spectrum tailoring at International Fusion Materials Irradiation Facility (IFMIF)

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    2001-01-01

    International Fusion Materials Irradiation Facility (IFMIF) is a proposal of D-Li intense neutron source to cover all aspects of the fusion materials development in the framework of IEA collaboration. The new activity has been started to qualifying the important technical issues called Key Element technology Phase since 2000. Although the neutron spectrum can be adjusted by changing the incident beam energy, it is favorable to be carried out many irradiation tasks at the same time under the unique beam condition. For designing the tailored neutron spectrum, neutron nuclear data for the moderator-reflector materials up to 50 MeV are required. The data for estimating the induced radioactivity is also required to keep the radiation level low enough at maintenance time. The candidate materials and the required accuracy of nuclear data are summarized. (author)

  11. Nuclear data needs for neutron spectrum tailoring at International Fusion Materials Irradiation Facility (IFMIF)

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    International Fusion Materials Irradiation Facility (IFMIF) is a proposal of D-Li intense neutron source to cover all aspects of the fusion materials development in the framework of IEA collaboration. The new activity has been started to qualifying the important technical issues called Key Element technology Phase since 2000. Although the neutron spectrum can be adjusted by changing the incident beam energy, it is favorable to be carried out many irradiation tasks at the same time under the unique beam condition. For designing the tailored neutron spectrum, neutron nuclear data for the moderator-reflector materials up to 50 MeV are required. The data for estimating the induced radioactivity is also required to keep the radiation level low enough at maintenance time. The candidate materials and the required accuracy of nuclear data are summarized. (author)

  12. Characterization of neutron-irradiated HT-UPS steel by high-energy X-ray diffraction microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuan, E-mail: xuanzhang@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Park, Jun-Sang; Almer, Jonathan [Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439 (United States); Li, Meimei [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States)

    2016-04-01

    This paper presents the first measurement of neutron-irradiated microstructure using far-field high-energy X-ray diffraction microscopy (FF-HEDM) in a high-temperature ultrafine-precipitate-strengthened (HT-UPS) austenitic stainless steel. Grain center of mass, grain size distribution, crystallographic orientation (texture), diffraction spot broadening and lattice constant distributions of individual grains were obtained for samples in three different conditions: non-irradiated, neutron-irradiated (3dpa/500 °C), and irradiated + annealed (3dpa/500 °C + 600 °C/1 h). It was found that irradiation caused significant increase in grain-level diffraction spot broadening, modified the texture, reduced the grain-averaged lattice constant, but had nearly no effect on the average grain size and grain size distribution, as well as the grain size-dependent lattice constant variations. Post-irradiation annealing largely reversed the irradiation effects on texture and average lattice constant, but inadequately restored the microstrain.

  13. Standard Practice for Conducting Irradiations at Accelerator-Based Neutron Sources

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This practice covers procedures for irradiations at accelerator-based neutron sources. The discussion focuses on two types of sources, namely nearly monoenergetic 14-MeV neutrons from the deuterium-tritium T(d,n) interaction, and broad spectrum neutrons from stopping deuterium beams in thick beryllium or lithium targets. However, most of the recommendations also apply to other types of accelerator-based sources, including spallation neutron sources (1). Interest in spallation sources has increased recently due to their proposed use for transmutation of fission reactor waste (2). 1.2 Many of the experiments conducted using such neutron sources are intended to simulate irradiation in another neutron spectrum, for example, that from a DT fusion reaction. The word simulation is used here in a broad sense to imply an approximation of the relevant neutron irradiation environment. The degree of conformity can range from poor to nearly exact. In general, the intent of these simulations is to establish the fundam...

  14. Neutron irradiation effects in advanced superconductors

    International Nuclear Information System (INIS)

    Yoshida, H.; Kodaka, H.; Miyata, K.; Hayashi, Y.; Atobe, K.

    1988-01-01

    This paper reports the effects of neutron irradiation on superconducting transitions studied by susceptibility and resistivity measurements for A15 type compounds, Laves-phase compounds and oxide superconductors. For A15 superconductors, the transition temperature (T c ) decreased with increasing neutron fluence and showed large drop started at about 5 x 10 18 n/cm 2 (E > 0.1 MeV). Post-irradiation annealing gave recovery of T c , but the behaviors were different for the materials with different composition and microstructure. The Laves-phase compounds showed less degradation than the A15 superconductors. For oxide superconductors very sensitive transition change was observed, including the radiation-induced superconductivity

  15. Change in properties of superconducting magnet materials by fusion neutron irradiation

    International Nuclear Information System (INIS)

    Nishimura, Arata; Nishijima, Shigehiro; Takeuchi, Takao; Nishitani, Takeo

    2007-01-01

    A fusion reactor will generate a lot of high energy neutron and much energy will be taken out of the neutrons by a blanket system. Since some neutrons will stream out of a plasma vacuum vessel through neutral beam injection ports and penetrate a blanket system, a superconducting magnet system, which provides high magnetic field to confirm high energy particles, will be irradiated by a certain amount of neutrons. By developing the new NBI system or by reducing the penetration, the neutron fluence to the superconducting magnet will be able to be reduced. However, it is not easy to achieve the lower streaming and penetration at the present. Therefore, investigations on irradiation behavior of superconducting magnet materials are desired and some novel researches have been performed from 1970s. In general, the critical current of the superconducting wire increases under fast neutron environment comparing with that of the non-irradiated wire, and then decreased to almost zero as an increase of neutron fluence. On the other hand, the critical temperature of the wire starts to get down around 10 22 n/m 2 of neutron fluence and the temperature margin will be decreased during the operation by the neutron irradiation. In this paper, some aspects of irradiated materials will be overviewed and general tendency will be discussed focussing on knock-on effect of fast neutron and long range ordering of A15 compounds

  16. The effect of helium generation and irradiation temperature on tritium release from neutron irradiated beryllium

    International Nuclear Information System (INIS)

    Kupriyanov, I.B.; Gorokhov, V.A.; Vlasov, V.V.; Kovalev, A.M.; Chakin, V.P.

    2004-01-01

    The effect of neutron irradiation condition on tritium release from beryllium is described in this paper. Beryllium samples were irradiated in the SM reactor with neutron fluence (E > 0.1 MeV) of (0.37-2.0) x 10 22 cm -2 at 70-100degC and 650-700degC. Mass-spectrometer technique was used in out of tritium release experiments during stepped-temperature anneal within a temperature range from 250 to 1300degC. The total amount of helium accumulated in irradiated beryllium samples varied from 521 appm to 3061 appm. The first signs of tritium release were detected at temperature of 406-553degC. It was shown that irradiation temperature and helium generation level significantly affect the tritium release. A fraction of 44 - 74 % of tritium content in samples irradiated at low temperature (70 - 100degC) is release from beryllium at an annealing temperature below 800degC, whereas for samples after high temperature irradiation (650 - 700 degC) tritium release did not exceed 14 %. Majority of tritium (∼68%) is released within a temperature range from 800 to 920 degC. The increase of helium generation from 521 appm to 3061 appm results in lowering the temperature of maximal tritium release rate and the upper temperature of tritium release from beryllium by 100-130degC and 200-240degC, correspondingly. On the basis of data obtained, the diffusion coefficients of tritium in beryllium were calculated. (author)

  17. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Directory of Open Access Journals (Sweden)

    Hu J.-P.

    2016-01-01

    Full Text Available Radiation dosimetry for Neutron Capture Therapy (NCT has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR. In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1 in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2 out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3 beam shutter upgrade to reduce strayed neutrons and gamma dose, (4 beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5 beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates to reduce prompt gamma and fast neutron doses, (6 sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7 holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4–7

  18. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  19. The modelling of irradiation-enhanced phosphorus segregation in neutron irradiated reactor pressure vessel submerged-arc welds

    Energy Technology Data Exchange (ETDEWEB)

    Druce, S.G.; English, C.A.; Foreman, A.J.E.; McElroy, R.J.; Vatter, I.A. [AEA Technology, Didcot (United Kingdom). Harwell Lab.; Bolton, C.J.; Buswell, J.T.; Jones, R.B. [Nuclear Electric, Berkeley (United Kingdom). Berkeley Technology Centre

    1996-12-31

    Recent results on neutron-irradiated RPV submerged-arc welds have revealed grain boundary segregation of phosphorus during irradiation, which may lead to intergranular fracture. However, the experimental database is insufficient to define the dependence of the process on variables such ad dose, dose-rate and temperature. This paper describes work in which two existing models of phosphorus segregation, under thermal or irradiation conditions, have been developed to obtain predictions of these dependencies. The critical parameters in the models have been adjusted to give consistency with the available reference data, and predictions have been made of the dependence of segregation on a number of variables.

  20. Synergistic effects of neutron and gamma ray irradiation of a commercial CHMOS microcontroller

    International Nuclear Information System (INIS)

    Xiao-Ming, Jin; Ru-Yu, Fan; Wei, Chen; Dong-Sheng, Lin; Shan-Chao, Yang; Xiao-Yan, Bai; Yan, Liu; Xiao-Qiang, Guo; Gui-Zhen, Wang

    2010-01-01

    This paper presents the experimental results of a combined irradiation environment of neutron and gamma rays on 80C196KC20, which is a 16-bit high performance member of the MCS96 microcontroller family. The electrical and functional tests were made in three irradiation environments: neutron, gamma rays, combined irradiation of neutron and gamma rays. The experimental results show that the neutron irradiation can affect the total ionizing dose behaviour. Compared with the single radiation environment, the microcontroller exhibits considerably more severe degradation in neutron and gamma ray synergistic irradiation. This phenomenon may cause a significant hardness assurance problem. (condensed matter: structure, thermal and mechanical properties)

  1. Effect of neutron irradiation on p-type silicon

    International Nuclear Information System (INIS)

    Sopko, B.

    1973-01-01

    The possibilities are discussed of silicon isotope reactions with neutrons of all energies. In the reactions, 30 Si is converted to a stable phosphorus isotope forming n-type impurities in silicon. The above reactions proceed as a result of thermal neutron irradiation. An experiment is reported involving irradiation of two p-type silicon single crystals having a specific resistance of 2000 ohm.cm and 5000 to 20 000 ohm.cm, respectively, which changed as a result of irradiation into n-type silicon with a given specific resistance. The specific resistance may be pre-calculated from the concentration of impurities and the time of irradiation. The effects of irradiation on other silicon parameters and thus on the suitability of silicon for the manufacture of semiconductor elements are discussed. (J.K.)

  2. Irradiation damage of ferritic/martensitic steels: Fusion program data applied to a spallation neutron source

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1997-01-01

    Ferritic/martensitic steels were chosen as candidates for future fusion power plants because of their superior swelling resistance and better thermal properties than austenitic stainless steels. For the same reasons, these steels are being considered for the target structure of a spallation neutron source, where the structural materials will experience even more extreme irradiation conditions than expected in a fusion power plant first wall (i.e., high-energy neutrons that produce large amounts of displacement damage and transmutation helium). Extensive studies on the effects of neutron irradiation on the mechanical properties of ferritic/martensitic steels indicate that the major problem involves the effect of irradiation on fracture, as determined by a Charpy impact test. There are indications that helium can affect the impact behavior. Even more helium will be produced in a spallation neutron target material than in the first wall of a fusion power plant, making helium effects a prime concern for both applications. 39 refs., 10 figs

  3. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  4. Structural properties and neutron irradiation effects of ceramics

    International Nuclear Information System (INIS)

    Yano, Toyohiko

    1994-01-01

    In high temperature gas-cooled reactors and nuclear fusion reactors being developed at present, various ceramics are to be used in the environment of neutron irradiation for undertaking important functions. The change of the characteristics of those materials by neutron irradiation must be exactly forecast, but it has been known that the response of the materials is different respectively. The production method of ceramics and the resulted structures of ceramics which control their characteristics are explained. The features of covalent bond and ionic bond, the synthesis of powder and the phase change by heating, sintering and sintering agent, and grain boundary phase are described. The smelling of ceramics by neutron irradiation is caused by the formation of the clusters of Frenkel defects and minute spot defects. Its restoration by annealing is explained. The defects remaining in materials after irradiation are the physical defects by flipping atoms cut due to the collision with high energy particles and the chemical defects by nuclear transformation. Some physical defects can be restored, but chemical defects are never restored. The mechanical properties of ceramics and the effect of irradiation on them, and the thermal properties of ceramics and the effect of irradiation on them are reported. (K.I.)

  5. Fusion neutron irradiation of Ni(Si) alloys at high temperature

    International Nuclear Information System (INIS)

    Huang, J.S.; Guinan, M.W.; Hahn, P.A.

    1987-09-01

    Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab

  6. Fusion neutron irradiation of Ni(Si) alloys at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.S.; Guinan, M.W.; Hahn, P.A.

    1987-09-01

    Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab.

  7. Utilization of boron irradiation filters in reactor neutron activation via epithermal (n,γ) and fast neutron reactions

    International Nuclear Information System (INIS)

    Chisela, F.

    1986-01-01

    The technique of instrumental neutron activation analysis based on irradiation with reactor epithermal and fast neutrons has been described and evaluated. Important characteristics of boron neutron absorbers used to remove thermal neutrons from the reactor neutron spectrum have been examined and compared with those of cadmium. Three boron compound shields, have been designed and constructed at the BER II 5MW reactor for use in epithermal neutron activation analysis of biological materials. The major advantages offered by these filters in this application include the flexibility of varying the filter thickness, the low radioactivity induced in the filters during irradiation, ease of fabrication and the relatively low cost of the filter materials. The radiation heating due to the 10 B(n,α) 7 Li-reaction has been experimentally investigated for the filters used and the results obtained confirm the necessity for efficient cooling of these filters during irradiation. Three irradiation facilities have been characterized with respect to the neutron flux density and the flux spatial distribution. An experiment has been designed and carried out to compensate the flux inhomogeneity in two irradiation positions of the DBV facility caused by the reactor geometry. Several biological samples including well characterized reference materials have been analysed after epithermal activation and the results compared with those obtained with the classical thermal neutron activation method. Improved sensitivity of determination has been found for elements with high resonance integral to thermal neutron cross section ratios (RI/σ 0 ). The range of elements that can be determined instrumentally is extended and the time scale of analysis is considerably reduced. (orig.) [de

  8. Annealing of dislocation loops in neutron-irradiated copper investigated by positron annihilation

    International Nuclear Information System (INIS)

    Gauster, W.B.; Mantl, S.; Schober, T.; Triftshauser, W.

    1975-01-01

    Positron annihilation angular correlation measurements were carried out on neutron-irradiated copper as a function of annealing temperature. Two types of specimens were used: single crystals irradiated with fast neutrons, and 10 B-doped polycrystalline samples irradiated with thermal neutrons. All irradiations were at approximately 320 0 K. A structure in the annealing curve, not previously observed by other techniques, indicates that between 460 and 600 0 K the dislocation loops present after irradiation dissociate and more effective positron trapping sites are formed. (auth)

  9. A standard fission neutron irradiation facility

    International Nuclear Information System (INIS)

    Sahasrabudhe, S.G.; Chakraborty, P.P.; Iyer, M.R.; Kirthi, K.N.; Soman, S.D.

    1979-01-01

    A fission neutron irradiation facility (FISNIF) has been set up at the thermal column of the CIRUS reactor at BARC. The spectrum and the flux have been measured using threshold detectors. The paper describes the setting up of the facility, measurement and application. A concentric cylinder containing UO 2 powder sealed inside surrounds the irradiation point of a pneumatic sample transfer system located in the thermal column of the reactor. Samples are loaded in a standard aluminium capsule with cadmium lining and transported pneumatically. A sample transfer time of 1 s can be achieved in the facility. Typical applications of the facility for studying activation of iron and sodium in fission neutrons are also discussed. (Auth.)

  10. Neutron irradiation of rat embryos in utero

    International Nuclear Information System (INIS)

    Vogel, H.H. Jr.

    1978-01-01

    In the rat radiation is most effective in producing congenital anomalies during the organ-forming period (days 9 to 13), which is approximately equivalent to the 14th to 50th days of human pregnancy. We have exposed female Sprague--Dawley rats on the 18th day of pregnancy to single whole-body doses of fission neutrons (20 to 150 rads). After 20 rads there was a small decrease in body weight which lasted from birth to weaning. During this period 9% of the irradiated rats died compared with 4% of the controls. After 50 rads, 65/275 (23.6%) of the rats died between birth and weaning, and the body-weight loss of the survivors was increased. After 100 rads, 62/133 (47%) died at birth or day 1 and 103/133 (77.4%) died before weaning. A large and significant decrease in body weight persisted in the survivors. After 150 rads of fission neutrons, all 95 rats died within 48 hr of birth. From cross-fostering experiments, we believe this is a direct effect of radiation on the embryos and not an indirect action through the mother or her milk. The LD 50 for the period from birth to weaning is approximately 75 rads of fission neutrons. Studies of organ weight were conducted daily for the first week after birth in an attempt to find the cause of radiation mortality. Body weight of the irradiated animals averaged only about one-half that of the controls. The liver, kidney, brain, and testes of the neutron-irradiated rats weighed significantly less than those of the controls. The weights of the spleen, lungs, duodenum, and stomach were decreased but not significantly. The bone marrow appeared depleted in the irradiated long bones, but the spleen maintained active hematopoiesis 1 to 2 months after neutron exposure

  11. Atomic structure of radiation damages in FCC-metals after neutron irradiation

    International Nuclear Information System (INIS)

    Popova, E.V.; Ivchenko, V.A.; Kozlov, A.V.

    2005-01-01

    Full text: Radiation clusters, formed at a neutron irradiation, are a product of evolution of cascade areas. The quantitative information about clusters can be used for verification of calculations of cascade damage ability, in particular, cascade efficiency. Data about concentration clusters and an average of the vacancies containing in them, allow to receive total of the vacancies reserved in them and to use them for comparison to results of calculations of cascade damage ability. A correctness of such comparison by that above, than below temperature of a neutron irradiation. The purpose of work was experimental studying radiation clusters formed in FCC-metals at a low temperature neutron irradiation methods of dilatometry, field ion (FIM) and transmission electronic microscopy (TEM). Radiation clusters were studied: in industrial austenite steel C0.05Crl6Nil5Mo2Mnl, irradiated in reactor Rw-2a at temperature 310 K up to fluence intermediate and fast neutrons (with E > 0,1 MeV) 6.7·l0 21 m -2 ; in a modelling material - Pt (cleanliness of 99.99 %) with the same - FCC-structure in an initial condition and after an irradiation in reactor RWW-2M at temperature 310 K up to fluence intermediate and fast neutrons (with E > 0.1 MeV) 3.5·10 22 m -2 . As a result of an irradiation of steel and pure Pt, in these materials by methods FIM and TEM many radiation clusters, the accelerated neutrons initiated by interaction with substance was revealed. It is established that these damage areas represent the depleted zones containing separate vacancies, and also small vacancy complexes, with the 'belt' interstitial atoms. The quantitative estimation of the sizes of such radiating defects is lead and their density in volume is experimentally established. So the neutron irradiation of steel at temperature 310 K up to fluence 6.7·10 21 m -2 causes formation radiation clusters which average diameter according to TEM makes 3 nanometers. Observable by methods FIM clusters have the

  12. Comparison of material irradiation conditions for fusion, spallation, stripping and fission neutron sources

    International Nuclear Information System (INIS)

    Vladimirov, P.; Moeslang, A.

    2004-01-01

    Selection and development of materials capable of sustaining irradiation conditions expected for a future fusion power reactor remain a big challenge for material scientists. Design of other nuclear facilities either in support of the fusion materials testing program or for other scientific purposes presents a similar problem of irradiation resistant material development. The present study is devoted to an evaluation of the irradiation conditions for IFMIF, ESS, XADS, DEMO and typical fission reactors to provide a basis for comparison of the data obtained for different material investigation programs. The results obtained confirm that no facility, except IFMIF, could fit all user requirements imposed for a facility for simulation of the fusion irradiation conditions

  13. Neutron self-shielding with k0-NAA irradiations

    International Nuclear Information System (INIS)

    Chilian, C.; Chambon, R.; Kennedy, G.

    2010-01-01

    A sample of SMELS Type II reference material was mixed with powdered Cd-nitrate neutron absorber and analysed by k 0 NAA for 10 elements. The thermal neutron self-shielding effect was found to be 34.8%. When flux monitors were irradiated sufficiently far from the absorbing sample, it was found that the self-shielding could be corrected accurately using an analytical formula and an iterative calculation. When the flux monitors were irradiated 2 mm from the absorbing sample, the calculations over-corrected the concentrations by as much as 30%. It is recommended to irradiate flux monitors at least 14 mm from a 10 mm diameter absorbing sample.

  14. Evaluation of neutron exposure conditions for the Buffalo Reactor

    International Nuclear Information System (INIS)

    Lippincott, E.P.; Kellogg, L.S.; McElroy, W.N.; Baldwin, C.A.

    1984-04-01

    The light water test reactor at the Nuclear Science and Technology Facility of the State University of New York at Buffalo is currently being used to irradiate specimens in in-core positions for NRC-sponsored metallurgical tests. It is important that the neutron exposures for these Buffalo tests be consistent with those determined for related irradiations in the BSR and ORR reactor at ORNL. Therefore, HEDL National Reactor Dosimetry Center dosimetry procedures and ORNL calculational procedures were used for an evaluation of typical test conditions

  15. High dose neutron irradiation damage in beryllium as blanket material

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V.P. E-mail: fae@niiar.ru; Kazakov, V.A.; Teykovtsev, A.A.; Pimenov, V.V.; Shimansky, G.A.; Ostrovsky, Z.E.; Suslov, D.N.; Latypov, R.N.; Belozerov, S.V.; Kupriyanov, I.B. E-mail: vniinm.400@g23.relkom.ru

    2001-11-01

    The paper presents the investigation results of beryllium products that operated in the SM and BOR-60 reactors up to neutron doses of 2.8x10{sup 22} and 8.0x10{sup 22} cm{sup -2} (E>1 MeV), respectively. The calculated and experimental data are given on helium and tritium accumulation, swelling, micro-hardness and thermal conductivity. The microstructural investigation results of irradiated beryllium are also presented. It is shown that the rate of helium and tritium accumulation in beryllium in the SM and BOR-60 reactors is high enough, which is of interest from the viewpoint of modeling the working conditions of the DEMO fusion reactor. Swelling of beryllium at irradiation temperature of 70-150 deg. C and neutron fluence of 2.8x10{sup 22} cm{sup -2} (E>1 MeV) makes up 0.8-1.5%, at 400 deg. C and fluence of 8x10{sup 22} cm{sup -2} (E>1 MeV)-3.2-5.0%. Irradiation hardening and decrease of thermal conductivity strongly depend on the irradiation temperature and are more significant at reduced temperatures. All results presented in the paper were analyzed with due account of the supposed working parameters of the DEMO fusion reactor blanket.

  16. High dose neutron irradiation damage in beryllium as blanket material

    International Nuclear Information System (INIS)

    Chakin, V.P.; Kazakov, V.A.; Teykovtsev, A.A.; Pimenov, V.V.; Shimansky, G.A.; Ostrovsky, Z.E.; Suslov, D.N.; Latypov, R.N.; Belozerov, S.V.; Kupriyanov, I.B.

    2001-01-01

    The paper presents the investigation results of beryllium products that operated in the SM and BOR-60 reactors up to neutron doses of 2.8x10 22 and 8.0x10 22 cm -2 (E>1 MeV), respectively. The calculated and experimental data are given on helium and tritium accumulation, swelling, micro-hardness and thermal conductivity. The microstructural investigation results of irradiated beryllium are also presented. It is shown that the rate of helium and tritium accumulation in beryllium in the SM and BOR-60 reactors is high enough, which is of interest from the viewpoint of modeling the working conditions of the DEMO fusion reactor. Swelling of beryllium at irradiation temperature of 70-150 deg. C and neutron fluence of 2.8x10 22 cm -2 (E>1 MeV) makes up 0.8-1.5%, at 400 deg. C and fluence of 8x10 22 cm -2 (E>1 MeV)-3.2-5.0%. Irradiation hardening and decrease of thermal conductivity strongly depend on the irradiation temperature and are more significant at reduced temperatures. All results presented in the paper were analyzed with due account of the supposed working parameters of the DEMO fusion reactor blanket

  17. Fracture toughness and strength change of neutron-irradiated ceramic materials

    International Nuclear Information System (INIS)

    Dienst, W.; Zimmermann, H.

    1994-01-01

    In order to analyse the results of bending strength measurements on neutron-irradiated samples of Al 2 O 3 , AlN and SiC, fracture toughness measurements were additionally conducted. The neutron fluences concerned were mostly in the range of 0.6 to 3.2x10 26 n/m 2 at irradiation temperatures of 400 to 550 C. A fracture toughness decrease was generally observed for polycrystalline materials which, however, was considerably smaller than the reduction of the fracture strength. Exceptional increase of the fracture toughness seems typical for the effect of rather coarse irradiation defects. The irradiation-induced change of the fracture toughness of single crystal Al 2 O 3 appeared dependent on the crystallographic orientation; both reduced and increased fracture toughness after irradiation was observed. Recent results of neutron irradiation to about 2x10 25 n/m 2 at 100 C showed, that the strength decrease of various Al 2 O 3 grades sets in at (3-5)x10 24 n/m 2 and seems to be little dependent on the irradiation temperature. ((orig.))

  18. Commercial Applications at FRM II Based on Neutron Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Gerstenberg, H.; Draack, A.; Kastenmuller, A. [Technische Universitaet Muenchen, Munchen (Germany)

    2013-07-01

    Due to its design as a heavy water moderated reactor with a very compact core FRM II, Germany's most modern and most powerful research reactor, offers excellent conditions for basic research using beam tubes. On the other hand it is equipped with various irradiation facilities to be used mainly for industrial purposes. From the very beginning of reactor operation a dedicated department had been implemented in order to provide a neutron irradiation service to interested parties on a commercial basis. As of today the most widely used application is Si doping. The semiautomatic doping facility accepts ingots with diameters between 125 mm and 200 mm and a maximum height of 500 mm. The irradiation channel is located deep in the heavy water tank and exhibits a ratio of thermal/fast neutron flux density of > 1000. This value allows the doping of Si to a target resistivity as high as 1100 Ωcm within the tight limits regarding accuracy and homogeneity specified by the customer. Typically the throughput of Si doped in FRM II sums up to about 15 t/year. Another topic of growing importance is the use of FRM II aiming the production of radioisotopes mainly for the radiopharmaceutical industry. The maybe most challenging example is the production of Lu-177 n. c. a. based on the irradiation of Yb{sub 2}O{sub 3} to a high fluence of thermal neutrons of typically 1.5E20 cm{sup -2}. The Lu-177 activity delivered to the customer is in the range of 750 GBq. With respect to further processing it turned out to be a highly advantageous to have the laboratories of ITG, the company extracting the Lu-177 from the freshly irradiated Yb{sub 2}O{sub 3} on site FRM II. Further irradiation facilities are available at FRM II in order to allow the activation of samples for analytical purposes or to irradiate samples for geochronological investigations using the fission track technique. Finally a project on the future installation of a facility dedicated to the irradiation of U-targets for

  19. Shielding of a neutron irradiator with {sup 241}Am-Be source

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, K.A.M. de; Crispim, V.R.; Silva, A.X., E-mail: koliveira@con.ufrj.b, E-mail: verginia@con.ufrj.b, E-mail: ademir@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear; Fonseca, E.S., E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The equivalent dose rates at 1.0 cm from the outer surface of the shielding of a neutron irradiation system that uses {sup 241}Am-Be source with activity of 185 GBq (5 Ci) were determined. A theoretical-experimental approach including case studies, through computer simulations with MCNP code was employed to calculate the best shielding thickness. Following the construction of the neutron irradiator, dose measurements were conducted in order to validate data obtained from simulation. The neutron irradiator shielding was designed in such a way to allow transport of the neutron radiography system for in loco inspections ensuring workers' radiologic safety. (author)

  20. Investigation of neutron fluence using fluence monitors for irradiation test at WWR-K

    International Nuclear Information System (INIS)

    Romanova, N.K.; Takemoto, N.

    2013-01-01

    Irradiation test of a Si ingot is planned using WWR-K in Institute of Nuclear Physics Republic of Kazakhstan (INP RK) to develop an irradiation technology for Si semiconductor production by Neutron Transmutation Doping (NTD) method in the framework of an international cooperation between INP RK and Japan Atomic Energy Agency (JAEA), Japan. It is possible to irradiate the Si ingot of 6 inch in diameter at the K-23 irradiation channel in the WWR-K. The preliminary irradiation test using 4 Al ingots was performed to evaluate the actual neutronic irradiation field at the K-23 channel in the WWR-K. Each Al ingot has the same dimension as the Si ingot, and 15 fluence monitors are equipped in it. Iron wire and aluminum-cobalt wire are inserted into them, and it is possible to evaluate both fast and thermal neutron fluxes by measurement of these radiation activities after irradiation. This report described the results of the preliminary irradiation test and the neutronic calculations by Monte Carlo method in order to evaluate the neutronic irradiation field in the irradiation position for the silicon ingot at the channel in the WWR-K. (authors)

  1. Radiological risks from irradiation of cargo contents with EURITRACK neutron inspection systems

    International Nuclear Information System (INIS)

    Giroletti, E.; Bonomi, G.; Donzella, A.; Viesti, G.; Zenoni, A.

    2012-01-01

    The radiological risk for the population related to the neutron irradiation of cargo containers with a tagged neutron inspection system has been studied. Two possible effects on the public health have been assessed: the modification of the nutritional and organoleptic properties of the irradiated materials, in particular foodstuff, and the neutron activation of consumer products (i.e. food and pharmaceuticals). The result of this study is that irradiation of food and foodstuff, pharmaceutical and medical devices in container cargoes would neither modify the properties of the irradiated material nor produce effective doses of concern for public health. Furthermore, the dose received by possible stowaways present inside the container during the inspection is less than the annual effective dose limit defined by European Legislation for the public. - Highlights: ► Neutron irradiation of cargo containers implies a radiological risk. ► The risk is about the modification of food properties and the products activation. ► Assessment is made about the EURITRACK neutron irradiation system. ► Results show that the EURITRACK scanning is not dangerous for the population.

  2. Fusion neutron irradiation of Ni-Si alloys at high temperature*1

    Science.gov (United States)

    Huang, J. S.; Guinan, M. W.; Hahn, P. A.

    1988-07-01

    Two Ni-4% Si alloys, with different cold work levels, have been irradiated with 14-MeV fusion neutrons at 623 K, and their Curie temperatures have been monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2-MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14-MeV fusion neutrons is only 6-7% of that for an identical alloy irradiated by 2-MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6-7% for the fusion neutron irradiated sample.

  3. Aspects of Low Temperature Irradiation in Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Brune, D.

    1968-08-01

    Neutron irradiation of the sample while frozen in a cooling device inserted in a reactor channel has been carried out in the analysis of iodine in aqueous samples as well as of mercury in biological tissue and water. For the simultaneous irradiation of a large number of aqueous solutions the samples were arranged in a suitable geometry in order to avoid mutual flux perturbation effects. The influence of the neutron temperature on the activation process has been discussed. Potential applications of the low temperature irradiation technique are outlined

  4. Aspects of Low Temperature Irradiation in Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D

    1968-08-15

    Neutron irradiation of the sample while frozen in a cooling device inserted in a reactor channel has been carried out in the analysis of iodine in aqueous samples as well as of mercury in biological tissue and water. For the simultaneous irradiation of a large number of aqueous solutions the samples were arranged in a suitable geometry in order to avoid mutual flux perturbation effects. The influence of the neutron temperature on the activation process has been discussed. Potential applications of the low temperature irradiation technique are outlined.

  5. Verification of neutron irradiation on S/G tube materials

    International Nuclear Information System (INIS)

    Kang, Byoung Hwi; Lee, S. K.; Jang, D. Y.; Jo, K. H.

    2010-12-01

    The fluence monitors were fabricated with metal wires of the purity ≥ 99.9%, whose dimensions were 0.1mm diameter, about 3mm length, and around 150-200 μg mass range. Three wire samples (Fe, Ni, Ti) were prepared for one irradiation aluminum capsule. Five capsules were irradiated in the OR5 hole of the HANARO reactor at 30 MW power for about 25 days. The reaction rates were calculated by using the measured radiation activity data, and then neutron fluence were obtained from the reaction rates and the weighted neutron cross section with calculated neutron spectrum at the fluence monitor position. The measured neutron fluences were compared to the calculated ones. (Errors ≤ 35%)

  6. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Hay, J.C.

    1998-01-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 10 25 n/m 2 . Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  7. Characterization of defect accumulation in neutron-irradiated Mo by positron annihilation spectroscopy

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Li, Meimei; Snead, L.L.

    2008-01-01

    Positron annihilation lifetime spectroscopy measurements were performed on neutron-irradiated low carbon arc cast Mo. Irradiation took place in the high flux isotope reactor, Oak Ridge National Laboratory, at a temperature of 80 +/- 10 degrees C. Neutron fluences ranged from 2 x 10(21) to 8 x 10(......, as predicted by molecular dynamics simulations. (C) 2008 Elsevier B.V. All rights reserved....... at a very low-dose of similar to 10(-4) dpa. The average size of the cavities did not change significantly with dose, in contrast to neutron-irradiated bcc Fe where cavity sizes increased with increasing dose. It is suggested that the in-cascade vacancy clustering may be significant in neutron-irradiated Mo...

  8. Colony form variation of Bacillus pumilus E601 after cultured and neutron irradiation

    International Nuclear Information System (INIS)

    Chen Xiaoming; Wei Baoli; Zhang Jianguo

    2008-01-01

    The distribution of two colony forms of Bacillus pumilus E601 and the effect of neutron irradiation on the colony form were reported. The translucent and opaque colonies were cultured several generations to observe the proportion of two form colonies. The spores of opaque colony were irradiated at 80, 800 and 2000 Gy of fast neutron from CFBR-II pulse pile, and the survivors of opaque colony were irradiated again at the same doses. The results showed that: (1) Bacillus pumilus E601 observed two types of colony form: translucent and opaque colony; (2) the translucent colony could produce both translucent and opaque colonies in equal, while the opaque colony couldn't produce translucent colony generally; (3) neutron irradiation could affect the colony form distribution. The ratio of survival translucent colony was increased with the increase of the first neutron irradiation doses, and the second neutron irradiation also increased the ratio of translucent colony. It was concluded that the instability of translucent colony was the main reason to produce two colony forms of Bacillus pumilus E601. The strain of translucent colony had a stronger ability to resist neutron irradiation than the opaque colony. (authors)

  9. Further study of the glassy low-temperature properties of irradiated crystalline quartz: neutron and electron irradiation

    International Nuclear Information System (INIS)

    Laermans, C.; Daudin, B.

    1979-01-01

    Recently it has been shown that a quartz crystal after light fast neutron irradiation shows low temperature hypersonic properties which are similar to those found in glasses although the sample was still crystalline. Additional measurements have been carried out in the neutron-irradiated sample and a sample irradiated with high energy electrons has also been investigated. (Fast neutron dose 6 x 10 18 n/cm 2 , 2 MeV electron dose 3 x 10 19 e/cm 2 ). A magnetic field up to 1.5 T was found to have no influence in the hypersonic saturation behaviour of the neutron-irradiated sample (9 GHz, 1.65 K) and thermal conductivity measurements are consistent with a number of two level systems (2 LS) an order of magnitude lower than in vitreous silica as found before. Low temperature hypersonic measurements as a function of acoustic intensity and temperature as well as thermal conductivity measurements give no evidence for the presence of 2 LS in the electron irradiated sample. Considering the damage created in both samples this indicates that 2 LS are probably not related to point defects

  10. Simulation analysis of radiation fields inside phantoms for neutron irradiation

    International Nuclear Information System (INIS)

    Satoh, Daiki; Takahashi, Fumiaki; Endo, Akira; Ohmachi, Y.; Miyahara, N.

    2007-01-01

    Radiation fields inside phantoms have been calculated for neutron irradiation. Particle and heavy-ion transport code system PHITS was employed for the calculation. Energy and size dependences of neutron dose were analyzed using tissue equivalent spheres of different size. A voxel phantom of mouse was developed based on CT images of an 8-week-old male C3H/HeNs mouse. Deposition energy inside the mouse was calculated for 2- and 10-MeV neutron irradiation. (author)

  11. Positron annihilation and Moessbauer studies of neutron irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Brauer, G.; Matz, W.; Liszkay, L.; Molnar, B.

    1990-11-01

    Positron annihilation (lifetime, Doppler broadening) and Moessbauer studies on unirradiated, neutron irradiated and neutron irradiated plus annealed reactor pressure vessel steels (Soviet type 15Kh2NMFA) are presented. The role of microstructural properties and the formation of irradiation-induced precipitates is discussed. (orig.) [de

  12. Self-Powered Neutron Detector Calibration Using a Large Vertical Irradiation Hole of HANARO

    Directory of Open Access Journals (Sweden)

    Kim Myong-Seop

    2018-01-01

    Full Text Available A calibration technology of the self-powered neutron detectors (SPNDs using a large vertical irradiation hole of HANARO is developed. The 40 Rh-SPNDs are installed on the polycarbonate plastic support, and the gold wires with the same length as the effective length of the rhodium emitter of the SPND are also installed to measure the neutron flux on the SPND. They are irradiated at a low reactor power, and the SPND current is measured using the pico-ammeter. The external gamma-rays which affect the SPND current response are analyzed using the Monte Carlo simulation for various irradiation conditions in HANARO. It is confirmed that the effect of the external gamma-rays to the SPND current is dependent on the reactor characteristics, and that it is affected by materials around the detector. The current signals due to the external gamma-rays can be either positive or negative, in that the net flow of the current may be either in the same or the opposite direction as the neutron-induced current by the rhodium emitter. From the above procedure, the effective calibration methodology of multiple SPNDs using the large hole of HANARO is developed. It could be useful for the calibration experiment of the neutron detectors in the research reactors.

  13. Self-Powered Neutron Detector Calibration Using a Large Vertical Irradiation Hole of HANARO

    Science.gov (United States)

    Kim, Myong-Seop; Park, Byung-Gun; Kang, Gi-Doo

    2018-01-01

    A calibration technology of the self-powered neutron detectors (SPNDs) using a large vertical irradiation hole of HANARO is developed. The 40 Rh-SPNDs are installed on the polycarbonate plastic support, and the gold wires with the same length as the effective length of the rhodium emitter of the SPND are also installed to measure the neutron flux on the SPND. They are irradiated at a low reactor power, and the SPND current is measured using the pico-ammeter. The external gamma-rays which affect the SPND current response are analyzed using the Monte Carlo simulation for various irradiation conditions in HANARO. It is confirmed that the effect of the external gamma-rays to the SPND current is dependent on the reactor characteristics, and that it is affected by materials around the detector. The current signals due to the external gamma-rays can be either positive or negative, in that the net flow of the current may be either in the same or the opposite direction as the neutron-induced current by the rhodium emitter. From the above procedure, the effective calibration methodology of multiple SPNDs using the large hole of HANARO is developed. It could be useful for the calibration experiment of the neutron detectors in the research reactors.

  14. Tritium release from neutron irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik

    1998-01-01

    One of the most important open issues related to beryllium for fusion applications refers to the kinetics of the tritium release as a function of neutron fluence and temperature. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating the beryllium response under neutron irradiation. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from the above mentioned irradiation experiments, trying to elucidate the tritium release controlling processes. In agreement with previous studies it has been found that release starts at about 500-550degC and achieves a maximum at about 700-750degC. The observed release at about 500-550degC is probably due to tritium escaping from chemical traps, while the maximum release at about 700-750degC is due to tritium escaping from physical traps. The consequences of a direct contact between beryllium and ceramics during irradiation, causing tritium implanting in a surface layer of beryllium up to a depth of about 40 mm and leading to an additional inventory which is usually several times larger than the neutron-produced one, are also presented and the effects on the tritium release are discussed. (author)

  15. Hydrides formation In Zircaloy-4 irradiated with neutrons

    International Nuclear Information System (INIS)

    Vizcaino, P; Flores, A V; Vicente Alvarez, M A; Banchik, A.D; Tolley, A; Condo, A; Santisteban, J R

    2012-01-01

    Under reactor operating conditions zirconium components go through transformations which affect their original properties. Two phenomena of significant consequences for the integrity of the components are hydrogen uptake and radiation damage, since both contribute to the material fragilization. In the case of the Atucha I nuclear power reactor, the cooling channels, Zircaloy-4 tubular structural components about 6 meters long, were designed to withstand the entire lifetime of the reactor. Inside them, fuel elements 5.3 meters long are located. The fuel elements are cooled by a heavy water flow which circulates from the bottom (250 o ) to the top of the reactor (305 o C). The channels are affected by a fast neutron flux (En>1 Mev), increasing from a nominal value of 1.35 x 10 13 neutrons/cm 2 sec at the bottom to 1.69 x 10 13 neutrons/cm 2 sec at the top, reaching a maximum value of 3.76 x 10 13 neutrons/cm 2 sec at the center of the channels. However, due to the reactor operating conditions, they are replaced after about 10 effective full power years, time at which they reach 10 22 neutrons/cm 2 at the most neutronically active regions of the reactor. Studies on cooling channels are meaningful from many points of view. The channels are structural components which do not work under internal pressure or any other type of structural stress. The typical temperature of the cladding tubes in the reactor is about 350 o C, at which many types of irradiation defects are annealed [1]. The temperature range of the cooling channels lies between 200 o C-235 o C (outer foil of the channels) and 260 o C-300 o C (internal tube), a difference which makes the defect recovery kinetics slower. In the present context, following the program developed in the research contract 15810, we continue with the work started on the effects of the radiation on the hydride formation focusing on the dislocation loops in the zirconium matrix and its possible role as preferential sites for hydride

  16. Effects of neutron irradiation on red blood cell labeling with technetium-99m

    International Nuclear Information System (INIS)

    Eng, R.R.; Conklin, J.J.; Grissom, M.P.

    1982-01-01

    The effects of in vivo and in vitro neutron irradiation on red blood cell radiolabeling with technetium-99m (Tc-99m) were studied. Blood from three dogs was irradiated with neutrons (725 rads, free in air dose) followed by radiolabeling with Tc-99m. The three dogs were subsequently whole body, neutron irradiated (250 rads, midline dose); and blood samples were drawn for radiolabeling at 24, 48, 72 and 96 hours post-irradiation. Blood from three control dogs was also drawn and radiolabeled on each day for comparison. The results show that there were no significant differences between the radiolabeling capacities of in vivo or in vitro neutron irradiated and control RBCs

  17. Radiation damage in stainless steel under varying temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Naoaki [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics

    1998-03-01

    Microstructural evolution of model alloys of 316SS was examined by neutron irradiation at JMTR under cyclic temperature varying condition. In the case of Fe-16Cr-17Ni, formation of interstitial loops and voids are strongly suppressed by varying the temperature from 473K to 673K. By adding Ti as miner element (0.25wt%), however, abnormal accumulation of vacancies (void swelling of 11%dpa at 0.1dpa) was observed. Theoretical analysis standing on the rate theory of defect clustering and simulation irradiation experiments with heavy ions indicates that the vacancy-rich condition which appears temporally during and after changing the temperature from low to high brings these results. It was also shown that only 1 dpa pre-irradiation at low temperature changes swelling behavior at high temperature above several 10 dpa. The understanding of non-steady-state defect processes under temperature varying irradiation is very important to estimate the radiation damage under fusion environment where short-term and long-term temperature variation is expected. (author)

  18. Investigation of the combined effect of neutron irradiation and electron beam exposure on pure tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Van Renterghem, W., E-mail: wvrenter@sckcen.be; Uytdenhouwen, I., E-mail: iuytdenh@sckcen.be

    2016-08-15

    Pure tungsten samples were neutron irradiated in the BR2 reactor of SCK·CEN to fluences of 1.47 × 10{sup 20} n/cm{sup 2} and 4.74 × 10{sup 20} n/cm{sup 2} at 300 °C under Helium atmosphere and exposed to the electron beam of the Judith 1 installation The effect of these treatments on the defect structure was studied with transmission electron microscopy. In the irradiated samples the defect structure in the bulk is compared to the structure at the surface. The neutron irradiation created a large amount of a/2‹111› type dislocation loops forming dislocation rafts. The loop density increased from 8.5 × 10{sup 21}/m³ to 9 × 10{sup 22}/m³ with increasing dose, while the loop size decreased from 5.2 nm to 3.5 nm. The electron beam exposure induced significant annealing of the defects and almost all of the dislocation loops were removed. The number of line dislocations in that area increased as a result of the thermal stresses from the thermal shock. - Highlights: • Neutron irradiated and electron beam exposed tungsten samples were studied with transmission electron microscopy. • Neutron irradiation creates dislocation loops and rafts, while voids are created at higher irradiation dose. • No precipitates of transmutation products were found under these low dose irradiation conditions. • Electron beam exposure annihilates the dislocation loops and rafts.

  19. Microstructural evolution of neutron-irradiated Ni-Si and Ni-Al alloys

    Science.gov (United States)

    Takahashi, H.; Garner, F. A.

    1992-10-01

    Additions of silicon and aluminum suppress the neutron-induced swelling of pure nickel but to different degrees. Silicon is much more effective initially when compared to aluminum on a per atom basis but silicon exhibits a nonmonotonic influence on swelling with increasing concentration. Silicon tends to segregate toward grain boundaries while aluminum segregates away from these boundaries. Whereas the formation of the Ni 3Si phase is frequently observed in charged particle irradiation experiments conducted at much higher displacement rates, it did not occur during neutron irradiation in this study. Precipitation also did not occur in Ni-5Al during neutron irradiation, nor has it been reported to occur during ion irradiation.

  20. Microstructural evolution of neutron-irradiated Ni-Si and Ni-Al alloys

    International Nuclear Information System (INIS)

    Takahashi, H.; Garner, F.A.

    1992-01-01

    Additions of silicon and aluminium suppress the neutron-induced swelling of pure nickel but to different degrees. Silicon is much more effective initially when compared to aluminium on a per atom basis but silicon exhibits a nonmonotonic influence on swelling with increasing concentration. Silicon tends to segregate toward grain boundaries while aluminium segregates away from these boundaries. Whereas the formation of the Ni 3 Si phase is frequently observed in charged particle irradiation experiments conducted at much higher displacement rates, it did not occur during neutron irradiation in this study. Precipitation also did not occur in Ni-5Al during neutron irradiation, nor has it been reported to occur during ion irradiation. (orig.)

  1. Comparative study of the tungsten irradiation conditions in IFMIF and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, S.P.; Pereslavtsev, P.; Fischer, U. [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Neutron Physics and Reactor Technology; Moeslang, A. [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Material Research I

    2010-05-15

    The International Fusion Material Irradiation Facility (IFMIF) [1] will provide an accelerator based intense neutron source with a white spectrum extending up to 55 MeV for high fluence irradiations of fusion power reactor (FPR) candidate materials. Material samples located in test modules will be subjected to a radiation load anticipated for a fusion power reactor. The highest neutron flux is expected in the High Flux Test Module, which is considered in the IFMIF design to host around 1000 compactly packed stainless steel samples - the main structure materials of power fusion reactors. Another material subjected to the highest loads in a FPR is a tungsten. It is planned to be used as armour tiles for the divertor or the first wall. It turned out that no specific effort has been undertaken so far to search for a suitable irradiation location in the IFMIF Test Cell which provides a reasonable representation of the irradiation conditions in the divertor of a fusion power reactors. (orig.)

  2. Presence of interleukin 6 at the cutaneous level after in vivo neutron irradiation; Presence d`interleukine 6 au niveau cutane apres irradiation neutronique in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Agay, D.; Pradeau, P.; Edgard, L.; Van Uye, A.; Mestries, J.C.

    1994-12-31

    In this study we investigated the in situ localization of IL-6 in mixed neutron-gamma irradiated baboons belly skin. Using immunohistochemical methods, we demonstrated the presence of IL-6 as early as the first day after the irradiation day. However experimental conditions did not allow us to conclude to a causality relation between irradiation and IL-6 cutaneous presence. (author). 4 refs.

  3. Ion irradiation used as surrogate of neutron irradiation in graphite: Consequences on 14C and 36Cl behavior and structural evolution

    Science.gov (United States)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2018-04-01

    Graphite has been widely used as neutron moderator, reflector or fuel matrix in different types of reactors such as gas cooled nuclear reactors (UNGG, Magnox, AGR), RBMK reactors or high temperature gas cooled reactors. Their operation produces a great quantity of irradiated graphite or other carbonaceous waste (around 250,000 tons worldwide) that requires a special management strategy. In the case of disposal, which is a current management strategy, two main radionuclides, 14C and 36Cl might be dose determining at the outlet. Particular attention is paid to 14C due to its long half-life (T∼5730 years) [1] and as major contributor to the radioactive dose. 14C has two main production routes, i) transmutation of nitrogen (14N(n,p)14C) where nitrogen is mainly adsorbed at the surfaces of the irradiated graphite; ii) activation of carbon from the matrix (13C(n,γ)14C). According to leaching tests, it was shown that even if the quantity of 14C released in the solution is low (less than 1% of the initial inventory), around 30% is in the organic form that would be mobile in repository conditions [2,3]. 36Cl is mainly produced through the activation of 35Cl (35Cl(n,γ)36Cl) which is an impurity in nuclear graphite. Its activity is low but it might be highly mobile in clay host rocks. Thus, in order to make informed decisions about the best management process and to anticipate potential radionuclide dissemination during dismantling and in the repository, it is necessary to collect information on 14C and 36Cl location and speciation in graphite, after reactor closure. The goal of the present paper is therefore to use ion irradiation to simulate neutron irradiation and to evaluate the irradiation effects on the behavior of 36Cl and 14C as well as on the induced graphite structure modifications. For that, to understand and model the underlying mechanisms, we used an indirect approach based on 13C or 37Cl implantation to simulate the respective presence of 14C or 36Cl. These

  4. Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Maziasz, P.J.; Stoller, R.E.

