WorldWideScience

Sample records for neutron interrogation signatures

  1. Estimation of the Performance of Multiple Active Neutron Interrogation Signatures for Detecting Shielded HEU

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Scott J. Thompson; Scott M. Watson; James T. Johnson; Edward H. Seabury

    2012-10-01

    A comprehensive modeling study has been carried out to evaluate the utility of multiple active neutron interrogation signatures for detecting shielded highly enriched uranium (HEU). The modeling effort focused on varying HEU masses from 1 kg to 20 kg; varying types of shields including wood, steel, cement, polyethylene, and borated polyethylene; varying depths of the HEU in the shields, and varying engineered shields immediately surrounding the HEU including steel, tungsten, and cadmium. Neutron and gamma-ray signatures were the focus of the study and false negative detection probabilities versus measurement time were used as a performance metric. To facilitate comparisons among different approaches an automated method was developed to generate receiver operating characteristic (ROC) curves for different sets of model variables for multiple background count rate conditions. This paper summarizes results or the analysis, including laboratory benchmark comparisons between simulations and experiments. The important impact engineered shields can play towards degrading detectability and methods for mitigating this will be discussed.

  2. Neutron interrogation system using high gamma ray signature to detect contraband special nuclear materials in cargo

    Science.gov (United States)

    Slaughter, Dennis R.; Pohl, Bertram A.; Dougan, Arden D.; Bernstein, Adam; Prussin, Stanley G.; Norman, Eric B.

    2008-04-15

    A system for inspecting cargo for the presence of special nuclear material. The cargo is irradiated with neutrons. The neutrons produce fission products in the special nuclear material which generate gamma rays. The gamma rays are detecting indicating the presence of the special nuclear material.

  3. Gamma/neutron analysis for SNM signatures at high-data rates(greater than 107 cps) for single-pulse active interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Forman L.; Dioszegi, I.; Salwen, C.

    2011-04-26

    We are developing a high data gamma/neutron spectrometer suitable for active interrogation of special nuclear materials (SNM) activated by a single burst from an intense source. We have tested the system at Naval Research Laboratory's (NRL) Mercury pulsed-power facility at distances approaching 10 meters from a depleted uranium (DU) target. We have found that the gamma-ray field in the target room 'disappears' 10 milliseconds after the x-ray flash, and that gamma ray spectroscopy will then be dominated by isomeric states/beta decay of fission products. When a polyethylene moderator is added to the DU target, a time-dependent signature of the DU is produced by thermalized neutrons. We observe this signature in gamma-spectra measured consecutively in the 0.1-1.0 ms time range. These spectra contain the Compton edge line (2.2 MeV) from capture in hydrogen, and a continuous high energy gamma-spectrum from capture or fission in minority constituents of the DU.

  4. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Edward H. Seabury

    2008-08-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  5. Narcotics detection using fast-neutron interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Micklich, B.J.; Fink, C.L.

    1995-12-31

    Fast-neutron interrogation techniques are being investigated for detection of narcotics in luggage and cargo containers. This paper discusses two different fast-neutron techniques. The first uses a pulsed accelerator or sealed-tube source to produce monoenergetic fast neutrons. Gamma rays characteristic of carbon and oxygen are detected and the elemental densities determined. Spatial localization is accomplished by either time of flight or collimators. This technique is suitable for examination of large containers because of the good penetration of the fast neutrons and the low attenuation of the high-energy gamma rays. The second technique uses an accelerator to produce nanosecond pulsed beams of deuterons that strike a target to produce a pulsed beam of neutrons with a continuum of energies. Elemental distributions are obtained by measuring the neutron spectrum after the source neutrons pass through the items being interrogated. Spatial variation of elemental densities is obtained by tomographic reconstruction of projection data obtained for three to five angles and relatively low (2 cm) resolution. This technique is best suited for examination of luggage or small containers with average neutron transmissions greater than about 0.01. Analytic and Monte-Carlo models are being used to investigate the operational characteristics and limitations of both techniques.

  6. Survey of Neutron Generators for Active Interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Calvin Elroy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sundby, Gary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chichester, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, James P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-05-02

    Some of these commercially available generators meet all of the requirements in Table 1, but there are other concerns. Most generators containing SF6 will be required to have the SF6 gas removed for shipping because of DOT regulations. However, Thermo Fisher has a DOT exemption. The P211 and B211 from Thermo Fisher meet the requirements listed in Table 1, but they are old designs and are no longer offered for sale. Also, they require 15 minutes or more of warmup before neutron output is available, and they lack a modern digital control. The nGen-300C from Starfire Industries is interesting because it is a portable system, but it uses the DD reaction for 2.5 MeV neutrons, which are not as penetrating as the 14 MeV neutrons from the DT reaction. The MP 320 from Thermo Fisher is another portable system, but the minimum pulse rate is 250 Hz, which is too fast for measurement of delayed neutrons and re-interrogation by delayed neutrons between pulses. The Genie 16 from Sodern (from France) probably meets the requirements, but the required power is probably too high for battery operation. The generators from Russia and China may be difficult to purchase, and service may not be available. The power required by some of these generators is low enough that batteries can be used. The portable units, nGen-300C and the MP320, could easily be operated with batteries. Other generators with low power requirements, as specified in the above vendors list, could possibly be operated with reason size batteries. The batteries do not need to be internal to the generator, but can be in a separate package. The availability of high capacity lithium batteries with sophisticated safety circuits makes battery operation more possible now than when lead acid batteries were used. The best path forward probably requires working with vendors of the existing systems. If Starfire Industries could be persuaded to put tritium in their nGen-300C generator, possibly in collaboration with a national

  7. A kinematically beamed, low energy pulsed neutron source for active interrogation

    Science.gov (United States)

    Dietrich, Dan; Hagmann, Chris; Kerr, Phil; Nakae, Les; Rowland, Mark; Snyderman, Neal; Stoeffl, Wolfgang; Hamm, Robert

    2005-12-01

    We are developing a new active interrogation system based on a kinematically focused low energy neutron beam. The key idea is that one of the defining characteristics of special nuclear materials (SNM) is the ability for low energy or thermal neutrons to induce fission. Thus by using low energy neutrons for the interrogation source we can accomplish three goals: (1) energy discrimination allows us to measure the prompt fast fission neutrons produced while the interrogation beam is on; (2) neutrons with an energy of approximately 60-100 keV do not fission 238U and Thorium, but penetrate bulk material nearly as far as high energy neutrons do and (3) below about 100 keV neutrons lose their energy by kinematical collisions rather than via the nuclear (n, 2n) or (n, n‧) processes thus further simplifying the prompt neutron induced background. 60 keV neutrons create a low radiation dose and readily thermal capture in normal materials, thus providing a clean spectroscopic signature of the intervening materials. The kinematically beamed source also eliminates the need for heavy backward and sideway neutron shielding. We have designed and built a very compact pulsed neutron source, based on an RFQ proton accelerator and a lithium target. We are developing fast neutron detectors that are nearly insensitive to the ever-present thermal neutron and neutron capture induced gamma ray background. The detection of only a few high energy fission neutrons in time correlation with the linac pulse will be a clear indication of the presence of SNM.

  8. Special nuclear material detection using pulsed neutron interrogation

    Science.gov (United States)

    Ruddy, Frank H.; Seidel, John G.; Flammang, Robert W.

    2007-04-01

    Pulsed neutron interrogation methods for detection of Special Nuclear Materials are being developed. Fast prompt neutrons from thermal neutron-induced fissions are detected in the time intervals following 100-μs neutron bursts from a pulsed D-T neutron generator operating at 1000 pulses per second. Silicon Carbide semiconductor neutron detectors are used to detect fission neutrons in the 30-840 μs time intervals following each 14-MeV D-T neutron pulse. Optimization of the neutron detectors has led to dramatic reduction of detector background and improvement of the signal-to-noise ratio for Special Nuclear Material detection. Detection of Special Nuclear Materials in the presence of lead, cadmium and plywood shielding has been demonstrated. Generally, the introduction of shielding leads to short thermal neutron die-away times of 100-200 μs or less. The pulsed neutron interrogation method developed allows detection of the neutron signal even when the die-away time is less than 100 μs.

  9. Fissile mass estimation by pulsed neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Israelashvili, I., E-mail: israelashvili@gmail.com [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Dubi, C.; Ettedgui, H.; Ocherashvili, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Pedersen, B. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Beck, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Roesgen, E.; Crochmore, J.M. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Ridnik, T.; Yaar, I. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel)

    2015-06-11

    Passive methods for detecting correlated neutrons from spontaneous fissions (e.g. multiplicity and SVM) are widely used for fissile mass estimations. These methods can be used for fissile materials that emit a significant amount of fission neutrons (like plutonium). Active interrogation, in which fissions are induced in the tested material by an external continuous source or by a pulsed neutron source, has the potential advantages of fast measurement, alongside independence of the spontaneous fissions of the tested fissile material, thus enabling uranium measurement. Until recently, using the multiplicity method, for uranium mass estimation, was possible only for active interrogation made with continues neutron source. Pulsed active neutron interrogation measurements were analyzed with techniques, e.g. differential die away analysis (DDA), which ignore or implicitly include the multiplicity effect (self-induced fission chains). Recently, both, the multiplicity and the SVM techniques, were theoretically extended for analyzing active fissile mass measurements, made by a pulsed neutron source. In this study the SVM technique for pulsed neutron source is experimentally examined, for the first time. The measurements were conducted at the PUNITA facility of the Joint Research Centre in Ispra, Italy. First promising results, of mass estimation by the SVM technique using a pulsed neutron source, are presented.

  10. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  11. System design considerations for fast-neutron interrogation systems

    Energy Technology Data Exchange (ETDEWEB)

    Micklich, B.J.; Curry, B.P.; Fink, C.L.; Smith, D.L.; Yule, T.J.

    1993-10-01

    Nonintrusive interrogation techniques that employ fast neutrons are of interest because of their sensitivity to light elements such as carbon, nitrogen, and oxygen. The primary requirement of a fast-neutron inspection system is to determine the value of atomic densities, or their ratios, over a volumetric grid superimposed on the object being interrogated. There are a wide variety of fast-neutron techniques that can provide this information. The differences between the various nuclear systems can be considered in light of the trade-offs relative to the performance requirements for each system`s components. Given a set of performance criteria, the operational requirements of the proposed nuclear systems may also differ. For instance, resolution standards will drive scanning times and tomographic requirements, both of which vary for the different approaches. We are modelling a number of the fast-neutron interrogation techniques currently under consideration, to include Fast Neutron Transmission Spectroscopy (FNTS), Pulsed Fast Neutron Analysis (PFNA), and its variant, 14-MeV Associated Particle Imaging (API). The goals of this effort are to determine the component requirements for each technique, identify trade-offs that system performance standards impose upon those component requirements, and assess the relative advantages and disadvantages of the different approaches. In determining the component requirements, we will consider how they are driven by system performance standards, such as image resolution, scanning time, and statistical uncertainty. In considering the trade-offs between system components, we concentrate primarily on those which are common to all approaches, for example: source characteristics versus detector array requirements. We will then use the analysis to propose some figures-of-merit that enable performance comparisons between the various fast-neutron systems under consideration. The status of this ongoing effort is presented.

  12. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roth, Markus [Technische Universitaet, Darmstadt (Germany)

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  13. INL Neutron Interrogation R&D: FY2010 MPACT End of Year Report

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chichester; E. H. Seabury; J. Wharton; S. M. Watson

    2010-08-01

    Experiments have been carried out to investigate the feasibility and utility of using neutron interrogation and small-scale, portable prompt gamma-ray neutron activation analysis (PGNAA) instruments for assaying uranium for safeguards applications. Prior work has shown the potential of the PGNAA technique for assaying uranium using reactor-based neutron sources and high-yield electronic neutron generators (ENGs). In this project we adapted Idaho National Laboratory's portable isotopic neutron spectroscopy (PINS) PGNAA system for measuring natural-enrichment uranium yellowcake and metallic depleted uranium and highly enriched uranium. This work used 252Cf as well as deuterium-deuterium (DD) and deuterium-tritium (DT) ENGs. For PGNAA measurements a limiting factor when assaying large objects is the detector dead time due to fast-neutron scattering off of the uranium; this limits the maximum useable neutron source strength to O(107) neutrons per second. Under these conditions the low PGNAA reaction cross sections for uranium prohibited the collection of useful uranium PGNAA signatures from either the yellowcake or metallic uranium samples. Measurement of the decay product activation in these materials following irradiation in the PGNAA geometry similarly did not produce useful uranium activation product – fission product signatures. A customized irradiation geometry tailored to optimally thermalize the interrogation neutron source, intended only for generating long-lived activation products – fission products and not intended for PGNAA measurements, might be possible using small scale ENGs but an application need and a modeling and simulation exercise would be recommended before advancing to experiments. Neutron interrogation PGNAA using a DT-ENG was found to be a quick and useful qualitative method for detecting the presence of oxygen in natural-enrichment uranium yellowcake. With a low effort of development work it would be reasonable to expect this

  14. Scoping studies - photon and low energy neutron interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G.; Harker, Y.; Jones, J. [LMITCo, Idaho Falls, ID (United States); Harmon, F. [Idaho State Univ., Pocatello, ID (United States)

    1997-11-01

    High energy photon interrogation of waste containers, with the aim of producing photo nuclear reactions, in specific materials, holds the potential of good penetration and rapid analysis. Compact high energy ({le} 10 MeV) photon sources in the form of electron linacs producing bremstrahlung radiation are readily available. Work with the Varitron variable energy accelerator at ISU will be described. Advantages and limitations of the technique will be discussed. Using positive ion induced neutron producing reactions, it is possible to generate neutrons in a specific energy range. By this means, variable penetration and specific reactions can be excited in the assayed material. Examples using the {sup 3}H(p,n) and {sup 7}Li(p,n) reactions as neutron sources will be discussed. 4 refs., 7 figs.

  15. Transuranic waste detection by photon interrogation and on-line delayed neutron counting

    Energy Technology Data Exchange (ETDEWEB)

    Lyoussi, A. E-mail: lyoussi@cea.fr; Romeyer-Dherbey, J.; Jallu, F.; Payan, E.; Buisson, A.; Nurdin, G.; Allano, J

    1999-02-01

    A comprehensive program is currently in progress at several laboratories for the development of sensitive, practical, non-destructive assay techniques for the quantification of low-level transuranics (TRUs) in bulk solid wastes. This paper describes the method being developed to assay high density TRU waste packages using photon interrogation. The system uses a pulsed electron beam from an electron linear accelerator to produce high-energy photon bursts from a metallic converter. The photons induce fissions in a TRU waste package which is inside an original neutron separating and counting cavity (NS2C). When fission is induced in trace amounts of TRU contaminants in waste material, it provides 'signatures' from fission products that can be used to assay the material before disposal. We give here the results from counting photofission-induced delayed neutrons from {sup 239}Pu, {sup 235}U and {sup 238}U in sample matrices. We counted delayed neutrons emitted after each pulse of the LINAC by using the sequential photon interrogation and neutron counting signatures (SPHINCS) technique which had been developed in the present framework. The SPHINCS method enhances the available counts by a factor of about 20 compared with the counting of delayed neutrons only, after the irradiation period. Furthermore, the use of SPHINCS measurement technique coupled with the NS2C facility improves the signal-to-noise ratio by a factor of about 30. This decreases the detection limit. The electron linear accelerator operates at 15 MeV, 140 mA, and 2.5 {mu}s wide pulse at a 50 and 6.25 Hz rate. The dynamics of photofission and delayed neutron production, NS2C advantages and performances, use of an electron linear accelerator as a particle source, experimental and electronics details, and future experimental works are discussed.

  16. Detection of Special Nuclear Material in Cargo Containers Using Neutron Interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Slaughter, D; Accatino, M; Bernstein, A; Candy, J; Dougan, A; Hall, J; Loshak, A; Manatt, D; Meyer, A; Pohl, B; Prussin, S; Walling, R; Weirup, D

    2003-08-01

    The goal of the work reported here is to develop a concept for an active neutron interrogation system that can detect small targets of SNM contraband in cargo containers, roughly 5 kg HEU or 1 kg Pu, even when well shielded by a thick cargo. It is essential that the concept be reliable and have low false-positive and false-negative error rates. It also must be rapid to avoid interruption of commerce, completing the analysis in minutes. A new radiation signature unique to SNM has been identified that utilizes high-energy (E{sub {gamma}} = 3-7 MeV) fission product {gamma}-ray emission. Fortunately, this high-energy {gamma}-ray signature is robust in that it is very distinct compared to normal background radiation where there is no comparable high-energy {gamma}-ray radiation. Equally important, it has a factor of 10 higher yield than delayed neutrons that are the basis of classical interrogation technique normally used on small unshielded specimens of SNM. And it readily penetrates two meters of low-Z and high-Z cargo at the expected density of {approx} 0.5 gm/cm{sup 3}. Consequently, we expect that in most cases the signature flux at the container wall is at least 2-3 decades more intense than delayed neutron signals used historically and facilitates the detection of SNM even when shielded by thick cargo. Experiments have verified this signature and its predicted characteristics. However, they revealed an important interference due to the activation of {sup 16}O by the {sup 16}O(n,p){sup 16}N reaction that produces a 6 MeV {gamma}-ray following a 7-sec {beta}-decay of the {sup 16}N. This interference is important when irradiating with 14 MeV neutrons but is eliminated when lower energy neutron sources are utilized since the reaction threshold for {sup 16}O(n,p){sup 16}N is 10 MeV. The signature {gamma}-ray fluxes exiting a thick cargo can be detected in large arrays of scintillation detectors to produce useful signal count rates of 2-4 x 10{sup 4} cps. That is high

  17. A simulation study of fast neutron interrogation for standoff detection of improvised explosive devices

    Science.gov (United States)

    Heider, S. A.; Dunn, W. L.

    2015-11-01

    The signature-based radiation-scanning technique utilizes radiation detector responses, called "signatures," and compares these to "templates" in order to differentiate targets that contain certain materials, such as explosives or drugs, from those that do not. Our investigations are aimed at the detection of nitrogen-rich explosives contained in improvised explosive devices. We use the term "clutter" to refer to any non-explosive materials with which the interrogating radiation may interact between source and detector. To deal with the many target types and clutter configurations that may be encountered in the field, the use of "artificial templates" is proposed. The MCNP code was used to simulate 14.1 MeV neutron source beams incident on one type of target containing various clutter and sample materials. Signatures due to inelastic-scatter and prompt-capture gamma rays from hydrogen, carbon, nitrogen, and oxygen and two scattered neutron signatures were considered. Targets containing explosive materials in the presence of clutter were able to be identified from targets that contained only non-explosive ("inert") materials. This study demonstrates that a finite number of artificial templates is sufficient for IED detection with fairly good sensitivity and specificity.

  18. Parametric Evaluation of Active Neutron Interrogation for the Detection of Shielded Highly-Enriched Uranium in the Field

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chcihester; E. H. Seabury; S. J. Thompson; R. R. C. Clement

    2011-10-01

    Parametric studies using numerical simulations are being performed to assess the performance capabilities and limits of active neutron interrogation for detecting shielded highly enriched uranium (HEU). Varying the shield material, HEU mass, HEU depth inside the shield, and interrogating neutron source energy, the simulations account for both neutron and photon emission signatures from the HEU with resolution in both energy and time. The results are processed to represent different irradiation timing schemes and several different classes of radiation detectors, and evaluated using a statistical approach considering signal intensity over background. This paper describes the details of the modeling campaign and some preliminary results, weighing the strengths of alternative measurement approaches for the different irradiation scenarios.

  19. Neutron Interrogation System For Underwater Threat Detection And Identification

    Science.gov (United States)

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.

    2009-03-01

    Wartime and terrorist activities, training and munitions testing, dumping and accidents have generated significant munitions contamination in the coastal and inland waters in the United States and abroad. Although current methods provide information about the existence of the anomaly (for instance, metal objects) in the sea bottom, they fail to identify the nature of the found objects. Field experience indicates that often in excess of 90% of objects excavated during the course of munitions clean up are found to be non-hazardous items (false alarm). The technology to detect and identify waterborne or underwater threats is also vital for protection of critical infrastructures (ports, dams, locks, refineries, and LNG/LPG). We are proposing a compact neutron interrogation system, which will be used to confirm possible threats by determining the chemical composition of the suspicious underwater object. The system consists of an electronic d-T 14-MeV neutron generator, a gamma detector to detect the gamma signal from the irradiated object and a data acquisition system. The detected signal then is analyzed to quantify the chemical elements of interest and to identify explosives or chemical warfare agents.

  20. SNM detection by means of thermal neutron interrogation and a liquid scintillation detector

    Science.gov (United States)

    Ocherashvili, A.; Roesgen, E.; Beck, A.; Caspi, E. N.; Mosconi, M.; Crochemore, J.-M.; Pedersen, B.

    2012-03-01

    The feasibility of using a pulsed neutron generator in a graphite assembly together with a single liquid scintillation detector for the detection of special nuclear materials is investigated. Thermal source neutrons induce fission in fissile material present in the sample. By means of pulse shape discrimination the detector signals from fast fission neutrons are easily identified among the signals from gamma rays and the interrogating thermal neutrons. The method has potential in applications for detection of special nuclear materials in shielded containers.

  1. Active detection of small quantities of shielded highly-enriched uranium using low-dose 60-kev neutron interrogation

    Science.gov (United States)

    Kerr, Phil; Rowland, Mark; Dietrich, Dan; Stoeffl, Wolfgang; Wheeler, Boyd; Nakae, Les; Howard, Doug; Hagmann, Chris; Newby, Jason; Porter, Robert

    2007-08-01

    Active interrogation with low-energy neutrons provides a search technique for highly-enriched uranium concealed in cargo. We describe the technique and show initial results using a low-dose 60-keV neutron beam. This technique produces a clear induced fission signal in the presence of small quantities of 235U. The technique has been validated with low-Z and high-Z cargo materials. The technique uses a forward-directed beam of 60-keV neutrons to induce fission in 235U. Detection of the fast fission neutrons with pulse-shape discriminating scintillators is then the signature for 235U. The beam of neutrons is generated with a 1.93 MeV proton beam impinging on a natural lithium target. The proton beam is produced by a radio-frequency quadrupole LINAC. The 60 keV neutron beam is forward-directed because the 7Li(p, n) reaction is just above threshold for a proton energy of 1.93 MeV.

  2. Measurement of uranium and plutonium in solid waste by passive photon or neutron counting and isotopic neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Crane, T.W.

    1980-03-01

    A summary of the status and applicability of nondestructive assay (NDA) techniques for the measurement of uranium and plutonium in 55-gal barrels of solid waste is reported. The NDA techniques reviewed include passive gamma-ray and x-ray counting with scintillator, solid state, and proportional gas photon detectors, passive neutron counting, and active neutron interrogation with neutron and gamma-ray counting. The active neutron interrogation methods are limited to those employing isotopic neutron sources. Three generic neutron sources (alpha-n, photoneutron, and /sup 252/Cf) are considered. The neutron detectors reviewed for both prompt and delayed fission neutron detection with the above sources include thermal (/sup 3/He, /sup 10/BF/sub 3/) and recoil (/sup 4/He, CH/sub 4/) proportional gas detectors and liquid and plastic scintillator detectors. The instrument found to be best suited for low-level measurements (< 10 nCi/g) is the /sup 252/Cf Shuffler. The measurement technique consists of passive neutron counting followed by cyclic activation using a /sup 252/Cf source and delayed neutron counting with the source withdrawn. It is recommended that a waste assay station composed of a /sup 252/Cf Shuffler, a gamma-ray scanner, and a screening station be tested and evaluated at a nuclear waste site. 34 figures, 15 tables.

  3. Irradiation Effects for the Pulsed Fast Neutron Analysis (PFNA) Cargo Interrogation System

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    2001-02-02

    At the request of Safety and Ecology Corporation of Tennessee, radiation effects of the proposed Pulsed Fast Neutron Analysis (PFNA) Cargo Interrogation System have been examined. First, fissile cargo were examined to determine if a significant neutron signal would be observable during interrogation. Results indicated that ample multiplication would be seen for near critical bare targets. The water-reflected sphere showed relatively little multiplication. By implication, a fissile target shielded by hydrogenous cargo might not be detectable by neutron interrogation, particularly if reliance is placed on the neutron signal. The cargo may be detectable if use can be made of the ample increase in the photon signal. Second, dose rates were calculated at various locations within and just outside the facility building. These results showed that some dose rates may be higher than the target dose rate of 0.05 mrem/h. However, with limited exposure time, the total dose may be well below the allowed total dose. Lastly, estimates were made of the activation of structures and typical cargo. Most cargo will not be exposed long enough to be activated to levels of concern. On the other hand, portions of the structure may experience buildup of some radionuclides to levels of concern.

  4. Fissile materials in solution concentration measured by active neutron interrogation; Mesure de concentration en matiere fissile dans les liquides par interrogation neutronique active

    Energy Technology Data Exchange (ETDEWEB)

    Romeyer Dherbey, J.; Passard, Ch.; Cloue, J.; Bignan, G.

    1993-12-31

    The use of the active neutron interrogation to measure the concentration of plutonium contained in flow solutions is particularly interesting for fuel reprocessing plants. Indeed, this method gives a signal which is in a direct relation with the fissile materials concentration. Moreover, it is less sensitive to the gamma dose rate than the other nondestructive methods. Two measure methods have been evolved in CEA. Their principles are given into details in this work. The first one consists to detect fission delayed neutrons induced by a {sup 252} Cf source. In the second one fission prompt neutrons induced by a neutron generator of 14 MeV are detected. (O.M.). 6 refs.

  5. Active Neutron Interrogation of Non-Radiological Materials with NMIS

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Mark E [ORNL; Mihalczo, John T [ORNL

    2012-02-01

    The Nuclear Materials Identification System (NMIS) at Oak Ridge National Laboratory (ORNL), although primarily designed for analyzing special nuclear material, is capable of identifying nonradiological materials with a wide range of measurement techniques. This report demonstrates four different measurement methods, complementary to fast-neutron imaging, which can be used for material identification: DT transmission, DT scattering, californium transmission, and active time-tagged gamma spectroscopy. Each of the four techniques was used to evaluate how these methods can be used to identify four materials: aluminum, polyethylene, graphite, and G-10 epoxy. While such measurements have been performed individually in the past, in this project, all four measurements were performed on the same set of materials. The results of these measurements agree well with predicted results. In particular, the results of the active gamma spectroscopy measurements demonstrate the technique's applicability in a future version of NMIS which will incorporate passive and active gamma-ray spectroscopy. This system, designated as a fieldable NMIS (FNMIS), is under development by the US Department of Energy Office of Nuclear Verification.

  6. Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chichester; E. H. Seabury

    2008-10-01

    Experiments have been performed at Idaho National Laboratory to study methodology and instrumentation for performing neutron active interrogation die-away analyses for the purpose of detecting shielded fissionable material. Here we report initial work using a portable DT electronic neutron generator with a He-3 fast neutron detector to detect shielded fissionable material including >2 kg quantities of enriched uranium and plutonium. Measurements have been taken of bare material as well as of material hidden within a large plywood cube. Results from this work have demonstrated the efficacy of the die-away neutron measurement technique for quickly detecting the presence of special nuclear material hidden within plywood shields by analyzing the time dependent neutron signals in-between neutron generator pulses. Using a DT electronic neutron generator operating at 300 Hz with a yield of approximately 0.36 x 10**8 neutrons per second, 2.2 kg of enriched uranium hidden within a 0.60 m x 0.60 m x 0.70 m volume of plywood was positively detected with a measurement signal 2-sigma above the passive background within 1 second. Similarly, for a 500 second measurement period a lower detection limit of approaching the gram level could be expected with the same simple set-up.

  7. High-fidelity MCNP modeling of a D-T neutron generator for active interrogation of special nuclear material

    Science.gov (United States)

    Katalenich, Jeff; Flaska, Marek; Pozzi, Sara A.; Hartman, Michael R.

    2011-10-01

    Fast and robust methods for interrogation of special nuclear material (SNM) are of interest to many agencies and institutions in the United States. It is well known that passive interrogation methods are typically sufficient for plutonium identification because of a relatively high neutron production rate from 240Pu [1]. On the other hand, identification of shielded uranium requires active methods using neutron or photon sources [2]. Deuterium-deuterium (2.45 MeV) and deuterium-tritium (14.1 MeV) neutron-generator sources have been previously tested and proven to be relatively reliable instruments for active interrogation of nuclear materials [3,4]. In addition, the newest generators of this type are small enough for applications requiring portable interrogation systems. Active interrogation techniques using high-energy neutrons are being investigated as a method to detect hidden SNM in shielded containers [4,5]. Due to the thickness of some containers, penetrating radiation such as high-energy neutrons can provide a potential means of probing shielded SNM. In an effort to develop the capability to assess the signal seen from various forms of shielded nuclear materials, the University of Michigan Neutron Science Laboratory's D-T neutron generator and its shielding were accurately modeled in MCNP. The generator, while operating at nominal power, produces approximately 1×10 10 neutrons/s, a source intensity which requires a large amount of shielding to minimize the dose rates around the generator. For this reason, the existing shielding completely encompasses the generator and does not include beam ports. Therefore, several MCNP simulations were performed to estimate the yield of uncollided 14.1-MeV neutrons from the generator for active interrogation experiments. Beam port diameters of 5, 10, 15, 20, and 25 cm were modeled to assess the resulting neutron fluxes. The neutron flux outside the beam ports was estimated to be approximately 2×10 4 n/cm 2 s.

  8. Low-background detection of fission neutrons produced by pulsed neutron interrogation

    Science.gov (United States)

    Ruddy, Frank H.; Flammang, Robert W.; Seidel, John G.

    2009-01-01

    Measurements designed to detect shielded Special Nuclear Materials (SNM) have been carried out using a pulsed 8.5-MeV neutron source. Fission-neutron counts were detected as a function of time in the intervals between 100-μs neutron bursts at burst frequencies of 500, 1000, and 2000 Hz. The pulse timing sequences were chosen to optimize detection of fission neutrons produced by thermal-neutron-induced fission in the SNM. Fission neutrons were detected directly as proton, carbon, and silicon recoils in silicon carbide (SiC) semiconductor fast neutron detectors. SiC detectors recorded neutron counts during and immediately following the source neutron bursts, allowing detection of fission neutrons with short (120 μs) die-away times. The SiC detectors demonstrated excellent background discrimination with more than 2000 neutron counts observed in time intervals where zero background counts were detected.

  9. APSTNG: neutron interrogation for detection of explosives, drugs, and nuclear and chemical warfare materials

    Science.gov (United States)

    Rhodes, Edgar A.; Peters, Charles W.

    1993-02-01

    A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed-portal requirements for nondestructive detection, including monitoring of contraband explosives, drugs, and weapon materials, and treaty verification of sealed munitions. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14- MeV neutrons generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in explosives, drugs, and chemical warfare agents, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from detection times of the gamma-rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs. The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Surveillance systems based on APSTNG technology can avoid the large physical size, high capital and operating expenses, and reliability problems associated with complex accelerators.

  10. Verification of plutonium content in spent fuel assemblies using neutron self-interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard O [Los Alamos National Laboratory; Menlove, Apencer H [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory

    2009-01-01

    The large amounts of plutonium in reactor spent fuel assemblies has led to increased research directed toward the measurement of the plutonium for safeguards verification. The high levels of fission product gamma-ray activity and curium neutron backgrounds have made the plutonium measurement difficult. We have developed a new technique that can directly measure both the {sup 235}U concentration and the plutonium fissile concentration using the intrinsic neutron emission fronl the curium in the fuel assembly. The passive neutron albedo reactivity (PNAR) method has been described previously where the curium neutrons are moderated in the surrounding water and reflect back into the fuel assembly to induce fissions in the fissile material in the assembly. The cadmium (Cd) ratio is used to separate the spontaneous fission source neutrons from the reflected thermal neutron fission reactions. This method can measure the sum of the {sup 235}U and the plutonium fissile mass, but not the separate components. Our new differential die-away self-interrogation method (DDSI) can be used to separate the {sup 235}U from the {sup 239}Pu. The method has been applied to both fuel rods and full assemblies. For fuel rods the epi-thermal neutron reflection method filters the reflected neutrons through thin Cd filters so that the reflected neutrons are from the epi-cadmium energy region. The neutron fission energy response in the epi-cadmium region is distinctly different for {sup 235}U and {sup 239}Pu. We are able to measure the difference between {sup 235}U and {sup 239}Pu by sampling the neutron induced fission rate as a function of time and multiplicity after the initial fission neutron is detected. We measure the neutron fission rate using list-mode data collection that stores the time correlations between all of the counts. The computer software can select from the data base the time correlations that include singles, doubles, and triples. The die-away time for the doubles

  11. Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory.

    Science.gov (United States)

    Chichester, D L; Seabury, E H; Zabriskie, J M; Wharton, J; Caffrey, A J

    2009-06-01

    A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2 x 10(8) n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1 x 10(7) n/s), and (252)Cf spontaneous fission neutron sources (6.96 x 10(7) n/s, 30 microg). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for (252)Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  12. Active interrogation using energetic protons

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Christopher L [Los Alamos National Laboratory; Chung, Kiwhan [Los Alamos National Laboratory; Greene, Steven J [Los Alamos National Laboratory; Hogan, Gary E [Los Alamos National Laboratory; Makela, Mark [Los Alamos National Laboratory; Mariam, Fesseha [Los Alamos National Laboratory; Milner, Edward C [Los Alamos National Laboratory; Murray, Matthew [Los Alamos National Laboratory; Saunders, Alexander [Los Alamos National Laboratory; Spaulding, Randy [Los Alamos National Laboratory; Wang, Zhehui [Los Alamos National Laboratory; Waters, Laurie [Los Alamos National Laboratory; Wysocki, Frederick [Los Alamos National Laboratory

    2010-01-01

    Energetic proton beams provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because they have large fission cross sections, long mean free paths and high penetration, and they can be manipulated with magnetic optics. We have measured time-dependent cross sections and neutron yields for delayed neutrons and gamma rays using 800 MeV and 4 GeV proton beams with a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Measurements of neutron energies yield suggest a signature unique to fissile material. Results are presented in this paper.

  13. Active Detection of Small Quantities of Shielded Highly-Enriched Uranium Using Low-Dose 60-keV Neutron Interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, P; Rowland, M; Dietrich, D; Stoeffl, W; Wheeler, B; Nakae, L; Howard, D; Hagmann, C; Newby, J; Porter, R

    2006-08-16

    Active interrogation with low-energy neutrons provides a search technique for shielded highly-enriched uranium. We describe the technique and show initial results using a low-dose 60 keV neutron beam. This technique produces a clear induced fission signal in the presence of small quantities of {sup 235}U. The technique has been validated with low-Z and high-Z shielding materials. The technique uses a forward-directed beam of 60 keV neutrons to induce fission in {sup 235}U. The induced fission produces fast neutrons which are then detected as the signature for {sup 235}U. The beam of neutrons is generated with a 1.93 MeV proton beam impinging on a natural lithium target. The proton beam is produced by a radio-frequency quadrupole (RFQ) LINAC. The 60 keV neutron beam is forward directed because the {sup 7}Li(p,n) reaction is just at threshold for the proton energy of 1.93 MeV.

  14. Monte Carlo parametric studies of neutron interrogation with the Associated Particle Technique for cargo container inspections

    Science.gov (United States)

    Deyglun, Clément; Carasco, Cédric; Pérot, Bertrand

    2014-06-01

    The detection of Special Nuclear Materials (SNM) by neutron interrogation is extensively studied by Monte Carlo simulation at the Nuclear Measurement Laboratory of CEA Cadarache (French Alternative Energies and Atomic Energy Commission). The active inspection system is based on the Associated Particle Technique (APT). Fissions induced by tagged neutrons (i.e. correlated to an alpha particle in the DT neutron generator) in SNM produce high multiplicity coincidences which are detected with fast plastic scintillators. At least three particles are detected in a short time window following the alpha detection, whereas nonnuclear materials mainly produce single events, or pairs due to (n,2n) and (n,n'γ) reactions. To study the performances of an industrial cargo container inspection system, Monte Carlo simulations are performed with the MCNP-PoliMi transport code, which records for each neutron history the relevant information: reaction types, position and time of interactions, energy deposits, secondary particles, etc. The output files are post-processed with a specific tool developed with ROOT data analysis software. Particles not correlated with an alpha particle (random background), counting statistics, and time-energy resolutions of the data acquisition system are taken into account in the numerical model. Various matrix compositions, suspicious items, SNM shielding and positions inside the container, are simulated to assess the performances and limitations of an industrial system.

  15. Field Prototype of the ENEA Neutron Active Interrogation Device for the Detection of Dirty Bombs

    Directory of Open Access Journals (Sweden)

    Nadia Cherubini

    2016-10-01

    Full Text Available The Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA Neutron Active Interrogation (NAI device is a tool designed to improve CBRNE defense. It is designed to uncover radioactive and nuclear threats including those in the form of Improvised Explosive Devices (IEDs, the so-called “dirty bombs”. The NAI device, at its current development stage, allows to detect 6 g of 235U hidden in a package. It is easily transportable, light in weight, and with a real-time response. Its working principle is based on two stages: (1 an “active” stage in which neutrons are emitted by a neutron generator to interact with the item under inspection, and (2 a “passive” stage in which secondary neutrons are detected originating a signal that, once processed, allows recognition of the offence. In particular, a clear indication of the potential threat is obtained by a dedicated software based on the Differential Die-Away Time Analysis method.

  16. Material recognition using neutron/gamma interrogation with time tagged fission sources

    Energy Technology Data Exchange (ETDEWEB)

    Hao, X.; Lunardon, M.; Moretto, S.; Stevanato, L.; Viesti, G. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); Fabris, D.; Nebbia, G; Pesente, S. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Sajo-Bohus, L. [Universidad Simon-Bolivar, Laboratorio Fisica Nuclear, Apartado 8900, 1080 A. Caracas (Venezuela, Bolivarian Republic of)

    2009-07-01

    Material recognition is studied by measuring simultaneously the transmission of neutron and gamma rays produced by a time-tagged {sup 252}Cf source. The possibility to derive direct signatures to identify light elements (C,N,O) by using the measured transmission versus neutron time of flight is demonstrated. The yield of the transmitted gamma ray as a function of energy in the range 0.1-5.5 MeV provides high precision identification of the atomic number of the sample. A tomography system, currently under construction, is described. (authors)

  17. Neutron absorbers and detector types for spent fuel verification using the self-interrogation neutron resonance densitometry

    Energy Technology Data Exchange (ETDEWEB)

    Rossa, Riccardo, E-mail: rrossa@sckcen.be [SCK-CEN, Belgian Nuclear Research Centre, Boeretang, 200, B2400 Mol (Belgium); Université libre de Bruxelles, Ecole polytechnique de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), Avenue F.D. Roosevelt, 50, B1050 Brussels (Belgium); Borella, Alessandro, E-mail: aborella@sckcen.be [SCK-CEN, Belgian Nuclear Research Centre, Boeretang, 200, B2400 Mol (Belgium); Labeau, Pierre-Etienne, E-mail: pelabeau@ulb.ac.be [Université libre de Bruxelles, Ecole polytechnique de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), Avenue F.D. Roosevelt, 50, B1050 Brussels (Belgium); Pauly, Nicolas, E-mail: nipauly@ulb.ac.be [Université libre de Bruxelles, Ecole polytechnique de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), Avenue F.D. Roosevelt, 50, B1050 Brussels (Belgium); Meer, Klaas van der, E-mail: kvdmeer@sckcen.be [SCK-CEN, Belgian Nuclear Research Centre, Boeretang, 200, B2400 Mol (Belgium)

    2015-08-11

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive non-destructive assay (NDA) technique that is proposed for the direct measurement of {sup 239}Pu in a spent fuel assembly. The insertion of neutron detectors wrapped with different neutron absorbing materials, or neutron filters, in the central guide tube of a PWR fuel assembly is envisaged to measure the neutron flux in the energy region close to the 0.3 eV resonance of {sup 239}Pu. In addition, the measurement of the fast neutron flux is foreseen. This paper is focused on the determination of the Gd and Cd neutron filters thickness to maximize the detection of neutrons within the resonance region. Moreover, several detector types are compared to identify the optimal condition and to assess the expected total neutron counts that can be obtained with the SINRD measurements. Results from Monte Carlo simulations showed that ranges between 0.1–0.3 mm and 0.5–1.0 mm ensure the optimal conditions for the Gd and Cd filters, respectively. Moreover, a {sup 239}Pu fission chamber is better suited to measure neutrons close to the 0.3 eV resonance and it has the highest sensitivity to {sup 239}Pu, in comparison with a {sup 235}U fission chamber, with a {sup 3}He proportional counter, and with a {sup 10}B proportional counter. The use of a thin Gd filter and a thick Cd filter is suggested for the {sup 239}Pu and {sup 235}U fission chambers to increase the total counts achieved in a measurement, while a thick Gd filter and a thin Cd filter are envisaged for the {sup 3}He and {sup 10}B proportional counters to increase the sensitivity to {sup 239}Pu. We concluded that an optimization process that takes into account measurement time, filters thickness, and detector size is needed to develop a SINRD detector that can meet the requirement for an efficient verification of spent fuel assemblies.

  18. The simultaneous neutron and photon interrogation method for fissile and non-fissile element separation in radioactive waste drums

    Energy Technology Data Exchange (ETDEWEB)

    Jallu, F. E-mail: fanny.jallu@cea.fr; Lyoussi, A.; Passard, C.; Payan, E.; Recroix, H.; Nurdin, G.; Buisson, A.; Allano, J

    2000-10-01

    Measuring {alpha}-emitters such as ({sup 234,235,236,238}U, {sup 238,239,240,242,244}Pu, {sup 237}Np, {sup 241,243}Am, ...), in solid radioactive waste allows us to quantify the {alpha}-activity in a drum and then to classify it. The simultaneous photon and neutron interrogation experiment (SIMPHONIE) method dealt with in this paper, combines both active neutron interrogation and induced photofission interrogation techniques simultaneously. Its purpose is to quantify fissile ({sup 235}U, {sup 239,241}Pu, ...) and non-fissile ({sup 236,238}U, {sup 238,240}Pu, ...) elements separately in only one measurement. This paper presents the principle of the method, the experimental setup, and the first experimental results obtained using the DGA/ETCA Linac and MiniLinatron pulsed linear electron accelerators located at Arcueil, France. First studies were carried out with U and Pu bare samples.

  19. Intense Combined Source of Neutrons and Photons for Interrogation Based on Compact Deuteron RF Accelerator

    Science.gov (United States)

    Kurennoy, S. S.; Garnett, R. W.; Rybarcyk, L. J.

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108/s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(γ15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (< 5 m) deuteron RF accelerator that delivers an average current of a few mA of deuterons at 3-4 MeV to a boron target. The accelerator consists of a short RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements [Taddeucci et al. (2007)], indicate that the required fluxes of both neutrons and photons can be achieved at ∼1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full- system implementation.

  20. Cadmium Subtraction Method for the Active Albedo Neutron Interrogation of Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Worrall, Louise G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    This report describes work performed under the Next Generation Safeguards Initiative (NGSI) Cadmium Subtraction Project. The project objective was to explore the difference between the traditional cadmium (Cd) ratio signature and a proposed alternative Cd subtraction (or Cd difference) approach. The thinking behind the project was that a Cd subtraction method would provide a more direct measure of multiplication than the existing Cd ratio method. At the same time, it would be relatively insensitive to changes in neutron detection efficiency when properly calibrated. This is the first published experimental comparison and evaluation of the Cd ratio and Cd subtraction methods.