    1993-01-01

    Microstructural data on the evolution of the dislocation loop, cavity, and precipitate populations in neutron-irradiated austenitic stainless steels are reviewed in order to estimate the displacement damage levels needed to achieve the 'steady state' condition. The microstructural data can be conveniently divided into two temperature regimes. In the low temperature regime (below about 200 degrees C) the microstructure of austenitic stainless steel is dominated by 'black spot' defect clusters and faulted interstitial dislocation loops. The dose needed to approach saturation of the loop and defect cluster densities is generally on the order of 1 displacement per atom (dpa) in this regime. In the high temperature regime (∼300 to 700 degrees C), cavities, precipitates, loops and network dislocations are all produced during irradiation; doses in excess of 10 dpa are generally required to approach a 'steady state' microstructural condition. Due to complex interactions between the various microstructural components that form during irradiation, a secondary transient regime is typically observed in commercial stainless steels during irradiation at elevated temperatures. This slowly evolving secondary transient may extend to damage levels in excess of 50 dpa in typical 300-series stainless steels, and to >100 dpa in radiation-resistant developmental steels. The detailed evolution of any given microstructural component in the high-temperature regime is sensitive to slight variations in numerous experimental variables, including heat-to-heat composition changes and neutron spectrum

  5. Materials irradiation subpanel report to BESAC neutron sources and research panel

    International Nuclear Information System (INIS)

    Birtcher, R.C.; Goland, A.N.; Lott, R.

    1992-01-01

    The future success of the nuclear power option in the US (fission and fusion) depends critically on the continued existence of a healthy national materials-irradiation program. Consideration of the requirements for acceptable materials-irradiation systems in a new neutron source has led the subcommittee to identify an advanced steady-state reactor (ANS) as a better choice than a spallation neutron source. However, the subcommittee also hastens to point out that the ANS cannot stand alone as the nation's sole high-flux mixed-spectrum neutron irradiation source in the next century. It must be incorporated in a broader program that includes other currently existing neutron irradiation facilities. Upgrading and continuing support for these facilities must be planned. In particular, serious consideration should be given to converting the HFIR into a dedicated materials test reactor, and long-term support for several university reactors should be established

  6. The comparison of microstructure and nanocluster evolution in proton and neutron irradiated Fe–9%Cr ODS steel to 3 dpa at 500 °C

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, M.J., E-mail: matthewswenson1@u.boisestate.edu; Wharry, J.P.

    2015-12-15

    A model Fe–9%Cr oxide dispersion strengthened (ODS) steel was irradiated with protons or neutrons to a dose of 3 displacements per atom (dpa) at a temperature of 500 °C, enabling a direct comparison of ion to neutron irradiation effects at otherwise fixed irradiation conditions. The irradiated microstructures were characterized using transmission electron microscopy and atom probe tomography including cluster analysis. Both proton and neutron irradiations produced a comparable void and dislocation loop microstructure. However, the irradiation response of the Ti–Y–O oxide nanoclusters varied. Oxides remained stable under proton irradiation, but exhibited dissolution and an increase in Y:Ti composition ratio under neutron irradiation. Both proton and neutron irradiation also induced varying extents of Si, Ni, and Mn clustering at existing oxide nanoclusters. Protons are able to reproduce the void and loop microstructure of neutron irradiation carried out to the same dose and temperature. However, since nanocluster evolution is controlled by both diffusion and ballistic impacts, protons are rendered unable to reproduce the nanocluster evolution of neutron irradiation at the same dose and temperature. - Highlights: • Fe–9% Cr ODS was irradiated with protons and neutrons to 3 dpa at 500 °C. • Dislocation loop size and density were similar upon proton and neutron irradiation. • Oxide nanocluster size and density decreased more with neutron irradiation. • Oxide Y:Ti ratio increased from 0.54 to 0.97 upon neutron irradiation. • Irradiation induced enrichment of Si, Mn, and Ni at oxide locations.

  7. ATF Neutron Irradiation Program Technical Plan

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, J. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-03-01

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post-irradiation examination and characterization of irradiated materials and the shipment of irradiated materials to JAEA in Japan. This report discusses the technical plan of the experimental study.

  8. Fast and epithermal neutron radiography using neutron irradiator

    International Nuclear Information System (INIS)

    Oliveira, Karol A.M. de; Crispim, Verginia R.; Ferreira, Francisco J.O.

    2013-01-01

    The neutron radiography technique (NR) with neutrons in the energy range fast to epithermal is a powerful tool used in no-destructive inspection of bulky objects of diverse materials, including those rich in hydrogen, oxygen, nitrogen ad carbon. Thus, it can be used to identify, inclusions, voids and thickness differences in materials such as explosive artifacts and narcotics. Aiming at using NR with fast and epithermal neutrons, an Irradiator was constructed by: a 241 Am-Be source, with 5 Ci activity, a collimator with adjustable collimation rate, L/D; and a shield device composed by plates of borated paraffin and iron. The test specimens chosen were a Beam Purity Indicator (BPI) and an Indicator of Visual Resolution (IVR). The neutron radiography images obtained had a resolution of 444.4 μm and 363.6 μm respectively when registered in: 1) the sheet of the nuclear track solid detector, CR-39 type, through X (n,p) Y nuclear reaction; and 2) Kodak Industrex M radiographic film plate in close contact with a boron converter screen, both stored in a Kodak radiographic cassette. (author)

  9. Assessment of the gas dynamic trap mirror facility as intense neutron source for fusion material test irradiations

    International Nuclear Information System (INIS)

    Fischer, U.; Moeslang, A.; Ivanov, A.A.

    2000-01-01

    The gas dynamic trap (GDT) mirror machine has been proposed by the Budker Institute of nuclear physics, Novosibirsk, as a volumetric neutron source for fusion material test irradiations. On the basis of the GDT plasma confinement concept, 14 MeV neutrons are generated at high production rates in the two end sections of the axially symmetrical central mirror cell, serving as suitable irradiation test regions. In this paper, we present an assessment of the GDT as intense neutron source for fusion material test irradiations. This includes comparisons to irradiation conditions in fusion reactor systems (ITER, Demo) and the International Fusion Material Irradiation Facility (IFMIF), as well as a conceptual design for a helium-cooled tubular test assembly elaborated for the largest of the two test zones taking proper account of neutronics, thermal-hydraulic and mechanical aspects. This tubular test assembly incorporates ten rigs of about 200 cm length used for inserting instrumented test capsules with miniaturized specimens taking advantage of the 'small specimen test technology'. The proposed design allows individual temperatures in each of the rigs, and active heating systems inside the capsules ensures specimen temperature stability even during beam-off periods. The major concern is about the maximum achievable dpa accumulation of less than 15 dpa per full power year on the basis of the present design parameters of the GDT neutron source. A design upgrading is proposed to allow for higher neutron wall loadings in the material test regions

  10. Effect of neutron irradiation on the breakdown voltage of power MOSFET's

    International Nuclear Information System (INIS)

    Hasan, S.M.Y.; Kosier, S.L.; Schrimpf, R.D.; Galloway, K.F.

    1994-01-01

    The effect of neutron irradiation on power metal-oxide-semiconductor field effect transistor (power MOSFET) breakdown voltage has been investigated. Transistors with various breakdown voltage ratings were irradiated in a TRIGA nuclear reactor with cumulative fluence levels up to 5 x 10 14 neutrons/cm 2 (1 MeV equivalent). Noticeable increases in the breakdown voltages are observed in n-type MOSFET's after 10 13 neutrons/cm 2 and in p-type MOSFETs after 10 12 neutrons/cm 2 . An increase in breakdown voltage of as much as 30% is observed after 5 x 10 14 neutrons/cm 2 . The increase in breakdown voltage is attributed to the neutron-irradiation-induced defects which decrease the mean free path and trap majority carriers in the space charge region. The effect of positive trapped oxide charge due to concomitant gamma radiation and the effect of the termination structure on the increase in breakdown voltage are considered. An empirical model is presented to predict the value of the breakdown voltage as a function of neutron fluence

  11. Behavior of fluorine 18 in neutron irradiated zeolites

    International Nuclear Information System (INIS)

    Estevez Lopez, D.R.

    1992-01-01

    The transformation of Li-exchanged H-Y zeolite has been investigated at 300, 550, 850 and 1050 Centigrade degree, formation of quartz structure in addition to an amorphous phase, was nited. The Li-aluminosilicate obtained was neutron irradiated and the chemical behavior of 18 F produced by the reaction sequence 6 Li (n, α) 3 H, 16 O ( 3 H, n) 18 F, was studied. The neutron irradiated material was purged with argon-hydron gas streams. It was found that the amount of released 18 F depends on the temperature used (Author)

  12. Control of the neutronic and thermohydraulic conditions of power ramps in an irradiation loop for PWR fuel rod; Controle des conditions neutroniques et thermohydrauliques des rampes de puissance dans une boucle d`irradiation de combustibles de reacteur a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Moulin, D J.F.

    1993-09-10

    In order to study the power transients effects on PWR fuel rod clad, ramp tests in a pressurized water loop, are carried out at OSIRIS reactor. The present thesis deals with the on-line control of the device, during power ramp and conditioning irradiation. Based on a convolution-type resolution of the kinetics equations, a dynamic compensation of the Silver self-powered neutron detector was developed. With this method, the uncertainty of the ramp end-point is lower than 1%, thus it is very suited for monitoring both transient, as well as steady state conditions. Furthermore, a thermohydraulic model of the irradiation device is described: heat transfer equations, including gamma heating in materials, are solved to obtain temperatures and thermal fluxes of steady states. Results from the model and temperature measurements of the coolant are used together for fuel power determination, in real time. The clad external temperature profile is also calculated and displayed, to improve the irradiation monitoring. (author), 51 refs., 12 annexes, 66 figs.

  13. Studies of neutron irradiation effects at IPNS-REF

    International Nuclear Information System (INIS)

    Kirk, M.A.

    1983-09-01

    Neutron irradiation effects studies at the Radiation Effects Facility (REF) at the Intense Pulsed Neutron Source (IPNS) located at Argonne National Laboratory (ANL) are reviewed. A brief history of the development of this user facility is followed by an overview of the scientific program. Experiments unique to a spallation neutron source are covered in more detail. Future direction of research at this facility is suggested

  14. Characterization of hybrid self-powered neutron detector under neutron irradiation

    CERN Document Server

    Nakamichi, M; Yamamura, C; Nakazawa, M; Kawamura, H

    2000-01-01

    To evaluate the irradiation behaviour of a blanket mock-up on in-pile functional test, it is necessary to measure the neutron flux change in the in-pile mock-up by a neutron detector, such as the self-powered neutron detector (SPND). With its small-sized emitter, which has high sensitivity and fast response time, SPND is an indispensable tool in order to measure the local neutron flux change. In the case of an in-pile functional test, it is necessary that response time is less than 1s and ratio of SPND output current is more than 0.3 of output current of SPND with Rh emitter. Therefore, a hybrid SPND with high sensitivity and fast response time was developed. This hybrid SPND used a hybrid emitter, i.e. Co cladded Pt-13%Rh.

  15. Estimate of absorbed dose received by individuals irradiated with neutrons

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Mauricio, C.L.P.

    1995-01-01

    An innovating methodology is proposed to estimate the absorbed dose received by individuals irradiated with neutrons in an accident, even in the case that the victim is not using any kind of neutron dosemeter. The method combines direct measurements of 24 Na and 32 P activated in the human body. The calculation method was developed using data taken from previously published papers and experimental measurements. Other irradiations results in different neutron spectra prove the validity of the methodology here proposed. Using a whole body counter to measure 24 Na activity, it is possible to evaluate neutron absorbed doses in the order of 140 μGy of very soft (thermal) spectra. For fast neutron fields, the lower limit for neutron dose detection increases, but the present method continues to be very useful in accidents, with higher neutron doses. (author). 5 refs., 1 fig., 4 tabs

  16. Non-destructive diagnostics of irradiated materials using neutron scattering from pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, Sergey E-mail: sergey_korenev@steris.com; Sikolenko, Vadim

    2004-10-01

    The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.

  17. Non-destructive diagnostics of irradiated materials using neutron scattering from pulsed neutron sources

    Science.gov (United States)

    Korenev, Sergey; Sikolenko, Vadim

    2004-09-01

    The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.

  18. Morphological profiles of neutron and X-irradiated small intestine

    International Nuclear Information System (INIS)

    Carr, K.E.; O'Shea, O.; Hazzard, R.A.; McCullough, J.S.; Hume, S.P.; Nelson, A.C.

    1996-01-01

    This paper describes the response of mouse small intestine, at several time points after treatment with neutron or X-irradiation, using doses expected to give similar effects in terms of crypt/microcolony survival. Using resin histology, the effects of radiation on the numbers of duodenal cell types and measurements of tissue areas were assessed. The results for individual parameters and for an estimate of overall damage are given in a data display, which summarises the morphological profile of the organ after both types of radiation. Damage and recovery were seen for many of the parameters studied but there was no standard response pattern applicable for all parameters. In particular, the response of individual crypt cell types could not be predicted from knowledge of the change in crypt numbers. With regard to the holistic response of the gut, neutron irradiation appeared to have caused more damage and produced more early effects than the X-irradiation. More specifically, neutron treatment led to more damage to the neuromuscular components of the wall, while X-irradiation produced early vascular changes. (author)

  19. Measurement and evaluation of fast neutron flux of CT and OR5 irradiation hole in HANARO

    International Nuclear Information System (INIS)

    Yang, Seong Woo; Choo, Kee Nam; Lee, Seung-Kyu; Kim, Yong Kyun

    2012-01-01

    The irradiation test has been conducted to evaluate the irradiation performance of many materials by a material capsule at HANARO. Since the fast neutron fluence above 1 MeV is important for the irradiation test of material, it must be measured and evaluated exactly at each irradiation hole. Therefore, a fast neutron flux was measured and evaluated by a 09M-02K capsule irradiated in an OR5 irradiation hole and a 10M-01K capsule irradiated in a CT irradiation hole. Fe, Ni, and Ti wires as the fluence monitor were used for the detection of fast neutron flux. Before the irradiation test, the neutron flux and spectrum was calculated for each irradiation hole using an MCNP code. After the irradiation test, the activity of the fluence monitor was measured by an HPGe detector and the reaction rate was calculated. For the OR5 irradiation hole, the radial difference of the fast neutron flux was observed from a calculated data due to the OR5 irradiation hole being located outside the core. Furthermore, a control absorber rod was withdrawn from the core as the increase of the irradiation time at the same irradiation cycle, so the distribution of neutron flux was changed from the beginning to the end of the cycle. These effects were considered to evaluate the fast neutron flux. Neutron spectrums of the CT and OR5 irradiation hole were adjusted by the measured data. The fluxes of a fast neutron above 1 MeV were compared with calculated and measured value. Although the maximum difference was shown at 18.48%, most of the results showed good agreement. (author)

  20. Effect of neutron irradiation on select MAX phases

    International Nuclear Information System (INIS)

    Tallman, Darin J.; Hoffman, Elizabeth N.; Caspi, El’ad N.; Garcia-Diaz, Brenda L.; Kohse, Gordon; Sindelar, Robert L.; Barsoum, Michel W.

    2015-01-01

    Herein we report on the effect of neutron irradiation – of up to 0.1 displacements per atom at 360(20) °C or 695(25) °C – on polycrystalline samples of Ti 3 AlC 2 , Ti 2 AlC, Ti 3 SiC 2 and Ti 2 AlN. Rietveld refinement of X-ray diffraction patterns of the irradiated samples showed irradiation-enhanced dissociation into TiC of the Ti 3 AlC 2 and Ti 3 SiC 2 phases, most prominently in the former. Ti 2 AlN also showed an increase in TiN content, as well as Ti 4 AlN 3 after irradiation. In contrast, Ti 2 AlC was quite stable under these irradiation conditions. Dislocation loops are seen to form in Ti 2 AlC and Ti 3 AlC 2 after irradiation at 360(20) °C. The room temperature electrical resistivity of all samples increased by an order of magnitude after irradiation at 360(20) °C, but only by 25% after 695(25) °C, providing evidence for the MAX phases’ dynamic recovery at temperatures as low at 695(25) °C. Based on these preliminary results, it appears that Ti 2 AlC and Ti 3 SiC 2 are the more promising materials for high-temperature nuclear applications

  1. Characterization of the neutron irradiation system for use in the Low-Dose-Rate Irradiation Facility at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Manuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the source was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential

  2. Study of damages by neutron irradiation in lithium aluminates; Estudio de danos por irradiacion neutronica en aluminatos de litio

    Energy Technology Data Exchange (ETDEWEB)

    Palacios G, O

    1999-06-01

    Lithium aluminates proposed to the production of tritium in fusion nuclear reactors, due to the thermal stability that they present as well as the behavior of the aluminium to the irradiation. As a neutron flux with profile ({approx_equal} 14 Mev) of a fusion reactor is not available. A irradiation experiment was designed in order to know the micro and nano structure damages produced by fast and thermal neutrons in two irradiation positions of the fusion nuclear reactor Triga Mark III: CT (Thermal Column) and SIFCA (System of Irradiation Fixed of Capsules). In this work samples of lithium aluminate were characterized by XRD (X-Ray Diffraction), TEM (Transmission Electron Microscopy) and SEM (Scanning Electron Microscopy). Two samples were prepared by two methods: a) coalition method and b) peroxide method. This characterization comprised original and irradiated samples. The irradiated sample amounted to 4 in total: one for each preparation method and one for each irradiation position. The object of this analysis was to correlate with the received neutron dose the damages suffered by the samples with the neutron irradiation during long periods (440 H), in their micro and nano structure aspects; in order to understand the changes as a function of the irradiation zone (with thermal and fast neutron flux) and the preparation methods of the samples and having as an antecedent the irradiation in SIFCA position by short times (2h). The obtained results are referred to the stability of {gamma} -aluminate phase, under given conditions of irradiation and defined nano structure arrangement. They also refer to the proposals of growth mechanism and nucleation of new phases. The error associated with the measurement of neutron dose is also discussed. (Author)

  3. A Study on the Thermal Neutron Filter for the Irradiation of Electronic Materials at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong Woo; Kim, Sung Ryul; Park, Seung Jae; Shin, Yoon Taeg; Cho, Man Soon; Cho, Kee Nam [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The representative example is a technique of making the semiconductor with the transmutation using the pure Si. This NTD (Neutron Transmutation Doping) Si is used as a high-quality semiconductor because it has a uniform resistance. Likewise, the electronic materials are being investigated to improve the performance of material using the neutron irradiation method. The mechanism for reaction between the electronic materials and the neutrons depends on the energy of the neutron. Capturing reaction by thermal neutrons causes the transmutation and a lot of defects are made by fast neutrons. The study for the effect by such neutron energy is necessary to understand the performance improvement of the irradiated electronic materials. The thermal neutron filter was investigated to be used for the irradiation of electronic materials at HANARO. IP irradiation hole was selected and the irradiation device was designed. The analysis was conducted considering four candidate materials.

  4. Cation disorder in high-dose, neutron-irradiated spinel

    International Nuclear Information System (INIS)

    Sickafus, K.E.; Larson, A.C.; Yu, N.; Nastasi, M.; Hollenberg, G.W.; Garner, F.A.; Bradt, R.C.

    1994-08-01

    The objective of this effort is to determine whether MgAl 2 O 4 spinel is a suitable ceramic for fusion applications. Here, the crystal structures of MgAl 2 O 4 spinel single crystals irradiated to high neutron fluences [>5·10 26 n/m 2 (E n > 0.1 MeV)] were examined by neutron diffraction. Crystal structure refinement of the highest dose sample indicated that the average scattering strength of the tetrahedral crystal sites decreased by ∼ 20% while increasing by ∼ 8% on octahedral sites. Since the neutron scattering length for Mg is considerably larger than for Al, this results is consistent with site exchange between Mg 2+ ions on tetrahedral sites and Al 3+ ions on octahedral sites. Least-squares refinements also indicated that, in all irradiated samples, at least 35% of Mg 2+ and Al 3+ ions in the crystal experienced disordering replacements. This retained dpa on the cation sublattices is the largest retained damage ever measured in an irradiated spinel material

  5. Void formation by annealing of neutron-irradiated plastically deformed molybdenum

    International Nuclear Information System (INIS)

    Petersen, K.; Nielsen, B.; Thrane, N.

    1976-01-01

    The positron annihilation technique has been used in order to study the influence of plastic deformation on the formation and growth of voids in neutron irradiated molybdenum single crystals treated by isochronal annealing. Samples were prepared in three ways: deformed 12-19% before irradiation, deformed 12-19% after irradiation, and - for reference purposes -non-deformed. In addition a polycrystalline sample was prepared in order to study the influence of the grain boundaries. All samples were irradiated at 60 0 C with a flux of 2.5 x 10 18 fast neutrons/cm 2 . After irradiation the samples were subjected to isochronal annealing. It was found that deformation before irradiation probably enhanced the formation of voids slightly. Deformation after irradiation strongly reduced the void formation. The presence of grain boundaries in the polycrystalline sample had a reducing influence on the growth of voids. (author)

  6. Seed irradiation with continuously increasing doses of thermal neutrons

    International Nuclear Information System (INIS)

    Uhlik, J.; Pfeifer, M.; Pittermann, P.

    1977-01-01

    In the 'Raman' pea cv. the biological activity of thermal neutrons was investigated after irradiation of a 780 mm column of seeds for 3000 and 4167 seconds with a flux of 5.607 x 10 9 n.cm -2 per second. For different fractions of the seed column the average density of the neutron flux was calculated. It was proved that for the described method of seed irradiation it was sufficient to determine only the dose approaching the lethal dose. If a sufficiently high column of seeds is used part of the column of seeds will be irradiated with the optimum range of doses. The advantages of the suggested method of irradiation are not only smaller time and technological requirements resulting from the need for the determination of only the critical lethal dose of radiation by means of inhibition tests performed with seedlings, but also a simpler irradiation procedure. The suggested method of irradiation is at least nine times cheaper. (author)

  7. Anisotropic shift of the irreversibility line by neutron irradiation

    International Nuclear Information System (INIS)

    Sauerzopf, F.M.; Wiesinger, H.P.; Weber, H.W.; Crabtree, G.W.; Frischherz, M.C.; Kirk, M.A.

    1991-09-01

    The irreversibility line of high-T c superconductors is shifted considerably by irradiating the material with fast neutrons. The anisotropic and non-monotonous shift is qualitatively explained by a simple model based on an interaction between three pinning mechanisms, the intrinsic pinning by the ab-planes, the weak pinning by the pre-irradiation defect structure, and strong pinning by neutron induced defect cascades. A correlation between the cascade density and the position of the irreversibility line is observed

  8. Neutronic irradiation effect in FeNi alloys, observed by magnetic measurements

    International Nuclear Information System (INIS)

    Sciani, V.; Lucki, G.

    1986-01-01

    In this work some aspects of radiation damage are analysed through the influence of neutron irradiation on magnetic properties of FeNi alloys. The main points emphasized are: radiation enhanced diffusion, determination of the activation energy for diffusion process and vacancies supersaturation, which is an important parameter from technological point of view and a necessary condition for the void formation. (Author) [pt

  9. The study of creep in stainless steel irradiated with fast neutron and alpha particles

    International Nuclear Information System (INIS)

    Correa, D.A.C.

    1985-01-01

    The objective of the present work is to study the creep behavior of the 316 type stainless steel 50% cold worked in different conditions of temperature and applied stress, after neutron radiation and Alfa particles implantation. For this experiment, non-irradiated samples, samples irradiated in the research reactor IEA-R1 with fast neutron (E≥ MeV) up to a fluence of 8.6.10 17 n/cm 2 , and samples implanted with Alfa particles in the cyclotron CV-28 with Helium concentrations of 5 and 26 appm, were creep tested with applied stresses of the 200-300 MPa at temperatures between 650 0 C and 700 0 C. The deformation versus time curves were plotted and it was observed tha the second stage is not well defined, with the creep rate increasing continuously until the occurrence of failure of the material. The study of the effect of increase from 200 MPa to 300 MPa at the same temperature was performed. It can be concluded that this increase produces an approximately 70% reductions in the fracture time of the material, with practically no influence in the total deformation. Samples were tested at different temperatures (650, 675 and 700 0 C) at a same applied stress (200 MPa). It has been observed that a temperature of 50 0 C produces 98,9% of reduction in the fracture time and almost doubles the total deformation. On neutron irradiated samples, creep tests were performed at the same temperature and stress of the non irradiated samples. Comparing the results obtained a tendency of embrittlement due to the neutron irradiation can be observed; no remarkable structure changes were detected due to small fast neutron. Microstructural and metalographic observations were performed before and after each creep test. (author) [pt

  10. Neutron-irradiation effects on SiO2 and SiO2-based glass ceramics

    International Nuclear Information System (INIS)

    Porter, D.L.; Pascucci, M.R.; Olbert, B.H.

    1981-01-01

    A preliminary data base to assess the radiation-damage resistance of some glass ceramic materials has been gathered. These are rather complex materials, both in structure and composition, but possess many of those properties required for structural, insulator applications in fusion-reactor design. Property measurements were made after fast (E > 0.1 MeV) neutron irradiations of approx. 2.4 x 10 22 n/cm 2 at 400 0 C and 550 0 C. The results have shown general resistance to changes in thermal expansion and most did not eperience severe loss of mechanical integrity. The maximum volume expansion occurred in several of the fluorophlogapite-based glass ceramics (approx. 3.0%). Several observations demonstrated differences between the effects of neutron and electron irradiation; irradiation conditions proptotypic of projected reactor uses need be considered for optimum materials selection

  11. Neutronic and thermal hydraulic analyses of LEU targets irradiated in a research reactor for Molybdenum-99 production

    International Nuclear Information System (INIS)

    Jo, Daeseong; Lee, Kyung-Hoon; Kim, Hong-Chul; Chae, Heetaek

    2014-01-01

    Highlights: • Neutronic and thermal hydraulic analyses of irradiated fuel plates for Molybdenum-99. • Heat production during and after irradiation was evaluated using MCNP and ORIGEN-APR. • Cooling capacities under various cooling conditions were evaluated using TMAP. • Natural convective cooling was adequate for the decay power after 0.03 h from withdrawal. • Maximum temperature of the target decayed for 24 h does not exceed the blistering threshold. - Abstract: Neutronic and thermal hydraulic analyses of irradiated fuel plates for Molybdenum-99 production in a research reactor were performed to investigate (1) the heat production during irradiation, (2) decay heat after irradiation, and (3) cooling capacities under various cooling conditions. The heat production on the target plates irradiated in the core was evaluated using the MCNP code. The decay heat after irradiation was evaluated using the ORIGEN-APR code, and compared against ANSI/ANS-5.1-1979. The cooling capacities of forced convective cooling during irradiation and natural convective cooling after irradiation were estimated using the TMAP code. An equilibrium core with different core statuses i.e., BOC, MOC, and EOC was used to evaluate power released from the targets and the axial power distribution. Based on the neutronic calculations, thermal margins i.e., the maximum wall temperature, minimum ONB temperature margin, and minimum CHF ratio were estimated, and the cooling strategy of the fission Mo targets was discussed. The targets were cooled by forced convective cooling during irradiation, and cooled by natural convective cooling after irradiation. For a further production process, the targets transported to a hot cell were exposed to the air, and cooled by natural convection cooling in air. As a result, the maximum wall temperature remained below the ONB temperature while the targets were under water, and the maximum wall temperature remained under the blistering limit while the targets

  12. Irradiation and development of the nuclear emulsions exposed to intense fluxes of thermal neutrons with {gamma} rays; Irradiation et developpement des emulsions nucleaires exposees a des flux intenses de neutrons thermiques, accompagnes de rayons {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, H; Bonnet, A; Cohen, J [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1952-07-01

    The thermal neutron fluxes provided by nuclear reactors permit the survey of relatively rare phenomenons, and dosage of very weak quantities of some elements. One of the most favorable detection technique are constituted by the use of the nuclear emulsions. one can mention: - the dosage of uranium by counting in the emulsion the number of traces due to fission fragments after irradiation. - The dosage of the lithium and the boron as trace amounts with the help of nuclear reactions (n, {alpha}) and thermal neutrons. - The research of reactions (n, {alpha}) or (n, p) of very weak cross section for middle or heavy elements. These different applications require however important neutrons fluxes. It had therefore obliged us to search for the most favorable irradiation and development of the emulsions conditions, to get the best visibility of the trajectories and decrease the phenomena of fog on the emulsion, which prevents any observation. (M.B.) [French] Les flux de neutrons thermiques fournis par les reacteurs nucleaires permettent l'etude de phenomenes relativement rares, et le dosage de tres faibles quantites de certains elements. Un des moyens de detection les plus favorables est constitue par l'utilisation des emulsions nucleaires. on peut citer: - le dosage de l'uranium par comptage dans l'emulsion du nombre de traces dues aux fragments de fission apres irradiation. - Le dosage du lithium et du bore a l'etat de traces a l'aide des reactions (n, {alpha}) sous l'action des neutrons thermiques. - La recherche de reactions (n,{alpha}) ou (n,p) de tres faible section efficace pour des elements moyens ou lourds. Ces differentes applications necessite cependant des flux de neutrons important. On a donc ete amene a rechercher les conditions les plus favorables d'irradiation et de developpement des emulsions, de maniere a obtenir la meilleure visibilite des trajectoires et diminuer les phenomenes de voile de l'emulsion, qui empeche toute observation. (M.B.)

  13. Irradiation and development of the nuclear emulsions exposed to intense fluxes of thermal neutrons with {gamma} rays; Irradiation et developpement des emulsions nucleaires exposees a des flux intenses de neutrons thermiques, accompagnes de rayons {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, H.; Bonnet, A.; Cohen, J. [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1952-07-01

    The thermal neutron fluxes provided by nuclear reactors permit the survey of relatively rare phenomenons, and dosage of very weak quantities of some elements. One of the most favorable detection technique are constituted by the use of the nuclear emulsions. one can mention: - the dosage of uranium by counting in the emulsion the number of traces due to fission fragments after irradiation. - The dosage of the lithium and the boron as trace amounts with the help of nuclear reactions (n, {alpha}) and thermal neutrons. - The research of reactions (n, {alpha}) or (n, p) of very weak cross section for middle or heavy elements. These different applications require however important neutrons fluxes. It had therefore obliged us to search for the most favorable irradiation and development of the emulsions conditions, to get the best visibility of the trajectories and decrease the phenomena of fog on the emulsion, which prevents any observation. (M.B.) [French] Les flux de neutrons thermiques fournis par les reacteurs nucleaires permettent l'etude de phenomenes relativement rares, et le dosage de tres faibles quantites de certains elements. Un des moyens de detection les plus favorables est constitue par l'utilisation des emulsions nucleaires. on peut citer: - le dosage de l'uranium par comptage dans l'emulsion du nombre de traces dues aux fragments de fission apres irradiation. - Le dosage du lithium et du bore a l'etat de traces a l'aide des reactions (n, {alpha}) sous l'action des neutrons thermiques. - La recherche de reactions (n,{alpha}) ou (n,p) de tres faible section efficace pour des elements moyens ou lourds. Ces differentes applications necessite cependant des flux de neutrons important. On a donc ete amene a rechercher les conditions les plus favorables d'irradiation et de developpement des emulsions, de maniere a obtenir la meilleure visibilite des trajectoires et diminuer les phenomenes de voile de l'emulsion, qui

  14. Self-shielding and burn-out effects in the irradiation of strongly-neutron-absorbing material

    International Nuclear Information System (INIS)

    Sekine, T.; Baba, H.

    1978-01-01

    Self-shielding and burn-out effects are discussed in the evaluation of radioisotopes formed by neutron irradiation of a strongly-neutron-absorbing material. A method of the evaluation of such effects is developed both for thermal and epithermal neutrons. Gadolinium oxide uniformly mixed with graphite powder was irradiated by reactor-neutrons together with pieces of a Co-Al alloy wire (the content of Co being 0.475%) as the neutron flux monitor. The configuration of the samples and flux monitors in each of two irradiations is illustrated. The yields of activities produced in the irradiated samples were determined by the γ-spectrometry with a Ge(Li) detector of a relative detection efficiency of 8%. Activities at the end of irradiation were estimated by corrections due to pile-up, self-absorption, detection efficiency, branching ratio, and decay of the activity. Results of the calculation are discussed in comparison with the observed yields of 153 Gd, 160 Tb, and 161 Tb for the case of neutron irradiation of disc-shaped targets of gadolinium oxide. (T.G.)

  15. Comparison of initial damage rates using neutron and electron irradiations

    International Nuclear Information System (INIS)

    Goldstone, J.A.R.

    1978-08-01

    The purpose of this experiment was twofold: (1) The number of interstitials that pin dislocations was studied as a function of neutron energy. (2) By comparison with electron irradiations on the sample, a correlation between the predicted and measured numbers of defects was found. All irradiations were performed on the same high purity copper sample. The sample was machined in the form of a cantilever beam with a flexural resonant frequency of 770 Hz. Changes in Young's modulus at constant strain amplitude were monitored continuously through changes in the resonant frequency of the sample. These changes in the modulus can be related to the number of pinning points added to dislocation lines, which are in turn related to the number of free interstitials produced. Neutron energy dependence experiments were done from 2 to 24 MeV on the copper sample and at 14 MeV on a gold sample. By equating pinning rates from electron and neutron irradiations and using the free interstitial production rate obtained from electron irradiations, an estimate of the free interstitial production cross section for neutrons of 2 to 24 MeV was made

  16. The RADEX facility as a tool for studies of radiation damage under proton and spallation neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Koptelov, E.A.; Lebedev, S.G.; Matveev, V.A.; Sobolevsky, N.M. [Institute for Nuclear Research of Russian Academy of Sciences, Moscow (Russian Federation); Strebkov, Yu.S.; Subbotin, A.V. [Research and Development Institute of Power Engineering, Moscow (Russian Federation)

    2001-03-01

    We present results of numerical modeling for processes of primary protons and spallation neutrons interactions with structural materials at the RADiation EXperiment facility of the Neutron Complex. The installation has a vertical irradiation channel inside the beam stop for horizontally incident protons with energies up to 600 MeV of the Moscow Meson Factory of the INR (Institute for Nuclear Research) RAS (Russian Academy of Science). The calculations are based on a set of computer codes SHIELD and RADDAM, which were developed in the INR RAS and give data on point defect generation by irradiation, rate of accumulation of H and He atoms produced in nuclear reactions, energetic spectra of primary knocked-off atoms in collision displacements, temperature of samples under irradiation. Different positions of the channel, which are available by rotation of a target relatively the vertical axis for angles 0, 60, 120 and 180 degrees to the proton beam direction, are considered. Changes of irradiation damage parameters due to various inputs of primary protons and spallation neutrons at different target orientations are demonstrated. It is shown also that the spallation neutron facility RADEX may provide with perspective experimental possibilities for modeling of irradiation conditions for fusion reactors ITER and DEMO. (author)

  17. Fracture mechanics behaviour of neutron irradiated Alloy A-286

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.

    The effect of fast-neutron irradiation on the fatigue-crack propagation and fracture toughness behaviour of Alloy A-286 was characterized using fracture mechanics techniques. The fracture toughness was found to decrease continuously with increasing irradiation damage at both 24 deg. C and 427 deg. C. In the unirradiated and low fluence conditions, specimens displayed appreciable plasticity prior to fracture, and equivalent Ksub(Ic) values were determined from Jsub(Ic) fracture toughness results. At high irradiation exposure levels, specimens exhibited a brittle Ksub(Ic) fracture mode. The 427 deg. C fracture toughness fell from 129 MPa√m in the unirradiated condition to 35 MPa√m at an exposure of 16.2 dpa (total fluence of 5.2x10 22 n/cm 2 ). Room temperature fracture toughness values were consistently 40 to 60 percent higher than the 427 deg. C values. Electron fractography revealed that the reduction in fracture resistance was attributed to a fracture mechanism transition from ductile microvoid coalescence to channel fracture. Fatigue-crack propagation tests were conducted at 427 deg. C on specimens irradiated at 2.4 dpa and 16.2 dpa. Crack growth rates at the lower exposure level were comparable to those in unirradiated material, while those at the higher exposure were slightly higher than in unirradiated material. (author)

  18. Electron-microscopic investigation of a pressure vessel steel after neutron irradiation

    International Nuclear Information System (INIS)

    Klaar, H.J.

    1975-01-01

    As an introduction, changes in the mechanical properties of pressure vessel steels on neutron irradiation and the causes of radiation embrittlement are discussed. After this, the author describes his own experiments with steel of the composition 0.19% C; 3.88% Ni; 1.57% Cr; 0.51% Mo; 0.2% V. Samples of this material were irradiated in-pile at 300 0 C with various neutron doses. To study the influence of neutron dose, irradiation temperature, and heat treatment on the mechanical properties, tensile tests, notched bar impact bending tests, hardness tests and structural analyses were carried out. The findings are reported. (GSC) [de

  19. Characterization of hybrid self-powered neutron detector under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamichi, M. E-mail: masaru@oarai.jaeri.go.jp; Nagao, Y.; Yamamura, C.; Nakazawa, M.; Kawamura, H

    2000-11-01

    To evaluate the irradiation behaviour of a blanket mock-up on in-pile functional test, it is necessary to measure the neutron flux change in the in-pile mock-up by a neutron detector, such as the self-powered neutron detector (SPND). With its small-sized emitter, which has high sensitivity and fast response time, SPND is an indispensable tool in order to measure the local neutron flux change. In the case of an in-pile functional test, it is necessary that response time is less than 1s and ratio of SPND output current is more than 0.3 of output current of SPND with Rh emitter. Therefore, a hybrid SPND with high sensitivity and fast response time was developed. This hybrid SPND used a hybrid emitter, i.e. Co cladded Pt-13%R000.

  20. Neutron irradiation of RPCs for the CMS experiment

    CERN Document Server

    Abbrescia, M; Belli, G; Bruno, G; Colaleo, A; Guida, R; Iaselli, G; Loddo, F; Maggi, M; Marangelli, B; Natali, S; Nuzzo, S; Pugliese, G; Ranieri, A; Romano, F

    2003-01-01

    All the CMS muon stations will be equipped with Resistive Plate Chambers (RPCs). They will be exposed to high neutron background environment during the LHC running. In order to verify the safe operation of these detectors, an irradiation test has been carried out with two RPCs at high neutron flux (about 10**8 n cm**-**2 s**- **1), integrating values of dose and fluence equivalent to 10 LHC- years. Before and after the irradiation, the performance of the detectors was studied with cosmic muons, showing no relevant aging effects. Moreover, no indication of damage or chemical changes were observed on the electrode surfaces.

  1. Neutron irradiation effects of iron alloys and ceramics

    International Nuclear Information System (INIS)

    Kuramoto, Eiichi; Takenaka, Minoru; Hasegawa, Masayuki.

    1991-01-01

    Positron annihilation angular correlation measurements have been performed for the neutron irradiated various metals and ceramics in order to obtain the information of the microvoids and positronium formation in them. Positronium (Ps) formation was observed in Nb containing a small amount of oxygen and Fe-15%Cr-16%Ni-0.006%B 10 . In practical steels such as JPCA and JFMS no Ps formation was observed. High temperature deformation might induce microvoids into metals, but the positron annihilation angular correlation measurements could not confirm this. In non-metallic materials neutron irradiated no Ps formation has so far been observed. (author)

  2. Irradiation facilities at the advanced neutron source

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Neutron Source (ANS) is a facility, centered around a new 330MW(f) heavy-water cooled and reflected research reactor, proposed for construction at Oak Ridge. The main scientific justification for the new source is the United States' need for increased capabilities in neutron scattering and other neutron beam research, but the technical objectives of the project also cater for the need to replace the irradiation facilities at the aging High Flux Isotope Reactor and to provide other research capabilities to the scientific community. This document provides a description of the ANS facilities

  3. Phase stability of oxide dispersion-strengthened ferritic steels in neutron irradiation

    International Nuclear Information System (INIS)

    Yamashita, S.; Oka, K.; Ohnuki, S.; Akasaka, N.; Ukai, S.

    2002-01-01

    Oxide dispersion-strengthened ferritic steels were irradiated by neutrons up to 21 dpa and studied by microstructural observation and microchemical analysis. The original high dislocation density did not change after neutron irradiation, indicating that the dispersed oxide particles have high stability under neutron irradiation. However, there is potential for recoil resolution of the oxide particles due to ballistic ejection at high dose. From the microchemical analysis, it was implied that some of the complex oxides have a double-layer structure, such that TiO 2 occupied the core region and Y 2 O 3 the outer layer. Such a structure may be more stable than the simple mono-oxides. Under high-temperature irradiation, Laves phase was the predominant precipitate occurring at grain boundaries α phase and χ phase were not observed in this study

  4. Morphological changes in human melanoma cells following irradiation with thermal neutrons.

    Science.gov (United States)

    Barkla, D H; Allen, B J; Brown, J K; Mountford, M; Mishima, Y; Ichihashi, M

    1989-01-01

    Morphological changes in two human melanoma cell lines, MM96 and MM418, following irradiation with thermal neutrons, were studied using light and electron microscopy. The results show that the response of human malignant melanoma cells to neutron irradiation is both cell line dependent and dose dependent, and that in any given cell line, some cells are more resistant to irradiation than others, thus demonstrating heterogeneity in respect to radiosensitivity. Cells repopulating MM96 flasks after irradiation were morphologically similar to the cells of origin whereas in MM418 flasks cells differentiated into five morphologically distinct subgroups and showed increased melanization. The results also show that radiation causes distinctive morphological patterns of damage although ultrastructural changes unique to the high LET particles released from boron 10 neutron capture are yet to be identified.

  5. Morphological changes in human melanoma cells following irradiation with thermal neutrons

    International Nuclear Information System (INIS)

    Barkla, D.H.; Allen, B.J.; Brown, J.K.; Mountford, M.; Mishima, Y.; Ichihashi, M.

    1989-01-01

    Morphological changes in two human melanoma cell lines, MM96 and MM418, following irradiation with thermal neutrons, were studied using light and electron microscopy. The results show that the response of human malignant melanoma cells to neutron irradiation is both cell line dependent and dose dependent, and that in any given cell line, some cells are more resistant to irradiation than others, thus demonstrating heterogeneity in respect to radiosensitivity. Cells repopulating MM96 flasks after irradiation were morphologically similar to the cells of origin whereas in MM418 flasks cells differentiated into five morphologically distinct subgroups and showed increased melanization. The results also show that radiation causes distinctive morphological patterns of damage although ultrastructural changes unique to the high LET particles released from boron 10 neutron capture are yet to be identified

  6. Refractometry characteristics of α-quartz after neutron irradiation

    International Nuclear Information System (INIS)

    Abdkadyrova, I.Kh.

    1997-01-01

    Lattice structure distortions in irradiated crystalline quartz were studied by refractometry methods. The refractometry constants of α-quartz for the flux of fast neutrons 10 18 - 10 21 neutron/cm 2 were calculated. The critical kinetics of this constants at the phase transformation is observed.(author). 5 refs., 1 fig

  7. Performance of silicon pad detectors after mixed irradiations with neutrons and fast charged hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Kramberger, G. [Jozef Stefan Institute, Department of Physics, University of Ljubljana, Jamova 39, SI-1000 Ljubljana (Slovenia)], E-mail: Gregor.Kramberger@ijs.si; Cindro, V.; Dolenc, I.; Mandic, I.; Mikuz, M.; Zavrtanik, M. [Jozef Stefan Institute, Department of Physics, University of Ljubljana, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2009-10-11

    A large set of silicon pad detectors produced on MCz and FZ wafer of p- and n-type was irradiated in two steps, first by fast charged hadrons followed by reactor neutrons. In this way the irradiations resemble the real irradiation fields at LHC. After irradiations controlled annealing started in steps during which the evolution of full depletion voltage, leakage current and charge collection efficiency was monitored. The damage introduced by different irradiation particles was found to be additive. The most striking consequence of that is a decrease of the full depletion voltage for n-type MCz detectors after additional neutron irradiation. This confirms that effective donors introduced by charged hadron irradiation are compensated by acceptors from neutron irradiation.

  8. Performance of silicon pad detectors after mixed irradiations with neutrons and fast charged hadrons

    International Nuclear Information System (INIS)

    Kramberger, G.; Cindro, V.; Dolenc, I.; Mandic, I.; Mikuz, M.; Zavrtanik, M.

    2009-01-01

    A large set of silicon pad detectors produced on MCz and FZ wafer of p- and n-type was irradiated in two steps, first by fast charged hadrons followed by reactor neutrons. In this way the irradiations resemble the real irradiation fields at LHC. After irradiations controlled annealing started in steps during which the evolution of full depletion voltage, leakage current and charge collection efficiency was monitored. The damage introduced by different irradiation particles was found to be additive. The most striking consequence of that is a decrease of the full depletion voltage for n-type MCz detectors after additional neutron irradiation. This confirms that effective donors introduced by charged hadron irradiation are compensated by acceptors from neutron irradiation.

  9. Characteristics of neutron irradiation facility and dose estimation method for neutron capture therapy at Kyoto University research reactor institute

    International Nuclear Information System (INIS)

    Kobayashi, T.; Sakurai, Y.; Kanda, K.

    2001-01-01

    The neutron irradiation characteristics of the Heavy Water Neutron Irradiation Facility (HWNIF) at the Kyoto University Research Reactor Institute (KIJRRI) for boron neutron capture therapy (BNCT), is described. The present method of dose measurement and its evaluation at the KURRI, is explained. Especially, the special feature and noticeable matters were expounded for the BNCT with craniotomy, which has been applied at present only in Japan. (author)

  10. Optical properties of CsI single crystals irradiated with neutrons at low temperature

    International Nuclear Information System (INIS)

    Okada, M.; Atobe, K.; Itatani, N.; Ozawa, K.

    1998-01-01

    Optical properties of the irradiation-induced-defects in neutron-irradiated CsI single crystals have been investigated. The nominally pure CsI crystals are irradiated by reactor fast neutrons (E>0.1 MeV) with a fluence of 1.4 x 10 15 n/cm 2 at 20 K and by γ-rays from 60 Co source to a dose of 1.5 x 10 4 Gy at liquid nitrogen temperature (LNT). After the irradiations, isochronal annealings are performed to investigate the thermal behavior of the defects. The glow peaks of the thermoluminescence (TL) in each sample irradiated with neutrons at 20 K and with γ-rays at LNT are observed at about 100, 160 and 220 K. In the neutron-irradiated samples at 20 K, the emission band at 338 nm is observed at LNT. It is supposed that this emission band occurs by an excitation of γ-rays from 134 Cs, which is radioactivated by thermal neutrons among the reactor radiations. It is confirmed that the temperature dependence of the 338 nm band is similar with that of the emission band due to the self-trapped exciton which is introduced into the non-irradiated samples illuminated by higher energy photons. (orig.)

  11. Optical properties of CsI single crystals irradiated with neutrons at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Okada, M. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Nakagawa, M. [Faculty of Education, Kagawa Univ., Takamatsu, Kagawa (Japan); Atobe, K. [Faculty of Science, Naruto Univ. of Education, Naruto, Tokushima (Japan); Itatani, N.; Ozawa, K. [Horiba Ltd., Minamiku, Kyoto (Japan)

    1998-05-01

    Optical properties of the irradiation-induced-defects in neutron-irradiated CsI single crystals have been investigated. The nominally pure CsI crystals are irradiated by reactor fast neutrons (E>0.1 MeV) with a fluence of 1.4 x 10{sup 15} n/cm{sup 2} at 20 K and by {gamma}-rays from {sup 60}Co source to a dose of 1.5 x 10{sup 4} Gy at liquid nitrogen temperature (LNT). After the irradiations, isochronal annealings are performed to investigate the thermal behavior of the defects. The glow peaks of the thermoluminescence (TL) in each sample irradiated with neutrons at 20 K and with {gamma}-rays at LNT are observed at about 100, 160 and 220 K. In the neutron-irradiated samples at 20 K, the emission band at 338 nm is observed at LNT. It is supposed that this emission band occurs by an excitation of {gamma}-rays from {sup 134}Cs, which is radioactivated by thermal neutrons among the reactor radiations. It is confirmed that the temperature dependence of the 338 nm band is similar with that of the emission band due to the self-trapped exciton which is introduced into the non-irradiated samples illuminated by higher energy photons. (orig.) 13 refs.

  12. Repair of potentially lethal damage following irradiation with x rays or cyclotron neutrons: response of the EMT-6/UW tumor system treated under various growth conditions in vitro and in vivo

    International Nuclear Information System (INIS)

    Rasey, J.S.; Nelson, N.J.

    1981-01-01

    Postirradiation potentially lethal damage (PLD) repair was examined in the EMT-6/UW tumor system under a variety of in vitro and in vivo growth conditions. Following x irradiation, surviving fraction increased in fed and unfed plateau cultures if subculture and plating were delayed; in exponentially growing cultures if they were covered with depleted medium for the first 6 h postirradiation; and in tumors in vivo if excision for preparation of a cell suspension was delayed. Following irradiation with 21.5 meV (d + → Be) neutrons, PLD repair was measurable only in unfed plateau cultures when subculture was delayed and in exponentially growing cells exposed to depleted culture medium immediately after irradiation. In x-irradiated EMT-6/UW cells, the greatest repair capacity and the highest surviving fraction ratios were measured in unfed plateau cultures; the least repair was observed in exponentially growing cells exposed to depleted medium. Thus post-neutron repair was not limited to situations where the amount of repair of photon PLD is large. The demonstration of PLD repair in tumors irradiated in vivo with X rays and the absence of such repair after neutrons could have important implications in radiotherapy if this is a general phenomenon

  13. Effect of Neutron Irradiation on Beam-Column Interaction of Reinforced Concrete

    International Nuclear Information System (INIS)

    Kwon, Tae-Hyun; Park, Jiho; Kim, Jun Yeon; Kim, HyungTae; Park, Kyoungsoo; Kim, Sang-Ho

    2015-01-01

    Age-related effects on such RC structures have been extensively studied in detail. However, the effect of neutron irradiation requires further studies from its limited database. Most of RC structures have been regarded as sound as the neutron fluence below 1.0x10 19 n/cm 2 . The reduction of strength is not considered in a periodic inspection program at aging NPPs. However, RC structures, such as biological shields and supports for a reactor vessel, could be exposed to see the critical level of neutron fluence at years of operation. In this regard, beam-column interaction of a typical RC member is numerically investigated as a result of neutron irradiation. The effect of neutron irradiation on beam-column interaction is evaluated. ACI318 requires the strength reduction factor, ϕ=0.70, for the compression controlled area and the higher up to 0.9 as the tensile strain in steel reinforcement goes higher. This concept works well with this example. However, this does not take into account the energy dissipation capacity of the member but it only expresses the ultimate strength. Therefore, the current strength evaluation concept may be misleading when the material behavior of steel reinforcement becomes brittle due to the neutron irradiation. In such case, even for the transient and tension controlled area, the strength reduction factor needs to be modified to account for the potential ductility loss

  14. Study on changes of sperm count and testis tissue in black mouse after neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ki Jung; Seo, Won Sook [KAERI, Daejeon (Korea, Republic of); Son, Hwa Young [Chungnam National Univ., Daejeon (Korea, Republic of)

    2006-03-15

    For the purpose of the biological effect in black mouse by neutron irradiation, mice were irradiated with 16 or 32 Gy neutron (flux: 1.036739E+09) by lying flat pose at BNCT facility on HANARO Reactors. And 90 days later of irradiation, physical changes of testis and testis tissue were examined. There were no weight changes but a little bit volume changes and sperm counts in the tests. Atrophy of seminiferous tubules irradiated with 32 Gy neutron is increased in number and severity and those in stage VI showed depletion of spermatogonia and pachytene spermatocytes compared to the non-irradiated control group. Testis damage of black mouse was not recovered after long time by 32 Gy neutron irradiation.

  15. Study on changes of sperm count and testis tissue in black mouse after neutron irradiation

    International Nuclear Information System (INIS)

    Chun, Ki Jung; Seo, Won Sook; Son, Hwa Young

    2006-01-01

    For the purpose of the biological effect in black mouse by neutron irradiation, mice were irradiated with 16 or 32 Gy neutron (flux: 1.036739E+09) by lying flat pose at BNCT facility on HANARO Reactors. And 90 days later of irradiation, physical changes of testis and testis tissue were examined. There were no weight changes but a little bit volume changes and sperm counts in the tests. Atrophy of seminiferous tubules irradiated with 32 Gy neutron is increased in number and severity and those in stage VI showed depletion of spermatogonia and pachytene spermatocytes compared to the non-irradiated control group. Testis damage of black mouse was not recovered after long time by 32 Gy neutron irradiation

  16. Effects of DD and DT neutron irradiation on some Si devices for fusion diagnostics

    International Nuclear Information System (INIS)

    Tanimura, Y.; Iida, T.

    1998-01-01

    In order to examine the difference in the irradiation effects on Si devices between DT and DD neutrons, CCD image sensors, memory ICs and a Si detector were irradiated with neutrons from a deuteron accelerator. The transient effects (i.e. neutron-induced background noises) and permanent effects (i.e. neutron damage) on them were in situ measured during irradiation. Regarding the transient effects, brightening spot noises, soft-error upsets and induced-charge noises were measured for the CCDs, memory ICs and Si detector, respectively. As for the permanent effect, the number of damaged cells of the CCDs and the leakage current of the Si detector increased with neutron fluence. Also we developed a Monte-Carlo code with the TRIM code to evaluate the correlation of DT and DD neutron effects on Si devices. The calculated correlation factor of DT and DD neutron damage for Si devices agreed approximately with the correlation factor obtained from the irradiation experiments on the CCDs and Si detector. (orig.)

  17. Effects of DD and DT neutron irradiation on some Si devices for fusion diagnostics

    Science.gov (United States)

    Tanimura, Yoshihiko; Iida, Toshiyuki

    1998-10-01

    In order to examine the difference in the irradiation effects on Si devices between DT and DD neutrons, CCD image sensors, memory ICs and a Si detector were irradiated with neutrons from a deuteron accelerator. The transient effects (i.e. neutron-induced background noises) and permanent effects (i.e. neutron damage) on them were in situ measured during irradiation. Regarding the transient effects, brightening spot noises, soft-error upsets and induced-charge noises were measured for the CCDs, memory ICs and Si detector, respectively. As for the permanent effect, the number of damaged cells of the CCDs and the leakage current of the Si detector increased with neutron fluence. Also we developed a Monte-Carlo code with the TRIM code to evaluate the correlation of DT and DD neutron effects on Si devices. The calculated correlation factor of DT and DD neutron damage for Si devices agreed approximately with the correlation factor obtained from the irradiation experiments on the CCDs and Si detector.

  18. Object kinetic Monte Carlo model for neutron and ion irradiation in tungsten: Impact of transmutation and carbon impurities

    Science.gov (United States)

    Castin, N.; Bonny, G.; Bakaev, A.; Ortiz, C. J.; Sand, A. E.; Terentyev, D.

    2018-03-01

    We upgrade our object kinetic Monte Carlo (OKMC) model, aimed at describing the microstructural evolution in tungsten (W) under neutron and ion irradiation. Two main improvements are proposed based on recently published atomistic data: (a) interstitial carbon impurities, and their interaction with radiation-induced defects (point defect clusters and loops), are more accurately parameterized thanks to ab initio findings; (b) W transmutation to rhenium (Re) upon neutron irradiation, impacting the diffusivity of radiation defects, is included, also relying on recent atomistic data. These essential amendments highly improve the portability of our OKMC model, providing a description for the formation of SIA-type loops under different irradiation conditions. The model is applied to simulate neutron and ion irradiation in pure W samples, in a wide range of fluxes and temperatures. We demonstrate that it performs a realistic prediction of the population of TEM-visible voids and loops, as compared to experimental evidence. The impact of the transmutation of W to Re, and of carbon trapping, is assessed.

  19. Influence of neutron energy on formation of radioisotopes during the irradiation of targets in reactor

    Directory of Open Access Journals (Sweden)

    P. M. Vorona

    2011-09-01

    Full Text Available Method of calculation of nuclear transformations in irradiated targets is realized for selection of optimal conditions for accumulation of radioisotopes in reactor, taking into account contributions of different energy neutrons (thermal, resonance and fast. Wide potentialities of program complex MCNP-4C based on the method of statistical testing (Monte Carlo method were used. Positive in proposed method is that all calculations starting from spectra and fluxes of neutrons in reactor and completing by quantity of accumulating nuclei carry out within the framework of the same methodological approach. It was shown by the example of radioactive 98Mo production in Mo98Mo(n, γ99Mo reaction that for achievement of maximal yield of target radionuclide. it is necessary to irradiate start targets of Molybdenum in hard spectrum with essential contribution of resonance neutrons.

  20. Antiradiation Vaccine: Technology Development Of Prophylaxis, Prevention And Treatment Of Biological Consequences And Complications After Neutron Irradiation.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    Introduction: Neutrons irradiation produce a unique biological effectiveness compare to different types of radiation because their ability to create a denser trail of ionized atoms in biological living tissues[Straume 1982; Latif et al.2010; Katz 1978; Bogatyrev 1982]. The efficacy of an Anti-Radiation Vaccine for the prophylaxis, prevention and therapy of acute radiation pathology was studied in a neutron exposure facility. The biological effects of fast neutrons include damage of central nervous system and cardiovascular system with development of Acute Cerebrovascular and Cardiovascular forms of acute radiation pathology. After irradiation by high doses of fast neutron, formation of neurotoxins, hematotoxins,cytotoxins forming from cell's or tissue structures. High doses of Neutron Irradiation generate general and specific toxicity, inflammation reactions. Current Acute Medical Management and Methods of Radiation Protection are not effective against moderate and high doses of neutron irradiation. Our experiments demonstrate that Antiradiation Vaccine is the most effective radioprotectant against high doses of neutron-radiation. Radiation Toxins(biological substances with radio-mimetic properties) isolated from central lymph of gamma-irradiated animals could be working substance with specific antigenic properties for vaccination against neutron irradiation. Methods: Antiradiation Vaccine preparation standard - mixture of a toxoid form of Radiation Toxins - include Cerebrovascular RT Neurotoxin, Cardiovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins were isolated from the central lymph of gamma-irradiated animals with different forms of Acute Radiation Syndromes - Cerebrovascular, Cardiovascular, Gastrointestinal, Hematopoietic forms. Devices for Y-radiation were "Panorama","Puma". Neutron exposure was accomplished at the Department of Research Institute of Nuclear Physics, Dubna, Russia. The neutrons

  1. Large lattice relaxation deep levels in neutron-irradiated GaN

    International Nuclear Information System (INIS)

    Li, S.; Zhang, J.D.; Beling, C.D.; Wang, K.; Wang, R.X.; Gong, M.; Sarkar, C.K.

    2005-01-01

    Deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS) measurements have been carried out in neutron-irradiated n-type hydride-vapor-phase-epitaxy-grown GaN. A defect center characterized by a DLTS line, labeled as N1, is observed at E C -E T =0.17 eV. Another line, labeled as N2, at E C -E T =0.23 eV, seems to be induced at the same rate as N1 under irradiation and may be identified with E1. Other defects native to wurtzite GaN such as the C and E2 lines appear to enhance under neutron irradiation. The DLOS results show that the defects N1 and N2 have large Frank-Condon shifts of 0.64 and 0.67 eV, respectively, and hence large lattice relaxations. The as-grown and neutron-irradiated samples all exhibit the persistent photoconductivity effect commonly seen in GaN that may be attributed to DX centers. The concentration of the DX centers increases significantly with neutron dosage and is helpful in sustaining sample conductivity at low temperatures, thus making possible DLTS measurements on N1 an N2 in the radiation-induced deep-donor defect compensated material which otherwise are prevented by carrier freeze-out

  2. Microstructure and mechanical properties of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, E.; Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Terai, T.; Tanaka, S.

    1998-01-01

    Microstructure and mechanical properties of the neutron irradiated beryllium with total fast neutron fluences of 1.3 - 4.3 x 10{sup 21} n/cm{sup 2} (E>1 MeV) at 327 - 616degC were studied. Swelling increased by high irradiation temperature, high fluence, and by the small grain size and high impurity. Obvious decreasing of the fracture stress was observed in the bending test and in small grain specimens which had many helium bubbles on the grain boundary. Decreasing of the fracture stress for small grain specimens was presumably caused by crack propagation on the grain boundaries which weekend by helium bubbles. (author)

  3. Neutron irradiation of RPCs for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G. E-mail: gabriella.pugliese@ba.infn.it; Ranieri, A.; Romano, F.; Altieri, S.; Belli, G.; Bruno, G.; Guida, R.; Ratti, S.P.; Riccardi, C.; Torre, P.; Vitulo, P

    2003-08-01

    All the CMS muon stations will be equipped with Resistive Plate Chambers (RPCs). They will be exposed to high neutron background environment during the LHC running. In order to verify the safe operation of these detectors, an irradiation test has been carried out with two RPCs at high neutron flux (about 10{sup 8} n cm{sup -2} s{sup -1}), integrating values of dose and fluence equivalent to 10 LHC-years. Before and after the irradiation, the performance of the detectors was studied with cosmic muons, showing no relevant aging effects. Moreover, no indication of damage or chemical changes were observed on the electrode surfaces.

  4. Point defects and magnetic properties of neutron irradiated MgO single crystal

    Directory of Open Access Journals (Sweden)

    Mengxiong Cao

    2017-05-01

    Full Text Available (100-oriented MgO single crystals were irradiated to introduce point defects with different neutron doses ranging from 1.0×1016 to 1.0×1020 cm-2. The point defect configurations were studied with X-ray diffuse scattering and UV-Vis absorption spectra. The isointensity profiles of X-ray diffuse scattering caused by the cubic and double-force point defects in MgO were theoretically calculated based on the Huang scattering theory. The magnetic properties at different temperature were measured with superconducting quantum interference device (SQUID. The reciprocal space mappings (RSMs of irradiated MgO revealed notable diffuse scattering. The UV-Vis spectra indicated the presence of O Frenkel defects in irradiated MgO. Neutron-irradiated MgO was diamagnetic at room temperature and became ferromagnetic at low temperature due to O Frenkel defects induced by neutron-irradiation.

  5. Fiscal year 1976 DT fusion neutron irradiations and dosimetry at the LLL rotating target neutron source

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1977-01-01

    The DT fusion neutron irradiation of 319 samples during 19 irradiation periods (beam-on time of more than 1026 hours) is described. Experiments from 24 individuals representing 11 institutions are summarized. The numbers of the UCID dosimetry reports detailing each of the irradiations are given

  6. Swelling and tensile properties of neutron-irradiated vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1990-07-01

    Vanadium-base alloys are candidates for use as structural material in magnetic fusion reactors. In comparison to other candidate structural materials (e.g., Type 316 stainless and HT-9 ferritic steels), vanadium-base alloys such as V-15Cr-5Ti and V-20Ti have intrinsically lower long-term neutron activation, neutron irradiation after-heat, biological hazard potential, and neutron-induced helium and hydrogen transmutation rates. Moreover, vanadium-base alloys can withstand a higher surface-heat, flux than steels because of their lower thermal stress factor. In addition to having these favorable neutronic and physical properties, a candidate alloy for use as structural material in a fusion reactor must have dimensional stability, i.e., swelling resistance, and resistance to embrittlement during the reactor lifetime at a level of structural strength commensurate with the reactor operating temperature and structural loads. In this paper, we present experimental results on the swelling and tensile properties of several vanadium-base alloys after irradiation at 420, 520, and 600 degree C to neutron fluences ranging from 0.3 to 1.9 x 10 27 neutrons/m 2 (17 to 114 atom displacements per atom [dpa])

  7. Response of neutron-irradiated RPV steels to thermal annealing

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels

  8. Positron annihilation spectroscopy of vacancy aggregates in neutron-irradiated MgO crystals

    International Nuclear Information System (INIS)

    Pareja, R.; De La Cruz, R.M.; Gonzalez, R.; Chen, Y.; Department of Energy, Washington, DC

    1992-01-01

    Positron annihilation measurements in neutron-irradiated MgO crystals show that the positron lifetime is shorter than in as-grown crystals, suggesting that most of the defects produced by neutron irradiations are positively charged. The concentration of the neutral anion vacancy (possibly also the neutral anion divacancy) is estimated to be no more than ∼ 10 16 cm -3 for samples irradiated to a dose of 10 17 to 10 19 n cm -2 . Annealing experiments on the neutron-irradiated crystals show a significant increase in the positron lifetime after anneals at 900 K. The increase is attributed to positron trapping by anion-vacancy aggregates. A lifetime of (284±15)ps is tentatively assigned to positrons trapped in these aggregates. (Author)

  9. Surface damage in the small intestine of the mouse after X - or neutron irradiation

    International Nuclear Information System (INIS)

    Hamlet, R.; Carr, K.E.; Nias, A.H.; Watt, C.

    1981-01-01

    Damage after X-irradiation includes lateral villous collapse, progressing after 3 - 5 days to villi which sometimes show signs of vertical collapse. After neutron irradiation vertical villous collapse is established earlier, with less swelling of villous tips. It seems, therefore, that at radiobiologically equivalent doses, neutron and X-irradiation produce different levels of surface damage, with neutron irradiation being the more destructive. Early villous tip damage may perhaps be due to disruption of susceptible cells already at the extrusion zone, or to stromal damage

  10. Neutron-induced damage evolution under Beam Raster Scanner conditions for IFMIF

    International Nuclear Information System (INIS)

    Mota, Fernando; Ortiz, Christophe J.; Ibarra, Angel; Vila, Rafael

    2011-01-01

    The formation and evolution of defects in materials irradiated with a homogeneous neutron source and with the Beam Raster Scanner (BRS) solution was investigated. The intensity neutron source fluctuations inherent to the BRS system were determined using the neutron transport McDeLicious code. Defects generated during irradiation were calculated using the binary collision approximation MARLOWE code, using the primary knock-on atom (PKA) energy spectrum resulting from neutron interactions with the material. In order to predict the evolution of defects during irradiation, a Rate Theory model based on ab initio parameters was developed. Our model accounts for the migration of mobile defects, the formation of clusters and their recombination. As an example, we investigated defect evolution in Fe irradiated at room temperature in both beam configurations. Simulation results clearly indicate that the defect evolution expected in the BRS configuration is nearly the same as the one expected in a homogeneous irradiation system.

  11. A comparison of microstructures in copper irradiated with fission, fusion, and spallation neutrons

    International Nuclear Information System (INIS)

    Muroga, T.; Heinisch, H.L.; Sommer, W.F.; Ferguson, P.D.

    1992-01-01

    The objective of this work is to investigate the effects of the neutron energy spectrum in low dose irradiations on the microstructure and mechanical properties of metals. The microstructures of pure copper irradiated to low doses at 36-90 C with spallation neutrons, fusion neutrons and fission neutrons are compared. The defect cluster densities for the spallation and fusion neutrons are very similar when compared on the basis of displacements per atom (dpa). In both cases, the density increases in proportion to the square root of the dpa. The difference in defect density between fusion neutrons and fission neutrons corresponds with differences observed in data on yield stress changes

  12. Formation of austenite in high Cr ferritic/martensitic steels by high fluence neutron irradiation

    Science.gov (United States)

    Lu, Z.; Faulkner, R. G.; Morgan, T. S.

    2008-12-01

    High Cr ferritic/martensitic steels are leading candidates for structural components of future fusion reactors and new generation fission reactors due to their excellent swelling resistance and thermal properties. A commercial grade 12%CrMoVNb ferritic/martensitic stainless steel in the form of parent plate and off-normal weld materials was fast neutron irradiated up to 33 dpa (1.1 × 10 -6 dpa/s) at 400 °C and 28 dpa (1.7 × 10 -6 dpa/s) at 465 °C, respectively. TEM investigation shows that the fully martensitic weld metal transformed to a duplex austenite/ferrite structure due to high fluence neutron irradiation, the austenite was heavily voided (˜15 vol.%) and the ferrite was relatively void-free; whilst no austenite phases were detected in plate steel. Thermodynamic and phase equilibria software MTDATA has been employed for the first time to investigate neutron irradiation-induced phase transformations. The neutron irradiation effect is introduced by adding additional Gibbs free energy into the system. This additional energy is produced by high energy neutron irradiation and can be estimated from the increased dislocation loop density caused by irradiation. Modelling results show that neutron irradiation reduces the ferrite/austenite transformation temperature, especially for high Ni weld metal. The calculated results exhibit good agreement with experimental observation.

  13. Scanning tunneling spectroscopy on neutron irradiated MgB2 thin films

    International Nuclear Information System (INIS)

    Di Capua, Roberto; Salluzzo, Marco; Vaglio, Ruggero; Ferdeghini, Carlo; Ferrando, Valeria; Putti, Marina; Xi Xiaoxing; Aebersold, Hans U.

    2007-01-01

    Neutron irradiation was performed on MgB 2 thin films grown by hybrid physical chemical vapor deposition. Samples irradiated with different neutron fluences, having different critical temperatures, were studied by scanning tunneling spectroscopy in order to investigate the effect of the introduced disorder on the superconducting and spectroscopic properties. A monotonic increase of the π gap with increasing disorder was found

  14. Research on measurement of neutron flux in irradiation channels of research reactor

    International Nuclear Information System (INIS)

    Yin Zhitao; Lv Zheng; Wang Yulin; Zheng Wuqin

    2014-01-01

    Relative distribution of thermal neutron flux in the irradiation channel is measured by classical activation foil method. After that, on a representative point in the irradiation channel, neutron temperature and absolute neutron flux are also measured. Cadmium ratio correction method is used to check the experiment result in the end. Comparative analysis shows that the results from two different methods are agreed pretty well, which adds the credibility of experiment results. (authors)

  15. Atom Probe Tomography Characterization of the Solute Distributions in a Neutron-Irradiated and Annealed Pressure Vessel Steel Weld

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K.

    2001-01-30

    A combined atom probe tomography and atom probe field ion microscopy study has been performed on a submerged arc weld irradiated to high fluence in the Heavy-Section Steel irradiation (HSSI) fifth irradiation series (Weld 73W). The composition of this weld is Fe - 0.27 at. % Cu, 1.58% Mn, 0.57% Ni, 0.34% MO, 0.27% Cr, 0.58% Si, 0.003% V, 0.45% C, 0.009% P, and 0.009% S. The material was examined after five conditions: after a typical stress relief treatment of 40 h at 607 C, after neutron irradiation to a fluence of 2 x 10{sup 23} n m{sup {minus}2} (E > 1 MeV), and after irradiation and isothermal anneals of 0.5, 1, and 168 h at 454 C. This report describes the matrix composition and the size, composition, and number density of the ultrafine copper-enriched precipitates that formed under neutron irradiation and the change in these parameters with post-irradiation annealing treatments.

  16. Helium release from neutron-irradiated Li{sub 2}O single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yamaki, Daiju; Tanifuji, Takaaki; Noda, Kenji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Helium release behavior in post-irradiation heating tests was investigated for Li{sub 2}O single crystals which had been irradiated with thermal neutrons in JRR-4 and JRR-2, and fast neutrons in FFTF. It is clarified that the helium release curves from JRR-4 and JRR-2 specimens consists of only one broad peak. From the dependence of the peak temperatures on the neutron fluence and the crystal diameter, and the comparison with the results obtained for sintered pellets, it is considered that the helium generated in the specimen is released through the process of bulk diffusion with trapping by irradiation defects such as some defect clusters. For the helium release from FFTF specimens, two broad peaks were observed in the release curves. It is considered to suggest that two different diffusion paths exist for helium migration in the specimen, that is, bulk diffusion and diffusion through the micro-crack due to the heavy irradiation. In addition, helium bubble formation after irradiation due to the high temperature over 800K is suggested. (J.P.N.)

  17. Structural and optical properties improvements of PVP/gelatin blends induced by neutron irradiation

    Science.gov (United States)

    Basha, Mohammad Ahmad-Fouad; Hassan, Mohamed Ahmed

    2018-05-01

    Blends of polyvinylpyrrolidone and gelatin were prepared in three different concentrations to study the modifications in their structural and optical properties induced by neutron irradiations with different neutron fluence values from 108 up to 1011 neutron/cm2. X-ray spectroscopy revealed that the irradiation has induced a recrystallization phenomenon in the studied blends and the crystallinity index increased by increasing the neutron fluence due to the breaking of the crystallites. Fourier-transform infrared spectroscopy came to confirm the existence of interactions between interchain groups and a higher compatibility for the irradiated blends. The irradiation induced defects inside the material were responsible for the change in their optical and structural properties. The creation of free radicals or ions inside the conduction bands has led to the increase in the number of carriers on localized states; this has caused the increase in optical conductivity of the irradiated blends as a result of decreasing the energy gaps by increasing the neutron fluence. Results may widen the applications of the gelatin based blends to include optoelectronic devices, organic light emitting devices, solar selective and anti-reflectance bio-coatings, optical organic glass and lenses.

  18. Fast neutron irradiation effects on CR-39 nuclear track detector for dosimetric applications

    International Nuclear Information System (INIS)

    Kader, M.H.

    2005-01-01

    The effect of neutron irradiation on the dosimetric properties of CR-39 solid-state nuclear track detector have been investigated. CR-39 samples were irradiated with neutrons of energies follow a Maxwellian distribution centered about 2 MeV. These samples were irradiated with different doses in the range 0.1-1 Sv. The background and track density were measured as a function of etching time. In addition, the dependence of sensitivity of CR-39 detector on the neutrons dose has been investigated. The results show that the Sensitivity started to increase at 0.4 Sv neutrons dose, so this sample were chosen to be a subject for further study to investigate the effect of gamma dose on its properties. The sample irradiated with 0.4 Sv were exposed to different doses of gamma rays at levels between 10 and 80 kGy. The effect of gamma doses on the bulk etching rate VB, the track diameter and the sensitivity of the CR-39 samples was investigated. The results show that the dosimetric properties of CR-39 SSNTD are greatly affected by both neutron and gamma irradiation

  19. Neutron irradiation characteristic tests of oxygen sensors using zirconia solid electrolyte

    International Nuclear Information System (INIS)

    Hiura, Nobuo; Endou, Yasuichi; Yamaura, Takayuki; Niimi, Motoji; Hoshiya, Taiji; Saito, Junichi; Souzawa, Shizuo; Ooka, Norikazu; Kobiyama, Mamoru.

    1997-03-01

    In the Department of JMTR of Japan Atomic Energy Research Institute (JAERI), the in-situ measuring technique of oxygen potential has been being developed to study the chemical behavior of high burn-up fuel base-irradiated in the Light Water Reactor. In this test for development of the technique, oxygen sensors using zirconia solid electrolyte stabilized by MgO, CaO and Y 2 O 3 , named MSZ, CSZ and YSZ, respectively, were irradiated by neutrons in the Japan Materials Testing Reactor (JMTR) of JAERI and the characteristics of electromotive force of these sensors under and after irradiation were discussed. From the experimental results, the electromotive force of YSZ sample under irradiation decreased with an increase in irradiation fluence within a range of neutron fluence (E>1 MeV) up to 1 x 10 23 m -2 . The electromotive force of MSZ sensor irradiated with neutron fluences (E>1 MeV) up to 9 x 10 21 m -2 was almost equal to the theoretical value of the electromotive force. It was shown that after irradiation, a decrease in the electromotive force of CSZ sensor was smaller than those of MSZ and YSZ sensors, although the electromotive forces of MSZ, CSZ and YSZ sensors were smaller than the theoretical value. (author)

  20. Stability of the Hall sensors performance under neutron irradiation

    International Nuclear Information System (INIS)

    Duran, I.; Hron, M.; Stockel, J.; Viererbl, L.; Vsolak, R.; Cerva, V.; Bolshakova, I.; Holyaka, R.; Vayakis, G.

    2004-01-01

    A principally new diagnostic method must be developed for magnetic measurements in steady state regime of operation of fusion reactor. One of the options is the use of transducers based on Hall effect. The use of Hall sensors in ITER is presently limited by their questionable radiation and thermal stability. Issues of reliable operation in ITER like radiation and thermal environment are addressed in the paper. The results of irradiation tests of candidate Hall sensors in LVR-15 and IBR-2 experimental fission reactors are presented. Stable operation (deterioration of sensitivity below one percent) of the specially prepared sensors was demonstrated during irradiation by the total fluence of 3.10 16 n/cm 2 in IBR-2 reactor. Increasing the total neutron fluence up to 3.10 17 n/cm 2 resulted in deterioration of the best sensor's output still below 10% as demonstrated during irradiation in LVR-15 fission reactor. This level of neutron is already higher than the expected ITER life time neutron fluence for a sensor location just outside the ITER vessel. (authors)

  1. Determination of neutron flux distribution in an Am-Be irradiator using the MCNP.

    Science.gov (United States)

    Shtejer-Diaz, K; Zamboni, C B; Zahn, G S; Zevallos-Chávez, J Y

    2003-10-01

    A neutron irradiator has been assembled at IPEN facilities to perform qualitative-quantitative analysis of many materials using thermal and fast neutrons outside the nuclear reactor premises. To establish the prototype specifications, the neutron flux distribution and the absorbed dose rates were calculated using the MCNP computer code. These theoretical predictions then allow one to discuss the optimum irradiator design and its performance.

  2. Uranium doping and neutron irradiation of Bi-2223 superconduction tapes for improved critical current density

    International Nuclear Information System (INIS)

    Moss, S.D.; Wang, W.G.; Dou, S.X.; Weinstein, R.

    1998-01-01

    It is demonstrated that a combination of neutron irradiation with uranium doping introduce fission tracks through a Bi-2223 tape which act as effective pinning centres, leading to a substantial increase in critical current. Preliminary data suggests that the combination of uranium doping and neutron irradiation produces improved flux pinning in Bi-2223 tapes over neutron irradiation alone. Before irradiation, SEM, DTA and XRD analyses were performed on the tapes. Both before and after irradiation the trapped maximum magnetic flux was measured at 77K. Before neutron irradiation, uranium doping has no effect on critical current. Preliminary SEM data suggested that the uranium is homogeneously distributed throughout the oxide core of the tape. The presence of 2212 and other secondary phases in the doped tapes suggest further refinement of the sintering procedure is necessary. (authors)

  3. Investigation of hydrogen isotopes interaction processes with lithium under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zaurbekova, Zhanna, E-mail: zaurbekova@nnc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Skakov, Mazhyn; Ponkratov, Yuriy; Kulsartov, Timur; Gordienko, Yuriy; Tazhibayeva, Irina; Baklanov, Viktor; Barsukov, Nikolay [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Chikhray, Yevgen [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan)

    2016-11-01

    Highlights: • The experiments on study of helium and tritium generation and release processes under neutron irradiation from lithium saturated with deuterium are described in paper. ​ • The values of relative tritium and helium yield from lithium sample at different levels of neutron irradiation is calculated. • It was concluded that the main affecting process on tritium release from lithium is its interaction with lithium atoms with formation of lithium tritide. - Abstract: The paper describes the experiments on study of helium and tritium generation and release processes from lithium saturated with deuterium under neutron irradiation (in temperature range from 473 to 773 K). The diagrams of two reactor experiments show the time dependences of helium, DT, T{sub 2}, and tritium water partial pressures changes in experimental chamber with investigated lithium sample. According to experimental results, the values of relative tritium and helium yield from lithium sample at different levels of neutron irradiation were calculated. The time dependences of relative tritium and helium yield from lithium sample were plotted. It was concluded that the main affecting process on tritium release from lithium is its interaction with lithium atoms with formation of lithium tritide.

  4. Cavity nucleation and growth during helium implantation and neutron irradiation of Fe and steel

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, Bachu Narain

    In order to investigate the role of He in cavity nucleation in neutron irradiated iron and steel, pure iron and Eurofer-97 steel have been He implanted and neutron irradiated in a systematic way at different temperatures, to different He and neutron doses and with different He implantation rates....

  5. Production of high specific activity 27Mg by fast neutron irradiation and recoil-aided leaching

    International Nuclear Information System (INIS)

    Wierczinski, B.; Goeij, J.J.M. de; Volkers, K.J.

    2000-01-01

    High specific activity 27 Mg was produced via recoil-aided leaching from alumina in aqueous medium during irradiation with fast neutrons from a nuclear reactor. After irradiation the aqueous medium was passed through an IC-chelate column, the 24 Na formed during irradiation was removed by elution with 0.25 ml . l -1 sodium acetate and subsequently the 27 Mg was eluted with 2 mol . l -1 hydrochloric acid. Irradiation of alumina with a particle size of 3 μm and a specific surface area of 100 m 2 . g -1 in Milli-Q Plus Water yielded 90% of the total 27 Mg activity produced. Under standard conditions activities of about 8 . 10 5 Bq and specific activities of ca. 10 13 Bq . mol -1 were obtained at the end of irradiation. The standard working conditions involved irradiation of 200 mg alumina dispersed in 0.5 ml liquid in a fast neutron flux of 3 . 10 15 m -2 . s -1 for 15 min, a waiting time of 10 min, and a processing time of 15 minutes. Various alumina samples with different particle sizes and specific surfaces were tested, and the 27 Mg yields were fitted to a mathematical function. Since the high leaching yields cannot only be explained by recoil only, other phenomena such as diffusion and leaching aided by the high hydration energy of the Mg 2+ ion are probably involved. (orig.)

  6. Neutron irradiation behavior of ITER candidate beryllium grades

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B.; Gorokhov, V.A.; Nikolaev, G.N. [A.A.Bochvar All-Russia Scientific Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Melder, R.R.; Ostrovsky, Z.E.

    1998-01-01

    Beryllium is one of the main candidate materials both for the neutron multiplier in a solid breeding blanket and for the plasma facing components. That is why its behaviour under the typical for fusion reactor loading, in particular, under the neutron irradiation is of a great importance. This paper presents mechanical properties, swelling and microstructure of six beryllium grades (DshG-200, TR-30, TshG-56, TRR, TE-30, TIP-30) fabricated by VNIINM, Russia and also one - (S-65) fabricated by Brush Wellman, USA. The average grain size of the beryllium grades varied from 8 to 25 {mu}m, beryllium oxide content was 0.8-3.2 wt. %, initial tensile strength was 250-680 MPa. All the samples were irradiated in active zone of SM-3 reactor up to the fast neutron fluence (5.5-6.2) {center_dot} 10{sup 21} cm{sup -2} (2.7-3.0 dpa, helium content up to 1150 appm), E > 0.1 MeV at two temperature ranges: T{sub 1} = 130-180degC and T{sub 2} = 650-700degC. After irradiation at 130-180degC no changes in samples dimensions were revealed. After irradiation at 650-700degC swelling of the materials was found to be in the range 0.1-2.1 %. Beryllium grades TR-30 and TRR, having the smallest grain size and highest beryllium oxide content, demonstrated minimal swelling, which was no more than 0.1 % at 650-700degC and fluence 5.5 {center_dot} 10{sup 21} cm{sup -2}. Tensile and compression test results and microstructure parameters measured before and after irradiation are also presented. (author)

  7. Investigations on neutron irradiated 3D carbon fibre reinforced carbon composite material

    Science.gov (United States)

    Venugopalan, Ramani; Alur, V. D.; Patra, A. K.; Acharya, R.; Srivastava, D.

    2018-04-01

    As against conventional graphite materials carbon-carbon (C/C) composite materials are now being contemplated as the promising candidate materials for the high temperature and fusion reactor owing to their high thermal conductivity and high thermal resistance, better mechanical/thermal properties and irradiation stability. The current need is for focused research on novel carbon materials for future new generation nuclear reactors. The advantage of carbon-carbon composite is that the microstructure and the properties can be tailor made. The present study encompasses the irradiation of 3D carbon composite prepared by reinforcement using PAN carbon fibers for nuclear application. The carbon fiber reinforced composite was subjected to neutron irradiation in the research reactor DHRUVA. The irradiated samples were characterized by Differential Scanning Calorimetry (DSC), small angle neutron scattering (SANS), XRD and Raman spectroscopy. The DSC scans were taken in argon atmosphere under a linear heating program. The scanning was carried out at temperature range from 30 °C to 700 °C at different heating rates in argon atmosphere along with reference as unirradiated carbon composite. The Wigner energy spectrum of irradiated composite showed two peaks corresponding to 200 °C and 600 °C. The stored energy data for the samples were in the range 110-170 J/g for temperature ranging from 30 °C to 700 °C. The Wigner energy spectrum of irradiated carbon composite did not indicate spontaneous temperature rise during thermal annealing. Small angle neutron scattering (SANS) experiments have been carried out to investigate neutron irradiation induced changes in porosity of the composite samples. SANS data were recorded in the scattering wave vector range of 0.17 nm-1 to 3.5 nm-1. Comparison of SANS profiles of irradiated and unirradiated samples indicates significant change in pore morphology. Pore size distributions of the samples follow power law size distribution with

  8. Inhomogeneous strain induced by fast neutron irradiation in NaKSO4 crystals

    International Nuclear Information System (INIS)

    Kandil, S.H.; Kassem, M.E.; El-Khatib, A.; El-Gamal, M.A.; El-Wahidy, E.F.

    1987-01-01

    The paper reports the effect of fast neutron irradiation on the thermal properties of NaKSO 4 crystals in the temperature range 400-475 K. Results are presented for the thermal expansion, tensile strain and specific heat of NaKSO 4 , as a function of neutron irradiation dose. All these results revealed an inhomogeneous strain induced by the radiation. It is suggested that this induced inhomogeneous strain could be used to detect neutron exposure doses. (UK)

  9. The effect of low-dose neutron irradiation on extracellular matrix

    International Nuclear Information System (INIS)

    Chen Tiehe; Lu Yongjie; Chai Mingsheng; Peng Wulin; Yang Yifang; Pan Yan; Chen Jinguo

    2003-01-01

    Projective: To study the effect of neutron irradiation on extracellular matrix. Methods: 120 male wistar rats were divided into four groups at random, and then exposed to neutron of 252 Cf-source at the doses of 0, 0.29, 0.62 and 1.20 Gy, respectively. After the exposure of 3 days, 1 month and 2 months, the rats were sacrificed and lung tissue specimens stored at -30 degree C. Hyaluronan, laminin, type III procollagen and type IV collagen in the lung tissue were detected by the method of radioimmunoassay. Results: The differences of the levels of hyaluronan in lung tissue among the groups were unsignificant. The levels of laminin in 0.29, 0.62 and 1.20 Gy groups after the 3-day exposure were remarkably different to those of the control group, and unable to recover completely even 2 months after the exposure. The levels of type IV collagen in higher three irradiated groups were all higher, but not significantly. The levels of type III procollagen in the early stage after exposure were higher, and later they lowered. Conclusion: The levels of some components of extracellular matrix in the lung tissue of rat can be changed by low-dose of neutron irradiation, but their variational modes and degrees depend on the dose of neutron irradiation and the length of period after exposure

  10. Microstructural evolution in neutron irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    English, C.A.; Phythian, W.J.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. The microstructural evolution in neutron irradiated reactor pressure vessel steels is described. The damage mechanisms are elaborated and techniques for examining the microstructure are suggested. The importance of the initial damage event is analysed, and the microstructural evolution in RPV steels is examined

  11. Comparison of gamma, neutron and proton irradiations of multimode fibers

    International Nuclear Information System (INIS)

    Gingerich, M.E.; Dorsey, K.L.; Askins, C.G.; Friebele, E.J.

    1987-01-01

    The effects of pure gamma, pure proton, and mixed neutron-gamma irradiation fields on a set of both pure and doped silica core multimode fibers have been investigated. Only slight differences are found in the radiation response of pure and doped silica core fibers exposed to gamma or mixed neutron-gamma fields, indicating that Co-60 sources can be used to simulate the effects of the mixed field (except in the case of a pure neutron environment). Although it is noted that neither mix field nor gamma sources adequately simulate the effects of proton irradiation of doped silica core fibers, a good correspondence is found in the case of the pure silica core waveguide. 13 references

  12. Simulation of a high energy neutron irradiation facility at beamline 11 of the China Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Tairan, Liang [School of Physics and Electronic Information Inner Mongolia University for the Nationalities, Tongliao 028043 (China); Zhiduo, Li [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Wen, Yin, E-mail: wenyin@aphy.iphy.ac.cn [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Institute of Physics, CAS, P.O. Box 603, Beijing 100190 (China); Fei, Shen [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Quanzhi, Yu [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Institute of Physics, CAS, P.O. Box 603, Beijing 100190 (China); Tianjiao, Liang [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China)

    2017-07-11

    The China Spallation Neutron Source (CSNS) will accommodate 20 neutron beamlines at its first target station. These beamlines serve different purposes, and beamline 11 is designed to analyze the degraded models and damage mechanisms, such as Single Event Effects in electronic components and devices for aerospace electronic systems. This paper gives a preliminary discussion on the scheme of a high energy neutron irradiation experiment at the beamline 11 shutter based on the Monte Carlo simulation method. The neutron source term is generated by calculating the neutrons scattering into beamline 11 with a model that includes the target-moderator-reflector area. Then, the neutron spectrum at the sample position is obtained. The intensity of neutrons with energy of hundreds of MeV is approximately 1E8 neutron/cm{sup 2}/s, which is useful for experiments. The displacement production rate and gas productions are calculated for common materials such as tungsten, tantalum and SS316. The results indicate that the experiment can provide irradiation dose rate ranges from 1E-5 to 1E-4 dpa per operating year. The residual radioactivity is also calculated for regular maintenance work. These results give the basic reference for the experimental design.

  13. Spallation and 14-MeV neutron irradiation of stabilized NbTi superconductors

    International Nuclear Information System (INIS)

    Hahn, P.; Brown, B.S.; Weber, H.W.; Guinan, M.W.

    1983-08-01

    The results on 5 K irradiation available so far may be summarized as follows. (1) Increases of j/sub c/ following neutron irradiation occur only in conductors which are far from the optimal metallurgical treatments. (2) The changes of j/sub c/ following neutron irradiation and a thermal cycle to room temperature are small and in most cases comparable to the results obtained after 77 K irradiation. (3) The data available so far indicate that the degradation of j/sub c/ at 8 T is larger by about 5 to 10% than the corresponding changes at 5 T at a neutron fluence of 1.3 x 10 22 m -2 (E > 0.1 MeV). (4) The increase of Cu-resistivity is significant even after a thermal cycle to room temperature and requires design changes for a stable magnet operation

  14. Theoretical description of the influence of neutron irradiation on viscoplastic properties of mild steel

    International Nuclear Information System (INIS)

    Pecherski, R.

    1978-01-01

    The physical bases of plastic deformation of mild steel are described. The influence of neutron irradiation on the change of mechanisms of plastic deformation is discussed in detail. Constitutive equations of viscoplasticity for irradiated mild steel are given. The problem of thickwalled viscoplastic spherical tank irradiated by neutrons is studied. (Z.R.)

  15. Tensile mechanical properties of a stainless steel irradiated up to 19 dpa in the Swiss spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru, E-mail: saito.shigeru@jaea.go.jp [JAEA, J-PARC Center, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Kikuchi, Kenji [Ibaraki Univ., iFRC, Tokai-mura, Ibaraki-ken 319-1106 (Japan); Hamaguchi, Dai [JAEA, J-PARC Center, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Usami, Kouji; Endo, Shinya; Ono, Katsuto; Matsui, Hiroki [JAEA, Dept. of Hot Laboratories, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Kawai, Masayoshi [KEK, Tsukuba-shi, Ibaraki-ken 305-0801 (Japan); Dai, Yong [PSI, Spallation Source Division, Villigen PSI (Switzerland)

    2012-12-15

    To evaluate the lifetime of the beam window of an accelerator-driven transmutation system (ADS), post irradiation examination (PIE) of the STIP (SINQ target irradiation program, SINQ; Swiss spallation neutron source) specimens was carried out. The specimens tested in this study were made from the austenitic steel Japan primary candidate alloy (JPCA). The specimens were irradiated at SINQ Target 4 (STIP-II) with high-energy protons and spallation neutrons. The irradiation conditions were as follows: the proton energy was 580 MeV, irradiation temperatures ranged from 100 to 430 Degree-Sign C, and displacement damage levels ranged from 7.1 to 19.5 dpa. Tensile tests were performed in air at room temperature (RT), 250 Degree-Sign C and 350 Degree-Sign C. Fracture surface observation after the tests was done by Scanning electron microscope (SEM). Results of the tensile tests performed at R.T. showed the extra hardening of JPCA at higher dose compared to the fission neutron irradiated data. At the higher temperatures, 250 Degree-Sign C and 350 Degree-Sign C, the extra hardening was not observed. Degradation of ductility bottomed around 10 dpa, and specimens kept their ductility until 19.5 dpa. All specimens fractured in ductile manner.

  16. Neutron-Irradiated Samples as Test Materials for MPEX

    International Nuclear Information System (INIS)

    Ellis, Ronald James; Rapp, Juergen

    2015-01-01

    Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of the samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility

  17. Neutron metrology in the HFR. Steel irradiation R139-805 (SINAS)

    International Nuclear Information System (INIS)

    Baard, J.H.

    1996-10-01

    The experiment R139-80 is part of a material program to test austenitic stainless steel of different types and has been irradiated in the HFR Petten. This report presents the final metrology results obtained from activation monitors in the specimen holder, coded as R139-805. Data about the helium production as well as the number of displacements per atom are included. The irradiation circumstances for this experiment, carried out in a TRIO type capsule in HFR position F2, represent the conditions at the first wall of NET (Next European Torus). The aim of this irradiation for specimen holder R139-805 was to reach a damage level of 2.4 dpa at a temperature of 325 C. However, the specimens have been irradiated up to a damage level of 1.7-2.0 dpa. The main results of the thermal and fast neutron fluence measurements are presented in tables 2 and 3 as well as in the figure 2. (orig.)

  18. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra

    International Nuclear Information System (INIS)

    Duran, I.; Bolshakova, I.; Holyaka, R.; Viererbl, L.; Lahodova, Z.; Sentkerestiova, J.; Bem, P.

    2010-01-01

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10 16 cm -2 was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.

  19. Installation and measurement capacity of 3 x 592 GBq 241Am-Be neutron irradiation cell

    International Nuclear Information System (INIS)

    Bulut, Serdar; Celenk, I.

    2013-01-01

    In this study, the installation and measurement capacity of the neutron irradiation system are investigated. First of all an irradiation geometry enabling optimum irradiation was designed for three 241 Am-Be sources each of it having 592 GBq activity. Neutron irradiation system was installed after design and optimization of the system including the design of appropriate moderator and shielding were completed. Radiation safety standards of the Neutron Research Laboratory fulfilling the requirements of national regulation were achieved with unique configuration of the shielding materials. In this study the results of qualitative and quantitative detection limits obtained for Na, Al, Cl, K, Ti, V, Mn, Fe, Co, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Mo, Ru, Ag, Cd, In, Sb, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Yb, Lu, Hf, W, Pt, Au, Th and U elements by using the neutron irradiation cell comprising 3 x 592 GBq 241 Am-Be isotopic neutron source are presented and discussed. (orig.)

  20. Evaluation of neutron irradiation embrittlement in the Korean reactor pressure vessel steels (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J. H.; Lee, B. S.; Chi, S. H.; Kim, J. H.; Oh, Y. J.; Yoon, J. H.; Kwon, S. C.; Park, D. G.; Kang, Y. H.; Choo, K. N.; Oh, J. M.; Park, S. J.; Kim, B. K.; Shin, Y. T.; Cho, M. S.; Sohn, J. M.; Kim, D. S.; Choo, Y. S.; Ahn, S. B.; Oh, W. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-05-01

    Reactor pressure vessel materials, which were produced by a domestic company, Doosan Heavy Industries and construction Co., Ltd., have been evaluated using the neutron irradiation facility HANARO. For this evaluation, instrumented capsules were used for neutron irradiation of various kinds of specimens made of different heats of steels, which are VCD(Y4), VCD+Al(U4), Si+Al(Y5), U4 weld metal, and U4 HAZ, respectively. The fast neutron fluence levels ranged 1 to 5 (x10{sup 19} n/cm{sup 2}, E>1MeV) depending on the specimens and the irradiation temperature was controlled within 290{+-}10 deg C. The test results showed that, in the ranking of the material properties of the base metals, both before and after neutron irradiation, Y5 is the best, U4 the next and Y4 the last. Y4 showed a substantial change by neutron irradiation as well as the properties was worse than others in the unirradiated state. However, Y5, which showed the best properties in unirradiated state, was also the best in the resistance for irradiation embrittlement and one can hardly detect the property change after irradiation. The weldment showed a reasonably good resistance to irradiation embrittlement while the unirradiated properties were worse than base metals. The RPV steels are all expected to meet the screening criteria of the USNRC codes and regulations during the end of plant life. 39 refs., 42 figs., 27 tabs. (Author)

  1. Neutron activation analysis at the Californium User Facility for Neutron Science

    International Nuclear Information System (INIS)

    Martin, R.C.; Smith, E.H.; Glasgow, D.C.; Jerde, E.A.; Marsh, D.L.; Zhao, L.

    1997-12-01

    The Californium User Facility (CUF) for Neutron Science has been established to provide 252 Cf-based neutron irradiation services and research capabilities including neutron activation analysis (NAA). A major advantage of the CUF is its accessibility and controlled experimental conditions compared with those of a reactor environment The CUF maintains the world's largest inventory of compact 252 Cf neutron sources. Neutron source intensities of ≤ 10 11 neutrons/s are available for irradiations within a contamination-free hot cell, capable of providing thermal and fast neutron fluxes exceeding 10 8 cm -2 s -1 at the sample. Total flux of ≥10 9 cm -2 s -1 is feasible for large-volume irradiation rabbits within the 252 Cf storage pool. Neutron and gamma transport calculations have been performed using the Monte Carlo transport code MCNP to estimate irradiation fluxes available for sample activation within the hot cell and storage pool and to design and optimize a prompt gamma NAA (PGNAA) configuration for large sample volumes. Confirmatory NAA irradiations have been performed within the pool. Gamma spectroscopy capabilities including PGNAA are being established within the CUF for sample analysis

  2. Thermal neutron converter for irradiations with fission neutrons

    International Nuclear Information System (INIS)

    Wagner, F.M.; Kampfer, S.; Kastenmuller, A.; Waschkowski, W.; Bucherl, Th.; Kampfer, S.

    2007-01-01

    The new research reactor FRM II at Garching started operation in March 2004. The compact core is cooled by light water, and moderated by heavy water. Two fuel plates mounted in the heavy water tank convert thermal to fast neutrons. The fast neutron flux in the connected beam tube is up to 7 centre dot 10 8 s -1 cm -2 (depending on filters and collimation); the mean neutron energy is about 1.6 MeV. There are two irradiation rooms along the beam. The first is mainly used for medical therapy (MEDAPP facility), the second for materials characterization (NECTAR facility). At the former therapy facility RENT at the old research reactor FRM, the same beam quality was available until July 2000. Therefore, only a small program is run for the determination of the biological effectiveness of the new beam. The neutron and gamma dose rates in the medical beam are 0.54 and 0.20 Gy/min, respectively. The therapy facility MEDAPP is still under examination according to European regulations for medical devices. Full medical operation will start in 2007. The radiography and tomography facility NECTAR is in operation and aims at non-destructive inspection of objects up to 400 kg mass and 80 centre dot 80 centre dot 80 cm 3 in size. As for fission neutrons the macroscopic cross section of hydrogen is much higher than for other materials (e. g. Fe and Pb), one special application is the detection of hydrogen-containing materials (e. g. oil) in dense materials

  3. Phase transformations in neutron-irradiated Zircaloys

    International Nuclear Information System (INIS)

    Chung, H.M.