  1. Performance assessment of self-interrogation neutron resonance densitometry for spent nuclear fuel assay

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei, E-mail: huj1@ornl.gov [Reactor and Nuclear Systems Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, PO Box 2008, MS-6172, Oak Ridge, TN 37831-6172 (United States); Tobin, Stephen J.; LaFleur, Adrienne M.; Menlove, Howard O.; Swinhoe, Martyn T. [Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory (United States)

    2013-11-21

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is one of several nondestructive assay (NDA) techniques being integrated into systems to measure spent fuel as part of the Next Generation Safeguards Initiative (NGSI) Spent Fuel Project. The NGSI Spent Fuel Project is sponsored by the US Department of Energy's National Nuclear Security Administration to measure plutonium in, and detect diversion of fuel pins from, spent nuclear fuel assemblies. SINRD shows promising capability in determining the {sup 239}Pu and {sup 235}U content in spent fuel. SINRD is a relatively low-cost and lightweight instrument, and it is easy to implement in the field. The technique makes use of the passive neutron source existing in a spent fuel assembly, and it uses ratios between the count rates collected in fission chambers that are covered with different absorbing materials. These ratios are correlated to key attributes of the spent fuel assembly, such as the total mass of {sup 239}Pu and {sup 235}U. Using count rate ratios instead of absolute count rates makes SINRD less vulnerable to systematic uncertainties. Building upon the previous research, this work focuses on the underlying physics of the SINRD technique: quantifying the individual impacts on the count rate ratios of a few important nuclides using the perturbation method; examining new correlations between count rate ratio and mass quantities based on the results of the perturbation study; quantifying the impacts on the energy windows of the filtering materials that cover the fission chambers by tallying the neutron spectra before and after the neutrons go through the filters; and identifying the most important nuclides that cause cooling-time variations in the count rate ratios. The results of these studies show that {sup 235}U content has a major impact on the SINRD signal in addition to the {sup 239}Pu content. Plutonium-241 and {sup 241}Am are the two main nuclides responsible for the variation in the count

  2. Development of the QA/QC Procedures for a Neutron Interrogation System

    Energy Technology Data Exchange (ETDEWEB)

    Obhodas, Jasmina; Sudac, Davorin; Valkovic, Vladivoj [Ruder Boskovic Institute, 10000 Zagreb (Croatia)

    2015-07-01

    In order to perform QA/QC procedures for a system dedicated to the neutron interrogation of objects for the presence of threat materials one needs to perform measurements of reference materials (RM) having the same (or similar) atomic ratios as real materials. It is well known that explosives, drugs, and various other benign materials, contain chemical elements such as hydrogen, oxygen, carbon and nitrogen in distinctly different quantities. For example, a high carbon-to-oxygen ratio (C/O) is characteristic of drugs. Explosives can be differentiated by measurement of both C/O and nitrogen-to-oxygen (N/O) ratios. The C/N ratio of the chemical warfare agents, coupled with the measurement of elements such as fluorine and phosphorus, clearly differentiate them from the conventional explosives. Correlations between theoretical values and experimental results obtained in laboratory conditions for C/O and N/C ratios of simulants of hexogen (RDX), TNT, DLM2, TATP, cocaine, heroin, yperite, tetranitromethane, peroxide methylethyl-ketone, nitromethane and ethyleneglycol dinitrate are presented. (authors)

  3. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures.

    Science.gov (United States)

    Duan, Qiaonan; Flynn, Corey; Niepel, Mario; Hafner, Marc; Muhlich, Jeremy L; Fernandez, Nicolas F; Rouillard, Andrew D; Tan, Christopher M; Chen, Edward Y; Golub, Todd R; Sorger, Peter K; Subramanian, Aravind; Ma'ayan, Avi

    2014-07-01

    For the Library of Integrated Network-based Cellular Signatures (LINCS) project many gene expression signatures using the L1000 technology have been produced. The L1000 technology is a cost-effective method to profile gene expression in large scale. LINCS Canvas Browser (LCB) is an interactive HTML5 web-based software application that facilitates querying, browsing and interrogating many of the currently available LINCS L1000 data. LCB implements two compacted layered canvases, one to visualize clustered L1000 expression data, and the other to display enrichment analysis results using 30 different gene set libraries. Clicking on an experimental condition highlights gene-sets enriched for the differentially expressed genes from the selected experiment. A search interface allows users to input gene lists and query them against over 100 000 conditions to find the top matching experiments. The tool integrates many resources for an unprecedented potential for new discoveries in systems biology and systems pharmacology. The LCB application is available at http://www.maayanlab.net/LINCS/LCB. Customized versions will be made part of the http://lincscloud.org and http://lincs.hms.harvard.edu websites.

  4. Comparison of fresh fuel experimental measurements to MCNPX calculations using self-interrogation neutron resonance densitometry

    Energy Technology Data Exchange (ETDEWEB)

    LaFleur, Adrienne M., E-mail: alafleur@lanl.gov [Nuclear Nonproliferation Division, Los Alamos National Laboratory, P.O. Box 1663 MS E540, Los Alamos, NM 87545 (United States); Charlton, William S., E-mail: wcharlton@tamu.edu [Nuclear Security Science and Policy Institute, Texas A and M University, 3473 TAMU, College Station, TX 77843 (United States); Menlove, Howard O., E-mail: hmenlove@lanl.gov [Nuclear Nonproliferation Division, Los Alamos National Laboratory, P.O. Box 1663 MS E540, Los Alamos, NM 87545 (United States); Swinhoe, Martyn T., E-mail: swinhoe@lanl.gov [Nuclear Nonproliferation Division, Los Alamos National Laboratory, P.O. Box 1663 MS E540, Los Alamos, NM 87545 (United States)

    2012-07-11

    A new non-destructive assay technique called Self-Interrogation Neutron Resonance Densitometry (SINRD) is currently being developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for Light Water Reactor (LWR) fuel assemblies. SINRD consists of four {sup 235}U fission chambers (FCs): bare FC, boron carbide shielded FC, Gd covered FC, and Cd covered FC. Ratios of different FCs are used to determine the amount of resonance absorption from {sup 235}U in the fuel assembly. The sensitivity of this technique is based on using the same fissile materials in the FCs as are present in the fuel because the effect of resonance absorption lines in the transmitted flux is amplified by the corresponding (n,f) reaction peaks in the fission chamber. In this work, experimental measurements were performed in air with SINRD using a reference Pressurized Water Reactor (PWR) 15 Multiplication-Sign 15 low enriched uranium (LEU) fresh fuel assembly at LANL. The purpose of this experiment was to assess the following capabilities of SINRD: (1) ability to measure the effective {sup 235}U enrichment of the PWR fresh LEU fuel assembly and (2) sensitivity and penetrability to the removal of fuel pins from an assembly. These measurements were compared to Monte Carlo N-Particle eXtended transport code (MCNPX) simulations to verify the accuracy of the MCNPX model of SINRD. The reproducibility of experimental measurements via MCNPX simulations is essential to validating the results and conclusions obtained from the simulations of SINRD for LWR spent fuel assemblies. - Highlights: Black-Right-Pointing-Pointer Development of new measurement technique called SINRD to improve LWR safeguards. Black-Right-Pointing-Pointer Performed SINRD experiment to measure {sup 235}U and pin diversions in PWR fresh assembly. Black-Right-Pointing-Pointer Excellent agreement of MCNPX and measured results confirmed accuracy of SINRD model. Black-Right-Pointing-Pointer SINRD

  5. Analysis of experimental measurements of PWR fresh and spent fuel assemblies using Self-Interrogation Neutron Resonance Densitometry

    Energy Technology Data Exchange (ETDEWEB)

    LaFleur, Adrienne M., E-mail: alafleur@lanl.gov; Menlove, Howard O., E-mail: hmenlove@lanl.gov

    2015-05-01

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is a new NDA technique that was developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for LWR fuel assemblies. The SINRD detector consists of four fission chambers (FCs) wrapped with different absorber filters to isolate different parts of the neutron energy spectrum and one ion chamber (IC) to measure the gross gamma rate. As a result, two different techniques can be utilized using the same SINRD detector unit and hardware. These techniques are the Passive Neutron Multiplication Counter (PNMC) method and the SINRD method. The focus of the work described in this paper is the analysis of experimental measurements of fresh and spent PWR fuel assemblies that were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using the SINRD detector. The purpose of these experiments was to assess the following capabilities of the SINRD detector: 1) reproducibility of measurements to quantify systematic errors, 2) sensitivity to water gap between detector and fuel assembly, 3) sensitivity and penetrability to the removal of fuel rods from the assembly, and 4) use of PNMC/SINRD ratios to quantify neutron multiplication and/or fissile content. The results from these simulations and measurements provide valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies. - Highlights: • Experimental measurements of PWR fresh and spent FAs were performed with SINRD. • Good agreement of MCNPX and measured results confirmed accuracy of SINRD model. • For fresh fuel, SINRD and PNMC ratios were not sensitive to water gaps of ≤5-mm. • Practical use of SINRD would be in Fork detector to reduce systematic uncertainties.

  6. Neutron interrogation systems using pyroelectric crystals and methods of preparation thereof

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Vincent; Meyer, Glenn A.; Falabella, Steven; Guethlein, Gary; Rusnak, Brian; Sampayan, Stephen; Spadaccini, Christopher M.; Wang, Li-Fang; Harris, John; Morse, Jeff

    2017-08-01

    According to one embodiment, an apparatus includes a pyroelectric crystal, a deuterated or tritiated target, an ion source, and a common support coupled to the pyroelectric crystal, the deuterated or tritiated target, and the ion source. In another embodiment, a method includes producing a voltage of negative polarity on a surface of a deuterated or tritiated target in response to a temperature change of a pyroelectric crystal, pulsing a deuterium ion source to produce a deuterium ion beam, accelerating the deuterium ion beam to the deuterated or tritiated target to produce a neutron beam, and directing the ion beam onto the deuterated or tritiated target to make neutrons using a voltage of the pyroelectric crystal and/or an HGI surrounding the pyroelectric crystal. The directionality of the neutron beam is controlled by changing the accelerating voltage of the system. Other apparatuses and methods are presented as well.

  7. Active Interrogation for Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dougan, Arden [National Nuclear Security Administration (NNSA), Washington, DC (United States)

    2015-11-05

    The DDA instrument for nuclear safeguards is a fast, non-destructive assay, active neutron interrogation technique using an external 14 MeV DT neutron generator for characterization and verification of spent nuclear fuel assemblies.

  8. Active Interrogation for Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dougan, Arden [National Nuclear Security Administration (NNSA), Washington, DC (United States)

    2015-11-05

    The DDA instrument for nuclear safeguards is a fast, non-destructive assay, active neutron interrogation technique using an external 14 MeV DT neutron generator for characterization and verification of spent nuclear fuel assemblies.

  9. Simulated Performance of the Integrated Passive Neutron Albedo Reactivity and Self-Interrogation Neutron Resonance Densitometry Detector Designed for Spent Fuel Measurement at the Fugen Reactor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, Timothy J. II [Los Alamos National Laboratory; Lafleur, Adrienne M. [Los Alamos National Laboratory; Menlove, Howard O. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory; Seya, Michio [Los Alamos National Laboratory; Bolind, Alan M. [Los Alamos National Laboratory

    2012-07-16

    An integrated nondestructive assay instrument, which combined the Passive Neutron Albedo Reactivity (PNAR) and the Self-Interrogation Neutron Resonance Densitometry (SINRD) techniques, is the research focus for a collaborative effort between Los Alamos National Laboratory (LANL) and the Japanese Atomic Energy Agency as part of the Next Generation Safeguard Initiative. We will quantify the anticipated performance of this experimental system in two physical environments: (1) At LANL we will measure fresh Low Enriched Uranium (LEU) assemblies for which the average enrichment can be varied from 0.2% to 3.2% and for which Gd laced rods will be included. (2) At Fugen we will measure spent Mixed Oxide (MOX-B) and LEU spent fuel assemblies from the heavy water moderated Fugen reactor. The MOX-B assemblies will vary in burnup from {approx}3 GWd/tHM to {approx}20 GWd/tHM while the LEU assemblies ({approx}1.9% initial enrichment) will vary from {approx}2 GWd/tHM to {approx}7 GWd/tHM. The estimated count rates will be calculated using MCNPX. These preliminary results will help the finalization of the hardware design and also serve a guide for the experiment. The hardware of the detector is expected to be fabricated in 2012 with measurements expected to take place in 2012 and 2013. This work is supported by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.

  10. Control of radioactive wastes and coupling of neutron/gamma measurements: use of radiative capture for the correction of matrix effects that penalize the fissile mass measurement by active neutron interrogation; Controle des dechets radioactifs et couplage de mesures neutron/gamma: exploitation de la capture radiative pour corriger les effets de matrice penalisant la mesure de la masse fissile par interrogation neutronique active

    Energy Technology Data Exchange (ETDEWEB)

    Loche, F

    2006-10-15

    In the framework of radioactive waste drums control, difficulties arise in the nondestructive measurement of fissile mass ({sup 235}U, {sup 239}Pu..) by Active Neutron Interrogation (ANI), when dealing with matrices containing materials (Cl, H...) influencing the neutron flux. The idea is to use the neutron capture reaction (n,{gamma}) to determine the matrix composition to adjust the ANI calibration coefficient value. This study, dealing with 118 litres, homogeneous drums of density less than 0,4 and composed of chlorinated and/or hydrogenated materials, leads to build abacus linking the {gamma} ray peak areas to the ANI calibration coefficient. Validation assays of these abacus show a very good agreement between the corrected and true fissile masses for hydrogenated matrices (max. relative standard deviation: 23 %) and quite good for chlorinated and hydrogenated matrices (58 %). The developed correction method improves the measured values. It may be extended to 0,45 density, heterogeneous drums. (author)

  11. Development of self-interrogation neutron resonance densitometry (SINRD) to measure U-235 and Pu-239 content in a PWR spent fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, Adrienne M [Los Alamos National Laboratory; Charlton, William S [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory

    2009-01-01

    The use of Self-Interrogation Neutron Resonance Densitometry (SINRD) to measure the {sup 235}U and {sup 239}Pu content in a PWR spent fuel assembly was investigated via Monte Carlo N-Particle eXtended transport code (MCNPX) simulations. The sensitivity of SINRD is based on using the same fissile materials in the fission chambers as are present in the fuel because the effect of resonance absorption lines in the transmitted flux is amplified by the corresponding (n, f) reaction peaks in fission chamber. These simulations utilize the {sup 244}Cm spontaneous fission neutrons to self-interrogate the fuel pins. The amount of resonance absorption of these neutrons in the fuel can be measured using {sup 235}U and {sup 239}Pu fission chambers placed adjacent to the assembly. We used ratios of different fission chambers to reduce the sensitivity of the measurements to extraneous material present in fuel. The development of SINRD to measure the fissile content in spent fuel is of great importance to the improvement of nuclear safeguards and material accountability. Future work includes the use of this technique to measure the fissile content in FBR spent fuel and heavy metal product from reprocessing methods.

  12. Aerial Neutron Detection: Neutron Signatures for Nonproliferation and Emergency Response Applications

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Richard J.; Stampahar, Thomas G.; Smith, Ethan X.; Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Rourke, Timothy J.; LeDonne, Jeffrey P.; Avaro, Emanuele; Butler, D. Andre; Borders, Kevin L.; Stampahar, Jezabel; Schuck, William H.; Selfridge, Thomas L.; McKissack, Thomas M.; Duncan, William W.; Hendricks, Thane J.

    2012-10-17

    From 2007 to the present, the Remote Sensing Laboratory has been conducting a series of studies designed to expand our fundamental understanding of aerial neutron detection with the goal of designing an enhanced sensitivity detection system for long range neutron detection. Over 35 hours of aerial measurements in a helicopter were conducted for a variety of neutron emitters such as neutron point sources, a commercial nuclear power reactor, nuclear reactor spent fuel in dry cask storage, depleted uranium hexafluoride and depleted uranium metal. The goals of the project were to increase the detection sensitivity of our instruments such that a 5.4 × 104 neutron/second source could be detected at 100 feet above ground level at a speed of 70 knots and to enhance the long-range detection sensitivity for larger neutron sources, i.e., detection ranges above 1000 feet. In order to increase the sensitivity of aerial neutron detection instruments, it is important to understand the dynamics of the neutron background as a function of altitude. For aerial neutron detection, studies have shown that the neutron background primarily originates from above the aircraft, being produced in the upper atmosphere by galactic cosmic-ray interactions with air molecules. These interactions produce energetic neutrons and charged particles that cascade to the earth’s surface, producing additional neutrons in secondary collisions. Hence, the neutron background increases as a function of altitude which is an impediment to long-range neutron detection. In order to increase the sensitivity for long range detection, it is necessary to maintain a low neutron background as a function of altitude. Initial investigations show the variation in the neutron background can be decreased with the application of a cosmic-ray shield. The results of the studies along with a representative data set are presented.

  13. Simultaneous photon and neutron interrogation using an electron accelerator in order to quantify actinides in encapsulated radioactive wastes; Double interrogation simultanee neutrons et photons utilisant un accelerateur d'electrons pour la caracterisation separee des actinides dans les dechets radioactifs enrobes

    Energy Technology Data Exchange (ETDEWEB)

    Jallu, F

    1999-09-24

    Measuring out alpha emitters, such as ({sup 234,235,236,238}U {sup 238,239,240,242,}2{sup 44P}u, {sup 237}Np {sup 241,243}Am...), in solid radioactive waste, allows us to quantify the alpha activity in a drum and then to classify it. The SIMPHONIE (SIMultaneous PHOton and Neutron Interrogation Experiment) method, developed in this Ph.D. work, combines both the Active Neutron Interrogation and the Induced Photofission Interrogation techniques simultaneously. Its purpose is to quantify in only one measurement, fissile ({sup 235}U, {sup 239,241}Pu...) and fertile ({sup 236,238}U, {sup 238,240}Pu...) elements separately. In the first chapter of this Ph.D. report, we present the principle of the Radioactive Waste Management in France. The second chapter deals with the physical properties of neutron fission and of photofission. These two nuclear reactions are the basis of the SIMPHONIE method. Moreover, one of our purposes was to develop the ELEPHANT (ELEctron PHoton And Neutron Transport) code in view to simulate the electron, photon and neutron transport, including the ({gamma}, n), ({gamma}, 2n) and ({gamma}, f) photonuclear reactions that are not taken into account in the MCNP4 (Monte Carlo N-Particle) code. The simulation codes developed and used in this work are detailed in the third chapter. Finally, the fourth chapter gives the experimental results of SIMPHONIE obtained by using the DGA/ETCA electron linear accelerators located at Arcueil, France. Fissile ({sup 235}U, {sup 239}Pu) and fertile ({sup 238}U) samples were studied. Furthermore, comparisons between experimental results and calculated data of photoneutron production in tungsten, copper, praseodymium and beryllium by using an electron LINear Accelerator (LINAC) are given. This allows us to evaluate the validity degree of the ELEPHANT code, and finally the feasibility of the SIMPHONIE method. (author)

  14. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel-Design concept and experimental demonstration

    Science.gov (United States)

    Henzlova, D.; Menlove, H. O.; Rael, C. D.; Trellue, H. R.; Tobin, S. J.; Park, Se-Hwan; Oh, Jong-Myeong; Lee, Seung-Kyu; Ahn, Seong-Kyu; Kwon, In-Chan; Kim, Ho-Dong

    2016-01-01

    This paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. This paper describes the initial feasibility demonstration of the CIPN instrument, which involved measurements of four pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be independent of assembly orientation in the instrument.

  15. Analysis of an indirect neutron signature for enhanced UF6 cylinder verification

    Science.gov (United States)

    Kulisek, J. A.; McDonald, B. S.; Smith, L. E.; Zalavadia, M. A.; Webster, J. B.

    2017-02-01

    The International Atomic Energy Agency (IAEA) currently uses handheld gamma-ray spectrometers combined with ultrasonic wall-thickness gauges to verify the declared enrichment of uranium hexafluoride (UF6) cylinders. The current method provides relatively low accuracy for the assay of 235U enrichment, especially for natural and depleted UF6. Furthermore, the current method provides no capability to assay the absolute mass of 235U in the cylinder due to the localized instrument geometry and limited penetration of the 186-keV gamma-ray signature from 235U. Also, the current verification process is a time-consuming component of on-site inspections at uranium enrichment plants. Toward the goal of a more-capable cylinder assay method, the Pacific Northwest National Laboratory has developed the hybrid enrichment verification array (HEVA). HEVA measures both the traditional 186-keV direct signature and a non-traditional, high-energy neutron-induced signature (HEVANT). HEVANT enables full-volume assay of UF6 cylinders by exploiting the relatively larger mean free paths of the neutrons emitted from the UF6. In this work, Monte Carlo modeling is used as the basis for characterizing HEVANT in terms of the individual contributions to HEVANT from nuclides and hardware components. Monte Carlo modeling is also used to quantify the intrinsic efficiency of HEVA for neutron detection in a cylinder-assay geometry. Modeling predictions are validated against neutron-induced gamma-ray spectra from laboratory measurements and a relatively large population of Type 30B cylinders spanning a range of enrichments. Implications of the analysis and findings on the viability of HEVA for cylinder verification are discussed, such as the resistance of the HEVANT signature to manipulation by the nearby placement of neutron-conversion materials.

  16. Analysis of an Indirect Neutron Signature for Enhanced UF6 Cylinder Verification

    Energy Technology Data Exchange (ETDEWEB)

    Kulisek, Jonathan A.; McDonald, Benjamin S.; Smith, Leon E.; Zalavadia, Mital A.; Webster, Jennifer B.

    2017-02-21

    The International Atomic Energy Agency (IAEA) currently uses handheld gamma-ray spectrometers combined with ultrasonic wall-thickness gauges to verify the declared enrichment of uranium hexafluoride (UF6) cylinders. The current method provides relatively low accuracy for the assay of 235U enrichment, especially for natural and depleted UF6. Furthermore, the current method provides no capability to assay the absolute mass of 235U in the cylinder due to the localized instrument geometry and limited penetration of the 186-keV gamma-ray signature from 235U. Also, the current verification process is a time-consuming component of on-site inspections at uranium enrichment plants. Toward the goal of a more-capable cylinder assay method, the Pacific Northwest National Laboratory has developed the hybrid enrichment verification array (HEVA). HEVA measures both the traditional 186-keV direct signature and a non-traditional, high-energy neutron-induced signature (HEVANT). HEVANT enables full-volume assay of UF6 cylinders by exploiting the relatively larger mean free paths of the neutrons emitted from the UF6. In this work, Monte Carlo modeling is used as the basis for characterizing HEVANT in terms of the individual contributions to HEVANT from nuclides and hardware components. Monte Carlo modeling is also used to quantify the intrinsic efficiency of HEVA for neutron detection in a cylinder-assay geometry. Modeling predictions are validated against neutron-induced gamma-ray spectra from laboratory measurements and a relatively large population of Type 30B cylinders spanning a range of enrichments. Implications of the analysis and findings on the viability of HEVA for cylinder verification are discussed, such as the resistance of the HEVANT signature to manipulation by the nearby placement of neutron-conversion materials.

  17. Neutron Signatures of Non-Thermal Ion Distributions in Z-Pinch Driven ICF Plasmas

    Science.gov (United States)

    Knapp, Patrick; Jennings, Christopher; Sinars, Daniel

    2012-10-01

    In preparation for upcoming ICF experiments on the 26 MA Z machine (e.g., D2 gas puff, MagLIF [1]), we are studying the neutron energy spectra produced by magnetically-driven loads beyond the archetypal single temperature, uniform plasma. Z-pinch sources frequently exhibit evidence of unusual neutron spectra [2], which can be attributed to three-dimensional turbulent motion, high-energy beams, and other phenomena leading to non-Maxwellian ion distributions. Understanding the nature of our plasma neutron sources is critical for understanding how they scale with increasing current. We will show Monte Carlo and analytic calculations for plausible scenarios and discuss the corresponding signatures for the existing set of time-of-flight diagnostics on Z.[4pt] [1] S. A. Slutz et al. Phys. Plasmas 17, 056303 (2010)[0pt] [2] V.V. Vikhrev and V.D. Korolev, Plasma Dynamics, Vol. 33, No. 5 (2007)

  18. INL Active Interrogation Testing In Support of the GNEP Safeguards Campaign

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester

    2008-04-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. Work at Idaho National Laboratory (INL) in the area of active interrogation, using neutron and photon sources, has been under way for many years to develop methods for detecting and quantifying nuclear material for national and homeland security research areas. This research knowledge base is now being extended to address nuclear safeguards and process monitoring issues related to the Global Nuclear Energy Partnership (GNEP). As a first step in this area preliminary scoping studies have been performed to investigate the usefulness of using active neutron interrogation, with a low-power electronic neutron generator, to assay Department of Transportation 6M shipping drums containing uranium oxide fuel rodlets from INL’s zero power physics reactor. Using the paired-counting technique during the die-away time period of interrogation, a lower detection limit of approximately 4.2 grams of enriched uranium (40% 235U) was calculated for a 40 minute measurement using a field portable 2.5 MeV neutron source and an array of 16 moderated helium-3 neutron tubes. Future work in this area, including the use of a more powerful neutron source and a better tailored detector array, would likely improve this limit to a much lower level. Further development work at INL will explore the applicability of active interrogation in association with the nuclear safeguards and process monitoring needs of the advanced GNEP facilities under consideration. This work, which will include both analyses and field demonstrations, will be performed in collaboration with colleagues at INL and elsewhere that have expertise in nuclear fuel reprocessing as well as active interrogation and its use for nuclear material analyses.

  19. Cyclotron line signatures of thermal and magnetic mountains from accreting neutron stars

    CERN Document Server

    Priymak, Maxim; Lasky, Paul

    2014-01-01

    Cyclotron resonance scattering features (CRSFs) in the X-ray spectrum of an accreting neutron star are modified differently by accretion mounds sustained by magnetic and thermocompositional gradients. It is shown that one can discriminate, in principle, between mounds of different physical origins by studying how the line energy, width, and depth of a CRSF depend on the orientation of the neutron star, accreted mass, surface temperature distribution, and equation of state. CRSF signatures including gravitational light bending are computed for both phase-resolved and phase-averaged spectra on the basis of self-consistent Grad-Shafranov mound equilibria satisfying a global flux-freezing constraint. The prospects of multimessenger X-ray and gravitational-wave observations with future instruments are canvassed briefly.

  20. Signatures of photon-axion conversion in the thermal spectra and polarization of neutron stars

    CERN Document Server

    Perna, Rosalba; Verde, Licia; van Adelsberg, Matthew; Jimenez, Raul

    2012-01-01

    Conversion of photons into axions under the presence of a strong magnetic field can dim the radiation from magnetized astrophysical objects. Here we perform a detailed calculation aimed at quantifying the signatures of photon-axion conversion in the spectra, light curves, and polarization of neutron stars (NSs). We take into account the energy and angle-dependence of the conversion probability and the surface thermal emission from NSs. The latter is computed from magnetized atmosphere models that include the effect of photon polarization mode conversion due to vacuum polarization. The resulting spectral models, inclusive of the general-relativistic effects of gravitational redshift and light deflection, allow us to make realistic predictions for the effects of photon to axion conversion on observed NS spectra, light curves, and polarization signals. We identify unique signatures of the conversion, such as an increase of the effective area of a hot spot as it rotates away from the observer line of sight. For a...

  1. Applications of the associated-particle neutron-time-of-flight interrogation technique - From sheep to unexploded ordnance

    Science.gov (United States)

    Mitra, S.

    2013-04-01

    The associated-particle technique (APT) will be presented for some diverse applications that include on the one hand, analyzing the body composition of live sheep and on the other, identifying the fillers of unexploded ordnance (UXO). What began with proof-of-concept studies using a large laboratory based 14 MeV neutron generator of the "associated-particle" type, soon became possible for the first time to measure total body protein, fat and water simultaneously in live sheep using a compact field deployable associated-particle sealed-tube neutron generator (APSTNG). This non-invasive technique offered the animal physiologist a tool to monitor the growth of an animal in response to new genetic, nutritional and pharmacologic methods for livestock improvement. While measurement of carbon (C), nitrogen (N) and oxygen (O) determined protein, fat and water because of the fixed stoichiometric proportions of these elements in these body components, the unique C/N and C/O ratios of high explosives revealed their identity in UXO. The algorithm that was developed and implemented to extract C, N and O counts from an APT generated gamma-ray spectrum will be presented together with the UXO investigations that involved preliminary proofof-concept studies and modeling with Monte Carlo produced synthetic spectra of 57-155 mm projectiles.

  2. Interrogating protonated/deuterated fibronectin fragment layers adsorbed to titania by neutron reflectivity and their concomitant control over cell adhesion

    Science.gov (United States)

    McIntosh, Lisa; Whitelaw, Christine; Rekas, Agata; Holt, Stephen A.; van der Walle, Christopher F.

    2015-01-01

    The fibronectin fragment, 9th–10th-type III domains (FIII9–10), mediates cell attachment and spreading and is commonly investigated as a bioadhesive interface for implant materials such as titania (TiO2). How the extent of the cell attachment–spreading response is related to the nature of the adsorbed protein layer is largely unknown. Here, the layer thickness and surface fraction of two FIII9–10 mutants (both protonated and deuterated) adsorbed to TiO2 were determined over concentrations used in cell adhesion assays. Unexpectedly, the isotopic forms had different adsorption behaviours. At solution concentrations of 10 mg l−1, the surface fraction of the less conformationally stable mutant (FIII9′10) was 42% for the deuterated form and 19% for the protonated form (fitted to the same monolayer thickness). Similarly, the surface fraction of the more stable mutant (FIII9′10–H2P) was 34% and 18% for the deuterated and protonated forms, respectively. All proteins showed a transition from monolayer to bilayer between 30 and 100 mg l−1, with the protein longitudinal orientation moving away from the plane of the TiO2 surface at high concentrations. Baby hamster kidney cells adherent to TiO2 surfaces coated with the proteins (100 mg l−1) showed a strong spreading response, irrespective of protein conformational stability. After surface washing, FIII9′10 and FIII9′10–H2P bilayer surface fractions were 30/25% and 42/39% for the lower/upper layers, respectively, implying that the cell spreading response requires only a partial protein surface fraction. Thus, we can use neutron reflectivity to inform the coating process for generating bioadhesive TiO2 surfaces. PMID:25926699

  3. Study and development of a method allowing the identification of actinides inside nuclear waste packages, by active neutron or photon interrogation and delayed gamma-ray spectrometry; Etude et developpement d'une technique de dosage des actinides dans les colis de dechets radioactifs par interrogation photonique ou neutronique active et spectrometrie des gamma retardes

    Energy Technology Data Exchange (ETDEWEB)

    Carrel, F

    2007-10-15

    An accurate estimation of the alpha-activity of a nuclear waste package is necessary to select the best mode of storage. The main purpose of this work is to develop a non-destructive active method, based on the fission process and allowing the identification of actinides ({sup 235}U, {sup 238}U, {sup 239}Pu). These three elements are the main alpha emitters contained inside a package. Our technique is based on the detection of delayed gammas emitted by fission products. These latter are created by irradiation with the help of a neutron or photon beam. Performances of this method have been investigated after an Active Photon or Neutron Interrogation (INA or IPA). Three main objectives were fixed in the framework of this thesis. First, we measured many yields of photofission products to compensate the lack of data in the literature. Then, we studied experimental performances of this method to identify a given actinide ({sup 239}Pu in fission, {sup 235}U in photofission) present in an irradiated mixture. Finally, we assessed the application of this technique on different mock-up packages for both types of interrogation (118 l mock-up package containing EVA in fission, 220 l mock-up package with a wall of concrete in photofission). (author)

  4. High energy signatures of quasi-spherical accretion onto rotating, magnetized neutron star in the ejector-accretor intermediate state

    CERN Document Server

    Bednarek, W

    2015-01-01

    We consider a simple scenario for the accretion of matter onto a neutron star in order to understand processes in the inner pulsar magnetosphere during the transition stage between different accretion modes. A simple quasi-spherical accretion process onto rotating, magnetized compact object is analyzed in order to search for the radiative signatures which could appear during transition between ejecting and accreting modes. It is argued that different accretion modes can be present in a single neutron star along different magnetic field lines for specific range of parameters characterising the pulsar (rotational period, surface magnetic field strength) and the density of surrounding medium. The radiation processes characteristic for the ejecting pulsar, i.e. curvature and synchrotron radiation produced by primary electrons in the pulsar outer gap, are expected to be modified by the presence of additional thermal radiation from the neutron star surface. We predict that during the transition from the pure ejecto...

  5. Measurement of the Range Component Directional Signature in a DRIFT-II Detector using 252Cf Neutrons

    CERN Document Server

    Burgos, S; Forbes, J; Ghag, C; Gold, M; Hagemann, C; Kudryavtsev, V A; Lawson, T B; Loomba, D; Majewski, P; Muna, D; Murphy, A St J; Nicklin, G G; Paling, S M; Petkov, A; Plank, S J S; Robinson, M; Sanghi, N; Snowden-Ifft, D P; Spooner, N J C; Turk, J; Tziaferi, E

    2008-01-01

    The DRIFT collaboration utilizes low pressure gaseous detectors to search for WIMP dark matter with directional signatures. A 252Cf neutron source was placed on each of the principal axes of a DRIFT detector in order to test its ability to measure directional signatures from the three components of very low energy (~keV/amu) recoil ranges. A high trigger threshold and the event selection procedure ensured that only sulfur recoils were analyzed. Sulfur recoils produced in the CS2 target gas by the 252Cf source closely match those expected from massive WIMP induced sulfur recoils. For each orientation of the source a directional signal from the range components was observed, indicating that the detector is directional along all 3 axes. An analysis of these results yields an optimal orientation for DRIFT detectors when searching for a directional signature from WIMPs. Additional energy dependent information is provided to aid in understanding this effect.

  6. Ion-induced gammas for photofission interrogation of HEU.

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee (Sandia National Laboratories, Albuquerque, NM); Antolak, Arlyn J.; Morse, Daniel H.; Provencio, Paula Polyak (Sandia National Laboratories, Albuquerque, NM)

    2006-03-01

    High-energy photons and neutrons can be used to actively interrogate for heavily shielded special nuclear material (SNM), such as HEU (highly enriched uranium), by detecting prompt and/or delayed induced fission signatures. In this work, we explore the underlying physics for a new type of photon source that generates high fluxes of mono-energetic gamma-rays from low-energy (<500 keV) proton-induced nuclear reactions. The characteristic energies (4- to 18-MeV) of the gamma-rays coincide with the peak of the photonuclear cross section. The source could be designed to produce gamma-rays of certain selected energies, thereby improving the probability of detecting shielded HEU or providing a capability to determine enrichment inside sealed containers. The fundamental physics of such an interrogation source were studied in this LDRD through scaled ion accelerator experiments and radiation transport modeling. The data were used to assess gamma and neutron yields, background, and photofission-induced signal levels from several (p,{gamma}) target materials under consideration.

  7. Reaction-in-Flight Neutrons as a Signature for Shell Mixing in NIF capsules

    CERN Document Server

    Hayes, A C; Grim, G P; Jungman, Gerard; Wilhelmy, J B

    2009-01-01

    We present analytic calculations and results from computational simulations showing that reaction-in-flight (RIF) neutrons act as a robust indicator for mixing of the ablator shell material into the fuel in DT capsules designed for the National Ignition Facility. The sensitivity of RIF neutrons to hydrodynamical mixing arises through the dependence of RIF production on charged-particle stopping lengths in the mixture of DT fuel and ablator material. Since the stopping power in the plasma is a sensitive function of the electron temperature and density, it is also sensitive to mix. RIF production scales approximately inversely with the degree of mixing taking place, and the ratio of RIF to downscattered neutrons provides a measure of the mix fraction and/or the mixing length. For sufficiently high-yield capsules, where spatially resolved RIF images may be possible, neutron imaging could be used to map RIF images into detailed mix images.

  8. Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era

    CERN Document Server

    Fernández, Rodrigo

    2015-01-01

    The mergers of binaries containing neutron stars and stellar-mass black holes are the most promising sources for direct detection in gravitational waves by the interferometers Advanced LIGO and Virgo over the next few years. The concurrent detection of electromagnetic emission from these events would greatly enhance the scientific return of these discoveries. Here we review the state of the art in modeling the electromagnetic signal of neutron star binary mergers across different phases of the merger and multiple wavelengths. We focus on those observables which provide the most sensitive diagnostics of the merger physics and the contribution to the synthesis of rapid neutron capture ($r$-process) elements in the Galaxy. We also outline expected future developments on the observational and theoretical sides of this rapidly evolving field.

  9. Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era

    Science.gov (United States)

    Fernández, Rodrigo; Metzger, Brian D.

    2016-10-01

    The mergers of binaries containing neutron stars and stellar-mass black holes are among the most promising sources for direct detection in gravitational waves by the interferometers Advanced LIGO and Virgo over the next few years. The concurrent detection of electromagnetic emission from these events would greatly enhance the scientific return of these discoveries. We review the state of the art in modeling the electromagnetic signal of neutron star binary mergers across different phases of the merger and multiple wavelengths. We focus on those observables that provide the most sensitive diagnostics of the merger physics and the contribution to the synthesis of rapid neutron capture (r-process) elements in the Galaxy. We also outline expected future developments on the observational and theoretical sides of this rapidly evolving field.

  10. Neutrino signatures and the neutrino-driven wind in Binary Neutron Star Mergers

    CERN Document Server

    Dessart, Luc; Burrows, Adam; Rosswog, Stefan; Livne, Eli

    2008-01-01

    We present VULCAN/2D multi-group flux-limited-diffusion radiation hydrodynamics simulations of binary neutron star (BNS) mergers, using the Shen equation of state, covering ~100 ms, and starting from azimuthal-averaged 2D slices obtained from 3D SPH simulations of Rosswog & Price for 1.4 Msun (baryonic) neutron stars with no initial spins, co-rotating spins, and counter-rotating spins. Snapshots are post-processed at 10 ms intervals with a multi-angle neutrino-transport solver. We find polar-enhanced neutrino luminosities, dominated by $\\bar{\

  11. Passive Measurement of Organic-Scintillator Neutron Signatures for Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jennfier L. Dolan; Eric C. Miller; Alexis C. Kaplan; Andreas Enqvist; Marek Flaska; Alice Tomanin; Paolo Peerani; David L. Chichester; Sara A. Pozzi

    2012-10-01

    At nuclear facilities, domestically and internationally, most measurement systems used for nuclear materials’ control and accountability rely on He-3 detectors. Due to resource shortages, alternatives to He-3 systems are needed. This paper presents preliminary simulation and experimental efforts to develop a fast-neutron-multiplicity counter based on liquid organic scintillators. This mission also provides the opportunity to broaden the capabilities of such safeguards measurement systems to improve current neutron-multiplicity techniques and expand the scope to encompass advanced nuclear fuels.

  12. SIMULATIONS FOR ACTIVE INTERROGATION OF HEU IN CARGO CONTAINERS

    Energy Technology Data Exchange (ETDEWEB)

    LEE, SANG Y. [Los Alamos National Laboratory; BEDDINGFIELD, DAVID H. [Los Alamos National Laboratory; PARK, JAEYOUNG [Los Alamos National Laboratory

    2007-01-22

    We describe the results of a Monte Carlo simulation 10 investigate the feasibility of using a pulsed deuterium-tritium (D-T) neutron technique for active interrogation of special nuclear material in cargo containers. Time distributions of fission neutrons from highly enriched uranium induced by a pulsed D-T neutron source were calculated for cargo containers with different hydrogen contents. A simple detector system with polyethylene and cadmium was modeled to calculate the two-group neutron flux at the detector.

  13. Observational signatures of neutron stars in low-mass X-ray binaries climbing a stability peak

    CERN Document Server

    Kantor, Elena; Chugunov, Andrey

    2015-01-01

    In the recent papers by Gusakov, Chugunov, and Kantor (2014) a new scenario describing evolution of rapidly rotating neutron stars in low-mass X-ray binaries was proposed. The scenario accounts for a resonant interaction of normal r modes with superfluid inertial modes at some specific internal stellar temperatures ("resonance temperatures"). This interaction results in an enhanced damping of r mode and appearance of the "stability peaks" in the temperature -- spin frequency plane, which split the r-mode instability window in the vicinity of the resonance temperatures. The scenario suggests that the hot and rapidly rotating NSs spend most of their life climbing up these peaks and, in particular, are observed there at the moment. We analyze in detail possible observational signatures of this suggestion. In particular, we show that these objects may exhibit `anti-glitches' -- sudden frequency jumps on a time scale of hours-months.

  14. Reaction-in-flight neutrons as a signature for shell mixing in National Ignition Facility capsules

    Science.gov (United States)

    Hayes, A. C.; Bradley, P. A.; Grim, G. P.; Jungman, Gerard; Wilhelmy, J. B.

    2010-01-01

    Analytic calculations and results from computational simulations are presented that suggest that reaction-in-flight (RIF) neutrons can be used to diagnose mixing of the ablator shell material into the fuel in deuterium-tritium (DT) capsules designed for the National Ignition Facility (NIF) [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, Laser Focus World 30, 75 (1994)]. Such mixing processes in NIF capsules are of fundamental physical interest and can have important effects on capsule performance, quenching the total thermonuclear yield. The sensitivity of RIF neutrons to hydrodynamical mixing arises through the dependence of RIF production on charged-particle stopping lengths in the mixture of DT fuel and ablator material. Since the stopping power in the plasma is a sensitive function of the electron temperature and density, it is also sensitive to mix. RIF production scales approximately inversely with the degree of mixing taking place, and the ratio of RIF to down-scattered neutrons provides a measure of the mix fraction and/or the mixing length. For sufficiently high-yield capsules, where spatially resolved RIF images may be possible, neutron imaging could be used to map RIF images into detailed mix images.

  15. Radiation Detection for Active Interrogation of HEU

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, J.T.

    2004-12-09

    This report briefly describes the neutrons and gamma rays emitted by active interrogation of HEU, briefly discusses measurement methods, briefly discusses sources and detectors relevant to detection of shielded HEU in Sealand containers, and lists the measurement possibilities for the various sources. All but one of the measurement methods detect radiation emitted by induced fission in the HEU; the exception utilizes nuclear resonance fluorescence. The brief descriptions are supplemented by references. This report presents some active interrogation possibilities but the status of understanding is not advanced enough to select particular methods. Additional research is needed to evaluate these possibilities.

  16. Spectroscopic neutron detection using composite scintillators

    Science.gov (United States)

    Jovanovic, I.; Foster, A.; Kukharev, V.; Mayer, M.; Meddeb, A.; Nattress, J.; Ounaies, Z.; Trivelpiece, C.

    2016-09-01

    Shielded special nuclear material (SNM), especially highly enriched uranium, is exceptionally difficult to detect without the use of active interrogation (AI). We are investigating the potential use of low-dose active interrogation to realize simultaneous high-contrast imaging and photofission of SNM using energetic gamma-rays produced by low-energy nuclear reactions, such as 11B(d,nγ)12C and 12C(p,p‧)12C. Neutrons produced via fission are one reliable signature of the presence of SNM and are usually identified by their unique timing characteristics, such as the delayed neutron die-away. Fast neutron spectroscopy may provide additional useful discriminating characteristics for SNM detection. Spectroscopic measurements can be conducted by recoil-based or thermalization and capture-gated detectors; the latter may offer unique advantages since they facilitate low-statistics and event-by-event neutron energy measurements without spectrum unfolding. We describe the results of the development and characterization of a new type of capture-gated spectroscopic neutron detector based on a composite of scintillating polyvinyltoluene and lithium-doped scintillating glass in the form of millimeter-thick rods. The detector achieves >108 neutron-gamma discrimination resulting from its geometric properties and material selection. The design facilitates simultaneous pulse shape and pulse height discrimination, despite the fact that no materials intrinsically capable of pulse shape discrimination have been used to construct the detector. Accurate single-event measurements of neutron energy may be possible even when the energy is relatively low, such as with delayed fission neutrons. Simulation and preliminary measurements using the new composite detector are described, including those conducted using radioisotope sources and the low-dose active interrogation system based on low-energy nuclear reactions.

  17. Detection of special nuclear material by observation of delayed neutrons with a novel fast neutron composite detector

    Science.gov (United States)

    Mayer, Michael; Nattress, Jason; Barhoumi Meddeb, Amira; Foster, Albert; Trivelpiece, Cory; Rose, Paul; Erickson, Anna; Ounaies, Zoubeida; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material is crucial to countering nuclear terrorism and proliferation, but its detection is challenging. By observing the emission of delayed neutrons, which is a unique signature of nuclear fission, the presence of nuclear material can be inferred. We report on the observation of delayed neutrons from natural uranium by using monoenergetic photons and neutrons to induce fission. An interrogating beam of 4.4 MeV and 15.1 MeV gamma-rays and neutrons was produced using the 11B(d,n-γ)12C reaction and used to probe different targets. Neutron detectors with complementary Cherenkov detectors then discriminate material undergoing fission. A Li-doped glass-polymer composite neutron detector was used, which displays excellent n/ γ discrimination even at low energies, to observe delayed neutrons from uranium fission. Delayed neutrons have relatively low energies (~0.5 MeV) compared to prompt neutrons, which makes them difficult to detect using recoil-based detectors. Neutrons were counted and timed after the beam was turned off to observe the characteristic decaying time profile of delayed neutrons. The expected decay of neutron emission rate is in agreement with the common parametrization into six delayed neutron groups.

  18. Principles and status of neutron-based inspection technologies

    Science.gov (United States)

    Gozani, Tsahi

    2011-06-01

    and energetically significantly different from the background, thus making them readily distinguishable. The penetrability of neutrons as probes and signatures as well as the gamma ray signatures make neutron interrogation applicable to the inspection of large conveyances such as cars, trucks, marine containers and also smaller objects like explosive mines concealed in the ground. The application of nuclear interrogation techniques greatly depends on operational requirements. For example explosive mines and IED detection clearly require one-sided inspection, which excludes transmission based inspection (e.g., transmission radiography) and greatly limits others. The technologies developed over the last decades are now being implemented with good results. Further advances have been made over the last several years that increase the sensitivity, applicability and robustness of these systems. The principle, applications and status of neutron-based inspection techniques will be reviewed.