    1986-04-01

    Microstructural evolution in Zircaloy-2 and -4 spent-fuel cladding specimens after ∼3 years of irradiation in commercial power reactors has been investigated by TEM and HVEM. Two kinds of precipitates induced by the fast-neutron irradiation in the reactors have been identified, i.e., Zr 3 O and cubic-ZrO 2 particles approximately 2 to 10 nm in size. By means of a weak-beam dark-field ''2-1/2D-microscopy'' technique, the bulk nature of the precipitates and the surficial nature of artifact oxide and hydride phases could be discerned. The Zr(Fe/sub x/,Cr/sub 1-x/) 2 and Zr 2 (Fe/sub x/,Ni/sub 1-x/) intermetallic precipitates normally present in the as-fabricated material virtually dissolved in the spent-fuel cladding specimens after a fast-neutron fluence of ∼4 x 10 21 ncm -2 in the power reactors. The observed radiation-induced phase transformations are compared with predictions based on the currently available understanding of the alloy characteristics. 29 refs

  4. Irradiation facilities at the spallation neutron source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.; Ledermann, J.; Aebersold, H.; Kuehne, G.; Kohlik, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Four independent experiments for sample irradiation are under construction and in preparation for operational tests at the spallation source SINQ. Three of them are located inside a thermal beam port with end positions inside or near the moderator tank. The other experiment will be established at the end position of a super mirror lined neutron guide for applications with cold neutrons. (author) 3 figs., 1 tab., 6 refs.

  5. Results of neutron measurements in the spectral position of the Juelich FKS steel irradiation capsules

    International Nuclear Information System (INIS)

    Schneider, W.

    1986-10-01

    This is a report on the planning and results of neutron monitoring in the capsules of the Juelich steel irradiation for the research project on component safety (FKS). The table of results and their discussion is provided specifically for the spectral positions (for characterising the neutron spectrum) in each of the types of irradiation capsules used. The results are given for the reaction rates of the neutron measurement reactions used (activation or fission reactions), for the neutron flux densities and fluxes derived from them related to the actual or at least plausible neutron spectra and finally for the radiation damage (or exposure) of the irradiated material calculated from them, expressed as the atomic displacement figure (dpa) and its percentage in sections of the neutron spectrum. (orig.) [de

  6. Scanning tunneling spectroscopy on neutron irradiated MgB{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Di Capua, Roberto [University of Napoli and CNR-INFM/Coherentia, Via Cinthia, Naples I-80126 (Italy)], E-mail: rdicapua@na.infn.it; Salluzzo, Marco; Vaglio, Ruggero [University of Napoli and CNR-INFM/Coherentia, Via Cinthia, Naples I-80126 (Italy); Ferdeghini, Carlo [CNR-INFM/LAMIA, Via Dodecaneso 33, Genova I-16146 (Italy); Ferrando, Valeria [CNR-INFM/LAMIA, Via Dodecaneso 33, Genova I-16146 (Italy); Pennsylvania State University, University Park, PA 16802 (United States); Putti, Marina [CNR-INFM/LAMIA, Via Dodecaneso 33, Genova I-16146 (Italy); Xi Xiaoxing [Pennsylvania State University, University Park, PA 16802 (United States); Aebersold, Hans U. [Paul Scherrer Institut, Villigen CH-5232 (Switzerland)

    2007-09-01

    Neutron irradiation was performed on MgB{sub 2} thin films grown by hybrid physical chemical vapor deposition. Samples irradiated with different neutron fluences, having different critical temperatures, were studied by scanning tunneling spectroscopy in order to investigate the effect of the introduced disorder on the superconducting and spectroscopic properties. A monotonic increase of the {pi} gap with increasing disorder was found.

  7. Inhomogeneous strain induced by fast neutron irradiation in NaKSO4 crystals

    International Nuclear Information System (INIS)

    Kandil, S.H.; El Gamal, M.A.; El Khatib, A.; El Wahidy, E.F.

    1987-06-01

    The effect of fast neutron irradiation on the thermal properties of NaKSO 4 crystals was studied around the phase transition temperature T c =453 K. The thermal expansion coefficient as well as the phase transition temperature were found to be dependent upon the irradiation dose. The specific heat, C p , showed multiple peaks in the phase transition temperature region. An explanation of this behaviour was based on the induced inhomogeneous strain in the crystal casued by the neutron irradiation process. (author). 10 refs, 3 figs

  8. Results on Neutron and Gamma Irradiation of Electrolytic Tilmeters

    International Nuclear Information System (INIS)

    Calderon, A.; Calvo, E.; Figueroa, C. F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J. M.; Fernando, A.; Fuentes, J.; Josa, M. I.; Luque, J. M.; Molinero, A.; Navarrate, J.; Valdivieso, P.; Fenyvesi, A.; Molnar, J.

    2004-01-01

    We report on irradiation studies done to a sample of high precision electrolytic tiltmeters with gamma-rays, up to a maximum dose of 150 kGy, an neutrons, up to a maximum fluence 1.5x10''14 cm''2. The effect of the irradiation on their performance is discussed. (Author) 19 refs

  9. Neutron irradiation effects in reactor pressure vessel steels and weldments. Working document

    International Nuclear Information System (INIS)

    1998-10-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. A separate abstract was prepared for the introduction and for each of the eleven chapters, which are: 1. Reactor Pressure Vessel Design, 2. Reactor Pressure Materials, 3. WWER Pressure Vessels, 4. Determination of Mechanical Properties, 5. Neutron Exposure, 6. Methodology of Irradiation Experiments, 7. Effect of Irradiation on Mechanical Properties, 8. Mechanisms of Irradiation Embrittlement, 9. Modelling of Irradiation Damage, 10. Annealing of Irradiation Damage, 11. Safety Assessment using Surveillance Programmes and Data Bases

  10. Nano-scale chemical evolution in a proton-and neutron-irradiated Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Harte, Allan, E-mail: allan.harte@manchester.ac.uk [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Topping, M.; Frankel, P. [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Jädernäs, D. [Studsvik Nuclear AB, SE 611 82, Nyköping (Sweden); Romero, J. [Westinghouse Electric Company, Columbia, SC (United States); Hallstadius, L. [Westinghouse Electric Sweden AB, SE 72163 Västerås (Sweden); Darby, E.C. [Rolls Royce Plc., Nuclear Materials, Derby (United Kingdom); Preuss, M. [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2017-04-15

    Proton-and neutron-irradiated Zircaloy-2 are compared in terms of the nano-scale chemical evolution within second phase particles (SPPs) Zr(Fe,Cr){sub 2} and Zr{sub 2}(Fe,Ni). This is accomplished through ultra-high spatial resolution scanning transmission electron microscopy and the use of energy-dispersive X-ray spectroscopic methods. Fe-depletion is observed from both SPP types after irradiation with both irradiative species, but is heterogeneous in the case of Zr(Fe,Cr){sub 2}, predominantly from the edge region, and homogeneously in the case of Zr{sub 2}(Fe,Ni). Further, there is evidence of a delay in the dissolution of the Zr{sub 2}(Fe,Ni) SPP with respect to the Zr(Fe,Cr){sub 2}. As such, SPP dissolution results in matrix supersaturation with solute under both irradiative species and proton irradiation is considered well suited to emulate the effects of neutron irradiation in this context. The mechanisms of solute redistribution processes from SPPs and the consequences for irradiation-induced growth phenomena are discussed. - Highlights: •Protons emulate the effects of neutron irradiation in the evolution of chemistry and morphology of second phase particles. •Detailed energy-dispersive X-ray spectroscopy reveals heterogeneity in Zr-Fe-Cr SPPs both before and after irradiation. •Zr-Fe-Ni SPPs are delayed in irradiation-induced dissolution due to their better self-solubility with respect to Zr-Fe-Cr.

  11. First results on irradiation of ceramic parallel plate chambers with gammas and neutrons

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, Gy.L.; Bizzeti, A.; Choumilov, E.; Civinini, C.; Dajko, G.; D'Alessandro, R.; Fenyvesi, A.; Ferrando, A.; Fouz, M.C.; Iglesias, A.; Ivochkin, V.; Josa, M.I.; Malinin, A.; Meschini, M.; Molnar, J.; Pojidaev, V.; Salicio, J.M.; Tanko, L.; Vesztergombi, G.

    1996-01-01

    Ceramic parallel plate chambers were irradiated with gamma rays and neutrons. Results on radiation resistance are presented after 60 Mrad gamma and 0.5.10 16 neutrons per cm 2 irradiation of the detector surface. Results of activation analysis of chambers made of two different ceramic materials are also presented. (orig.)

  12. Present status of ESNIT (energy selective neutron irradiation test facility) program

    International Nuclear Information System (INIS)

    Noda, K.; Ohno, H.; Sugimoto, M.; Kato, Y.; Matsuo, H.; Watanabe, K.; Kikuchi, T.; Sawai, T.; Usui, T.; Oyama, Y.; Kondo, T.

    1994-01-01

    The present status of technical studies of a high energy neutron irradiation facility, ESNIT (energy selective neutron irradiation test facility), is summarized. Technological survey and feasibility studies of ESNIT have continued since 1988. The results of technical studies of the accelerator, the target and the experimental systems in ESNIT program were reviewed by an International Advisory Committee in February 1993. Recommendations for future R and D on ESNIT program are also summarized in this paper. ((orig.))

  13. Measurements of combined neutron and photon fluxes for the accurate characterization of the future Jules Horowitz irradiation reactor experimental conditions

    International Nuclear Information System (INIS)

    Fourmentel, D.

    2013-01-01

    A new Material Testing Reactor (MTR), the Jules Horowitz Reactor (JHR), is under construction at the CEA Cadarache (French Alternatives Energies and Atomic Energy Commission). From 2016 this new MTR will be a new facility for the nuclear research on materials and fuels. The quality of the experiments to be conducted in this reactor is largely linked to the good knowledge of the irradiation conditions. Since 2009, a new research program called IN-CORE1 'Instrumentation for Nuclear radiations and Calorimetry Online in Reactor' is under progress between CEA and Aix-Marseille University in the framework of a joint laboratory LIMMEX2. This program aims to improve knowledge of the neutron and photon fluxes in the RJH core, with one hand, an innovative instrumentation performing mapping of experimental locations, and on the other hand by coupling neutron flux, photon flux and thermal measurements. Neutron flux expected in the JHR core is about 10 15 n.cm -2 .s -1 and nuclear heating up to 20 W.g -1 for a nominal power of 100 MWth. One of the challenges is to identify sensors able to measure such fluxes in JHR experimental conditions and to determine how to analyse the signals delivered by these sensors with the most appropriate methods. The thesis is part of this ambitious program and aims to study the potential and the interest of the combination of radiation measurements in the prospect of a better assessment of the levels of neutron flux, gamma radiation and nuclear heating in the JHR experimental locations. The first step of IN-CORE program is to develop and operate an instrumented device called CARMEN-1 adapted to the mapping of the OSIRIS reactor, then to develop a second version called CARMEN-2 dedicated to experiments in the JHR core, especially for its start-up. This experiment was the opportunity to test all the radiation sensors which could meet the needs of JHR, including recently developed sensors. Reference neutron measurements are performed by activation

  14. Inhomogeneous strain induced by fast neutron irradiation in NaKSO/sub 4/ crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kandil, S.H.; Kassem, M.E.; El-Khatib, A.; El-Gamal, M.A.; El-Wahidy, E.F.

    1987-11-01

    The paper reports the effect of fast neutron irradiation on the thermal properties of NaKSO/sub 4/ crystals in the temperature range 400-475 K. Results are presented for the thermal expansion, tensile strain and specific heat of NaKSO/sub 4/, as a function of neutron irradiation dose. All these results revealed an inhomogeneous strain induced by the radiation. It is suggested that this induced inhomogeneous strain could be used to detect neutron exposure doses.

  15. Study of the response of a silicon detector irradiated with 1 MeV neutrons; Etude de la reponse d`un detecteur Si irradie par des neutrons de 1 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Roy, P [Montreal Univ., PQ (Canada). Lab. de Physique Nucleaire

    1994-12-31

    The author studied the response of an n-type silicon detector irradiated with 1 MeV neutrons at fluences ranging from 0.26x10{sup 13} to 11.19x10{sup 13} neutrons/cm{sup 2}. The response of the irradiated detector to {sup 241}Am alpha particles was measured. 13 refs., 7 figs.

  16. Analytical electron microscopy of neutron-irradiated reactor alloys

    International Nuclear Information System (INIS)

    Thomas, L.E.

    1982-01-01

    Exposure to the high neutron fluxes and temperatures from 400 to 650 0 C in the core region of a fast breeder reactor profoundly alters the microstructure and properties of structural steels and superalloys. The development of irradiation-induced voids, dislocations and precipitates, as well as segregation of alloying elements on a microscopic scale has been related to macroscopic swelling, creep, hardening and embrittlement which occur during prolonged exposures in reactor. Microanalytical studies using TEM/STEM methods, primarily energy dispersive x-ray (EDX) microanalysis, have greatly aided understanding of alloy behavior under irradiation. The main uses of analytical electron microscopy in studying irradiated alloys have been the identification of irradiation-induced precipitates and determination of the changes in local composition due to irradiation-induced solute segregation

  17. Neutron irradiation effects on the mechanical properties of organic composite materials

    International Nuclear Information System (INIS)

    Egusa, S.; Kirk, M.A.; Birtcher, R.C.

    1984-01-01

    Neutron irradiations with low γ-ray flux in the Intense Pulsed Neutron Source were carried out on four kinds of cloth-filled organic composites (filler: E-glass or carbon fiber; matrix: epoxy or polyimide resin) and a unidirectional alumina fiber/epoxy composite. These composites were examined with regard to the mechanical properties at room temperature. Following irradiation at room temperature, the Young's (tensile) modulus of these composites remains practically unchanged up to a total neutron fluence of 5.0x10 18 n/cm 2 (1.4x10 18 n/cm 2 for E>0.1 MeV). The shear modulus and the ultimate strength, on the other hand, decrease significantly at this neutron fluence for the glass/epoxy and glass/polyimide composites, whereas for the other composites both properties do not degrade. This result is most likely ascribed to the radiation damage at fiber/matrix interface due to recoil particles produced by a 10 B(n,α) 7 Li reaction in the boron-containing E-glass fibers. Only for the E-glass fiber composites, in fact, the fracture propagation energy is appreciably increased by irradiation, while for the other composites the propagation energy is scarcely changed, thus confirming the significant contribution due to the 10 B reaction. As to the 5 K irradiation, degradation of the present composites was not observed up to a total neutron fluence of 1.0x10 18 n/cm 2 (7.0x10 17 n/cm 2 for E>0.1 MeV) when tested at room temperature. (orig.)

  18. Studies performed on neutron-irradiated copper-doped iron specimens by means of neutron small-angle scattering

    International Nuclear Information System (INIS)

    Naraghi, M.

    1978-01-01

    By means of neutron small-angle scattering precipitation arising from heat-treatment and reactor irradiation in copper-alloyed iron specimens were studied. Copper content varried between 0 and 1.5%, irradiation temperature between 310 and 563K. The specimens had been cooled from the melt partly fast, partly slowely. By taking account of magnetic scattering and by investigating the azimuthal dependence of the total scattering it became possible to distinguish between copper precipitations and vacancy agglomerates. The most obvious effect in the slowly cooled specimens after irradiation with 2-10 19 fast neutrons per cm 2 at a temperature of 563 K is the existence of copper agglomerates with diameters of the order of magnitude of 5nm. Precipitation already occurs to a much lesser extent by the influence of temperature alone. Fast cooling from the melt or low irradiation temperature reduce precipitation during reactor irradiation. Moreover, there are indications on the formation of vacancy accumulations and dislocation rings, the latter especially in the fast cooled specimens. (orig.) [de

  19. Results on Neutron and Gamma Irradiation of Electrolytic Tilmeters

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Calvo, E.; Figueroa, C. F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J. M.; Fernando, A.; Fuentes, J.; Josa, M. I.; Luque, J. M.; Molinero, A.; Navarrate, J.; Valdivieso, P.; Fenyvesi, A.; Molnar, J.

    2004-07-01

    We report on irradiation studies done to a sample of high precision electrolytic tiltmeters with gamma-rays, up to a maximum dose of 150 kGy, an neutrons, up to a maximum fluence 1.5x10''14 cm''2. The effect of the irradiation on their performance is discussed. (Author) 19 refs.

  20. Radiation-induced conductivity of doped silicon in response to photon, proton and neutron irradiation

    International Nuclear Information System (INIS)

    Kishimoto, N.; Amekura, H.; Plaksin, O.A.; Stepanov, V.A.

    2000-01-01

    The opto-electronic performance of semiconductors during reactor operation is restricted by radiation-induced conductivity (RIC) and the synergistic effects of neutrons/ions and photons. The RICs of Si due to photons, protons and pulsed neutrons have been evaluated, aiming at radiation correlation. Protons of 17 MeV with an ionizing dose rate of 10 3 Gy/s and/or photons (hν=1.3 eV) were used to irradiate impurity-doped Si (2x10 16 B atoms/cm 3 ) at 300 and 200 K. Proton-induced RIC (p-RIC) and photoconductivity (PC) were intermittently detected in an accelerator device. Neutron-induced RIC (n-RIC) was measured for the same Si in a pulsed fast-fission reactor, BARS-6, with a 70-μs pulse of 2x10 12 n/cm 2 (E>0.01 MeV) and a dose rate of up to 6x10 5 Gy/s. The neutron irradiation showed a saturation tendency in the flux dependence at 300 K due to the strong electronic excitation. Normalization of the electronic excitation, including the pulsed regime, gave a fair agreement among the different radiation environments. Detailed comparison among PC, p-RIC and n-RIC is discussed in terms of radiation correlation including the in-pile condition

  1. Fast-neutron dosimetry in the seed-irradiation facility, ASTRA reactor, Seibersdorf

    International Nuclear Information System (INIS)

    Ahnstroem, G.; Burtscher, A.; Casta, J.

    1967-01-01

    An important part of the co-ordinated programme on the neutron irradiation of seeds has been the construction of a fast-neutron irradiation facility for swimming-pool reactors. This facility was installed around 70 cm from the core in the ASTRA reactor swimming-pool at the end of December, 1966. Also, for this programme a pair of constant potential ionization chambers have been constructed at the Institute of Biochemistry, Stockholm University. These chambes are of the type described in the technical annex and are the same size as the seed-irradiation vials to be used in the seed-irradiation container (diam. =15 mm, length = 60 mm). Some preliminary dosimetry experiments were undertaken to test the irradiation facility and the ionization chambers, and to investigate the usefulness of the dosimetry instructions in the Technical Annex. The results of these experiments are discussed in this paper. 3 refs, 6 figs, 7 tabs

  2. Resistivity measurements on the neutron irradiated detector grade silicon materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng

    1993-11-01

    Resistivity measurements under the condition of no or low electrical field (electrical neutral bulk or ENB condition) have been made on various device configurations on detector grade silicon materials after neutron irradiation. Results of the measurements have shown that the ENB resistivity increases with neutron fluence ({Phi}{sub n}) at low {phi}{sub n} (<10{sup 13} n/cm{sup 2}) and saturates at a value between 300 and 400 k{Omega}-cm at {phi}{sub n} {approximately}10{sup 13} n/cm{sup 2}. Meanwhile, the effective doping concentration N{sub eff} in the space charge region (SCR) obtained from the C-V measurements of fully depleted p{sup +}/n silicon junction detectors has been found to increase nearly linearly with {phi}{sub n} at high fluences ({phi}{sub n} > 10{sup 13} n/cm{sup 2}). The experimental results are explained by the deep levels crossing the Fermi level in the SCR and near perfect compensation in the ENB by all deep levels, resulting in N{sub eff} (SCR) {ne} n or p (free carrier concentrations in the ENB).

  3. Development of Pneumatic Transfer Irradiation Facility (PTS no.2) for Neutron Activation Analysis at HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. S.; Moon, J. H.; Kim, S. H.; Sun, G. M.; Baek, S. Y.; Kim, H. R.; Kim, Y. J

    2008-03-15

    A pneumatic transfer irradiation system (PTS) is one of the most important facilities used during neutron irradiation of a target material for instrumental neutron activation analysis (INAA) in a research reactor. In particular, a fast pneumatic transfer system is essential for the measurement of a short half-life nuclide and a delayed neutron counting system. The pneumatic transfer irradiation system (PTS no.2) involving a manual system and an automatic system for delayed neutron activation analysis (DNAA) were reconstructed with new designs of a functional improvement at the HANARO research reactor in 2006. In this technical report, the conception, design, operation and control of PTS no.2 was described. Also the experimental results and the characteristic parameters measured by a mock-up test, a functional operation test and an irradiation test of these systems, such as the transfer time of irradiation capsule, automatic operation control by personal computer, delayed neutron counting system, the different neutron flux, the temperature of the irradiation position with an irradiation time, the radiation dose rate when the rabbit is returned, etc. are reported to provide a user information as well as a reactor's management and safety.

  4. Microhardness measurement in AISI 321 stainless steel with niobium additions before and after fast neutron irradiation

    International Nuclear Information System (INIS)

    Galli, V.L.; Lucki, G.

    1980-01-01

    Data about influence of neutron irradiation on the microhardness of stainless steel of type AISI 321 with 0.05 and 0.1wt.% Nb additions are presented. The microhardness measurements were made in the range of 300 to 650 0 C, before and after fast neutron irradiation with fluences about 10 17 n/cm 2 . Our results indicate that radiation damage peaks occur around 480 0 C for the stainless steel of type AISI 321 without Nb addition, around 500 0 C for the composition with 0.05 wt.% Nb addition and around 570 0 C for the composition with 0.1 wt.% Nb addition. Microhardness data are in agreement with those obtained by means of electrical resistivity measurements, performed at the same conditions. (Author) [pt

  5. Property change of advanced tungsten alloys due to neutron irradiation

    International Nuclear Information System (INIS)

    Fukuda, Makoto; Hasegawa, Akira; Tanno, Takashi; Nogami, Shuhei; Kurishita, Hiroaki

    2013-01-01

    This study investigates the effect of neutron irradiation on the functional properties of pure tungsten (W) and advanced tungsten alloys (e.g., lanthanum (La)-doped W, potassium (K)-doped W, and ultra-fine-grained (UFG) W–TiC alloys) tested in the Japan Materials Testing Reactor (JMTR) or experimental fast reactor Joyo. The irradiation temperature and damage were in the range 804–1073 K and 0.15–0.47 dpa, respectively. TEM images of all samples after 0.42 dpa irradiation at 1023 K showed voids, black dots, and dislocation loops, indicating that similar damage structures were formed in pure W, La-doped W, K-doped W, and UFG W–0.5 wt% TiC. The electrical resistivity of all specimens increased following neutron irradiation. Nearly identical electrical resistivity and irradiation hardening were observed in pure W, La-doped W, and K-doped W. The electrical resistivity of UFG W–TiC was higher than that of other specimens before and after irradiation, which may be attributed to its ultra-fine-grain structure, as well as the presence of impurities introduced during the alloying process. Compared to the other specimens, the UFG W–TiC was more resistant to irradiation hardening

  6. Neutron Spectrum Measurements from Irradiations at NCERC

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, Kevin Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Michelle A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bredeweg, Todd Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hutchens, Gregory Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Morgan Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-15

    Several irradiations have been conducted on assemblies (COMET/ZEUS and Flattop) at the National Criticality Experiments Research Center (NCERC) located at the Nevada National Security Site (NNSS). Configurations of the assemblies and irradiated materials changed between experiments. Different metallic foils were analyzed using the radioactivation method by gamma-ray spectrometry to understand/characterize the neutron spectra. Results of MCNP calculations are shown. It was concluded that MCNP simulated spectra agree with experimental measurements, with the caveats that some data are limited by statistics at low-energies and some activation foils have low activities.

  7. Microstructure and mechanical behavior of neutron irradiated ultrafine grained ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Alsabbagh, Ahmad, E-mail: ahalsabb@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Sarkar, Apu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Miller, Brandon [ATR National Scientific User Facility, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Burns, Jatuporn [Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Squires, Leah; Porter, Douglas; Cole, James I. [ATR National Scientific User Facility, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Murty, K.L. [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2014-10-06

    Neutron irradiation effects on ultra-fine grain (UFG) low carbon steel prepared by equal channel angular pressing (ECAP) have been examined. Counterpart samples with conventional grain (CG) sizes have been irradiated alongside with the UFG ones for comparison. Samples were irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to 1.37 dpa. Atom probe tomography revealed manganese and silicon-enriched clusters in both UFG and CG steel after neutron irradiation. Mechanical properties were characterized using microhardness and tensile tests, and irradiation of UFG carbon steel revealed minute radiation effects in contrast to the distinct radiation hardening and reduction of ductility in its CG counterpart. After irradiation, micro hardness indicated increases of around 9% for UFG versus 62% for CG steel. Similarly, tensile strength revealed increases of 8% and 94% respectively for UFG and CG steels while corresponding decreases in ductility were 56% versus 82%. X-ray quantitative analysis showed that dislocation density in CG increased after irradiation while no significant change was observed in UFG steel, revealing better radiation tolerance. Quantitative correlations between experimental results and modeling were demonstrated based on irradiation induced precipitate strengthening and dislocation forest hardening mechanisms.

  8. Mechanical Properties and Microstructure of Neutron Irradiated Cold-worked Al-1050 and Al-6063 Alloys

    International Nuclear Information System (INIS)

    Munitz, A.; Cotler, A; Talianker, M.

    1998-01-01

    The impact of neutron irradiation on the internal microstructure, mechanical properties and fracture morphology of cold-worked Al-1050 and Al-6063 alloys was studied, using scanning and transmission electron microscopy, and tensile measurements. Specimens consisting of 50 mm long and 6 mm wide gauge sections, were punched out from Al-1050 and Al-6063 23% cold-worked tubes. They were exposed to prolonged neutron irradiation of up to 4.5x10 25 and 8x10 25 thermal neutrons/m 2 (E -3 s -1 . In general, the uniform and total elongation, the yield stress, and the ultimate tensile strength increase as functions of fluence. However, for Al-1050 a decrease in the ultimate tensile strength and yield stress was observed up to a fluence of 1x10 25 thermal neutrons/m 2 which then increase with thermal neutrons fluence. Metallographic examination and fractography for Al-6063 revealed a decrease in the local area reduction of the final fracture necking. This reduction is accompanied by a morphology transition from ductile transgranular shear rupture to a combination of transgranular shear with intergranular dimpled rupture. The intergranular rupture area increases with fluence. In contrast, for Al-1050, fracture morphology remains ductile transgranular shear rupture and the final local area reduction remains almost constant No voids could be observed in either alloy up to the maximum fluence. The dislocation density of cold-worked Al was found to decrease with the thermal neutron fluence. Prolonged annealing of unirradiated cold-worked Al-6063 at 52 degree led to similar results. Thus, it appears that, under our irradiation conditions, whereby the temperature encompassing the samples increases the exposure to this thermal field is the major factor influencing the mechanical properties and microstructure of aluminum alloys

  9. The effect of cadmium shielding on the spatial neutron flux distribution inside one of the outer irradiation sites

    International Nuclear Information System (INIS)

    Shaaban, I.

    2009-06-01

    A permanent epithermal neutron irradiation facility was designed in the Syrian Miniature Neutron Source Reactor (MNSR) by using the cadmium (cylindrical vial 1.0 mm in thickness, 38.50 mm in diameter and 180 mm in length) as thermal neutron shielding material, for a permanent epithermal neutron activation analysis (ENAA). This site was designed by shielding the internal surface of the aluminum tube of the first outer irradiation site in the MNSR reactor. I was used the activation detectors 0.1143% Au-Al alloy foils with 0.1 mm thickness and 2.0 mm diameter for measurement the thermal neutron flux, epithermal and R c d=A b are/A c over ratio in the outer irradiation site. Distribution of the thermal neutron flux in the outer irradiation capsule has been found numerically using MCNP-4C code with and without cadmium shield, and experimentally by irradiating five copper wires using the outer irradiation capsule. Good agreements were obtained between the calculated and the measured results. (author)

  10. Effect of Neutron Irradiation on the Physicochemical Properties of Naproxen Sodium

    International Nuclear Information System (INIS)

    Ibrahim Ijang

    2016-01-01

    Complex dosage forms may be designed to provide sustained release of the drug or to deliver the active ingredients to the specific sites. It is important to know the in-vivo behaviour of the drug formulation following administration. Gamma scintigraphy technique has been widely used to monitor the in-vivo radiopharmaceuticals dosage form by neutron activation. This study was to investigate effect of neutron activation on the physicochemical properties of the Naproxen Sodium as a model drug. The drug was irradiated using TRIGA MK II reactor with thermal neutron at 1.2 x 10"1"2 neutron cm"-"2s"-"1 for 1, 2, 3, 4, 5 and 30 minutes. The stability of naproxen sodium was assessed based on the malting point, morphology, Gas Chromatograph-Mass Spectrometer (GC-MS) and Fourier Transform Infrared Spectrometer (FTIR). Results of analysis of Scanning Electron Microscope (SEM) and FTIR showed changes in the physicochemical properties of naproxen sodium when duration of irradiation was increased. There were no major changes in the result of GC-MS and Differential Scanning Calorimeter (DSC). Based on the results obtained, it be concluded that naproxen sodium is a suitable drug that can be used for neutron activation based gamma scintigraphy. The maximum irradiation time that naproxen sodium can be withstand without changes in its physicochemical properties is 3 minutes. (author)

  11. Formation of glassy carbon structure and its change under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kurolenkin, E.I.; Lopato, Yu.S.; Virgil' ev, Yu.S.; Khakimova, D.K.; Aksenov, S.I.

    1981-01-01

    The changes of glassy carbon structure, which is prepared of phenol-formaldehyde and furfurol-phenol-formaldehyde resins in the process of irradiation with 5.3x10/sup 20/ cm/sup -2/ neutron fluence with the energy E>0.18 MeV in the temperature range of 90-540 deg C are studied. It is established the irradiation results in the shrinkage of the samples. The compression of the samples increases with the irradiation temperature and neutron fluence. The thermal annealing does not result in the restoration of the volume of samples. The sample shrinkage, caused by more compact package of globular structures and the destruction of film structures, decrease gas permeability of glassy carbon.

  12. Microstructural changes of Y-doped V-4Cr-4Ti alloys after ion and neutron irradiation

    Directory of Open Access Journals (Sweden)

    H. Watanabe

    2016-12-01

    Full Text Available High-purity Y-doped V-4Cr-4Ti alloys (0.1–0.2wt. % Y, manufactured by the National Institute for Fusion Science (NIFS, were used for this study. Heavy-ion and fission-neutron irradiation was carried out at temperatures 673–873K. During the ion irradiation at 873K, the microstructure was controlled by the formation of Ti(C,O,N precipitates lying on the (100 plane. Y addition effectively suppressed the growth of Ti(C,O,N precipitates, especially at lower dose irradiation to up to 4 dpa. However, at higher dose levels (12.0 dpa, the number density was almost at the same levels irrespective of the presence of Y. After neutron irradiation at 873K, fine titanium oxides were also observed in all V alloys. However, smaller oxide sizes were observed in the Y-doped samples under the same irradiation conditions. The detailed analysis of EDS showed that the center of the Ti(C,O,N precipitates was mainly enriched by nitrogen. The results showed that the contribution of not only oxygen atoms picked up from the irradiation environment but also nitrogen atoms is essential to understand the microstructural evolution of V-4Cr-4Ti-Y alloys.

  13. A 14 MeV neutron irradiation facility with an automated fast cyclic pneumatic

    International Nuclear Information System (INIS)

    Montgomery, M.T.; Yoho, M.D.; Biegalski, S.R.; Landsberger, S.; Welch, L.

    2016-01-01

    This work details the design criteria, construction, controls, and optimization of the 14 MeV neutron irradiation facility at the University of Texas, built with the motivation of performing neutron activation analysis on samples with short half-lives. The facility couples a D-T neutron generator with a pneumatic transfer system capable of transit of approximately one second between source and detector, while the cyclic automated nature allows for many irradiation/count trials with any number of samples, translating to significantly improved counting statistics. (author)

  14. Evaluation of ferritic alloy Fe-2-1/4Cr-1Mo after neutron irradiation - microstructure development

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1984-05-01

    Microstructural examinations are reported for nine specimen conditions of 2-1/4Cr-1Mo steel which had been irradiated by fast neutrons over the temperature range 390 to 510 0 C. Two heats of material were involved, each with a different preirradiation heat treatment, one irradiated to a peak fluence of 5.1 x 10 22 n/cm 2 (E > 0.1 MeV) or 24 dpa and the other to 2.4 x 10 23 n/cm 2 (E > 0.1 MeV) or 116 dpa. Void swelling is found following irradiation at 400 0 C in both conditions and to 480 0 C in the higher fluence conditions. Concurrently dislocation structure and precipitation formed. Peak void swelling, void density, dislocation density and precipitate number density developed at the lowest temperature, approx. 400 0 C, whereas mean void size, and mean precipitate size increased with increasing irradiation temperature. The examination results are used to provide interpretation of in-reactor creep, density change and post irradiation tensile behavior

  15. Positron annihilation lifetime measurements of vanadium alloy and F82H irradiated with fission and fusion neutrons

    International Nuclear Information System (INIS)

    Sato, K.; Inoue, K.; Yoshiie, T.; Xu, Q.; Wakai, E.; Kutsukake, C.; Ochiai, K.

    2009-01-01

    V-4Cr-4Ti, F82H, Ni and Cu were irradiated with fission and fusion neutrons at room temperature and 473 K. Defect structures were analyzed and compared using positron annihilation lifetime measurement, and microstructural evolution was discussed. The mean lifetime of positrons (the total amount of residual defects) increased with the irradiation dose. The effect of cascade impact was detected in Ni at room temperature. The size and the number of vacancy clusters were not affected by the displacement rate in the fission neutron irradiation at 473 K for the metals studied. The vacancy clusters were not formed in V-4Cr-4Ti irradiated at 473 K in the range of 10 -6 -10 -3 dpa. In F82H irradiated at 473 K, the defect evolution was prevented by pre-existing defects. The mean lifetime of positrons in fission neutron irradiation was longer than that in fusion neutron irradiation in V-4Cr-4Ti at 473 K. It was interpreted that more closely situated subcascades were formed in the fusion neutron irradiation and subcascades interacted with each other, and consequently the vacancy clusters did not grow larger.

  16. The natural aging of austenitic stainless steels irradiated with fast neutrons

    Science.gov (United States)

    Rofman, O. V.; Maksimkin, O. P.; Tsay, K. V.; Koyanbayev, Ye. T.; Short, M. P.

    2018-02-01

    Much of today's research in nuclear materials relies heavily on archived, historical specimens, as neutron irradiation facilities become ever more scarce. These materials are subject to many processes of stress- and irradiation-induced microstructural evolution, including those during and after irradiation. The latter of these, referring to specimens "naturally aged" in ambient laboratory conditions, receives far less attention. The long and slow set of rare defect migration and interaction events during natural aging can significantly change material properties over decadal timescales. This paper presents the results of natural aging carried out over 15 years on austenitic stainless steels from a BN-350 fast breeder reactor, each with its own irradiation, stress state, and natural aging history. Natural aging is shown to significantly reduce hardness in these steels by 10-25% and partially alleviate stress-induced hardening over this timescale, showing that materials evolve back towards equilibrium even at such a low temperature. The results in this study have significant implications to any nuclear materials research program which uses historical specimens from previous irradiations, challenging the commonly held assumption that materials "on the shelf" do not evolve.

  17. Neutron irradiation effects on magnetic properties of Fe-based ferromagnetic metallic glasses

    International Nuclear Information System (INIS)

    Miglierini, M.; Nasu, Saburo; Skorvanek, I.; Sitek, J.

    1992-01-01

    Transmission 57 Fe Moessbauer spectroscopy, J-H quasistatic hysteresis loop and AC susceptibility measurements are used to study effects of neutron irradiation on magnetic properties of Fe-based-ferromagnetic metallic glasses. Elastic stress centers are produced during the process of neutron irradiation as a result of atom mixing. Rearrangement of the atoms causes changes in the average value of the hyperfine field distribution and orientation of the net magnetic moment. They are shown to depend on the composition of the investigated samples. Cr-doped metallic glasses depict transition from the ferromagnetic to paramagnetic state at room temperature after neutron irradiation implying changes in the Curie temperature. The presence of Ni in the samples reduces the effects of radiation damage as revealed also from position lifetime data. Possible sources of a radiation damage are discussed using the results of γ-ray spectroscopy. (author)

  18. Neutron irradiation effects on magnetic properties of Fe-based ferromagnetic metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Miglierini, M.; Nasu, Saburo (Osaka Univ., Toyonaka (Japan). Faculty of Science); Skorvanek, I.; Sitek, J.

    1992-04-01

    Transmission {sup 57}Fe Moessbauer spectroscopy, J-H quasistatic hysteresis loop and AC susceptibility measurements are used to study effects of neutron irradiation on magnetic properties of Fe-based-ferromagnetic metallic glasses. Elastic stress centers are produced during the process of neutron irradiation as a result of atom mixing. Rearrangement of the atoms causes changes in the average value of the hyperfine field distribution and orientation of the net magnetic moment. They are shown to depend on the composition of the investigated samples. Cr-doped metallic glasses depict transition from the ferromagnetic to paramagnetic state at room temperature after neutron irradiation implying changes in the Curie temperature. The presence of Ni in the samples reduces the effects of radiation damage as revealed also from position lifetime data. Possible sources of a radiation damage are discussed using the results of {gamma}-ray spectroscopy. (author).

  19. Determination of proton and neutron spectra in the LANSCE spallation irradiation facility

    International Nuclear Information System (INIS)

    James, M.R.; Maloy, S.A.; Sommer, W.F.; Fowler, M.M.; Dry, D.; Ferguson, P.D.; Mueller, G.; Corzine, R.K.

    1999-01-01

    Materials samples were recently irradiated in the Los Alamos Radiation Effects Facility (LASREF) at the Los Alamos Neutron Science Center (LANSCE) to provide data for the Accelerator Production of Tritium (APT) project on the effect of irradiation on the mechanical and physical properties of materials. The targets were configured to expose samples to a variety of radiation environments including, high-energy protons, mixed protons and high-energy neutrons, and low-energy neutrons. The samples were irradiated for approximately six months during a ten month period using an 800 MeV proton beam with a circular Gaussian shape of approximately 2σ = 3.0 cm. At the end of this period, the samples were extracted and tested. Activation foils were also extracted that had been placed in proximity to the materials samples. These were used to quantify the fluences in various locations

  20. Evaluation of neutron irradiation fields for BNCT by using absorbed dose in a phantom

    International Nuclear Information System (INIS)

    Aizawa, O.

    1993-01-01

    In a previous paper, the author defined the open-quotes irradiation timeclose quotes as the time of irradiation in which the maximum open-quotes total background doseclose quotes becomes 2,500 RBE-cGy. In this paper, he has modified the definition a little as the time of irradiation in which the maximum open-quotes lμg/g B-10 doseclose quotes becomes 3,000 RBE-cGy, because he assumed that normal tissue contained 1μg/g B-10. Moreover, he has modified the dose criteria for BNCT as follows: The open-quotes eye doseclose quotes, open-quotes total body doseclose quotes and open-quotes except-head doseclose quotes should be less that 200, 100 and 50 RBE-cGy, respectively. He has added one more criterion for BNCT that the thermal neutron fluence at the tumor position should be over 2.5x10 12 n/cm 2 at the open-quotes irradiation timeclose quotes. The distance from the core side to the irradiation port in the open-quotes old configurationclose quotes of the Musashi reactor (TRIGA-II, 100kW) was 160 cm. He is now planning to design an eccentric core and to move the reactor core nearer to the irradiation port, distance between the core side and the irradiation port to be 140, 130 and 120cm. The other assumptions used in this paper are as follows: (1) The B-10 concentrations in tumor are 30 and/or 10μg/g. (2) The depth of the tumor is 5.0 cm to 5.5 cm from the surface. (3) The RBE values used are 1.0 for all gamma rays and 2.3 for B 10 (n,α) reaction products. (4) The RBE values for neutrons are the following three cases: the first case is using 1.6 for all neutrons; the second one is using 3.2 for non-thermal neutrons and 1.6 for thermal neutrons; the third case is using 4.8 for fast neutrons, 3.2 for faster epithermal and epithermal neutrons, and 1.6 for thermal neutrons

  1. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    Science.gov (United States)

    Schwarze, G. E.; Frasca, A. J.

    1991-01-01

    The effects of neutron and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10(exp 13) n/sq cm and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are presented. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed.

  2. In-reactor precipitation and ferritic transformation in neutron--irradiated stainless steels

    International Nuclear Information System (INIS)

    Porter, D.L.; Wood, E.L.

    1978-01-01

    Ferritic transformation (γ → α) was observed in Type 304L, 20% cold-worked AISI 316, and solution-annealed AISI 316 stainless steels subjected to fast neutron irradiation. Each material demonstrated an increasing propensity for transformation with increasing irradiation temperature between 400 and 550 0 C. Irradiation-induced segregation of Ni solute to precipitates was found not to influence the transformation kinetics in 304L. Similar composition data from 316 materials demonstrates a much greater temperature dependence of precipitation reactions in the process of matrix Ni depletion during neutron irradiation. The 316 data establishes a strong link between such depletion and the observed γ → α transformation. Moreover, the lack of correlation between precipitate-related Ni depletion and the γ → α transformation in 304L can be related to the fact that irradiation-induced voids nucleate very quickly in 304L steel during irradiation. These voids present preferential sites for Ni segregation through a defect trapping mechanism, and hence Ni segregates to voids rather than to precipitates, as evidenced by observed stable γ shells around voids in areas of complete transformation

  3. Neutron irradiation effects on the mechanical properties of thorium and thorium--carbon alloy

    International Nuclear Information System (INIS)

    Wang, S.C.P.

    1978-04-01

    The effects of neutron exposure to 3.0 x 10 18 neutrons/cm 2 on the mechanical properties of thorium and thorium-carbon alloy are described. Tensile measurements were done at six different test temperatures from 4 0 K to 503 0 K and at two strain rates. Thorium and thorium-carbon alloy are shown to display typical radiation hardening like other face-centered cubic metals. The yield drop phenomenon of the thorium-carbon alloy is unchanged after irradiation. The variation of shear stress and effective shear stress with test temperature was fitted to Seeger's and Fleischer's equations for irradiated and unirradiated thorium and thorium-carbon alloy. Neutron irradiation apparently contributes an athermal component to the yield strength. However, some thermal component is detected in the low temperature range. Strain-rate parameter is increased and activation volume is decreased slightly for both kinds of metal after irradiation

  4. Pathologic characteristics of gut-associated lymphoid tissues and lymphocyte apoptosis in mouse intestine after neutron-and γ-irradiation

    International Nuclear Information System (INIS)

    Fu Kaifei; Peng Ruiyun; Gao Yabing; Wang Dewen; Chen Haoyu; Wu Xiaohong; Yang Yi; Hu Wenhua; Ma Junjie

    2004-01-01

    Objective: To compare the pathologic characteristics of gut-associated lymphoid tissues and lymphocyte apoptosis in neutron-irradiated mouse small intestines with those in γ-irradiated ones. Methods: Altogether 350 BALB/c mice were irradiated with different doses of neutrons or γ-rays, and were sacrificed on 6 h,12 h,125 d, 7 d, 14 d, 21 d and 28 d after irradiation and their total intestines were removed. Then the pathologic changes and death mode of lymphocytes in gut-associated lymphoid tissues were studied comparatively with light microscopy, electron microscopy and in situ terminal labeling method. Results: The basic pathologic changes of gut-associated lymphoid tissues after neutron irradiation included degeneration, apoptosis and necrosis of lymphocytes. The number of lymphocytes also decreased. There was no obvious regeneration after 4.0 and 5.5 Gy neutron irradiation, while after 2.5 Gy regeneration and recovery appeared, which were, there fore, dose-dependent. In the 2.5 Gy neutron group, the numbers of lymphocytes of intramucosal and submucous lymphoid tissues decreased, and karyopyknosis and a great quantity of nuclear fragments could also be observed at 6 h-3 d after irradiation. However, on the 3rd day regeneration of crypt epithelial cells appeared. On the 5th day hyperplasia of submucous lymphocytic tissues appeared, but recovery to normal level was not achieved till 14 d after irradiation. The basic pathologic changes after γ-irradiation were similar to that of neutron irradiation. Regeneration and recovery appeared in the 5.5 Gy group while no obvious regeneration in the 12.0 Gy group. The results of in situ terminal labeling indicated that at 6 h after irradiation the number of apoptotic cells in gut-associated lymphoid tissues of each group increased obviously, while in 4.0 Gy neutron group and 12.0 Gy γ-ray group it was more abundant. Conclusion: Both 2.5-5.5 Gy neutron and 5.5-12.0 Gy γ-ray irradiation can induce obvious injuries in gut

  5. Activation of 45-MeV proton irradiation and proton-induced neutron irradiation in polymers

    International Nuclear Information System (INIS)

    Ra, Se-Jin; Kim, Kye-Ryung; Jung, Myung-Hwan; Yang, Tae-Keon

    2010-01-01

    During beam irradiation experiments with more than a few MeV energetic protons, the sample activation problem can be very severe because it causes many kinds of additional problems for the post-processing of the samples, such as time loss, inconvenience of sample handling, personal radiation safety, etc. The most serious problem is that immediate treatment of the sample is impossible in some experiments, such as nano-particle synthesizing. To solve these problems, we studied why the samples are activated and how the level of the activation can be reduced. It is known that the main reasons of activation are nuclear reactions with elements of the target material by primary protons and secondary produced neutrons. Even though the irradiation conditions are same, the level of the activation can be different depending on the target materials. For the nanoparticle synthesizing experiments, the target materials can be defined as the container and the sample itself. The reduction of the activation from the container is easier than the reduction from the sample. Therefore, we tried to reduce the activation level by changing the container materials. In this paper, the results are displayed for some candidate container materials, such as polymethyl methacrylate, polystyrene, Glass, etc., with 45-MeV and 10-nA proton beams. As a result, PS is the most suitable material for the container because of its relatively low level of the activation by protons. Also the contribution of secondary produced neutrons to the activation is negligible.

  6. Tensile property changes of metals and irradiated to low doses with fission, fusion and spallation neutrons

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Hamilton, M.L.; Sommer, W.F.; Ferguson, P.D.

    1992-01-01

    The objective of this work is to investigate the effects of the neutron energy spectrum in low dose irradiations on the microstructures and mechanical properties of metals. Radiation effects due to low doses of spallation neutrons are compared directly to those produced by fission and fusion neutrons. Yield stress changes of pure Cu, alumina-dispersion-strengthened Cu and AISI 316 stainless steel irradiated at 36-55 C in the Los Alamos Spallation Radiation Effects Facility (LASREF) are compared with earlier results of irradiations at 90 C using 14 MeV D-T fusion neutrons at the Rotating Target Neutron Source and fission reactor neutrons in the Omega West Reactor. At doses up to 0.04 displacements per atom (dpa), the yield stress changes due to the three quite different neutron spectra correlate well on the basis of dpa in the stainless steel and the Cu alloy. However, in pure Cu, the measured yield stress changes due to spallation neutrons were anomalously small and should be verified by additional irradiations. With the exception of pure Cu, the low dose, low temperature experiments reveal no fundamental differences in radiation hardening by fission, fusion or spallation neutrons when compared on the basis of dpa

  7. Results on neutron and gamma-ray irradiation of electrolytic tiltmeters

    International Nuclear Information System (INIS)

    Calderon, A.; Calvo, E.; Figueroa, C.F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Vila, I.; Virto, A.L.; Arce, P.; Barcala, J.M.; Ferrando, A.; Fuentes, J.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Valdivieso, P.; Fenyvesi, A.; Molnar, J.

    2004-01-01

    We report on irradiation studies done to a sample of high-precision electrolytic tiltmeters with gamma-rays, up to a maximum dose of 150 kGy, and neutrons, up to a maximum fluence of 1.5x10 14 cm -2 . The effect of the irradiation on their performance is discussed

  8. First-principles investigation of neutron-irradiation-induced point defects in B4C, a neutron absorber for sodium-cooled fast nuclear reactors

    Science.gov (United States)

    You, Yan; Yoshida, Katsumi; Yano, Toyohiko

    2018-05-01

    Boron carbide (B4C) is a leading candidate neutron absorber material for sodium-cooled fast nuclear reactors owing to its excellent neutron-capture capability. The formation and migration energies of the neutron-irradiation-induced defects, including vacancies, neutron-capture reaction products, and knocked-out atoms were studied by density functional theory calculations. The vacancy-type defects tend to migrate to the C–B–C chains of B4C, which indicates that the icosahedral cage structures of B4C have strong resistance to neutron irradiation. We found that lithium and helium atoms had significantly lower migration barriers along the rhombohedral (111) plane of B4C than perpendicular to this plane. This implies that the helium and lithium interstitials tended to follow a two-dimensional diffusion regime in B4C at low temperatures which explains the formation of flat disk like helium bubbles experimentally observed in B4C pellets after neutron irradiation. The knocked-out atoms are considered to be annihilated by the recombination of the close pairs of self-interstitials and vacancies.

  9. Microstructure-tensile property correlation of 316SS in low dose neutron irradiations

    International Nuclear Information System (INIS)

    Yoshida, N.; Muroga, T.; Araki, K.; Heinisch, H.L.; Kiritani, M.

    1990-05-01

    The objective of this work is to determine the effects of the neutron spectrum on radiation-induced changes in mechanical properties for metals irradiated with fission and fusion neutrons. 10 refs., 6 figs

  10. Fast neutron irradiation induced changes in the optical and thermal properties of modified polyvinyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Abou Taleb, W.M. [Alexandria Univ. (Egypt); Madi, N.K.; Kassem, M.E.; El-Khatib, A.M. [Alexandria Univ. (Egypt). Dept. of Physics

    1996-05-01

    The effect of both dopant and neutron radiation on the optical and thermal properties of polyvinyl chloride (PVC) has been studied. The doped samples with Pb and Cd were irradiated with a 14 MeV-neutron fluence in the range 7-28.8 x 10{sup 9} n/cm{sup 2}. The optical energy gap E{sub op} exhibits a significant dependence on the type of additive and the neutron irradiation fluence. The specific heat at constant pressure C{sub p} showed a nonmonotonical change with radiation fluence. The results of this study show that PVC:Pb behaves as a crystalline structure which is only slightly affected by neutron irradiation, while PVC:Cd is highly affected. (author).

  11. Fast neutron irradiation induced changes in the optical and thermal properties of modified polyvinyl chloride

    International Nuclear Information System (INIS)

    Abou Taleb, W.M.; Madi, N.K.; Kassem, M.E.; El-Khatib, A.M.

    1996-01-01

    The effect of both dopant and neutron radiation on the optical and thermal properties of polyvinyl chloride (PVC) has been studied. The doped samples with Pb and Cd were irradiated with a 14 MeV-neutron fluence in the range 7-28.8 x 10 9 n/cm 2 . The optical energy gap E op exhibits a significant dependence on the type of additive and the neutron irradiation fluence. The specific heat at constant pressure C p showed a nonmonotonical change with radiation fluence. The results of this study show that PVC:Pb behaves as a crystalline structure which is only slightly affected by neutron irradiation, while PVC:Cd is highly affected. (author)

  12. Influence of neutron irradiation on the tritium retention in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Rolli, R.; Ruebel, S.; Werle, H. [Forschungszentrum Karlsruhe, Inst. fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany); Wu, C.H.

    1998-01-01

    Carbon-based materials and beryllium are the candidates for protective layers on the components of fusion reactors facing plasma. In contact with D-T plasma, these materials absorb tritium, and it is anticipated that tritium retention increases with the neutron damage due to neutron-induced traps. Because of the poor data base for beryllium, the work was concentrated on it. Tritium was loaded into the samples from stagnant T{sub 2}/H{sub 2} atmosphere, and afterwards, the quantity of the loaded tritium was determined by purged thermal annealing. The specification of the samples is shown. The samples were analyzed by SEM before and after irradiation. The loading and the annealing equipments are contained in two different glove boxes with N{sub 2} inert atmosphere. The methods of loading and annealing are explained. The separation of neutron-produced and loaded tritium and the determination of loaded tritium in irradiated samples are reported. Also the determination of loaded tritium in unirradiated samples is reported. It is evident that irradiated samples contained much more loaded tritium than unirradiated samples. The main results of this investigation are summarized in the table. (K.I.)

  13. Histological studies in developing brain after 0.5 Gy neutron irradiation in utero

    International Nuclear Information System (INIS)

    Antal, S.; Fueloep, Z.

    1986-01-01

    Pregnant mice were irradiated with 0.5 Gy neutrons on day 13, 15 or 18 of gestation. There was no significant difference in number of living young born per litter between in neutron irradiated mice and controls. Mortality of irradiated offspings increased in the first 3 days after birth. The brain weight of 21-day old animals after neutron irradiation averaged only 55, 56 and 69% of controls, resp. At six hours after irradiation morphological analysis showed nuclear pyknosis in the central nervous system. On day 13 the telencephalon was severely affected. The 30% cells were pyknotic in the wall of the cerebral hemisphere and 20% of cells in corpus striatum. In the metencephalon marked pyknosis was established in the tectal lamina of mesencephalon (16%) and in the cerebellar anlage (21%). The olfactory plate (24%), the ventricular zone of cerebral hemisphere (30%) and colliculus ganglionaris were damaged mostly (40%) after radiation on day 15 of gestation. The tectum of the mesencephali and in metencephalon the external granular layer of cerebellum and area of the rhombic lip were affected by irradiation (17-20%). The telencephalon found pyknotic but to a less extent in group irradiated on day 18 than it was on day 15. In the olfactory bulb 10% of pyknotic cells were seen and 16% of primary cortex of cerebral hemisphere more over 30% of nucleus caudatus/putamen were affected. In metencephalon 19% of external granular layer of cerebellum and 13% of trigonum cerebelli were pyknotic. In general, lesions of irradiation were rather mild in diencephalon and myelencephalon at all examined ages. Histological examinations support that defined parts of brain are damaged after neutron irradiation in utero and it may lead to the described physiological 18-20 and biochemical consequences 20,23 . (orig.)

  14. Protons in neutron-irradiated and thermochemically reduced MgO crystals doped with lithium impurities

    International Nuclear Information System (INIS)

    Gonzalez, R.; Pareja, R.; Chen, Y.

    1992-01-01

    H - (hydride) ions have been observed in lithium-doped MgO crystals which have been neutron irradiated or thermochemically reduced (TCR). Infrared-absorption measurements have been used to identify the local modes of the H - ions in these crystals. The concentration of the H - ions in the neutron-irradiated crystals is found to be far less than that found in the TCR crystals. The thermal stability of H - and oxygen vacancies in both oxidizing and reducing atmospheres are investigated. The emergence of sharp structures due to OH - ions is attributed to the displacements of substitutional Li + ions, leaving behind unperturbed OH - ions, via a mechanism of rapid radiation-induced diffusion during irradiation in a reactor. Results of neutron-irradiated MgO:Li, which had previously been oxidized at high temperature, are also presented

  15. Effect of Fast Neutron Irradiation on Current Transport Properties of HTS Materials

    CERN Document Server

    Ballarino, A; Kruglov, V S; Latushkin, S T; Lubimov, A N; Ryazanov, A I; Shavkin, S V; Taylor, T M; Volkov, P V

    2004-01-01

    The effect of fast neutron irradiation with energy up to 35 MeV and integrated fluence of up to 5 x 10**15 cm-2 on the current transport properties of HTS materials Bi-2212 and Bi-2223 has been studied, both at liquid nitrogen and at room temperatures. The samples irradiated were selected after verification of the stability of their superconducting properties after temperature cycling in the range of 77 K - 293 K. It has been found that the irradiation by fast neutrons up to the above dose does not produce a significant degradation of critical current. The effect of room temperature annealing on the recovery of transport properties of the irradiated samples is also reported, as is a preliminary microstructure investigation of the effect of irradiation on the soldered contacts.

  16. Neutron irradiation results for the LHCb silicon tracker data readout system components

    CERN Document Server

    Vollhardt, A

    2003-01-01

    This note reports irradiation data for different components of the LHCb Silicon Tracker data readout system, which will be exposed to neutron fluences due to their location in the readout link service box on the tracking station frame. The components were part of a neutron irradiation campaign in April 2003 at the Prospero reactor at CEA Valduc (France) and were exposed to fluences 5 to 100 times higher than the expected fluences at the experiment. For all tested components, minor or no influence on device performance was measured. We therefore consider the tested components to be compatible with the expected neutron fluences at the foreseen locations in the LHCb experiment.

  17. The design of a multisource americium-beryllium (Am-Be) neutron irradiation facility using MCNP for the neutronic performance calculation.

    Science.gov (United States)

    Sogbadji, R B M; Abrefah, R G; Nyarko, B J B; Akaho, E H K; Odoi, H C; Attakorah-Birinkorang, S

    2014-08-01

    The americium-beryllium neutron irradiation facility at the National Nuclear Research Institute (NNRI), Ghana, was re-designed with four 20 Ci sources using Monte Carlo N-Particle (MCNP) code to investigate the maximum amount of flux that is produced by the combined sources. The results were compared with a single source Am-Be irradiation facility. The main objective was to enable us to harness the maximum amount of flux for the optimization of neutron activation analysis and to enable smaller sample sized samples to be irradiated. Using MCNP for the design construction and neutronic performance calculation, it was realized that the single-source Am-Be design produced a thermal neutron flux of (1.8±0.0007)×10(6) n/cm(2)s and the four-source Am-Be design produced a thermal neutron flux of (5.4±0.0007)×10(6) n/cm(2)s which is a factor of 3.5 fold increase compared to the single-source Am-Be design. The criticality effective, k(eff), of the single-source and the four-source Am-Be designs were found to be 0.00115±0.0008 and 0.00143±0.0008, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Decommissioning of an Irradiator MPX-γ - 25M and a neutron Irradiator

    International Nuclear Information System (INIS)

    Soguero, Dania; Guerra, Mercedes; Prieto, Enrique; Desdin, Luis

    2013-01-01

    In this paper a technology is developed with its procedures in radiation protection to ensure the safety of the process of decommissioning of two irradiators. Both processes are described, the process of decommissioning of a neutron Irradiator 4. 44·10 11 Bq, employed in the vegetal radio mutagenesis, and disassembling of an installation of gamma irradiation of 3.33 * 10 12 Bq, self-shielded of category I, model MPX - γ - 25 M. The specific objectives are: a) identify aspects of the contractual assurance, of human and technical resources, b) to evaluate the radiological situation of the process and c) analyze the potential radiological extraordinary events in each of the steps of the process, ensuring the right answers. Evaluation of radiological successful events described can be considered as reference to address the process of disassembling of other similar irradiators

  19. Study of boron carbide evolution under neutron irradiation; Contribution a l'etude de l'evolution du carbure de bore sous irradiation neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Simeone, D. [CEA/Saclay, Dept. de Mecanique et de Technologie (DMT), 91 - Gif-sur-Yvette (France)]|[Universite Blaise Pascal, Clermont-Ferrand II, (CNRS), 63 - Aubiere (France)

    1999-07-01

    Owing to its high neutron efficiency, boron carbide (B{sub 4}C) is used as a neutron absorber in control rods of nuclear plants. Its behaviour under irradiation has been extensively studied for many years. It now seems clear that brittleness of the material induced by the {sup 10}B(n,{alpha}){sup 7}Li capture reaction is due to penny shaped helium bubbles associated to a high strain field around them. However, no model explains the behaviour of the material under neutron irradiation. In order to build such a model, this work uses different techniques: nuclear microprobe X-ray diffraction profile analysis and Raman and Nuclear Magnetic Resonance Spectroscopy to present an evolution model of B{sub 4}C under neutron irradiation. The use of nuclear reactions produced by a nuclear microprobe such as the {sup 7}Li(p,p'{gamma}){sup 7}Li reaction, allows to measure lithium profile in B{sub 4}C pellets irradiated either in Pressurised Water Reactors or in Fast Breeder Reactors. Examining such profiles enables us to describe the migration of lithium atoms out of B{sub 4}C materials under neutron irradiation. The analysis of X-ray diffraction profiles of irradiated B{sub 4}C samples allows us to quantify the concentrations of helium bubbles as well as the strain fields around such bubbles.Furthermore Raman spectroscopy studies of different B{sub 4}C samples lead us to propose that under neutron irradiation. the CBC linear chain disappears. Such a vanishing of this CBC chain. validated by NMR analysis, may explain the penny shaped of helium bubbles inside irradiated B{sub 4}C. (author)

  20. Metal ion protection of DNA to fast neutron irradiation

    International Nuclear Information System (INIS)

    Constantinescu, B.; Bugoi, R.; Radulescu, I.; Radu, L.

    1998-01-01

    The most important effects of the ionising radiation are the single and double strand breaks (SSB and DBS), modifications of the DNA bases and deoxyribose, as well as the occurrence of alkali and heat labile sites (revealed as strand breaks after alkaline or thermic treatment of irradiated DNA). The ionising particles can have either direct effects on the DNA constituents or indirect effects, mediated by the OH - radicals, produced by water radiolysis. The occurrence of SSB and DSB in the chromatin DNA strands is supposed to hinder the DNA-dye complex formation. Usually, the dyes present different fluorescence parameters in the two possible states, so one can correlate the lifetime or the quantum yield with the extent of the damage. We took into account the protective effect offered both by histones, which behave as 'scavenger molecules' for OH - radicals and by the high compactness of DNA chromatin. Similar protective effects might be the results of the metallic ion addition which triggers some conformational transitions of the chromatin DNA towards a highly compacted structure. In this paper we present a study of the complexes of fast neutron irradiated chromatin with proflavine. Fluorimetric and time resolved spectroscopic determinations (single photon counting method) of chromatin-Pr complexes were realised. Information regarding the chromatin protein damage were obtained by monitoring the fluorescence of Trp. The chromatin was irradiated (20-100 Gy) with fast neutrons, obtained by the reaction of 13.5 MeV deuterons on a thick beryllium target at the IFIN-HH U-120 Cyclotron. The dose mean lineal energy in water at the point of interest was 50 keV/m and the mean dose rate was 1.5 Gy/min. By fluorescence determinations, changes of the Pr intercalation parameters in fast neutron irradiated chromatin DNA have been observed. Fluorescence techniques provide valuable information on the binding equilibrium by considering the radiation deexcitation of the complex. The

  1. Biomedical irradiation system for boron neutron capture therapy at the Kyoto University Reactor

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kanda, K.; Ujeno, Y.; Ishida, M.R.

    1990-01-01

    Physics studies related to radiation source, spectroscopy, beam quality, dosimetry, and biomedical applications using the Kyoto University Reactor Heavy Water Facility are described. Also, described are a Nickel Mirror Neutron Guide Tube and a Super Mirror Neutron Guide Tube that are used both for the measurement of boron concentration in phantom and living tissue and for precise measurements of neutron flux in phantom in the presence of both light and heavy water. Discussed are: (1) spectrum measurements using the time of flight technique, (2) the elimination of gamma rays and fast neutrons from a thermal neutron irradiation field, (3) neutron collimation without producing secondary gamma rays, (4) precise neutron flux measurements, dose estimation, and the measurement of boron concentration in tumor and its periphery using guide tubes, (5) the dose estimation of boron-10 for the first melanoma patient, and (6) special-purpose biological irradiation equipment. Other related subjects are also described

  2. Biomedical irradiation system for boron neutron capture therapy at the Kyoto University reactor

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kanda, K.; Ujeno, Y.; Ishida, M.R.

    1990-01-01

    Physics studies related to radiation source, spectroscopy, beam quality, dosimetry, and biomedical applications using the Kyoto University Reactor Heavy Water Facility are described. Also, described are a Nickel Mirror Neutron Guide Tube and a Super Mirror Neutron Guide Tube that are used both for the measurement of boron concentration in phantom and living tissue and for precise measurements of neutron flux in phantom in the presence of both light and heavy water. Discussed are: (1) spectrum measurements using the time of flight technique, (2) the elimination of gamma rays and fast neutrons from a thermal neutron irradiation field, (3) neutron collimation without producing secondary gamma rays, (4) precise neutron flux measurements, dose estimation, and the measurement of boron concentration in tumor and its periphery using guide tubes, (5) the dose estimation of boron-10 for the first melanoma patient, and (6) special-purpose biological irradiation equipment. Other related subjects are also described

  3. Measuring method for effective neutron multiplication factor upon containing irradiated fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Makoto; Mitsuhashi, Ishi; Sasaki, Tomoharu.

    1993-01-01

    A portion of irradiated fuel assemblies at a place where a reactivity effect is high, that is, at a place where neutron importance is high is replaced with standard fuel assemblies having a known composition to measure neutron fluxes at each of the places. An effective composition at the periphery of the standard fuel assemblies is determined by utilizing a calibration curve determined separately based on the composition and neutron flux values of the standard assemblies. By using the calibration curve determined separately based on this composition and the known composition of the standard fuel assemblies, an effective neutron multiplication factor for the fuel containing portion containing the irradiated fuel assemblies is recognized. Then, subcriticality is ensured and critical safety upon containing the fuel assemblies can be secured quantitatively. (N.H.)

  4. Surface Properties of a Nanocrystalline Fe-Ni-Nb-B Alloy After Neutron Irradiation

    Science.gov (United States)

    Pavùk, Milan; Sitek, Jozef; Sedlačková, Katarína

    2014-09-01

    The effect of neutron radiation on the surface properties of the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy was studied. Firstly, amorphous (Fe0.25Ni0.75)81Nb7B12 ribbon was brought by controlled annealing to the nanocrystalline state. After annealing, the samples of the nanocrystalline ribbon were irradiated in a nuclear reactor with neutron fluences of 1×1016cm-2 and 1 × 1017cm-2 . By utilizing the magnetic force microscopy (MFM), topography and a magnetic domain structure were recorded at the surface of the ribbon-shaped samples before and after irradiation with neutrons. The results indicate that in terms of surface the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy is radiation-resistant up to a neutron fluence of 1 × 1017cm-2 . The changes in topography observed for both irradiated samples are discussed

  5. Modeling of helium bubble nucleation and growth in neutron irradiated boron doped RAFM steels

    International Nuclear Information System (INIS)

    Dethloff, Christian; Gaganidze, Ermile; Svetukhin, Vyacheslav V.; Aktaa, Jarir

    2012-01-01

    Reduced activation ferritic/martensitic (RAFM) steels are promising candidates for structural materials in future fusion technology. In addition to other irradiation defects, the transmuted helium is believed to strongly influence material hardening and embrittlement behavior. A phenomenological model based on kinetic rate equations is developed to describe homogeneous nucleation and growth of helium bubbles in neutron irradiated RAFM steels. The model is adapted to different 10 B doped EUROFER97 based heats, which already had been studied in past irradiation experiments. Simulations yield bubble size distributions, whereby effects of helium generation rate, surface energy, helium sinks and helium density are investigated. Peak bubble diameters under different conditions are compared to preliminary microstructural results on irradiated specimens. Helium induced hardening was calculated by applying the Dispersed Barrier Hardening model to simulated cluster size distributions. Quantitative microstructural investigations of unirradiated and irradiated specimens will be used to support and verify the model.

  6. Modeling of helium bubble nucleation and growth in neutron irradiated boron doped RAFM steels

    Energy Technology Data Exchange (ETDEWEB)

    Dethloff, Christian, E-mail: christian.dethloff@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gaganidze, Ermile [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Svetukhin, Vyacheslav V. [Ulyanovsk State University, Leo Tolstoy Str. 42, 432970 Ulyanovsk (Russian Federation); Aktaa, Jarir [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-07-15

    Reduced activation ferritic/martensitic (RAFM) steels are promising candidates for structural materials in future fusion technology. In addition to other irradiation defects, the transmuted helium is believed to strongly influence material hardening and embrittlement behavior. A phenomenological model based on kinetic rate equations is developed to describe homogeneous nucleation and growth of helium bubbles in neutron irradiated RAFM steels. The model is adapted to different {sup 10}B doped EUROFER97 based heats, which already had been studied in past irradiation experiments. Simulations yield bubble size distributions, whereby effects of helium generation rate, surface energy, helium sinks and helium density are investigated. Peak bubble diameters under different conditions are compared to preliminary microstructural results on irradiated specimens. Helium induced hardening was calculated by applying the Dispersed Barrier Hardening model to simulated cluster size distributions. Quantitative microstructural investigations of unirradiated and irradiated specimens will be used to support and verify the model.

  7. Irradiation of oxyhemoglobin and carboxyhemoglobin by fast neutrons

    International Nuclear Information System (INIS)

    AbdelBaset, M.S.; Salama, A.A.

    1991-01-01

    Oxyhemoglobin (Hbo 2 ) and carboxyhemoglobin (HbCO) (2.6x10 - 5 M) were subjected to Cf neutron fluences in the range of 10 - 10 n/cm . Irradiation caused partial conversion of oxyhemoglobin to methemoglobin according to the exposure doses. Also, the results indicated that the exposure of HbCO to neutrons leads to the cleavage of iron porphyrin-CO to free CO. After cleavage of 100% CO, the effect of neutrons is devoted to the oxidation of hemoglobin to methemoglobin. From the results presented in this study, it is concluded that HbCO is more radioresistant than HbO 2 . The main target in the case of HbCO is the iron-porphyrin-CO.2 tab.3 fig

  8. Electron spin resonance in neutron-irradiated graphite. Dependence on temperature and effect of annealing; Resonance paramagnetique du graphite irradie aux neutrons. Variation en fonction de la temperature et experiences de recuit

    Energy Technology Data Exchange (ETDEWEB)

    Kester, T [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires, Laboratoire de resonance magnetique

    1967-09-01

    The temperature dependence of the electron spin resonance signal from neutron irradiated graphite has been studied. The results lead to an interpretation of the nature of the paramagnetic centers created by irradiation. In annealing experiments on graphite samples, which had been irradiated at low temperature, two annealing peaks and one anti-annealing peak were found. Interpretations are proposed for these peaks. (author) [French] Le graphite irradie aux neutrons a ete etudie par resonance paramagnetique electronique en fonction de la temperature. La nature des centres paramagnetiques crees par irradiation est interpretee a l'aide des resultats. Des experiences de recuit sur des echantillons de graphite irradie a 77 deg. K ont permis de mettre en evidence deux pics de recuit et un pic d'anti-recuit, pour lesquels des interpretations sont proposees. (auteur)

  9. Increase of the electrical resistance of thin copper film due to 14 MeV neutron irradiation

    International Nuclear Information System (INIS)

    Agrawal, S.K.; Kumar, U.; Nigam, A.K.; Singh, S.P.

    1981-01-01

    The variation in the electrical resistance of thin copper film (500 A 0 thick), grown on the glass slide has been measured with increasing 14 MeV neutron irradiation time. The electrical resistance vs irradiation time curve shows an interesting behaviour after an irradiation of 40 minutes. However, there is a net increase in the electrical resistance with increasing neutron dose. The maximum increase in the observed electrical resistance after an irradiation of 115 mins, is 4.45%. The microstructural studies of irradiated film were made using TEM and TED techniques. The TEM patterns up to an irradiation time of 1.00 hr do not show any appreciable change in the microstructure. The TED patterns also do not show any appreciable change in the diffraction pattern up to an irradiation time of 1.0 hr. But after an irradiation time of 1.5 hrs, two extra rings appear in the TED pattern which disappear with increasing neutron irradiation time

  10. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    International Nuclear Information System (INIS)

    Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J.P.

    2011-01-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 x 10 21 m -2 s -1 , ion fluence: 4 x 10 25 m -2 ) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  11. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    Science.gov (United States)

    Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J. P.

    2011-08-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 × 1021 m-2 s-1, ion fluence: 4 × 1025 m-2) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  12. Tensile properties of neutron irradiated solid HIP 316L(N). ITER Task T214, NET deliverable GB6 ECN-5

    International Nuclear Information System (INIS)

    Van Osch, E.V.; Tjoa, G.L.; Boskeljon, J.; Van Hoepen, J.

    1998-05-01

    The tensile properties of neutron irradiated Hot Isostatically Pressed (HIP) joints of type 316L(N) stainless steel (heat PM-130) have been measured. Cylindrical tensile test specimens of 4 mm diameter were irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands, simulating the first wall conditions by a combination of high displacement damage with proportional amounts of helium. The solid HIP specimens were irradiated up to a target dose level of 5 dpa at a temperature of 550K. The damage levels realized range from 3.0 to 4.1 dpa, with helium contents up to 38 appm. Post irradiation testing temperatures ranged from 300 to 700K. The report contains the experimental conditions and summarises the results, which are given in terms of engineering stresses and strains and reduction of area. The main conclusions are that the unirradiated solid-HIP material is very soft, assumingly due to the relatively large grain size. Neutron irradiation induces both hardening and reduction of ductility, similar to the behaviour of 316L(N) plate. No failures related to debonding were observed for the tests of the unirradiated samples, however one of eight tested irradiated specimens fractured in the HIP joint, showing a flat fracture surface and a low reduction of area. 6 refs

  13. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Takaaki, E-mail: koyanagit@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kumar, N.A.P. Kiran [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hwang, Taehyun [Tohoku University, Sendai, 980-8579 (Japan); Garrison, Lauren M.; Hu, Xunxiang [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Snead, Lance L. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2017-07-15

    Microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ∼90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ∼90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ∼1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- and Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.

  14. Irradiation test of HAFM and tag gas samples at the standard neutron field of 'YAYOI'

    International Nuclear Information System (INIS)

    Iguchi, Tetsuo

    1997-03-01

    To check the accuracy of helium accumulation neutron fluence monitors (HAFM) as new technique for fast reactor neutron dosimetry and the applicability of tag gas activation analysis to fast reactor failed fuel detection, their samples were irradiated at the standard neutron field of the fast neutron source reactor 'YAYOI' (Nuclear Engineering Research Laboratory, University of Tokyo). Since October in 1996, the HAFM samples such as 93% enriched boron (B) powders of 1 mg and natural B powders of 10 mg contained in vanadium (V) capsule were intermittently irradiated at the reactor core center (Glory hole: Gy) and/or under the leakage neutron field from the reactor core (Fast column: FC). In addition, new V capsules filled with enriched B of 40 mg and Be of 100 mg, respectively, were put into an experimental hole through the blanket surrounding the core. These neutron fields were monitored by the activation foils consisting of Fe, Co, Ni, Au, 235 U, 237 Np etc., mainly to confirm the results obtained from 1995's preliminary works. In particular, neutron flux distributions in the vicinity of irradiated samples were measured in more detail. At the end of March in 1997, the irradiated neutron fluence have reached the goal necessary to produce the detectable number of He atoms more than ∼10 13 in each HAFM sample. Six kinds of tag gas samples, which are the mixed gases of isotopically adjusted Xe and Kr contained in SUS capsules, were separately irradiated three times at Gy under the neutron fluence of ∼10 16 n/cm 2 in average. After irradiation, γ-ray spectra were measured for each sample. Depending on the composition of tag gas mixtures, the different patterns of γ-ray peak spectra from 79 Kr, 125 Xe, etc. produced through tag gas activation were able to be clearly identified. These experimental data will be very useful for the benchmark test of tag gas activation calculation applied to the fast reactor failed fuel detection. (author)

  15. Overview of microstructural evolution in neutron-irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1993-01-01

    Austenitic stainless steels are important structural materials common to several different reactor systems, including light water and fast breeder fission, and magnetic fusion reactors (LWR, FBR, and MFR, respectively). The microstructures that develop in 300 series austenitic stainless steels during neutron irradiation at 60-700 C include combinations of dislocation loops and networks, bubbles and voids, and various kinds of precipitate phases (radiation-induced, or -enhanced or -modified thermal phases). Many property changes in these steels during neutron irradiation are directly or indirectly related to radiation-induced microstructural evolution. Even more important is the fact that radiation-resistance of such steels during either FBR or MFR irradiation is directly related to control of the evolving microstructure during such irradiation. The purpose of this paper is to provide an overview of the large and complex body of data accumulated from various fission reactor irradiation experiments conducted over the many years of research on microstructural evolution in this family of steels. The data can be organized into several different temperature regimes which then define the nature of the dominant microstructural components and their sensitivities to irradiation parameters (dose, helium/dpa ratio, dose rate) or metallurgical variables (alloy composition, pretreatment). The emphasis in this paper will be on the underlying mechanisms driving the microstructure to evolve during irradiation or those enabling microstructural stability related to radiation resistance. (orig.)

  16. Neutron metrology in the HFR. Steel irradiation R139-697/698

    International Nuclear Information System (INIS)

    Hoving, A.H.; Voorbraak, W.P.

    1996-06-01

    The experiment R139-697/698, for testing the austenitic stainless steel type AISI-316 TIG, has been irradiated in the HFR Petten. This report presents the final metrology results obtained from activation monitors in the specimen holders, coded as R139/697 and R139/698. Data about the helium production as well as the number of displacements per atom are also included. The irradiation conditions for this experiment, carried out in a TRIO type capsule in HFR position F2, are as close as possible relevant for the candidate materials which will be used for the first wall of the NET (Next European Torus). The main results of the thermal and fast neutron fluence mesurements are presented in table 2 and 3 as well as in figures 3 and 4. (orig.)

  17. National Low-Temperature Neutron Irradiation Facility (NLTNIF). The status of development

    International Nuclear Information System (INIS)

    Coltman, R.R. Jr.; Kerchner, H.R.; Klabunde, C.E.; Young, F.W. Jr.

    1985-12-01

    In May 1983, the Department of Energy authorized the establishment of a National Low-Temperature Neutron Irradiation Facility (NLTNIF) at ORNL's Bulk Shielding Reactor (BSR). The NLTNIF, which will be available for qualified experiments at no cost to users, will provide a combination of high radiation intensities and special environmental and testing conditions that have not been previously available in the US. Since the DOE authorization, work has proceeded on the design and construction of the new facility without interruption. This report describes the present status of the development of the NLTNIF and the anticipated schedule for completion and performance testing. There is a table of the major specifications and capabilities and a schematic layout of the irradiation cryostate for design and dimensioning of test and experiment assemblies

  18. Defects investigation in neutron irradiated reactor steels by positron annihilation

    International Nuclear Information System (INIS)

    Slugen, V.

    2003-01-01

    Positron annihilation spectroscopy (PAS) based on positron lifetime measurements using the Pulsed Low Energy Positron System (PLEPS) was applied to the investigation of defects of irradiated and thermally treated reactor pressure vessel (RPV) steels. PLEPS results showed that the changes in microstructure of the RPV-steel properties caused by neutron irradiation and post-irradiation heat treatment can be well detected. From the lifetime measurements in the near-surface region (20-550 nm) the defect density in Russian types of RPV-steels was calculated using the diffusion trapping model. The post-irradiation heat treatment studies performed on non-irradiated specimens are also presented. (author)

  19. Development of a neutron irradiation device with a cooled crystal filter: Radiation physical properties and applications in in vivo irradiations

    International Nuclear Information System (INIS)

    Braetter, P.; Galinke, E.; Gatschke, W.; Gawlik, D.; Roesick, U.

    1979-01-01

    The radiation-physical and geometrical properties of a neutron-beam, collimated with a Bi-crystal filter were investigated at the reactor BER II. The influence of the crystal temperature as well as the actions of a reflector and a collimator on neutron flux-density and neutron field of the thermal neutrons were investigated. The dose contributions of the thermal, epithermal and fast neutrons as well as γ-radiation was determined by activation of the sample respective with TLD-measurements. The influence of irradiation and measurement geometry on the sensitivity and detection probability was investigated by means of phantom irradiations. The method prooved to be suitable, to detect changes of the Ca-content in a rat hind leg by about 10%. In investigations on animal groups of about 10 animals a threshold of detectability for changes of the ca-content is to be expected by about 4%. In a further group experiment it was found, that even in the case of multiple radiation the procedure of irradiation and measurement was not followed by a significant change in the Ca-content of the hind legs of the testing animals. (orig.) [de

  20. Model of defect reactions and the influence of clustering in pulse-neutron-irradiated Si

    International Nuclear Information System (INIS)

    Myers, S. M.; Cooper, P. J.; Wampler, W. R.

    2008-01-01

    Transient reactions among irradiation defects, dopants, impurities, and carriers in pulse-neutron-irradiated Si were modeled taking into account the clustering of the primal defects in recoil cascades. Continuum equations describing the diffusion, field drift, and reactions of relevant species were numerically solved for a submicrometer spherical volume, within which the starting radial distributions of defects could be varied in accord with the degree of clustering. The radial profiles corresponding to neutron irradiation were chosen through pair-correlation-function analysis of vacancy and interstitial distributions obtained from the binary-collision code MARLOWE, using a spectrum of primary recoil energies computed for a fast-burst fission reactor. Model predictions of transient behavior were compared with a variety of experimental results from irradiated bulk Si, solar cells, and bipolar-junction transistors. The influence of defect clustering during neutron bombardment was further distinguished through contrast with electron irradiation, where the primal point defects are more uniformly dispersed

  1. Neutron irradiated uranium silicides studied by neutron diffraction and Rietveld analysis

    International Nuclear Information System (INIS)

    Birtcher, R.C.; Mueller, M.H.; Richardson, J.W. Jr.; Faber, J. Jr.

    1989-11-01

    Uranium silicides have been considered for use as reactor fuels in both high power and low enrichment applications. However, U 3 Si was found to become amorphous under irradiation and to become mechanically unstable to rapid growth by plastic flow. U 2 Si 2 appears to be stable against amorphization at low displacement rates, but the extent of this stability is uncertain. Although the mechanisms responsible for plastic flow in U 3 Si and other amorphous systems are unknown, as is the importance of crystal structure for amorphization, it may not be surprising that these materials amorphize, in light of the fact that many radioactive nuclide - containing minerals are known to metaminctize (lose crystallinity) under irradiation. The present experiment follows the detailed changes in the crystal structures of U 3 Si and U 3 Si 2 introduced by neutron bombardment and subsequent uranium fission at room temperature. U-Si seems the ideal system for a neutron diffraction investigation since the crystallographic and amorphous forms can be studied simultaneously by combining conventional Rietveld refinement of the crystallographic phases with Fourier-filtering of the non-crystalline scattering component

  2. Studsvik thermal neutron facility

    International Nuclear Information System (INIS)

    Pettersson, O.A.; Larsson, B.; Grusell, E.; Svensson, P.

    1992-01-01

    The Studsvik thermal neutron facility at the R2-0 reactor originally designed for neutron capture radiography has been modified to permit irradiation of living cells and animals. A hole was drilled in the concrete shielding to provide a cylindrical channel with diameter of 25.3 cm. A shielding water tank serves as an entry holder for cells and animals. The advantage of this modification is that cells and animals can be irradiated at a constant thermal neutron fluence rate of approximately 10 9 n cm -2 s -1 (at 100 kW) without stopping and restarting the reactor. Topographic analysis of boron done by neutron capture autoradiography (NCR) can be irradiated under the same conditions as previously

  3. Improvement of radiation response characteristic on CdTe detectors using fast neutron irradiation

    International Nuclear Information System (INIS)

    Miyamaru, Hiroyuki; Takahashi, Akito; Iida, Toshiyuki

    1999-01-01

    The treatment of fast neutron pre-irradiation was applied to a CdTe radiation detector in order to improve radiation response characteristic. Electron transport property of the detector was changed by the irradiation effect to suppress pulse amplitude fluctuation in risetime. Spectroscopic performance of the pre-irradiated detector was compared with the original. Additionally, the pre-irradiated detector was employed with a detection system using electrical signal processing of risetime discrimination (RTD). Pulse height spectra of 241 Am, 133 Ba, and 137 Cs gamma rays were measured to examine the change of the detector performance. The experimental results indicated that response characteristic for high-energy photons was improved by the pre-irradiation. The combination of the pre-irradiated detector and the RTD processing was found to provide further enhancement of the energy resolution. Application of fast neutron irradiation effect to the CdTe detector was demonstrated. (author)

  4. Electrical properties of InP irradiated by fast neutrons of a nuclear reactor

    International Nuclear Information System (INIS)

    Kolin, N.G.; Merkurisov, D.I.; Solov'ev, S.P.

    2000-01-01

    Electrophysical properties of InP single crystalline samples with different initial concentration of charge carriers have been studied in relation to irradiation conditions with fast neutrons of a nuclear reactor and subsequent heat treatments within the temperature range of 20-900 deg C. It has been shown that changes of the properties depend on the initial doping level. The annealing in the temperature range mentioned above results in the elimination of radiation defects. This makes possible to use the nuclear doping method for InP samples. In this respect the contribution of intermediate neutron reactions to the whole effect of the InP nuclear doping is estimated to be ∼ 10% [ru

  5. Energy spectra of primary knock-on atoms under neutron irradiation

    International Nuclear Information System (INIS)

    Gilbert, M.R.; Marian, J.; Sublet, J.-Ch.

    2015-01-01

    Materials subjected to neutron irradiation will suffer from a build-up of damage caused by the displacement cascades initiated by nuclear reactions. Previously, the main “measure” of this damage accumulation has been through the displacements per atom (dpa) index, which has known limitations. This paper describes a rigorous methodology to calculate the primary atomic recoil events (often called the primary knock-on atoms or PKAs) that lead to cascade damage events as a function of energy and recoiling species. A new processing code SPECTRA-PKA combines a neutron irradiation spectrum with nuclear recoil data obtained from the latest nuclear data libraries to produce PKA spectra for any material composition. Via examples of fusion relevant materials, it is shown that these PKA spectra can be complex, involving many different recoiling species, potentially differing in both proton and neutron number from the original target nuclei, including high energy recoils of light emitted particles such as α-particles and protons. The variations in PKA spectra as a function of time, neutron field, and material are explored. The application of PKA spectra to the quantification of radiation damage is exemplified using two approaches: the binary collision approximation and stochastic cluster dynamics, and the results from these different models are discussed and compared. - Highlights: • Recoil cross-section matrices under neutron irradiation are generated. • Primary knock-on atoms (PKA) spectra are calculated for fusion relevant materials. • Variation in PKA spectra due to changes in geometry are considered. • Inventory simulations to consider time-evolution in PKA spectra. • Damage quantification using damage functions from different approximations.

  6. Study of supersaturation of defects under neutron irradiation by Zener relaxation

    International Nuclear Information System (INIS)

    Gonzalez, Hector C.; Justus, Francisco J.W.

    2004-01-01

    Vacancy supersaturation in dynamic equilibrium under fast neutron irradiation could be determined by anelastic relaxation. This phenomenon is particularly noticeable in some substitutional binary alloys. Relaxation is due to the reordering of atoms pairs under a stress, being a local reordering at the atomic scale. Relaxation time (τ) is inversely proportional to the vacancy concentration (Cv) and decreases under irradiation because a dynamical equilibrium of vacancy concentration, higher than thermodynamic equilibrium, is established. Theoretical models allow estimating the magnitude of that supersaturation. Determinations of τ at different temperatures, with and without fast neutron irradiations, were made with an 'in situ' device placed in the high temperature loop in the RA1 CAC-CNEA reactor. An alloy Au-30% Ni was used, since it presents an appreciable Zener effect. The measurements were performed in a spring-shaped specimen in order to minimize temperature and flux gradients. An Arrhenius plot of τ was obtained, and it was observed that for temperatures lower than 220 C degrees a vacancy supersaturation exists. The lowest temperature of our experiments was 190 C degrees. A value of τ at this temperature was three times lower under irradiations. A plot of τ vs. fast neutron fluence (φ f t) at the irradiation temperature T= 203 C degrees was obtained. An increase of τ was observed. After an annealing at T = 280 C degrees, the value of τ recovers the value corresponding to the unirradiated case. This fact suggests that the loops produced by irradiation act as defect sinks. (author) [es

  7. Effect of high fluence neutron irradiation on transport properties of thermoelectrics

    Science.gov (United States)

    Wang, H.; Leonard, K. J.

    2017-07-01

    Thermoelectric materials were subjected to high fluence neutron irradiation in order to understand the effect of radiation damage on transport properties. This study is relevant to the NASA Radioisotope Thermoelectric Generator (RTG) program in which thermoelectric elements are exposed to radiation over a long period of time in space missions. Selected n-type and p-type bismuth telluride materials were irradiated at the High Flux Isotope Reactor with a neutron fluence of 1.3 × 1018 n/cm2 (E > 0.1 MeV). The increase in the Seebeck coefficient in the n-type material was partially off-set by an increase in electrical resistivity, making the power factor higher at lower temperatures. For the p-type materials, although the Seebeck coefficient was not affected by irradiation, electrical resistivity decreased slightly. The figure of merit, zT, showed a clear drop in the 300-400 K range for the p-type material and an increase for the n-type material. Considering that the p-type and n-type materials are connected in series in a module, the overall irradiation damages at the device level were limited. These results, at neutron fluences exceeding a typical space mission, are significant to ensure that the radiation damage to thermoelectrics does not affect the performance of RTGs.

  8. DT fusion neutron irradiation of ORNL magnesium oxide crystals and BNL--LASL superconductor wires

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1978-01-01

    The DT fusion neutron irradiation of two ORNL magnesium oxide crystals and eleven BNL-LASL superconductor wires is described. The sample position and neutron dose record are given. The maximum neutron fluence on any sample was 2.16 x 10 16 neutrons/cm 2

  9. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Masashi, E-mail: Masashi.Shimada@inl.gov [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Hatano, Y. [Hydrogen Isotope Research Center, University of Toyama, Toyama 930-8555 (Japan); Calderoni, P. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Oda, T. [Department of Nuclear Engineering and Management, The University of Tokyo, Tokyo 113-8656 (Japan); Oya, Y. [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka 422-8529 (Japan); Sokolov, M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhang, K. [Hydrogen Isotope Research Center, University of Toyama, Toyama 930-8555 (Japan); Cao, G. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Kolasinski, R. [Hydrogen and Metallurgical Science Department, Sandia National Laboratories, Livermore, CA 94551 (United States); Sharpe, J.P. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2011-08-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 x 10{sup 21} m{sup -2} s{sup -1}, ion fluence: 4 x 10{sup 25} m{sup -2}) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  10. Development of the irradiation facilities for silicon neutron doping in France

    International Nuclear Information System (INIS)

    Breant, P.; Cherruau, F.; Genthon, J.P.

    1980-08-01

    Irradiation facilities for silicon irradiations in France may be classified in two categories: on the one hand the devices directly implemented in the light water of α swimming-pool reactor and on the other hand the devices implemented in a neutronic medium -heavy water here- providing a high value of the thermal to fast neutron flux ratio. The tools used in France for silicon neutron doping are recapitulated according to this classification in tables, with their main characteristics; in addition it is specified that all existing facilities are instrumented with ingot rotation, flux monitoring, automatic time integration and are associated with handling, storage, cleaning, decontamination and activity control equipment. Finally, concerning the irradiation capacities given in these tables, it is pointed out that they are realistic and present capacities, for presently running devices and according to the way they are used on an average; that is to say that they take into account the real average dimensions of the ingot supplied and not the maximum possible loading with the maximum diameters. Further extensions of capacity are possible if need be by the installation of supplementary standard irradiation modules in the pools. Particular attention will given to the new developments: -new irradiaton facilities with a high Oth/Or ratio being developed in the new research reactor ORPHEE: - developments in the OSIRIS H 2 O reactor. In particular and in connection with the facilities developped in OSIRIS, neutronic problems typical and swimming-pool reactors will be contemplated and the adopted solutions given

  11. In-reactor precipitation and ferritic transformation in neutron-irradiated stainless steels

    International Nuclear Information System (INIS)

    Porter, D.L.; Wood, E.L.

    1979-01-01

    Ferritic transformation (γ→α) was observed in type 304L, 20% cold-worked AISI 316, and solution-annealed AISI 316 stainless steels when subjected to fast neutron irradiation. Each material demonstrated an increasing propensity for transformation with increasing irradiation temperature between 40 and 550 0 C. Irradiation-induced segregation of Ni solute to precipitates was found not to be a controlling factor in the transformation kinetics in 304L. Similar composition data from 316 materials demonstrates a much greater dependence of matrix Ni depletion by precipitation reactions during neutron irradiation. The 316 data establishes a strong link between such depletion and the observed γ→α transformation. Moreover, the lack of correlation between precipitate-related Ni depletion and the γ→α transformation in 304L can be related to the fact that irradiation-induced voids nucleate very quickly in 304L steel during irradiation. These voids present competing sites for Ni segregation through a defect drag mechanism, and hence Ni segregates to voids rather than to precipitates, as evidenced by observed stable γ shells around voids in areas of complete transformation. (Auth.)

  12. Impurities effect on the swelling of neutron irradiated beryllium

    International Nuclear Information System (INIS)

    Donne, M.D.; Scaffidi-Argentina, F.

    1995-01-01

    An important factor controlling the swelling behaviour of fast neutron irradiated beryllium is the impurity content which can strongly affect both the surface tension and the creep strength of this material. Being the volume swelling of the old beryllium (early sixties) systematically higher than that of the more modem one (end of the seventies), a sensitivity analysis with the aid of the computer code ANFIBE (ANalysis of Fusion Irradiated BEryllium) to investigate the effect of these material properties on the swelling behaviour of neutron irradiated beryllium has been performed. Two sets of experimental data have been selected: the first one named Western refers to quite recently produced Western beryllium, whilst the second one, named Russian refers to relatively old (early sixties) Russian beryllium containing a higher impurity rate than the Western one. The results obtained with the ANFIBE Code were assessed by comparison with experimental data and the used material properties were compared with the data available in the literature. Good agreement between calculated and measured values has been found

  13. Radioactivity of neutron-irradiated cat's-eye chrysoberyls

    Energy Technology Data Exchange (ETDEWEB)

    Tang, S.M. E-mail: phytsm@leonis.nus.edu.sg; Tay, T.S

    1999-04-02

    The recent report of marketing of radioactive chrysoberyl cat's-eyes in South-East Asian markets has led us to use an indirect method to estimate the threat to health these color-enhanced gemstones may pose if worn close to skin. We determined the impurity content of several cat's-eye chrysoberyls from Indian States of Orissa and Kerala using PIXE, and calculated the radioactivity that would be generated from these impurities and the constitutional elements if a chrysoberyl was irradiated by neutrons in a nuclear reactor for color enhancement. Of all the radioactive nuclides that could be created by neutron irradiation, only four ({sup 46}Sc, {sup 51}Cr, {sup 54}Mn and {sup 59}Fe) would not have cooled down within a month after irradiation to the internationally accepted level of specific residual radioactivity of 2 nCi/g. The radioactivity of {sup 46}Sc, {sup 51}Cr and {sup 59}Fe would only fall to this safe limit after 15 months and that of {sup 54}Mn could remain above this limit for several years.

  14. Perspectives for online analysis of raw material by pulsed neutron irradiation

    Science.gov (United States)

    Bach, Pierre; Le Tourneur, P.; Poumarede, B.

    1997-02-01

    On-line analysis by pulsed neutron irradiation is an example of an advanced technology application of nuclear techniques, concerning real problems in the cement, mineral and coal industries. The most significant of these nuclear techniques is their capability of continuous measurement without contact and without sampling, which can lead to improved control of processes and resultant large financial savings. Compared to Californium neutron sources, the use of electrical pulsed neutron generators allows to obtain a higher signal/noise ratio for a more sensitive measurement, and allows to overcome a number of safety problems concerning transportation, installation and maintenance. An experiment related to a possible new on-line raw material analyzer is described, using a pulsed neutron generator. The key factors contributing to an accurate measurement are related to a suitable generator, to a high count rate gamma ray spectroscopy electronics, and to computational tools. Calculation and results for the optimization of the neutron irradiation time diagram are reported. One of the operational characteristics of such an equipment is related to neutron flux available: it is possible to adjust it to the requested accuracy, i.e. for a high accuracy during a few hours/day and for a lower accuracy the rest of the time. This feature allows to operate the neutron tube during a longer time, and then to reduce the cost of analysis.

  15. Analysis of microstress in neutron irradiated polyester fibre by X-ray ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Microstresses developed in the crystallites of polymeric material due to irradiation of high-energy particle causes peak broadening and shifting of X-ray diffraction lines to lower angle. Neutron irradiation significantly changes the material properties by displacement of lattice atoms and the generation of helium.

  16. Effect of preliminary neutron irradiation on helium blistering of 0Kh16N15M3B steel

    International Nuclear Information System (INIS)

    Chernov, I.I.; Kalin, B.A.; Skorov, D.M.; Shishkin, G.N.; Ivanov, M.V.

    1982-01-01

    The method of electron microscopy has been applied to investigate the effect of preliminary neutron irradiation on the OKh16N15M3B steel blistering under irradiation by 20 keV helium ions with (1-10)x10 21 ion/m 2 doses at the temperature below 373 K. It is shown that neutron irradiation shifts critical doses of blister formation and intense scaling towards higher doses. But after the incubation period the erosion of steel preliminary neutron irradiated grows with the increase of helium ion dose above 7x10 21 ion/m 2 . Short-term heating of neutron irradiated samples during 15 min at 1173 K does not practically affect the beginning of intense scaling of the surface

  17. Low-temperature irradiation of niobium with 15-MeV neutrons

    International Nuclear Information System (INIS)

    Kerchner, H.R.; Coltman, R.R. Jr.; Klabunde, C.E.; Sekula, S.T.

    1978-01-01

    Niobium was irradiated at 4.2 K with high energy d-Be neutrons to a fluence of 3.7x10 15 n/cm 2 . The neutrons were generated at the Oak Ridge Isochronous Cyclotron by the breakup reaction of 40-MeV deuterons in a thick Be target. The resulting neutron energy spectrum was broadly peaked near 15 MeV. The 0.012-cm-diameter wire sample (RRR=200) was situated in a uniform transverse magnetic field. The critical current, flux flow resistance, and normal state resistance were measured by using a standard four-terminal technique. The critical current density and the flux flow resistivity were observed to increase with irradiation and to decrease toward the preirradiation values with subsequent isochronal annealing between 4.2 K and 360 K. Using recent theories of flux line lattice deformation, the elementary pinning force is deduced and the result is compared to theoretical calculations. (Auth.)

  18. Fiscal year 1976T (add-on quarter) DT fusion neutron irradiations and dosimetry at the LLL rotating target neutron source

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1977-01-01

    The DT fusion neutron irradiation of more than 90 samples during seven irradiation periods (beam-on time of more than 430.9 hours) is described. Experiments from 15 individuals representing six institutions are summarized. The numbers of UCID dosimetry reports detailing each of the irradiations is given

  19. Study of irradiation damage by fast neutrons in samples of Portland cement

    International Nuclear Information System (INIS)

    Lucki, G.; Rosa Junior, A.A.