  19. Spent fuel measurements. passive neutron albedo reactivity (PNAR) and photon signatures

    Energy Technology Data Exchange (ETDEWEB)

    Eigenbrodt, Julia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-29

    The International Atomic Energy Agency’s (IAEA) safeguards technical objective is the timely detection of a diversion of a significant quantity of nuclear material from peaceful activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. An important IAEA task towards meeting this objective is the ability to accurately and reliably measure spent nuclear fuel (SNF) to verify reactor operating parameters and verify that the fuel has not been removed from reactors or SNF storage facilities. This dissertation analyzes a method to improve the state-of-the-art of nuclear material safeguards measurements using two combined measurement techniques: passive neutron albedo reactivity (PNAR) and passive spectral photon measurements.

  20. Dynamics, nucleosynthesis, and kilonova signature of black hole—neutron star merger ejecta

    Science.gov (United States)

    Fernández, Rodrigo; Foucart, Francois; Kasen, Daniel; Lippuner, Jonas; Desai, Dhruv; Roberts, Luke F.

    2017-08-01

    We investigate the ejecta from black hole—neutron star mergers by modeling the formation and interaction of mass ejected in a tidal tail and a disk wind. The outflows are neutron-rich, giving rise to optical/infrared emission powered by the radioactive decay of r-process elements (a kilonova). Here we perform an end-to-end study of this phenomenon, where we start from the output of a fully-relativistic merger simulation, calculate the post-merger hydrodynamical evolution of the ejecta and disk winds including neutrino physics, determine the final nucleosynthetic yields using post-processing nuclear reaction network calculations, and compute the kilonova emission with a radiative transfer code. We study the effects of the tail-to-disk mass ratio by scaling the tail density. A larger initial tail mass results in fallback matter becoming mixed into the disk and ejected in the subsequent disk wind. Relative to the case of a disk without dynamical ejecta, the combined outflow has lower mean electron fraction, faster speed, larger total mass, and larger absolute mass free of high-opacity Lanthanides or Actinides. In most cases, the nucleosynthetic yield is dominated by the heavy r-process contribution from the unbound part of the dynamical ejecta. A Solar-like abundance distribution can however be obtained when the total mass of the dynamical ejecta is comparable to the mass of the disk outflows. The kilonova has a characteristic duration of 1 week and a luminosity of  ∼ 1041 erg s-1 , with orientation effects leading to variations of a factor  ∼2 in brightness. At early times (< 1 d) the emission includes an optical component from the (hot) Lanthanide-rich material, but the spectrum evolves quickly to the infrared thereafter.

  1. Active Interrogation using Photofission Technique for Nuclear Materials Control and Accountability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haori [Oregon State Univ., Corvallis, OR (United States)

    2016-03-31

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. In addition to thermal or high-energy neutrons, high-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. Electron linear accelerators (linacs) are widely used as the interrogating photon sources for inspection methods involving photofission technique. After photofission reactions, prompt signals are much stronger than the delayed signals, but it is difficult to quantify them in practical measurements. Delayed signals are easily distinguishable from the interrogating radiation. linac-based, advanced inspection techniques utilizing the delayed signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope.

  2. Interrogation: General vs. Local.

    Science.gov (United States)

    Johnson, Jeannette

    This paper proposes a set of hypotheses on the nature of interrogration as a possible language universal. Examples and phrase structure rules and diagrams are given. Examining Tamazight and English, genetically unrelated languages with almost no contact, the author distinguishes two types of interrogation: (1) general, querying acceptability to…

  3. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aymond, F. [Univ. of Texas at Austin, TX (United States); Bridgewater, Jon S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deppert, O. [Technische Universitat Darmstadt (Germany); Devlin, Matthew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Falk, Katerina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautier, Donald Cort [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzales, Manuel A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodsell, Alison Victoria [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guler, Nevzat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hamilton, Christopher Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hegelich, Bjorn Manuel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ianakiev, Kiril Dimitrov [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Iliev, Metodi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Randall Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jung, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kleinschmidt, Annika [Technische Universitat Darmstadt (Germany); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pomerantz, Ishay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roth, Markus [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shimada, Tsutomu [Los Alamos National Laboratory; Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taddeucci, Terry Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wurden, Glen Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Palaniyappan, Sasikumar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McCary, E. [Univ. of Texas at Austin, TX (United States)

    2015-01-28

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  4. Detection of Special Nuclear Material from Delayed Neutron Emission Induced by a Dual-Particle Monoenergetic Source

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Michael F.; Nattress, J.; Jovanovic, I

    2016-06-30

    Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the 11B(d,n gamma)12C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass–polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time- dependent buildup and decay of delayed neutron emission from 238U were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. This method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.

  5. (41)Ca in tooth enamel. Part I: a biological signature of neutron exposure in atomic bomb survivors.

    Science.gov (United States)

    Wallner, A; Rühm, W; Rugel, G; Nakamura, N; Arazi, A; Faestermann, T; Knie, K; Maier, H J; Korschinek, G

    2010-08-01

    The detection of (41)Ca atoms in tooth enamel using accelerator mass spectrometry is suggested as a method capable of reconstructing thermal neutron exposures from atomic bomb survivors in Hiroshima and Nagasaki. In general, (41)Ca atoms are produced via thermal neutron capture by stable (40)Ca. Thus any (41)Ca atoms present in the tooth enamel of the survivors would be due to neutron exposure from both natural sources and radiation from the bomb. Tooth samples from five survivors in a control group with negligible neutron exposure were used to investigate the natural (41)Ca content in tooth enamel, and 16 tooth samples from 13 survivors were used to estimate bomb-related neutron exposure. The results showed that the mean (41)Ca/Ca isotope ratio was (0.17 +/- 0.05) x 10(-14) in the control samples and increased to 2 x 10(-14) for survivors who were proximally exposed to the bomb. The (41)Ca/Ca ratios showed an inverse correlation with distance from the hypocenter at the time of the bombing, similar to values that have been derived from theoretical free-in-air thermal-neutron transport calculations. Given that gamma-ray doses were determined earlier for the same tooth samples by means of electron spin resonance (ESR, or electron paramagnetic resonance, EPR), these results can serve to validate neutron exposures that were calculated individually for the survivors but that had to incorporate a number of assumptions (e.g. shielding conditions for the survivors).

  6. Monte Carlo Simulation for LINAC Standoff Interrogation of Nuclear Material

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Shaun D [ORNL; Flaska, Marek [ORNL; Miller, Thomas Martin [ORNL; Protopopescu, Vladimir A [ORNL; Pozzi, Sara A [ORNL

    2007-06-01

    The development of new techniques for the interrogation of shielded nuclear materials relies on the use of Monte Carlo codes to accurately simulate the entire system, including the interrogation source, the fissile target and the detection environment. The objective of this modeling effort is to develop analysis tools and methods-based on a relevant scenario-which may be applied to the design of future systems for active interrogation at a standoff. For the specific scenario considered here, the analysis will focus on providing the information needed to determine the type and optimum position of the detectors. This report describes the results of simulations for a detection system employing gamma rays to interrogate fissile and nonfissile targets. The simulations were performed using specialized versions of the codes MCNPX and MCNP-PoliMi. Both prompt neutron and gamma ray and delayed neutron fluxes have been mapped in three dimensions. The time dependence of the prompt neutrons in the system has also been characterized For this particular scenario, the flux maps generated with the Monte Carlo model indicate that the detectors should be placed approximately 50 cm behind the exit of the accelerator, 40 cm away from the vehicle, and 150 cm above the ground. This position minimizes the number of neutrons coming from the accelerator structure and also receives the maximum flux of prompt neutrons coming from the source. The lead shielding around the accelerator minimizes the gamma-ray background from the accelerator in this area. The number of delayed neutrons emitted from the target is approximately seven orders of magnitude less than the prompt neutrons emitted from the system. Therefore, in order to possibly detect the delayed neutrons, the detectors should be active only after all prompt neutrons have scattered out of the system. Preliminary results have shown this time to be greater than 5 ?s after the accelerator pulse. This type of system is illustrative of a

  7. The signature-based radiation-scanning approach to standoff detection of improvised explosive devices

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, R.L.; Dunn, W.L. [Department of Mechanical and Nuclear Engineering, Kansas State University, 3002 Rathbone Hall, Manhattan, KS 66506-5205 (United States); Heider, S., E-mail: s79a81@ksu.edu [Department of Mechanical and Nuclear Engineering, Kansas State University, 3002 Rathbone Hall, Manhattan, KS 66506-5205 (United States); Matthew, C.; Yang, X. [Department of Mechanical and Nuclear Engineering, Kansas State University, 3002 Rathbone Hall, Manhattan, KS 66506-5205 (United States)

    2012-07-15

    The signature-based radiation-scanning technique for detection of improvised explosive devices is described. The technique seeks to detect nitrogen-rich chemical explosives present in a target. The technology compares a set of 'signatures' obtained from a test target to a collection of 'templates', sets of signatures for a target that contain an explosive in a specific configuration. Interrogation of nitrogen-rich fertilizer samples, which serve as surrogates for explosives, is shown experimentally to be able to discriminate samples of 3.8 L and larger. - Highlights: Black-Right-Pointing-Pointer Signature-based radiation-scanning techniques applied to detection of explosives. Black-Right-Pointing-Pointer Nitrogen-rich fertilizer samples served as surrogate explosive samples. Black-Right-Pointing-Pointer Signatures of a target compared to collections of templates of surrogate explosives. Black-Right-Pointing-Pointer Figure-of-merit determined for neutron and neutron-induced gamma-ray signatures. Black-Right-Pointing-Pointer Discrimination of surrogate explosive from inert samples of 3.8 L and larger.

  8. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    CERN Document Server

    Croft, S; Chard-Mj, P; Estop, J R; Martancik, D; Sheila-Melton; Young, B

    2003-01-01

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nucli...

  9. Active Interrogation using Photofission Technique for Nuclear Materials Control and Accountability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haori [Oregon State Univ., Corvallis, OR (United States)

    2016-03-31

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. In addition to thermal or high-energy neutrons, high-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. Electron linear accelerators (linacs) are widely used as the interrogating photon sources for inspection methods involving photofission technique. After photofission reactions, prompt signals are much stronger than the delayed signals, but it is difficult to quantify them in practical measurements. Delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the delayed signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. In this work, high-energy delayed γ-rays were demonstrated to be signatures for detection, identification, and quantification of special nuclear materials. Such γ-rays were measured in between linac pulses using independent data acquisition systems. A list-mode system was developed to measure low-energy delayed γ-rays after irradiation. Photofission product yields of 238U and 239Pu were determined based on the measured delayed γ-ray spectra. The differential yields of delayed γ-rays were also proven to be able to discriminate nuclear from non-nuclear materials. The measurement outcomes were compared with Monte Carlo simulation results. It was demonstrated that the current available codes have capabilities and limitations in the simulation of photofission process. A two

  10. Optimization of combined delayed neutron and differential die-away prompt neutron signal detection for characterization of spent nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Pauline [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Swinhoe, M [Los Alamos National Laboratory; Lee, T [NON LANL

    2010-12-02

    The Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy (DOE) has funded multiple laboratories and universities to develop a means to accurately quantify the Plutonium (Pu) mass in spent nuclear fuel assemblies and ways to also detect potential diversion of fuel pins. Delayed Neutron (DN) counting provides a signature somewhat more sensitive to {sup 235}U than Pu while Differential Die-Away (DDA) is complementary in that it has greater sensitivity to Pu. The two methods can, with care, be combined into a single instrument which also provides passive neutron information. Individually the techniques cannot robustly quantify the Pu content but coupled together the information content in the signatures enables Pu quantification separate to the total fissile content. The challenge of merging DN and DDA, prompt neutron (PN) signal, capabilities in the same design is the focus of this paper. Other possibilities also suggest themselves, such as a direct measurement of the reactivity (multiplication) by either the boost in signal obtained during the active interrogation itself or by the extension of the die-away profile. In an early study, conceptual designs have been modeled using a neutron detector comprising fission chambers or 3He proportional counters and a {approx}14 MeV neutron Deuterium-Tritium (DT) generator as the interrogation source. Modeling was performed using the radiation transport code Monte Carlo N-Particles eXtended (MCNPX). Building on this foundation, the present paper quantifies the capability of a new design using an array of {sup 3}He detectors together with fission chambers to optimize both DN and PN detections and active characterization, respectively. This new design was created in order to minimize fission in {sup 238}U (a nuisance DN emitter), to use a realistic neutron generator, to reduce the cost and to achieve near spatial interrogation and detection of the DN and PN, important for detection of diversion, all within

  11. KiloHertz QPO and Gravitational Wave Emission as the Signature of the Rotation and Precession of a LMXB Neutron Star Near Breakup

    CERN Document Server

    Jernigan, J G

    2001-01-01

    The basic theory of torque free precession (TFP) of the outer crust of a neutron star (NS) as the signature of the approach to NS breakup is a viable explanation of the uniform properties of kHz Quasi-periodic Oscillations (QPO) observed in X-rays emitted by Low Mass X-ray Binary (LMXB) sources. The theory outlined in this paper relates the intrinsic properties of NS structure to the observed kHz frequencies. The range of kHz frequencies and the observed quality factors (Qs) are also explained by this simple dynamical model. A scenario that begins with the melting of the inner crust of an LMXB NS creates the conditions necessary for the generation of kHz QPO. The theory relates the ratio of the observed kHz frequencies to the ratios of the components of the moments of inertia of the NS, thereby tightly constraining the equation of state (EOS) of NS matter (polytrope index ~1.0). The TFP model is in strong contrast to existing models which primarily relate the kHz QPO phenomenon to the physics of gas dynamics ...

  12. Interrogation Methods and Terror Networks

    Science.gov (United States)

    Baccara, Mariagiovanna; Bar-Isaac, Heski

    We examine how the structure of terror networks varies with legal limits on interrogation and the ability of authorities to extract information from detainees. We assume that terrorist networks are designed to respond optimally to a tradeoff caused by information exchange: Diffusing information widely leads to greater internal efficiency, but it leaves the organization more vulnerable to law enforcement. The extent of this vulnerability depends on the law enforcement authority’s resources, strategy and interrogation methods. Recognizing that the structure of a terrorist network responds to the policies of law enforcement authorities allows us to begin to explore the most effective policies from the authorities’ point of view.

  13. Language style matching and police interrogation outcomes

    NARCIS (Netherlands)

    Richardson, Beth H.; Taylor, Paul J.; Snook, Brent; Conchie, Stacey M.; Bennell, Craig

    2014-01-01

    This research examined the coordination of interrogator and suspects’ verbal behavior in interrogations. Sixty-four police interrogations were examined at the aggregate and utterance level using a measure of verbal mimicry known as Language Style Matching. Analyses revealed an interaction between co

  14. Prototype Stilbene Neutron Collar

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  15. AWG Filter for Wavelength Interrogator

    Science.gov (United States)

    Black, Richard J. (Inventor); Costa, Joannes M. (Inventor); Faridian, Fereydoun (Inventor); Moslehi, Behzad (Inventor); Sotoudeh, Vahid (Inventor)

    2015-01-01

    A wavelength interrogator is coupled to a circulator which couples optical energy from a broadband source to an optical fiber having a plurality of sensors, each sensor reflecting optical energy at a unique wavelength and directing the reflected optical energy to an AWG. The AWG has a detector coupled to each output, and the reflected optical energy from each grating is coupled to the skirt edge response of the AWG such that the adjacent channel responses form a complementary pair response. The complementary pair response is used to convert an AWG skirt response to a wavelength.

  16. Towards a Flexible Database Interrogation

    Directory of Open Access Journals (Sweden)

    Ines Fayech

    2012-07-01

    Full Text Available In this paper, we are interested in the use of domain ontologies as a semantic enrichment for traditional databases. Our first aim is to help the user in his search when his initial query doesn’t return any result. So, we propose a solution based on two different approaches allowing the user to express his interrogation in a relatively free way. The first approach detects and resolves naming and schematic conflicts. It is an ontological approach for SQL query expansion generating a set of queries. The second one is a join detection approach to eventually add all missed constraints in each generated query.

  17. Nucleon-decay like signatures of Hylogenesis

    CERN Document Server

    Demidov, S V

    2015-01-01

    We consider nucleon-decay like signatures of the hylogenesis, a variant of antibaryonic dark matter model. For the interaction between visible and dark matter sectors through the neutron portal, we calculate rates of dark matter scatterings off neutron which mimic neutron-decay processes $n\\to \

  18. Transport simulation and image reconstruction for fast-neutron detection of explosives and narcotics

    Energy Technology Data Exchange (ETDEWEB)

    Micklich, B.J.; Fink, C.L.; Sagalovsky, L.

    1995-07-01

    Fast-neutron inspection techniques show considerable promise for explosive and narcotics detection. A key advantage of using fast neutrons is their sensitivity to low-Z elements (carbon, nitrogen, and oxygen), which are the primary constituents of these materials. We are currently investigating two interrogation methods in detail: Fast-Neutron Transmission Spectroscopy (FNTS) and Pulsed Fast-Neutron Analysis (PFNA). FNTS is being studied for explosives and narcotics detection in luggage and small containers for which the transmission ratio is greater than about 0.01. The Monte-Carlo radiation transport code MCNP is being used to simulate neutron transmission through a series of phantoms for a few (3-5) projection angles and modest (2 cm) resolution. Areal densities along projection rays are unfolded from the transmission data. Elemental abundances are obtained for individual voxels by tomographic reconstruction, and these reconstructed elemental images are combined to provide indications of the presence or absence of explosives or narcotics. PFNA techniques are being investigated for detection of narcotics in cargo containers because of the good penetration of the fast neutrons and the low attenuation of the resulting high-energy gamma-ray signatures. Analytic models and Monte-Carlo simulations are being used to explore the range of capabilities of PFNA techniques and to provide insight into systems engineering issues. Results of studies from both FNTS and PFNA techniques are presented.

  19. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    Energy Technology Data Exchange (ETDEWEB)

    DR. Stephen Croft; Mr. David Martancik; Dr. Brian Young; Dr. Patrick MJ Chard; Dr. Robert J Estop; Sheila Melton; Gaetano J. Arnone

    2003-01-13

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nuclide and isotopic compositions Assay of high density matrices (both high-Z and high moderator contents)Correction for radioactive material physical form - such as self shielding or multiplication effects due to large accumulations of radioactive materials.Calibration with a minimal set of reference standards and representative matrices.THis document summarizes the conceptual design parameters of the IBIS and indicates areas key to the success of the project where development is to be centered. The work presented here is a collaborative effort between scientific staff within Canberra and within the NIS-6 group at LANL.

  20. Bright Lights and Questions: Using Mutual Interrogation

    Science.gov (United States)

    Adam, Aishikin; Alangui, Willy; Barton, Bill

    2010-01-01

    Mutual Interrogation is a research methodology for ethnomathematics proposed by Alangui in 2006 in an attempt to avoid the potential inequality set up when a restricted cultural practice is viewed through the lens of the near-universal and highly developed research domain of mathematics. Using three significant examples of mutual interrogation in…

  1. Incorporation of Photon Analysis into an Active Interrogation System for Shielded Uranium Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Canion, Bonnie E. [Univ. of Texas, Austin, TX (United States)

    2016-02-01

    The main goal of this project is to investigate how photon and neutron signatures from an Associated Particle Imaging (API) Deuterium-Tritium (DT) neutron generator detector system can be used to non-destructively predict the enrichment of uranium in an unknown configuration of shielded uranium.

  2. Background and Source Term Identification in Active Neutron Interrogation Methods

    Science.gov (United States)

    2011-03-24

    2000. 10. Spitz, Henry , Bingjing Su, Samuel Glover, James Petrosky , and David Smith. “Design of a Novel, Multi-Element Scintillation Detector...James C. Petrosky , PhD (Member) Date iv AFIT/GNE/ENP/11-M01 Abstract The detection and tracking

  3. Compounds for neutron radiation detectors and systems thereof

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Stephen A.; Stoeffl, Wolfgang; Zaitseva, Natalia P.; Cherepy, Nerine J.; Carman, Leslie M.

    2016-08-30

    A composition of matter includes an organic molecule having a composition different than stilbene. The organic molecule is embodied as a crystal, and exhibits: an optical response signature for neutrons; an optical response signature for gamma rays, and performance comparable to or superior to stilbene in terms of distinguishing neutrons from gamma rays. The optical response signature for neutrons is different than the optical response signature for gamma rays.

  4. Investigation of Active Interrogation Techniques to Detect Special Nuclear Material in Maritime Environments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas Martin [ORNL; Patton, Bruce W [ORNL

    2010-01-01

    The detection and interdiction of special nuclear material (SNM) is still a high-priority focus area for many organizations around the world. One method that is commonly considered a leading candidate in the detection of SNM is active interrogation (AI). AI is different from its close relative, passive interrogation, in that an active source is used to enhance or create a detectable signal (usually fission) from SNM, particularly in shielded scenarios or scenarios where the SNM has a low activity. The use of AI thus makes the detection of SNM easier or, in some scenarios, even enables previously impossible detection. In this work the signal from prompt neutrons and photons as well as delayed neutrons and photons will be combined, as is typically done in AI. In previous work AI has been evaluated experimentally and computationally. However, for the purposes of this work, past scenarios are considered lightly shielded and tightly coupled spatially. At most, the previous work interrogated the contents of one standard cargo container (2.44 x 2.60 x 6.10 m) and the source and detector were both within a few meters of the object being interrogated. A few examples of this type of previous work can be found in references 1 and 2. Obviously, more heavily shielded AI scenarios will require larger source intensities, larger detector surface areas (larger detectors or more detectors), greater detector efficiencies, longer count times, or some combination of these.

  5. Signature Balancing

    NARCIS (Netherlands)

    Noordkamp, H.W.; Brink, M. van den

    2006-01-01

    Signatures are an important part of the design of a ship. In an ideal situation, signatures must be as low as possible. However, due to budget constraints it is most unlikely to reach this ideal situation. The arising question is which levels of signatures are optimal given the different scenarios i

  6. Low-energy Dipole Excitations in Nuclei at the N=50,82 and Z=50 Shell Closures as Signatures for a Neutron Skin

    CERN Document Server

    Tsoneva, N

    2007-01-01

    Low-energy dipole excitations have been investigated theoretically in N=50, several N=82 isotones and the Z=50 Sn isotopes. For this purpose a method incorporating both HFB and multi-phonon QPM theory is applied. A concentration of one-phonon dipole strength located below the neutron emission threshold has been calculated in these nuclei. The analysis of the corresponding neutron and proton dipole transition densities allows to assign a genuine pattern to the low-energy excitations and making them distinct from the conventional GDR modes. Analyzing also the QRPA wave functions of the states we can identify these excitations as Pygmy Dipole Resonance (PDR) modes, recently studied also in Sn and N=82 nuclei. The results for N=50 are exploratory for an experimental project designed for the bremsstrahlung facility at the ELBE accelerator.

  7. Micro elements for interrogating magnetoelastic sensors

    KAUST Repository

    Liang, Cai

    2011-11-01

    This paper reports a new approach for interrogating a magnetoelastic sensor\\'s resonant frequency. Previously, the frequency of a magnetoelastic sensor was measured by using a large-scale solenoid coil of at least some millimeters both in diameter and length. Planar structures of straight-line and rectangular spiral coil are designed, fabricated and tested to interrogate the resonant frequency of a magnetoelastic sensor. A sensor of 4 mm length is measured to have a resonant frequency of 551 kHz in air. The ability to interrogate a magnetoelastic sensor with such microscale elements is a step towards the miniaturization of a magnetoelastic sensor system and integration of such a system in a microfluidics device. © 2011 IEEE.

  8. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C. B. [Radiation Science Department, Necsa, PO Box 582, Pretoria 0001 (South Africa)

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  9. Active neutron methods for nuclear safeguards applications using Helium-4 gas scintillation detectors

    Science.gov (United States)

    Lewis, Jason M.

    Active neutron methods use a neutron source to interrogate fissionable material. In this work a 4He gas scintillation fast neutron detection system is used to measure neutrons created by the interrogation. Three new applications of this method are developed: spent nuclear fuel assay, fission rate measurement, and special nuclear material detection. Three active neutron methods are included in this thesis. First a non-destructive plutonium assay technique called Multispectral Active Neutron Interrogation Analysis is developed. It is based on interrogating fuel with neutrons at several different energies. The induced fission rates at each interrogation energy are compared with results from a neutron transport model of the irradiation geometry in a system of equations to iteratively solve the inverse problem for isotopic composition. The model is shown to converge on the correct composition for a material with 3 different fissionable components, a representative neutron absorber, and any neutron transparent material such as oxygen in a variety of geometries. Next an experimental fission rate measurement technique is developed using 4He gas scintillation fast neutron detector. Several unique features of this detector allow it to detect and provide energy information on fast neutrons with excellent gamma discrimination efficiency. The detector can measure induced fission rate by energetically differentiating between interrogation neutrons and higher energy fission neutrons. The detector response to a mono-energetic deuterium-deuterium fusion neutron generator and a 252Cf source are compared to examine the difference in detected energy range. Finally we demonstrate a special nuclear material detection technique by detecting an unambiguous fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium neutron generator and a high pressure 4He gas fast neutron scintillation detector. Energy histograms resulting from this

  10. Interrogative suggestibility and perceptual motor performance.

    Science.gov (United States)

    Gudjonsson, G H

    1984-04-01

    This study investigates the relationship between interrogative suggestibility, as measured by the Gudjonsson Suggestibility Scale, and Arrow-Dot scores. The tendency of subjects (25 men and 25 women, mean age 30.2 yr.) to alter their answers once interpersonal pressure had been applied correlated significantly with poor Arrow-Dot Ego functioning.

  11. Advanced FBG sensing through rapid spectral interrogation

    Science.gov (United States)

    Kunzler, Wesley; Newman, Jason; Wilding, Daniel; Zhu, Zixu; Lowder, Tyson; Selfridge, Richard; Schultz, Stephen; Wirthlin, Michael

    2008-03-01

    A fiber Brag grating sensor interrogator has been developed which is capable of gathering vectors of information from individual fiber Bragg gratings by capturing the full optical spectrum 3 kHz. Using a field programmable gate array with high speed digital-to-analog converters and analog-to-digital components, plus a kilohertz rate MEMS optical filter, the optical spectrum can be scanned at rates in excess of 10 million nanometers per second, allowing sensor sampling rates of many kilohertz while maintaining the necessary resolution to understand sensor changes. The autonomous system design performs all necessary detection and processing of multiple sensors and allows spectral measurements to be exported as fast as Ethernet, USB, or RS232 devices can receive it through a memory mapped interface. The high speed - full spectrum - fiber Bragg grating sensor interrogator enables advanced interrogation of dynamic strain and temperature gradients along the length of a sensor, as well as the use of each sensor for multiple stimuli, such as in temperature compensation. Two examples are described, showing interrogation of rapid laser heating in an optical fiber, as well as complex strain effects in a beam that had an engineered defect.

  12. Rheo: Japanese Sound Art Interrogating Digital Mediality

    DEFF Research Database (Denmark)

    Vandsø, Anette

    2014-01-01

    THe article asks in what way the Japanese sound artist Ryoichi Kurokawa's audiovisual installation Rheo 5 Horisonz (2010) is 'digital'. Using Professor Lars Elleströms concept of 'mediality, the main claim in this article is that Rheo no only uses digital tehcnology, but also interrogates digital...

  13. Interrogating Racism in Qualitative Research Methodology. Counterpoints.

    Science.gov (United States)

    Lopez, Gerardo R., Ed.; Parker, Laurence, Ed.

    This book explores the link between critical race theory and qualitative research methodology, interrogating how race connects and conflicts with other areas of difference and is never entirely absent from the research process. After an introduction, "Critical Race Theory in Education: Theory, Praxis, and Recommendations" (Sylvia R. Lazos Vargas),…

  14. Lithium-containing scintillators for thermal neutron, fast neutron, and gamma detection

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.

    2016-03-01

    In one embodiment, a scintillator includes a scintillator material; a primary fluor, and a Li-containing compound, where the Li-containing compound is soluble in the primary fluor, and where the scintillator exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays.

  15. Adaptive interrogation for 3D-PIV

    Science.gov (United States)

    Novara, Matteo; Ianiro, Andrea; Scarano, Fulvio

    2013-02-01

    A method to adapt the shape and orientation of interrogation volumes for 3D-PIV motion analysis is introduced, aimed to increase the local spatial resolution. The main application of this approach is the detailed analysis of complex 3D and vortex-dominated flows that exhibit high vorticity in confined regions like shear layers and vortex filaments. The adaptive criterion is based on the analysis of the components of the local velocity gradient tensor, which returns the level of anisotropy of velocity spatial fluctuations. The principle to increase the local spatial resolution is based on the deformation of spherical isotropic interrogation regions, obtained by means of Gaussian weighting, into ellipsoids, with free choice of the principal axes and their directions. The interrogation region is contracted in the direction of the maximum velocity variation and elongated in the minimum one in order to maintain a constant interrogation volume. The adaptivity technique for three-dimensional PIV data takes advantage of the 3D topology of the flow, allowing increasing the spatial resolution not only in the case of shear layers, but also for vortex filaments, which is not possible for two-dimensional measurement in the plane normal to the vortex axis. The definition of the ellipsoidal interrogation region semi-axes is based on the singular values and singular directions of the local velocity gradient tensor as obtained by the singular values decomposition technique (SVD). The working principle is verified making use of numerical simulations of a shear layer and of a vortex filament. The application of the technique to data from a Tomo-PIV experiment conducted on a round jet, shows that the resolution of the shear layer at the jet exit can be considerably improved and an increase of about 25% in the vorticity peak is attained when the adaptive approach is applied. On the other hand, the peak vorticity description in the core of vortex rings is only slightly improved with

  16. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    Science.gov (United States)

    Lewis, J. M.; Kelley, R. P.; Murer, D.; Jordan, K. A.

    2014-07-01

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure 4He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the 4He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  17. Neutronic measurements of radioactive waste; Les mesures neutroniques des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Perot, B

    1997-12-31

    This document presents the general matters involved in the radioactive waste management and the different non destructive assays of radioactivity. The neutronic measurements used in the characterization of waste drums containing emitters are described with more details, especially the active neutronic interrogation assays with prompt or delayed neutron detection: physical principle, signal processing and evaluation of the detection limit. (author).

  18. BRIGHT 'MERGER-NOVA' FROM THE REMNANT OF A NEUTRON STAR BINARY MERGER: A SIGNATURE OF A NEWLY BORN, MASSIVE, MILLISECOND MAGNETAR

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yun-Wei [Institute of Astrophysics, Central China Normal University, Wuhan 430079 (China); Zhang, Bing; Gao, He, E-mail: yuyw@mail.ccnu.edu.cn, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2013-10-20

    A massive millisecond magnetar may survive the merger of a neutron star (NS) binary, which would continuously power the merger ejecta. We develop a generic dynamic model for the merger ejecta with energy injection from the central magnetar. The ejecta emission (the {sup m}erger-nova{sup )} powered by the magnetar peaks in the UV band and the peak of the light curve, progressively shifts to an earlier epoch with increasing frequency. A magnetar-powered merger-nova could have an optical peak brightness comparable to a supernova, which is a few tens or hundreds times brighter than the radioactive-powered merger-novae (the so-called macro-nova or kilo-nova). On the other hand, such a merger-nova would peak earlier and have a significantly shorter duration than that of a supernova. An early collapse of the magnetar could suppress the brightness of the optical emission and shorten its duration. Such millisecond-magnetar-powered merger-novae may be detected from NS-NS merger events without an observed short gamma-ray burst, and could be a bright electromagnetic counterpart for gravitational wave bursts due to NS-NS mergers. If detected, it suggests that the merger leaves behind a massive NS, which has important implications for the equation-of-state of nuclear matter.

  19. 32 CFR 637.21 - Recording interviews and interrogations.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Recording interviews and interrogations. 637.21 Section 637.21 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW... interviews and interrogations. The recording of interviews and interrogations by military police personnel...

  20. Vers Une Analyse systematique de l'interrogation en francais (Toward a Systematic Analysis of the French Interrogative).

    Science.gov (United States)

    Azoulay-Vicente, Avigail

    1988-01-01

    A systematic analysis of the French interrogative focuses on the distinction between the syntactic processes (identification of question words, interrogative phrase preposing, and rules of question formation) and phonological processes (intonation patterns) that characterize questions in French. (Author/MSE)

  1. ELECTRONIC SIGNATURES

    African Journals Online (AJOL)

    10332324

    'electronic signature' means data attached to, incorporated in, or logically ... See Cwele v S 2012 4 All SA 497 (SCA); Mohlabeng v Minister of Safety and Security ... ZAKZPHC 51 (2 September 2010); Delta Finance, a Division of Wesbank, ...

  2. CERTIFICATELESS SIGNATURE AND BLIND SIGNATURE

    Institute of Scientific and Technical Information of China (English)

    Zhang Lei; Zhang Futai

    2008-01-01

    Certificateless public key cryptography is a new paradigm introduced by AI-Riyami and Paterson. It eliminates the need of the certificates in traditional public key cryptosystems and the key escrow problem in IDentity-based Public Key Cryptography (ID-PKC). Due to the advantages of the certificateless public key cryptography,a new efficient certificateless pairing-based signature scheme is presented,which has some advantages over previous constructions in computational cost. Based on this new signature scheme,a certificateless blind signature scheme is proposed. The security of our schemes is proven based on the hardness of computational Diffie-Hellman problem.

  3. Wirelessly Interrogated Position or Displacement Sensors

    Science.gov (United States)

    Woodard, Stanley E.; Taylor, Bryant D.

    2007-01-01

    Two simple position or displacement sensors based on inductance-capacitance resonant circuits have been conceived. These sensors are both powered and interrogated without use of wires and without making contact with other objects. Instead, excitation and interrogation are accomplished by means of a magnetic-field-response recorder. Both of the present position or displacement sensors consist essentially of variable rectangular parallel-plate capacitors electrically connected in series with fixed inductors. Simple inductance-capacitance circuits of the type used in these sensors are inherently robust; their basic mode of operation does not depend on maintenance of specific environmental conditions. Hence, these sensors can be used under such harsh conditions as cryogenic temperatures, high pressures, and radioactivity.

  4. Programmable DNA Nanosystem for Molecular Interrogation

    Science.gov (United States)

    Mathur, Divita; Henderson, Eric R.

    2016-06-01

    We describe a self-assembling DNA-based nanosystem for interrogating molecular interactions. The nanosystem contains a rigid supporting dumbbell-shaped frame, a cylindrical central core, and a mobile ring that is coaxial with the core. Motion of the ring is influenced by several control elements whose force-generating capability is based on the transition of single-stranded DNA to double-stranded DNA. These forces can be directed to act in opposition to adhesive forces between the ring and the frame thereby providing a mechanism for molecular detection and interrogation at the ring-frame interface. As proof of principle we use this system to evaluate base stacking adhesion and demonstrate detection of a soluble nucleic acid viral genome mimic.

  5. Natural syntax : English interrogative main clauses

    Directory of Open Access Journals (Sweden)

    Janez Oresnik

    2007-12-01

    Full Text Available Natural Syntax is a developing deductive theory, a branch of Naturalness Theory. The naturalnessjudgements are couched in naturalness scales, whichfollow from the basic parameters (or «axioms» listed at the beginning of the paper. The predictions of the theory are calculated in deductions, whose chief components are apair of naturalness scales and the rules governing the alignment of corresponding naturalness values. Parallel and chiastic alignments are distinguished, in complementary distribution. Chiastic alignment is mandatory in deductions limited to unnatural environments. The paper deals with English interrogative main clauses. Within these, only the interrogatives containing wh-words exclusively insitu constitute an extremely unnatural environment and require chiastic alignment. Otherwiseparallel alignment is used. Earlier publications on Natural Syntax: Kavcic 2005a,b, Oresnik 1999, 2000a,b, 200la-f   2002, 2003a-c, 2002/03, 2004. This list cites only works written in English.

  6. Investigations of active interrogation techniques to detect special nuclear material in maritime environments: Standoff interrogation of small- and medium-sized cargo ships

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas M., E-mail: millertm@ornl.gov; Patton, Bruce W.; Grogan, Brandon R.; Henkel, James J.; Murphy, Brian D.; Johnson, Jeffrey O.; Mihalczo, John T.

    2013-12-01

    In this work, several active interrogation (AI) sources are evaluated to determine their usefulness in detecting the presence of special nuclear material (SNM) in fishing trawlers, small cargo transport ships, and luxury yachts at large standoff distances from the AI source and detector. This evaluation is performed via computational analysis applying Monte Carlo methods with advanced variance reduction techniques. The goal is to determine the AI source strength required to detect the presence of SNM. The general conclusion of this study is that AI is not reliable when SNM is heavily shielded and not tightly coupled geometrically with the source and detector, to the point that AI should not be considered a via interrogation option in these scenarios. More specifically, when SNM is shielded by hydrogenous material large AI source strengths are required if detection is based on neutrons, which is not surprising. However, if the SNM is shielded by high-Z material the required AI source strengths are not significantly different if detection is based on neutrons or photons, which is somewhat surprising. Furthermore, some of the required AI source strengths that were calculated are very large. These results coupled with the realities of two ships moving independently at sea and other assumptions made during this analysis make the use of standoff AI in the maritime environment impractical.

  7. Revenge versus rapport: Interrogation, terrorism, and torture.

    Science.gov (United States)

    Alison, Laurence; Alison, Emily

    2017-04-01

    This review begins with the historical context of harsh interrogation methods that have been used repeatedly since the Second World War. This is despite the legal, ethical and moral sanctions against them and the lack of evidence for their efficacy. Revenge-motivated interrogations (Carlsmith & Sood, 2009) regularly occur in high conflict, high uncertainty situations and where there is dehumanization of the enemy. These methods are diametrically opposed to the humanization process required for adopting rapport-based methods-for which there is an increasing corpus of studies evidencing their efficacy. We review this emerging field of study and show how rapport-based methods rely on building alliances and involve a specific set of interpersonal skills on the part of the interrogator. We conclude with 2 key propositions: (a) for psychologists to firmly maintain the Hippocratic Oath of "first do no harm," irrespective of perceived threat and uncertainty, and (b) for wider recognition of the empirical evidence that rapport-based approaches work and revenge tactics do not. Proposition (a) is directly in line with fundamental ethical principles of practice for anyone in a caring profession. Proposition (b) is based on the requirement for psychology to protect and promote human welfare and to base conclusions on objective evidence. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Interrogations, confessions, and adolescent offenders' perceptions of the legal system.

    Science.gov (United States)

    Arndorfer, Andrea; Malloy, Lindsay C; Cauffman, Elizabeth

    2015-10-01

    The potential consequences of interrogations and false confessions have been discussed primarily in terms of the risk for wrongful conviction, especially among adolescents and other vulnerable populations. However, it is possible that such experiences influence adolescents' perceptions of the legal system more generally. In the present study, we examined whether incarcerated male juvenile offenders' (n = 193) perceptions of police and the courts were related to their confession and interrogation experiences. High-pressure interrogation experiences and self-reported false confessions to police were associated with more negative perceptions of police. However, self-reported true confessions were not significantly associated with youths' perceptions of the police. Neither interrogation nor confession experiences (true or false) were related to youths' perceptions of the courts. Results provide additional support for policy reform of interrogation practices with young suspects. A more developmentally appropriate approach to criminal interrogations with youth may simultaneously improve police-youth relations and protect vulnerable suspects in the interrogation room.

  9. Indonesian Interrogative Sentences: a Study of Forms and Functions

    Directory of Open Access Journals (Sweden)

    Lindawati

    2016-10-01

    Full Text Available This study examines Indonesian interrogative sentence problems by focusing on issues of forms and functions. The data used in this analysis are interrogative sentences in Indonesian language that are currently used in oral and in interethnic communication. This study used a pragmatic approach. Listening while observing (metode simak is used at the stage of data collection. In the analysis phase, a structural analysis is used for the discussion of issues related to the form, and a contextual analysis method is used for the discussion of issues related to the function of interrogative sentence. The report was presented verbally. From the research, it can be formulated that interrogative sentences forming elements are either supra-segmental elements or segmental elements. Supra-segmental elements are intonation, and segmental elements are words, phrases, and particles. The elements were added to a clause to be the base of an interrogative sentence. Based on the response form provided by what the opponents said, interrogative sentences are grouped on the yes-no and information interrogative sentences. Yes-no interrogative sentences require an answer that contains a justification or denial of what is stated on the clause that is the basis for the formation of interrogative sentences. Information interrogative sentences require an answer in the form of explanation. In communications, interrogative sentences are uttered not only to ask something, but they are also used to express a variety of speech act. Speech act that can be expressed by the interrogative sentences of Indonesian language are representative, directive, commissive, and expressive. Interrogative sentences are sometimes used in order to speak indirectly (indirect speech to maintain politeness or otherwise stated expressive rudely.

  10. Effect of External Vibration on PZT Impedance Signature.

    Science.gov (United States)

    Yang, Yaowen; Miao, Aiwei

    2008-11-01

    Piezoelectric ceramic Lead Zirconate Titanate (PZT) transducers, working on the principle of electromechanical impedance (EMI), are increasingly applied for structural health monitoring (SHM) in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI) signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.

  11. Effect of External Vibration on PZT Impedance Signature

    Directory of Open Access Journals (Sweden)

    Yaowen Yang

    2008-11-01

    Full Text Available Piezoelectric ceramic Lead Zirconate Titanate (PZT transducers, working on the principle of electromechanical impedance (EMI, are increasingly applied for structural health monitoring (SHM in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.

  12. FY09 Advanced Instrumentation and Active Interrogation Research for Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chichester; S. A. Pozzi; E. H. Seabury; J. L. Dolan; M. Flaska; J. T. Johnson; S. M. Watson; J. Wharton

    2009-08-01

    Multiple small-scale projects have been undertaken to investigate advanced instrumentation solutions for safeguard measurement challenges associated with advanced fuel cycle facilities and next-generation fuel reprocessing installations. These activities are in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and its Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. 1) Work was performed in a collaboration with the University of Michigan (Prof. Sara Pozzi, co-PI) to investigate the use of liquid-scintillator radiation detectors for assaying mixed-oxide (MOX) fuel, to characterize its composition and to develop advanced digital pulse-shape discrimination algorithms for performing time-correlation measurements in the MOX fuel environment. This work included both simulations and experiments and has shown that these techniques may provide a valuable approach for use within advanced safeguard measurement scenarios. 2) Work was conducted in a collaboration with Oak Ridge National Laboratory (Dr. Paul Hausladen, co-PI) to evaluate the strengths and weaknesses of the fast-neutron coded-aperture imaging technique for locating and characterizing fissile material, and as a tool for performing hold-up measurements in fissile material handling facilities. This work involved experiments at Idaho National Laboratory, using MOX fuel and uranium metal, in both passive and active interrogation configurations. A complete analysis has not yet been completed but preliminary results suggest several potential uses for the fast neutron imaging technique. 3) Work was carried out to identify measurement approaches for determining nitric acid concentration in the range of 1 – 4 M and beyond. This work included laboratory measurements to investigate the suitability of prompt-gamma neutron activation analysis for this measurement and product reviews of other commercial solutions. Ultrasonic density analysis appears to

  13. Classification of signature-only signature models

    Institute of Scientific and Technical Information of China (English)

    CAO ZhengJun; LIU MuLan

    2008-01-01

    We introduce a set of criterions for classifying signature-only signature models. By the criterions, we classify signature models into 5 basic types and 69 general classes. Theoretically, 21141 kinds of signature models can be derived by appro-priately combining different general classes. The result comprises almost existing signature models. It will be helpful for exploring new signature models. To the best of our knowledge, it is the first time for investigation of the problem of classifica-tion of signature-only signature models.

  14. Neutron and Photon Transport in Sea-Going Cargo Containers

    Energy Technology Data Exchange (ETDEWEB)

    Pruet, J; Descalle, M; Hall, J; Pohl, B; Prussin, S G

    2005-02-09

    Factors affecting sensing of small quantities of fissionable material in large sea-going cargo containers by neutron interrogation and detection of {beta}-delayed photons are explored. The propagation of variable-energy neutrons in cargos, subsequent fission of hidden nuclear material and production of the {beta}-delayed photons, and the propagation of these photons to an external detector are considered explicitly. Detailed results of Monte Carlo simulations of these stages in representative cargos are presented. Analytical models are developed both as a basis for a quantitative understanding of the interrogation process and as a tool to allow ready extrapolation of the results to cases not specifically considered here.

  15. Infra-red signature neutron detector

    Science.gov (United States)

    Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN

    2009-10-13

    A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generation a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.

  16. Active detection of shielded SNM with 60-keV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, C; Dietrich, D; Hall, J; Kerr, P; Nakae, L; Newby, R; Rowland, M; Snyderman, N; Stoeffl, W

    2008-07-08

    Fissile materials, e.g. {sup 235}U and {sup 239}Pu, can be detected non-invasively by active neutron interrogation. A unique characteristic of fissile material exposed to neutrons is the prompt emission of high-energy (fast) fission neutrons. One promising mode of operation subjects the object to a beam of medium-energy (epithermal) neutrons, generated by a proton beam impinging on a Li target. The emergence of fast secondary neutrons then clearly indicates the presence of fissile material. Our interrogation system comprises a low-dose 60-keV neutron generator (5 x 10{sup 6}/s), and a 1 m{sup 2} array of scintillators for fast neutron detection. Preliminary experimental results demonstrate the detectability of small quantities (370 g) of HEU shielded by steel (200 g/cm{sup 2}) or plywood (30 g/cm{sup 2}), with a typical measurement time of 1 min.