    1984-01-01

    The effect of neutron irradiation in samples of Portland cement was evaluated, using the resonance frequency method and pulse velocity of ultra-sound techniques. The samples were divided in three groups: 1) monitoring samples; 2) samples submitted to gamma heating; 3) Irradiated samples. In the sample preparation, it was used the Portland Santa Rita CP 320 cement, and water-cement rate of 0.40 l/Kg. The irradiation was done in the research reactor IEA-R1, at IPEN - CNEN/SP, with an integrated flux of 7.2 x 10 18 n/cm 2 (E approx. 1 MeV). Some damage were detected, due to the neutron flux, and by the thermal effect of gamma heating. (E.G.) [pt

  20. Calculated and experimental definition of neutron-physical and temperature conditions of material testing in the SM reactor

    International Nuclear Information System (INIS)

    Toporova, V.G.; Pimenov, V.V.

    2004-01-01

    Full text: Reactor material science is one of the main scientific directions of the RIAR activities. Particularly, a wide range of materials and products testing under irradiation is performed in reactor facility SM (RF SM). To solve the tasks specified in the technical specification for an experiment, previously, the test conditions are chosen. At the minimum a space-energy distribution of neutrons and heating rate in the materials under test are important as well as temperature conditions of irradiation. The up-to-date software and libraries of nuclear data allow modeling of neutron-material interaction processes to a considerable degree of details and also obtaining a true neutron distribution by calculation methods. As a result of a great scope of work on verification, a calculation model, developed on the basis of a package of applied software MCU (option MCU-4/SM22) and analogue Monte-Carlo method, is widely used at RIAR. The MCU geometric module makes it possible to model the SM core and reflector in three-dimensional geometry with sufficient accuracy and to describe all elements of the channel structure and irradiation device with specimens. The calculation model of RF SM is tested using the results of activation experiments performed in its critical assembly, geometric parameters and structural materials of which correspond completely with the prototype. The difference in the calculated and experimental values is less than 2.5%. Possibilities of the calculated estimation of operating temperature conditions of absorbing elements under irradiation should be considered separately. As the conducted calculations and their analysis show, to define the fuel column temperature correctly, one needs reliable data on thermal-physical parameters of materials, especially ceramic ones, such as titanium, dysprosium or boron carbide. This is very important for boron carbide-absorbing elements for actually all their operation parameters (such as: gas release, swelling

  1. Resistivity recovery of neutron-irradiated and cold-worked thorium

    International Nuclear Information System (INIS)

    Tang, J.T.

    1976-01-01

    Recovery of neutron-irradiated and cold-worked thorium was studied using electrical resistivity measurements. Thorium wires containing 30 and 300 wt ppM carbon were irradiated to fast neutron fluence of 1.3 x 10 18 n/cm 2 (E greater than 0.1 MeV). Another group of thorium wires containing 45, 300 and 600 wt ppM carbon were laterally compressed 5 to 40 percent. Both irradiation and cold-working were performed at liquid nitrogen temperature. The induced resistivity was found to increase with carbon content for both treatments. Isochronal recovery studies were performed in the 120--420 0 K temperature range. Two recovery stages (II and III) were found for both cold-worked and irradiated samples. In all cases the activation energies were determined by use of the ratio-of-slope method. Consistent results were observed for both irradiated and cold-worked specimens within the experimental error in the two stages. Other methods were also used in determining the activation energy of stage III for irradiated samples. All analysis methods indicated that the activation energies decreased with increasing carbon content for differently treated specimens. Possible reasons for such behavior are discussed. The annealing data obtained do not fit a simple chemical rate equation but follow the empirical exponential equation proposed by Avrami. A model of detrapping of interstitials from impurities is suggested for stage II recovery. On the basis of the observed low activation energy and high retention of defects above stage III, a divacancy migration model is proposed for stage III recovery

  2. Neutron Field Characterization of Irradiation Locations Applied to the Slovenian TRIGA Reactor

    International Nuclear Information System (INIS)

    Barbot, Loic; Domergue, Christophe; Breaud, Stephane; Destouches, Christophe; Villard, Jean-Francois; Snoj, Luka; Stancar, Ziga; Radulovic, Vladimir; Trkov, Andrej

    2013-06-01

    This work deals with several neutron flux measurement instruments and particle transport calculations combined in a method to assess the neutron field in experimental locations in nuclear reactor core or reflector. First test of this method in the TRIGA Mark II of Slovenia led to the assessment of three energy groups neutron fluxes in central irradiation locations within reactor core. (authors)

  3. In vitro neutron irradiation of glioma and endothelial cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Menichetti, L. [Department of PET and Radiopharmaceutical Chemistry, C.N.R. Institute of Clinical Physiology, Pisa (Italy)], E-mail: luca.menichetti@ifc.cnr.it; Gaetano, L. [University Scuola Superiore Sant' Anna, Pisa (Italy); Zampolli, A.; Del Turco, S. [Department of PET and Radiopharmaceutical Chemistry, C.N.R. Institute of Clinical Physiology, Pisa (Italy); Ferrari, C. [University of Pavia, Department of Surgery, Laboratory of experimental Surgery, Pavia (Italy); Bortolussi, S.; Stella, S.; Altieri, S. [University of Pavia, Department of Nuclear Physics, Pavia (Italy); National Institute for Nuclear Physics (INFN), Section of Pavia (Italy); Salvadori, P.A. [Department of PET and Radiopharmaceutical Chemistry, C.N.R. Institute of Clinical Physiology, Pisa (Italy); Cionini, L. [Unit of Radiotherapy, AOUP-University Hospital, Pisa (Italy)

    2009-07-15

    To fully develop its potential boron neutron capture therapy (BNCT) requires the combination of a suitable thermal/epithermal neutron flux together with a selective intake of {sup 10}B-boron nuclei in the target tissue. The latter condition is the most critical to be realized as none of the boron carriers used for experimental or clinical purposes proved at the moment an optimal selectivity for cancer cells compared to normal cells. In addition to complex physical factors, the assessment of the intracellular concentration of boron represent a crucial parameter to predict the dose delivered to the cancer cells during the treatment. Nowadays the dosimetry calculation and then the prediction of the treatment effectiveness are made using Monte Carlo simulations, but some of the model assumption are still uncertain: the radiobiological dose efficacy and the probability of tumour cell survival are crucial parameters that needs a more reliable experimental approach. The aim of this work was to evaluate the differential ability of two cell lines to selectively concentrate the boron-10 administered as di-hydroxyboryl-phenylalanine (BPA)-fructose adduct, and the effect of the differential boron intake on the damage produced by the irradiation with thermal neutrons; the two cell lines were selected to be representative one of normal tissues involved in the active/passive transport of boron carriers, and one of the tumour. Recent in vitro studies demonstrated how BPA is taken by proliferating cells, however the mechanism of BPA uptake and the parameters driving the kinetics of influx and the elimination of BPA are still not clarified. In these preliminary studies we analysed the survival of F98 and human umbilical vein endothelial cells (HUVEC) cells line after irradiation, using different thermal fluencies at the same level of density population and boron concentration in the growing medium prior the irradiation. This is first study performed on endothelium model obtained by

  4. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    International Nuclear Information System (INIS)

    Schwarze, G.E.; Frasca, A.J.

    1994-01-01

    The effects of neutrons and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10 13 n/cm 2 and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are given in this paper. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed

  5. Influence of neutron irradiation on the stability of recipitates in zircaloy: a critical review

    International Nuclear Information System (INIS)

    Lobo, Raquel M.; Andrade, Arnaldo H. P.

    2013-01-01

    The realization of RMB enterprise (Brazilian Multipurpose Reactor) will give the country a powerful tool to investigate the behavior materials subjected to irradiation. Among them, zirconium alloys, used as cladding of nuclear fuel in reactors type LWR. It is know that neutron irradiation can affect the stability of precipitates in zircaloys, generating as a result changes in theirs mechanical properties, important application of this alloys. This paper present a critical review of neutron irradiation effects on microstructural stability of zircaloys (2 and 4). (author)

  6. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  7. Chemical transformations associated with neutronic irradiation of telluric acid

    International Nuclear Information System (INIS)

    Bertet, M.

    1963-01-01

    The chemical transformations which arise from irradiation of telluric acid with neutrons have been studied under several experimental conditions. The effects of the reaction (n, γ ) on Te VI and of the isomeric transitions 131m Te VI → 131 Te and 129m Te VI → 129 Te, and the oxidation states of 131 I formed by β decay of 131 Te have been investigated in detail. The Szilard-Chalmers effect has been put in evidence. Retention (R) depends on the isomeric state of Rd-Te and is higher for the metastable isotopes. R increases with the time of irradiation. R seems to be independent of the medium which is used for dissolving telluric acid irradiated in the solid state. Higher values of R are found if the acid is irradiated in neutral or alkaline solution; irradiation in acid solution leads to lower values for R. Retention for 131 Te VI and 129 Te VI formed by isomeric transition depends on the pH of the solution where this disintegration occurs. For instance, with 129 Te, R is greater in 6 M NaOH (80 per cent) than in 3 M HCI (40 per cent). The relative amounts of the oxidation states of 131 I (reduced fraction (I - , IO - , I 2 ), iodate and periodate) depend on the medium, both if the acid is irradiated in the solid state and it is irradiated in solution. In the first case, the reduced fraction increases from 12 to 89 per cent when the dissolving medium is changed from neutral to 0.8 M HNO 3 . In the second case, the reduced fraction is 90 per cent in neutral or acid solution and 64 per cent in 0.5 M KOH. It has been shown, furthermore, that microamounts of Te VI are formed in certain cases. (author) [fr

  8. Comparison of damage microstructures in neutron-irradiated vanadium and iron

    International Nuclear Information System (INIS)

    Horton, L.L.; Farrell, K.

    1983-01-01

    The cavity morphology and dislocation loop geometry in bcc vanadium are compared with the previously reported observations for neutron-irradiated iron. The specimens were vanadium (V) with 100 wppM of interstitial impurities and vanadium with boron carbide additions (V-B 4 C) which were irradiated to approx. 1 dpa in the same Oak Ridge Research Reactor capsules as the iron specimens

  9. Electrical properties of gallium arsenide irradiated with electrons and neutrons

    International Nuclear Information System (INIS)

    Kol'chenko, T.I.; Lomako, V.M.

    1975-01-01

    A study was made of changes in the electrical properties of GaAs doped with Te, S, Se, Si, Ge, Sn (n 0 approximately 10 16 -10 18 cm -3 ) and irradiated either with 2.5-28 MeV electrons or with fast reactor neutrons. An analysis of changes in the electron density indicated that the rate of carrier removal by electron bombardment was independent of the dopant but was governed by isolated radiation defects. The change in the mobility due to irradiation with 2.5-10 MeV electrons was also governed by isolated defects. When the electron energy was increased to 28 MeV the main contribution to the change in the mobility was made by defect clusters. In the neutron-irradiation case the changes in the carrier density and mobility were mainly due to defect clusters and the nature of changes in the electrical properties was again independent of the dopant

  10. Effect of neutron and gamma irradiation on magnetic bubble memories

    International Nuclear Information System (INIS)

    Cambou, B.

    1981-06-01

    Many years of research preceeded the introduction of magnetic bubble memories (M.B.M.) into the memory components market. They are used as bulk storage memories principally for their non volatile characteristics under irradiation. A physical and technological description of MBM is given in the first part of the text together with the results of work on their vulnerability when subjected to irradiation. Permanent damage caused by neutrons and gamma radiation on thin magnetic layers is then studied. A theoretical analysis on the stability of bubbles based on the results of pulsed laser experiments is given. The stability of the information stored in a commercially available MBM subjected to neutron and gamma irradiation (MBM - TIB 203 of 92 kBits, Texas) is described in the last part of the text. The vulnerability thresholds determined for the MBM are too high for them to be used in a radioactive environment with an improved electronic control system [fr

  11. Effect of phase instabilities on the correlation of nickel ion and neutron irradiation swelling in solution annealed 316 stainless steel

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Lee, E.H.; Sklad, P.S.

    1979-01-01

    Annealed 316 stainless steel specimens were neutron irradiated to establish steady-state microstructures and then subjected to further high temperature irradiations with 4 MeV Ni ions. It is shown that void growth under neutron irradiation is simulated in ion irradiations carried out at approx. 180 0 C above reactor temperature. However, the precipitate microstructure developed during neutron irradiation is unstable during subsequent ion irradiation. As a result, the relative swelling rates at various reactor temperatures are not simulated correctly

  12. Neutron beam irradiation study of workload dependence of SER in a microprocessor

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Sarah E [Los Alamos National Laboratory; Graves, Todd L [Los Alamos National Laboratory; Hong, Ted [STANFORD; Ackaret, Jerry [IBM; Sonny, Rao [IBM; Subhasish, Mitra [STANFORD; Pia, Sanda [IBM

    2009-01-01

    It is known that workloads are an important factor in soft error rates (SER), but it is proving difficult to find differentiating workloads for microprocessors. We have performed neutron beam irradiation studies of a commercial microprocessor under a wide variety of workload conditions from idle, performing no operations, to very busy workloads resembling real HPC, graphics, and business applications. There is evidence that the mean times to first indication of failure, MTFIF defined in Section II, may be different for some of the applications.

  13. Contribution to the study of recoil species produced by potassium ferrocyanide neutron irradiation

    International Nuclear Information System (INIS)

    Meriadec Vernier de Byans, B.

    1969-04-01

    The chemical species produced by potassium ferrocyanide neutron irradiation were separated and identified. The study of their behaviour upon thermal annealing has allowed to establish a scheme of reaction as well as a kinetic treatment of the data. Activation energies are determined in different conditions and the effects of radiation dose, oxygen and water of crystallisation upon the activation energies were studied. Preliminary E.S.R. data and its relevance to the decomposition process is also discussed. (authors) [fr

  14. Temperature dependence of the thermal expansion of neutron-irradiated pyrolytic carbon and graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1988-01-01

    The effects of neutron irradiation and annealing on the temperature dependence of the linear thermal expansion of pyrolytic carbon and graphite were investigated after irradiation at 930-1280 0 C to a maximum neutron fluence of 2.84 x 10 25 m -2 (E > 29 fJ). After irradiation, little change in the thermal expansion of pyrolytic graphite was observed. However, as-deposited pyrolytic carbon showed an increase in thermal expansion in the perpendicular direction, a decrease in the direction parallel to the deposition plane, and also an increase in the anisotropy of the thermal expansion. Annealing at 2000 0 C did not cause any effective changes for irradiated specimens of either as-deposited pyrolytic carbon or pyrolytic graphite. (author)

  15. Physical aspects on the neutron irradiation. 4. Dosimetry with ionization chamber

    International Nuclear Information System (INIS)

    Hiraoka, Takeshi; Takada, Masashi

    2008-01-01

    Absolute measurements of the absorbed dose for irradiation are generally made using ionization chambers, which should be calibrated by the standard radiation source. The neutron dose measurements are not simple since gamma rays always contaminate the neutron flux and a variety of charged particles are induced by neutrons. Following subjects are described: (1) The method by ICRU 45 to estimate total dose of neutrons and gamma ray, (2) The method to measure the neutron dose and the gamma ray dose separately using paired ionization-chambers, and (3) The calibration of ionization chambers. The stability of the standard ionization-chambers is also presented. (K.Y.)

  16. Comparison of swelling for structural materials on neutron and ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, B.A.

    1986-03-01

    The swelling of V-base alloys, Type 316 stainless steel, Fe-25Ni-15Cr alloys, ferritic steels, Cu, Ni, Nb-1% Zr, and Mo on neutron irradiation is compared with the swelling for these materials on ion irradiation. The results of this comparison show that utilization of the ion-irradiation technique provides for a discriminative assessment of the potential for swelling of candidate materials for fusion reactors.

  17. Hematologic status of mice submitted to sublethal total body irradiation with mixed neutron-gamma radiation

    International Nuclear Information System (INIS)

    Herodin, F.; Court, L.

    1989-01-01

    The hematologic status of mice exposed to sublethal whole body irradiation with mixed neutron-gamma radiation (mainly neutrons) is studied. A slight decrease of the blood cell count is still observed below 1 Gy. The recovery of bone marrow granulocyte-macrophage progenitors seems to require more time than after pure gamma irradiation [fr

  18. Response of pancreatic cancer to local irradiation with high-energy neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Lionel; Woodruff, Katherine H.; Hendrickson, Frank R.; Kurup, Parvathy D.; Mansell, Joanne; Awschalom, Miguel; Rosenberg, Ivan; Ten Haken, Randall K.

    1985-09-15

    Seventy-seven patients with locally advanced, nonresectable, biopsy-proven adenocarcinoma of the pancreas were treated by palliative bypass surgery followed by intensive neutron beam irradiation of the primary tumor site. Three dose levels, under 20, 21 to 23, and 24 to 25 Gy, were studied with the use of a treatment plan that included all known disease within a limited target volume, generally under 21. Symptomatic palliation was achieved in the majority of patients. The median survival time was 6 months. One patient remained alive and well without evidence of tumor 5 years after irradiation. Two were free of tumor at autopsy (one had died of intercurrent disease and one of radiation-related complications). A common cause of death was metastatic dissemination. Complication rates were dosedependent; life-threatening complications did not exceed 12% with doses of less than 23 Gy. Autopsies from 19 patients were reviewed. In all, the pancreatic tumor site showed extensive reactive fibrosis. Local control was achieved in two patients, but most had both residual tumor in the pancreas and metastases. Six patients had centrolobular veno-occlusive liver disease. These patients had all received the higher (22–24 Gy) neutron doses. Six patients had hemorrhagic radiation gastroenteritis. Mild skin atrophy and bone marrow hypoplasia were seen in the irradiated volumes. The kidneys and spinal cord showed no radiation effects. The authors conclude that neutron irradiation can provide a good local response with marked regression and fibrosis of the tumor. This response, coupled with many deaths due to metastases, suggests that combined treatment with neutrons and chemotherapy would be worth exploring.

  19. A review of the effect of neutron irradiation on the deformation behaviour of copper and copper alloys

    International Nuclear Information System (INIS)

    Higgy, H.R.

    1976-08-01

    The basic mechanisms of irradiation hardening are described. The effects of neutron dose, alloying and pre-irradiation deformation on the deformation behaviour of neutron-irradiatied copper and its alloys are considered. The discrepancy in the reported data is discussed. Substitutional and interstitial additions are found to influence the rate of irradiation hardening, while pre-irradiation deformation has no influence. The deformation behaviour of copper is found to alter as a result of irradiation and alloying. (author)

  20. A new irradiation method with a neutron filter for silicon neutron transmutation doping at the Japan research reactor no. 3 (JRR-3).

    Science.gov (United States)

    Komeda, Masao; Kawasaki, Kozo; Obara, Toru

    2013-04-01

    We studied a new silicon irradiation holder with a neutron filter designed to make the vertical neutron flux profile uniform. Since an irradiation holder has to be made of a low activation material, we applied aluminum blended with B4C as the holder material. Irradiation methods to achieve uniform flux with a filter are discussed using Monte-Carlo calculation code MVP. Validation of the use of the MVP code for the holder's analyses is also discussed via characteristic experiments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Behavior of structural and target materials irradiated in spallation neutron environments

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, J.F. [Univ. of Illinois, Urbana, IL (United States); Wechsler, M. [North Carolina State Univ., Raleigh, NC (United States); Borden, M. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy systems is taken into account in the selection criteria. Nevertheless, only limited materials performance data are available which specifically related to neutron energy spectra anticipated for spallation sources.

  2. Behavior of structural and target materials irradiated in spallation neutron environments

    International Nuclear Information System (INIS)

    Stubbins, J.F.; Wechsler, M.; Borden, M.

    1995-01-01

    This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy systems is taken into account in the selection criteria. Nevertheless, only limited materials performance data are available which specifically related to neutron energy spectra anticipated for spallation sources

  3. Synthetic multi-element standards: a good tool for calibration and quality control of irradiation facilities used for neutron activation analysis

    International Nuclear Information System (INIS)

    Vermaercke, P.

    2007-01-01

    Neutron activation analysis (NAA) is a physical technique used for the absolute measurement of the concentration of substances in solids and liquids. The method uses neutron irradiation which is commonly realised using a nuclear reactor in order to activate (make radioactive) different isotopes of the elements present in the sample. The radionuclides produced in this way emit gamma-rays that are characteristic of the elements present in the sample. Using gamma-ray spectrometry these radionuclides can then be identified and quantified, and hence their concentration in the sample can be determined. Although NAA is a straightforward method it requires a sound control of the many physical parameters involved to obtain accurate results and to guarantee a set accuracy in routine analysis. The accuracy of NAA depends on the specific measurement method used. One can perform NAA in a relative way by co-irradiating a known standard and the unknown sample in the same conditions and by comparing the ratio of gamma-rays they emit. Relative NAA has limited applicability since it requires reference standards with a comparable composition as the unknown. A more generally applicable method is the k0-NAA method. In the k0-NAA method all measurements are relative to the element Au resulting in 198Au when irradiated. The k0-NAA method further relies on the fact that the neutron energy spectrum produced in a given position in the reactor can be parameterised with two parameters: the shape factor of the epithermal neutron flux, indicating the deviation of the epithermal neutron spectrum from the ideal 1/E shape approximated by a 1/E1+a distribution, with E the neutron energy; f: the thermal-to-epithermal neutron flux ratio. The parameters f and a are characteristic for the irradiation facility (reactor and irradiation channels) and may change or fluctuate in time according to the irradiation conditions. The way elements activate (become radioactive) when interacting with neutrons is

  4. Irradiation and gamma-ray spectrometric parameters for 129I neutron-activation analysis

    International Nuclear Information System (INIS)

    Brauer, F.P.; Strebin, R.S. Jr.; Mitzlaff, W.A.; Kaye, J.H.

    1983-09-01

    This paper describes the influence of reactor neutron irradiation facilities on low-level 129 I analysis methodology. Three reactors are compared - the HFIR at ORNL, the N-Reactor at Hanford, and a 1-MW research reactor at Washington State University, Pullman, WA. Parameters compared include sensitivity for 129 I and natural iodine and interference effects due to high levels of 127 I in irradiated samples. Selection of detector systems for off-site use at HFIR is discussed. A comparison of neutron activation analysis with other sensitive detection methods for measurement of 129 I is given

  5. Neutron irradiation effects on silicon detectors structure, electrical and mechanical characteristics

    International Nuclear Information System (INIS)

    Rabinovich, E.; Golan, G.; Axelevich, A.; Inberg, A.; Oksman, M.; Rosenwaks, I.; Lubarsky, G.; Seidman, A.; Croitoru, N.; Rancoita, P.G.; Rattaggi, M.

    1999-01-01

    Neutron irradiation effects on (p-n) and Schottky-junction silicon detectors were studied. It was shown that neutron interactions with monocrystalline silicon create specific types of microstructure defects with morphology differing according to the level of neutron fluences (Φ). The isolated dislocation loops, formed by interstitial atoms were observed in microstructure images for 10 10 ≤ Φ ≤ 10 12 n/cm 2 . A strong change in the dislocation loops density and a cluster formation was observed for Φ ≥ 10 13 n/cm 2 . A drastic silicon damage was found for fluences over 10 14 n/cm 2 . These fluences created zones enriched with all types of dislocations, covering more than 50 % of the total surface area. A mechanical fragility appeared in that fluence range in a form of microcracks. 10 14 n/cm 2 appears to be a critical value of neutron irradiation because of the radiation damage described above and because the characteristics I f -V f of silicon detectors can be differentiated from those obtained at low fluences. (A.C.)

  6. Determination of neutron flux with an arbitrary energy distribution by measurement of irradiated foils activity

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milosevic, M.

    2003-01-01

    A procedure for the neutron flux determination in a neutron field with an arbitrary energy spectrum, based on the using of standard methods for the measurement of irradiated foils activity and on the application of the SCALE-4.4a code system for averaged cross section calculation is described in this paper. Proposed procedure allows to include the energy spectrum of neutron flux reestablished in the location of irradiated foils and the resonance self-shielding effects in the foils also. Example application of this procedure is given for the neutron flux determination inside the neutron filter with boron placed in the centre of heavy water critical assembly RB at the Vinca Institute (author)

  7. Semiconducting lithium indium diselenide: Charge-carrier properties and the impacts of high flux thermal neutron irradiation

    Science.gov (United States)

    Hamm, Daniel S.; Rust, Mikah; Herrera, Elan H.; Matei, Liviu; Buliga, Vladimir; Groza, Michael; Burger, Arnold; Stowe, Ashley; Preston, Jeff; Lukosi, Eric D.

    2018-06-01

    This paper reports on the charge carrier properties of several lithium indium diselenide (LISe) semiconductors. It was found that the charge collection efficiency of LISe was improved after high flux thermal neutron irradiation including the presence of a typically unobservable alpha peak from hole-only collection. Charge carrier trap energies of the irradiated sample were measured using photo-induced current transient spectroscopy. Compared to previous studies of this material, no significant differences in trap energies were observed. Through trap-filled limited voltage measurements, neutron irradiation was found to increase the density of trap states within the bulk of the semiconductor, which created a polarization effect under alpha exposure but not neutron exposure. Further, the charge collection efficiency of the irradiated sample was higher (14-15 fC) than that of alpha particles (3-5 fC), indicating that an increase in hole signal contribution resulted from the neutron irradiation. Finally, it was observed that significant charge loss takes place near the point of generation, producing a significant scintillation response and artificially inflating the W-value of all semiconducting LISe crystals.

  8. Superplastic characteristics and microstructure of neutron irradiated 3Y-TZP

    International Nuclear Information System (INIS)

    Shibata, Taiju; Motohashi, Yoshinobu; Ishihara, Masahiro; Baba, Shinichi; Sawa, Kazuhiro

    2006-01-01

    Fast neutrons (energy > 1.6 x 10 -13 J) were irradiated to 3Y-TZP specimens, typical superplastic ceramics, at the fluence of 2.5 x 10 24 and 4.3 x 10 24 m -2 at JMTR of JAEA. The Vickers hardness with indentation load of 4.9 and 9.8 N at room temperature was seemed to be slightly increased by the irradiation. Through the superplastic tensile tests in a temperature range from 1623 to 1773 K with initial strain rates of 5.0 x 10 -4 and 1.0 x 10 -3 s -1 , it was found that the superplastic flow stress is decreased with increasing the neutron fluence. The microstructural features of the fractured specimens were observed by a SEM. It implies that the grain boundary microstructure of the irradiated specimens would be changed by annealing in the superplastic tests are elevated temperatures. It is quite probable that the irradiation-induced vacancy clusters might play an important role to weaken the grain boundary cohesion which may be an important factor to determine the superplastic properties, and hence they would decrease the superplastic flow stress. (author)

  9. Flexural strength of proof-tested and neutron-irradiated silicon carbide

    Science.gov (United States)

    Price, R. J.; Hopkins, G. R.

    1982-08-01

    Proof testing before service is a valuable method for ensuring the reliability of ceramic structures. Silicon carbide has been proposed as a very low activation first-wall and blanket structural material for fusion devices, where it would experience a high flux of fast neutrons. Strips of three types of silicon carbide were loaded in four-point bending to a stress sufficient to break about a third of the specimens. Groups of 16 survivors were irradiated to 2 × 10 26n/ m2 ( E>0.05 MeV) at 740°C and bend tested to failure. The strength distribution of chemically vapor-deposited silicon carbide (Texas Instruments) was virtually unchanged by irradiation. The mean strength of sintered silicon carbide (Carborundum Alpha) was reduced 34% by irradiation, while the Weibull modulus and the truncated strength distribution characteristic of proof-tested material were retained. Irradiation reduced the mean strength of reaction-bonded silicon carbide (Norton NC-430) by 58%, and the spread in strength values was increased. We conclude that for the chemically vapor-deposited and the sintered silicon carbide the benefits of proof testing to eliminate low strength material are retained after high neutron exposures.

  10. Germanium-doped gallium phosphide obtained by neutron irradiation

    Science.gov (United States)

    Goldys, E. M.; Barczynska, J.; Godlewski, M.; Sienkiewicz, A.; Heijmink Liesert, B. J.

    1993-08-01

    Results of electrical, optical, electron spin resonance and optically detected magnetic resonance studies of thermal neutron irradiated and annealed at 800 °C n-type GaP are presented. Evidence is found to support the view that the main dopant introduced via transmutation of GaP, germanium, occupies cation sites and forms neutral donors. This confirms the possibility of neutron transmutation doping of GaP. Simultaneously, it is shown that germanium is absent at cation sites. Presence of other forms of Ge-related defects is deduced from luminescence and absorption data. Some of them are tentatively identified as VGa-GeGa acceptors leading to the self-compensation process. This observation means that the neutron transmutation as a doping method in application to GaP is not as efficient as for Si.

  11. Qualitative dose response of the normal canine head to epithermal neutron irradiation with and without boron capture

    International Nuclear Information System (INIS)

    DeHaan, C.E.; Gavin, P.R.; Kraft, S.L.; Wheeler, F.J.; Atkinson, C.A.

    1992-01-01

    Boron Neutron Capture Therapy is being re-evaluated for the treatment of intracranial tumors. Prior to human clinical trials, determination of normal tissue tolerance is critical. Dogs were chosen as a large animal model for the following reasons. Dogs can be evaluated with advanced imaging, diagnostic and therapeutic modalities. Dogs are amenable to detailed neurologic examination and subtle behavioral changes are easily detected. Specifically, Labrador retrievers were chosen for their large body and head size. The dogs received varying doses of epithermal neutron irradiation and boron neutron capture irradiation using an epithermal neutron source. The dogs were closely monitored for up to one year post irradiation

  12. International fusion materials irradiation facility and neutronic calculations for its test modules

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.

    1997-01-01

    The International Fusion Material Irradiation Facility (IFMIF) is a projected high intensity neutron source for material testing. Neutron transport calculations for the IFMIF project are performed for variety of here explained reasons. The results of MCNP neutronic calculations for IFMIF test modules with NaK and He cooled high flux test cells are presented in this paper. (author). 3 refs., 2 figs., 3 tabs

  13. Neutron Spectrum Parameters In Inner Irradiation Channel Of The Nigeria Research Reactor-1 (NIRR-1) For Use In Absolute And KO-NAA Methods

    International Nuclear Information System (INIS)

    Jonah, S.A; Balogun, G.I; Mayaki, M.C.

    2004-01-01

    In Nigeria, the first Nuclear Reactor achieved critically on February 03, 2004 at about 11:35 GMT and has been commissioned or training and research. It is a Miniature Neutron Source Reactor (MNSR), code-named Nigeria Research Reactor-1 (NIRR-1). NIRR-1 has a tan-in-pool structural configuration and a nominal thermal power rating of 30 Kw. With a built-in clean old core excess reactivity of 3.77 mk determined during the on-site zero and critically experimental, the reactor can operate for a n.cm-2 .s-1 in the inner irradiation channels). Under these conditions, the reactor can operate with the same fuel loading for over ten years with a burn-up of <1%. A detailed description of operating characteristics for NIRR-1, measured during the on-site zero-power and criticality experiments has been given elsewhere. In order to extend its utilization to include absolute and ko-NAA methods, the neutron spectrum parameters in the irradiation channels: power and critically experiments has been given elsewhere. In order to extend it's the irradiation channels: thermal-to-epithermal flux ration, F; and epithermal flux shape factor, a in both the inner and outer irradiation channels must be determined experimentally. In this work, we have developed and experimental procedure for monitoring the neutron spectrum parameters in an inner irradiation channel based on irradiation and gamma-ray counting of detector foils via (n,y), (n,p) and (n,a) dosimetry reactions. Results obtained indicate that a thermal neutron flux of (5.14+-0.02) x 1011 n/c m2.s determined by foil activation method in the inner irradiation channel, B2, at a power level of 15.5 kw corresponds to the flux indicators on the control console and the micro-computer control system respectively. Other parameters of the neutron spectrum determined for inner irradiation channel B2, are: a -0.0502+0.003; 18.92+-0.14; F = 3.87=0.23. The method was validated through the comparison of our result with published neutron spectrum

  14. Determination of the axial thermal neutron flux non-uniform factor in the MNSR inner irradiation capsule

    International Nuclear Information System (INIS)

    Khattab, K.; Ghazi, N.; Omar, H.

    2007-01-01

    A 3-D neutronic model, using the WIMSD4 and CITATION codes, for the Syrian Miniature Neutron source Reactor (MNSR) is used to calculate the axial thermal neutron flux non-uniform factor in the inner irradiation capsule. The calculated result is 4%. A copper wire is used to measure the axial thermal neutron flux non-uniform factor in the inner irradiation capsule to be compared with the calculated result. The measured result is 5%. Good agreement between the measured and calculated results is obtained. (author)

  15. Determination of the axial thermal neutron flux non-uniform factor in the MNSR inner irradiation capsule

    International Nuclear Information System (INIS)

    Khattab, K.; Ghazi, N.; Omar, H.

    2007-01-01

    A 3-D neutronic model, using the WIMSD4 and CITATION codes, for the Syrian Miniature Neutron Source Reactor (MNSR) is used to calculate the axial thermal neutron flux non-uniform factor in the inner irradiation capsule. The calculated result is 4%. A copper wire is used to measure the axial thermal neutron flux non-uniform factor in the inner irradiation capsule to be compared with the calculated result. The measured result is 5%. Good agreement between the measured and calculated results is obtained

  16. Modification of chemical, optical and structural properties of Bayfol CR-6-2 using gamma and neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shehata, Mohamed M.; Radwan, Samh I.; Hassan, Amin [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Centre; Waly, Sayed A. [Atomic Energy Authority, Cairo (Egypt). Second Research Reactor; Badawy, Zaynab M. [Atomic Energy Authority, Cairo (Egypt). Experimental Nuclear Physics Dept.

    2016-08-01

    The effects of gamma and neutron irradiations on the chemical, optical and structural properties of Bayfol CR-6-2 were investigated. The samples were irradiated by γ-rays from a {sup 60}Co source at various doses ranging between 16 and 900 kGy at room temperature in atmospheric air. For neutrons, an Am-Be neutron facility was used for the sample irradiation in thermal mode which had an activity of 185 GBq. Samples were irradiated with different doses of neutrons ranging from 15.7 to 564.2 mGy. The changes induced were analyzed using UV-Vis and Fourier transform infrared (FTIR) spectrometry. The results demonstrated an occurrence of oxidative degradation, resulting in the formation of carbonyl groups at 1700 cm{sup -1}. Simultaneous thermo-gravimetric investigation (TGA) has been performed on the samples of 0.3 mm thickness. The results obtained indicate that cross-linking predominates at small neutron doses and main chain scission happens at higher doses.

  17. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    International Nuclear Information System (INIS)

    Rapp, Juergen; Aaron, A. M.; Bell, Gary L.; Burgess, Thomas W.; Ellis, Ronald James; Giuliano, D.; Howard, R.; Kiggans, James O.; Lessard, Timothy L.; Ohriner, Evan Keith; Perkins, Dale E.; Varma, Venugopal Koikal

    2015-01-01

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma-material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a ''. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.'' The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma-material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL's proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL's strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the ''signature facility'' FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material-Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady-state heat fluxes of

  18. Comparison of neutron and gamma irradiation effects on KU1 fused silica monitored by electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, D. [Department Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain)], E-mail: david.bravo@uam.es; Lagomacini, J.C. [Department Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Leon, M.; Martin, P. [Materiales para Fusion, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain); Martin, A. [Department Fisica e Instalaciones, ETS Arquitectura UPM, E-28040 Madrid (Spain); Lopez, F.J. [Department Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Ibarra, A. [Materiales para Fusion, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain)

    2009-06-15

    Electron paramagnetic resonance (EPR) studies have been carried out on KU1 fused silica irradiated with neutrons at fluences 10{sup 21} and 10{sup 22} n/m{sup 2}, and gamma-ray doses up to 12 MGy. The effects of post-irradiation thermal annealing treatments, up to 850 deg. C, have also been investigated. Paramagnetic oxygen-related defects (POR and NBOHC) and E'-type defects have been identified and their concentration has been measured as a function of neutron fluence, gamma dose and post-irradiation annealing temperature. It is found that neutrons at the highest fluence generate a much higher concentration of defects (mainly E' and POR, both at concentrations about 5 x 10{sup 18} spins/cm{sup 3}) than gamma irradiations at the highest dose (mainly E' at a concentration about 4 x 10{sup 17} spins/cm{sup 3}). Moreover, for gamma-irradiated samples a lower treatment temperature (about 400 deg. C) is required to annihilate most of the observed defects than for neutron-irradiated ones (about 600 deg. C)

  19. Effect of neutron irradiation on vanadium alloys

    International Nuclear Information System (INIS)

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600 0 C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520 0 C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys

  20. Effect of neutron irradiation on vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600/sup 0/C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520/sup 0/C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys.

  1. Existing and projected neutron sources and low-temperature irradiation facilities in Germany

    International Nuclear Information System (INIS)

    Boening, K.

    1984-01-01

    In this paper, a contribution given at the Kyoto University Research Reactor Institute to the temporal meeting on the design of the facilities for high flux, low temperature irradiation is summarized. The following five subjects were discussed. The project of modernizing the swimming pool type research reactor FRM with 4 MW power at Munich is to achieve relatively high thermal neutron flux, and an extremely compact core is designed. The existing low temperature irradiation facility (LTIF) of the FRM is the most powerful in the world, and has been successfully operated more than 20 years. The fast and thermal neutron fluxes are 2.9 x 10 13 and 3.5 x 10 13 /cm 2 sec, respectively. The experimental techniques in the LTIF of the FRM, such as a measuring cryostat, the mounting of irradiated samples and so on, are described. The installation of new LTIFs in connection with the projects of advanced neutron sources in Germany is likely to be made in the modernized FRM at Garching, in the spallation neutron source SNQ at KFA Juelich and so on. The interesting problems in fundamental and applied researches with LTIFs, and the unusual application of LTIFs are shown. (Kako, I.)

  2. Effects of neutron irradiation and fatigue on ductility of stainless steel DIN 1.4948

    International Nuclear Information System (INIS)

    Vries, M.I. de; Schaaf, B. van der; Staal, H.U.; Elen, J.D.

    1978-10-01

    Test specimens of stainless steel DIN 1.4948, which is similar to AISI type 304, have been irradiated at 723 K and 823 K up to fluences of 1.10 23 neutrons (n).m -2 and 5.10 24 n.m -2 (E > 0.1 MeV). These are representative conditions for the SNR-300 reactor vessel and inner components after 16 years of operation. High temperature (723 K to 1023 K) tensile tests at strain rates (depsilon/dt) from 10 -7 s -1 to 10 s -1 show a considerable decrease of tensile ductility. The extent depends on helium content, test temperature and strain rate. The atomic helium fractions of 3.10 -7 and 7.10 -6 result from the reactions of thermal neutrons with the 14 ppm boron, present in the steel. Helium embrittlement sets in at strain rates below 1 s -1 to 10 s -1 (the range of interest for Bethe-Tait accident analyses). A minimum total elongation value of 6% is shown at 923 K. The post-irradiation fatigue life is reduced by up to about 50% due to intergranular cracking. The combination of irradiation and fatigue causes a decrease of ductility after a smaller number of prior fatigue cycles than in the case of unirradiated material. (Auth.)

  3. Irradiation behavior of German PWR RPV steels under operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    May, J.; Hein, H. [AREVA NP Gmbh (Germany); Ganswind, J. [VGB PowerTech e.V. (Germany); Widera, M. [RWE Power AG (Germany)

    2011-07-01

    In 2007, the last standard surveillance capsule of the original RPV (Reactor Pressure Vessel) surveillance programs of the 11 currently operating German PWR has been evaluated. With it the standard irradiation surveillance programs of these plants was completed. In the present paper, irradiation data of these surveillance programs will be presented and a final assessment of the irradiation behavior of the German PWR RPV steels with respect to current standards KTA 3203 and Reg. Guide 1.99 Rev. 2 will be given. Data from two units which are currently under decommissioning will also be included, so that data from all 13 German PWR manufactured by the former Siemens/KWU company (now AREVA NP GmbH) are shown. It will be shown that all surveillance data within the approved area of chemical composition verify the limit curve RT(limit) of the KTA 3203, which is the relevant safety standard for these plants. An analysis of the data shows, that the prediction formulas of Reg. Guide 1.99 Rev. 2 Pos. 1 or from the TTS model tend to overestimate the irradiation behavior of the German PWR RPV steels. Possible reasons for this behavior are discussed. Additionally, the data will be compared to data from the research project CARISMA to demonstrate that these data are representative for the irradiation behavior of the German PWR RPV steels. Since the data of these research projects cover a larger neutron fluence range than the original surveillance data, they offer a future outlook into the irradiation behavior of the German PWR RPV steels under long term conditions. In general, as a consequence of the relatively large and beneficial water gap between core and RPV, especially in all Siemens/KWU 4-loop PWR, the EOL neutron fluence and therefore the irradiation induced changes in mechanical properties of the German PWR RPV materials are rather low. Moreover the irradiation data indicate that the optimized RPV materials specifications that have been applied in particular for the

  4. The response of mouse skin to re-irradiation with x-rays or fast neutrons

    International Nuclear Information System (INIS)

    Tsukiyama, Iwao; Egawa, Sunao; Kumazawa, Akiyoshi; Iino, Yuu.

    1986-01-01

    Effects of neutrons and x-rays on mouse skin which had been previously irradiated with x-rays were investigated. Two tattoo marks were placed in the hairless legs of mice at intervals of 15 mm. The legs were exposed to various doses of x-ray and neutrons to determine the relative biological effectiveness (RBE) using the contraction of the skin as an index. The RBE was 0.93 - 1.73. The legs of the mice were preexposed to 25 Gy of x-ray, and exposed 4 months later. The contraction of the skin began earlier than after the first irradiation. RBE was 2.18 - 2.47. This RBE was higher than that in untreated mice. These results suggest that previously irradiated normal tissues are much more sensitive to neutrons than to x-rays. (author)

  5. A Study on the Improvement of Switching Speed of NPT-IGBT by Fast Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Baek, H. N.; Sun, G. M.; Kim, J. S.; Hoang, S. M. T.; Jin, M. E.; Jin, S. B.; Ahn, S. H. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The insulated gate bipolar transistor (IGBT) has been widely used for high power switching devices due to low on-state forward voltage drop and fast switching speed. But, turn-off delay time occurs due to the tail current generated by the minority carrier existing in the n-drift region during turn-off, which reduces the switching speed. Recently, to mitigate this problem, studies on the control of the MCLT to improve the switching speed of IGBTs are carried out. A crystal defect is formed in the n-drift region of an IGBT to realize a deep energy level within the energy band. The deep level act as the recombination center of the minority carrier to reduce the turn-off delay time and control the lifetime by reducing the lifetime of the minority carrier injected during the device operation. The particle-beam irradiation method, such as electron, proton, fast neutron and others, has been used to control the lifetime of the minority carrier of a silicon power semiconductor device. To improve the switching speed of a IGBT, devices were produced by irradiating various doses of fast neutron, and electrical properties were comparatively analyzed with the IGBT device where before irradiated. The reduced in the lifetime of the minority carrier flowing into the n-drift region due to the crystal defect helps improve the switching speed of the IGBT. But, the resistance component increased due to the crystal defect generated by the fast neutron irradiation in the on-state, increasing of the forward voltage drop. So, to improve and optimize the IGBT performance, appropriate condition should be determined by trading off each electrical properties.

  6. A Study on the Improvement of Switching Speed of NPT-IGBT by Fast Neutron Irradiation

    International Nuclear Information System (INIS)

    Baek, H. N.; Sun, G. M.; Kim, J. S.; Hoang, S. M. T.; Jin, M. E.; Jin, S. B.; Ahn, S. H.

    2016-01-01

    The insulated gate bipolar transistor (IGBT) has been widely used for high power switching devices due to low on-state forward voltage drop and fast switching speed. But, turn-off delay time occurs due to the tail current generated by the minority carrier existing in the n-drift region during turn-off, which reduces the switching speed. Recently, to mitigate this problem, studies on the control of the MCLT to improve the switching speed of IGBTs are carried out. A crystal defect is formed in the n-drift region of an IGBT to realize a deep energy level within the energy band. The deep level act as the recombination center of the minority carrier to reduce the turn-off delay time and control the lifetime by reducing the lifetime of the minority carrier injected during the device operation. The particle-beam irradiation method, such as electron, proton, fast neutron and others, has been used to control the lifetime of the minority carrier of a silicon power semiconductor device. To improve the switching speed of a IGBT, devices were produced by irradiating various doses of fast neutron, and electrical properties were comparatively analyzed with the IGBT device where before irradiated. The reduced in the lifetime of the minority carrier flowing into the n-drift region due to the crystal defect helps improve the switching speed of the IGBT. But, the resistance component increased due to the crystal defect generated by the fast neutron irradiation in the on-state, increasing of the forward voltage drop. So, to improve and optimize the IGBT performance, appropriate condition should be determined by trading off each electrical properties

  7. High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Was, Gary; Wirth, Brian; Motta, Athur; Morgan, Dane; Kaoumi, Djamel; Hosemann, Peter; Odette, Robert

    2018-04-30

    Project Objective: The objective of this proposal is to demonstrate the capability to predict the evolution of microstructure and properties of structural materials in-reactor and at high doses, using ion irradiation as a surrogate for reactor irradiations. “Properties” includes both physical properties (irradiated microstructure) and the mechanical properties of the material. Demonstration of the capability to predict properties has two components. One is ion irradiation of a set of alloys to yield an irradiated microstructure and corresponding mechanical behavior that are substantially the same as results from neutron exposure in the appropriate reactor environment. Second is the capability to predict the irradiated microstructure and corresponding mechanical behavior on the basis of improved models, validated against both ion and reactor irradiations and verified against ion irradiations. Taken together, achievement of these objectives will yield an enhanced capability for simulating the behavior of materials in reactor irradiations

  8. Measurement of uranium enrichment by 14 MeV neutron irradiation

    International Nuclear Information System (INIS)

    Rezende, H.R.

    1987-01-01

    a non-destructive technique for the determination of uranium in UO 2 samples was developed, making use of the change in the fission cross section of a nuclide with the neutron energy. The active interrogation method was used by irradiating the samples with pulsed 14 MeV neutrons and further detection of delayed fission neutrons. In order to discriminate U-238 from U-235 the neutron energy was tailored by means of two concentric cylinders of lead and paraffin/poliethylene, 11 and 4 cm thick. Between neutron pulses, delayed neutrons from fission were detected by a long counter built with five BF 3 proportional counters. Calibration curves for enrichment and total mass versus delayed neutron response were obtained using available UO 2 pellets of known enrichment. Enrichment detection limit, obtained with 95% confidence level by the Student distribution was estimated to be 0.33%. The minimal detectable mass was estimated to be 4.4 g. (author) [pt

  9. Measure of uranium enrichment by 14 MeV neutron irradiation

    International Nuclear Information System (INIS)

    Rezende, H.R.

    1987-01-01

    A non-destructive technique for the determination of uranium in UO 2 samples was developed, marking use of the change in the fission cross of a nuclide with the neutron energy. The active interrogation method was used by irradiating the samples with pulsed 14 MeV neutrons and furtherdetection of delayed fission neutrons. In order to descriminated U-238 from U-235 the neutron energy was tailored by means of two concentric cylinders of lead and paraffin/poliethylene, 11 and 4 cm thick. Between neutron pulses, delayed neutrons from fission were detected by a long counter built with five BF 3 proportional counters. Calibration curves for enrichment and total mass versus delayed neutron response were obtained using available UO 2 pellets of Known enrichment. Enrichment detection limit, obtained with 95% confidence level by the the Student distribution was estimated to be 0.33%. The minimal detectable mass was estimated to be 4.4 g. (Author) [pt

  10. A comparison of mutagenic effects of common wheat by electron beam, fast neutron and 60Co gamma ray irradiation

    International Nuclear Information System (INIS)

    An Daochang; Wang Linqing

    1988-02-01

    After winter wheat was irradiated by electron beam, fast neutron and γ-rays, respectively, the RBE value of electron beam to both fast neutrons and γ-rays was less than one, the RBE value of fast neutron to γ-rays was largely more than one. This results indicated that biological effect of M 1 generation induced by electron beam was less than that of fast neutrons very much, and similar to γ-ray irradiation. With electron beam irradiation, the half-lethal doses of M 1 generation were from 185 to 370 Gy, closer to 370 Gy, the lethal doses from 740 to 925 Gy. M 2 mutation efficiency with electron beam treatment was larger as compared with that with both fast neutrons and γ-rays. A wider mutation spectrum and higher mutation efficiency compared with other physical mutagens can be obtained with electron beam irradiation, about 30% higher than that with γ-ray irradiation. The best doses of irradiation with electron beam were 370 to 555 Gy. Fast neutrons, a better dose of which was 25 Gy, could induce more mutants than that with γ-rays in M 2 generation. The dose in which biological injury reached to 50% was the best dose for M 2 mutants by electron beam irradiation

  11. Weldability of neutron-irradiated stainless steel and nickel-base alloy

    International Nuclear Information System (INIS)

    Koyabu, Ken; Asano, Kyoichi; Takahashi, Hidenori; Sakamoto, Hiroshi; Kawano, Shohei; Nakamura, Tomomi; Hashimoto, Tsuneyuki; Koshiishi, Masato; Kato, Takahiko; Katsura, Ryoei; Nishimura, Seiji

    2000-01-01

    Degradation of of weldability caused by helium, which is generated by nuclear transmutation irradiated material, is an important issue to be addressed in planning of proactive maintenance of light water reactor core internal components. In this work, the weldability of neutron.irradiated stainless steel and nickel-base alloy, which are major constituting materials for components, was practically evaluated. The weldability was first examined by TIG welding in relation to the weld heat input and helium content using various specimens (made of SUS304 and SUS316L) sampled from reactor internal components. The specimens were neutron irradiated in a boiling water reactor to fluences from 4 x 10 24 to 1.4 x 10 26 n/ m 2 (E> l MeV ), and resulting helium generation ranged from 0.1 to 103 appm. The weld defects were characterized by dye penetrant test and cross-sectional metallography. The weldability of neutron-irradiated stainless steel was shown to be better at lower weld heat input and lower helium content. To evaluate mechanical properties of welded joints, thick plates (20 mm) specimens of SUS304 and Alloy 600 were prepared and irradiated in Japan Material Test Reactor (JMTR). The helium content of the specimens was controlled to range from 0.11 to 1.34 appm selected to determine threshold helium content to weld successfully. The welded joints had multiple passes by TIG welding process at 10 and 20 kJ/cm heat input. The welded joints of thick plate were characterized by dye penetrant test, cross-sectional metallography, tensile test, side bend test and root bend test. It was shown that irradiated stainless steel containing below 0.14 appm of helium could be welded with conventional TIG welding process (heat input below 20 kJ/cm). Nickel-base alloy, which contained as much helium as stainless steel could be welded successfully, could also be welded with conventional TIG welding process, These results served as basis to evaluate the applicability of repair welding to

  12. Neutron irradiation test of depleted CMOS pixel detector prototypes

    International Nuclear Information System (INIS)

    Mandić, I.; Cindro, V.; Gorišek, A.; Hiti, B.; Kramberger, G.; Mikuž, M.; Zavrtanik, M.; Hemperek, T.; Daas, M.; Hügging, F.; Krüger, H.; Pohl, D.-L.; Wermes, N.; Gonella, L.