  17. Some Semantic Properties of Romanian Interrogatives: "Care" and "Cine."

    Science.gov (United States)

    Vasiliu, E.

    The aim of this paper is to account for some semantic properties of Romanian interrogatives "ce" and "cine" by establishing some definite correlations between various contextual restrictions governing the use of these interrogative particles and the "meaning" which might be assigned to each of these particles in any…

  18. The American Psychological Association and detainee interrogations: unanswered questions

    National Research Council Canada - National Science Library

    Gutheil, Thomas G; Pope, Kenneth S

    2008-01-01

    ... on psychologists rather than psychiatrists fits well with the American Psychological Association's stated belief in contributing to detainee interrogations to prevent terrorism. As the New York Times reported: Pentagon officials said ... they would try to use only psychologists, not psychiatrists, to help interrogators devise strategies to get informati...

  19. Interrogative Model of Inquiry and Computer-Supported Collaborative Learning.

    Science.gov (United States)

    Hakkarainen, Kai; Sintonen, Matti

    2002-01-01

    Examines how the Interrogative Model of Inquiry (I-Model), developed for the purposes of epistemology and philosophy of science, could be applied to analyze elementary school students' process of inquiry in computer-supported learning. Suggests that the interrogative approach to inquiry can be productively applied for conceptualizing inquiry in…

  20. Improved fission neutron energy discrimination with 4He detectors through pulse filtering

    Science.gov (United States)

    Zhu, Ting; Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit; Chandra, Rico; Kiff, Scott; Chung, Heejun; Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A.

    2017-03-01

    This paper presents experimental and computational techniques implemented for 4He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since 4He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the 4He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with 252Cf spontaneous fission neutrons. Given the 4He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a 4He fast neutron detection system.

  1. Innocence and resisting confession during interrogation: effects on physiologic activity.

    Science.gov (United States)

    Guyll, Max; Madon, Stephanie; Yang, Yueran; Lannin, Daniel G; Scherr, Kyle; Greathouse, Sarah

    2013-10-01

    Innocent suspects may not adequately protect themselves during interrogation because they fail to fully appreciate the danger of the situation. This experiment tested whether innocent suspects experience less stress during interrogation than guilty suspects, and whether refusing to confess expends physiologic resources. After experimentally manipulating innocence and guilt, 132 participants were accused and interrogated for misconduct, and then pressured to confess. Systolic and diastolic blood pressure (SBP, DBP), heart rate (HR), respiratory sinus arrhythmia (RSA), and preejection period (PEP) responses quantified stress reactions. As hypothesized, the innocent evidenced smaller stress responses to interrogation for SBP, DBP, HR, and RSA than did the guilty. Furthermore, innocents who refused to confess exhibited greater sympathetic nervous system activation, as evidenced by shorter PEPs, than did innocent or guilty confessors. These findings suggest that innocent suspects underestimate the threat of interrogation and that resisting pressures to confess can diminish suspects' physiologic resources and lead to false confessions.

  2. A Methodology for Calculating Radiation Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Klasky, Marc Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilcox, Trevor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bathke, Charles G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); James, Michael R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-01

    A rigorous formalism is presented for calculating radiation signatures from both Special Nuclear Material (SNM) as well as radiological sources. The use of MCNP6 in conjunction with CINDER/ORIGEN is described to allow for the determination of both neutron and photon leakages from objects of interest. In addition, a description of the use of MCNP6 to properly model the background neutron and photon sources is also presented. Examinations of the physics issues encountered in the modeling are investigated so as to allow for guidance in the user discerning the relevant physics to incorporate into general radiation signature calculations. Furthermore, examples are provided to assist in delineating the pertinent physics that must be accounted for. Finally, examples of detector modeling utilizing MCNP are provided along with a discussion on the generation of Receiver Operating Curves, which are the suggested means by which to determine detectability radiation signatures emanating from objects.

  3. Monitoring and characterization of radioactive wastes by neutronic methods; Controle et caracterisation de dechets radioactifs par methodes neutroniques

    Energy Technology Data Exchange (ETDEWEB)

    Lyoussi, A. [CEA Cadarache, Dept. d' Etudes des Dechets, DED, Lab. de Developpement de Mesures Nucleaires, 13 - Saint Paul lez Durance (France)

    2001-07-01

    In order to characterize a radioactive waste parcel, different techniques of analysis and nondestructive testing were developed during these last years. The most used are the gamma spectrometry, the passive neutron counting, the neutron interrogation and the photon interrogation with a electron accelerator. The neutron measurement are divided in two families: the active measurement and the passive measurement. The passive methods consist in measuring the neutron radiation emitted spontaneously by the contaminant. The active methods consist in the detection of neutron radiation after an external neutron irradiation. In this article are exposed the principal needs that lead to develop the neutrons measurement. Then, the passive and active neutron measurements are described. (N.C.)

  4. RING PROXY SIGNATURES

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Proxy signatures have been used to enable the transfer of digital signing power within some context and ring signatures can be used to provide the anonymity of a signer. By combining the functionalities of proxy signatures and ring signatures, this paper introduces a new concept, named ring proxy signature, which is a proxy signature generated by an anonymous member from a set of potential signers. The paper also constructs the first concrete ring proxy signature scheme based on the provably secure Schnorr's signatures and two ID-based ring proxy signature schemes. The security analysis is provided as well.

  5. Integrated nanoscale tools for interrogating living cells

    Science.gov (United States)

    Jorgolli, Marsela

    The development of next-generation, nanoscale technologies that interface biological systems will pave the way towards new understanding of such complex systems. Nanowires -- one-dimensional nanoscale structures -- have shown unique potential as an ideal physical interface to biological systems. Herein, we focus on the development of nanowire-based devices that can enable a wide variety of biological studies. First, we built upon standard nanofabrication techniques to optimize nanowire devices, resulting in perfectly ordered arrays of both opaque (Silicon) and transparent (Silicon dioxide) nanowires with user defined structural profile, densities, and overall patterns, as well as high sample consistency and large scale production. The high-precision and well-controlled fabrication method in conjunction with additional technologies laid the foundation for the generation of highly specialized platforms for imaging, electrochemical interrogation, and molecular biology. Next, we utilized nanowires as the fundamental structure in the development of integrated nanoelectronic platforms to directly interrogate the electrical activity of biological systems. Initially, we generated a scalable intracellular electrode platform based on vertical nanowires that allows for parallel electrical interfacing to multiple mammalian neurons. Our prototype device consisted of 16 individually addressable stimulation/recording sites, each containing an array of 9 electrically active silicon nanowires. We showed that these vertical nanowire electrode arrays could intracellularly record and stimulate neuronal activity in dissociated cultures of rat cortical neurons similar to patch clamp electrodes. In addition, we used our intracellular electrode platform to measure multiple individual synaptic connections, which enables the reconstruction of the functional connectivity maps of neuronal circuits. In order to expand and improve the capability of this functional prototype device we designed

  6. Chemical weapons detection by fast neutron activation analysis techniques

    Science.gov (United States)

    Bach, P.; Ma, J. L.; Froment, D.; Jaureguy, J. C.

    1993-06-01

    A neutron diagnostic experimental apparatus has been tested for nondestructive verification of sealed munitions. Designed to potentially satisfy a significant number of van-mobile requirements, this equipment is based on an easy to use industrial sealed tube neutron generator that interrogates the munitions of interest with 14 MeV neutrons. Gamma ray spectra are detected with a high purity germanium detector, especially shielded from neutrons and gamma ray background. A mobile shell holder has been used. Possible configurations allow the detection, in continuous or in pulsed modes, of gamma rays from neutron inelastic scattering, from thermal neutron capture, and from fast or thermal neutron activation. Tests on full scale sealed munitions with chemical simulants show that those with chlorine (old generation materials) are detectable in a few minutes, and those including phosphorus (new generation materials) in nearly the same time.

  7. Safety and efficiency of emergency department interrogation of cardiac devices

    Science.gov (United States)

    Neuenschwander, James F.; Peacock, W. Frank; Migeed, Madgy; Hunter, Sara A.; Daughtery, John C.; McCleese, Ian C.; Hiestand, Brian C.

    2016-01-01

    Objective Patients with implanted cardiac devices may wait extended periods for interrogation in emergency departments (EDs). Our purpose was to determine if device interrogation could be done safely and faster by ED staff. Methods Prospective randomized, standard therapy controlled, trial of ED staff device interrogation vs. standard process (SP), with 30-day follow-up. Eligibility criteria: ED presentation with a self-report of a potential device related complaint, with signed informed consent. SP interrogation was by company representative or hospital employee. Results Of 60 patients, 42 (70%) were male, all were white, with a median (interquartile range) age of 71 (64 to 82) years. No patient was lost to follow up. Of all patients, 32 (53%) were enrolled during business hours. The overall median (interquartile range) ED vs. SP time to interrogation was 98.5 (40 to 260) vs. 166.5 (64 to 412) minutes (P=0.013). While ED and SP interrogation times were similar during business hours, 102 (59 to 138) vs. 105 (64 to 172) minutes (P=0.62), ED interrogation times were shorter vs. SP during non-business hours; 97 (60 to 126) vs. 225 (144 to 412) minutes, P=0.002, respectively. There was no difference in ED length of stay between the ED and SP interrogation, 249 (153 to 390) vs. 246 (143 to 333) minutes (P=0.71), regardless of time of presentation. No patient in any cohort suffered an unplanned medical contact or post-discharge adverse device related event. Conclusion ED staff cardiac device interrogations are faster, and with similar 30-day outcomes, as compared to SP. PMID:28168230

  8. Death during police interrogation: Case report

    Directory of Open Access Journals (Sweden)

    Atanasijević Tatjana

    2007-01-01

    Full Text Available Introduction: Cases of sudden and unexpected deaths of criminal suspects in presence of police always have special forensic medical approach. Often, such deaths are preceded by a state of extreme psychophysical activity (excitated delirium of suspects, when they may injure themselves. Police attempts to prevent that can inevitably lead to struggle. Immediately after the struggle ends (but also during a struggle, they abruptly become unresponsive, and develop cardiopulmonary arrest and death. Presence of drugs significantly intensifies the harmful effect of such state and leads to death. Case outline. We present a case of death of a young man brought into custody during police interrogation. Autopsy showed injuries and presence of MDMA, with suspicion that death was preceded by the state of excitated delirium. After thorough analysis of the case (complete autopsy, toxicological screening, microscopic survey of all organs, circumstances of death etc., our conclusion is that death was related to drug consumption - ecstasy. Concentration of ecstasy found in kidneys is the minimum concentration possible that could lead to heart malfunction and death. Conclusion. Our opinion is that there are no medical data by which we could determine if, and in what dosage, undesirable effects of ecstasy were enhanced by the circumstances of the case. .

  9. About group digital signatures

    National Research Council Canada - National Science Library

    Adriana Cristina Enache

    2012-01-01

    ...).A group digital signature is a digital signature with enhanced privacy features that allows members of a given group to anonymously sign messages on behalf of the group, producing a group signature...

  10. Advanced digital detectors for neutron imaging.

    Energy Technology Data Exchange (ETDEWEB)

    Doty, F. Patrick

    2003-12-01

    Neutron interrogation provides unique information valuable for Nonproliferation & Materials Control and other important applications including medicine, airport security, protein crystallography, and corrosion detection. Neutrons probe deep inside massive objects to detect small defects and chemical composition, even through high atomic number materials such as lead. However, current detectors are bulky gas-filled tubes or scintillator/PM tubes, which severely limit many applications. Therefore this project was undertaken to develop new semiconductor radiation detection materials to develop the first direct digital imaging detectors for neutrons. The approach relied on new discovery and characterization of new solid-state sensor materials which convert neutrons directly to electronic signals via reactions BlO(n,a)Li7 and Li6(n,a)T.

  11. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Materiel and High Explosives

    Energy Technology Data Exchange (ETDEWEB)

    E.H. Seabury; D.L. Chichester; C.J. Wharton; A.J. Caffrey

    2008-08-01

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory’s PINS Chemical Assay System has traditionally used a Cf-252 isotopic neutron source, but recently a Deuterium-Tritium (DT) Electronic Neutron Generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  12. Assembly and interrogation of Alzheimer's disease genetic networks reveal novel regulators of progression.

    Directory of Open Access Journals (Sweden)

    Soline Aubry

    Full Text Available Alzheimer's disease (AD is a complex multifactorial disorder with poorly characterized pathogenesis. Our understanding of this disease would thus benefit from an approach that addresses this complexity by elucidating the regulatory networks that are dysregulated in the neural compartment of AD patients, across distinct brain regions. Here, we use a Systems Biology (SB approach, which has been highly successful in the dissection of cancer related phenotypes, to reverse engineer the transcriptional regulation layer of human neuronal cells and interrogate it to infer candidate Master Regulators (MRs responsible for disease progression. Analysis of gene expression profiles from laser-captured neurons from AD and controls subjects, using the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe, yielded an interactome consisting of 488,353 transcription-factor/target interactions. Interrogation of this interactome, using the Master Regulator INference algorithm (MARINa, identified an unbiased set of candidate MRs causally responsible for regulating the transcriptional signature of AD progression. Experimental assays in autopsy-derived human brain tissue showed that three of the top candidate MRs (YY1, p300 and ZMYM3 are indeed biochemically and histopathologically dysregulated in AD brains compared to controls. Our results additionally implicate p53 and loss of acetylation homeostasis in the neurodegenerative process. This study suggests that an integrative, SB approach can be applied to AD and other neurodegenerative diseases, and provide significant novel insight on the disease progression.

  13. Radiography with polarised neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael L.

    2010-08-20

    different ordering temperatures. This procedure was tested on one Pd{sub 1-x}Ni{sub x} sample and the results were compared with simulations of the temperature dependence of the neutron beam depolarisation by an inhomogeneous sample. As a result from these simulations a criterion was developed to assess the amount of heterogeneity in a sample from the shape of the temperature dependence of the beam polarisation after transmission of the sample. It is found from simulations that increasing the heterogeneity in the sample leads to a rounding of the signature of the phase transition in the depolarisation data. (orig.)

  14. Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification.

    Science.gov (United States)

    Hamel, Michael C; Polack, J Kyle; Ruch, Marc L; Marcath, Matthew J; Clarke, Shaun D; Pozzi, Sara A

    2017-08-11

    The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to a possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.

  15. The synchronous active neutron detection assay system

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, M.M.; Kendall, P.K.

    1994-08-01

    We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ``lock-in`` amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design.

  16. Used Fuel Cask Identification through Neutron Profile

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-20

    Currently, most spent fuel is stored near reactors. An interim consolidated fuel storage facility would receive fuel from multiple sites and store it in casks on site for decades. For successful operation of such a facility there is need for a way to restore continuity of knowledge if lost as well as a method that will indicate state of fuel inside the cask. Used nuclear fuel is identifiable by its radiation emission, both gamma and neutron. Neutron emission from fission products, multiplication from remaining fissile material, and the unique distribution of both in each cask produce a unique neutron signature. If two signatures taken at different times do not match, either changes within the fuel content or misidentification of a cask occurred. It was found that identification of cask loadings works well through the profile of emitted neutrons in simulated real casks. Even casks with similar overall neutron emission or average counts around the circumference can be distinguished from each other by analyzing the profile. In conclusion, (1) identification of unaltered casks through neutron signature profile is viable; (2) collecting the profile provides insight to the condition and intactness of the fuel stored inside the cask; and (3) the signature profile is stable over time.

  17. Neutron Repulsion

    OpenAIRE

    Manuel, Oliver K.

    2011-01-01

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch...

  18. Understanding the Signature Pedagogy of the Design Studio and the Opportunities for Its Technological Enhancement

    Science.gov (United States)

    Crowther, Phillip

    2013-01-01

    This paper presents an analysis of the studio as the signature pedagogy of design education. A number of theoretical models of learning, pedagogy, and education are used to interrogate the studio for its advantages and shortcomings, and to identify opportunities for the integration of new technologies and to explore the affordances that they…

  19. Neutron flux from a 14-MeV neutron generator with tungsten filter for research in NDA methods for nuclear safeguards and security

    Science.gov (United States)

    Rennhofer, H.; Pedersen, B.; Crochemore, J.-M.

    2009-12-01

    The Joint Research Centre has taken into operation a new experimental device designed for research in the fields of nuclear safeguards and security applications. The research projects currently undertaken include detection of shielded contraband materials, detection of fissile materials, and mass determination of small fissile materials in shielded containers. The device, called the Pulsed Neutron Interrogation Test Assembly (PUNITA), incorporates a pulsed 14-MeV (D-T) neutron generator and a large graphite mantle surrounding the sample cavity. By pulsing the neutron generator with a frequency in the range of 10 to 150 Hz, a sample may be interrogated first by fast neutrons and a few hundred micro-seconds later by a pure thermal neutron flux. The permanent detection systems incorporated in PUNITA include 3He neutrons detectors, HPGe gamma detectors, and lanthanum bromide scintillation detectors. We have studied the effects of placing a tungsten liner around the neutron generator target. The 14-MeV neutrons induce (n, 2n) and (n, 3n) reactions. In addition the mean neutron energy emitted from generator/tungsten assembly is reduced to about 1 MeV. Both of these effects increase the thermal neutron flux in the sample cavity. The paper describes the observed advantages of the tungsten liner with respect to increase in thermal flux, and better shielding capabilities of the nearby gamma and neutron detectors.

  20. Interrogation zone determination in HF RFID systems with multiplexed antennas*

    Directory of Open Access Journals (Sweden)

    Jankowski-Mihułowicz Piotr

    2015-09-01

    Full Text Available The operation of an anti-collision RFID system is characterized by the interrogation zone which should be estimated in any direction of 3D space for a group of electronic transponders. The interrogation zone should be as large as possible. However, the many problems in this area are due to the fact that energy can be transferred to transponders only on a limited distance. The greatest flexibility in developing RFID applications and shaping the interrogation zone can be achieved using the system with an antenna multiplexer. Therefore the problem of the interrogation zone determination in HF RFID systems with two orthogonal RWD antennas is presented in the paper. The perceived issues have been effectively dealt with and the solution has been proposed on the basis of the elaborated model. Conducted studies have been used to develop the software tool JankoRFIDmuxHF in the Mathcad environment. The research results are analysed in an example system configuration. The specialized measuring stand has been used for experimental verification of the identification efficiency. The convergence of the measurements and calculations confirms a practical usefulness of the presented concept of interrogation zone determination in anti-collision systems. It also shows the practical utility of the developed model and software tools.

  1. Evolution of Neutron Stars and Observational Constraints

    Directory of Open Access Journals (Sweden)

    Lattimer J.

    2010-10-01

    Full Text Available The structure and evolution of neutron stars is discussed with a view towards constraining the properties of high density matter through observations. The structure of neutron stars is illuminated through the use of several analytical solutions of Einstein’s equations which, together with the maximally compact equation of state, establish extreme limits for neutron stars and approximations for binding energies, moments of inertia and crustal properties as a function of compactness. The role of the nuclear symmetry energy is highlighted and constraints from laboratory experiments such as nuclear masses and heavy ion collisions are presented. Observed neutron star masses and radius limits from several techniques, such as thermal emissions, X-ray bursts, gammaray flares, pulsar spins and glitches, spin-orbit coupling in binary pulsars, and neutron star cooling, are discussed. The lectures conclude with a discusson of proto-neutron stars and their neutrino signatures.

  2. Neutron Radiography

    Science.gov (United States)

    Heller, A. K.; Brenizer, J. S.

    Neutron radiography and its related two-dimensional (2D) neutron imaging techniques have been established as invaluable nondestructive inspection methods and quantitative measurement tools. They have been used in a wide variety of applications ranging from inspection of aircraft engine turbine blades to study of two-phase fluid flow in operating proton exchange membrane fuel cells. Neutron radiography is similar to X-ray radiography in that the method produces a 2D attenuation map of neutron radiation that has penetrated the object being examined. However, the images produced differ and are often complementary due to the differences between X-ray and neutron interaction mechanisms. The uses and types of 2D neutron imaging have expanded over the past 15 years as a result of advances in imaging technology and improvements in neutron generators/sources and computers. Still, high-intensity sources such as those from reactors and spallation neutron sources, together with conventional film radiography, remain the mainstay of high-resolution, large field-of-view neutron imaging. This chapter presents a summary of the history, methods, and related variations of neutron radiography techniques.

  3. Benchmarking Data for the Proposed Signature of Used Fuel Casks

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    A set of benchmarking measurements to test facets of the proposed extended storage signature was conducted on May 17, 2016. The measurements were designed to test the overall concept of how the proposed signature can be used to identify a used fuel cask based only on the distribution of neutron sources within the cask. To simulate the distribution, 4 Cf-252 sources were chosen and arranged on a 3x3 grid in 3 different patterns and raw neutron totals counts were taken at 6 locations around the grid. This is a very simplified test of the typical geometry studied previously in simulation with simulated used nuclear fuel.

  4. Transcriptomic signatures in cartilage ageing

    Science.gov (United States)

    2013-01-01

    Introduction Age is an important factor in the development of osteoarthritis. Microarray studies provide insight into cartilage aging but do not reveal the full transcriptomic phenotype of chondrocytes such as small noncoding RNAs, pseudogenes, and microRNAs. RNA-Seq is a powerful technique for the interrogation of large numbers of transcripts including nonprotein coding RNAs. The aim of the study was to characterise molecular mechanisms associated with age-related changes in gene signatures. Methods RNA for gene expression analysis using RNA-Seq and real-time PCR analysis was isolated from macroscopically normal cartilage of the metacarpophalangeal joints of eight horses; four young donors (4 years old) and four old donors (>15 years old). RNA sequence libraries were prepared following ribosomal RNA depletion and sequencing was undertaken using the Illumina HiSeq 2000 platform. Differentially expressed genes were defined using Benjamini-Hochberg false discovery rate correction with a generalised linear model likelihood ratio test (P ageing cartilage. Conclusion There was an age-related dysregulation of matrix, anabolic and catabolic cartilage factors. This study has increased our knowledge of transcriptional networks in cartilage ageing by providing a global view of the transcriptome. PMID:23971731

  5. Neutron elastic backscattering with resonance enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Gomberg, H.J. [PENETRON, Inc., Ann Arbor, MI (United States); McEllistrem, M.T. [Univ. of Kentucky, Lexington, KY (United States)

    1993-12-31

    Reliable detection of explosives and narcotics depends on generating signatures of compounds which characterize them. Major explosives and also alkaloid narcotics contain unique concentrations of Carbon, Oxygen, and Nitrogen which provide specific elemental ratios and chemical signatures. Neutron-induced reaction methods are rapid and non-invasive means of probing container interiors for special element-ratio signatures which signal the presence of significant amounts of contraband. Among these reactions the highest probabilities occur for neutron from different light elements, allowing determination of relative abundance of these elements. The authors have already demonstrated signature for simulated explosives and simulated narcotics in experimental tests at 1-4 MeV at the University of Kentucky accelerator labs. Intensities of neutron scatter at angles near 150{degrees} from three different elements, C, N, and O, were determined. Fast neutron time-of-flight detection methods enabled measurement of neutron energies, and thus separation of scattering from the different elements. Making measurements on and off strong resonances for specific elements, increases PFD and reduces PFA. Measurements illustrating this resonance enhancement technique will be presented.

  6. Contraband detection via neutron elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gomberg, H.J.; Charatis, G.; Brundage, J. [Penetron, Inc., Ann Arbor, MI (United States)] [and others

    1993-04-01

    Reliable detection of explosives and narcotics depends on generating signatures of compounds which characterize them. Major explosives and also alkaloid narcotics contain unique concentrations of Carbon (C), Nitrogen (N), and Oxygen (O). The kinematic energy shifts of neutrons scattered through angles larger than 140{degrees} allows separate determinations of C, N, and O; ratios of N/C and O/C together give clear signatures of the presence of plastic explosives or narcotics. The ability to detect these signatures under conditions similar to those that would obtain for airport screening has been demonstrated for neutrons for energies less {le} 3 MeV. Strong N resonances and a deep window for scattering from O enhance the confidence of element quantification. Detection of contraband in large cargo containers presents a much more difficult problem. Use of higher energy neutrons is now being tested for shielding penetration, so narcotic signatures could be identified behind the shielding of cargo containers. Scattered neutron spectra, or {open_quotes}signatures{close_quotes} of different organic compounds will be presented.

  7. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  8. The signature-based radiation-scanning approach to standoff detection of improvised explosive devices.

    Science.gov (United States)

    Brewer, R L; Dunn, W L; Heider, S; Matthew, C; Yang, X

    2012-07-01

    The signature-based radiation-scanning technique for detection of improvised explosive devices is described. The technique seeks to detect nitrogen-rich chemical explosives present in a target. The technology compares a set of "signatures" obtained from a test target to a collection of "templates", sets of signatures for a target that contain an explosive in a specific configuration. Interrogation of nitrogen-rich fertilizer samples, which serve as surrogates for explosives, is shown experimentally to be able to discriminate samples of 3.8L and larger.

  9. In-field tests of the EURITRACK tagged neutron inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Carasco, C. [CEA DEN, 13108 St Paul-lez-Durance (France); Perot, B. [CEA DEN, 13108 St Paul-lez-Durance (France)], E-mail: bertrand.perot@cea.fr; Bernard, S.; Mariani, A. [CEA DEN, 13108 St Paul-lez-Durance (France); Szabo, J.-L.; Sannie, G.; Roll, Th. [CEA LIST, 91191 Gif-Sur-Yvette (France); Valkovic, V.; Sudac, D. [Institute Ruder Boskovic, 54 Bijenicka c. 10000 Zagreb (Croatia); Viesti, G.; Lunardon, M.; Bottosso, C.; Fabris, D.; Nebbia, G.; Pesente, S.; Moretto, S. [INFN and Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zenoni, A.; Donzella, A. [INFN and Universita di Brescia, 38 Via Branze, 25123 Brescia (Italy); Moszynski, M.; Gierlik, M. [Soltan Institute for Nuclear Studies, PL 05-400 Otwock-Swierk (Poland)] (and others)

    2008-04-11

    The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) inspection system has been designed to complement X-ray scanners in the detection of explosives and other illicit materials hidden in cargo containers. The containers are interrogated by a 14-MeV tagged neutron beam at any suspect position in the X-ray image. Interrogation of a specific volume element with tagged neutrons yields information about the chemical composition of the material. Implementation and performance tests of the EURITRACK system in the Port of Rijeka in Croatia are described. Cargo container inspection results are reported and discussed.

  10. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  11. Efficient Threshold Signature Scheme

    Directory of Open Access Journals (Sweden)

    Sattar J Aboud

    2012-01-01

    Full Text Available In this paper, we introduce a new threshold signature RSA-typed scheme. The proposed scheme has the characteristics of un-forgeable and robustness in random oracle model. Also, signature generation and verification is entirely non-interactive. In addition, the length of the entity signature participate is restricted by a steady times of the length of the RSA signature modulus. Also, the signing process of the proposed scheme is more efficient in terms of time complexity and interaction.

  12. Neutron flux from a 14‐MeV neutron generator with tungsten filter for research in NDA methods for nuclear safeguards and security

    OpenAIRE

    2009-01-01

    The Joint Research Centre has taken into operation a new experimental device designed for research in the fields of nuclear safeguards and security applications. The research projects currently undertaken include detection of shielded contraband materials, detection of fissile materials, and mass determination of small fissile materials in shielded containers. The device, called the Pulsed Neutron Interrogation Test Assembly (PUNITA), incorporates a pulsed 14‐MeV (D‐T) neutron generator and a...

  13. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  14. "Enhanced" interrogation of detainees: do psychologists and psychiatrists participate?

    Science.gov (United States)

    Halpern, Abraham L; Halpern, John H; Doherty, Sean B

    2008-09-25

    After revelations of participation by psychiatrists and psychologists in interrogation of prisoners at Guantánamo Bay and Central Intelligence Agency secret detention centers, the American Psychiatric Association and the American Psychological Association adopted Position Statements absolutely prohibiting their members from participating in torture under any and all circumstances, and, to a limited degree, forbidding involvement in interrogations. Some interrogations utilize very aggressive techniques determined to be torture by many nations and organizations throughout the world. This paper explains why psychiatrists and psychologists involved in coercive interrogations violate the Geneva Conventions and the laws of the United States. Whether done with ignorance of professional ethical obligations or not, these psychiatrists and psychologists have crossed an ethical barrier that may best be averted from re-occurring by teaching medical students and residents in all medical specialties about the ethics principles stemming from the 1946-1947 Nuremberg trials and the Geneva Conventions, together with the Ethics Codes of the World Medical Association and the American Medical Association; and, with regard to psychiatric residents and psychological trainees, by the teaching about The Principles of Medical Ethics With Annotations Especially Applicable to Psychiatry and the Ethical Principles of Psychologists and Code of Conduct, respectively. In this way, all physicians and psychologists will clearly understand that they have an absolute moral obligation to "First, do no harm" to the human beings they professionally encounter.

  15. Language style matching and confessions in police interrogations

    NARCIS (Netherlands)

    Richardson, Beth H.; Taylor, P.J.; Snook, Brent; Conchie, S M; Bennell, Craig

    2014-01-01

    Studies of police interrogation have often sought to understand how the ebb-and-flow of dialogue relates to a confession. There is now a considerable body of work examining the effect of questioning style (e.g., Granhag, Montecinos, & Oleszkiewicz, in press; Snook, Luther, Quinlan, & Milne, 2012) an

  16. Monolithic integrated optic fiber Bragg grating sensor interrogator

    Science.gov (United States)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian

    2010-04-01

    Fiber Bragg gratings (FBGs) are a mature sensing technology that has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. Fiber Bragg grating sensors can be use for a variety of measurements including strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky, heavy, and costly bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-TransceiverTM) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables the monolithic integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  17. Children's Maintenance and Generalization of an Interrogative Learning Strategy.

    Science.gov (United States)

    Kestner, Jane; Borkowski, John G.

    1979-01-01

    In experiment 1, 48 first-grade children were presented one of four elaboration strategies or labeling instructions during a single study trial and then recalled 16 paired associates. In experiment 2, 32 first-grade children were trained over a four-day period in the use of an interrogative elaboration strategy or received labeling instructions.…

  18. A remotely interrogated all-optical Rb-87 magnetometer

    NARCIS (Netherlands)

    Patton, B.; Versolato, O. O.; Hovde, D. C.; Corsini, E.; Higbie, J. M.; Budker, D.

    2012-01-01

    Atomic magnetometry was performed at Earth's magnetic field over a free-space distance of ten meters. Two laser beams aimed at a distant alkali-vapor cell excited and detected the Rb-87 magnetic resonance, allowing the magnetic field within the cell to be interrogated remotely. Operated as a driven

  19. Some Remarks on Interrogative and Relative Pronouns in English

    Science.gov (United States)

    Lewandowska, Barbara

    1973-01-01

    An analysis is made of three "wh" words -- what, which, and who -- which are most frequently used as interrogative and relative pronouns in English. An attempt is made to find some formal syntactic markers distinguishing these two uses and consequently to postulate distinct feature matrices for them. (Available from: See FL 508 214.) (Author/RM)

  20. Enacting Inclusion : A Framework for Interrogating Inclusive Practice

    Science.gov (United States)

    Florian, Lani; Spratt, Jennifer

    2013-01-01

    This study reports on the development and use of an analytical framework for interrogating the practice of newly qualified mainstream teachers recently graduated from a one-year Professional Graduate Diploma in Education (PGDE) that was informed by a concept of inclusive pedagogy. Inclusive pedagogy is an approach to teaching and learning that…

  1. "Enhanced" interrogation of detainees: do psychologists and psychiatrists participate?

    Directory of Open Access Journals (Sweden)

    Halpern John H

    2008-09-01

    Full Text Available Abstract After revelations of participation by psychiatrists and psychologists in interrogation of prisoners at Guantánamo Bay and Central Intelligence Agency secret detention centers, the American Psychiatric Association and the American Psychological Association adopted Position Statements absolutely prohibiting their members from participating in torture under any and all circumstances, and, to a limited degree, forbidding involvement in interrogations. Some interrogations utilize very aggressive techniques determined to be torture by many nations and organizations throughout the world. This paper explains why psychiatrists and psychologists involved in coercive interrogations violate the Geneva Conventions and the laws of the United States. Whether done with ignorance of professional ethical obligations or not, these psychiatrists and psychologists have crossed an ethical barrier that may best be averted from re-occurring by teaching medical students and residents in all medical specialties about the ethics principles stemming from the 1946–1947 Nuremberg trials and the Geneva Conventions, together with the Ethics Codes of the World Medical Association and the American Medical Association; and, with regard to psychiatric residents and psychological trainees, by the teaching about The Principles of Medical Ethics With Annotations Especially Applicable to Psychiatry and the Ethical Principles of Psychologists and Code of Conduct, respectively. In this way, all physicians and psychologists will clearly understand that they have an absolute moral obligation to "First, do no harm" to the human beings they professionally encounter.

  2. The Detainee Interrogation Debate and the Legal-Policy Process

    Science.gov (United States)

    2009-01-01

    on national security matters. The self-described “War Council” included then–White House Counsel Judge Alberto Gonzales , Addington, Haynes, and...the Navy GC, Alberto Mora, learned about the matter through an operator associated with interrogations. The Navy GC notified the Navy TJAG, and

  3. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    films or films with magnetic properties. The reason is the peculiar property of neutron light since the mass of a neutron is close to the one of a proton, and since it bears a magnetic moment. The optical properties of matter, when interacting with neutrons, are described by a refractive index......Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... to hundreds of nanometers. Thickness resolution for flat surfaces is in the range of few Ǻngstrøm, and as a peculiar benefit, the presence and properties of buried interfaces are accessible. Focus here will be on neutron reflectometry, a technique that is unique in applications involving composite organic...

  4. Quantum threshold group signature

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In most situations, the signer is generally a single person. However, when the message is written on behalf of an organization, a valid message may require the approval or consent of several persons. Threshold signature is a solution to this problem. Generally speaking, as an authority which can be trusted by all members does not exist, a threshold signature scheme without a trusted party appears more attractive. Following some ideas of the classical Shamir’s threshold signature scheme, a quantum threshold group signature one is proposed. In the proposed scheme, only t or more of n persons in the group can generate the group signature and any t-1 or fewer ones cannot do that. In the verification phase, any t or more of n signature receivers can verify the message and any t-1 or fewer receivers cannot verify the validity of the signature.

  5. About group digital signatures

    Directory of Open Access Journals (Sweden)

    Adriana Cristina Enache

    2012-09-01

    Full Text Available

    Group signatures try to combine security (no framing, no cheating and privacy(anonymity, unlinkability.A group digital signature is a digital signature with enhanced privacy features that allows members of a given group to anonymously sign messages on behalf of the group, producing a group signature. However, in the case of dispute the identity of the signature's originator can be revealed by a designated entity (group manager. The present paper describes the main concepts about group signatures, along with a brief state of the art and shows a personal cryptographic library implemented in Java that includes two group signatures.

  6. Comparison of 120Sn(6He,6He)120Sn and 120Sn(alpha,alpha)120Sn elastic scattering and signatures of the 6He neutron halo in the optical potential

    CERN Document Server

    Mohr, P; Lichtenthäler, R; Pires, K C C; Guimarães, V; Lépine-Szily, A; Junior, D R Mendes; Arazi, A; Barioni, A; Morcelle, V; Morais, M C

    2010-01-01

    Cross sections of $^{120}$Sn($\\alpha$,$\\alpha$)$^{120}$Sn elastic scattering have been extracted from the $\\alpha$ particle beam contamination of a recent $^{120}$Sn($^6$He,$^6$He)$^{120}$Sn experiment. Both reactions are analyzed using systematic double folding potentials in the real part and smoothly varying Woods-Saxon potentials in the imaginary part. The potential extracted from the $^{120}$Sn($^6$He,$^6$He)$^{120}$Sn data may be used as the basis for the construction of a simple global $^6$He optical potential. The comparison of the $^6$He and $\\alpha$ data shows that the halo nature of the $^6$He nucleus leads to a clear signature in the reflexion coefficients $\\eta_L$: the relevant angular momenta $L$ with $\\eta_L \\gg 0$ and $\\eta_L \\ll 1$ are shifted to larger $L$ with a broader distribution. This signature is not present in the $\\alpha$ scattering data and can thus be used as a new criterion for the definition of a halo nucleus.

  7. Methods and systems using encapsulated tracers and chemicals for reservoir interrogation and manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jeffery; Aines, Roger D; Duoss, Eric B; Spadaccini, Christopher M

    2014-11-04

    An apparatus, method, and system of reservoir interrogation. A tracer is encapsulating in a receptacle. The receptacle containing the tracer is injected into the reservoir. The tracer is analyzed for reservoir interrogation.

  8. System and plastic scintillator for discrimination of thermal neutron, fast neutron, and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.; Glenn, Andrew M.; Martinez, H. Paul; Pawelczak, Iwona A.; Payne, Stephen A.

    2017-05-16

    A scintillator material according to one embodiment includes a polymer matrix; a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 3 wt % or more; and at least one component in the polymer matrix, the component being selected from a group consisting of B, Li, Gd, a B-containing compound, a Li-containing compound and a Gd-containing compound, wherein the scintillator material exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays. A system according to one embodiment includes a scintillator material as disclosed herein and a photodetector for detecting the response of the material to fast neutron, thermal neutron and gamma ray irradiation.

  9. An alpha particle detector for a portable neutron generator for the Nuclear Materials Identification System (NMIS)

    Science.gov (United States)

    Hausladen, P. A.; Neal, J. S.; Mihalczo, J. T.

    2005-12-01

    A recoil alpha particle detector has been developed for use in a portable neutron generator. The associated particle sealed tube neutron generator (APSTNG) will be used as an interrogation source for the Nuclear Materials Identification System (NMIS). With the coincident emission of 14.1 MeV neutrons and 3.5 MeV alpha particles produced by the D-T reaction, alpha detection determines the time and direction of the neutrons of interest for subsequent use as an active nuclear materials interrogation source. The alpha particle detector uses a ZnO(Ga) scintillator coating applied to a fiber optic face plate. Gallium-doped zinc oxide is a fast (inorganic scintillator with a high melting point (1975 °C). One detector has been installed in an APSTNG and is currently being tested. Initial results include a measured efficiency for 3.5 MeV alphas of 90%.

  10. Signatures of Extended Storage of Used Nuclear Fuel in Casks

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-28

    As the amount of used nuclear fuel continues to grow, more and more used nuclear fuel will be transferred to storage casks. A consolidated storage facility is currently in the planning stages for storing these casks, where at least 10,000 MTHM of fuel will be stored. This site will have potentially thousands of casks once it is operational. A facility this large presents new safeguards and nuclear material accounting concerns. A new signature based on the distribution of neutron sources and multiplication within casks was part of the Department of Energy Office of Nuclear Energy’s Material Protection, Account and Control Technologies (MPACT) campaign. Under this project we looked at fingerprinting each casks neutron signature. Each cask has a unique set of fuel, with a unique spread of initial enrichment, burnup, cooling time, and power history. The unique set of fuel creates a unique signature of neutron intensity based on the arrangement of the assemblies. The unique arrangement of neutron sources and multiplication produces a reliable and unique identification of the cask that has been shown to be relatively constant over long time periods. The work presented here could be used to restore from a loss of continuity of knowledge at the storage site. This presentation will show the steps used to simulate and form this signature from the start of the effort through its conclusion in September 2016.

  11. Signatures of Extended Storage of Used Nuclear Fuel in Casks

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-28

    As the amount of used nuclear fuel continues to grow, more and more used nuclear fuel will be transferred to storage casks. A consolidated storage facility is currently in the planning stages for storing these casks, where at least 10,000 MTHM of fuel will be stored. This site will have potentially thousands of casks once it is operational. A facility this large presents new safeguards and nuclear material accounting concerns. A new signature based on the distribution of neutron sources and multiplication within casks was part of the Department of Energy Office of Nuclear Energy’s Material Protection, Account and Control Technologies (MPACT) campaign. Under this project we looked at fingerprinting each cask's neutron signature. Each cask has a unique set of fuel, with a unique spread of initial enrichment, burnup, cooling time, and power history. The unique set of fuel creates a unique signature of neutron intensity based on the arrangement of the assemblies. The unique arrangement of neutron sources and multiplication produces a reliable and unique identification of the cask that has been shown to be relatively constant over long time periods. The work presented here could be used to restore from a loss of continuity of knowledge at the storage site. This presentation will show the steps used to simulate and form this signature from the start of the effort through its conclusion in September 2016.

  12. 29 CFR 18.611 - Mode and order of interrogation and presentation.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Mode and order of interrogation and presentation. 18.611... of interrogation and presentation. (a) Control by judge. The judge shall exercise reasonable control... interrogation and presentation effective for the ascertainment of the truth, (2) Avoid needless consumption...

  13. Generalized Group Signature Scheme

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The concept of generalized group signature scheme will bepresent. Based on the generalized secret sharing scheme proposed by Lin and Ha rn, a non-interactive approach is designed for realizing such generalized group signature scheme. Using the new scheme, the authorized subsets of the group in w hich the group member can cooperate to produce the valid signature for any messa ge can be randomly specified

  14. Statistical properties of an algorithm used for illicit substance detection by fast-neutron transmission

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Sagalovsky, L.; Micklich, B.J.; Harper, M.K.; Novick, A.H.

    1994-06-01

    A least-squares algorithm developed for analysis of fast-neutron transmission data resulting from non-destructive interrogation of sealed luggage and containers is subjected to a probabilistic interpretation. The approach is to convert knowledge of uncertainties in the derived areal elemental densities, as provided by this algorithm, into probability information that can be used to judge whether an interrogated object is either benign or potentially contains an illicit substance that should be investigated further. Two approaches are considered in this paper. One involves integration of a normalized probability density function associated with the least-squares solution. The other tests this solution against a hypothesis that the interrogated object indeed contains illicit material. This is accomplished by an application of the F-distribution from statistics. These two methods of data interpretation are applied to specific sets of neutron transmission results produced by Monte Carlo simulation.

  15. Optical Stabilization of a Microwave Oscillator for Fountain Clock Interrogation

    CERN Document Server

    Lipphardt, Burghard; Weyers, Stefan

    2016-01-01

    We describe an optical frequency stabilization scheme of a microwave oscillator that is used for the interrogation of primary caesium fountain clocks. Because of its superior phase noise properties, the new scheme, which is based on an ultrastable laser and a femtosecond laser frequency comb, overcomes the fountain clock frequency instability limitations given by the previously utilized quartz oscillator based frequency synthesis. The presented scheme combines the transfer of the short-term frequency instability of an optical cavity and the long-term frequency instability of a hydrogen maser to the microwave oscillator and is designed to provide continuous long-term operation for extended measurement periods of weeks. The utilization of the twofold stabilization scheme on the one hand ensures referencing of the fountain frequency to the hydrogen maser frequency and on the other hand results in a phase noise level of the fountain interrogation signal, which enables quantum projection noise limited fountain fre...

  16. The development of enabling technologies for producing active interrogation beams

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Thomas J. T.; Morgado, Richard E.; Wang, Tai-Sen F. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Vodolaga, B.; Terekhin, V. [All-Russia Scientific Research Institute of Technical Physics, Snezhinsk (Russian Federation); Onischenko, L. M.; Vorozhtsov, S. B.; Samsonov, E. V.; Vorozhtsov, A. S.; Alenitsky, Yu. G.; Perpelkin, E. E.; Glazov, A. A.; Novikov, D. L. [Joint Institute of Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Parkhomchuk, V.; Reva, V.; Vostrikov, V. [Budker Institute of Nuclear Physics (BINP), Av. Lavrent' ev, 630090 Novosibirsk (Russian Federation); Mashinin, V. A.; Fedotov, S. N.; Minayev, S. A. [Research Firm IFI, Moscow (Russian Federation)

    2010-10-15

    A U.S./Russian collaboration of accelerator scientists was directed to the development of high averaged-current ({approx}1 mA) and high-quality (emittance {approx}15 {pi}mm mrad; energy spread {approx}0.1%) 1.75 MeV proton beams to produce active interrogation beams that could be applied to counterterrorism. Several accelerator technologies were investigated. These included an electrostatic tandem accelerator of novel design, a compact cyclotron, and a storage ring with energy compensation and electron cooling. Production targets capable of withstanding the beam power levels were designed, fabricated, and tested. The cyclotron/storage-ring system was theoretically studied and computationally designed, and the electrostatic vacuum tandem accelerator at BINP was demonstrated for its potential in active interrogation of explosives and special nuclear materials.