    2017-01-01

    Charge collection properties of depleted CMOS pixel detector prototypes produced on p-type substrate of 2 kΩ cm initial resistivity (by LFoundry 150 nm process) were studied using Edge-TCT method before and after neutron irradiation. The test structures were produced for investigation of CMOS technology in tracking detectors for experiments at HL-LHC upgrade. Measurements were made with passive detector structures in which current pulses induced on charge collecting electrodes could be directly observed. Thickness of depleted layer was estimated and studied as function of neutron irradiation fluence. An increase of depletion thickness was observed after first two irradiation steps to 1 · 10 13 n/cm 2 and 5 · 10 13 n/cm 2 and attributed to initial acceptor removal. At higher fluences the depletion thickness at given voltage decreases with increasing fluence because of radiation induced defects contributing to the effective space charge concentration. The behaviour is consistent with that of high resistivity silicon used for standard particle detectors. The measured thickness of the depleted layer after irradiation with 1 · 10 15 n/cm 2 is more than 50 μm at 100 V bias. This is sufficient to guarantee satisfactory signal/noise performance on outer layers of pixel trackers in HL-LHC experiments.

  13. The Role of Grain Size on Neutron Irradiation Response of Nanocrystalline Copper

    Directory of Open Access Journals (Sweden)

    Walid Mohamed

    2016-03-01

    Full Text Available The role of grain size on the developed microstructure and mechanical properties of neutron irradiated nanocrystalline copper was investigated by comparing the radiation response of material to the conventional micrograined counterpart. Nanocrystalline (nc and micrograined (MG copper samples were subjected to a range of neutron exposure levels from 0.0034 to 2 dpa. At all damage levels, the response of MG-copper was governed by radiation hardening manifested by an increase in strength with accompanying ductility loss. Conversely, the response of nc-copper to neutron irradiation exhibited a dependence on the damage level. At low damage levels, grain growth was the primary response, with radiation hardening and embrittlement becoming the dominant responses with increasing damage levels. Annealing experiments revealed that grain growth in nc-copper is composed of both thermally-activated and irradiation-induced components. Tensile tests revealed minimal change in the source hardening component of the yield stress in MG-copper, while the source hardening component was found to decrease with increasing radiation exposure in nc-copper.

  14. Evaluation of neutron flux in the WWR-SM reactor channel and in the irradiating zone of U-150 cyclotron

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Zinov'ev, V.G.; Sadikova, Z.O.; Salimov, M.I.

    2006-01-01

    Full text: For effective work of a reactor, and correct planning of experiments related to the reactor irradiation of various materials it is required to control a neutron flux in the given irradiation point for a long irradiation period. For realization of research works on topazes ennobling under irradiation by reactor neutrons as well as by secondary neutrons produced in a cyclotron it is necessary to know the total neutron flux and spectra. To resolve the problem a technique for registration of neutrons with different energy and calculation of a neutrons spectrum in the given irradiation points in reactor channels and in cyclotron behind the nickel target has been developed. Neutron flux density and energy spectra were monitored by use of the following nuclear reactions: 59 Co(n,γ) 60 Co, 197 Au(n,γ) 198 Au, 58 Ni(n,p) 58 Co, 24 Mg(n,p) 24 Na, 48 Ti(n,p) 48 Sc, 46 Ti(n,p) 46 Sc, 54 Fe(n,p) 54 Mn, 89 Y(n,2n) 88 Y, 60 Ni(np) 60 Co. Gamma spectrometer composed of HPGe detector (Rel. Eff. - 15%) and Digital Spectra Analyzer DSA-1000 (Canberra Ind., USA) was used to measure gamma activity of irradiated samples. Acquired gamma spectra were processed by means of Genie 2000 standard software package. The σ(E) functions and neutron spectra were calculated by using the least squares method and approximating the tabular and experimental data with power polynomials. The developed technique was applied for the adjustment of the topazes irradiation regimes in the reactor core and under secondary neutrons flux from a nickel target in the cyclotron. The given technique allows to calculate a logarithmic spectrum of neutrons in a energy range from 0,025 eV up to 12 MeV with the uncertainty of about 10 %. (author)

  15. DT fusion neutron irradiation of BNL--LASL superconductor wires

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1976-01-01

    The following samples were irradiated with the LLL rotating target neutron source: 19-core Nb 3 Sn multifilament wires, Nb 3 Sn single core, V 3 Ga single core, NbTi Supercon 402, and NbTi cupronickel jacketed. No test results are given

  16. Evaluation of ferritic alloy Fe-2 1/4Cr-1Mo after neutron irradiation: Microstructural development

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1986-10-01

    As part of a program to provide a data base on the bainitic alloy Fe-2-1/4-1Mo for fusion energy applications, microstructural examinations are reported for nine specimen conditions for 2-1/4Cr-1Mo steel which had been irradiated by fast neutrons over the temperature range 390 to 510 0 C. Void swelling is found following irradiation at 400 0 C to 480 0 C. Concurrently dislocation structure and precipitation developed. Peak void swelling, void density, dislocation density and precipitate number density formed at the lowest temperature, approximately 400 0 C, whereas mean void size, and mean precipitate size increased with increasing irradiation temperature. The examination results are used to provide interpretation of in-reactor creep, density change and post irradiation tensile behavior

  17. KSb(OH) samples previously treated with Co y - rays irradiated with neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Facetti, J F [Asuncion Nacional Univ. (Paraguay). Inst. de Ciencias

    1969-01-01

    When Ksb (OH) samples previously treated with Co y - rays or crushed are irradiated with neutrons, the yield of Sb and the annealing mechanism are apparently modified by the pretreatment. In addition it is shown that metastable species of Sb are formed under irradiation.

  18. Mechanical compression tests of beryllium pebbles after neutron irradiation up to 3000 appm helium production

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institite for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R.; Moeslang, A. [Karlsruhe Institute of Technology, Institite for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2015-04-15

    Highlights: • Compression tests of highly neutron irradiated beryllium pebbles have been performed. • Irradiation hardening of beryllium pebbles decreases the steady-state strain-rates. • The steady-state strain-rates of irradiated beryllium pebbles exceed their swelling rates. - Abstract: Results: of mechanical compression tests of irradiated and non-irradiated beryllium pebbles with diameters of 1 and 2 mm are presented. The neutron irradiation was performed in the HFR in Petten, The Netherlands at 686–968 K up to 1890–2950 appm helium production. The irradiation at 686 and 753 K cause irradiation hardening due to the gas bubble formation in beryllium. The irradiation-induced hardening leads to decrease of steady-state strain-rates of irradiated beryllium pebbles compared to non-irradiated ones. In contrary, after irradiation at higher temperatures of 861 and 968 K, the steady-state strain-rates of the pebbles increase because annealing of irradiation defects and softening of the material take place. It was shown that the steady-state strain-rates of irradiated beryllium pebbles always exceed their swelling rates.

  19. Preliminary microstructural characterization by transmission electron microscopy of 14 MeV neutron irradiated type 316 stainless steel

    International Nuclear Information System (INIS)

    Echer, C.J.

    1977-01-01

    Substantial changes in the mechanical properties of 316 stainless steel were observed after neutron irradiation (phi/sub t/ = 2.3 x 10 21 n/m 2 and E = 14 MeV) at 25 0 C. Comparison of microstructures of the unirradiated and neutron irradiated materials were evaluated using transmission electron microscopy. Evidence of small defect clusters in the irradiated material was found. These findings are consistent with other investigators also evaluating low dose irradiations

  20. Recent status of studies on the neutron irradiation effect focusing on Nb3Sn and Nb3Al strands

    International Nuclear Information System (INIS)

    Nishimura, Arata

    2011-01-01

    A fusion reactor generates a lot of 14 MeV neutrons, some of which penetrate shielding blankets, stream out of ports and reach superconducting magnets. Some important studies were performed in the 1970s and a basic understanding of the mechanisms of neutron irradiation effect was established. Advances in the design concept of nuclear fusion reactors led to the need for consistent studies on the neutron irradiation effect of A-15 strands such as Nb 3 Sn and Nb 3 Al, which are strong candidates for fusion reactors. In the early 2000s, a progressive attempt to organize the collaborative research of universities and national institutes was started using a 14 MeV neutron source at Japan Atomic Energy Agency. This paper outlines the neutron irradiation issues related to superconducting magnets for fusion, and a brief history of research on the neutron irradiation effect is provided. In addition, experimental results regarding changes in the superconducting properties of Nb 3 Sn and Nb 3 Al strands by neutron irradiation obtained in the newly established collaborative framework are presented, and general mechanisms for the property changes are introduced. (author)

  1. Extra spots in the electron diffraction patterns of neutron irradiated zirconium and its alloys

    International Nuclear Information System (INIS)

    Madden, P.K.

    1977-01-01

    Specimens of neutron irradiated zirconium and its alloys were examined in the transmission electron microscope. Groups of extra spots, often exhibiting four-fold symmetry, were observed in thin foil electron diffraction patterns of these specimens. The 'extra-spot' structure, like the expected black-dot/small scale dislocation loop neutron irradiated damage, is approximately 100 A in size. Its nature is uncertain. It may be related to irradiation damage or to some artefact introduced during specimen preparation. If it is the latter, then published irradiation damage defect size distributions and determined irradiation growth strains of other investigators, may require modification. The present inconclusive results indicate that extra-spot structure is likely to consist of oxide particles, but may correspond to hydride precipitation or decoration effects, or even, to electron beam effects. (author)

  2. α′ precipitation in neutron-irradiated Fe–Cr alloys

    International Nuclear Information System (INIS)

    Bachhav, Mukesh; Robert Odette, G.; Marquis, Emmanuelle A.

    2014-01-01

    Graphical abstract: -- A series of model Fe–Cr alloys containing 3–18 at.% Cr was neutron irradiated at a nominal temperature of 563 K to 1.82 dpa. Solute distributions were analyzed by atom probe tomography, which revealed α′ precipitation for alloys containing more than 9 at.% Cr. Both the Cr concentration dependence of α′ precipitation and the measured matrix compositions are in agreement with the recently published Fe–Cr phase diagrams. An irradiation-accelerated precipitation process is strongly suggested

  3. Effects of neutron irradiation to 63 dpa on the properties of various commercial copper alloys

    International Nuclear Information System (INIS)

    Brager, H.R.

    1985-04-01

    High purity copper and six commercial copper alloys were neutron irradiated to 47 and 63 dpa at about 450 0 C in the FFTF. Immersion density measurements showed a wide range of swelling behavior after irradiation to 63 dpa. At one extreme was CuBe in the aged and tempered (AT) condition which had densified slightly. At the other extreme was 20% CW Cu-0.1% Ag which swelled over 45%. Electrical resistivity measurements followed trends similar to previously published results for the same alloys irradiated to 16 dpa: a continued change in conductivity with fluence which appears to relate to void formation, transmutation products and coarsening of second phase precipitates. These results were compared with electrical conductivity of unirradiated alloys examined after aging for 10,000 hours. The most irradiation resistant high-conductivity copper alloys examined after 63 dpa are A125 and MZC. Cu-2.0Be, only a moderate-conductivity alloy, exhibits very consistent irradiation resistant properties

  4. Neutron-transmuted carbon-14 in neutron-irradiated GaN: Compensation of DX-like center

    International Nuclear Information System (INIS)

    Ida, T.; Oga, T.; Kuriyama, K.; Kushida, K.; Xu, Q.; Fukutani, S.

    2013-01-01

    The transmuted-C related luminescence and net carrier concentration are studied by combining photoluminescence, liquid scintillation, and Raman scattering. GaN single crystal films grown by metalorganic-vapor-phase epitaxy are irradiated with fast and thermal neutrons at fluxes of 3.9 × 10 13 cm −2 s −1 and 8.15 × 10 13 cm −2 s −1 , respectively. Irradiation time is 48 hours. The calculated 72 Ge and 14 C concentrations are 1.24 × 10 18 cm −3 and 1.13 × 10 18 cm −3 , respectively. The transmuted 14 C is detected by the liquid scintillation method to survey β-rays emitted in the process of 14 C decays from 14 N. Tritium ( 3 H) is also emitted by a (n,t) reaction of 14 N due to the neutron irradiation above 4.5 MeV. Photoluminescence relating to C, DX-like center of Ge and yellow luminescence band are observed in 1000 °C annealed NTD-GaN. The free electron concentration estimated from Raman scattering is 4.97 × 10 17 cm −3 . This value is lower than that from the transmuted Ge concentration, suggesting the compensation due to the transmuted 14 C acceptors

  5. Isotropic nuclear graphites; the effect of neutron irradiation

    International Nuclear Information System (INIS)

    Lore, J.; Buscaillon, A.; Mottet, P.; Micaud, G.

    1977-01-01

    Several isotropic graphites have been manufactured using different forming processes and fillers such as needle coke, regular coke, or pitch coke. Their properties are described in this paper. Specimens of these products have been irradiated in the fast reactor Rapsodie between 400 to 1400 0 C, at fluences up to 1,7.10 21 n.cm -2 PHI.FG. The results show an isotropic behavior under neutron irradiation, but the induced dimensional changes are higher than those of isotropic coke graphites although they are lower than those of conventional extruded graphites made with the same coke

  6. Swelling and fracturing of borides under neutron irradiation

    International Nuclear Information System (INIS)

    Krainy, A.G.; Ogorodnikov, V.V.; Grinik, E.U.; Chirko, L.I.; Shinakov, A.A.

    1994-01-01

    The neutron irradiation of high temperature borides, which are included in boron-containing reactor materials, results in high internal stresses, leading to considerable swelling and micro- and macro-fracturing. Experimental results over a large range of temperature and fluences, show a change of damage mechanism for borides within 400-530 C: the macro-cracking with formation of annular and radial cracks is observed below this temperature zone. The accumulation of micro-fractures and the process of gas swelling take place at irradiation temperatures above 530 C. The effect of the high internal stresses is compared to external pressure. 12 refs., 4 figs

  7. Results from the CDE phase activity on neutron dosimetry for the international fusion materials irradiation facility test cell

    CERN Document Server

    Esposito, B; Maruccia, G; Petrizzi, L; Bignon, G; Blandin, C; Chauffriat, S; Lebrun, A; Recroix, H; Trapp, J P; Kaschuck, Y

    2000-01-01

    The international fusion materials irradiation facility (IFMIF) project deals with the study of an accelerator-based, deuterium-lithium source, producing high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials for fusion energy reactors. IFMIF would also provide calibration and validation of data from fission reactor and other accelerator based irradiation tests. This paper describes the activity on neutron/gamma dosimetry (necessary for the characterization of the specimens' irradiation) performed in the frame of the IFMIF conceptual design evaluation (CDE) neutronics tasks. During the previous phase (conceptual design activity (CDA)) the multifoil activation method was proposed for the measurement of the neutron fluence and spectrum and a set of suitable foils was defined. The cross section variances and covariances of this set of foils have now been used for tests on the sensitivity of the IFMIF neutron spectrum determination to cross section uncertainties...

  8. Experimental study on 14 MeV neutron irradiation effects in FLASH ROM28F256 and 29C256

    International Nuclear Information System (INIS)

    He Chaohui; Chen Xiaohua; Li Guozheng; Wang Yanping; Ji Lin; Geng Bin; Yang Hailiang; Liu Enke

    2000-01-01

    Experimental results of neutron irradiation effects are given for FLASH ROM. New phenomena are observed. The 14 MeV neutron irradiation effects in 28F256 and 29C256 devices are different from the single event effects. Errors are only '0'→'1'. There is a neutron flux threshold. Errors occur when neutron flux is above the threshold, no error occurs when below the threshold. The errors go up with the increase of the neutron flux until all '0' change to '1'. Hard errors, that new data cannot be written in memory with programmer, occur in devices which are measured during irradiation and irradiated in power on mode. Errors rise with the increase of reading times. Under same neutron flux, there is no error in devices in power off mode, however, errors occur in all devices in power on mode, moreover, undefined errors occur

  9. Doping of monocrystalline silicon with phosphorus by means of neutron irradiation at the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Carbonari, A.W.; Puget, M.A.C.

    1990-11-01

    The first neutron irradiation experiments with monocrystal silicon in the IEA-R1 research reactor of IPEN are related. The silicon is irradiated with phosphorus producing a N type semiconductor with a very small resistivity variation throughout the crystal volume. The neutrons induce nuclear reactions in Si-30 isotope and these atoms are then transformed in to phosphorous atoms. This process is known as Neutron Transmutation Doping. In order to irradiate the silicon crystals in the reactor, a specific device has been constructed, and it permits the irradiation of up to 2.5'' diameter monocrystals. (author)

  10. Ion beam irradiation of ceramics at fusion relevant conditions

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1991-01-01

    Ceramic materials are required at a variety of locations in proposed fusion reactors where significant ionizing and displacive fields may be present. Energetic ion beams are a useful tool for probing the effects of irradiation on the structure and electrical properties of ceramics over a wide range of experimental conditions. The advantages and disadvantages of using ion beams to provide information on anticipated ceramic radiation effects in a fusion reactor environment are discussed. In this paper particular emphasis is placed on microstructural changes and how the high helium generation rates associated with DT fusion neutrons affect cavity swelling

  11. In vivo skin leptin modulation after 14 MeV neutron irradiation: a molecular and FT-IR spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Cestelli Guidi, M.; Mirri, C.; Marcelli, A. [Laboratori Nazionali di Frascati - INFN, Frascati, Rome (Italy); Fratini, E.; Amendola, R. [ENEA, UT BIORAD-RAB, Rome (Italy); Licursi, V.; Negri, R. [Universita La Sapienza, Dip. Biologia e Biotecnologie ' ' Charles Darwin' ' , Rome (Italy)

    2012-09-15

    This paper discusses gene expression changes in the skin of mice treated by monoenergetic 14 MeV neutron irradiation and the possibility of monitoring the resultant lipid depletion (cross-validated by functional genomic analysis) as a marker of radiation exposure by high-resolution FT-IR (Fourier transform infrared) imaging spectroscopy. The irradiation was performed at the ENEA Frascati Neutron Generator (FNG), which is specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 x 10{sup 11} 14-MeV neutrons per second via the D-T nuclear reaction. The functional genomic approach was applied to four animals for each experimental condition (unirradiated, 0.2 Gy irradiation, or 1 Gy irradiation) 6 hours or 24 hours after exposure. Coregulation of a subclass of keratin and keratin-associated protein genes that are physically clustered in the mouse genome and functionally related to skin and hair follicle proliferation and differentiation was observed. Most of these genes are transiently upregulated at 6 h after the delivery of the lower dose delivered, and drastically downregulated at 24 h after the delivery of the dose of 1 Gy. In contrast, the gene coding for the leptin protein was consistently upregulated upon irradiation with both doses. Leptin is a key protein that regulates lipid accumulation in tissues, and its absence provokes obesity. The tissue analysis was performed by monitoring the accumulation and the distribution of skin lipids using FT-IR imaging spectroscopy. The overall picture indicates the differential modulation of key genes during epidermis homeostasis that leads to the activation of a self-renewal process at low doses of irradiation. (orig.)

  12. In vivo skin leptin modulation after 14 MeV neutron irradiation: a molecular and FT-IR spectroscopic study.

    Science.gov (United States)

    Cestelli Guidi, M; Mirri, C; Fratini, E; Licursi, V; Negri, R; Marcelli, A; Amendola, R

    2012-09-01

    This paper discusses gene expression changes in the skin of mice treated by monoenergetic 14 MeV neutron irradiation and the possibility of monitoring the resultant lipid depletion (cross-validated by functional genomic analysis) as a marker of radiation exposure by high-resolution FT-IR (Fourier transform infrared) imaging spectroscopy. The irradiation was performed at the ENEA Frascati Neutron Generator (FNG), which is specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 × 10(11) 14-MeV neutrons per second via the D-T nuclear reaction. The functional genomic approach was applied to four animals for each experimental condition (unirradiated, 0.2 Gy irradiation, or 1 Gy irradiation) 6 hours or 24 hours after exposure. Coregulation of a subclass of keratin and keratin-associated protein genes that are physically clustered in the mouse genome and functionally related to skin and hair follicle proliferation and differentiation was observed. Most of these genes are transiently upregulated at 6 h after the delivery of the lower dose delivered, and drastically downregulated at 24 h after the delivery of the dose of 1 Gy. In contrast, the gene coding for the leptin protein was consistently upregulated upon irradiation with both doses. Leptin is a key protein that regulates lipid accumulation in tissues, and its absence provokes obesity. The tissue analysis was performed by monitoring the accumulation and the distribution of skin lipids using FT-IR imaging spectroscopy. The overall picture indicates the differential modulation of key genes during epidermis homeostasis that leads to the activation of a self-renewal process at low doses of irradiation.

  13. Absence of storage effects on radiation damage after thermal neutron irradiation of dry rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Kowyama, Y. [Mie Univ., Tsu (Japan); Saito, M.; Kawase, T.

    1987-09-15

    Storage effects on dry rice seeds equilibrated to 6.8% moisture content were examined after irradiation with X-rays of 5, 10, 20 and 40 kR and with thermal neutrons of 2.1, 4.2, 6.3 and 8.4×10{sup 13}N{sub th}/cm{sup 2}. Reduction in root growth was estimated from dose response curves after storage periods of 1 hr to 21 days. The longer the storage period, the greater enhancement of radiation damages in X-irradiated seeds. There were two components in the storage effect, i. e., a rapid increase of radiosensitivity within the first 24 hr and a slow increase up to 21 days. An almost complete absence of a storage effect was observed after thermal neutron exposure, in spite of considerably high radioactivities of the induced nuclides, {sup 56}Mn, {sup 42}K and {sup 24}Na, which were detected from gamma-ray spectrometry of the irradiated seeds. The present results suggest that the contributions of gamma-rays from the activated nuclides and of inherent contaminating gamma-rays are little or negligible against the neutron-induced damage, and that the main radiobiological effects of thermal neutrons are ascribed to in situ radiations, i, e., heavy particles resulting from neutron-capture reaction of atom. A mechanism underlying the absence of storage effect after thermal neutron irradiation was briefly discussed on the basis of radical formation and decay. (author)

  14. The effect of neutron irradiation on the mechanical properties of welded zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Evans, D G

    1962-07-15

    Zircaloy-2 tensile specimens, subsize impact bars and representative spigot welds were subjected to three NRX cycles in the X-5 loop. Average loop temperature was 260{sup o}C over the three cycles. One group of tensile specimens was heat-treated in vacuum at 900{sup o}C for 40 minutes, another group contained welded areas in the centre of the gauge length and a third group was hydrided after welding. Notches of the impact specimens were located in the fusion zone of the weld, Spigot welds were made on autoclaved and unautoclaved simulated production assemblies. The transition temperature of Zircaloy-2 increased appreciably upon welding. This was accompanied by a decrease in absorbed energy values for all temperatures between 0{sup o} and 300{sup o}C. Neutron irradiation had no effect on the impact properties of welded. Zircaloy-2. Welding decreased the uniform and total elongation at room temperature and at 260{sup o}C, and increased the 260{sup o}C PL, YS and UTS. Hydriding to a nominal 100 ppm hydrogen had no effect on the unirradiated tensile properties at either test temperature. The heat treatment decreased the strength properties but did not affect the ductility. Neutron irradiation increased the YS of the welded and hydrided material by 20% and the heat treated YS by 40%. Irradiation also increased the 260{sup o}C strength properties of the as-welded material. It was found that the unautoclaved spigot welds had a generally higher tensile strength than the autoclaved and welded specimens. For specimens welded in either condition, the outer welds of the 19-element bundle had a lower average breaking load than the inner welds. Neutron irradiation had no effect on the tensile strength of these welds. It was also demonstrated that a cup-and-cone type of fracture could be produced in a bend test. These fractures were similar to those observed in irradiated fuel bundles which had been damaged during transfer operations. A large amount of scatter rendered some

  15. Determination of tritium generation and release parameters at lithium CPS under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ponkratov, Yuriy, E-mail: ponkratov@nnc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Baklanov, Viktor; Skakov, Mazhyn; Kulsartov, Timur; Tazhibayeva, Irina; Gordienko, Yuriy; Zaurbekova, Zhanna; Tulubayev, Yevgeniy [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Chikhray, Yevgeniy [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan); Lyublinski, Igor [JSC “Star”, Moscow (Russian Federation); NRNU “MEPhI”, Moscow (Russian Federation); Vertkov, Alexey [JSC “Star”, Moscow (Russian Federation)

    2016-11-01

    Highlights: • The main parameters of tritium generation and release from lithium capillary-porous system (CPS) under neutron irradiation at the IVG.1 M research reactor is described in paper. • In the experiments a very small tritium release was fixed likely due to its high solubility in liquid lithium. • If the lithium CPS will be used as a plasma facing material in temperature range up to 773 K under neutron irradiation only helium will release from lithium CPS into a vacuum chamber. - Abstract: This paper describes the main parameters of tritium generation and release from lithium capillary-porous system (CPS) under neutron irradiation at the IVG.1 M research reactor. The experiments were carried out using the method of mass-spectrometric registration of released gases and using a specially constructed ampoule device. Irradiation was carried out at different reactor thermal powers (1, 2 and 6 MW) and sample temperatures from 473 to 773 K. In the experiments a very small tritium release was detected likely due to its high solubility in liquid lithium. It can be caused by formation of lithium tritide during tritium diffusion to the lithium surface.

  16. Electrical characterization of 10B doped diamond irradiated with low thermal neutron fluence

    International Nuclear Information System (INIS)

    Reed, M.L.; Reed, M.J.; Jagannadham, K.; Verghese, K.; Bedair, S.M.; El-Masry, N.; Butler, J.E.

    2004-01-01

    A sample of 10 B isotope doped diamond was neutron irradiated to a thermal fluence of 1.3x10 19 neutron cm -2 . The diamond sample was cooled continuously during irradiation in a nuclear reactor. 7 Li is formed by nuclear transmutation reaction from 10 B. Characterization for electrical conductance in the temperature range of 160 K 10 B doped sample and the 10 B doped and irradiated sample. The unirradiated diamond sample showed p-type conductance at higher temperature (T>200 K) and p-type surface conductance at lower temperature (T 7 Li that is formed by nuclear transmutation reaction from 10 B atoms. Also, compensation of n-type carriers from 7 Li by p-type carriers from 10 B is used to interpret the conductance above 400 K. A low concentration of radiation induced defects, absence of defect complexes, and the low activation energy of n-type 7 Li are thought responsible for the observed variation of conductance in the irradiated diamond. The present results illustrate that neutron transmutation from 10 B doped diamond is a useful method to achieve n-type conductivity in diamond

  17. Study irradiation damage by fast neutrons in Portland cement by means of ultra-sound

    International Nuclear Information System (INIS)

    Rosa Junior, A.A.

    1988-01-01

    The effect of neutron irradiation in samples of Portland cement paste was evaluated, using the resonance frequency method and pulse velocity of ultra-sound technique. The samples were divide in three groups: 1) Monitoring samples; 2) Samples to gamma heating simulation; 3) Fast neutron irradiated samples in reactor core. Santa Rita Portland cement was utilized for samples preparation with water-cement rate of 0,40 l/kg. The irradiation was performed in the research reactor IEA-R1, at IPEN-CNEN/SP, with an integrated flux of 7,2 X 10 sup(18) n/cm sup(2) (E approx. 1 Mev). The samples of group 2 were submitted to special micro-waves heat treatment-with the same number of cycles of the reactor-which allowed the detection of fast neutron radiation effects within the predominant thermal effects. (author)

  18. Neutron Irradiation Tests of Calibrated Cryogenic Sensors at Low Temperatures

    CERN Document Server

    Junquera, T; Thermeau, J P; Casas-Cubillos, J

    1998-01-01

    This paper presents the advancement of a program being carried out in view of selecting the cryogenic temperature sensors to be used in the LHC accelerator. About 10,000 sensors will be installed around the 26.6 km LHC ring, and most of them will be exposed to high radiation doses during the accelerator lifetime. The following thermometric sensors : carbon resistors, thin films, and platinum resistors, have been exposed to high neutron fluences (>10$^15$ n/cm$^2$) at the ISN (Grenoble, France) Cryogenic Irradiation Test Facility. A cryostat is placed in a shielded irradiation vault where a 20 MeV deuteron beam hits a Be target, resulting in a well collimated and intense neutron beam. The cryostat, the on-line acquisition system, the temperature references and the main characteristics of the irradiation facility are described. The main interest of this set-up is its ability to monitor online the evolution of the sensors by comparing its readout with temperature references that are in principle insensitive to t...

  19. Self-Powered Neutron Detector Calibration Using a Large Vertical Irradiation Hole of HANARO

    OpenAIRE

    Kim Myong-Seop; Park Byung-Gun; Kang Gi-Doo

    2018-01-01

    A calibration technology of the self-powered neutron detectors (SPNDs) using a large vertical irradiation hole of HANARO is developed. The 40 Rh-SPNDs are installed on the polycarbonate plastic support, and the gold wires with the same length as the effective length of the rhodium emitter of the SPND are also installed to measure the neutron flux on the SPND. They are irradiated at a low reactor power, and the SPND current is measured using the pico-ammeter. The external gamma-rays which affe...

  20. Deuterium trapping at vacancy clusters in electron/neutron-irradiated tungsten studied by positron annihilation spectroscopy

    Science.gov (United States)

    Toyama, T.; Ami, K.; Inoue, K.; Nagai, Y.; Sato, K.; Xu, Q.; Hatano, Y.

    2018-02-01

    Deuterium trapping at irradiation-induced defects in tungsten, a candidate material for plasma facing components in fusion reactors, was revealed by positron annihilation spectroscopy. Pure tungsten was electron-irradiated (8.5 MeV at ∼373 K and to a dose of ∼1 × 10-3 dpa) or neutron-irradiated (at 573 K to a dose of ∼0.3 dpa), followed by post-irradiation annealing at 573 K for 100 h in deuterium gas of ∼0.1 MPa. In both cases of electron- or neutron-irradiation, vacancy clusters were found by positron lifetime measurements. In addition, positron annihilation with deuterium electrons was demonstrated by coincidence Doppler broadening measurements, directly indicating deuterium trapping at vacancy-type defects. This is expected to cause significant increase in deuterium retention in irradiated-tungsten.

  1. Effect of fast-neutron irradiation on plastic deformation of Type 304 stainless steel

    International Nuclear Information System (INIS)

    Yamada, H.

    1978-01-01

    Plastic deformation of EBR-II-irradiated Type 304 stainless steel was investigated by a stress-relaxation method. The stress-strain-rate relationships for the irradiated specimens at room temperature are concave upward, which are similar to those for the unirradiated specimens. However, concave downward behavior in the stress-strain-rate relationships were observed at much lower temperatures for the irradiated specimens in contrast to the unirradiated specimens. These results were analyzed succccessfully using Hart's mechanical equation-of-state concept. It was found that the hardness sigma*, which is the minimum stress necessary for the dislocation to overcome obstacles without thermal activation, increases linearly with fast-neutron fluence. This increase in sigma* is consistent with so-called ''irradiation hardening.'' In addition, resistance to dislocation glide, which is quantitatively measured in terms of sigma 0 , was observed to decrease linearly with fast-neutron fluence. The decrease in sigma 0 can be attributed to a decrease of solute drag due to irradiation-induced solute segregation

  2. Increase of the electrical resistance of thin aluminium film due to 14 MeV neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, S K; Kumar, U; Singh, S P; Bhattacharya, S; Nigam, A K [Banaras Hindu Univ. (India). Dept. of Physics

    1978-01-01

    The effect of 14 MeV neutron bombardment on the electrical resistance of 500 A thick vacuum-coated Al film is investigated. In the beginning, a slow, then sharp and finally again slow increase is observed in the electrical resistance of the film. Transmission electron micrographs of the film after the same dose of neutron irradiation show a large number of defects produced in the film due to neutron irradiation, which seems to be the cause of this increase.

  3. Recovery characteristics of neutron-irradiated V-Ti alloys

    International Nuclear Information System (INIS)

    Leguey, T.; Pareja, R.

    2000-01-01

    The recovery characteristics of neutron-irradiated pure V and V-Ti alloys with 1.0 and 4.5 at.% Ti have been investigated by positron annihilation spectroscopy. Microvoid formation during irradiation at 320 K is produced in pure V and V-1Ti but not in V-4.5Ti. The results are consistent with a model of swelling inhibition induced by vacancy trapping by solute Ti during irradiation. The temperature dependencies of the parameter S in the range 8-300 K indicate a large dislocation bias for vacancies and solute Ti. This dislocation bias prevents the microvoid nucleation in V-4.5Ti, and the microvoid growth in V-1Ti, when vacancies become mobile during post-irradiation annealing treatments. A characteristic increase of the positron lifetime is found during recovery induced by isochronal annealing. It is attributed to a vacancy accumulation into the lattice of Ti oxides precipitated during cooling down, or at their matrix/precipitate interfaces. These precipitates could be produced by the decomposition of metastable phases of Ti oxides formed during post-irradiation annealing above 1000 K

  4. Effect of gamma and neutron irradiation on the mechanical properties of Spectralon™ porous PTFE

    Energy Technology Data Exchange (ETDEWEB)

    Gourdin, William H., E-mail: gourdin1@llnl.gov [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA USA (United States); Datte, Philip; Jensen, Wayne; Khater, Hesham; Pearson, Mark [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA USA (United States); Girard, Sylvain [Laboratoire Hubert Curien − UMR CNRS 5516, 18 rue du Pr. Benoît Lauras, F-42000 Saint Etienne (France); Paillet, Philippe; Alozy, Eric [CEA, DAM, DIF, F-91297 Arpajon (France)

    2016-11-15

    Highlights: • The effects of neutrons and gammas on PTFE are equivalent for a given absorbed dose. • A neutron fluence of 10{sup 13} n/cm{sup 2} corresponds to a gamma dose of 200 Gy. • The dose-to-fluence conversion factor is approximately 5 × 10{sup 10} n/(cm{sup 2}-Gy). • Irradiation in a low-oxygen environment enhances loads and elongations. • Mechanical properties of PTFE will deteriorate at a neutron fluence of 10{sup 13} n/cm{sup 2}. - Abstract: We establish a correspondence between the mechanical properties (maximum load and failure elongation) of Spectralon™ porous PTFE irradiated with 14 MeV neutrons and 1.17 and 1.33 MeV gammas from a cobalt-60 source. From this correspondence we infer that the effects of neutrons and gammas on this material are approximately equivalent for a given absorbed dose.

  5. Neutron metrology in the HFR. Steel irradiation. R139-801 (SINAS)

    International Nuclear Information System (INIS)

    Ketema, D.J.

    1999-02-01

    The R139-80 series irradiation experiments is part of the NRG materials test programme to evaluate the irradiation behaviour of several types of austenitic stainless steel. Within this programme five R139-80 specimen holders were irradiated in the HFR Petten to different dose levels. This report presents the final metrology results obtained from activation monitors in a specimen holder, coded as R139-801, containing 12 Compact Tension (CT-10 mm) specimens made from the austenitic stainless steel types 308LSXB/TIG and 304-SXB. The R139-801 assembly was irradiated in channel 1 of a TRIO type facility placed in HFR core-position F8. The aim of this irradiation of specimen holder R139-801 was to reach a minimum target damage level of 7.5 dpa for the specimens at a temperature of 335C. The monitor sets are used to calculate the thermal and fast neutron fluences, displacements per atom and the generated helium content. Additionally detailed information concerning an estimation of the fluence and damage doses received by each specimen and its temperature during irradiation are presented. The main results of the thermal and fast neutron fluence measurements are presented. The results indicate that the obtained damage levels in the steel specimens loaded in this specimen holder vary from 5.8 to 7.9 dpa. The temperatures of the specimens during irradiation varied between 304 and 337C. 14 refs

  6. Development of Pneumatic Transfer Irradiation Facility (PTS no.1) for Neutron Activation Analysis at HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. S.; Moon, J. H.; Kim, S. H.; Sun, G. M.; Baek, S. Y.; Kim, H. R.; Kim, Y. J

    2008-03-15

    A pneumatic transfer system (PTS) is one of the most important facilities used during neutron irradiation of a target material for instrumental neutron activation analysis (INAA) in a research reactor. In particular, a fast pneumatic transfer system is essential for the measurement of a short half-life nuclide and a delayed neutron counting system. The pneumatic transfer system (PTS no.1) involving a manual system and an semiautomatic system were reconstructed with new designs of a functional improvement at the HANARO research reactor in 2006. In this technical report, the conception, design, operation and control of these system (PTS no.1) was described. Also the experimental results and the characteristic parameters measured by a mock-up test, a functional operation test and an irradiation test of these systems, such as the transfer time of irradiation capsule, the different neutron flux, the temperature of the irradiation position with an irradiation time, the radiation dose rate when the rabbit is returned, etc. are reported to provide a user information as well as a reactor's management and safety.

  7. Investigation of radiation damage effects in neutron irradiated CCD

    International Nuclear Information System (INIS)

    Brau, James E.; Igonkina, Olga; Potter, Chris T.; Sinev, Nikolai B.

    2005-01-01

    A Charge Coupled Devices (CCD)-based vertex detector is a leading option for vertex detection at the future linear collider. A major issue for this application is the radiation hardness of such devices. Tests of radiation hardness of CCDs used in the SLD vertex detector, VXD3, have been reported earlier. The first measurements of 1998 involved a spare VXD3 CCD that was irradiated with neutrons from a radioactive source (Pu-Be), and from a nuclear reactor. In 2003, we had the opportunity to disassemble the VXD3 detector and study the nature of the radiation damage it incurred during 3 years of operation at SLC. In the preparation for this study, additional experiments with the spare VXD3 CCD were performed. These included measurements of trapping times in neutron irradiated CCDs. Results, reported here, will help us better understand the mechanism of radiation damage effects and develop techniques to minimize performance degradation due to radiation damage

  8. In vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta Etel Treiger; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Lab. de Biologia Molecular]. E-mail: samanta@usp.br; Osso Junior, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Centro de Radiofarmacia]. E-mail: jaosso@ipen.br; Andrade Junior, Heitor Franco de [Instituto de Medicina Tropical de Sao Paulo (IMT-SP), SP (Brazil). Lab. de Protozoologia]. E-mail:hfandrad@usp.br

    2005-10-15

    Pentavalent antimony, as meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam), is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes {sup 122} Sb and {sup 124} Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology. (author)

  9. Neutron capture therapy (NCT) and in-hospital neutron irradiator (IHNI) a new technology on binary targeting radiation therapy of cancer

    International Nuclear Information System (INIS)

    Zhou Yongmao

    2009-01-01

    BNCT is finally becoming 'a new option against cancer'. The difficulties for its development progress of that firstly is to improve the performance of boron compounds,secondly, it is the requirements of quantification and accuracy upon radiation dosimetry evaluation in clinical trials. Furthermore, that is long anticipation on hospital base neutron sources. It includes dedicated new NCT reactor, accelerator based neutron sources, and isotope source facilities. In addition to reactors, so far, the technology of other types of sources for clinical trials is not yet completely proven. The In-Hospital Neutron Irradiator specially designed for NCT, based on the MNSR successfully developed by China, can be installed inside or near the hospital and operated directly by doctors. The Irradiator has two neutron beams for respective treatment of the shallow and deep tumors. It is expected to initiate operation in the end of this year. It would provide a safe, low cost, and effective treatment tool for the NCT routine application in near future. (authors)

  10. The effects of oxide evolution on mechanical properties in proton- and neutron-irradiated Fe-9%Cr ODS steel

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, M.J., E-mail: matthewswenson1@u.boisestate.edu [Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Dolph, C.K. [Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Wharry, J.P. [Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Purdue University, 400 Central Drive, West Lafayette, IN 47907 (United States)

    2016-10-15

    The objective of this study is to evaluate the effect of irradiation on the strengthening mechanisms of a model Fe-9%Cr oxide dispersion strengthened steel. The alloy was irradiated with protons or neutrons to a dose of 3 displacements per atoms at 500 °C. Nanoindentation was used to measure strengthening due to irradiation, with neutron irradiation causing a greater increase in yield strength than proton irradiation. The irradiated microstructures were characterized using transmission electron microscopy and atom probe tomography (APT). Cluster analysis reveals solute migration from the Y-Ti-O-rich nanoclusters to the surrounding matrix after both irradiations, though the effect is more pronounced in the neutron-irradiated specimen. Because the dissolved oxygen atoms occupy interstitial sites in the iron matrix, they contribute significantly to solid solution strengthening. The dispersed barrier hardening model relates microstructure evolution to the change in yield strength, but is only accurate if solid solution contributions to strengthening are considered simultaneously.

  11. Morphological differences in the response of mouse small intestine to radiobiologically equivalent doses of X and neutron irradiation

    International Nuclear Information System (INIS)

    Carr, K.E.; Hamlet, R.; Nias, A.H.; Watt, C.

    1984-01-01

    A scale has been developed to describe the effects of radiation on small intestinal villi. The scale has been used to compare the damage done to the villi in the period 0-5 days after irradiation by X-irradiation or neutron irradiation, using 10 Gy X-rays and 5 Gy neutrons, doses which are radiobiologically equivalent when assessed by the microcolony assay method. Use of the scale indicates that the damage done to the villi by neutrons is greater than that produced by X-rays. This has implications for the interpretation of radiobiological equivalent doses (R.B.E.). Resin light microscopy and transmission electron microscopy (T.E.M.) have also been used to examine small intestinal damage after 10 Gy X-irradiation and 5 Gy neutron irradiation. Differences include variations in crypt shape, mitotic activity and the proportion of crypts which are heavily parasitised. As well as the differences in villous shape which have been reflected in the different values on the scoring system, there are also variations in the response of the constituent cells of the epithelial compartment of the villi. In general, the effect of the neutron irradiation is more severe than that of the X-rays, particularly as would be suggested by a simple quantitation of crypt regeneration

  12. On the Thermal Conductivity Change of Matrix Graphite Materials after Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Kim, Eung-Seon; Sah, Injin; Park, Daegyu; Kim, Youngjun; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this work, the variations of the thermal conductivity of the A3-3 matrix graphite after neutron irradiation is discussed as well as of the IG-110 graphite for comparison. Neutron irradiation of the graphite specimens was carried out as a part of the first irradiation test of KAERI's coated particle fuel specimens by use of Hanaro research reactor. This work can be summarized as follows: 1) In the evaluation of the specific heat of the graphite materials, various literature data were used and the variations of the specific heat data of all the graphite specimens are observed well agreed, irrespectively of the difference in specimens (graphite and matrix graphite and irradiated and un-irradiated). 2) This implies that it should be reasonable that for both structural graphite and fuel matrix graphite, and even for the neuron-irradiated graphite, any of these specific heat data set be used in the calculation of the thermal conductivity. 3) For the irradiated A3-3 matrix graphite specimens, the thermal conductivity decreased on both directions. On the radial direction, the tendency of variation upon temperature is similar to that of unirradiated specimen, i.e., decreasing as the temperature increases. 4) In the German irradiation experiments with A3-27 matrix graphite specimens, the thermal conductivity of the un-irradiated specimen shows a decrease and that of irradiated specimen is nearly constant as the temperature increases. 5) The thermal conductivity of the irradiated IG-110 was considerably decreased compared with that of un-irradiated specimens The difference of the thermal conductivity of un-irradiated and irradiated IG-110 graphite specimens is much larger than that of un-irradiated and irradiated A3-3 matrix graphite specimens.

  13. Importance diagrams - a novel presentation of the response of a material to neutron irradiation

    International Nuclear Information System (INIS)

    Forrest, R.A.

    1998-01-01

    Activation of fusion materials following neutron irradiation is of great technological importance, especially in the study of safety and environmental impacts. Currently, activation calculations are performed for a particular neutron spectrum, appropriate to a region in a particular fusion device, which makes it difficult to extract generic information. The present work gives details of a method to present the dominant nuclides for the radiological responses or an irradiated material in a fashion that is independent of the neutron spectrum and almost independent of the flux. The importance diagrams show regions in the decay time versus neutron energy space where a nuclide contributes >50% of the response. The importance diagrams for pure iron and SS316 are described, and it is noted that the shapes of the various regions vary very little with the total neutron flux. Variation of the diagrams with irradiation time occurs at short decay times in a systematic fashion. The use of the diagrams in a realistic spectrum relies on an expansion, which while not generally true, does hold approximately for many of the nuclides of interest. The diagrams are therefore a valuable summary of the universal, device-independent, response of the materials, and when combined with pathway information give a comprehensive description of activation for that material. (orig.)

  14. Electrical properties of indium arsenide irradiated with fast neutrons

    International Nuclear Information System (INIS)

    Kolin, N.G.; Osvenskii, V.B.; Rytova, N.S.; Yurova, E.S.

    1987-01-01

    A study was made of the influence of irradiation with fast reactor neutrons on electrical properties of indium arsenide samples with different dopant concentrations. The laws governing the formation and annealing of radiation defects in indium arsenide were found to be governed by the donor-acceptor interaction. Depending on the density of free carriers in the original crystal, irradiation could produce charged defects of predominantly donor or acceptor types. Donor defects in irradiated InAs samples were annealed practically completely, whereas a considerable fraction of residual acceptor defects was retained even after heat treatment at 900 degree C. The concentration of these residual acceptors depended on the electron density at the annealing temperature

  15. Alteration of sensitivity of intratumor quiescent and total cells to γ-rays following thermal neutron irradiation with or without 10B-compound

    International Nuclear Information System (INIS)

    Masunaga, Shin-ichiro; Ono, Koji; Suzuki, Minoru; Sakurai, Yoshinori; Kobayashi, Tooru; Takagaki, Masao; Kinashi, Yuko; Akaboshi, Mitsuhiko

    2000-01-01

    Purpose: Changes in the sensitivity of intratumor quiescent (Q) and total cells to γ-rays following thermal neutron irradiation with or without 10 B-compound were examined. Methods and Materials: 5-Bromo-2'-deoxyuridine (BrdU) was injected to SCC VII tumor-bearing mice intraperitoneally 10 times to label all the proliferating (P) tumor cells. As priming irradiation, thermal neutrons alone or thermal neutrons with 10 B-labeled sodium borocaptate (BSH) or dl-p-boronophenylalanine (BPA) were administered. The tumor-bearing mice then received a series of γ-ray radiation doses, 0 through 24 h after the priming irradiation. During this period, no BrdU was administered. Immediately after the second irradiation, the tumors were excised, minced, and trypsinized. Following incubation of tumor cells with cytokinesis blocker, the micronucleus (MN) frequency in cells without BrdU labeling (= Q cells at the time of priming irradiation) was determined using immunofluorescence staining for BrdU. The MN frequency in the total (P + Q) tumor cells was determined from the tumors that were not pretreated with BrdU before the priming irradiation. To determine the BrdU-labeled cell ratios in the tumors at the time of the second irradiation, each group also included mice that were continuously administered BrdU until just before the second irradiation using mini-osmotic pumps which had been implanted subcutaneously 5 days before the priming irradiation. Results: In total cells, during the interval between the two irradiations, the tumor sensitivity to γ-rays relative to that immediately after priming irradiation decreased with the priming irradiation ranking in the following order: thermal neutrons only > thermal neutrons with BSH > thermal neutrons with BPA. In contrast, in Q cells, during that time the sensitivity increased in the following order: thermal neutrons only 10 B-compound, especially BPA, in thermal neutron irradiation causes the recruitment from the Q to P population

  16. Neutron irradiation effect on thermomechanical properties of shape memory alloys

    International Nuclear Information System (INIS)

    Abramov, V.Ya.; Ionajtis, R.R.; Kotov, V.V.; Loguntsev, E.N.; Ushakov, V.P.