  17. Unconditionally Secure Quantum Signatures

    Directory of Open Access Journals (Sweden)

    Ryan Amiri

    2015-08-01

    Full Text Available Signature schemes, proposed in 1976 by Diffie and Hellman, have become ubiquitous across modern communications. They allow for the exchange of messages from one sender to multiple recipients, with the guarantees that messages cannot be forged or tampered with and that messages also can be forwarded from one recipient to another without compromising their validity. Signatures are different from, but no less important than encryption, which ensures the privacy of a message. Commonly used signature protocols—signatures based on the Rivest–Adleman–Shamir (RSA algorithm, the digital signature algorithm (DSA, and the elliptic curve digital signature algorithm (ECDSA—are only computationally secure, similar to public key encryption methods. In fact, since these rely on the difficulty of finding discrete logarithms or factoring large primes, it is known that they will become completely insecure with the emergence of quantum computers. We may therefore see a shift towards signature protocols that will remain secure even in a post-quantum world. Ideally, such schemes would provide unconditional or information-theoretic security. In this paper, we aim to provide an accessible and comprehensive review of existing unconditionally securesecure signature schemes for signing classical messages, with a focus on unconditionally secure quantum signature schemes.

  18. Radar Signature Calculation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...

  19. Blind Collective Signature Protocol

    Directory of Open Access Journals (Sweden)

    Nikolay A. Moldovyan

    2011-06-01

    Full Text Available Using the digital signature (DS scheme specified by Belarusian DS standard there are designed the collective and blind collective DS protocols. Signature formation is performed simultaneously by all of the assigned signers, therefore the proposed protocols can be used also as protocols for simultaneous signing a contract. The proposed blind collective DS protocol represents a particular implementation of the blind multisignature schemes that is a novel type of the signature schemes. The proposed protocols are the first implementations of the multisignature schemes based on Belarusian signature standard.

  20. Research opportunities with compact accelerator-driven neutron sources

    Science.gov (United States)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  1. Signatures of special nuclear material: High-energy gamma rays following fission

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Eric B.; Prussin, Stanley G.; Larimer, Ruth-Mary; Shugart, Howard; Browne, Edgardo; Smith, Alan R.; McDonald, Rchard J.; Nitsche, Heino; Gupta, Puja; Frank, Michael I.; Gosnell, Thomas B.

    2003-05-29

    {gamma} rays and acquired data using ORTEC PC-based electronics and software. The qualitative difference in the spectra from SNM versus that of any other material is illustrated in Figure 1, where we show the results obtained following the irradiations of 0.568 grams of {sup 239}Pu and 115 grams of steel. From the steel target, we observed a small number of low-energy {gamma} rays produced by the decays of long-lived isotopes such as {sup 56M}n (t{sub 1/2} = 2.58 hours). Similar results were obtained for all other non-SNM targets. However, we observed a large number of high-energy {gamma} rays produced by the decays of short-lived fission fragments from the {sup 239}Pu target. Thermal-neutron fission of {sup 235}U produces about 3 times as many delayed high-energy {gamma} rays as from {sup 239}Pu. We concluded that a sensitive method to identify SNM is simply to integrate the total number of events in a wide energy interval. The results of this type of analysis for two energy intervals, (3000-4000 keV) and (4000-8000 keV), are shown. The integrated numbers of events from irradiated SNM decay with a short effective half-life of approximately 25 seconds, whereas those from all other materials tested showed much longer decay times. These two features--large numbers of high-energy {gamma} rays decaying with a short effective half-life--provide a unique signature of SNM. Because of the high-density of {gamma}-ray lines produced by the decays of fission fragments, a practical system for interrogating large objects would not require high resolution detectors. In fact, we obtained the same results using the low-resolution plastic scintillator as we did with the germanium detector. Based on our measurements, we have estimated the response of a full-scale system employing a 14-MeV neutron generator producing 10{sup 11} neutrons per second and an array of scintillator detectors surrounding a standard cargo container in which a 5-cm diameter sphere of {sup 239}Pu was hidden inside a

  2. Technology of Electronic Signatur

    OpenAIRE

    2004-01-01

    An electronic signature uses a hash of message and an asymetrical algorithm of encryption for its generation. During verification of message on receiver side the hash of original message must be identical with the hash of received message. Electronic message is secured autentization of author and integrity of transmission date. By electronic signature it is possible to sign everything what is in digital form.

  3. Revocable Ring Signature

    Institute of Scientific and Technical Information of China (English)

    Dennis Y. W. Liu; Joseph K. Liu; Yi Mu; Willy Susilo; Duncan S. Wong

    2007-01-01

    Group signature allows the anonymity of a real signer in a group to be revoked by a trusted party called group manager. It also gives the group manager the absolute power of controlling the formation of the group. Ring signature, on the other hand, does not allow anyone to revoke the signer anonymity, while allowing the real signer to forma group (also known as a ring) arbitrarily without being controlled by any other party. In this paper, we propose a new variant for ring signature, called Revocable Ring Signature. The signature allows a real signer to form a ring arbitrarily while allowing a set of authorities to revoke the anonymity of the real signer. This new variant inherits the desirable properties from both group signature and ring signature in such a way that the real signer will be responsible for what it has signed as the anonymity is revocable by authorities while the real signer still has the freedom on ring formation. We provide a formal security model for revocable ring signature and propose an efficient construction which is proven secure under our security model.

  4. Digital Signature Management.

    Science.gov (United States)

    Hassler, Vesna; Biely, Helmut

    1999-01-01

    Describes the Digital Signature Project that was developed in Austria to establish an infrastructure for applying smart card-based digital signatures in banking and electronic-commerce applications. Discusses the need to conform to international standards, an international certification infrastructure, and security features for a public directory…

  5. The Deconfinement Phase Transition in the Interior of Neutron Stars

    CERN Document Server

    Zhou, Xia

    2010-01-01

    The decon?nement phase transition which happens in the interior of neutron stars are investigated. Coupled with the spin evolution of the stars, the effect of entropy production and deconfinement heat generation during the deconfinement phase transition in the mixed phase of the neutron stars are discussed. The entropy production of deconfinement phase transition can be act as a signature of phase transition, but less important and does not significantly change the thermal evolution of neutron stars. The deconfinement heat can change the thermal evolution of neutron star distinctly.

  6. Determination of total plutonium content in spent nuclear fuel assemblies with the differential die-away self-interrogation instrument

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Alexis C. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87544 (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109 (United States); Henzl, Vladimir; Menlove, Howard O.; Swinhoe, Martyn T.; Belian, Anthony P. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87544 (United States); Flaska, Marek; Pozzi, Sara A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109 (United States)

    2014-11-11

    As a part of the Next Generation Safeguards Initiative Spent Fuel project, we simulate the response of the Differential Die-away Self-Interrogation (DDSI) instrument to determine total elemental plutonium content in an assayed spent nuclear fuel assembly (SFA). We apply recently developed concepts that relate total plutonium mass with SFA multiplication and passive neutron count rate. In this work, the multiplication of the SFA is determined from the die-away time in the early time domain of the Rossi-Alpha distributions measured directly by the DDSI instrument. We utilize MCNP to test the method against 44 pressurized water reactor SFAs from a simulated spent fuel library with a wide dynamic range of characteristic parameters such as initial enrichment, burnup, and cooling time. Under ideal conditions, discounting possible errors of a real world measurement, a root mean square agreement between true and determined total Pu mass of 2.1% is achieved.

  7. Determination of spent nuclear fuel assembly multiplication with the differential die-away self-interrogation instrument

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Alexis C. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Henzl, Vladimir; Menlove, Howard O.; Swinhoe, Martyn T.; Belian, Anthony P. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Flaska, Marek; Pozzi, Sara A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2014-09-01

    We present a novel method for determining the multiplication of a spent nuclear fuel assembly with a Differential Die-Away Self-Interrogation (DDSI) instrument. The signal, which is primarily created by thermal neutrons, is measured with four {sup 3}He detector banks surrounding a spent fuel assembly. The Rossi-alpha distribution (RAD) at early times reflects coincident events from single fissions as well as fission chains. Because of this fact, the early time domain contains information about both the fissile material and spontaneous fission material in the assembly being measured. A single exponential function fit to the early time domain of the RAD has a die-away time proportional to the spent fuel assembly (SFA) multiplication. This correlation was tested by simulating assay of 44 different SFAs with the DDSI instrument. The SFA multiplication was determined with a variance of 0.7%.

  8. Neutron Repulsion

    CERN Document Server

    Manuel, Oliver K

    2011-01-01

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding...

  9. The synchronous active neutron detection system for spent fuel assay

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, M.M.; Kendall, P.K.

    1994-10-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed {open_quotes}lock-in{close_quotes} amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound.

  10. Investigations on landmine detection by neutron-based techniques.

    Science.gov (United States)

    Csikai, J; Dóczi, R; Király, B

    2004-07-01

    Principles and techniques of some neutron-based methods used to identify the antipersonnel landmines (APMs) are discussed. New results have been achieved in the field of neutron reflection, transmission, scattering and reaction techniques. Some conclusions are as follows: The neutron hand-held detector is suitable for the observation of anomaly caused by a DLM2-like sample in different soils with a scanning speed of 1m(2)/1.5 min; the reflection cross section of thermal neutrons rendered the determination of equivalent thickness of different soil components possible; a simple method was developed for the determination of the thermal neutron flux perturbation factor needed for multi-elemental analysis of bulky samples; unfolded spectra of elastically backscattered neutrons using broad-spectrum sources render the identification of APMs possible; the knowledge of leakage spectra of different source neutrons is indispensable for the determination of the differential and integrated reaction rates and through it the dimension of the interrogated volume; the precise determination of the C/O atom fraction requires the investigations on the angular distribution of the 6.13MeV gamma-ray emitted in the (16)O(n,n'gamma) reaction. These results, in addition to the identification of landmines, render the improvement of the non-intrusive neutron methods possible.

  11. Investigations on landmine detection by neutron-based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Csikai, J. E-mail: csikai@delfin.klte.hu; Doczi, R.; Kiraly, B

    2004-07-01

    Principles and techniques of some neutron-based methods used to identify the antipersonnel landmines (APMs) are discussed. New results have been achieved in the field of neutron reflection, transmission, scattering and reaction techniques. Some conclusions are as follows: The neutron hand-held detector is suitable for the observation of anomaly caused by a DLM2-like sample in different soils with a scanning speed of 1 m{sup 2}/1.5 min; the reflection cross section of thermal neutrons rendered the determination of equivalent thickness of different soil components possible; a simple method was developed for the determination of the thermal neutron flux perturbation factor needed for multi-elemental analysis of bulky samples; unfolded spectra of elastically backscattered neutrons using broad-spectrum sources render the identification of APMs possible; the knowledge of leakage spectra of different source neutrons is indispensable for the determination of the differential and integrated reaction rates and through it the dimension of the interrogated volume; the precise determination of the C/O atom fraction requires the investigations on the angular distribution of the 6.13 MeV gamma-ray emitted in the {sup 16}O(n,n'{gamma}) reaction. These results, in addition to the identification of landmines, render the improvement of the non-intrusive neutron methods possible.

  12. Neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Heger, G. [Rheinisch-Westfaelische Technische Hochschule Aachen, Inst. fuer Kristallographie, Aachen (Germany)

    1996-12-31

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs.

  13. An archaeal genomic signature

    Science.gov (United States)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  14. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  15. Intonation and Duration Curve in Persian Interrogative Sentences

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Keyhani

    2012-03-01

    Full Text Available Background and Aim: prosody is a very important factor in communication and includes such parameters as: duration, intonation, pitch, stress, rhythm etc. Intonation is the pitch variation in one sentence. Duration is the time taken to utter a voice. The aim of the present study was to evaluate some parameters of prosody such as duration and intonation curve in interrogative sentences among normal Farsi speaking adults in order to determine the characteristics of this aspect of language with an emphasis on laboratory testing.Methods: This study was performed as a cross-sectional one. The participants included 134 male and female Farsi speaking individuals aging between 18-30 years. In this study two interrogative sentences with open and closed answers were used. The voice samples were analyzed by Dr.speech -real analysis software. Data analysis incorporated unilateral analysis of variance and an intonation curve was drawn for each sentence.Results: The parameter of duration among men and women was significantly different (p≤0.001. Duration in open questions was significantly longer than yes/no questions (p≤0.001. The intonation curve of the two groups were similar.Conclusion: Men and women use duration changes, for making difference in prosody. On the whole, duration among women is longer than men. In open questions, the duration of sentences is mostly due to the question word. The intonation curve in open questions has more amplitude. Women show much more changes in basic frequency for transferring interrogative state in their expressions.

  16. Machine Fault Signature Analysis

    Directory of Open Access Journals (Sweden)

    Pratesh Jayaswal

    2008-01-01

    Full Text Available The objective of this paper is to present recent developments in the field of machine fault signature analysis with particular regard to vibration analysis. The different types of faults that can be identified from the vibration signature analysis are, for example, gear fault, rolling contact bearing fault, journal bearing fault, flexible coupling faults, and electrical machine fault. It is not the intention of the authors to attempt to provide a detailed coverage of all the faults while detailed consideration is given to the subject of the rolling element bearing fault signature analysis.

  17. DFB laser based electrical dynamic interrogation for optical fiber sensors

    Science.gov (United States)

    Carvalho, J. P.; Frazão, O.; Baptista, J. M.; Santos, J. L.; Barbero, A. P.

    2012-04-01

    An electrical dynamic interrogation technique previously reported by the authors for long-period grating sensors is now progressed by relying its operation exclusively on the modulation of a DFB Laser. The analysis of the detected first and second harmonic generated by the electrical modulation of the DFB Laser allows generating an optical signal proportional to the LPG spectral shift and resilient to optical power fluctuations along the system. This concept permits attenuating the effect of the 1/f noise of the photodetection, amplification and processing electronics on the sensing head resolution. This technique is employed in a multiplexing sensing scheme that measures refractive index variations.

  18. Are there molecular signatures?

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, W.P.

    1995-10-01

    This report describes molecular signatures and mutational spectrum analysis. The mutation spectrum is defined as the type and location of DNA base change. There are currently about five well documented cases. Mutations and radon-associated tumors are discussed.

  19. THE ELECTRONIC SIGNATURE

    Directory of Open Access Journals (Sweden)

    Voiculescu Madalina Irena

    2009-05-01

    Full Text Available Article refers to significance and the digital signature in electronic commerce. Internet and electronic commerce open up many new opportunities for the consumer, yet, the security (or perceived lack of security of exchanging personal and financial data

  20. Advanced Missile Signature Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Missile Signature Center (AMSC) is a national facility supporting the Missile Defense Agency (MDA) and other DoD programs and customers with analysis,...

  1. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    Science.gov (United States)

    Gozani, Tsahi; King, Michael J.

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time ("E-T" correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple "one-group" models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E-T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  2. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    Energy Technology Data Exchange (ETDEWEB)

    Gozani, Tsahi, E-mail: tgmaven@gmail.com [1050 Harriet St., Palo Alto, CA 94301 (United States); King, Michael J. [Rapiscan Laboratories Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States)

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time (“E–T” correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple “one-group” models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E–T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  3. Neutron tomography

    Science.gov (United States)

    Crump, James C., III; Richards, Wade J.; Shields, Kevin C.

    1995-07-01

    The McClellan Nuclear Radiation Center's (MNRC) staff in conjunction with a Cooperative Research and Development Agreement (CRDA) with the U.C. Santa Barbara facility has developed a system that can be used for aircraft inspection of jet engine blades. The problem was to develop an inspection system that can detect very low concentrations of hydrogen (i.e., greater than 100 ppm) in metal matricies. Specifically in Titanium alloy jet engine blades. Entrapment and precipitation of hydrogen in metals is an undesirable phenomenon which occurs in many alloys of steel and titanium. In general, metals suffer a loss of mechanical properties after long exposures to hydrogen, especially at high temperatures and pressures, thereby becoming embrittled. Neutron radiography has been used as a nondestructive testing technique for many years. Neutrons, because of their unique interactions with materials, are especially useful in the detection of hydrogen. They have an extremely high interaction cross section for low atomic number nuclei (i.e., hydrogen). Thus hydrogen in a metal matrix can be visualized using neutrons. Traditional radiography is sensitive to the total attenuation integrated over the path of radiation through the material. Increased sensitivity and quantitative cross section resolution can be obtained using three-dimensional volumetric imaging techniques such as tomography. The solution used to solve the problem was to develop a neutron tomography system. The neutron source is the McClellan Nuclear Radiation Center's 1 MW TRIGA reactor. This paper describes the hardware used in the system as well as some of the preliminary results.

  4. Technology of Electronic Signatur

    Directory of Open Access Journals (Sweden)

    Jaroslav Sadovsky

    2004-01-01

    Full Text Available An electronic signature uses a hash of message and an asymetrical algorithm of encryption for its generation. During verification of message on receiver side the hash of original message must be identical with the hash of received message. Electronic message is secured autentization of author and integrity of transmission date. By electronic signature it is possible to sign everything what is in digital form.

  5. Stateless Transitive Signature Schemes

    Institute of Scientific and Technical Information of China (English)

    MA Chun-guang; CAI Man-chun; YANG Yi-xian

    2004-01-01

    A new practical method is introduced to transform the stateful transitive signature scheme to stateless one without the loss of security. According to the approach, two concrete stateless transitive signature schemes based on Factoring and RSA are presented respectively. Under the assumption of the hardness of factoring and one-more- RSA-inversion problem, both two schemes are secure under the adaptive chosen-message attacks in random oracle model.

  6. A platform for interrogating cancer-associated p53 alleles.

    Science.gov (United States)

    D'Brot, A; Kurtz, P; Regan, E; Jakubowski, B; Abrams, J M

    2017-01-12

    p53 is the most frequently mutated gene in human cancer. Compelling evidence argues that full transformation involves loss of growth suppression encoded by wild-type p53 together with poorly understood oncogenic activity encoded by missense mutations. Furthermore, distinguishing disease alleles from natural polymorphisms is an important clinical challenge. To interrogate the genetic activity of human p53 variants, we leveraged the Drosophila model as an in vivo platform. We engineered strains that replace the fly p53 gene with human alleles, producing a collection of stocks that are, in effect, 'humanized' for p53 variants. Like the fly counterpart, human p53 transcriptionally activated a biosensor and induced apoptosis after DNA damage. However, all humanized strains representing common alleles found in cancer patients failed to complement in these assays. Surprisingly, stimulus-dependent activation of hp53 occurred without stabilization, demonstrating that these two processes can be uncoupled. Like its fly counterpart, hp53 formed prominent nuclear foci in germline cells but cancer-associated p53 variants did not. Moreover, these same mutant alleles disrupted hp53 foci and inhibited biosensor activity, suggesting that these properties are functionally linked. Together these findings establish a functional platform for interrogating human p53 alleles and suggest that simple phenotypes could be used to stratify disease variants.

  7. Remotely Interrogated Passive Polarizing Dosimeter (RIPPeD).

    Energy Technology Data Exchange (ETDEWEB)

    Kemme, Shanalyn A.; Buller, Daniel L.; Dirk, Shawn M.; Boye, Robert R.; Samora, Sally; Washburn, Cody M.; Wheeler, David Roger

    2008-09-01

    Conductive polymers have become an extremely useful class of materials for many optical applications. We have developed an electrochemical growth method for depositing highly conductive ({approx}100 S/cm) polypyrrole. Additionally, we have adapted advanced fabrication methods for use with the polypyrrole resulting in gratings with submicron features. This conductive polymer micro-wire grid provides an optical polarizer with unique properties. When the polymer is exposed to ionizing radiation, its conductivity is affected and the polarization properties of the device, specifically the extinction ratio, change in a corresponding manner. This change in polarization properties can be determined by optically interrogating the device, possibly from a remote location. The result is a passive radiation-sensitive sensor with very low optical visibility. The ability to interrogate the device from a safe standoff distance provides a device useful in potentially dangerous environments. Also, the passive nature of the device make it applicable in applications where external power is not available. We will review the polymer deposition, fabrication methods and device design and modeling. The characterization of the polymer's sensitivity to ionizing radiation and optical testing of infrared polarizers before and after irradiation will also be presented. These experimental results will highlight the usefulness of the conductive infrared polarizer to many security and monitoring applications.

  8. High energy cosmic ray signature of quark nuggets

    Science.gov (United States)

    Audouze, J.; Schaeffer, R.; Silk, J.

    1985-01-01

    It has been recently proposed that dark matter in the Universe might consist of nuggets of quarks which populate the nuclear desert between nucleons and neutron star matter. It is further suggested that the Centauro events which could be the signature of particles with atomic mass A approx. 100 and energy E approx. 10 to 15th power eV might also be related to debris produced in the encounter of two neutron stars. A further consequence of the former proposal is examined, and it is shown that the production of relativistic quark nuggets is accompanied by a substantial flux of potentially observable high energy neutrinos.

  9. D-D neutron-scatter measurements for a novel explosives-detection technique

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, A.L.; Flaska, M. [Department of NERS, U. Michigan, Ann Arbor, MI 48109-2104 (United States); Kearfott, K.J., E-mail: Kearfott@umich.edu [Department of NERS, U. Michigan, Ann Arbor, MI 48109-2104 (United States)

    2012-11-21

    A series of measurements has been completed that provides a benchmark for Monte Carlo simulations related to an algorithm for explosives detection using active neutron interrogation. The original simulations used in algorithm development, based on land-sea cargo container screening, have been adapted to model active neutron interrogation of smaller targets. These smaller-scale measurements are easily accomplished in a laboratory environment. Benchmarking measurements were completed using a D-D neutron generator, two neutron detectors, as well as a variety of scatter media including the explosives surrogate melamine (C{sub 3}H{sub 6}N{sub 6}). Measurements included 90 Degree-Sign , 120 Degree-Sign , or 150 Degree-Sign neutron scatter geometries and variations in source-detector shielding, target presence, and target identity. Comparisons of measured and simulated neutron fluxes were similar, with correlation coefficients greater than 0.7. The simulated detector responses also matched very closely with the measured photon and neutron pulse height distributions, with correlation coefficients exceeding 0.9. The experiments and simulations also provided insight into potential application of the new method to the problem of explosives detection in small objects such as luggage and small packages.

  10. A dense plasma focus-based neutron source for a single-shot detection of illicit materials and explosives by a nanosecond neutron pulse

    Energy Technology Data Exchange (ETDEWEB)

    Gribkov, V A; Latyshev, S V [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Miklaszewski, R A; Chernyshova, M [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Drozdowicz, K; Wiacek, U [Institute of Nuclear Physics, Krakow (Poland); Tomaszewski, K [ACS Ltd, Warsaw (Poland); Lemeshko, B D [N L Dukhov All-Russian Institute of Automation, Moscow (Russian Federation)], E-mail: gribkovv@yahoo.com

    2010-03-15

    Recent progress in a single-pulse Nanosecond Impulse Neutron Investigation System (NINIS) intended for interrogation of hidden objects by means of measuring elastically scattered neutrons is presented in this paper. The method uses very bright neutron pulses having duration of the order of 10 ns only, which are generated by dense plasma focus (DPF) devices filled with pure deuterium or DT mixture as a working gas. The small size occupied by the neutron bunch in space, number of neutrons per pulse and mono-chromaticity ({delta}E/E{approx}1%) of the neutron spectrum provides the opportunity to use a time-of-flight (TOF) technique with flying bases of about a few metres. In our researches we used DPF devices having bank energy in the range 2-7 kJ. The devices generate a neutron yield of the level of 10{sup 8}-10{sup 9} 2.45 MeV and 10{sup 10}-10{sup 11} 14 MeV neutrons per pulse with pulse duration {approx}10-20 ns. TOF base in the tests was 2.2-18.5 m. We have demonstrated the possibility of registering of neutrons scattered by the substances under investigation-1 litre bottles with methanol (CH{sub 3}OH), phosphoric (H{sub 2}PO{sub 4}) and nitric (HNO{sub 3}) acids as well as a long object-a 1 m gas tank filled with deuterium at high pressure. It is shown that the above mentioned short TOF bases and relatively low neutron yields are enough to distinguish different elements' nuclei composing the substance under interrogation and to characterize the geometry of lengthy objects in some cases. The wavelet technique was employed to 'clean' the experimental data registered. The advantages and restrictions of the proposed and tested NINIS technique in comparison with other methods are discussed.

  11. A dense plasma focus-based neutron source for a single-shot detection of illicit materials and explosives by a nanosecond neutron pulse

    Science.gov (United States)

    Gribkov, V. A.; Latyshev, S. V.; Miklaszewski, R. A.; Chernyshova, M.; Drozdowicz, K.; Wiącek, U.; Tomaszewski, K.; Lemeshko, B. D.

    2010-03-01

    Recent progress in a single-pulse Nanosecond Impulse Neutron Investigation System (NINIS) intended for interrogation of hidden objects by means of measuring elastically scattered neutrons is presented in this paper. The method uses very bright neutron pulses having duration of the order of 10 ns only, which are generated by dense plasma focus (DPF) devices filled with pure deuterium or DT mixture as a working gas. The small size occupied by the neutron bunch in space, number of neutrons per pulse and mono-chromaticity (ΔE/E~1%) of the neutron spectrum provides the opportunity to use a time-of-flight (TOF) technique with flying bases of about a few metres. In our researches we used DPF devices having bank energy in the range 2-7 kJ. The devices generate a neutron yield of the level of 108-109 2.45 MeV and 1010-1011 14 MeV neutrons per pulse with pulse duration ~10-20 ns. TOF base in the tests was 2.2-18.5 m. We have demonstrated the possibility of registering of neutrons scattered by the substances under investigation—1 litre bottles with methanol (CH3OH), phosphoric (H2PO4) and nitric (HNO3) acids as well as a long object—a 1 m gas tank filled with deuterium at high pressure. It is shown that the above mentioned short TOF bases and relatively low neutron yields are enough to distinguish different elements' nuclei composing the substance under interrogation and to characterize the geometry of lengthy objects in some cases. The wavelet technique was employed to 'clean' the experimental data registered. The advantages and restrictions of the proposed and tested NINIS technique in comparison with other methods are discussed.

  12. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    to hundreds of nanometers. Thickness resolution for flat surfaces is in the range of few Ǻngstrøm, and as a peculiar benefit, the presence and properties of buried interfaces are accessible. Focus here will be on neutron reflectometry, a technique that is unique in applications involving composite organic...... of desired information. In the course, an introduction into the method and an overview on selected instruments at large scale facilities will be presented. Examples will be given that illustrate the potential of the method, mostly based on organic films. Results from the investigation of layered films...... and the detection on nanoscopic roughnesses will be shown. The potential of neutron reflectometry is not only of academic origin. It may turn out to be useful in the design and development of new functional materials even though it will never develop into a standard method to be applied in the product control...

  13. Utilization of the Differential Die-Away Self-Interrogation Technique for Characterization and Verification of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-27

    New nondestructive assay techniques are sought to better characterize spent nuclear fuel. One of the NDA instruments selected for possible deployment is differential die-away self-interrogation (DDSI). The proposed DDSI approach for spent fuel assembly assay utilizes primarily the spontaneous fission and (α, n) neutrons in the assemblies as an internal interrogating radiation source. The neutrons released in spontaneous fission or (α,n) reactions are thermalized in the surrounding water and induce fission in fissile isotopes, thereby creating a measurable signal from isotopes of interest that would be otherwise difficult to measure. The DDSI instrument employs neutron coincidence counting with 3He tubes and list-mode-based data acquisition to allow for production of Rossi-alpha distributions (RADs) in post-processing. The list-mode approach to data collection and subsequent construction of RADs has expanded the analytical possibilities, as will be demonstrated throughout this thesis. One of the primary advantages is that the measured signal in the form of a RAD can be analyzed in its entirety including determination of die-away times in different time domains. This capability led to the development of the early die-away method, a novel leakage multiplication determination method which is tested throughout the thesis on different sources in simulation space and fresh fuel experiments. The early die-away method is a robust, accurate, improved method of determining multiplication without the need for knowledge of the (α,n) source term. The DDSI technique and instrument are presented along with the many novel capabilities enabled by and discovered through RAD analysis. Among the new capabilities presented are the early die-away method, total plutonium content determination, and highly sensitive missing pin detection. Simulation of hundreds of different spent and fresh fuel assemblies were used to develop the analysis algorithms and the techniques were tested on a

  14. Mitochondrial genome interrogation for forensic casework and research studies.

    Science.gov (United States)

    Roby, Rhonda K; Sprouse, Marc; Phillips, Nicole; Alicea-Centeno, Alessandra; Shewale, Shantanu; Shore, Sabrina; Paul, Natasha

    2014-04-24

    This unit describes methods used in the analysis of mitochondrial DNA (mtDNA) for forensic and research applications. UNIT describes procedures specifically for forensic casework where the DNA from evidentiary material is often degraded or inhibited. In this unit, protocols are described for quantification of mtDNA before amplification; amplification of the entire control region from high-quality samples as well as procedures for interrogating the whole mitochondrial genome (mtGenome); quantification of mtDNA post-amplification; and, post-PCR cleanup and sequencing. The protocols for amplification were developed for high-throughput databasing applications for forensic DNA testing such as reference samples and population studies. However, these same protocols can be applied to biomedical research such as age-related disease and health disparities research.

  15. Human enhancement from ethical interrogations to legal (un)certainty

    DEFF Research Database (Denmark)

    Nordberg, Ana

    2016-01-01

    Emerging technologies are paving the way for future revolutionary advances in science that may open the possibility to change the very anthropological definition of human being. This mere possibility has lead to ethical interrogations concerning the nature and boundaries of human nature and our...... relationship with science and technology. Meanwhile the Law has faced the challenge of reflecting on the legitimacy to legislate and whether the existing legal framework is appropriate to address the ethical concerns that emerging technologies bring fourth. It is a delicate balancing act between human dignity......, autonomy, non-discrimination, equality, and justice. Anchored in this background, this work is a reflection on the role of European Patent Law in this debate. The European Patent system contains rules designed to prevent the grant of patents concerning inventions that do not conform to the prevailing...

  16. Psychologists abandon the Nuremberg ethic: concerns for detainee interrogations.

    Science.gov (United States)

    Pope, Kenneth S; Gutheil, Thomas G

    2009-01-01

    In the aftermath of 9-11, the American Psychological Association, one of the largest U.S. health professions, changed its ethics code so that it now runs counter to the Nuremberg Ethic. This historic post-9-11 change allows psychologists to set aside their ethical responsibilities whenever they are in irreconcilable conflict with military orders, governmental regulations, national and local laws, and other forms of governing legal authority. This article discusses the history, wording, rationale, and implications of the ethical standard that U.S. psychologists adopted 7 years ago, particularly in light of concerns over health care professionals' involvement in detainee interrogations and the controversy over psychologists' prominent involvement in settings like the Guantánamo Bay Detainment Camp and the Abu Ghraib prison. It discusses possible approaches to the complex dilemmas arising when ethical responsibilities conflict with laws, regulations, or other governing legal authority.

  17. Towards isozyme-selective HDAC inhibitors for interrogating disease.

    Science.gov (United States)

    Gupta, Praveer; Reid, Robert C; Iyer, Abishek; Sweet, Matthew J; Fairlie, David P

    2012-01-01

    Histone deacetylase (HDAC) enzymes have emerged as promising targets for the treatment of a wide range of human diseases, including cancers, inflammatory and metabolic disorders, immunological, cardiovascular, and infectious diseases. At present, such applications are limited by the lack of selective inhibitors available for each of the eighteen HDAC enzymes, with most currently available HDAC inhibitors having broad-spectrum activity against multiple HDAC enzymes. Such broad-spectrum activity maybe useful in treating some diseases like cancers, but can be detrimental due to cytotoxic side effects that accompany prolonged treatment of chronic diseased states. Here we summarize progress towards the design and discovery of HDAC inhibitors that are selective for some of the eleven zinc-containing classical HDAC enzymes, and identify opportunities to use such isozyme-selective inhibitors as chemical probes for interrogating the biological roles of individual HDAC enzymes in diseases.

  18. An Optical Fiber Displacement Sensor Using RF Interrogation Technique.

    Science.gov (United States)

    Kim, Hyeon-Ho; Choi, Sang-Jin; Jeon, Keum Soo; Pan, Jae-Kyung

    2016-02-24

    We propose a novel non-contact optical fiber displacement sensor. It uses a radio frequency (RF) interrogation technique which is based on bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). The displacement is measured from the free spectral range (FSR) which is determined by the dip frequencies of the modulated MZ-EOM transfer function. In experiments, the proposed sensor showed a sensitivity of 456 kHz/mm or 1.043 kHz/V in a measurement range of 7 mm. The displacement resolution of the proposed sensor depends on the linewidth and the power of the optical source. Resolution better than 0.05 μm would be achieved if an optical source which has a linewidth narrower than 1.5 nm and a received power larger than -36 dBm is used. Also, the multiplexing characteristic of the proposed sensor was experimentally validated.

  19. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  20. Cyanobacterial signature genes.

    Science.gov (United States)

    Martin, Kirt A; Siefert, Janet L; Yerrapragada, Sailaja; Lu, Yue; McNeill, Thomas Z; Moreno, Pedro A; Weinstock, George M; Widger, William R; Fox, George E

    2003-01-01

    A comparison of 8 cyanobacterial genomes reveals that there are 181 shared genes that do not have obvious orthologs in other bacteria. These signature genes define aspects of the genotype that are uniquely cyanobacterial. Approximately 25% of these genes have been associated with some function. These signature genes may or may not be involved in photosynthesis but likely they will be in many cases. In addition, several examples of widely conserved gene order involving two or more signature genes were observed. This suggests there may be regulatory processes that have been preserved throughout the long history of the cyanobacterial phenotype. The results presented here will be especially useful because they identify which of the many genes of unassigned function are likely to be of the greatest interest.

  1. Uncertainty in hydrological signatures

    Science.gov (United States)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty

  2. Practical quantum digital signature

    Science.gov (United States)

    Yin, Hua-Lei; Fu, Yao; Chen, Zeng-Bing

    2016-03-01

    Guaranteeing nonrepudiation, unforgeability as well as transferability of a signature is one of the most vital safeguards in today's e-commerce era. Based on fundamental laws of quantum physics, quantum digital signature (QDS) aims to provide information-theoretic security for this cryptographic task. However, up to date, the previously proposed QDS protocols are impractical due to various challenging problems and most importantly, the requirement of authenticated (secure) quantum channels between participants. Here, we present the first quantum digital signature protocol that removes the assumption of authenticated quantum channels while remaining secure against the collective attacks. Besides, our QDS protocol can be practically implemented over more than 100 km under current mature technology as used in quantum key distribution.

  3. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  4. Using Elaborative Interrogation Enhanced Worked Examples to Improve Chemistry Problem Solving

    Science.gov (United States)

    Pease, Rebecca Simpson

    2012-01-01

    Elaborative interrogation, which prompts students to answer why-questions placed strategically within informational text, has been shown to increase learning comprehension through reading. In this study, elaborative interrogation why-questions requested readers to explain why paraphrased statements taken from a reading were "true."…

  5. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  6. Are the American Psychological Association's Detainee Interrogation Policies Ethical and Effective?: Key Claims, Documents, and Results.

    Science.gov (United States)

    Pope, Kenneth S

    2011-01-01

    After 9-11, the United States began interrogating detainees at settings such as Abu Ghraib, Bagram, and Guantanamo. The American Psychological Association (APA) supported psychologists' involvement in interrogations, adopted formal policies, and made an array of public assurances. This article's purpose is to highlight key APA decisions, policies, procedures, documents, and public statements in urgent need of rethinking and to suggest questions that may be useful in a serious assessment, such as, "However well intended, were APA's interrogation policies ethically sound?"; "Were they valid, realistic, and able to achieve their purpose?"; "Were other approaches available that would address interrogation issues more directly, comprehensively, and actively, that were more ethically and scientifically based, and that would have had a greater likelihood of success?"; and "Should APA continue to endorse its post-9-11 detainee interrogation policies?"

  7. Lie-detection biases among male police interrogators, prisoners, and laypersons.

    Science.gov (United States)

    Elaad, Eitan

    2009-12-01

    Beliefs of 28 male police interrogators, 30 male prisoners, and 30 male laypersons about their skill in detecting lies and truths told by others, and in telling lies and truths convincingly themselves, were compared. As predicted, police interrogators overestimated their lie-detection skills. In fact, they were affected by stereotypical beliefs about verbal and nonverbal cues to deception. Prisoners were similarly affected by stereotypical misconceptions about deceptive behaviors but were able to identify that lying is related to pupil dilation. They assessed their lie-detection skill as similar to that of laypersons, but less than that of police interrogators. In contrast to interrogators, prisoners tended to rate lower their lie-telling skill than did the other groups. Results were explained in terms of anchoring and self-assessment bias. Practical aspects of the results for criminal interrogation were discussed.

  8. Neutron pileup algorithms for multiplicity counters

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Sean M.; Stave, Sean; Lintereur, Azaree; Siciliano, Edward; Kouzes, Richard; Bliss, Mary

    2015-06-01

    Abstract The shortage of helium-3 (3He) has created a need to identify alternative neutron detection options for a variety of nuclear nonproliferation applications. One application that may be affected by 3He replacement technology is that of mass accountancy for safeguards, which utilizes coincidence and multiplicity counters to verify special nuclear material declarations. The use of neutron scintillation materials, such as LiF-ZnS sheets, as an alternative to 3He proportional tubes in multiplicity counters requires novel techniques for Pulse Shape Discrimination to distinguish between neutrons and gamma rays. These techniques must work under high count rates, as the maximum momentary rate for incoming neutrons from multiplicity events can be quite large. We have created a fast and accurate neutron discrimination algorithm based on time window filtering and signature comparison that can operate quickly on data with high degrees of gamma ray and neutron pileup. This algorithm is evaluated for its capability to separate signals as the pileup rate increases, and the possibility for implementation on fast hardware (e.g., FPGA hardware) for real-time operation is explored.

  9. Neutron pileup algorithms for multiplicity counters

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Sean M., E-mail: sean.robinson@pnnl.gov [Pacific Northwest National Laboratory, Seattle, WA 98109 (United States); Stave, Sean; Lintereur, Azaree; Siciliano, Edward; Kouzes, Richard; Bliss, Mary [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2015-06-01

    The shortage of helium-3 ({sup 3}He) has created a need to identify alternative neutron detection options for a variety of nuclear nonproliferation applications. One application that may be affected by {sup 3}He replacement technology is that of mass accountancy for safeguards, which utilizes coincidence and multiplicity counters to verify special nuclear material declarations. The use of neutron scintillation materials, such as LiF–ZnS sheets, as an alternative to {sup 3}He proportional tubes in multiplicity counters requires novel techniques for Pulse Shape Discrimination to distinguish between neutrons and gamma rays. These techniques must work under high count rates, as the maximum momentary rate for incoming neutrons from multiplicity events can be quite large. We have created a fast and accurate neutron discrimination algorithm based on time window filtering and signature comparison that can operate quickly on data with high degrees of gamma ray and neutron pileup. This algorithm is evaluated for its capability to separate signals as the pileup rate increases, and the possibility for implementation on fast hardware (e.g., FPGA hardware) for real-time operation is explored.

  10. Predicting Electromagnetic Signatures of Gravitational Wave Sources

    Science.gov (United States)

    D'Orazio, Daniel John

    This dissertation investigates the signatures of electromagnetic radiation that may accompany two specific sources of gravitational radiation: the inspiral and merger of massive black hole binaries (MBHBs) in galactic nuclei, and the coalescence of black hole neutron star (BHNS) pairs. Part I considers the interaction of MBHBs, at sub-pc separations, with a circumbinary gas disk. Accretion rates onto the MBHB are calculated from two-dimensional hydrodynamical simulations as a function of the relative masses of the black holes. The results are applied to interpretation of the recent, sub-pc separation MBHB candidate in the nucleus of the periodically variable Quasar PG 1302-102. We advance an interpretation of the variability observed in PG 1302-102 as being caused by Doppler-boosted emission sourced by the orbital velocity of the smaller black hole in a MBHB with disparate relative masses. Part II considers BHNS binaries in which the black hole is large enough to swallow the neutron star whole before it is disrupted. As the pair nears merger, orbital motion of the black hole through the magnetosphere of the neutron star generates an electromotive force, a black-hole-battery, which, for the strongest neutron star magnetic field strengths, could power luminosities large enough to make the merging pair observable out to cosmic distances. Relativistic solutions for vacuum fields of a magnetic dipole near a horizon are given, and a mechanism for harnessing the power of the black-hole-battery is put forth in the form of a fireball emitting in hard X-rays to gamma-rays.

  11. A Practical Method for UHF RFID Interrogation Area Measurement Using Battery Assisted Passive Tag

    Science.gov (United States)

    Mitsugi, Jin; Tokumasu, Osamu

    For the success of a large deployment of UHF RFID, easyto-use and low-cost engineering tools to facilitate the performance evaluation are demanded particularly in installations and for trouble shooting. The measurement of interrogation area is one of the most typical industrial demands to establish the stable readability of UHF RFID. Exhaustive repetition of tag position change with a read operation and a usage of expensive measurement equipment or special interrogators are common practices to measure the interrogation area. In this paper, a practical method to measure the interrogation area of a UHF RFID by using a battery assisted passive tag (BAP) is presented. After introducing the fundamental design and performances of the BAP that we have developed, we introduce the measurement method. In the method, the target tag in the target installation is continuously traversed either manually or automatically while it is subjected to a repetitive read of a commercial interrogator. During the target tag traversal, the interrogator's commands are continuously monitored by a BAP. With an extensive analysis on interrogator commands, the BAP can differentiate between its own read timings and those of the target tag. The read timings of the target tag collected by the BAP are recorded synchronously with the target tag position, yielding a map of the interrogation area. The present method does not entail a measurement burden. It is also independent of the choice of interrogator and tag. The method is demonstrated in a practical UHF RFID installation to show that the method can measure a 40mm resolution interrogation area measurement just by traversing the target tag at a slow walking speed, 300mm/sec.

  12. Collider signatures of hylogenesis

    Science.gov (United States)

    Demidov, S. V.; Gorbunov, D. S.; Kirpichnikov, D. V.

    2015-02-01

    We consider collider signatures of the hylogenesis—a variant of the antibaryonic dark matter model. We obtain bounds on the model parameters from results of the first LHC run. Also we suggest several new channels relevant for probing the antibaryonic dark matter at LHC.

  13. Collider signatures of Hylogenesis

    CERN Document Server

    Demidov, S V; Kirpichnikov, D V

    2014-01-01

    We consider collider signatures of the hylogenesis --- a variant of antibaryonic dark matter model. We obtain bounds on the model parameters from results of the first LHC run. Also we suggest several new channels relevant for probing the antibaryonic dark matter at LHC.

  14. Signature transition and compactification

    CERN Document Server

    Mohseni, M

    2000-01-01

    It is shown that a change in the signature of the space-time metric together with compactification of internal dimensions could occure in a six-dimensional cosmological model. We also show that this is due to interaction with Maxwell fields having support in the internal part of the space-time.

  15. Statistical clumped isotope signatures

    NARCIS (Netherlands)

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a m

  16. Signatures of the Invisible

    CERN Multimedia

    Strom, D

    2003-01-01

    On the Net it is possible to take a look at art from afar via Virtual Museums. One such exhibition was recently in the New York Museum of Modern Art's branch, PS1. Entitled 'Signatures of the Invisible' it was a collaborative effort between artists and physicists (1/2 page).

  17. On Mechanism of Signature Inversion

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The signature is associated with the invariance of a system with intrinsic quadrupole deformation under a rotation of 180° around a principal axis, and is defined in the cranking model. The signature

  18. Indication of Negative Triaxial Deformation in the Very Neutron-Deficient Odd-A Re Isotopes

    Institute of Scientific and Technical Information of China (English)

    周小红; 许甫荣; 郑勇; 张玉虎

    2003-01-01

    For the 9/2-[514] bands in light odd-A Re isotopes, the energy signature splitting and its relation with the signature dependence of M1 transition matrix elements are investigated in connection with the deviation of nuclear shape from axial symmetry. By comparing the energy signature splittings and relative magnetic transition rates between the experimental values and the theoretical calculations assuming axially symmetric shapes, it is found that discrepancies increase with the decreasing neutron number. These discrepancies strongly suggest an appreciable negative γ deformation for the very neutron-deficient odd-A Re isotopes.

  19. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations

  20. Two Improved Digital Signature Schemes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, two improved digital signature schemes are presented based on the design of directed signaturescheme [3]. The peculiarity of the system is that only if the scheme is specific recipient, the signature is authenticated.Since the scheme adds the screen of some information parameters, the difficulty of deciphered keys and the security ofdigital signature system are increased.

  1. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  2. Relativistic Simulations of Eccentric Binary Neutron Star Mergers: One-arm Spiral Instability and Effects of Neutron Star Spin

    CERN Document Server

    East, William E; Pretorius, Frans; Shapiro, Stuart L

    2016-01-01

    We perform general-relativistic hydrodynamical simulations of dynamical capture binary neutron star mergers, emphasizing the role played by the neutron star spin. Dynamical capture mergers may take place in globular clusters, as well as other dense stellar systems, where most neutron stars have large spins. We find significant variability in the merger outcome as a function of initial neutron star spin. For cases where the spin is aligned with the orbital angular momentum, the additional centrifugal support in the remnant hypermassive neutron star can prevent the prompt collapse to a black hole, while for antialigned cases the decreased total angular momentum can facilitate the collapse to a black hole. We show that even moderate spins can significantly increase the amount of ejected material, including the amount unbound with velocities greater than half the speed of light, leading to brighter electromagnetic signatures associated with kilonovae and interaction of the ejecta with the interstellar medium. Fur...

  3. Neutron Capture Nucleosynthesis

    CERN Document Server

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these results most of the nuclei can formed at medium neutron capture density environment e.g. in some kind of AGB stars. Besides these observations our model is capable to use educational purpose.

  4. Proton-neutron modes in non-axial nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A. (Center for Theoretical Physics, Yale Univ., New Haven, CT (USA) Theoretical Div., Los Alamos National Lab., NM (USA)); Ginocchio, J.N. (Theoretical Div., Los Alamos National Lab., NM (USA))

    1991-09-05

    A normal-mode analysis is carried out for aligned rigid-triaxial, gamma-unstable and oblique proton-neutron shapes. Intrinsic hamiltonians, energy surfaces and estimates for bandhead energies and selected transition rates are provided. Possible experimental signatures are briefly discussed. (orig.).

  5. Nuclear reactor neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  6. Bioinformatic approaches to interrogating vitamin D receptor signaling.

    Science.gov (United States)

    Campbell, Moray J

    2017-03-10

    Bioinformatics applies unbiased approaches to develop statistically-robust insight into health and disease. At the global, or "20,000 foot" view bioinformatic analyses of vitamin D receptor (NR1I1/VDR) signaling can measure where the VDR gene or protein exerts a genome-wide significant impact on biology; VDR is significantly implicated in bone biology and immune systems, but not in cancer. With a more VDR-centric, or "2000 foot" view, bioinformatic approaches can interrogate events downstream of VDR activity. Integrative approaches can combine VDR ChIP-Seq in cell systems where significant volumes of publically available data are available. For example, VDR ChIP-Seq studies can be combined with genome-wide association studies to reveal significant associations to immune phenotypes. Similarly, VDR ChIP-Seq can be combined with data from Cancer Genome Atlas (TCGA) to infer the impact of VDR target genes in cancer progression. Therefore, bioinformatic approaches can reveal what aspects of VDR downstream networks are significantly related to disease or phenotype.

  7. Thermal and destructive interrogation of ceramic matrix composites

    Science.gov (United States)

    Ojard, Greg; Doza, Douglas; Ouyang, Zhong; Angel, Paul; Smyth, Imelda; Santhosh, Unni; Ahmad, Jalees; Gowayed, Yasser

    2015-03-01

    Ceramic matrix composites are intended for elevated temperature use and their performance at temperature must be clearly understood as insertion efforts are to be realized. Most efforts to understand ceramic matrix composites at temperature are based on their lifetime at temperature under stress based on fatigue or creep testing or residual testing after some combination of temperature, stress and time. While these efforts can be insightful especially based on their mechanical performance, there is no insight into how other properties are changing with thermal exposure. To gain additional insight into oxidation behavior of CMC samples, a series of fatigue and creep samples tested at two different temperatures were non-destructively interrogated after achieving run-out conditions by multiple thermal methods and limited X-ray CT. After non-destructive analysis, residual tensile tests were undertaken at room temperature. The resulting residual properties will be compared against the non-destructive data. Analysis will be done to see if data trends can be determined and correlated to the level and duration of exposure.

  8. Interrogating the function of metazoan histones using engineered gene clusters.

    Science.gov (United States)

    McKay, Daniel J; Klusza, Stephen; Penke, Taylor J R; Meers, Michael P; Curry, Kaitlin P; McDaniel, Stephen L; Malek, Pamela Y; Cooper, Stephen W; Tatomer, Deirdre C; Lieb, Jason D; Strahl, Brian D; Duronio, Robert J; Matera, A Gregory

    2015-02-09

    Histones and their posttranslational modifications influence the regulation of many DNA-dependent processes. Although an essential role for histone-modifying enzymes in these processes is well established, defining the specific contribution of individual histone residues remains a challenge because many histone-modifying enzymes have nonhistone targets. This challenge is exacerbated by the paucity of suitable approaches to genetically engineer histone genes in metazoans. Here, we describe a platform in Drosophila for generating and analyzing any desired histone genotype, and we use it to test the in vivo function of three histone residues. We demonstrate that H4K20 is neither essential for DNA replication nor for completion of development, unlike inferences drawn from analyses of H4K20 methyltransferases. We also show that H3K36 is required for viability and H3K27 is essential for maintenance of cellular identity but not for gene activation. These findings highlight the power of engineering histones to interrogate genome structure and function in animals. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome.

    Science.gov (United States)

    Jinkerson, Robert E; Jonikas, Martin C

    2015-05-01

    The success of the green alga Chlamydomonas reinhardtii as a model organism is to a large extent due to the wide range of molecular techniques that are available for its characterization. Here, we review some of the techniques currently used to modify and interrogate the C. reinhardtii nuclear genome and explore several technologies under development. Nuclear mutants can be generated with ultraviolet (UV) light and chemical mutagens, or by insertional mutagenesis. Nuclear transformation methods include biolistic delivery, agitation with glass beads, and electroporation. Transforming DNA integrates into the genome at random sites, and multiple strategies exist for mapping insertion sites. A limited number of studies have demonstrated targeted modification of the nuclear genome by approaches such as zinc-finger nucleases and homologous recombination. RNA interference is widely used to knock down expression levels of nuclear genes. A wide assortment of transgenes has been successfully expressed in the Chlamydomonas nuclear genome, including transformation markers, fluorescent proteins, reporter genes, epitope tagged proteins, and even therapeutic proteins. Optimized expression constructs and strains help transgene expression. Emerging technologies such as the CRISPR/Cas9 system, high-throughput mutant identification, and a whole-genome knockout library are being developed for this organism. We discuss how these advances will propel future investigations.

  10. Hybrid Baryon Signatures

    CERN Document Server

    Page, P R

    2000-01-01

    We discuss whether a low-lying hybrid baryon should be defined as a three quark - gluon bound state or as three quarks moving on an excited adiabatic potential. We show that the latter definition becomes exact, not only for very heavy quarks, but also for specific dynamics. We review the literature on the signatures of hybrid baryons, with specific reference to strong hadronic decays, electromagnetic couplings, diffractive production and production in psi decay.

  11. SMAWT Signature Test

    Science.gov (United States)

    1974-10-01

    were generally inversely proportional to the size assesments of the flash and smoke . Table 26 shows the percent of change in average judgments of...Average Time of Gunner’s View Obscuration by Smoke During Firings From the Wood Line .. .. ..... ..... ...... ..... .. 18 7. Average Obscuration Times...of Gunner’s View Obscuration by Smoke - Grass Line 19 8. Normalized Comparisons of the Relative Grades Assigned to Systems Signature Components

  12. Simulation of path delay multiplexing-based Fourier transform spectrometer for fiber Bragg grating interrogation.

    Science.gov (United States)

    Chelliah, Pandian; Sahoo, Trilochan; Singh, Sheela; Sujatha, Annie

    2015-10-20

    A Fourier transform spectrometer (FTS) used for interrogating a fiber Bragg grating (FBG) consists of a scanning-type interferometer. The FTS has a broad wavelength range of operation and good multiplexing capability. However, it has poor wavelength resolution and interrogation speed. We propose a modification to the FTS using path delay multiplexing to improve the same. Using this method, spatial resolution and interrogation time can be improved by n times by using n path delays. In this paper, simulation results for n=2, 5 are shown.

  13. DIRECT WH-QUESTIONS INTRODUCED BY SIMPLE INTERROGATIVE PRONOUNS IN FRENCH AND ITS EQUIVALENTS IN SERBIAN

    OpenAIRE

    Nataša Radusin-Bardić

    2015-01-01

    The WH-questions refer to a question type using the interrogative words to specify the infor- mation that is desired. The direct WH-questions introduced by simple interrogative pronouns in French show a wide range of variability. The simple interrogative pronouns relate to the nature and the identity of the referent. Their form varies depending upon the origin itself of the referent: in principle, qui is used for human animates only, que/qu’ is used for inanimates and generally non-human subj...

  14. Interrogating a Fiber Bragg Grating Vibration Sensor by Narrow Line Width Light

    Institute of Scientific and Technical Information of China (English)

    Jun Chang; Dian-Heng Huo; Liang-Zhu Ma; Xiao-Hui Liu; Tong-Yu Liu; Chang Wang

    2008-01-01

    A method to interrogate fiber Bragg grating vibration sensor by narrow line width light is demonstrated. The interrogation scheme takes advantage of the intensity modulation of narrow spectral bandwidth light, such as distributed feedback laser, when a reflection or transmission spectrum curve of an fiber Bragg grating (FBG) moves due to the strain which is applied on the sensor. The sensor's response to accelerating frequency and amplitude is measured by experiment. The factors which have impacts on the sensitivity of the interrogation system are also discussed.

  15. Experimental validation of MCNP simulations for the EURITRACK Tagged Neutron Inspection System

    Science.gov (United States)

    Donzella, A.; Bodini, I.; Zenoni, A.; Fontana, A.; Perot, B.; Bernard, S.; Carasco, C.; Mariani, A.; Sudac, D.; Valkovic, V.

    2007-08-01

    The detection of illicit trafficking such as explosive materials inside large commercial payloads is today an important worldwide problem. Differently from the X- or γ-ray based systems, neutron interrogation allows the elemental composition of inspected materials to be measured. A container interrogation device based on the Tagged Neutron Inspection System (TNIS) has been developed within the EURITRACK (EURopean Illicit TRAfficking Countermeasures Kit) project of the 6th Framework Program of the European Union. A prototype of such system has been integrated at the Ruder Boskovic Institute (IRB) of Zagreb, Croatia, and performance tests have been carried out. A detailed simulation of the IRB experimental set-up has been performed. Comparison of the Monte Carlo predictions with collected experimental data is presented.

  16. Experimental validation of MCNP simulations for the EURITRACK Tagged Neutron Inspection System

    Energy Technology Data Exchange (ETDEWEB)

    Donzella, A. [Universita di Brescia, 38 Via Branze, 25123 Brescia (Italy) and INFN Sezione di Pavia, 6 Via Bassi, 27100 Pavia (Italy)]. E-mail: antonietta.donzella@bs.infn.it; Bodini, I. [Universita di Brescia, 38 Via Branze, 25123 Brescia (Italy); Zenoni, A. [Universita di Brescia, 38 Via Branze, 25123 Brescia (Italy); INFN Sezione di Pavia, 6 Via Bassi, 27100 Pavia (Italy); Fontana, A. [INFN Sezione di Pavia, 6 Via Bassi, 27100 Pavia (Italy); Universita di Pavia, 6 Via Bassi, 27100 Pavia (Italy); Perot, B. [Commissariat a l' Energie Atomique, 13108 St. Paul-lez-Durance (France); Bernard, S. [Commissariat a l' Energie Atomique, 13108 St. Paul-lez-Durance (France); Carasco, C. [Commissariat a l' Energie Atomique, 13108 St. Paul-lez-Durance (France); Mariani, A. [Commissariat a l' Energie Atomique, 13108 St. Paul-lez-Durance (France); Sudac, D. [Institute Ruder Boskovic, 54 Bijenicka, c. 10000 Zagreb (Croatia); Valkovic, V. [Institute Ruder Boskovic, 54 Bijenicka, c. 10000 Zagreb (Croatia)

    2007-08-15

    The detection of illicit trafficking such as explosive materials inside large commercial payloads is today an important worldwide problem. Differently from the X- or {gamma}-ray based systems, neutron interrogation allows the elemental composition of inspected materials to be measured. A container interrogation device based on the Tagged Neutron Inspection System (TNIS) has been developed within the EURITRACK (EURopean Illicit TRAfficking Countermeasures Kit) project of the 6th Framework Program of the European Union. A prototype of such system has been integrated at the Ruder Boskovic Institute (IRB) of Zagreb, Croatia, and performance tests have been carried out. A detailed simulation of the IRB experimental set-up has been performed. Comparison of the Monte Carlo predictions with collected experimental data is presented.

  17. Influence of Traxiality on the Signature Inversion in Odd-Odd Nuclei

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ren-Rong; E. S. Paul; ZHU Shun-Quan; LUO Xiang-Dong; Janos Timár; Andree Gizon; Jean Gizon; D.Sohler; B. M. Nyakó; L. Zolnai

    2004-01-01

    @@ The nature of signature inversion in the πg9/2νh11/2 bands of odd-odd 98,102Rh nuclei is studied. Calculations are performed by using a triaxial rotor plus two-quasiparticle model and are compared with the experimentally observed signature inversions. The calculations reproduce well the observations and suggest that, in these bands,the signature inversion can be interpreted mainly as a competition between the Coriolis and the proton-neutron residual interactions in low K space.

  18. Weapons Neutron Research Facility (WNR)

    Data.gov (United States)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  19. Bulk media assay using backscattered Pu-Be neutrons

    CERN Document Server

    Csikai, J

    1999-01-01

    Spectral yields of elastically backscattered Pu-Be neutrons measured for graphite, water, polyethylene, liquid nitrogen, paraffin oil, SiO sub 2 , Al, Fe, and Pb slabs show a definite correlation with the energy dependence of the elastic scattering cross sections, sigma sub E sub L (E sub n). The C, N and O can be identified by the different structures in their sigma sub E sub L (E sub n) functions. The integrated spectral yields versus thickness exhibit saturation for each sample. The interrogated volume is limited by the presence of hydrogen in the sample. (author)

  20. The Dense Plasma Focus Opportunities in Detection of Hidden Objects by Using Nanosecond Impulse Neutron Inspection System (NINIS)

    Science.gov (United States)

    Gribkov, V.; Dubrovsky, A.; Karpiński, L.; Miklaszewski, R.; Paduch, M.; Scholz, M.; StrzyŻewski, P.; Tomaszewski, K.

    2006-12-01

    Dense Plasma Focus device is proposed for use as a neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration. Our devices PF-6, recently put into operation at the Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland, and PF-10 belonging to the Institute for Theoretical and Experimental Physics, Moscow, Russia, have energy storages in its capacitor banks 7.4 kJ and 13 kJ as a maximum. Operated with the DPF chambers of a special design they have a current maximum up to ˜760 kA with a quarter period of the discharge equal to 1 microsecond. They generate circa 109 of 2.5-MeV neutrons in one pulse of ≅ 10-ns duration when working with deuterium, what permit to expect 1011 14-MeV neutrons at their operation with DT-mixture. This feature gives a principal possibility to create a "single-shot detection system" for interrogation of hidden objects. It means that all necessary information will be received during a single bright pulse of neutrons having duration in a nanosecond range by means of the time-of-flight technique with a short flight base. It might be a base for the creation of the Nanosecond Impulse Neutron Inspection System (NINIS). These characteristics of the neutron source open a number of opportunities while interrogation time in this case would now depend only on the data-processing system.

  1. Distinguishing types of compact-object binaries using the gravitational-wave signatures of their mergers

    CERN Document Server

    Mandel, Ilya; Dominik, Michal; Belczynsk, Krzysztof

    2015-01-01

    We analyze the distinguishability of populations of coalescing binary neutron stars, neutron-star black-hole binaries, and binary black holes, whose gravitational-wave signatures are expected to be observed by the advanced network of ground-based interferometers LIGO and Virgo. We consider population-synthesis predictions for plausible merging binary distributions in mass space, along with measurement accuracy estimates from the main gravitational-wave parameter-estimation pipeline. We find that for our model compact-object binary mass distribution, we can always distinguish binary neutron stars and black-hole--neutron-star binaries, but not necessarily black-hole--neutron-star binaries and binary black holes; however, with a few tens of detections, we can accurately identify the three subpopulations and measure their respective rates.

  2. Comparison of Fast Neutron Detector Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stange, Sy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mckigney, Edward Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-09

    This report documents the work performed for the Department of Homeland Security Domestic Nuclear Detection O ce as the project Fast Neutron Detection Evaluation under contract HSHQDC-14-X-00022. This study was performed as a follow-on to the project Study of Fast Neutron Signatures and Measurement Techniques for SNM Detection - DNDO CFP11-100 STA-01. That work compared various detector technologies in a portal monitor con guration, focusing on a comparison between a number of fast neutron detection techniques and two standard thermal neutron detection technologies. The conclusions of the earlier work are contained in the report Comparison of Fast Neutron Detector Technologies. This work is designed to address questions raised about assumptions underlying the models built for the earlier project. To that end, liquid scintillators of two di erent sizes{ one a commercial, o -the-shelf (COTS) model of standard dimensions and the other a large, planer module{were characterized at Los Alamos National Laboratory. The results of those measurements were combined with the results of the earlier models to gain a more complete picture of the performance of liquid scintillator as a portal monitor technology.

  3. Promotion COPERNIC Energy and Society the interrogations on the world demand evolution; Promotion COPERNIC Energie et Societe les interrogations sur l'evolution de la demande mondiale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-15

    In the framework of a prospective reflexion emergence on the energy demand, this document presents an analysis of the prospective approach and of recent studies: challenges, interests, limits, validity of the models and hypothesis and results relevance. With this analysis, the authors aim to identify the main interrogations bond to the world energy demand evolution. They then analyse these interrogations in the framework of a sectoral approach (agriculture, industry, transports, residential) in order to detail the demand and to forecast the evolution. Facing the consumption attitudes, they also suggest some new action avenues to favor a sustainable growth. (A.L.B.)

  4. Psycho-linguistic study of interrogation videos: problems and possible solutions

    Directory of Open Access Journals (Sweden)

    Gagina O.V.

    2015-08-01

    Full Text Available The article examines the problems of studying the investigation video to establish credibility of the evidence, to specify emotional state, individual psychological characteristics and the psychological impact on the person being interrogated. These problems are mostly caused by the lack of a single scientifically-based methodological approach while сurrently used approaches are not developed sufficiently. We propose a fundamentally new scientifically-based psycho-linguistic approach to the study of investigation video, including the analysis of voice and sounding speech, linguistic analysis (the content and form of speech and psychological analysis. We considered value, subject, object, and objectives of interrogation videos examination. Study of interrogation videos using the current approach is significant from the point of view of criminal law because of admissibility of evidence by the investigators. The expert concept of suggestive interrogate was operationalized on the basis of linguistic and psychological classifications.

  5. Police interviewing and interrogation: a self-report survey of police practices and beliefs.

    Science.gov (United States)

    Kassin, Saul M; Leo, Richard A; Meissner, Christian A; Richman, Kimberly D; Colwell, Lori H; Leach, Amy-May; La Fon, Dana

    2007-08-01

    By questionnaire, 631 police investigators reported on their interrogation beliefs and practices-the first such survey ever conducted. Overall, participants estimated that they were 77% accurate at truth and lie detection, that 81% of suspects waive Miranda rights, that the mean length of interrogation is 1.6 hours, and that they elicit self-incriminating statements from 68% of suspects, 4.78% from innocents. Overall, 81% felt that interrogations should be recorded. As for self-reported usage of various interrogation tactics, the most common were to physically isolate suspects, identify contradictions in suspects' accounts, establish rapport, confront suspects with evidence of their guilt, and appeal to self-interests. Results were discussed for their consistency with prior research, policy implications, and methodological shortcomings.

  6. Integrated FBG sensors interrogator in silicon photonic platform using active interferometer monitoring

    Science.gov (United States)

    Marin, Y. E.; Nannipieri, T.; Di Pasquale, F.; Oton, C. J.

    2016-05-01

    We experimentally demonstrate the feasibility of Fiber Bragg Grating sensors interrogation using integrated unbalanced Mach-Zehnder Interferometers (MZI) and phase sensitive detection in silicon-on-insulator (SOI) platform. The Phase- Generated Carrier (PGC) demodulation technique is used to detect phase changes, avoiding signal fading. Signal processing allows us to extract the wavelength shift from the signal patterns, allowing accurate dynamic FBG interrogation. High resolution and low cost chips with multiple interrogators and photodetectors on board can be realized by exploiting the advantages of large scale fabrication capabilities of well-established silicon based industrial infrastructures. Simultaneous dynamic reading of a large number of FBG sensors can lead to large volume market applications of the technology in several strategic industrial fields. The performance of the proposed integrated FBG interrogator is validated by comparing with a commercial FBG readout based on a spectrometer and used as a reference.

  7. Cross-Section Measurements for Elastic and Inelastic Scattering of Neutrons from Noble Gases

    Science.gov (United States)

    Macmullin, Sean; Kidd, Mary; Tornow, Werner; Howell, Calvin; Brown, Michael; Henning, Reyco

    2010-11-01

    Neutron backgrounds are a significant concern to experiments that attempt to directly detect Weakly Interacting Massive Particle (WIMP) dark matter. Recoil nuclei produced by neutron elastic scattering can mimic WIMP signatures. There is insufficient experimental data available for the scattering cross-sections of neutrons with noble gases (Ne, Ar, Xe), which are candidate target materials for such experiments. Neutron elastic and inelastic scattering from neon of natural abundance was investigated at the Triangle Universities Nuclear Laboratory at neutron energies relevant to (α,n) and low-energy spallation neutron backgrounds in these experiments. The differential cross-section was measured using a time-of-flight technique at neutron energies of 8.0 and 5.0 MeV. Details of the experimental technique and current status of measurements will be presented.

  8. Investigations on neutron-induced prompt gamma ray analysis of bulk samples.

    Science.gov (United States)

    Dokhale, P A; Csikai, J; Oláh, L

    2001-06-01

    A systematic investigation was carried out for the improvement of the prompt gamma interrogation method used for contraband detection by the pulsed fast/thermal neutron analysis (PFTNA) technique. Optimizations of source detector shielding and geometry, role of the type and dimension of the gamma detector, attenuation of neutrons and gamma rays in bulky samples were also studied. Results obtained for both the shielding materials and elemental content of cocaine simulants have been compared with the values calculated by the MCNP-4A code.

  9. Interrogating the Founding Gestures of the New Materialism

    Directory of Open Access Journals (Sweden)

    Dennis Bruining

    2016-11-01

    Full Text Available In this article, I aim to further thinking in the broadly ‘new materialist’ field by insisting it attends to some ubiquitous assumptions. More specifically, I critically interrogate what Sara Ahmed has termed ‘the founding gestures of the “new materialism”’. These founding rhetorical gestures revolve around a perceived neglect of the matter of materiality in ‘postmodernism’ and ‘poststructuralism’ and are meant to pave the way for new materialism’s own conception of matter-in/of-the-world. I argue in this article that an engagement with the postmodern critique of language as constitutive, as well as the poststructuralist critique of pure self-presence, does not warrant these founding gestures to be so uncritically rehearsed. Moreover, I demonstrate that texts which rely on these gestures, or at least the ones I discuss in this article, are not only founded on a misrepresentation of postmodern and poststructuralist thought, but are also guilty of repeating the perceived mistakes of which they are critical, such as upholding the language/matter dichotomy. I discuss a small selection of texts that make use of those popular rhetorical gestures to juxtapose the past that is invoked with a more nuanced reading of that past. My contention is that if ‘the founding gestures of the “new materialism”’ are not addressed, the complexity of the postmodern and poststructuralist positions continues to be obscured, with damaging consequences for the further development of the emerging field of new materialism, as well as our understanding of cultural theory’s past.

  10. Massively Parallel Interrogation of Aptamer Sequence, Structure and Function

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N O; Tok, J B; Tarasow, T M

    2008-02-08

    Optimization of high affinity reagents is a significant bottleneck in medicine and the life sciences. The ability to synthetically create thousands of permutations of a lead high-affinity reagent and survey the properties of individual permutations in parallel could potentially relieve this bottleneck. Aptamers are single stranded oligonucleotides affinity reagents isolated by in vitro selection processes and as a class have been shown to bind a wide variety of target molecules. Methodology/Principal Findings. High density DNA microarray technology was used to synthesize, in situ, arrays of approximately 3,900 aptamer sequence permutations in triplicate. These sequences were interrogated on-chip for their ability to bind the fluorescently-labeled cognate target, immunoglobulin E, resulting in the parallel execution of thousands of experiments. Fluorescence intensity at each array feature was well resolved and shown to be a function of the sequence present. The data demonstrated high intra- and interchip correlation between the same features as well as among the sequence triplicates within a single array. Consistent with aptamer mediated IgE binding, fluorescence intensity correlated strongly with specific aptamer sequences and the concentration of IgE applied to the array. The massively parallel sequence-function analyses provided by this approach confirmed the importance of a consensus sequence found in all 21 of the original IgE aptamer sequences and support a common stem:loop structure as being the secondary structure underlying IgE binding. The microarray application, data and results presented illustrate an efficient, high information content approach to optimizing aptamer function. It also provides a foundation from which to better understand and manipulate this important class of high affinity biomolecules.

  11. Massively parallel interrogation of aptamer sequence, structure and function.

    Directory of Open Access Journals (Sweden)

    Nicholas O Fischer

    Full Text Available BACKGROUND: Optimization of high affinity reagents is a significant bottleneck in medicine and the life sciences. The ability to synthetically create thousands of permutations of a lead high-affinity reagent and survey the properties of individual permutations in parallel could potentially relieve this bottleneck. Aptamers are single stranded oligonucleotides affinity reagents isolated by in vitro selection processes and as a class have been shown to bind a wide variety of target molecules. METHODOLOGY/PRINCIPAL FINDINGS: High density DNA microarray technology was used to synthesize, in situ, arrays of approximately 3,900 aptamer sequence permutations in triplicate. These sequences were interrogated on-chip for their ability to bind the fluorescently-labeled cognate target, immunoglobulin E, resulting in the parallel execution of thousands of experiments. Fluorescence intensity at each array feature was well resolved and shown to be a function of the sequence present. The data demonstrated high intra- and inter-chip correlation between the same features as well as among the sequence triplicates within a single array. Consistent with aptamer mediated IgE binding, fluorescence intensity correlated strongly with specific aptamer sequences and the concentration of IgE applied to the array. CONCLUSION AND SIGNIFICANCE: The massively parallel sequence-function analyses provided by this approach confirmed the importance of a consensus sequence found in all 21 of the original IgE aptamer sequences and support a common stem:loop structure as being the secondary structure underlying IgE binding. The microarray application, data and results presented illustrate an efficient, high information content approach to optimizing aptamer function. It also provides a foundation from which to better understand and manipulate this important class of high affinity biomolecules.

  12. On Constructing Certificateless Proxy Signature from Certificateless Signature

    Institute of Scientific and Technical Information of China (English)

    WAN Zhong-mei; LAI Xue-jia; WENG Jian; HONG Xuan; LONG Yu; JIA Wei-wei

    2008-01-01

    In proxy signature schemes,an original signer A delegates its signing capability to a proxy signer B,in such a way that B can sign message on behalf of A.The recipient of the final message verifies at the same time that B computes the signature and that A has delegated its signing capability to B.Recently many identity-based (ID-based) proxy signature schemes have been proposed,however,the problem of key escrow is inherent in this setting.Certificateless cryptography can overcome the key escrow problem.In this paper,we present a general security model for certificateless proxy signature scheme.Then,we give a method to construct a secure certificateless proxy scheme from a secure certificateless signature scheme,and prove that the security of the construction can be reduced to the security of the original certificateless signature scheme.

  13. Military Interrogation of Terror Suspects: Imaginative Does Not Have to Mean Unlawful

    Science.gov (United States)

    2010-12-01

    Howard, the Romans distinguished between bellum (war against legitimus hostis, a legitimate enemy) and guerra (war against latrunculi, pirates...apply. They do not apply to guerra . Indeed, punishment for latrunculi, “the common enemies of mankind,” traditionally has been summary execution.16 We...interrogations. Our experiences in Korea and Vietnam included relatively few U.S.-run interrogations. In fact, because of the treatment of captured U.S

  14. Intelligence, previous convictions and interrogative suggestibility: a path analysis of alleged false-confession cases.

    Science.gov (United States)

    Sharrock, R; Gudjonsson, G H

    1993-05-01

    The main purpose of this study was to investigate the relationship between interrogative suggestibility and previous convictions among 108 defendants in criminal trials, using a path analysis technique. It was hypothesized that previous convictions, which may provide defendants with interrogative experiences, would correlate negatively with 'shift' as measured by the Gudjonsson Suggestibility Scale (Gudjonsson, 1984a), after intelligence and memory had been controlled for. The hypothesis was partially confirmed and the theoretical and practical implications of the findings are discussed.

  15. Enhanced sensitivity of localized surface plasmon resonance biosensor by phase interrogation

    Science.gov (United States)

    Li, Chung-Tien; Chen, How-foo; Yen, Ta-Jen

    2011-05-01

    We proposed an innovative phase interrogation method for localized surface plasmon resonance (LSPR) detection. To our knowledge, this is the first demonstration of LSPR biosensor by phase interrogation. LSPR is realized as the plasmonic resonance within confined metal nanoparticle. Nanoparticle couples the light by means of a non-radiative inter-band absorption, and a scattering from surface plasmon oscillation, the total contribution is the optical extinction of nanoparticles. Due to the variety of resonance types, LSPR is extensively studied in the field of biological sensing, imaging, and medical therapeutics. Generally, LSPR is probed by optical intensity variation of continuous wavelength, in other words, wavelength interrogation. LSPR sensitivity probed by this method is ranged from several tens nm/RIU to less than 1000nm/RIU depending on the nanostructure and metal species, which at least an order of magnitude less than conventional SPR biosensor in wavelength interrogation. In this work, an innovative common-path phase interrogation system is applied for LSPR detection. Phase difference in our home-made system is simply extracted through the correlation of optical intensity under different polarization without any heterodyne optical modulator or piezoelectric transducer, and thus low down the cost and complexity in optical setup. In addition, signal-to-noise ratio is substantially reduced since the signal wave and reference wave share the common path. In our preliminary results, LSPR resolution of Au nanodisk array is 1.74 x 10-4 RIU by wavelength interrogation; on the other side, LSPR resolution of Au nanodisk array is 2.02x10-6 RIU in phase interrogation. LSPR sensitivity is around one order of magnitude enhanced. In conclusion, we demonstrated that LSPR sensitivity can be further enhanced by phase interrogation.

  16. Molecular signatures of ribosomal evolution.

    Science.gov (United States)

    Roberts, Elijah; Sethi, Anurag; Montoya, Jonathan; Woese, Carl R; Luthey-Schulten, Zaida

    2008-09-16

    Ribosomal signatures, idiosyncrasies in the ribosomal RNA (rRNA) and/or proteins, are characteristic of the individual domains of life. As such, insight into the early evolution of the domains can be gained from a comparative analysis of their respective signatures in the translational apparatus. In this work, we identify signatures in both the sequence and structure of the rRNA and analyze their contributions to the universal phylogenetic tree using both sequence- and structure-based methods. Domain-specific ribosomal proteins can be considered signatures in their own right. Although it is commonly assumed that they developed after the universal ribosomal proteins, we present evidence that at least one may have been present before the divergence of the organismal lineages. We find correlations between the rRNA signatures and signatures in the ribosomal proteins showing that the rRNA signatures coevolved with both domain-specific and universal ribosomal proteins. Finally, we show that the genomic organization of the universal ribosomal components contains these signatures as well. From these studies, we propose the ribosomal signatures are remnants of an evolutionary-phase transition that occurred as the cell lineages began to coalesce and so should be reflected in corresponding signatures throughout the fabric of the cell and its genome.

  17. Characterization of deuterium beam operation on RHEPP-1 for future neutron generation applications.

    Energy Technology Data Exchange (ETDEWEB)

    Schall, Michael (University of New Mexico, Albuquerque, NM); Cooper, Gary Wayne (University of New Mexico, Albuquerque, NM); Renk, Timothy Jerome

    2009-12-01

    We investigate the potential for neutron generation using the 1 MeV RHEPP-1 intense pulsed ion beam facility at Sandia National Laboratories for a number of emerging applications. Among these are interrogation of cargo for detection of special nuclear materials (SNM). Ions from single-stage sources driven by pulsed power represent a potential source of significant neutron bursts. While a number of applications require higher ion energies (e.g. tens of MeV) than that provided by RHEPP-1, its ability to generate deuterium beams allow for neutron generation at and below 1 MeV. This report details the successful generation and characterization of deuterium ion beams, and their use in generating up to 3 x 10{sup 10} neutrons into 4{pi} per 5kA ion pulse.

  18. Superheated drop neutron spectrometer

    CERN Document Server

    Das, M; Roy, B; Roy, S C; Das, Mala

    2000-01-01

    Superheated drops are known to detect neutrons through the nucleation caused by the recoil nuclei produced by the interactions of neutrons with the atoms constituting the superheated liquid molecule. A novel method of finding the neutron energy from the temperature dependence response of SDD has been developed. From the equivalence between the dependence of threshold energy for nucleation on temperature of SDD and the dependence of dE/dx of the recoil ions with the energy of the neutron, a new method of finding the neutron energy spectrum of a polychromatic as well as monochromatic neutron source has been developed.

  19. Neutron streak camera

    Science.gov (United States)

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  20. Signature CERN-URSS

    CERN Document Server

    Jentschke,W

    1975-01-01

    Le DG W.Jentschke souhaite la bienvenue à l'assemblée et aux invités pour la signature du protocole entre le Cern et l'URSS qui est un événement important. C'est en 1955 que 55 visiteurs soviétiques ont visité le Cern pour la première fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi présents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.

  1. Signatures of nonthermal melting

    Directory of Open Access Journals (Sweden)

    Tobias Zier

    2015-09-01

    Full Text Available Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting.

  2. The D-D Neutron Generator as an Alternative to Am(Li) Isotopic Neutron Source in the Active Well Coincidence Counter

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cleveland, Steven L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The 235U mass assay of bulk uranium items, such as oxide canisters, fuel pellets, and fuel assemblies, is not achievable by traditional gamma-ray assay techniques due to the limited penetration of the item by the characteristic 235U gamma rays. Instead, fast neutron interrogation methods such as active neutron coincidence counting must be used. For international safeguards applications, the most commonly used active neutron systems, the Active Well Coincidence Counter (AWCC), Uranium Neutron Collar (UNCL) and 252Cf Shuffler, rely on fast neutron interrogation using an isotopic neutron source [i.e., 252Cf or Am(Li)] to achieve better measurement accuracies than are possible using gamma-ray techniques for high-mass, high-density items. However, the Am(Li) sources required for the AWCC and UNCL systems are no longer manufactured, and newly produced systems rely on limited supplies of sources salvaged from disused instruments. The 252Cf shuffler systems rely on the use of high-output 252Cf sources, which while still available have become extremely costly for use in routine operations and require replacement every five to seven years. Lack of a suitable alternative neutron interrogation source would leave a potentially significant gap in the safeguarding of uranium processing facilities. In this work, we made use of Oak Ridge National Laboratory’s (ORNL’s) Large Volume Active Well Coincidence Counter (LV-AWCC) and a commercially available deuterium-deuterium (D-D) neutron generator to examine the potential of the D-D neutron generator as an alternative to the isotopic sources. We present the performance of the LV-AWCC with D-D generator for the assay of 235U based on the results of Monte Carlo N-Particle (MCNP) simulations and measurements of depleted uranium (DU), low enriched uranium (LEU), and highly enriched uranium (HEU) items.

  3. The signature package on Witt spaces, II. Higher signatures

    CERN Document Server

    Albin, Pierre; Mazzeo, Rafe; Piazza, Paolo

    2009-01-01

    This is a sequel to the paper "The signature package on Witt spaces, I. Index classes" by the same authors. In the first part we investigated, via a parametrix construction, the regularity properties of the signature operator on a stratified Witt pseudomanifold, proving, in particular, that one can define a K-homology signature class. We also established the existence of an analytic index class for the signature operator twisted by a C^*_r\\Gamma Mischenko bundle and proved that the K-homology signature class is mapped to the signature index class by the assembly map. In this paper we continue our study, showing that the signature index class is invariant under rational Witt bordisms and stratified homotopies. We are also able to identify this analytic class with the topological analogue of the Mischenko symmetric signature recently defined by Banagl. Finally, we define Witt-Novikov higher signatures and show that our analytic results imply a purely topological theorem, namely that the Witt-Novikov higher sign...

  4. Identity-based threshold signature and mediated proxy signature schemes

    Institute of Scientific and Technical Information of China (English)

    YU Yong; YANG Bo; SUN Ying

    2007-01-01

    Proxy signature schemes allow an original signer to delegate his signing rights to a proxy signer. However, many proxy signature schemes have the defect which is the inability to solve the proxy revocation problem. In this article, we firstly propose an identity-based threshold signature scheme and show that it has the properties of unforgeability and robustness. In our threshold signature scheme, we adopt such a method that the private key associated with an identity rather than the master key is shared. Then, based on the threshold signature scheme, an identity-based mediated proxy signature scheme is proposed where a security mediator (SEM) is introduced to help a proxy signer to generate valid proxy signatures, examine whether a proxy signer signs according to the warrant, and check the revocation of a proxy signer. It is shown that the proposed scheme satisfies all the security requirements of a secure proxy signature. Moreover, a proxy signer must cooperate with the SEM to generate a valid proxy signature, which makes the new scheme have an effective and fast proxy revocation.

  5. Jets from Merging Neutron Stars

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    radiated away in gravitational waves, the hypermassive neutron star loses its support and collapses to a black hole.Plasma velocities turn around (51.5 ms)Initially the plasma was falling inward, but as the disk of neutron-star debris is accreted onto the black hole, energy is released. This turns the plasma near the black hole poles around and flings it outward.Magnetic field forms a helical funnel (62.5 ms)The fields near the poles of the black hole amplify as they are wound around, creating a funnel that provides the wall of the jet.Jet outflow extends to heights greater than 445 km (64.5 ms)The disk is all accreted and, since the fuel is exhausted, the outflow shuts off (within 100ms)Neutron-Star SuccessPlot showing the gravitational wave signature for one of the authors simulations. The moments of merger of the neutron stars and collapse to a black hole are marked. [Adapted from Ruiz et al. 2016]These simulations show that no initial black hole is needed to launch outflows; a merger of two neutron stars can result in an sGRB-like jet. Another interesting result is that the magnetic field configuration doesnt affect the formation of a jet: neutron stars with magnetic fields confined to their interiors launch jets as effectively as those with pulsar-like magnetic fields. The accretion timescale for both cases is consistent with the duration of an sGRB.While this simulation models milliseconds of real time, its enormously computationally challenging and takes months to simulate. The successes of this simulation represent exciting advances in numerical relativity, as well as in our understanding of the electromagnetic counterparts that may accompany gravitational waves.BonusCheck out this awesome video of the authors simulations. The colors differentiate the plasma density and the white lines depict the pulsar-like magnetic field that initially threads the two merging neutron stars. Watch as the neutron stars evolve through the different stages outlined above, eventually

  6. Compact D-D/D-T neutron generators and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Tak Pui [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    Boron Neutron Capture Therapy (BNCT). The neutron flux required for positron production could not be provided with a single D-T neutron generator. Therefore, a subcritical fission multiplier was designed to increase the neutron yield. The neutron flux was increased by a factor of 25. A D-D driven fission multiplier was also studied for BNCT and a gain of 17 was obtained. The fission multiplier system gain was shown to be limited by the neutron absorption in the fuel and the reduction of source brightness. A brief discussion was also given regarding the neutron generator applications for fast neutron brachytherapy and neutron interrogation systems. It was concluded that new designs of compact D-D/D-T neutron generators are feasible and that superior quality neutron beams could be produced and used for various applications.

  7. Compact D-D/D-T neutron generators and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Tak Pui

    2003-05-01

    neutron flux required for positron production could not be provided with a single D-T neutron generator. Therefore, a subcritical fission multiplier was designed to increase the neutron yield. The neutron flux was increased by a factor of 25. A D-D driven fission multiplier was also studied for BNCT and a gain of 17 was obtained. The fission multiplier system gain was shown to be limited by the neutron absorption in the fuel and the reduction of source brightness. A brief discussion was also given regarding the neutron generator applications for fast neutron brachytherapy and neutron interrogation systems. It was concluded that new designs of compact D-D/D-T neutron generators are feasible and that superior quality neutron beams could be produced and used for various applications.

  8. Neutron anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, G.E. [Univ. of Sheffield (United Kingdom)

    1994-12-31

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone.

  9. Electronic Warfare Signature Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronic Warfare Signature Measurement Facility contains specialized mobile spectral, radiometric, and imaging measurement systems to characterize ultraviolet,...

  10. Expressiveness considerations of XML signatures

    DEFF Research Database (Denmark)

    Jensen, Meiko; Meyer, Christopher

    2011-01-01

    more and more challenging. In this paper, we investigate this issue, describing how an attacker can still interfere with Web Services communication even in the presence of XML Signatures. Additionally, we discuss the interrelation of XML Signatures and XML Encryption, focussing on their security......XML Signatures are used to protect XML-based Web Service communication against a broad range of attacks related to man-in-the-middle scenarios. However, due to the complexity of the Web Services specification landscape, the task of applying XML Signatures in a robust and reliable manner becomes...

  11. Expressiveness considerations of XML signatures

    DEFF Research Database (Denmark)

    Jensen, Meiko; Meyer, Christopher

    2011-01-01

    XML Signatures are used to protect XML-based Web Service communication against a broad range of attacks related to man-in-the-middle scenarios. However, due to the complexity of the Web Services specification landscape, the task of applying XML Signatures in a robust and reliable manner becomes...... more and more challenging. In this paper, we investigate this issue, describing how an attacker can still interfere with Web Services communication even in the presence of XML Signatures. Additionally, we discuss the interrelation of XML Signatures and XML Encryption, focussing on their security...

  12. Set signatures and their applications

    Institute of Scientific and Technical Information of China (English)

    WU ChuanKun

    2009-01-01

    There are many constraints In the use of digital signatures. This paper proposes a new way of using digital signatures with some restrictions, i.e. set signatures. It works in such a way that when the signing algorithm Is given, one can use it to create a valid signature on a message if and only if the message belongs to a pre-defined set, and given the information about the signing algorithm, It is computationally Infeasible to create valid signatures on any other arbitrary messages outside of the set. This special property enables the signing algorithm to be made public, which seems to contradict with the traditional signature where a private key Is needed, which must be kept secret. What makes the problem challenging is that the signing algorithm does not reveal the secret signing key, and hence forging normal signatures for arbitrary messages is computationaUy Infeasible. In many cases, the signing algorithm does not reveal the elements in the authorized set. As an application of the new concept, set signatures for intelligent mobile agents committing "smaller than" condition Is studied, which shows the applicability of set signatures on small sets.

  13. Electronic Warfare Signature Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronic Warfare Signature Measurement Facility contains specialized mobile spectral, radiometric, and imaging measurement systems to characterize ultraviolet,...

  14. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator

    Science.gov (United States)

    Andersson, P.; Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S.

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm-1, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful indication

  15. Imaging with Scattered Neutrons

    OpenAIRE

    Ballhausen, H.; Abele, H.; Gaehler, R.; Trapp, M.; Van Overberghe, A.

    2006-01-01

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-re...

  16. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  17. International Neutron Radiography Newsletter

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    At the First World Conference on Neutron Radiography i t was decided to continue the "Neutron Radiography Newsletter", published previously by J.P. Barton, as the "International Neutron Radiography Newsletter" (INRNL), with J.C. Doraanus as editor. The British Journal of Non-Destructive Testing...

  18. Advanced neutron absorber materials

    Science.gov (United States)

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  19. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  20. Forward-Secure Multisignature, Threshold Signature and Blind Signature Schemes

    Directory of Open Access Journals (Sweden)

    Jia Yu

    2010-06-01

    Full Text Available Forward-secure signatures are proposed to tackle the key exposure problem, in which the security of all signatures prior to key leakage is still kept even if the secret key leaks. In this paper, we construct two forward-secure multisignature schemes, one forward-secure threshold signature scheme, and one forward-secure blind signature scheme. Our constructions are based on the recently proposed forward-secure signature scheme from bilinear maps in [11]. Our constructions are very efficient and useful thanks to the elegant structure of the base scheme. Such schemes play an important role in many electronic applications such as cryptographic election systems, digital cash schemes, and e-cheques.

  1. A Secure Threshold Group Signature Scheme

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaoming; Fu Fangwei

    2003-01-01

    The threshold group signature is an important kind of signature. So far, many threshold group signature schemes have been proposed, but most of them suffer from conspiracy attack and are insecure. In this paper, a secure threshold group signature scheme is proposed. It can not only satisfy the properties of the threshold group signature, but also withstand the conspiracy attack

  2. Signatures de l'invisible

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    "Signatures of the Invisible" is an unique collaboration between contemporary artists and contemporary physicists which has the potential to help redefine the relationship between science and art. "Signatures of the Invisible" is jointly organised by the London Institute - the world's largest college of art and design and CERN*, the world's leading particle physics laboratory. 12 leading visual artists:

  3. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  4. Grazing Incidence Neutron Optics

    Science.gov (United States)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  5. Neutron scatter camera

    Science.gov (United States)

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  6. Scalable interrogation: Eliciting human pheromone responses to deception in a security interview setting.