    1996-01-01

    Alloys of Ti-Ni, Ti-Ni-Pd, Fe-Mn-Si, Mn-Cu-Cr, Mn-Cu, Cu-Al-Mn, Cu-Al-Ni systems are investigated after irradiation in IVV-2M reactor at various temperatures with neutron fluence of 10 19 - 10 20 cm -2 . The degradation of shape memory effect in titanium nickelide base alloys is revealed after irradiation. Mn-Cu and Mn-Cu-Cr alloys show the best results. Trends in shape memory alloy behaviour depending on irradiation temperature are found. A consideration is given to the possibility of using these alloys for components of power reactor control and protection systems [ru

  17. EL2-related defects in neutron irradiated GaAs1/sub -x/P/sub x/ alloys

    International Nuclear Information System (INIS)

    Munoz, E.; Garcia, F.; Jimenez, B.; Calleja, E.; Gomez, A.; Alcober, V.

    1985-01-01

    The generation of EL2-related defects in GaAsP alloys by fast neutron irradiation has been studied through deep level transient spectroscopy and photocapacitance techniques. After irradiation p-n junctions were not annealed at high temperatures. In the composition range x>0.4, fast neutrons generate a broad center at E/sub c/-0.7 eV that it is suggested to belong to the EL2 family. The presence of photocapacitance quenching effects has been taken as a preliminary fingerprint to make the above assignment. From computer analysis of the nonexponential transient capacitance waveforms, evidence that neutron irradiation creates a family of midgap levels, EL2-related, is found

  18. Recovery of the spermatogenetic epithelium in the mouse after irradiation with 1-MeV fission neutrons

    International Nuclear Information System (INIS)

    Aardweg, G.J.M.J. van den.

    1983-01-01

    In this thesis the recovery of the spermatogenetic epithelium in the mouse is studied after damage with 1-MeV fission neutrons. A severe depletion of A-spermatogonia and radiosensitive stem cells occurs after neutron irradiation. Recovery of the epithelium is initiated by surviving radioresistant stem cells giving rise to colonies, which grow into the empty seminiferous tubules. After discussing properties of normal and irradiated spermatogenetic epithelium, the growth and the differentiation of spermatogenetic colonies in the mouse testis after irradiation, as well as response and kinetics of colony-forming spermatogonial stem cells in CBA mice up to 30 weeks after a first neutron dose and recovery of the epithelium after a second irradiation are investigated. These four subjects are dealt with in separate papers. Finally, a discussion and a summary of these studies is presented. (Auth.)

  19. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Juergen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aaron, A. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bell, Gary L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burgess, Thomas W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ellis, Ronald James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lessard, Timothy L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ohriner, Evan Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Perkins, Dale E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Varma, Venugopal Koikal [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-20

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady

  20. Evaluation of neutron irradiation effect on SCC crack growth behaviour of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    Austenitic stainless steels are widely used as structural materials alloy in reactor pressure vessel internal components because of their high strength, ductility and fracture toughness. However, exposure due to neutron irradiation results in changes in microstructure, mechanical properties and microchemistry of the material. Irradiation assisted stress corrosion cracking (IASCC) caused by the effect of neutron irradiation during long term operation in high temperature water environments in nuclear power plants is considered to take the form of intergranular stress corrosion cracking (IGSCC) and the critical fluence level has been reported to be about 5x10{sup 24}n/m{sup 2} (E>1MeV) for Type 304 SS in BWR environment. JNES had been conducting IASCC project during from JFY 2000 to JFY 2008, and prepared an engineering database on IASCC. However, the data of crack growth rate (CGR) below the critical fluence level are not sufficient. Therefore, evaluation of neutron irradiation effect project (ENI) was initiated to obtain the CGR data below the critical fluence level, and prepare the SCC growth rate diagram for life time evaluation of core shroud. Test specimens have been irradiated in the OECD/Halden reactor, and the post irradiation experiments (PIE) have been conducting during from JFY 2011 to JFY 2013, finally the modified IASCC guide will be prepared in JFY 2013. (author)

  1. The relationship between the hardness and the point-defect-density in neutron-irradiated MgO·3.0Al2O3 and AlN

    International Nuclear Information System (INIS)

    Suematsu, H.; Yatsui, K.; Yano, T.

    2001-01-01

    MgO·3.0Al 2 O 3 single crystals and sintered AlN polycrystals were irradiated with fast neutrons in various conditions and the hardness of the irradiated and unirradiated samples was measured with a Vickers hardness tester. The hardness of as-irradiated MgO·3.0Al 2 O 3 and AlN samples increased by 23 and 51%, respectively. After isochronal annealing, the hardness gradually decreased and mostly recovered to that of the unirradiated one up to 1400degC. Volume of the sample also increased after the irradiation and changed in the same way as the hardness by annealing. A relationship between the hardness and the density of point defects is proposed and the experimental results agree with the relationship. It implies that the point defects generated by the irradiation pin down dislocations and increase the hardness of neutron irradiated MgO·3.0Al 2 O 3 samples. (author)

  2. ANITA-2000, Isotope Inventories from Neutron Irradiation, for Fusion Applications

    International Nuclear Information System (INIS)

    Cepraga, Dan-Gabriel

    2000-01-01

    1 - Description of program or function: ANITA-2000 is a code package for the activation characterisation of materials exposed to neutrons in fusion machines. The main component of the package is the activation code ANITA-4M that computes the radioactive inventory of a material exposed to neutron irradiation, continuous or stepwise. It provides activity, atomic density, decay heat, biological hazard, clearance index and gamma-ray source spectra at shut down and for different cooling times. An interactive utility module, MODBIN, to produce the neutron activation cross sections libraries in the required binary ANITA-4M Format, is also included. The GRANITA interactive module may plot activation parameters as a function of the cooling time. The main improvements include: -the number of irradiation time intervals has been increased to 2000; -different neutron wall loading can be used for each burn time interval; -the photon source calculation in the 18 energy group Scale structure has been added; -the clearance index can be calculated. In addition the code language has been standardized to Fortran '95 - by maintaining the backward compatibility (except for the time/date routines) - so as the same code package can be compiled and run on Unix environment and on PC, both under DOS-Windows and under Linux. 2 - Methods: The mathematical solution of the problem is given in analytical form using recurrence relations. Double precision arithmetic is used

  3. Microstructural evolution in reactor pressure vessel steel under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Katsumi; Fukuya, Koji [Institute of Nuclear Safety System Inc., Seika, Kyoto (Japan)

    2000-09-01

    Understanding microstructural changes in reactor pressure vessel steels is important in order to evaluate radiation-induced embrittlement, one of the major aging phenomena affecting the extension of plant life. In this study, actual surveillance test specimens and samples of rector vessel low-alloy steel (A533B steel) irradiated in a research reactor were examined using state-of-the-art techniques to clarify the neutron flux effect on the microstructural changes. These techniques included small angle neutron scattering and atom probes. Microstructural changes which are considered to be the main factors affecting embrittlement, including the production of copper-rich precipitates and the segregation of impurity elements, were confirmed by the results of the study. In addition, the mechanical properties were predicted based on the obtained quantitative data such as the diameters of precipitates. Consequently, the hardening due to irradiation was almost simulated. (author)

  4. The determination by irradiation with a pulsed neutron generator and delayed neutron counting of the amount of fissile material present in a sample; Determination de la quantite de matiere fissile presente dans un echantillon par irradiation au moyen d'une source pulsee de neutrons et comptage des neutrons retardes

    Energy Technology Data Exchange (ETDEWEB)

    Beliard, L; Janot, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    A preliminary study was conducted to determine the amount of fissile material present in a sample. The method used consisted in irradiating the sample by means of a pulsed neutron generator and delayed neutron counting. Results show the validity of this method provided some experimental precautions are taken. Checking on the residual proportion of fissile material in leached hulls seems possible. (authors) [French] Ce rapport rend compte d'une etude preliminaire effectuee en vue de determiner la quantite de matiere fissile presente dans un echantillon. La methode utilisee consiste a irradier l'echantillon considere au moyen d'une source puisee de neutrons et a compter les neutrons retardes produits. Les resultats obtenus permettent de conclure a la validite de la methode moyennant certaines precautions. Un controle de la teneur residuelle en matiere fissile des gaines apres traitement semble possible. (auteurs)

  5. HEINBE; the calculation program for helium production in beryllium under neutron irradiation

    International Nuclear Information System (INIS)

    Shimakawa, Satoshi; Ishitsuka, Etsuo; Sato, Minoru

    1992-11-01

    HEINBE is a program on personal computer for calculating helium production in beryllium under neutron irradiation. The program can also calculate the tritium production in beryllium. Considering many nuclear reactions and their multi-step reactions, helium and tritium productions in beryllium materials irradiated at fusion reactor or fission reactor may be calculated with high accuracy. The calculation method, user's manual, calculated examples and comparison with experimental data were described. This report also describes a neutronics simulation method to generate additional data on swelling of beryllium, 3,000-15,000 appm helium range, for end-of-life of the proposed design for fusion blanket of the ITER. The calculation results indicate that helium production for beryllium sample doped lithium by 50 days irradiation in the fission reactor, such as the JMTR, could be achieved to 2,000-8,000 appm. (author)

  6. Evaluation of neutron irradiated near-stoichiometric silicon carbide fiber composites

    International Nuclear Information System (INIS)

    Snead, L.L.; Katoh, Y.; Kohyama, A.; Bailey, J.L.; Vaughn, N.L.; Lowden, R.A.

    2000-01-01

    Composites have been fabricated by chemical vapor infiltration of silicon carbide (SiC) into SiC-based fiber preforms. Fibers were Ceramic Grade Nicalon TM , Hi-Nicalon TM and Hi-Nicalon TM Type-S. Results are presented for two parallel studies on the effects of neutron irradiation on these materials. In the first study, neutron irradiation induced changes in mechanical properties, as measured by bend testing, for Hi-Nicalon TM fiber materials of varied interphase structures is measured. Results indicate that both the Ceramic Grade Nicalon TM and Hi-Nicalon TM materials degrade substantially under irradiation, though the higher oxygen content Ceramic Grade fiber degrades more rapidly and more substantially. Of the three interfaces studied in the Hi-Nicalon TM system, the multilayer SiC is the most radiation resistant. At a dose of ∼1 dpa the mechanical property degradation of the Hi-Nicalon TM composite is consistent with a fiber densification-induced debonding. At a dose of 10 dpa the properties continue to degrade raising the question of degradation in the CVD SiC matrix as well. Low-dose results on the Hi-Nicalon TM Type-S fabricated material are encouraging, as they appear to not lose, and perhaps slightly increase, in ultimate bend strength. This result is consistent with the supposition that as the oxygen content in SiC-based fibers is reduced, the irradiation stability and hence composite performance under irradiation will improve

  7. A comparative study of the effects of thermal- and fast-neutron irradiation on some selected dilute face centered cubic alloys

    International Nuclear Information System (INIS)

    Piani, C.S.B.

    1981-12-01

    Point defect reactions in Pt and Cu and certain dilute alloys were investigated using a resistivity method following either fast-neutron or thermal-neutron irradiation at 4 K. An enhanced irradiation-induced resistivity in certain of the alloys could be attributed to actual enhanced defect production. This was related to a mechanism involving defocussing of replacement collision chains at impurities, together with possible nucleation of interstitial clusters at impurities. The close-pair recovery substages I(A), I(B) and I(C), strongly evident in thermal-neutron-irradiated materials, were suppressed by fast-neutron irradiation. This could be related to the higher energy transfers during irradiation and to significant amounts of irradiation annealing (spontaneous recombination). Fast-neutron cascades favoured interstitial clustering and reduced recovery of the interstitial migration substages I(D) and I(E). Interstitial trapping at impurities during I(D) and I(E) although evident, was less effective in fast-neutron irradiation. Higher concentrations of impurities reduced close-pair recovery as well. Stage II detrapping was related to the trapping efficiency of impurities, as well as to the effective defect concentration. Oversized impurities (Au in Pt or Cu) acted as weak traps, while undersized impurities (Cu or Ni in Pt) appeared to from deeper 'mixed-dumbbell' traps. The 120 K substage in Pt had a unique activation energy approximately 0,37 plus minus 0,03 eV, but did not seem to be due to an impurity detrapping process. It was not possible to attribute the 360 K stage in Pt with a unique activation energy in fast-neutron irradiation

  8. Fabrication of thin cadmium cylinder coated with aluminum for neutron irradiation capsules

    International Nuclear Information System (INIS)

    Takeyama, Tomonori; Chiba, Masaaki

    2001-03-01

    In order to fabricate the irradiation capsule screened thermal neutron, a thin cadmium cylinder coated with aluminum was developed. The capsule is used for the fast neutron irradiation test. Requested specification of the cylinder are the thickness of 5.5 mm, the inner diameter of 23 mm, the length of 750 mm and the coated thickness of aluminum of 0.75 mm. Moreover, cadmium and aluminum adhere to each other. The cylinder was developed and fabricated by means of casting. The a new vacuum chamber in which solving and casting work is possible was fabricated to prevent cadmium oxidation and work safely from poison of cadmium. (author)

  9. Induction of external abnormalities in offspring of male mice irradiated with 252Cf neutron

    International Nuclear Information System (INIS)

    Kurishita, Akihiro; Ono, Tetsuya; Mori, Yuriko; Okada, Shigefumi; Sawada, Syozo

    1992-01-01

    To assess the genetic effects of fission neutron, the induction of external malformations was studied in F 1 fetuses after F 0 male mice were irradiated. Male mice of the ICR:MCH strain were irradiated with 252 Cf neutron at doses of 0.238, 0.475, 0.95 and 1.9 Gy. They were mated with non-irradiated female mice at 71-120 days after irradiation. Pregnant females were autopsied on day 18 of gestation and their fetuses were examined for deaths and external abnormalities. No increases of pre- and post-implantation losses were noted at any dose. External abnormalities were observed at rates of 1.40% in the 0.238 Gy, 2.23% in the 0.475 Gy, 3.36% in the 0.95 and 3.26% in the 1.9 Gy groups; the rate in the control group was 1.65%. The dose-response curve was linear up to 0.95 Gy, and then flattened out; the induction rate of external abnormalities was 2.7x10 -4 /gamete/cGy based on the linear regression. These results indicated that fission neutron effectively induces external abnormalities in F 1 fetuses after spermatogonial irradiation. (author). 29 refs.; 1 fig.; 2 tabs

  10. Life span, testis damage and immune cell populations of spleen in C57BL mice with neutron irradiation by lying flat pose

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ki Jung; kim, Myung Sup; Kyung, Yoo Bo [KAERI, Taejon (Korea)

    2003-10-01

    This study deals with the biological effects of black mouse (C57BL) irradiated with neutron irradiation by using Boron Neutron Capture Therapy facility in HANARO reactor. These include mortality, body wt., hair color, testis volume, sperm count and immune cell populations in mouse spleen after 80 days later by thermal neutron irradiation. Six week old C57BL male mice were irradiated with neutron irradiation for 1 hr or 2 hrs (flux : 1.036739E +09). These irradiat ion doses estimated 15Gy and 30Gy, respectively. Survival days and hair color in mice was checked. On day 80 after irradiation, testis were taken for volume and sperm count. Also spleen was taken for FACS and spleen cells were isolatd and discarded RBC by treating with lysising solution. These cells were placed on ice and immunofluorescence staining was performed. Phycoerythrin (PE )-anti-CD3e, fluorescein isothiocyanate (FITC)-anti-CD4, and FITC-anti-CD8 were added, then the immunostaining cells were incubated on ice for 40 min. The resulting cells were washed with a PBS buffer 3 times and analyzed using a Flow cytometer. All experimental animals survived over 90 days but in case of 30 Gy neutron irradiation, black mice hair were changed white color on the center of the back. Neutron irradiation of black mice show similar in damage of spleen immune cells by subpopulation of T helper and T cytotoxic cells compared to the control non - irradiated group. These results show that treatment of neutron irradiation without boron compounds for 2 hrs in mice can survive over 90 days with hair color change from black to white. Damaged spleen cells recover after long time by irradiation but testis volume and no. of sperm are not recover compared to the normal group in response to neutron irradiation.

  11. Life span, testis damage and immune cell populations of spleen in C57BL mice with neutron irradiation by lying flat pose

    International Nuclear Information System (INIS)

    Chun, Ki Jung; kim, Myung Sup; Kyung, Yoo Bo

    2003-01-01

    This study deals with the biological effects of black mouse (C57BL) irradiated with neutron irradiation by using Boron Neutron Capture Therapy facility in HANARO reactor. These include mortality, body wt., hair color, testis volume, sperm count and immune cell populations in mouse spleen after 80 days later by thermal neutron irradiation. Six week old C57BL male mice were irradiated with neutron irradiation for 1 hr or 2 hrs (flux : 1.036739E +09). These irradiat ion doses estimated 15Gy and 30Gy, respectively. Survival days and hair color in mice was checked. On day 80 after irradiation, testis were taken for volume and sperm count. Also spleen was taken for FACS and spleen cells were isolatd and discarded RBC by treating with lysising solution. These cells were placed on ice and immunofluorescence staining was performed. Phycoerythrin (PE )-anti-CD3e, fluorescein isothiocyanate (FITC)-anti-CD4, and FITC-anti-CD8 were added, then the immunostaining cells were incubated on ice for 40 min. The resulting cells were washed with a PBS buffer 3 times and analyzed using a Flow cytometer. All experimental animals survived over 90 days but in case of 30 Gy neutron irradiation, black mice hair were changed white color on the center of the back. Neutron irradiation of black mice show similar in damage of spleen immune cells by subpopulation of T helper and T cytotoxic cells compared to the control non - irradiated group. These results show that treatment of neutron irradiation without boron compounds for 2 hrs in mice can survive over 90 days with hair color change from black to white. Damaged spleen cells recover after long time by irradiation but testis volume and no. of sperm are not recover compared to the normal group in response to neutron irradiation

  12. MCNP study for epithermal neutron irradiation of an isolated liver at the Finnish BNCT facility.

    Science.gov (United States)

    Kotiluoto, P; Auterinen, I

    2004-11-01

    A successful boron neutron capture treatment (BNCT) of a patient with multiple liver metastases has been first given in Italy, by placing the removed organ into the thermal neutron column of the Triga research reactor of the University of Pavia. In Finland, FiR 1 Triga reactor with an epithermal neutron beam well suited for BNCT has been extensively used to irradiate patients with brain tumors such as glioblastoma and recently also head and neck tumors. In this work we have studied by MCNP Monte Carlo simulations, whether it would be beneficial to treat an isolated liver with epithermal neutrons instead of thermal ones. The results show, that the epithermal field penetrates deeper into the liver and creates a build-up distribution of the boron dose. Our results strongly encourage further studying of irradiation arrangement of an isolated liver with epithermal neutron fields.

  13. Sensitivity Measurement of a long SPND by a Split Neutron Irradiation

    International Nuclear Information System (INIS)

    Choi, Young San; Park, Sang Jun; Jung, Hwan Sung

    2006-01-01

    A Self Powered neutron Detector (SPND) has been used effectively as an in-core neutron monitor for a long time both in nuclear research reactors and power reactors due to its very simple dimensions and structures. For power reactor applications, Rhodium, Vanadium, Platinum, and Silver are usually used as the typical emitter materials for the SPNDs. The SPNDs with a Rhodium emitter (Rh-SPNDs) are most frequently used at Korean Standard Nuclear Power stations (KSNP) as a fixed incore neutron detector. This paper describes a new method to measure the neutron sensitivity of the Rh-SPNDs with a long sensitive length at a horizontal beam tube of HANARO by a split irradiation of them

  14. Radiation defects produced by neutron irradiation in germanium single crystals

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Honda, Makoto; Atobe, Kozo; Yamaji, Hiromichi; Ide, Mutsutoshi; Okada, Moritami.

    1992-01-01

    The nature of defects produced in germanium single crystals by neutron irradiation at 25 K was studied by measuring the electrical resistivity. It was found that two levels located at E c -0.06 eV and E c -0.13 eV were introduced in an arsenic-doped sample. Electron traps at E c -0.10eV were observed in an indium-doped sample. The change in electrical resistivity during irradiation was also studied. (author)

  15. First results of laser welding of neutron irradiated stainless steel

    International Nuclear Information System (INIS)

    Osch, E.V. van; Hulst, D.S. d'; Laan, J.G. van der.

    1994-10-01

    First results of experimental investigations on the laser reweldability of neutron irradiated material are reported. These experiments include the manufacture of 'heterogeneous' joints, which means joining of irradiated stainless steel of type AISI 316L-SPH to 'fresh' unirradiated material. The newly developed laser welding facility in the ECN Hot Cell Laboratory and experimental procedures are described. Visual inspections of welded joints are reported as well as results of electron microscopy and preliminary metallographic examinations. (orig.)

  16. Superconductivity degradation in Gd-containing high temperature superconductors (HTSC) under thermal neutron irradiation

    International Nuclear Information System (INIS)

    Petrov, A.; Kudrenitskis, I.; Makletsov, A.; Arhipov, A.; Karklin, N.

    1999-01-01

    The physical properties of ordered crystals are extremely sensitive to the degree of order in the distribution of the various kinds of atoms over the corresponding sites in the crystal lattice. An increasingly popular means of creating disordered states is to use nuclear radiation. The type of radiation defects which appear and the nature and degree of the structural changes in ordered crystals depend on the kind of radiation and the fluence level, the irradiation temperature, the type of crystal structure, the composition and initial disorder of the material, the character of the interatomic forces, etc. There are many such scientific publications where the effects of fast neutron irradiation on high temperature superconductors (HTSC) have been studied in both polycrystalline and single crystalline superconductors. It is known also that the role of thermal neutrons in structural defects forming is negligible in comparison with fast neutrons because of their small (∼0.025 eV) energy. But it is evident enough that in superconductors containing isotopes with large thermal neutron cross sections the important results concerning the role of point defects could be obtained. Such point defects are creating due to soft displacements of isotopes having interacted with thermal neutrons. Such the possibility of creating point defects in solids including HTSC is investigating by several groups (Austria, USA, China, Latvia) and these investigations have found the support in the person of IAEA. In this review the authors consider the changes brought about by thermal-neutron irradiation (E∼0.025 eV) in the structure, superconducting and magnetic properties of gadolinium containing ordered HTSC with the structure 123, whose extreme electric and magnetic properties continue to attract both research and practical interest. All of the studies reviewed have been done on bulk polycrystalline samples RBa 2 Cu 3 O 7-δ (where R - natural mixture of Gd isotopes, 155 Gd, 157 Gd, 160

  17. Modeling copper precipitation hardening and embrittlement in a dilute Fe-0.3at.%Cu alloy under neutron irradiation

    Science.gov (United States)

    Bai, Xian-Ming; Ke, Huibin; Zhang, Yongfeng; Spencer, Benjamin W.

    2017-11-01

    Neutron irradiation in light water reactors can induce precipitation of nanometer sized Cu clusters in reactor pressure vessel steels. The Cu precipitates impede dislocation gliding, leading to an increase in yield strength (hardening) and an upward shift of ductile-to-brittle transition temperature (embrittlement). In this work, cluster dynamics modeling is used to model the entire Cu precipitation process (nucleation, growth, and coarsening) in a Fe-0.3at.%Cu alloy under neutron irradiation at 300°C based on the homogenous nucleation mechanism. The evolution of the Cu cluster number density and mean radius predicted by the modeling agrees well with experimental data reported in literature for the same alloy under the same irradiation conditions. The predicted precipitation kinetics is used as input for a dispersed barrier hardening model to correlate the microstructural evolution with the radiation hardening and embrittlement in this alloy. The predicted radiation hardening agrees well with the mechanical test results in the literature. Limitations of the model and areas for future improvement are also discussed in this work.

  18. Influence of interstitial impurity atoms on point defect relaxation in neutron irradiated iron

    International Nuclear Information System (INIS)

    Weller, M.; Diehl, J.

    1975-01-01

    The aim of the investigation was to study the combined influence of neutron irradiation and interstitial impurities on the low temperature internal friction peaks as well as on those appearing at higher temperatures after annealing, in a more systematic manner, using irradiations at [de

  19. Neutron transmutation doping of silicon

    International Nuclear Information System (INIS)

    Mireshghi, A.

    1989-01-01

    After a brief review of the theoretical bases for Neutron Transmutation Doping (NTD) process, the equations necessary for calculation of doped crystal resistivity (p) in terms of parameters of irradiation, such as time and neutron flux, are derived. The procedure for production of NTD-Si is described, important considerations are outlined and the advantages and applications are introduced. Also, an assessment is made of the practicality of using AEOI Research Reactor thermal neutron irradiation facilities for production of NTD-Si, which is concluded to be possible at reactor nominal operation conditions

  20. Modeling of displacement damage in silicon carbide detectors resulting from neutron irradiation

    Science.gov (United States)

    Khorsandi, Behrooz

    There is considerable interest in developing a power monitor system for Generation IV reactors (for instance GT-MHR). A new type of semiconductor radiation detector is under development based on silicon carbide (SiC) technology for these reactors. SiC has been selected as the semiconductor material due to its superior thermal-electrical-neutronic properties. Compared to Si, SiC is a radiation hard material; however, like Si, the properties of SiC are changed by irradiation by a large fluence of energetic neutrons, as a consequence of displacement damage, and that irradiation decreases the life-time of detectors. Predictions of displacement damage and the concomitant radiation effects are important for deciding where the SiC detectors should be placed. The purpose of this dissertation is to develop computer simulation methods to estimate the number of various defects created in SiC detectors, because of neutron irradiation, and predict at what positions of a reactor, SiC detectors could monitor the neutron flux with high reliability. The simulation modeling includes several well-known---and commercial---codes (MCNP5, TRIM, MARLOWE and VASP), and two kinetic Monte Carlo codes written by the author (MCASIC and DCRSIC). My dissertation will highlight the displacement damage that may happen in SiC detectors located in available positions in the OSURR, GT-MHR and IRIS. As extra modeling output data, the count rates of SiC for the specified locations are calculated. A conclusion of this thesis is SiC detectors that are placed in the thermal neutron region of a graphite moderator-reflector reactor have a chance to survive at least one reactor refueling cycle, while their count rates are acceptably high.

  1. Effect of thermal gab conductance for MoO3 ampoules irradiated in a high neutron flux

    International Nuclear Information System (INIS)

    Abdelhady, Amr

    2010-01-01

    During the irradiation process of MoO 3 powder with in a high neutron flux, energy deposited in the powder must be released to avoid energy accumulation. The temperature increasing in the powder due to energy accumulation may cause powder phase change and under certain conditions the temperature may reach the melting point. An analytical model was developed to study the effect of gap conductance on the temperature distribution in the powder during the irradiation process. The gap conductance model was studied for helium and nitrogen gases at different pressures to obtain the optimum conditions verifying the safety in heat transfer point of view. It was found that the gap conductance is a function of gas pressure. The model provided the optimum conductivity for the gap filled with helium gas at 1 atm pressure. (orig.)

  2. Cell cycle of spermatogonial colony forming stem cells in the CBA mouse after neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bootsma, A.L. (Rijksuniversiteit Utrecht (Netherlands). Academisch Ziekenhuis); Davids, J.A.G. (Netherlands Energy Research Foundation, Petten (Netherlands))

    1988-03-01

    In the CBA mouse testis, about 10% of the stem cell population is highly resistant to neutron irradiation (D/sub 0/, 0.75 Gy). Following a dose of 1.50 Gy these cells rapidly increase their sensitivity towards a second neutron dose and progress fairly synchronously through their first post-irradiation cell cycle. From experiments in which neutron irradiation was combined with hydroxyurea, it appeared that in this cycle the S-phase is less radiosensitive (D/sub 0/, 0.43 Gy) than the other phases of the cell cycle (D/sub 0/, 0.25 Gy). From experiments in which hydroxyurea was injected twice after irradiation, the speed of inflow of cells in S and the duration of S and the cell cycle could be calculated. Between 32 and 36 hr after irradiation cells start to enter the S-phase at a speed of 30% of the population every 12 hr. At 60 hr 50% of the population has already passed the S-phase while 30% is still in S. The data point to a cell cycle time of about 36 hr, while the S-phase lasts 12 hr at the most. (author).

  3. Tritium release and retention properties of highly neutron-irradiated beryllium pebbles from HIDOBE-01 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R.; Moeslang, A.; Klimenkov, M.; Kolb, M.; Vladimirov, P.; Kurinskiy, P.; Schneider, H.-C. [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Til, S. van; Magielsen, A.J. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-11-15

    The current helium cooled pebble bed (HCPB) tritium breeding blanket concept for fusion reactors includes a bed of 1 mm diameter beryllium pebbles to act as a neutron multiplier. Beryllium pebbles, fabricated by the rotating electrode method, were neutron irradiated in the HFR in Petten within the HIDOBE-01 experiment. This study presents tritium release and retention properties and data on microstructure evolution of beryllium pebbles irradiated at 630, 740, 873, 948 K up to a damage dose of 18 dpa, corresponding to a helium accumulation of about 3000 appm. The measured cumulative released activity from the beryllium pebbles irradiated at 948 K was found to be significantly lower than the calculated value. After irradiation at 873 and 948 K scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed large pores or bubbles in the bulk and oxide films with a thickness of up to 8 μm at the surface of the beryllium pebbles. The radiation-enhanced diffusion of tritium and the formation of open porosity networks accelerate the tritium release from the beryllium pebbles during the high-flux neutron irradiation.

  4. The effects of gamma irradiation on neutron displacement sensitivity of lateral PNP bipolar transistors

    International Nuclear Information System (INIS)

    Wang, Chenhui; Chen, Wei; Liu, Yan; Jin, Xiaoming; Yang, Shanchao; Qi, Chao

    2016-01-01

    The effects of gamma irradiation on neutron displacement sensitivity of four types of lateral PNP bipolar transistors (LPNPs) with different neutral base widths, emitter widths and the doping concentrations of the epitaxial base region are studied. The physical mechanisms of the effects are explored by defect analysis using deep level transient spectroscopy (DLTS) techniques and numerical simulations of recombination process in the base region of the lateral PNP bipolar transistors, and are verified by the experiments on gate-controlled lateral PNP bipolar transistors (GCLPNPs) manufactured in the identical commercial bipolar process with different gate bias voltage. The results indicate that gamma irradiation increases neutron displacement damage sensitivity of lateral PNP bipolar transistors and the mechanism of this phenomenon is that positive charge induced by gamma irradiation enhances the recombination process in the defects induced by neutrons in the base region, leading to larger recombination component of base current and greater gain degradation.

  5. The effects of gamma irradiation on neutron displacement sensitivity of lateral PNP bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenhui, E-mail: wangchenhui@nint.ac.cn; Chen, Wei; Liu, Yan; Jin, Xiaoming; Yang, Shanchao; Qi, Chao

    2016-09-21

    The effects of gamma irradiation on neutron displacement sensitivity of four types of lateral PNP bipolar transistors (LPNPs) with different neutral base widths, emitter widths and the doping concentrations of the epitaxial base region are studied. The physical mechanisms of the effects are explored by defect analysis using deep level transient spectroscopy (DLTS) techniques and numerical simulations of recombination process in the base region of the lateral PNP bipolar transistors, and are verified by the experiments on gate-controlled lateral PNP bipolar transistors (GCLPNPs) manufactured in the identical commercial bipolar process with different gate bias voltage. The results indicate that gamma irradiation increases neutron displacement damage sensitivity of lateral PNP bipolar transistors and the mechanism of this phenomenon is that positive charge induced by gamma irradiation enhances the recombination process in the defects induced by neutrons in the base region, leading to larger recombination component of base current and greater gain degradation.

  6. Calculation of the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code

    International Nuclear Information System (INIS)

    Khattab, K.

    2005-03-01

    The Miniature Neutron Source Reactor (MNSR) in Syria has five inner irradiation sites in the annulus Beryllium reflectors to analyze the unknown samples using the Neutron Activation Analysis technique and to produce medium and short half life isotopes. The fast neutron flux spectrum has a special importance in the MNSR reactor physics where this spectrum is required to measure the fast neutron flux in the MNSR inner irradiation sites. Hence, calculation of the fast neutron flux spectrum in the MNSR inner irradiation site is conducted in this work using the WIMSD4 code. The energy range is divided in the WIMSD4 to 69 energy groups. The first six energy groups represent the fast neutron ranging from 0.5 to 10 MeV. To calculate the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code, the MNSR is modeled as a super unit cell. This cell consists of three regions which are: the homogenized core, annulus Beryllium, and water. The fast neutron spectrum is calculated also using the U 235 fission neutron spectrum approximation. The U 235 fission neutron spectrum agrees very good with the WIMSD4 results when neutron energy exceeds 1 MeV, but it fails when the neutron energy ranges from 0.5 to 1 MeV. The WIMSD4 code is used as well to calculate the microscopic fission cross sections for the U 238 using six energy groups where a unit cell of U 238 is used since the U 238 is usually used to measure the fast neutron flux in the reactor. The macroscopic fission cross sections for the U 238 are calculated first then the microscopic fission cross sections are calculated knowing the U 238 atomic density. (Author)

  7. Calculation of the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code

    International Nuclear Information System (INIS)

    Khattab, K.

    2006-01-01

    The Miniature Neutron Source Reactor (MNSR) in Syria has five inner irradiation sites in the annulus Beryllium reflectors to analyze the unknown samples using the Neutron Activation Analysis technique and to produce medium and short half life isotopes. The fast neutron flux spectrum has a special importance in the MNSR reactor physics where this spectrum is required to measure the fast neutron flux in the MNSR inner irradiation sites. Hence, calculation of the fast neutron flux spectrum in the MNSR inner irradiation site is conducted in this work using the WIMSD4 code. The energy range is divided in the WIMSD4 to 69 energy groups. The first six energy groups represent the fast neutron ranging from 0.5 to 10 MeV. To calculate the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code, the MNSR is modeled as a super unit cell. This cell consists of three regions which are: the homogenized core, annulus Beryllium, and water. The fast neutron spectrum is calculated also using the U 235 fission neutron spectrum approximation. The U 235 fission neutron spectrum agrees very good with the WIMSD4 results when neutron energy exceeds 1 MeV, but it fails when the neutron energy ranges from 0.5 to 1 MeV. The WIMSD4 code is used as well to calculate the microscopic fission cross sections for the U 238 using six energy groups where a unit cell of U 238 is used since the U 238 is usually used to measure the fast neutron flux in the reactor. The macroscopic fission cross sections for the U 238 are calculated first then the microscopic fission cross sections are calculated knowing the U 238 atomic density. (Author)

  8. Concentration dependence of solute atoms on vacancy cluster formation in neutron irradiated Ni alloy

    International Nuclear Information System (INIS)

    Sato, K.; Itoh, D.; Yoshiie, T.; Xu, Q.

    2007-01-01

    Full text of publication follows: One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. The movement of interstitial clusters was often observed in neutron irradiated metals by transmission electron microscopy (TEM). Alloying elements are expected to affect the motion of interstitial clusters. Yoshiie et al. have studied the effect of alloying elements in Ni. For example, in neutron irradiated pure Ni, well-developed dislocation networks and voids were observed at 573 K at a dose of 0.026 dpa by TEM. After the addition of 2at.%Si (-5.81% volume size factor to Ni) and Sn (74.08% volume size factor), no voids were detected by TEM observation and positron lifetime measurement. Alloying elements of Si and Sn were expected to prevent the 1-D motion of the interstitial clusters. In this study, the concentration dependence of alloying elements on the 1-D motion of the interstitial clusters was investigated by positron annihilation lifetime measurements, and the microstructural evolution was discussed. Specimens irradiated were 99.99 pure Ni (Johnson Matthey) and Ni based binary alloys, which contain Si, Cu, Ge and Sn as solute atoms. The concentration of solute atoms was 0.05at.%o, 0.3at.% and 2at.%. Neutron irradiation was performed with the Kyoto University Reactor (KUR) and Japan materials testing reactor (JMTR) at Japan Atomic Energy Agency. Neutron dose was 6x10 -5 -1x10 -2 dpa at KUR, and 8x10 -3 -0.3 dpa at JMTR. Irradiation temperature was 573 K at KUR and 563 K at JMTR. After the neutron irradiation, positron annihilation lifetime measurements were performed at room temperature. Microvoids were detected in pure Ni, Ni-0.05%Si, Ni-0.05%Sn, Ni-Cu and Ni-Ge alloys. In Ni-Si and Ni-Sn alloys, the size of microvoids decreased as the concentration of solute atoms increased. This is because the frequency of 1-D motion of the interstitial clusters depends on the alloy concentration. High concentration of alloying

  9. Concentration dependence of solute atoms on vacancy cluster formation in neutron irradiated Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Itoh, D.; Yoshiie, T.; Xu, Q. [Kyoto Univ., Research Reactor Institute, Osaka (Japan)

    2007-07-01

    Full text of publication follows: One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. The movement of interstitial clusters was often observed in neutron irradiated metals by transmission electron microscopy (TEM). Alloying elements are expected to affect the motion of interstitial clusters. Yoshiie et al. have studied the effect of alloying elements in Ni. For example, in neutron irradiated pure Ni, well-developed dislocation networks and voids were observed at 573 K at a dose of 0.026 dpa by TEM. After the addition of 2at.%Si (-5.81% volume size factor to Ni) and Sn (74.08% volume size factor), no voids were detected by TEM observation and positron lifetime measurement. Alloying elements of Si and Sn were expected to prevent the 1-D motion of the interstitial clusters. In this study, the concentration dependence of alloying elements on the 1-D motion of the interstitial clusters was investigated by positron annihilation lifetime measurements, and the microstructural evolution was discussed. Specimens irradiated were 99.99 pure Ni (Johnson Matthey) and Ni based binary alloys, which contain Si, Cu, Ge and Sn as solute atoms. The concentration of solute atoms was 0.05at.%o, 0.3at.% and 2at.%. Neutron irradiation was performed with the Kyoto University Reactor (KUR) and Japan materials testing reactor (JMTR) at Japan Atomic Energy Agency. Neutron dose was 6x10{sup -5}-1x10{sup -2} dpa at KUR, and 8x10{sup -3} -0.3 dpa at JMTR. Irradiation temperature was 573 K at KUR and 563 K at JMTR. After the neutron irradiation, positron annihilation lifetime measurements were performed at room temperature. Microvoids were detected in pure Ni, Ni-0.05%Si, Ni-0.05%Sn, Ni-Cu and Ni-Ge alloys. In Ni-Si and Ni-Sn alloys, the size of microvoids decreased as the concentration of solute atoms increased. This is because the frequency of 1-D motion of the interstitial clusters depends on the alloy concentration. High

  10. Positron annihilation study of vacancy-type defects in fast-neutron-irradiated MgO·nAl2O3

    International Nuclear Information System (INIS)

    Rahman, Abu Zayed Mohammad Saliqur; Li, Zhuoxin; Cao, Xingzhong; Wang, Baoyi; Wei, Long; Xu, Qiu; Atobe, Kozo

    2014-01-01

    Highlights: •Detection of Al monovacancy by positron lifetime spectroscopy in fast neutron-irradiated MgO·nAl 2 O 3 (n=2). •Concentration of defects is also estimated for Al monovacancy. •O atom peak was observed by using coincidence Doppler broadening spectroscopy. -- Abstract: The positron lifetimes of fast-neutron-irradiated MgO·nAl 2 O 3 single crystals were measured to investigate the formation of cation vacancies. Al monovacancy was possibly observed in samples irradiated by fast neutrons at ultra-low temperatures. Additionally, vacancy-oxygen complex centers were possibly observed in samples irradiated at higher temperatures and fast neutron fluences. Coincidence Doppler broadening (CDB) spectra were measured to obtain information regarding the vicinity of vacancy-type defects. A peak at approximately 11 × 10 −3 m 0 c was observed, which may be due to the presence of oxygen atoms in the neighborhood of the vacancies

  11. Comparative study of effects of neutron, γ-ray and UV irradiation on proteins

    International Nuclear Information System (INIS)

    Fujii, Noriko; Saito, Takeshi; Sakurai, Yoshinori; Shimada, Akihiko

    2005-01-01

    When α-crystalline was irradiated by γ-ray, isomerization of aspartic acid (Asp)-151 and oxidation of methionine(Met)-1 of αA-chain was introduced and the forth dimension structure of α-crystalline was changed. The chaperone-like activity decreased. By UV irradiation, the hydrophobic property of α-crystalline surface was decreased, isomerization of Asp-151 and oxidation of Met-1 of αA-chain introduced. The chaperon-like activity decreased, too. With irradiating neutron, oxidation of Trp and Met residue groups and cut of peptide bonds of α-crystalline was observed, but the chaperon-like activity was kept. The behaviors of charge particles produced by neutron, γ-ray and nuclear reactions were simulated. The effects of proton originated chlorine in the buffer solution on the behavior were very large. Metallothionein (Mt) was derived in the cell by treating γTN-1 with ZnCl 2 . The resistance of αTN4-1 to UV-A irradiation was increased by MT induced ZnCl 2 treatment. D-tryptophan was decomposed by tryptophanase irradiated with γ-ray. (S.Y.)

  12. Glass-like, low-energy excitations in neutron-irradiated quartz

    International Nuclear Information System (INIS)

    Gardner, J.W.

    1980-01-01

    The specific heat and thermal conductivity of neutron-irradiated crystalline quartz have been measured for temperatures approx. = 0.1 to 5 K. Four types of low-energy excitations are observed in the irradiated samples, two of which can be removed selectively by heat treatment. One set of remaining excitations gives rise to low-temperature thermal behavior characteristic of glassy (amorphous) solids. The density of these glass-like excitations can be 50% the density observed in vitreous silica, yet the sample still retains long-range atomic order. In a less-irradiated sample, glass-like excitations may be present with a density only approx. = 2.5% that observed in vitreous silica and possess a similar broad energy spectrum over 0.1 to 1 K

  13. Nanocrystalline alloys of Fe-Cu-Nb-Si-B after neutron irradiation

    International Nuclear Information System (INIS)

    Sitek, J.; Toth, I.; Degmova, J.; Uvacik, P.

    1997-01-01

    Transmission Moessbauer spectroscopy was used to study changes induced by irradiation of amorphous and nanocrystalline samples. In an as-cast sample, neutrons mostly affect the orientation of the net magnetic moment. The average hyperfine field decreases with increasing neutron fluencies. In the case of the nanocrystalline samples a new disordered structure is created in the amorphous remainder corresponding to boride phases as it is shown in the samples isothermally heated from 1 to 8 hours. The structural changes of the amorphous remainder depend on the stage of crystallization and total neutron fluencies. (author). 1 tab., 3 figs., 7 refs

  14. Influence of neutron irradiation on etching of SiC in KOH

    Science.gov (United States)

    Mokhov, E. N.; Kazarova, O. P.; Soltamov, V. A.; Nagalyuk, S. S.

    2017-07-01

    The effect of reactor neutron irradiation on the etch rate of SiC in potassium hydroxide has been studied. In the case of high irradiation doses (1019-1021 cm-2), the etch rate of silicon carbide has been shown to drastically rise, especially in the [0001]Si direction. This considerably mitigates the orientation anisotropy of polar face etching. After high-temperature annealing (up to 1200-1400°C), a higher etch rate of irradiated crystals persists. The results have been explained by the high concentration of radiation-induced (partially clustered) defects they contain.

  15. A physical and engineering study on the irradiation techniques in neutron capture therapy aiming for wider application

    International Nuclear Information System (INIS)

    Sakurai, Y.; Ono, K.; Suzuki, M.; Katoh, I.; Miyatake, S.-I.; Yanagie, H.

    2003-01-01

    The solo-irradiation of thermal neutrons has been applied for brain cancer and malignant melanoma in the boron neutron capture therapy (BNCT) at the medical irradiation facility of Kyoto University Reactor (KUR), from the first clinical trial in 1974. In 1997, after the facility remodeling, the application of the mix-irradiation of thermal and epi-thermal neutrons was started, and the depth dose distribution for brain cancer has been improved in some degree. In 2001, the solo-irradiation of epi-thermal neutrons also started. It is specially mentioned that the application to oral cancers started at the same time. The BNCT clinical trial using epi-thermal neutron irradiation at KUR, amounts to twelve as of March 2003. The seven trials; more than a half of the total trials, are for oral cancers. From this fact, we think that the wider application to the other cancers is required for the future prosperity of BNCT. The cancers applied for BNCT in KUR at the present time, are brain cancer, melanoma and oral cancers, as mentioned above. The cancers, expected to be applied in near future, are liver cancer, pancreas cancer, lung cancer, tongue cancer, breast cancer, etc.. Any cancer is almost incurable by the other therapy including the other radiation therapy. In the wider application of BNCT to these cancers, the dose-distribution control suitable to each cancer and/or each part, is important. The introduction of multi-directional and/or multi-divisional irradiation is also needed. Here, a physical and engineering study using two-dimensional transport calculation and three-dimensional Monte-Carlo simulation for the irradiation techniques in BNCT aiming for wider application is reported

  16. Survival of mouse testicular stem cells after γ or neutron irradiation

    International Nuclear Information System (INIS)

    Lu, C.C.; Meistrich, M.L.; Thames, H.D. Jr.

    1980-01-01

    The survival of mouse testicular stem cells after γ or neutron irradiation was measured by counts of repopulated tubular cross sections and by the numbers of differentiated spermatogenic cells produced. The numbers of such cells were determined either by sperm head counts of the X-isozyme of lactate dehydrogenase enzyme levels. Qualitatively similar results were obtained with all three assays. The results have confirmed that, with C3H mice, stem-cell survival is higher when the γ-radiation dose is fractionated by a 24-h interval. Single-dose γ-radiaton survival curves for the stem cell had large shoulders and also showed the presence of a radioresistant subpopulation which predominated after doses greater than 600 rad. Part of the shoulder must have resulted from repair of sublethal damage since neutron irradiation produced survival curves with smaller shoulders. The relative biological effectiveness for stem-cell killing for these neutrons (mean energy, 22 MeV) varied from about 2.9 at 10 rad of γ radiation to 2.2 at 600 rad

  17. High temperature superconductors for fusion magnets -influence of neutron irradiation

    International Nuclear Information System (INIS)

    Chudy, M.; Eisterer, M.; Weber, H. W.

    2010-01-01

    In this work authors present the results of study of influence of neutron irradiation of high temperature superconductors for fusion magnets. High temperature superconductors (type of YBCO (Yttrium-Barium-Copper-Oxygen)) are strong candidates to be applied in the next step of fusion devices. Defects induced by fast neutrons are effective pinning centres, which can significantly improve critical current densities and reduce J c anisotropy. Due to induced lattice disorder, T c is reduced. Requirements for ITER (DEMO) are partially achieved at 64 K.

  18. High-energy neutron irradiation of superconducting compounds

    International Nuclear Information System (INIS)

    Sweedler, A.R.; Snead, C.L.; Newkirk, L.; Valencia, F.; Geballe, T.H.; Schwall, R.H.; Matthias, B.T.; Corenswit, E.

    1975-01-01

    The effect of high-energy neutron irradiation (E greater than 1 MeV) at ambient reactor temperatures on the superconducting properties of a variety of superconducting compounds is reported. The materials studied include the A-15 compounds Nb 3 Sn, Nb 3 Al, Nb 3 Ga, Nb 3 Ge and V 3 Si, the C-15 Laves phase HfV 2 , the ternary molybdenum sulfide Mo 3 Pb 0 . 5 S 4 and the layered dichalcogenide NbSe 2 . The superconducting transition temperature has been measured for all of the above materials for neutron fluences up to 5 x 10 19 n/cm 2 . The critical current for multifilamentary Nb 3 Sn has also been determined for fields up to 16 T and fluences between 3 x 10 17 n/cm 2 and 1.1 x 10 19 n/cm 2

  19. Prenatal exposure to gamma/neutron irradiation: Sensorimotor alterations and paradoxical effects on learning

    International Nuclear Information System (INIS)

    Di Cicco, D.; Antal, S.; Ammassari-Teule, M.

    1991-01-01

    The effects of prenatal exposure on gamma/neutron radiations (0.5 Gy at about the 18th day of fetal life) were studied in a hybrid strain of mice (DBA/Cne males x C57BL/Cne females). During ontogeny, measurements of sensorimotor reflexes revealed in prenatally irradiated mice (1) a delay in sensorial development, (2) deficits in tests involving body motor control, and (3) a reduction of both motility and locomotor activity scores. In adulthood, the behaviour of prenatally irradiated and control mice was examined in the open field test and in reactivity to novelty. Moreover, their learning performance was compared in several situations. The results show that, in the open field test, only rearings were more frequent in irradiated mice. In the presence of a novel object, significant sex x treatment interactions were observed since ambulation and leaning against the novel object increased in irradiated females but decreased in irradiated males. Finally, when submitted to different learning tasks, irradiated mice were impaired in the radial maze, but paradoxically exhibited higher avoidance scores than control mice, possibly because of their low pain thresholds. Taken together, these observations indicate that late prenatal gamma/neutron irradiation induces long lasting alterations at the sensorimotor level which, in turn, can influence learning abilities of adult mice

  20. Measurement of AC electrical conductivity of single crystal Al2O3 during spallation-neutron irradiation

    International Nuclear Information System (INIS)

    Kennedy, J.C. III; Farnum, E.H.; Sommer, W.F.; Clinard, F.W. Jr.

    1993-01-01

    Samples of single crystal Al 2 O 3 , commonly known as sapphire, and polycrystalline Al 2 O 3 were irradiated with spallation neutrons at the Los Alamos Spallation Radiation Effects Facility (LASREF) under various temperature conditions and with a continuously applied alternating electric field. This paper describes the results of measurements on the sapphire samples. Neutron fluence and flux values are estimated values pending recovery and analysis of dosimetry packages. The conductivity increased approximately with the square root of the neutron flux at fluences less than 3 x 10 21 n/m 2 . The increase in conductivity reached saturated levels as high as 2 x 10 -2 (ohm-m) -1 at fluences as low as 2 x 10 22 n/m 2 . Frequency swept impedance measurements indicated a change in the electrical properties from capacitive to resistive behavior with increasing fluence