    Science.gov (United States)

    Stedmon, Alex W; Eachus, Peter; Baillie, Les; Tallis, Huw; Donkor, Richard; Edlin-White, Robert; Bracewell, Robert

    2015-03-01

    Individuals trying to conceal knowledge from interrogators are likely to experience raised levels of stress that can manifest itself across biological, physiological, psychological and behavioural factors, providing an opportunity for detection. Using established research paradigms an innovative scalable interrogation was designed in which participants were given a 'token' that represented information they had to conceal from interviewers. A control group did not receive a token and therefore did not have to deceive the investigators. The aim of this investigation was to examine differences between deceivers and truth-tellers across the four factors by collecting data for cortisol levels, sweat samples, heart-rate, respiration, skin temperature, subjective stress ratings and video and audio recordings. The results provided an integrated understanding of responses to interrogation by those actively concealing information and those acting innocently. Of particular importance, the results also suggest, for the first time in an interrogation setting, that stressed individuals may secrete a volatile steroid based marker that could be used for stand-off detection. The findings are discussed in relation to developing a scalable interrogation protocol for future research in this area.

  7. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments

    Science.gov (United States)

    Rodriguez, George; Gilbertson, Steve M.

    2017-01-01

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 μm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor. PMID:28134819

  8. Development of an Optical Fiber Sensor Interrogation System for Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Alfredo Lamberti

    2016-01-01

    Full Text Available Since the introduction of dynamic optical fiber sensor interrogation systems on the market it has become possible to perform vibration measurements at frequencies up to a few kHz. Nevertheless, the use of these sensors in vibration analysis has not become a standard practice yet. This is mainly caused by the fact that interrogators are stand-alone systems which focus on strain measurements while other types of signals are also required for vibration analysis (e.g., force signals. In this paper, we present a fiber Bragg grating (FBG interrogation system that enables accurate strain measurement simultaneously with other signals (e.g., excitation forces. The system is based on a Vertical Cavity Surface Emitting Laser (VCSEL and can easily be assembled with relatively low-cost off-the-shelf components. Dynamic measurements up to a few tens of kHz with a dynamic precision of around 3 nanostrain per square-root Hz can be performed. We evaluate the proposed system on two measurement examples: a steel beam with FBG sensors glued on top and a composite test specimen with a fiber sensor integrated within the material. We show that in the latter case the results of the interrogation system are superior in quality compared to a state-of-the-art commercially available interrogation system.

  9. Advances in neutron tomography

    Indian Academy of Sciences (India)

    W Treimer

    2008-11-01

    In the last decade neutron radiography (NR) and tomography (NCT) have experienced a number of improvements, due to the well-known properties of neutrons interacting with matter, i.e. the low attenuation by many materials, the strong attenuation by hydrogenous constituent in samples, the wavelength-dependent attenuation in the neighbourhood of Bragg edges and due to better 2D neutron detectors. So NR and NCT were improved by sophisticated techniques that are based on the attenuation of neutrons or on phase changes of the associated neutron waves if they pass through structured materials. Up to now the interaction of the neutron spin with magnetic fields in samples has not been applied to imaging techniques despite the fact that it was proposed many years ago. About ten years ago neutron depolarization as imaging signal for neutron radiography or tomography was demonstrated and in principle it works. Now one can present much improved test experiments using polarized neutrons for radiographic imaging. For this purpose the CONRAD instrument of the HMI was equipped with polarizing and analysing benders very similar to conventional scattering experiments using polarized neutrons. Magnetic fields in different coils and in samples (superconductors) at low temperatures could be visualized. In this lecture a summary about standard signals (attenuation) and the more `sophisticated' imaging signals as refraction, small angle scattering and polarized neutrons will be given.

  10. Neutronic Reactor Shield

    Science.gov (United States)

    Fermi, Enrico; Zinn, Walter H.

    The argument of the present Patent is a radiation shield suitable for protection of personnel from both gamma rays and neutrons. Such a shield from dangerous radiations is achieved to the best by the combined action of a neutron slowing material (a moderator) and a neutron absorbing material. Hydrogen is particularly effective for this shield since it is a good absorber of slow neutrons and a good moderator of fast neutrons. The neutrons slowed down by hydrogen may, then, be absorbed by other materials such as boron, cadmium, gadolinium, samarium or steel. Steel is particularly convenient for the purpose, given its effectiveness in absorbing also the gamma rays from the reactor (both primary gamma rays and secondary ones produced by the moderation of neutrons). In particular, in the present Patent a shield is described, made of alternate layers of steel and Masonite (an hydrolized ligno-cellulose material). The object of the present Patent is not discussed in any other published paper.

  11. Sharpening Precision Medicine by a Thorough Interrogation of Metabolic Individuality

    Directory of Open Access Journals (Sweden)

    Kirk Beebe

    2016-01-01

    Full Text Available Precision medicine is an active component of medical practice today, but aspirations are to both broaden its reach to a greater diversity of individuals and improve its “precision” by enhancing the ability to define even more disease states in combination with associated treatments. Given complexity of human phenotypes, much work is required. In this review, we deconstruct this challenge at a high level to define what is needed to move closer toward these aspirations. In the context of the variables that influence the diverse array of phenotypes across human health and disease – genetics, epigenetics, environmental influences, and the microbiome – we detail the factors behind why an individual's biochemical (metabolite composition is increasingly regarded as a key element to precisely defining phenotypes. Although an individual's biochemical (metabolite composition is generally regarded, and frequently shown, to be a surrogate to the phenotypic state, we review how metabolites (and therefore an individual's metabolic profile are also functionally related to the myriad of phenotypic influencers like genetics and the microbiota. We describe how using the technology to comprehensively measure an individual's biochemical profile – metabolomics – is integrative to defining individual phenotypes and how it is currently being deployed in efforts to continue to elaborate on human health and disease in large population studies. Finally, we summarize instances where metabolomics is being used to assess individual health in instances where signatures (i.e. biomarkers have been defined.

  12. Sharpening Precision Medicine by a Thorough Interrogation of Metabolic Individuality.

    Science.gov (United States)

    Beebe, Kirk; Kennedy, Adam D

    2016-01-01

    Precision medicine is an active component of medical practice today, but aspirations are to both broaden its reach to a greater diversity of individuals and improve its "precision" by enhancing the ability to define even more disease states in combination with associated treatments. Given complexity of human phenotypes, much work is required. In this review, we deconstruct this challenge at a high level to define what is needed to move closer toward these aspirations. In the context of the variables that influence the diverse array of phenotypes across human health and disease - genetics, epigenetics, environmental influences, and the microbiome - we detail the factors behind why an individual's biochemical (metabolite) composition is increasingly regarded as a key element to precisely defining phenotypes. Although an individual's biochemical (metabolite) composition is generally regarded, and frequently shown, to be a surrogate to the phenotypic state, we review how metabolites (and therefore an individual's metabolic profile) are also functionally related to the myriad of phenotypic influencers like genetics and the microbiota. We describe how using the technology to comprehensively measure an individual's biochemical profile - metabolomics - is integrative to defining individual phenotypes and how it is currently being deployed in efforts to continue to elaborate on human health and disease in large population studies. Finally, we summarize instances where metabolomics is being used to assess individual health in instances where signatures (i.e. biomarkers) have been defined.

  13. Neutron detectors based on CMOS solid state photomultipliers

    Science.gov (United States)

    Sia, Radia; Christian, James F.; Stapels, Christopher J.; Prettyman, Thomas; Squillante, Michael R.

    2008-08-01

    CMOS solid-state photomultipliers (CMOS-SSPM) are new, potentially very inexpensive, photodetectors that have the promise of supplanting photomultiplier tubes and standard photodiodes for many nuclear radiation detection measurements using scintillator crystals. The compact size and very high gain make SSPMs attractive for use in applications where photomultiplier tubes cannot be used and standard photodiodes have insufficient sensitivity. In this effort, the use of SSPMs was investigated for the detection of neutrons with the goal of designing a detector for portable systems that has the capability of discriminating neutrons from gamma rays. The neutron scintillation signatures were measured using boron-loaded plastic scintillators. Our detector concept design incorporates a dual-scintillator design with both a neutrons sensitive organic scintillator (a boron-loaded gel) and a gamma ray sensitive inorganic scintillator (LYSO). Using this design, the gamma ray signal is suppressed and the neutron events are clearly resolved. The design was modeled to optimize the detection efficiency for both thermal and energetic neutrons. In addition, the detection of thermal neutrons in the presence of gamma rays was examined using the SSPM coupled to Cs2LiYCl6:Ce scintillator (CLYC).

  14. Neutron-antineutron oscillations: Theoretical status and experimental prospects

    Science.gov (United States)

    Phillips, D. G.; Snow, W. M.; Babu, K.; Banerjee, S.; Baxter, D. V.; Berezhiani, Z.; Bergevin, M.; Bhattacharya, S.; Brooijmans, G.; Castellanos, L.; Chen, M.-C.; Coppola, C. E.; Cowsik, R.; Crabtree, J. A.; Das, P.; Dees, E. B.; Dolgov, A.; Ferguson, P. D.; Frost, M.; Gabriel, T.; Gal, A.; Gallmeier, F.; Ganezer, K.; Golubeva, E.; Greene, G.; Hartfiel, B.; Hawari, A.; Heilbronn, L.; Johnson, C.; Kamyshkov, Y.; Kerbikov, B.; Kitaguchi, M.; Kopeliovich, B. Z.; Kopeliovich, V. B.; Kuzmin, V. A.; Liu, C.-Y.; McGaughey, P.; Mocko, M.; Mohapatra, R.; Mokhov, N.; Muhrer, G.; Mumm, H. P.; Okun, L.; Pattie, R. W.; Quigg, C.; Ramberg, E.; Ray, A.; Roy, A.; Ruggles, A.; Sarkar, U.; Saunders, A.; Serebrov, A. P.; Shimizu, H. M.; Shrock, R.; Sikdar, A. K.; Sjue, S.; Striganov, S.; Townsend, L. W.; Tschirhart, R.; Vainshtein, A.; Van Kooten, R.; Wang, Z.; Young, A. R.

    2016-02-01

    The observation of neutrons turning into antineutrons would constitute a discovery of fundamental importance for particle physics and cosmology. Observing the n- n ¯ transition would show that baryon number (B) is violated by two units and that matter containing neutrons is unstable. It would provide a clue to how the matter in our universe might have evolved from the B = 0 early universe. If seen at rates observable in foreseeable next-generation experiments, it might well help us understand the observed baryon asymmetry of the universe. A demonstration of the violation of B- L by 2 units would have a profound impact on our understanding of phenomena beyond the Standard Model of particle physics. Slow neutrons have kinetic energies of a few meV. By exploiting new slow neutron sources and optics technology developed for materials research, an optimized search for oscillations using free neutrons from a slow neutron moderator could improve existing limits on the free oscillation probability by at least three orders of magnitude. Such an experiment would deliver a slow neutron beam through a magnetically-shielded vacuum chamber to a thin annihilation target surrounded by a low-background antineutron annihilation detector. Antineutron annihilation in a target downstream of a free neutron beam is such a spectacular experimental signature that an essentially background-free search is possible. An authentic positive signal can be extinguished by a very small change in the ambient magnetic field in such an experiment. It is also possible to improve the sensitivity of neutron oscillation searches in nuclei using large underground detectors built mainly to search for proton decay and detect neutrinos. This paper summarizes the relevant theoretical developments, outlines some ideas to improve experimental searches for free neutron oscillations, and suggests avenues both for theoretical investigation and for future improvement in the experimental sensitivity.

  15. First measurement of low intensity fast neutron background from rock at the Boulby Underground Laboratory

    CERN Document Server

    Tziaferi, E; Kudryavtsev, V A; Lerner, R; Lightfoot, P K; Paling, S M; Robinson, M; Spooner, N J C

    2006-01-01

    A technique to measure low intensity fast neutron flux has been developed. The design, calibrations, procedure for data analysis and interpretation of the results are discussed in detail. The technique has been applied to measure the neutron background from rock at the Boulby Underground Laboratory, a site used for dark matter and other experiments, requiring shielding from cosmic ray muons. The experiment was performed using a liquid scintillation detector. A 6.1 litre volume stainless steel cell was filled with an in-house made liquid scintillator loaded with Gd to enhance neutron capture. A two-pulse signature (proton recoils followed by gammas from neutron capture) was used to identify the neutron events from much larger gamma background from PMTs. Suppression of gammas from the rock was achieved by surrounding the detector with high-purity lead and copper. Calibrations of the detector were performed with various gamma and neutron sources. Special care was taken to eliminate PMT afterpulses and correlated...

  16. Material Classification by Analysis of Prompt Photon Spectra Induced by 14-Mev Neutrons

    Science.gov (United States)

    Barzilov, Alexander; Novikov, Ivan

    Neutron based technologies are widely used in the field of bulk material analysis. These methods employ characteristic prompt gamma rays induced by a neutron probe for classification of the interrogated object using the elemental parameters extracted from the spectral data. Automatic data analysis and material classification algorithms are required for applications where access to nuclear spectroscopy expertise is limited and/or the autonomous robotic operation is necessary. Data obtained with neutron based systems differ from elemental composition evaluations based on chemical formulae due to statistical nature of nuclear reactions, presence of shielding and cladding, and other environmental conditions. Experimental data that are produced by the spectral decomposition can be expressed graphically as sets of overlapping classes in a multidimensional space of measured elemental intensities. To discriminate between classes of various materials, decision-tree and pattern recognition algorithms were studied. Results of application of these methods to data sets obtained for a pulsed 14-MeV neutron generator based active interrogation system are discussed.

  17. A dual neutron/gamma source for the Fissmat Inspection for Nuclear Detection (FIND) system.

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee (Sandia National Laboratories, Albuquerque, NM); King, Michael; Rossi, Paolo (Sandia National Laboratories, Albuquerque, NM); McDaniel, Floyd Del (Sandia National Laboratories, Albuquerque, NM); Morse, Daniel Henry; Antolak, Arlyn J.; Provencio, Paula Polyak (Sandia National Laboratories, Albuquerque, NM); Raber, Thomas N.

    2008-12-01

    Shielded special nuclear material (SNM) is very difficult to detect and new technologies are needed to clear alarms and verify the presence of SNM. High-energy photons and neutrons can be used to actively interrogate for heavily shielded SNM, such as highly enriched uranium (HEU), since neutrons can penetrate gamma-ray shielding and gamma-rays can penetrate neutron shielding. Both source particles then induce unique detectable signals from fission. In this LDRD, we explored a new type of interrogation source that uses low-energy proton- or deuteron-induced nuclear reactions to generate high fluxes of mono-energetic gammas or neutrons. Accelerator-based experiments, computational studies, and prototype source tests were performed to obtain a better understanding of (1) the flux requirements, (2) fission-induced signals, background, and interferences, and (3) operational performance of the source. The results of this research led to the development and testing of an axial-type gamma tube source and the design/construction of a high power coaxial-type gamma generator based on the {sup 11}B(p,{gamma}){sup 12}C nuclear reaction.

  18. Interrogation in Teacher-Student Interaction in Bahasa Indonesia Learning at Elementary School

    Directory of Open Access Journals (Sweden)

    Akmal Hamsa

    2014-08-01

    Full Text Available Interrogation in Teacher-Student Interaction in Bahasa Indonesia Learning at Elementary School. This study aimed to describe the form, function, and questioning strategies teachers in teacher-student interrogation in Bahasa Indonesia learning in elementary school. Data sourced from four teacher of elementary school, SDN Tamangapa and SD Inpres Tamangapa. Data were obtained by (1 recording, (2 documentation, (3 field notes, (4 interview. The results showed that: (1 the form of questioning the teacher in the teacher-student interaction in Bahasa Indonesia learning in primary schools generally examined the low-level thinking skills, (2 functions of teacher questions are generally intended to check student understanding, and (3 teachers utilize a variety of strategies in addressing student answers correctly and the apparent hesitation. Some disadvantages are indicated teachers in providing interrogation.

  19. An interrogation unit for passive wireless SAW sensors based on fourier transform.

    Science.gov (United States)

    Hamsch, Matthias; Hoffmann, Rene; Buff, Werner; Binhack, Michael; Klett, Stefan

    2004-11-01

    The application of surface acoustic wave (SAW) resonators as sensor elements for different physical parameters such as temperature, pressure, and force has been well-known for several years. The energy storage in the SAW and the direct conversion from physical parameter to a parameter of the wave, such as frequency or phase, enables the construction of a passive sensor that can be interrogated wireless. This paper presents a temperature-measurement system based on passive wireless SAW sensors. The principle of SAW sensors and SAW sensor interrogation is discussed briefly. A new measurement device developed for analyzing the sensor signals is introduced. Compared to former interrogation units that detect resonance frequency of the SAW resonator by comparing amplitudes of sensor response signals related to different stimulating frequencies, the new equipment is able to measure the resonance frequency directly by calculating a Fourier transformation of the resonator response signal. Measurement results of an experimental setup and field tests are presented and discussed.

  20. Signatures of AGN feedback

    Science.gov (United States)

    Wylezalek, Dominika; Zakamska, Nadia L.; MaNGA-GMOS Team

    2017-01-01

    Feedback from actively accreting SMBHs (Active Galactic Nuclei, AGN) is now widely considered to be the main driver in regulating the growth of massive galaxies. Observational proof for this scenario has, however, been hard to come by. Many attempts at finding a conclusive observational proof that AGN may be able to quench star formation and regulate the host galaxies' growth have shown that this problem is highly complex.I will present results from several projects that focus on understanding the power, reach and impact of feedback processes exerted by AGN. I will describe recent efforts in our group of relating feedback signatures to the specific star formation rate in their host galaxies, where our results are consistent with the AGN having a `negative' impact through feedback on the galaxies' star formation history (Wylezalek+2016a,b). Furthermore, I will show that powerful AGN-driven winds can be easily hidden and not be apparent in the integrated spectrum of the galaxy. This implies that large IFU surveys, such as the SDSS-IV MaNGA survey, might uncover many previously unknown AGN and outflows that are potentially very relevant for understanding the role of AGN in galaxy evolution (Wylezalek+2016c)!

  1. Secure mediated certificateless signature scheme

    Institute of Scientific and Technical Information of China (English)

    YANG Chen; MA Wen-ping; WANG Xin-mei

    2007-01-01

    Ju et al proposed a certificateless signature scheme with instantaneous revocation by introducing security mediator (SEM) mechanism. This article presents a detailed cryptoanalysis of this scheme and shows that, in their proposed scheme, once a valid signature has been produced, the signer can recover his private key information and the instantaneous revocation property will be damaged. Furthermore, an improved mediated signature scheme, which can eliminate these disadvantages, is proposed, and security proof of the improved scheme under elliptic curve factorization problem (ECFP) assumption and bilinear computational diffie-hellman problem (BCDH) assumption is also proposed.

  2. A Calibration Method Based on Linear InGaAs in Fiber Grating Sensors Interrogation System

    Institute of Scientific and Technical Information of China (English)

    TAO Jun; ZHANG Xia

    2009-01-01

    In accordance with the characteristics of wavelength shift detection in fiber grating sensor interrogation system, the wavelength interrogation system which uses linear InGaAs as the spectrum receiver is proposed. Orientation of optic spectrum line affects the silt of volume phase grating and size of InGaAs photosensitive unit, thus the calibration method is needed. Based on an analysis of InGaAs imaging model, least square curve fitting method is proposed to detect spectrum wavelength and InGaAs photosensitive unit position. The experimental results show that the methods are effective and the demodulation system precision is improved.

  3. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  4. Prompt Neutron Spectrometry for Identification of SNM in Unknown Shielding Configurations: FY16 ONR YIP Final Report

    Science.gov (United States)

    2016-05-31

    The main technical contributions which arose from this work did not end up taking active interrogation to a grand level, but rather, broke out ...shoulders of the ONR subsidized SeaPerch program, outreach activities for elementary aged schoolchildren, in the form of underwater robotics, impacted more...the responses and more possible solutions. Generally speaking , moderating neutron spectrometers are far from ideal, and it is not uncommon for their

  5. Investigation of Magnetic Signatures and Microstructures for Heat-Treated Ferritic/Martensitic HT-9 Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H.; McCloy, John S.; Ramuhalli, Pradeep; Edwards, Danny J.; Hu, Shenyang Y.; Li, Yulan

    2013-05-01

    There is increased interest in improved methods for in-situ nondestructive interrogation of materials for nuclear reactors in order to ensure reactor safety and quantify material degradation (particularly embrittlement) prior to failure. Therefore, a prototypical ferritic/martensitic alloy, HT-9, of interest to the nuclear materials community was investigated to assess microstructure effects on micromagnetics measurements – Barkhausen noise emission, magnetic hysteresis measurements, and first-order reversal curve analysis – for samples with three different heat-treatments. Microstructural and physical measurements consisted of high-precision density, resonant ultrasound elastic constant determination, Vickers microhardness, grain size, and texture. These were varied in the HT-9 alloy samples and related to various magnetic signatures. In parallel, a meso-scale microstructure model was created for alpha iron and effects of polycrystallinity and demagnetization factor were explored. It was observed that Barkhausen noise emission decreased with increasing hardness and decreasing grain size (lath spacing) while coercivity increased. The results are discussed in terms of the use of magnetic signatures for nondestructive interrogation of radiation damage and other microstructural changes in ferritic/martensitic alloys.

  6. Solution-grown crystals for neutron radiation detectors, and methods of solution growth

    Science.gov (United States)

    Zaitseva, Natalia; Carman, M Leslie; Payne, Steve

    2014-10-28

    An organic crystal according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. Methods of making such crystals are also provided.

  7. Neutron sources and applications

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  8. Superconducting High Resolution Fast-Neutron Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hau, Ionel Dragos [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  9. Initial Semantics for Strengthened Signatures

    Directory of Open Access Journals (Sweden)

    André Hirschowitz

    2012-02-01

    Full Text Available We give a new general definition of arity, yielding the companion notions of signature and associated syntax. This setting is modular in the sense requested by Ghani and Uustalu: merging two extensions of syntax corresponds to building an amalgamated sum. These signatures are too general in the sense that we are not able to prove the existence of an associated syntax in this general context. So we have to select arities and signatures for which there exists the desired initial monad. For this, we follow a track opened by Matthes and Uustalu: we introduce a notion of strengthened arity and prove that the corresponding signatures have initial semantics (i.e. associated syntax. Our strengthened arities admit colimits, which allows the treatment of the λ-calculus with explicit substitution.

  10. Retail applications of signature verification

    Science.gov (United States)

    Zimmerman, Thomas G.; Russell, Gregory F.; Heilper, Andre; Smith, Barton A.; Hu, Jianying; Markman, Dmitry; Graham, Jon E.; Drews, Clemens

    2004-08-01

    The dramatic rise in identity theft, the ever pressing need to provide convenience in checkout services to attract and retain loyal customers, and the growing use of multi-function signature captures devices in the retail sector provides favorable conditions for the deployment of dynamic signature verification (DSV) in retail settings. We report on the development of a DSV system to meet the needs of the retail sector. We currently have a database of approximately 10,000 signatures collected from 600 subjects and forgers. Previous work at IBM on DSV has been merged and extended to achieve robust performance on pen position data available from commercial point of sale hardware, achieving equal error rates on skilled forgeries and authentic signatures of 1.5% to 4%.

  11. Initial Semantics for Strengthened Signatures

    CERN Document Server

    Hirschowitz, André; 10.4204/EPTCS.77.5

    2012-01-01

    We give a new general definition of arity, yielding the companion notions of signature and associated syntax. This setting is modular in the sense requested by Ghani and Uustalu: merging two extensions of syntax corresponds to building an amalgamated sum. These signatures are too general in the sense that we are not able to prove the existence of an associated syntax in this general context. So we have to select arities and signatures for which there exists the desired initial monad. For this, we follow a track opened by Matthes and Uustalu: we introduce a notion of strengthened arity and prove that the corresponding signatures have initial semantics (i.e. associated syntax). Our strengthened arities admit colimits, which allows the treatment of the \\lambda-calculus with explicit substitution.

  12. The DIORAMA Neutron Emitter

    Energy Technology Data Exchange (ETDEWEB)

    Terry, James Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    Emission of neutrons in a given event is modeled by the DioramaEmitterNeutron object, a subclass of the abstract DioramaEmitterModule object. The GenerateEmission method of this object is the entry point for generation of a neutron population for a given event. Shown in table 1, this method requires a number of parameters to be defined in the event definition.

  13. Contract Signature Using Quantum Information

    CERN Document Server

    De Sousa, P B M; Ramos, Rubens Viana; Sousa, Paulo Benicio Melo de

    2006-01-01

    This paper describes how to perform contract signature in a fair way using quantum information. The protocol proposed permits two partners, users of a communication network, to exchange their signatures with non-repudiation. For this, we assume that there is a trustable arbitrator, responsible for the authentication of the signers and that performs a central task in a quantum teleportation protocol of the XOR function between two classical bits.

  14. An arbitrated quantum signature scheme

    CERN Document Server

    Zeng, G; Zeng, Guihua; Keitel, Christoph H.

    2002-01-01

    The general principle for a quantum signature scheme is proposed and investigated based on ideas from classical signature schemes and quantum cryptography. The suggested algorithm is implemented by a symmetrical quantum key cryptosystem and Greenberger-Horne-Zeilinger (GHZ) triplet states and relies on the availability of an arbitrator. We can guarantee the unconditional security of the algorithm, mostly due to the correlation of the GHZ triplet states and the use of quantum one-time pads.

  15. Color signatures in Amorsolo paintings

    Science.gov (United States)

    Soriano, Maricor N.; Palomero, Cherry May; Cruz, Larry; Yambao, Clod Marlan Krister; Dado, Julie Mae; Salvador-Campaner, Janice May

    2010-02-01

    We present the results of a two-year project aimed at capturing quantifiable color signatures of oil paintings of Fernando Amorsolo, the Philippine's first National Artists. Color signatures are found by comparing CIE xy measurements of skin color in portraits and ground, sky and foliage in landscapes. The results are compared with results of visual examination and art historical data as well as works done by Amorsolo's contemporaries and mentors.

  16. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2014-07-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  17. Neutron-emission measurements at a white neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C [Los Alamos National Laboratory

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  18. Temperature-compensated strain measurement of full-scale small aircraft wing structure using low-cost FBG interrogator

    Science.gov (United States)

    Kim, J. H.; Lee, Y. G.; Park, Y.; Kim, C. G.

    2013-04-01

    Recently, health and usage monitoring systems (HUMS) are being studied to monitor the real-time condition of aircrafts during flight. HUMSs can prevent aircraft accidents and reduce inspection time and cost. Fiber Bragg grating (FBG) sensors are widely used for aircraft HUMSs with many advantages such as light weight, small size, easy-multiplexing, and EMI immunity. However, commercial FBG interrogators are too expensive to apply for small aircrafts. Generally the cost of conventional FBG interrogators is over 20,000. Therefore, cost-effective FBG interrogation systems need to be developed for small aircraft HUMSs. In this study, cost-effective low speed FBG interrogator was applied to full-scale small aircraft wing structure to examine the operational applicability of the low speed FBG interrogator to the monitoring of small aircrafts. The cost of the developed low speed FBG interrogator was about 10,000, which is an affordable price for a small aircraft. 10 FBG strain sensors and 1 FBG temperature sensor were installed on the surface of the full-scale wing structure. Load was applied to the tip of the wing structure, and the low speed interrogator detected the change in the center wavelength of the FBG sensors at the sampling rate of 10Hz. To assess the applicability of the low-cost FBG interrogator to full-scale small aircraft wing structure, a temperature-compensated strain measurement algorithm was verified experimentally under various loading conditions of the wing structure with temperature variations.

  19. A Syntactic Bias in Scope Ambiguity Resolution in the Processing of English-French Cardinality Interrogatives: Evidence for Informational Encapsulation

    Science.gov (United States)

    Dekydtspotter, Laurent; Outcalt, Samantha D.

    2005-01-01

    This article presents a reading-time study of scope resolution in the interpretation of ambiguous cardinality interrogatives in English-French and in English and French native sentence processing. Participants were presented with a context, a self-paced segment-by-segment presentation of a cardinality interrogative, and a numerical answer that…

  20. Signature inversion in doubly odd {sup124}La.

    Energy Technology Data Exchange (ETDEWEB)

    Chantler, H. J.; Paul, E. S.; Boston, A. J.; Carpenter, M. P.; Charity, R.; Chiara, C. J.; Choy, P. T. W.; Davids, C. N.; Devlin, M.; Fletcher, A. M.; Fossan, D. B.; Jenkins, D. G.; Kelsall, N. S.; Koike, T.; LaFosse, D. R.; Nolan, P. J.; Sarantites, D. G.; Seweryniak, D.; Smith, J. F.; Starosta, K.; Wadsworth, R.; Wilson, A. N.; Physics; Univ. of Liverpool; Washington Univ.; State Univ. of New York, Stony Brook; Univ. of Manchester; Univ. of York

    2002-07-01

    High-spin states have been studied in neutron-deficient {sup 124}{sub 57}La{sub 67}, populated through the {sup 64}Zn({sup 64}Zn,3pn) reaction at 260 MeV. The Gammasphere {gamma}-ray spectrometer has been used in conjunction with the Microball charged-particle detector, the Neutron Shell, and the Argonne Fragment Mass Analyzer, in order to select evaporation residues of interest. The known band structures have been extended and new bands found. Most of the bands are linked together, allowing more consistent spin and parity assignments. Comparison of band properties to cranking calculations has allowed configuration assignments to be made and includes the first identification of the g{sub 9/2} proton-hole in an odd-odd lanthanum isotope. Two bands have been assigned a {pi}h{sub 11/2}{circle_times}{nu}h{sub 11/2} structure; the yrast one exhibits a signature inversion in its level energies below I=18.5{Dirac_h}, while the excited one exhibits a signature inversion above I=18.5{Dirac_h}.

  1. Interrogation of Patient Smartphone Activity Tracker to Assist Arrhythmia Management.

    Science.gov (United States)

    Rudner, Joshua; McDougall, Carol; Sailam, Vivek; Smith, Monika; Sacchetti, Alfred

    2016-09-01

    A 42-year-old man presented to the emergency department (ED) with newly diagnosed atrial fibrillation of unknown duration. Interrogation of the patient's wrist-worn activity tracker and smartphone application identified the onset of the arrhythmia as within the previous 3 hours, permitting electrocardioversion and discharge of the patient from the ED.

  2. 75 FR 67632 - Defense Federal Acquisition Regulation Supplement; Prohibition on Interrogation of Detainees by...

    Science.gov (United States)

    2010-11-03

    ... Comment'' screen. Please include your name, company name (if any), and ``DFARS Case 2010-D027'' on your... only affects companies that provide intelligence-related services by precluding them from interrogating... to mission success. A lack of compliance affects the perception of both local citizens and the...

  3. Dynamic interrogator for elastic wave sensing using Fabry Perot filters based on fiber Bragg gratings.

    Science.gov (United States)

    Harish, Achar V; Varghese, Bibin; Rao, Babu; Balasubramaniam, Krishnan; Srinivasan, Balaji

    2015-07-01

    Use of in-fiber Fabry-Perot (FP) filters based on fiber Bragg gratings as both sensor as well as an interrogator for enhancing the detection limit of elastic wave sensing is investigated in this paper. The sensitivity of such a demodulation scheme depends on the spectral discrimination of the sensor and interrogator gratings. Simulations have shown that the use of in-fiber FP filters with high finesse provide better performance in terms of sensitivity compared to the demodulation using fiber Bragg gratings. Based on these results, a dynamic interrogator capable of sensing acoustic waves with amplitude of less than 1 micro-strain over frequencies of 10 kHz to several 100 kHz has been implemented. Frequency response of the fiber Bragg gratings in the given experimental setup has been compared to that of the conventional piezo sensors demonstrating that fiber Bragg gratings can be used over a relatively broad frequency range. Dynamic interrogator has been packaged in a compact box without any degradation in its performance.

  4. Development of Forms and Functions of Interrogatives in Children: A Longitudinal Study in Tamil.

    Science.gov (United States)

    Vaidyanathan, R.

    1988-01-01

    Analysis of the development of the forms and functions of interrogatives in Tamil-speaking parent-child interactions during early stages of language acquisition revealed that children first acquired and used intonation questions, followed by questions using "where,""what," and "who." Yes/no questions using the…

  5. The Lawyer in the Dutch Interrogation Room: Influence on Police and Suspect

    NARCIS (Netherlands)

    W-J. Verhoeven (Willem-Jan); L. Stevens (Lonneke)

    2012-01-01

    textabstractIn many European countries, providing a suspect in custody with legal aid before the first police interrogation is a heavily debated issue. In this paper, we report on an exploratory study on the use of coercion by the police and the use of the right to silence by suspects in 70 Dutch ho

  6. French Interrogative Structures: A New Pedagogical Norm for the 21st-Century Classroom

    Science.gov (United States)

    Antes, Theresa A.

    2016-01-01

    This study investigated interrogative structures most frequently used by native speakers of French, in an attempt to reconcile differences between language forms taught in the French as a foreign language classroom and those that are encountered in authentic input. Radio, television, and magazine interviews provided multiple examples of…

  7. Asking for Action or Information? Crosslinguistic Comparison of Interrogative Functions in Early Child Cantonese and Mandarin

    Science.gov (United States)

    Li, Hui; Wong, Eileen Chin Mei; Tse, Shek Kam; Leung, Shing On; Ye, Qianling

    2015-01-01

    Request for information (RfI) is believed to be the universally dominant function of young children's questioning, whereas request for action (RfA) has been reported to be the leading interrogative form used in early child Cantonese. The possibility of crosslinguistic variability prompts further research and comparison with additional languages.…

  8. Scripting, Ritualising and Performing Leadership: Interrogating Recent Policy Developments in Australia

    Science.gov (United States)

    Fitzgerald, Tanya; Savage, Julia

    2013-01-01

    In this article, we argue that leadership of schools is a form of performance that has become ritualised and routinised through the official scripting of policy texts that mandate how leadership of schools should occur. Our interrogation of recent policy scripts in Australia reveals that there is limited scope for leadership in schools to occur as…

  9. Multi-channel monolithic integrated optic fiber Bragg grating sensor interrogator

    Science.gov (United States)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Zongjian

    2011-09-01

    Fiber Bragg grating (FBG) is a mature sensing technology for the measurement of strain, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion. It has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. The most prominent advantages of FBG are: small size and light weight, distributed array of FBG transducers on a single fiber, and immunity to radio frequency interference. However, a major disadvantage of FBG technology is that conventional state-of-the-art FBG interrogation system is typically bulky, heavy, and costly bench top instruments that are typically assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the industrial need for a compact FBG interrogation system, this paper describes recent progress towards the development of miniature fiber Bragg grating sensor interrogator (FBG-Transceiver™) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables monolithic integration of all functionalities, both passive and active, of conventional bench top FBG sensor interrogator system, packaged in a miniaturized, low power operation, 2 cm×5 cm small form factor (SFF) package suitable for long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  10. CEL_INTERROGATOR: A FREE AND OPEN SOURCE PACKAGE FOR AFFYMETRIX CEL FILE PARSING

    Science.gov (United States)

    CEL_Interrogator Package is a suite of programs designed to extract the average probe intensity and other information for each probe sequence from an Affymetrix GeneChip CEL file and unite them with their human-readable Affymetrix consensus sequence names. The resulting text file is suitable for di...

  11. An Evaluation of "Miranda" Rights and Interrogation in Autism Spectrum Disorders

    Science.gov (United States)

    Salseda, Lindsay M.; Dixon, Dennis R.; Fass, Tracy; Miora, Deborah; Leark, Robert A.

    2011-01-01

    The primary deficits present in autism spectrum disorders (ASD) may lead to increased susceptibility to involvement in the criminal justice system. The same deficits may also cause individuals with ASD to be more vulnerable to interrogation techniques and other aspects of the legal system. Due to the increased level of vulnerability as well as…

  12. Bilateral and Unilateral Requests: The Use of Imperatives and "Mi X"? Interrogatives in Italian

    Science.gov (United States)

    Rossi, Giovanni

    2012-01-01

    When making requests, speakers need to select from a range of alternative forms available to them. In a corpus of naturally occurring Italian interaction, the two most common formats chosen are imperatives and interrogative constructions that include a turn-initial dative pronoun "mi" "to/for me", which is referred to as the "Mi X"? format in this…

  13. Miniature and low cost fiber bragg grating interrogator for structural monitoring in nano-satellites

    NARCIS (Netherlands)

    Toet, P.M.; Hagen, R.A.J.; Hakkesteegt, H.C.; Lugtenburg, J.; Maniscalco, M.P.

    2014-01-01

    In this paper we present a newly developed Fiber Optic measurement system, consisting of Fiber Bragg Grating (FBG) sensors and an FBG interrogator. The development of the measuring system is part of the PiezoElectric Assisted Smart Satellite Structure (PEASSS) project, which was initiated at the beg

  14. 76 FR 44282 - Defense Federal Acquisition Regulation Supplement; Prohibition on Interrogation of Detainees by...

    Science.gov (United States)

    2011-07-25

    ... be no additional costs imposed on small businesses. There is no reporting or recordkeeping..., DoD Intelligence Interrogations, Detainee Debriefings, and Tactical Questioning http://www.dtic.mil... FAR 7.503(c)(8) lists ``the direction and control of intelligence and counter-intelligence...

  15. Perspectives on Changes in the Right to Legal Assistance Prior to and During Police Interrogation

    NARCIS (Netherlands)

    W-J. Verhoeven (Willem-Jan)

    2014-01-01

    markdownabstract__Abstract__ The requirement of legal assistance prior to and during police interrogation constitutes one of the major changes in Dutch criminal proceedings during the past years. Legislation, policy, and practice in the Netherlands have been adapted to European case law, including

  16. Signatures of Extended Storage of Used Nuclear Fuel Comprehensive Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-21

    This report serves as a comprehensive overview of the Extended Storage of Used Nuclear Fuel work performed for the Material Protection, Accounting and Control Technologies campaign under the Department of Energy Office of Nuclear Energy. This paper describes a signature based on the source and fissile material distribution found within a population of used fuel assemblies combined with the neutron absorbers found within cask design that is unique to a specific cask with its specific arrangement of fuel. The paper describes all the steps used in producing and analyzing this signature from the beginning to the project end.

  17. Attribute-Based Digital Signature System

    NARCIS (Netherlands)

    Ibraimi, Luan; Asim, Muhammad; Petkovic, Milan

    2011-01-01

    An attribute-based digital signature system comprises a signature generation unit (1) for signing a message (m) by generating a signature (s) based on a user secret key (SK) associated with a set of user attributes, wherein the signature generation unit (1) is arranged for combining the user secret

  18. Attribute-Based Digital Signature System

    NARCIS (Netherlands)

    Ibraimi, L.; Asim, Muhammad; Petkovic, M.

    2011-01-01

    An attribute-based digital signature system comprises a signature generation unit (1) for signing a message (m) by generating a signature (s) based on a user secret key (SK) associated with a set of user attributes, wherein the signature generation unit (1) is arranged for combining the user secret

  19. 1 CFR 18.7 - Signature.

    Science.gov (United States)

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Signature. 18.7 Section 18.7 General Provisions... PREPARATION AND TRANSMITTAL OF DOCUMENTS GENERALLY § 18.7 Signature. The original and each duplicate original... stamped beneath the signature. Initialed or impressed signatures will not be accepted. Documents...

  20. 21 CFR 11.50 - Signature manifestations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Signature manifestations. 11.50 Section 11.50 Food... RECORDS; ELECTRONIC SIGNATURES Electronic Records § 11.50 Signature manifestations. (a) Signed electronic...: (1) The printed name of the signer; (2) The date and time when the signature was executed; and...

  1. APSTNG: Associated particle sealed-tube neutron generator studies for arms control. Final report on NN-20 Project ST220

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, E.; Dickerman, C.E.; Brunner, T.; Hess, A.; Tylinski, S.

    1994-12-01

    Argonne National Laboratory has performed research and development on the use of Associated Particle Sealed-Tube Neutron Generator (APSTNG) technology for treaty verification and non-proliferation applications, under funding from the DOE Office of Nonproliferation and National Security. Results indicate that this technology has significant potential for nondestructively detecting elemental compositions inside inspected objects or volumes. The final phase of this project was placement of an order for commercial procurement of an advanced sealed tube, with its high-voltage supply and control systems. Procurement specifications reflected lessons learned during the study. The APSTNG interrogates a volume with a continuous 14-MeV neutron flux. Each neutron is emitted coincident with an {open_quotes}associated{close_quotes} alpha-particle emitted in the opposite direction. Thus detection of an alpha-particle marks the emission of a neutron in a cone opposite to that defined by the alpha detector. Detection of a gamma ray coincident with the alpha indicates that the gamma was emitted from a neutron-induced reaction inside the neutron cone: the gamma spectra can be used to identify fissionable materials and many isotopes having an atomic number larger than that of boron. The differences in gamma-ray and alpha-particle detection times yield a coarse measurement of the distance along the cone axis from the APSTNG emitter to each region containing the identified nuclide. A position-sensitive alpha detector would permit construction of coarse three-dimensional images. The source and emission-detection systems can be located on the same side of the interrogated volume. The neutrons and gamma rays are highly penetrating. A relatively high signal-to-background ratio allows the use of a relatively small neutron source and conventional electronics.

  2. Simulating realistic predator signatures in quantitative fatty acid signature analysis

    Science.gov (United States)

    Bromaghin, Jeffrey F.

    2015-01-01

    Diet estimation is an important field within quantitative ecology, providing critical insights into many aspects of ecology and community dynamics. Quantitative fatty acid signature analysis (QFASA) is a prominent method of diet estimation, particularly for marine mammal and bird species. Investigators using QFASA commonly use computer simulation to evaluate statistical characteristics of diet estimators for the populations they study. Similar computer simulations have been used to explore and compare the performance of different variations of the original QFASA diet estimator. In both cases, computer simulations involve bootstrap sampling prey signature data to construct pseudo-predator signatures with known properties. However, bootstrap sample sizes have been selected arbitrarily and pseudo-predator signatures therefore may not have realistic properties. I develop an algorithm to objectively establish bootstrap sample sizes that generates pseudo-predator signatures with realistic properties, thereby enhancing the utility of computer simulation for assessing QFASA estimator performance. The algorithm also appears to be computationally efficient, resulting in bootstrap sample sizes that are smaller than those commonly used. I illustrate the algorithm with an example using data from Chukchi Sea polar bears (Ursus maritimus) and their marine mammal prey. The concepts underlying the approach may have value in other areas of quantitative ecology in which bootstrap samples are post-processed prior to their use.

  3. SIGNATURE: A workbench for gene expression signature analysis

    Directory of Open Access Journals (Sweden)

    Chang Jeffrey T

    2011-11-01

    Full Text Available Abstract Background The biological phenotype of a cell, such as a characteristic visual image or behavior, reflects activities derived from the expression of collections of genes. As such, an ability to measure the expression of these genes provides an opportunity to develop more precise and varied sets of phenotypes. However, to use this approach requires computational methods that are difficult to implement and apply, and thus there is a critical need for intelligent software tools that can reduce the technical burden of the analysis. Tools for gene expression analyses are unusually difficult to implement in a user-friendly way because their application requires a combination of biological data curation, statistical computational methods, and database expertise. Results We have developed SIGNATURE, a web-based resource that simplifies gene expression signature analysis by providing software, data, and protocols to perform the analysis successfully. This resource uses Bayesian methods for processing gene expression data coupled with a curated database of gene expression signatures, all carried out within a GenePattern web interface for easy use and access. Conclusions SIGNATURE is available for public use at http://genepattern.genome.duke.edu/signature/.

  4. Neutron threshold activation detectors (TAD) for the detection of fissions

    Science.gov (United States)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  5. Measuring neutron star tidal deformability with Advanced LIGO: black hole - neutron star binaries

    Science.gov (United States)

    Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald

    2017-01-01

    The pioneering observations of gravitational waves (GW) by Advanced LIGO have ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observations, of which black hole - neutron star (BHNS) binaries form an important subset. GWs from coalescing BHNS systems carry signatures of the tidal distortion of the neutron star by its companion black hole during inspiral, as well as of its disruption close to merger. In this talk, I will discuss how well we can measure tidal effects from individual and populations of LIGO observations of disruptive BHNS mergers. I will also talk about how our measurements of non-tidal parameters can get affected by ignoring tidal effects in BHNS parameter estimation.

  6. Police training in interviewing and interrogation methods: A comparison of techniques used with adult and juvenile suspects.

    Science.gov (United States)

    Cleary, Hayley M D; Warner, Todd C

    2016-06-01

    Despite empirical progress in documenting and classifying various interrogation techniques, very little is known about how police are trained in interrogation methods, how frequently they use various techniques, and whether they employ techniques differentially with adult versus juvenile suspects. This study reports the nature and extent of formal (e.g., Reid Technique, PEACE, HUMINT) and informal interrogation training as well as self-reported technique usage in a diverse national sample (N = 340) of experienced American police officers. Officers were trained in a variety of different techniques ranging from comparatively benign pre-interrogation strategies (e.g., building rapport, observing body language or speech patterns) to more psychologically coercive techniques (e.g., blaming the victim, discouraging denials). Over half the sample reported being trained to use psychologically coercive techniques with both adults and juveniles. The majority (91%) receive informal, "on the job" interrogation training. Technique usage patterns indicate a spectrum of psychological intensity where information-gathering approaches were used most frequently and high-pressure tactics less frequently. Reid-trained officers (56%) were significantly more likely than officers without Reid training to use pre-interrogation and manipulation techniques. Across all analyses and techniques, usage patterns were identical for adult and juvenile suspects, suggesting that police interrogate youth in the same manner as adults. Overall, results suggest that training in specific interrogation methods is strongly associated with usage. Findings underscore the need for more law enforcement interrogation training in general, especially with juvenile suspects, and highlight the value of training as an avenue for reducing interrogation-induced miscarriages of justice. (PsycINFO Database Record

  7. 论开放式侦讯%Talking about the opening of investigation and interrogation

    Institute of Scientific and Technical Information of China (English)

    陈闻高

    2012-01-01

    The author was compared the opening of investigation and interrogation between the China and the Europe, probed into the motives" psychological cause and the target of the opening of investigation and interrogation between the China and the Europe, set forth the role action of the opening of investigation and interrogation. At last, the author was put forward to the mutual replenish of the opening of investigation and interrogation or the closing of investigation and interrogation.%开放式侦讯这种技巧,是侦查员设定一些看似没有边界的话题,充分调动疑犯积极陈述,从而广泛收集信息,暗中查清案情的讯问方法。比较中欧开放式侦讯所属技能范畴的差异,追寻它们各自不同的内在动因和价值目标。结合专题研讨班的培训情况,讨论模拟开放式侦讯中的角色扮演及其问题。论述开放式侦讯与封闭式侦讯的互补关系。结论认为,应该将两类技能结合起来,取长补短地进行研究与学习,才能真正地提升侦讯活动的质量。

  8. Significance analysis of prognostic signatures.

    Directory of Open Access Journals (Sweden)

    Andrew H Beck

    Full Text Available A major goal in translational cancer research is to identify biological signatures driving cancer progression and metastasis. A common technique applied in genomics research is to cluster patients using gene expression data from a candidate prognostic gene set, and if the resulting clusters show statistically significant outcome stratification, to associate the gene set with prognosis, suggesting its biological and clinical importance. Recent work has questioned the validity of this approach by showing in several breast cancer data sets that "random" gene sets tend to cluster patients into prognostically variable subgroups. This work suggests that new rigorous statistical methods are needed to identify biologically informative prognostic gene sets. To address this problem, we developed Significance Analysis of Prognostic Signatures (SAPS which integrates standard prognostic tests with a new prognostic significance test based on stratifying patients into prognostic subtypes with random gene sets. SAPS ensures that a significant gene set is not only able to stratify patients into prognostically variable groups, but is also enriched for genes showing strong univariate associations with patient prognosis, and performs significantly better than random gene sets. We use SAPS to perform a large meta-analysis (the largest completed to date of prognostic pathways in breast and ovarian cancer and their molecular subtypes. Our analyses show that only a small subset of the gene sets found statistically significant using standard measures achieve significance by SAPS. We identify new prognostic signatures in breast and ovarian cancer and their corresponding molecular subtypes, and we show that prognostic signatures in ER negative breast cancer are more similar to prognostic signatures in ovarian cancer than to prognostic signatures in ER positive breast cancer. SAPS is a powerful new method for deriving robust prognostic biological signatures from clinically

  9. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  10. Development of Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Lee, J. S.; Seong, B. S. (and others)

    2007-06-15

    Neutron spectrometers which are used in the basic researches such as physics, chemistry and materials science and applied in the industry were developed at the horizontal beam port of HANARO reactor. In addition, the development of core components for neutron scattering and the upgrade of existing facilities are also performed. The vertical neutron reflectometer was fabricated and installed at ST3 beam port. The performance test of the reflectometer was completed and the reflectometer was opened to users. The several core parts and options were added in the polarized neutron spectrometer. The horizontal neutron reflectometer from Brookhaven National Laboratory was moved to HANARO and installed, and the performance of the reflectometer was examined. The HIPD was developed and the performance test was completed. The base shielding for TAS was fabricated. The soller collimator, Cu mosaic monochromator, Si BPC monochromator and position sensitive detector were developed and applied in the neutron spectrometer as part of core component development activities. In addition, the sputtering machine for mirror device are fabricated and the neutron mirror is made using the sputtering machine. The FCD was upgraded and the performance of the FCD are improved over the factor of 10. The integration and upgrade of the neutron detection system were also performed.

  11. Neutron Star Matter

    CERN Document Server

    Wambach, Jochen

    2013-01-01

    In this presentation I discuss two aspects of the neutron-matter equation of state. One relates to the symmetry energy of nuclear matter and empirical constraints on its slope parameter at saturation density. The second deals with spatially inhomogeneous chiral phases of deconfined quark matter in the inner core of a neutron star.

  12. Neutron Multiplicity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Frame, Katherine Chiyoko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-28

    Neutron multiplicity measurements are widely used for nondestructive assay (NDA) of special nuclear material (SNM). When combined with isotopic composition information, neutron multiplicity analysis can be used to estimate the spontaneous fission rate and leakage multiplication of SNM. When combined with isotopic information, the total mass of fissile material can also be determined. This presentation provides an overview of this technique.

  13. Neutron capture therapies

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  14. Neutron capture therapies

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.

    1999-11-02

    In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  15. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  16. THERMAL NEUTRON BACKSCATTER IMAGING.

    Energy Technology Data Exchange (ETDEWEB)

    VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

    2004-10-16

    Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

  17. Pocked surface neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  18. Neutron stars - General review

    Science.gov (United States)

    Cameron, A. G. W.; Canuto, V.

    1974-01-01

    A review is presented of those properties of neutron stars upon which there is general agreement and of those areas which currently remain in doubt. Developments in theoretical physics of neutron star interiors are summarized with particular attention devoted to hyperon interactions and the structure of interior layers. Determination of energy states and the composition of matter is described for successive layers, beginning with the surface and proceeding through the central region into the core. Problems encountered in determining the behavior of matter in the ultra-high density regime are discussed, and the effects of the magnetic field of a neutron star are evaluated along with the behavior of atomic structures in the field. The evolution of a neutron star is outlined with discussion centering on carbon detonation, cooling, vibrational damping, rotation, and pulsar glitches. The role of neutron stars in cosmic-ray propagation is considered.

  19. Signature molecular descriptor : advanced applications.

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Donald Patrick, Jr. (Tennessee Technological University, Cookeville, TN)

    2010-04-01

    In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report

  20. Fast Neutron Detection Using Pixelated CdZnTe Spectrometers

    Science.gov (United States)

    Streicher, Michael; Goodman, David; Zhu, Yuefeng; Brown, Steven; Kiff, Scott; He, Zhong

    2017-07-01

    Fast neutrons are an important signature of special nuclear materials (SNMs). They have a low natural background rate and readily penetrate high atomic number materials that easily shield gamma-ray signatures. Therefore, they provide a complementary signal to gamma rays for detecting shielded SNM. Scattering kinematics dictate that a large nucleus (such as Cd or Te) will recoil with small kinetic energy after an elastic collision with a fast neutron. Charge carrier recombination and quenching further reduce the recorded energy deposited. Thus, the energy threshold of CdZnTe detectors must be very low in order to sense the small signals from these recoils. In this paper, the threshold was reduced to less than 5 keVee to demonstrate that the 5.9-keV X-ray line from 55Fe could be separated from electronic noise. Elastic scattering neutron interactions were observed as small energy depositions (less than 20 keVee) using digitally sampled pulse waveforms from pixelated CdZnTe detectors. Characteristic gamma-ray lines from inelastic neutron scattering were also observed.

  1. Replacing a 252Cf source with a neutron generator in a shuffler - a conceptual design performed with MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Schear, Melissa A [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory

    2009-01-01

    The {sup 252}Cf shuffler has been widely used in nuclear safeguards and radioactive waste management to assay fissile isotopes, such as {sup 235}U or {sup 239}Pu, present in a variety of samples, ranging from small cans of uranium waste to metal samples weighing several kilograms. Like other non-destructive assay instruments, the shuffler uses an interrogating neutron source to induce fissions in the sample. Although shufflers with {sup 252}Cf sources have been reliably used for several decades, replacing this isotopic source with a neutron generator presents some distinct advantages. Neutron generators can be run in a continuous or pulsed mode, and may be turned off, eliminating the need for shielding and a shuffling mechanism in the shuffler. There is also essentially no dose to personnel during installation, and no reliance on the availability of {sup 252}Cf. Despite these advantages, the more energetic neutrons emitted from the neutron generator (141 MeV for D-T generators) present some challenges for certain material types. For example when the enrichment of a uranium sample is unknown, the fission of {sup 238}U is generally undesirable. Since measuring uranium is one of the main uses of a shuffler, reducing the delayed neutron contribution from {sup 238}U is desirable. Hence, the shuffler hardware must be modified to accommodate a moderator configuration near the source to tailor the interrogating spectrum in a manner which promotes sub-threshold fissions (below 1 MeV) but avoids the over-moderation of the interrogating neutrons so as to avoid self-shielding. In this study, where there are many material and geometry combinations, the Monte Carlo N-Particle eXtended (MCNPX) transport code was used to model, design, and optimize the moderator configuration within the shuffler geometry. The code is then used to evaluate and compare the assay performances of both the modified shuffler and the current {sup 252}Cf shuffler designs for different test samples. The

  2. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    Energy Technology Data Exchange (ETDEWEB)

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  3. Time-resolved Neutron-gamma-ray Data Acquisition for in Situ Subsurface Planetary Geochemistry

    Science.gov (United States)

    Bodnarik, Julie G.; Burger, Dan Michael; Burger, A.; Evans, L. G.; Parsons, A. M.; Schweitzer, J. S.; Starr R. D.; Stassun, K. G.

    2013-01-01

    The current gamma-ray/neutron instrumentation development effort at NASA Goddard Space Flight Center aims to extend the use of active pulsed neutron interrogation techniques to probe the subsurface elemental composition of planetary bodies in situ. Previous NASA planetary science missions, that used neutron and/or gamma-ray spectroscopy instruments, have relied on neutrons produced from galactic cosmic rays. One of the distinguishing features of this effort is the inclusion of a high intensity 14.1 MeV pulsed neutron generator synchronized with a custom data acquisition system to time each event relative to the pulse. With usually only one opportunity to collect data, it is difficult to set a priori time-gating windows to obtain the best possible results. Acquiring time-tagged, event-by-event data from nuclear induced reactions provides raw data sets containing channel/energy, and event time for each gamma ray or neutron detected. The resulting data set can be plotted as a function of time or energy using optimized analysis windows after the data are acquired. Time windows can now be chosen to produce energy spectra that yield the most statistically significant and accurate elemental composition results that can be derived from the complete data set. The advantages of post-processing gamma-ray time-tagged event-by-event data in experimental tests using our prototype instrument will be demonstrated.

  4. Optical polarizing neutron devices designed for pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, M.; Kurahashi, K.; Endoh, Y. [Tohoku Univ, Sendai (Japan); Itoh, S. [National Lab. for High Energy Physics, Tsukuba (Japan)

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  5. Binary neutron star merger simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bruegmann, Bernd [Jena Univ. (Germany)

    2016-11-01

    Our research focuses on the numerical tools necessary to solve Einstein's equations. In recent years we have been particularly interested in spacetimes consisting of two neutron stars in the final stages of their evolution. Because of the emission of gravitational radiation, the objects are driven together to merge; the emitted gravitational wave signal is visualized. This emitted gravitational radiation carries energy and momentum away from the system and contains information about the system. Late last year the Laser Interferometer Gravitational-wave Observatory (LIGO) began searches for these gravitational wave signals at a sensitivity at which detections are expected. Although such systems can radiate a significant amount of their total mass-energy in gravitational waves, the gravitational wave signals one expects to receive on Earth are not strong, since sources of gravitational waves are often many millions of light years away. Therefore one needs accurate templates for the radiation one expects from such systems in order to be able to extract them out of the detector's noise. Although analytical models exist for compact binary systems when the constituents are well separated, we need numerical simulation to investigate the last orbits before merger to obtain accurate templates and validate analytical approximations. Due to the strong nonlinearity of the equations and the large separation of length scales, these simulations are computationally demanding and need to be run on large supercomputers. When matter is present the computational cost as compared to pure black hole (vacuum) simulations increases even more due to the additional matter fields. But also more interesting astrophysical phenomena can happen. In fact, there is the possibility for a strong electromagnetic signal from the merger (e.g., a short gamma-ray burst or lower-energy electromagnetic signatures from the ejecta) and significant neutrino emission. Additionally, we can expect that

  6. Fail-safe neutron shutter used for thermal neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, R.D.; Morris, R.A.

    1976-11-01

    A fail-safe, reliable, easy-to-use neutron shutter was designed, built, and put into operation at the Omega West Reactor, Los Alamos Scientific Laboratory. The neutron shutter will be used primarily to perform thermal neutron radiography, but is also available for a highly collimated source of thermal neutrons (neutron flux = 3.876 x 10/sup 6/ (neutrons)/(cm/sup 2/.s)). Neutron collimator sizes of either 10.16 by 10.16 cm or 10.16 by 30.48 cm are available.

  7. Signature Visualization of Software Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  8. Predicting the Development of Interrogative Forms and Functions in Early Years: A Corpus-Based Study of Mandarin-Speaking Young Children

    Science.gov (United States)

    Li, Hui; Jing, Mengguo; Wong, Eileen Chin Mei

    2017-01-01

    This study examined the development of and possible predictors of interrogative forms and functions in early childhood Mandarin. All the interrogatives drawn from the Early Child Mandarin Corpus (168 children 2;6, 3;6, 4;6, and 5;6) were analyzed. The main results indicated that (i) there were significant age effects in interrogative forms and…

  9. Persuasion Model in Investigation and Interrogation%论侦查讯问中的说服模型

    Institute of Scientific and Technical Information of China (English)

    毕学智

    2011-01-01

    To certain extent,investigation and interrogation could be regarded as a special process of persuading.The persuasion model of social psychology analyzed the whole process of persuading from the angle of broadcasting,which has great significance for making the suspect change their refusal attitudes.Similarly,the investigation and interrogation could construct the persuasion model which accords with its characteristic,and among its constructing elements,the interrogator,the information of interrogation,the object of interrogation,and the circumstance of interrogation play the important role in the persuasion effect of investigation and interrogation.%在一定程度上,侦查讯问可以被视作是一种特殊的说服过程。社会心理学上的说服模型从传播的角度全面分析了整个说服过程,它对侦查讯问中促使犯罪嫌疑人改变拒供态度具有很重要的借鉴意义。侦查讯问中同样可以构建出符合其自身特点的说服模型,其构成要素中的讯问者、讯问信息、讯问对象、讯问情境对讯问的说服效果有着非常重要的影响作用。

  10. Investigation of active interrogation techniques to detect special nuclear material in maritime environments: Boarded search of a cargo container ship

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Brandon R., E-mail: groganbr@ornl.gov; Henkel, James J.; Johnson, Jeffrey O.; Mihalczo, John T.; Miller, Thomas M.; Patton, Bruce W.

    2013-12-01

    The detonation of a terrorist nuclear weapon in the United States would result in the massive loss of life and grave economic damage. Even if a device was not detonated, its known or suspected presence aboard a cargo container ship in a U.S. port would have major economic and political consequences. One possible means to prevent this threat would be to board a ship at sea and search for the device before it reaches port. The scenario considered here involves a small Coast Guard team with strong intelligence boarding a container ship to search for a nuclear device. Using active interrogation, the team would nonintrusively search a block of shipping containers to locate the fissile material. Potential interrogation source and detector technologies for the team are discussed. The methodology of the scan is presented along with a technique for calculating the required interrogation source strength using computer simulations. MCNPX was used to construct a computer model of a container ship, and several search scenarios were simulated. The results of the simulations are presented in terms of the source strength required for each interrogation scenario. Validation measurements were performed in order to scale these simulation results to expected performance. Interrogations through the short (2.4 m) axis of a standardized shipping container appear to be feasible given the entire range of container loadings tested. Interrogations through several containers at once or a single container through its long (12.2 m) axis do not appear to be viable with a portable interrogation system.

  11. A national epidemiological study investigating risk factors for police interrogation and false confession among juveniles and young persons.

    Science.gov (United States)

    Gudjonsson, Gisli H; Sigurdsson, Jon Fridrik; Sigfusdottir, Inga Dora; Asgeirsdottir, Bryndis Bjork; González, Rafael A; Young, Susan

    2016-03-01

    The principal aims of this study are to identify risk factors associated with police arrest and false confessions and to investigate whether the severity of the ADHD condition/symptoms increases the risk. 22,226 young persons in Iceland anonymously completed self-report questionnaires screening for conduct disorder and ADHD. In addition, they stated whether they had a diagnosis of ADHD and had received ADHD medication, and their history of offending, police interrogation and false confession. Participants were stratified into two age groups, 14-16 and 17-24 years. The older group was significantly more likely to have been interrogated by the police but the younger group were much more vulnerable to false confession during interrogation. Males were more likely to be at risk for both than females. The severity of the ADHD condition increased the risk of both interrogation and false confession. Negative binomial regressions showed that age, gender, conduct disorder, offending, and ADHD symptoms were all significant predictors of both interrogations and number of false confessions. Conduct disorder was the single best predictor of police interrogation, but the findings were more mixed regarding false confessions. Young people presenting with a combination of severe ADHD and comorbid conduct disorder had the worst outcome for both interrogation and false confessions. The findings endorse the need for support of persons with ADHD to be put in place to ensure fair due process and to prevent miscarriages of justice.

  12. A Signature Scheme with Non-Repudiation

    Institute of Scientific and Technical Information of China (English)

    XIN Xiangjun; GUO Xiaoli; XIAO Guozhen

    2006-01-01

    Based on the Schnorr signature scheme, a new signature scheme with non-repudiation is proposed. In this scheme, only the signer and the designated receiver can verify the signature signed by the signer, and if necessary, both the signer and the designated receiver can prove and show the validity of the signature signed by the signer. The proof of the validity of the signature is noninteractive and transferable. To verify and prove the validity of the signature, the signer and the nominated receiver needn't store extra information besides the signature. At the same time, neither the signer nor the designated receiver can deny a valid signature signed. Then, there is no repudiation in this new signature scheme. According to the security analysis of this scheme, it is found the proposed scheme is secure against existential forgery on adaptive chosen message attack.

  13. A single-shot nanosecond neutron pulsed technique for the detection of fissile materials

    Science.gov (United States)

    Gribkov, V.; Miklaszewski, R. A.; Chernyshova, M.; Scholz, M.; Prokopovicz, R.; Tomaszewski, K.; Drozdowicz, K.; Wiacek, U.; Gabanska, B.; Dworak, D.; Pytel, K.; Zawadka, A.

    2012-07-01

    A novel technique with the potential of detecting hidden fissile materials is presented utilizing the interaction of a single powerful and nanosecond wide neutron pulse with matter. The experimental system is based on a Dense Plasma Focus (DPF) device as a neutron source generating pulses of almost mono-energetic 2.45 MeV and/or 14.0 MeV neutrons, a few nanoseconds in width. Fissile materials, consisting of heavy nuclei, are detected utilizing two signatures: firstly by measuring those secondary fission neutrons which are faster than the elastically scattered 2.45 MeV neutrons of the D-D reaction in the DPF; secondly by measuring the pulses of the slower secondary fission neutrons following the pulse of the fast 14 MeV neutrons from the D-T reaction. In both cases it is important to compare the measured spectrum of the fission neutrons induced by the 2.45 MeV or 14 MeV neutron pulse of the DPF with theoretical spectra obtained by mathematical simulation. Therefore, results of numerical modelling of the proposed system, using the MCNP5 and the FLUKA codes are presented and compared with experimental data.

  14. An Improved Proxy Multi-Signature Scheme

    Institute of Scientific and Technical Information of China (English)

    GU Li-ze; ZHANG Sheng; YANG Yi-xian

    2005-01-01

    Based on the Kim-like's proxy multi-signature scheme[1],an improved proxy multi-signature scheme is proposed.The new scheme overcomes the two problems in the Kim-like's proxy multi-signature scheme:(1)Security issue(every original signer can forge a valid proxy multi-signature for any message);(2)Efficiency issue(both the size of the proxy multi-signature and the efficiency of signature checking are dependent on the number of the original signers).

  15. Verifiably Encrypted Signatures Without Random Oracles

    Institute of Scientific and Technical Information of China (English)

    LI Xiang-xue; CHEN Ke-fei; LIU Sheng-li; LI Shi-qun

    2006-01-01

    Verifiably encrypted signatures are employed when a signer wants to sign a message for a verifier but does not want the verifier to possess his signature on the message until some certain requirements of his are satisfied. This paper presented new verifiably encrypted signatures from bilinear pairings. The proposed signatures share the properties of simplicity and efficiency with existing verifiably encrypted signature schemes. To support the proposed scheme, it also exhibited security proofs that do not use random oracle assumption. For existential unforgeability, there exist tight security reductions from the proposed verifiably encrypted signature scheme to a strong but reasonable computational assumption.

  16. Neutron scattering in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Barocchi, F. [Florence Univ. (Italy). Ist. di Fisica

    1996-12-31

    Together with X-rays, thermal neutrons are the ideal probe to study the microscopic structure of condensed matter, however the precision attainable usually with neutrons for the measurement of atomic position correlation functions in liquids is, at least, one order of magnitude better than for X-rays. In order to measure properly the microscopic dynamics a wide range of momentum transfer with corresponding energy transfer must be available in the range of liquid state excitations. This again is only attainable, with good resolution, with neutrons. (author) 7 figs., 3 refs.

  17. Neutrons in soft matter

    CERN Document Server

    Imae, Toyoko; Furusaka, Michihiro; Torikai, Naoya

    2011-01-01

    Neutron and synchrotron facilities, which are beyond the scale of the laboratory, and supported on a national level in countries throughout the world.  These tools for probing micro- and nano-structure research and on fast dynamics research of atomic location in materials have been key in the development of new polymer-based materials. Different from several existing professional books on neutron science, this book focuses on theory, instrumentation, an applications. The book is divided into five parts: Part 1 describes the underlying theory of neutron scattering. Part 2 desc

  18. Fast and reliable interrogation of USFBG sensors based on MG-Y laser discrete wavelength channels

    Science.gov (United States)

    Rohollahnejad, Jalal; Xia, Li; Cheng, Rui; Ran, Yanli; Su, Lei

    2017-01-01

    In this letter, we propose to use discrete wavelength channels of a single chip MG-Y laser to interrogate an ultra-short fiber Bragg grating with a wide Gaussian spectrum. The broadband Gaussian spectrum of USFBG is sampled by the wavelength channels of MG-Y laser, through which the center of the spectrum. The measurement inherits the important features of a common tunable laser interrogation technique, namely its high flexibility, natural insensitivity to intensity variations relative to common intensity-based approaches. While for traditional tunable laser methods, it requires to sweep the whole spectrum to obtain the center wavelength of the spectrum, for the proposed scheme, just a few discrete wavelength channels of laser are needed to be acquired, which leads to significant improvements of the efficiency and measurement speed. This reliable and low cost concept could offer the good foundation for USFBGs future applications in large scale distributed measurements, especially in time domain multiplexing scheme.

  19. Resolution limits of extrinsic Fabry-Perot interferometric displacement sensors utilizing wavelength scanning interrogation.

    Science.gov (United States)

    Ushakov, Nikolai; Liokumovich, Leonid

    2014-08-10

    The factors limiting the resolution of displacement sensors based on the extrinsic Fabry-Perot interferometer were studied. An analytical model giving the dependency of extrinsic Fabry-Perot interferometric (EFPI) resolution on the parameters of an optical setup and a sensor interrogator was developed. The proposed model enables one to either estimate the limit of possible resolution achievable with a given setup, or derive the requirements for optical elements and/or a sensor interrogator necessary for attaining the desired sensor resolution. An experiment supporting the analytical derivations was performed, demonstrating a large dynamic measurement range (with cavity length from tens of microns to 5 mm), a high baseline resolution (from 14 pm), and good agreement with the model.

  20. Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, I. V.; Doronina-Amitonova, L. V. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Kurchatov Institute National Research Center, Moscow (Russian Federation); Sidorov-Biryukov, D. A.; Fedotov, A. B. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Anokhin, K. V. [Kurchatov Institute National Research Center, Moscow (Russian Federation); P.K. Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow (Russian Federation); Kilin, S. Ya. [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Sakoda, K. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zheltikov, A. M. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Center of Photochemistry, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 117421 (Russian Federation)

    2014-02-24

    Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

  1. How factors present during the immediate interrogation situation produce short-sighted confession decisions.

    Science.gov (United States)

    Madon, Stephanie; Yang, Yueran; Smalarz, Laura; Guyll, Max; Scherr, Kyle C

    2013-02-01

    Suspects have a preexisting vulnerability to make short-sighted confession decisions, giving disproportionate weight to proximal, rather than distal, consequences. The findings of the current research provided evidence that this preexisting vulnerability is exacerbated by factors that are associated with the immediate interrogation situation. In Experiment 1 (N = 118), a lengthy interview exacerbated participants' tendency to temporally discount a distal consequence when deciding whether or not to admit to criminal and unethical behaviors. This effect was especially pronounced among less serious behaviors. In Experiment 2 (N = 177), participants' tendency to temporally discount a distal consequence when making admission decisions was exacerbated by the expectation of a lengthy interview; an effect that became stronger the longer the interview continued. These findings suggest that conditions of the immediate interrogation situation may capitalize on an already-present vulnerability among suspects to make short-sighted confession decisions, thereby increasing the chances that even innocent suspects might confess.

  2. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome.

    Science.gov (United States)

    Kroeze, Wesley K; Sassano, Maria F; Huang, Xi-Ping; Lansu, Katherine; McCorvy, John D; Giguère, Patrick M; Sciaky, Noah; Roth, Bryan L

    2015-05-01

    G protein-coupled receptors (GPCRs) are essential mediators of cellular signaling and are important targets of drug action. Of the approximately 350 nonolfactory human GPCRs, more than 100 are still considered to be 'orphans' because their endogenous ligands remain unknown. Here, we describe a unique open-source resource that allows interrogation of the druggable human GPCRome via a G protein-independent β-arrestin-recruitment assay. We validate this unique platform at more than 120 nonorphan human GPCR targets, demonstrate its utility for discovering new ligands for orphan human GPCRs and describe a method (parallel receptorome expression and screening via transcriptional output, with transcriptional activation following arrestin translocation (PRESTO-Tango)) for the simultaneous and parallel interrogation of the entire human nonolfactory GPCRome.

  3. The Interrogative Model of Inquiry and Computer-Supported Collaborative Learning

    Science.gov (United States)

    Hakkarainen, Kai; Sintonen, Matti

    The purpose of the study was to examine how the Interrogative Modelof Inquiry (I-Model), developed by Jaakko Hintikka and Matti Sintonenfor the purposes of epistemology and philosophy of science, could be applied to analyze elementary schoolstudents'' process of inquiry in computer-supported learning. We review the basic assumptions of I-Model,report results of empirical investigation of the model in the context of computer-supportedcollaborative learning, and discuss pedagogical implications of the model. The results of the studyfurnished evidence that elementary school students were able to transform initially vagueexplanation-seeking question to a series of more specific subordinate questions while pursuing theirknowledge-seeking inquiry. The evidence presented indicates that, in an appropriate environment, it is entirelypossible for young students, with computer-supportfor collaborative learning, to engage in sophisticatedknowledge seeking analogous to scientific inquiry. We argue that the interrogative approach to inquiry canproductively be applied for conceptualizing inquiry in the context of computer-supported learning.

  4. Causal Interrogation of Neuronal Networks and Behavior through Virally Transduced Ivermectin Receptors.

    Science.gov (United States)

    Obenhaus, Horst A; Rozov, Andrei; Bertocchi, Ilaria; Tang, Wannan; Kirsch, Joachim; Betz, Heinrich; Sprengel, Rolf

    2016-01-01

    The causal interrogation of neuronal networks involved in specific behaviors requires the spatially and temporally controlled modulation of neuronal activity. For long-term manipulation of neuronal activity, chemogenetic tools provide a reasonable alternative to short-term optogenetic approaches. Here we show that virus mediated gene transfer of the ivermectin (IVM) activated glycine receptor mutant GlyRα1 (AG) can be used for the selective and reversible silencing of specific neuronal networks in mice. In the striatum, dorsal hippocampus, and olfactory bulb, GlyRα1 (AG) promoted IVM dependent effects in representative behavioral assays. Moreover, GlyRα1 (AG) mediated silencing had a strong and reversible impact on neuronal ensemble activity and c-Fos activation in the olfactory bulb. Together our results demonstrate that long-term, reversible and re-inducible neuronal silencing via GlyRα1 (AG) is a promising tool for the interrogation of network mechanisms underlying the control of behavior and memory formation.

  5. Unique proteomic signatures distinguish macrophages and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Lev Becker

    Full Text Available Monocytes differentiate into heterogeneous populations of tissue macrophages and dendritic cells (DCs that regulate inflammation and immunity. Identifying specific populations of myeloid cells in vivo is problematic, however, because only a limited number of proteins have been used to assign cellular phenotype. Using mass spectrometry and bone marrow-derived cells, we provided a global view of the proteomes of M-CSF-derived macrophages, classically and alternatively activated macrophages, and GM-CSF-derived DCs. Remarkably, the expression levels of half the plasma membrane proteins differed significantly in the various populations of cells derived in vitro. Moreover, the membrane proteomes of macrophages and DCs were more distinct than those of classically and alternatively activated macrophages. Hierarchical cluster and dual statistical analyses demonstrated that each cell type exhibited a robust proteomic signature that was unique. To interrogate the phenotype of myeloid cells in vivo, we subjected elicited peritoneal macrophages harvested from wild-type and GM-CSF-deficient mice to mass spectrometric and functional analysis. Unexpectedly, we found that peritoneal macrophages exhibited many features of the DCs generated in vitro. These findings demonstrate that global analysis of the membrane proteome can help define immune cell phenotypes in vivo.

  6. A metabolic signature of long life in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Viney Jonathan M

    2010-02-01

    Full Text Available Abstract Background Many Caenorhabditis elegans mutations increase longevity and much evidence suggests that they do so at least partly via changes in metabolism. However, up until now there has been no systematic investigation of how the metabolic networks of long-lived mutants differ from those of normal worms. Metabolomic technologies, that permit the analysis of many untargeted metabolites in parallel, now make this possible. Here we use one of these, 1H nuclear magnetic resonance spectroscopy, to investigate what makes long-lived worms metabolically distinctive. Results We examined three classes of long-lived worms: dauer larvae, adult Insulin/IGF-1 signalling (IIS-defective mutants, and a translation-defective mutant. Surprisingly, these ostensibly different long-lived worms share a common metabolic signature, dominated by shifts in carbohydrate and amino acid metabolism. In addition the dauer larvae, uniquely, had elevated levels of modified amino acids (hydroxyproline and phosphoserine. We interrogated existing gene expression data in order to integrate functional (metabolite-level changes with transcriptional changes at a pathway level. Conclusions The observed metabolic responses could be explained to a large degree by upregulation of gluconeogenesis and the glyoxylate shunt as well as changes in amino acid catabolism. These responses point to new possible mechanisms of longevity assurance in worms. The metabolic changes observed in dauer larvae can be explained by the existence of high levels of autophagy leading to recycling of cellular components. See associated minireview: http://jbiol.com/content/9/1/7

  7. Epigenetic Signatures of Cigarette Smoking

    NARCIS (Netherlands)

    R. Joehanes (Roby); Just, A.C. (Allan C.); R.E. Marioni (Riccardo); L.C. Pilling (Luke); L.M. Reynolds (Lindsay); Mandaviya, P.R. (Pooja R.); W. Guan (Weihua); Xu, T. (Tao); C.E. Elks (Cathy); Aslibekyan, S. (Stella); H. Moreno-Macías (Hortensia); J.A. Smith (Jennifer A); J. Brody (Jennifer); Dhingra, R. (Radhika); P. Yousefi (Paul); J.S. Pankow (James); Kunze, S. (Sonja); Shah, S.H. (Sonia H.); A.F. McRae (Allan F.); K. Lohman (Kurt); Sha, J. (Jin); D. Absher (Devin); L. Ferrucci (Luigi); Zhao, W. (Wei); E.W. Demerath (Ellen); J. Bressler (Jan); M.L. Grove (Megan); T. Huan (Tianxiao); C. Liu (Chunyu); Mendelson, M.M. (Michael M.); C. Yao (Chen); D.P. Kiel (Douglas P.); A. Peters (Annette); R. Wang-Sattler (Rui); P.M. Visscher (Peter); N.R. Wray (Naomi); J.M. Starr (John); Ding, J. (Jingzhong); Rodriguez, C.J. (Carlos J.); N.J. Wareham (Nick); Irvin, M.R. (Marguerite R.); Zhi, D. (Degui); M. Barrdahl (Myrto); P. Vineis (Paolo); Ambatipudi, S. (Srikant); A.G. Uitterlinden (André); A. Hofman (Albert); Schwartz, J. (Joel); Colicino, E. (Elena); Hou, L. (Lifang); Vokonas, P.S. (Pantel S.); D.G. Hernandez (Dena); A. Singleton (Andrew); S. Bandinelli (Stefania); S.T. Turner (Stephen); E.B. Ware (Erin B.); Smith, A.K. (Alicia K.); T. Klengel (Torsten); E.B. Binder (Elisabeth B.); B.M. Psaty (Bruce); K.D. Taylor (Kent); S.A. Gharib (Sina); Swenson, B.R. (Brenton R.); Liang, L. (Liming); D.L. Demeo (Dawn L.); G.T. O'Connor (George); Z. Herceg (Zdenko); Ressler, K.J. (Kerry J.); K.N. Conneely (Karen N.); N. Sotoodehnia (Nona); Kardia, S.L.R. (Sharon L. R.); D. Melzer (David); A.A. Baccarelli (Andrea A.); J.B.J. van Meurs (Joyce); I. Romieu (Isabelle); D.K. Arnett (Donna); Ong, K.K. (Ken K.); Y. Liu (Yongmei); M. Waldenberger (Melanie); I.J. Deary (Ian J.); M. Fornage (Myriam); D. Levy (Daniel); S.J. London (Stephanie J.)

    2016-01-01

    textabstractBackground-DNA methylation leaves a long-term signature of smoking exposure and is one potential mechanism by which tobacco exposure predisposes to adverse health outcomes, such as cancers, osteoporosis, lung, and cardiovascular disorders. Methods and Results-To comprehensively determine

  8. Motif signatures of transcribed enhancers

    KAUST Repository

    Kleftogiannis, Dimitrios

    2017-09-14

    In mammalian cells, transcribed enhancers (TrEn) play important roles in the initiation of gene expression and maintenance of gene expression levels in spatiotemporal manner. One of the most challenging questions in biology today is how the genomic characteristics of enhancers relate to enhancer activities. This is particularly critical, as several recent studies have linked enhancer sequence motifs to specific functional roles. To date, only a limited number of enhancer sequence characteristics have been investigated, leaving space for exploring the enhancers genomic code in a more systematic way. To address this problem, we developed a novel computational method, TELS, aimed at identifying predictive cell type/tissue specific motif signatures. We used TELS to compile a comprehensive catalog of motif signatures for all known TrEn identified by the FANTOM5 consortium across 112 human primary cells and tissues. Our results confirm that distinct cell type/tissue specific motif signatures characterize TrEn. These signatures allow discriminating successfully a) TrEn from random controls, proxy of non-enhancer activity, and b) cell type/tissue specific TrEn from enhancers expressed and transcribed in different cell types/tissues. TELS codes and datasets are publicly available at http://www.cbrc.kaust.edu.sa/TELS.

  9. Graph Signatures for Visual Analytics

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Pak C.; Foote, Harlan P.; Chin, George; Mackey, Patrick S.; Perrine, Kenneth A.

    2006-11-17

    We present a visual analytics technique to explore graphs using the concept of a data signature. A data signature, in our context, is a multidimensional vector that captures the local topology information surrounding each graph node. Signature vectors extracted from a graph are projected onto a low-dimensional scatterplot through the use of scaling. The resultant scatterplot, which reflects the similarities of the vectors, allows analysts to examine the graph structures and their corresponding real-life interpretations through repeated use of brushing and linking between the two visualizations. The interpretation of the graph structures is based on the outcomes of multiple participatory analysis sessions with intelligence analysts conducted by the authors at the Pacific Northwest National Laboratory. The paper first uses three public domain datasets with either well-known or obvious features to explain the rationale of our design and illustrate its results. More advanced examples are then used in a customized usability study to evaluate the effectiveness and efficiency of our approach. The study results reveal not only the limitations and weaknesses of the traditional approach based solely on graph visualization but also the advantages and strengths of our signature-guided approach presented in the paper.

  10. In-plant test and evaluation of the neutron collar for verification of PWR fuel assemblies at Resende, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, H.O.; Marzo, M.A.S.; de Almeida, S.G.; de Almeida, M.C.; Moitta, L.P.M.; Conti, L.F.; de Paiva, J.R.T.

    1985-11-01

    The neutron-coincidence collar has been evaluated for the measurement of pressurized-water reactor (PWR) fuel assemblies at the Fabrica de Elementos Combustiveis plant in Resende, Brazil. This evaluation was part of the cooperative-bilateral-safeguards technical-exchange program between the United States and Brazil. The neutron collar measures the STVU content per unit length of full fuel assemblies using neutron interrogation and coincidence counting. The STYU content is measured in the passive mode without the AmLi neutron-interrogation source. The extended evaluation took place over a period of 6 months with both scanning and single-zone measurements. The results of the tests gave a coincidence-response standard deviation of 0.7% (sigma = 1.49% for mass) for the active case and 2.5% for the passive case in 1000-s measurement times. The length measurement in the scanning mode was accurate to 0.77%. The accuracies of different calibration methods were evaluated and compared.

  11. An Interrogative Model of Computer-Aided Adaptive Testing: Some Experimental Evidence

    Science.gov (United States)

    1988-09-01

    aquired knowledge. This thesis proposes and validates a computer-aided testing model called the Interrogative Diagnostic Model (IDM). The model is...PROGRAM DESIGN The design of a program to implement the model vas quite straight forvard. dB&8B III Plus vas the language selected for Implementation...true/false. Due to the inability of the dBASE III Plus in processing natural language essay type questions vere excluded. The content of the questions

  12. Directed Sample Interrogation Utilizing an Accurate Mass Exclusion-Based Data-Dependent Acquisition Strategy (AMEx)

    OpenAIRE

    Rudomin, Emily L.; Carr, Steven A.; Jaffe, Jacob D.

    2009-01-01

    The ability to perform thorough sampling is of critical importance when using mass spectrometry to characterize complex proteomic mixtures. A common approach is to re-interrogate a sample multiple times by LC-MS/MS. However, the conventional data-dependent acquisition methods that are typically used in proteomics studies will often redundantly sample high-intensity precursor ions while failing to sample low-intensity precursors entirely. We describe a method wherein the masses of successfully...

  13. Study of LPG-assisted fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation

    Science.gov (United States)

    Caldas, P.; Araújo, F.; Ferreira, L. A.; Rego, G.; Marques, M. B.; Santos, J. L.

    2007-07-01

    In this work, the LPG-assisted fibre Michelson modal interferometer is studied as a sensing structure for environmental refractive index, temperature and liquid level when coherence addressing and heterodyne interrogation are considered. The effects on measurand sensitivity of the order of the cladding mode excited by the LPG, of the degree of etching of the sensing fibre and of the fibre type used are investigated.

  14. In Vivo Bioluminescent Imaging (BLI): Noninvasive Visualization and Interrogation of Biological Processes in Living Animals

    OpenAIRE

    Steven Ripp; Sayler, Gary S.; Tingting Xu; Close, Dan M.

    2010-01-01

    In vivo bioluminescent imaging (BLI) is increasingly being utilized as a method for modern biological research. This process, which involves the noninvasive interrogation of living animals using light emitted from luciferase-expressing bioreporter cells, has been applied to study a wide range of biomolecular functions such as gene function, drug discovery and development, cellular trafficking, protein-protein interactions, and especially tumorigenesis, cancer treatment, and disease progressio...

  15. Investigation of Allegations of the Use of Mind-Altering Drugs to Facilitate Interrogations of Detainees

    Science.gov (United States)

    2009-09-23

    University of California. "Guantanamo and Its Aftermath: U.S. Detention and Interrogation Practices and Their lmpact on Former Detainees," International...821700 JJWY NAW ORt~ IR00t.4 703~ 1Jl.IWTON. VA 2ZXI’ • 0-2 CIDriQn W!’.h til d of "’ II ~ ol Olllir.- Dtlft ~ ""-’nil Miry ... dlllacll ~S l . FAU

  16. Outdoor Stand-Off Interrogation of Fissionable Material with a Hybrid Coded Imaging System

    Science.gov (United States)

    2013-06-01

    OUTDOOR STAND-OFF INTERROGATION OF FISSIONABLE MATERIAL WITH A HYBRID CODED IMAGING SYSTEM  A.L. Hutcheson  , B.F. Phlips, E.A. Wulf ...of the Hermes-III gamma ray simulator,” in Pulsed Power Conference, 1989. 7 th , 1898, p. 26. [5] E.A. Wulf , A.L. Hutcheson, B.F. Phlips, L.J

  17. Optical fiber sensors using hollow glass spheres and CCD spectrometer interrogator

    Science.gov (United States)

    Dakin, John P.; Ecke, Wolfgang; Schroeder, Kerstin; Reuter, Martin

    2009-10-01

    Hollow glass micro-spheres, firstly used to make fiber optic sensors for high hydrostatic pressure, have been interrogated using a high-resolution CCD-based spectrometer, to give far better precision than conventional spectrometric read out. It is found that these simple, low-cost micro-sensors have excellent sensitivity to both static and dynamic pressure, and have the advantage of being hermetically sealed. Many other application areas are foreseen for these low-cost sensors.

  18. Insight into fiber Bragg sensor response at 100-MHz interrogation rates under various dynamic loading conditions

    Science.gov (United States)

    Rodriguez, George; Jaime, Marcelo; Mielke, Chuck H.; Balakirev, Fedor F.; Azad, Abul; Sandberg, Richard L.; Marshall, Bruce; La Lone, Brandon M.; Henson, Bryan F.; Smilowitz, Laura; Marr-Lyon, Mark; Sandoval, Tom

    2015-05-01

    A 100 MHz fiber Bragg grating (FBG) interrogation system is described and applied to strain, pressure, and shock position sensing. The approach relies on coherent pulse illumination of the FBG sensor with a broadband short pulse from a femtosecond modelocked erbium fiber laser. After interrogation of the FBG sensor, a long multi-kilometer run of single mode fiber was used for chromatic dispersion to temporally stretch the spectral components of the reflected pulse from the FBG sensor. Dynamic strain or pressure induced spectral shifts in the FBG sensor were detected as a pulsed time domain waveform shift after encoding by the chromatic dispersive line. Signals were recorded using a single 35 GHz photodetector and a 25 GHz bandwidth digitizing oscilloscope. Application of this approach to high-speed strain sensing of magnetic materials in pulsed magnetic fields to ~150 T is demonstrated. The FBG wavelength shifts were used to study magnetic field driven magnetostriction effects in LaCoO3. A sub-microsecond temporal shift in the FBG sensor wavelength attached to the sample under first order phase change appears as a fractional length change (strain: ΔL/L<10-4) in the material. A second application to FBG sensing of pressure dynamics to nearly 2 GPa in the thermal ignition of the high explosive PBX-9501 is also demonstrated. Then, as final demonstration, we use a chirped FBG (CFBG) to resolve shock propagation dynamics in 1-D from an explosive detonation that produces fragmentation in an inert confinement vessel. These applications demonstrate the use of this FBG interrogation system in dynamical extreme conditions that would otherwise not be possible using traditional FBG interrogation approaches that are deemed too slow to resolve such events.

  19. Calibration of Cherenkov detectors for monoenergetic photon imaging in active interrogation applications

    Science.gov (United States)

    Rose, P. B.; Erickson, A. S.

    2015-11-01

    Active interrogation of cargo containers using monoenergetic photons offers a rapid and low-dose approach to search for shielded special nuclear materials. Cherenkov detectors can be used for imaging of the cargo provided that gamma ray energies used in interrogation are well resolved, as the case in 11B(d,n-γ)12C reaction resulting in 4.4 MeV and 15.1 MeV photons. While an array of Cherenkov threshold detectors reduces low energy background from scatter while providing the ability of high contrast transmission imaging, thus confirming the presence of high-Z materials, these detectors require a special approach to energy calibration due to the lack of resolution. In this paper, we discuss the utility of Cherenkov detectors for active interrogation with monoenergetic photons as well as the results of computational and experimental studies of their energy calibration. The results of the studies with sources emitting monoenergetic photons as well as complex gamma ray spectrum sources, for example 232Th, show that calibration is possible as long as the energies of photons of interest are distinct.

  20. On Language Skill of Interrogation%试论讯问言语技巧

    Institute of Scientific and Technical Information of China (English)

    何悦

    2011-01-01

    Interrogation belongs to a kind of important detective behavior which is often used by the public security organs. In the process of investigation, the criminal suspect or defendant's confession is one of the prescribed evidences according to the criminal procedure law which plays a critical role in timely cracking the case, the prosecution, charges and accurate conviction. Interrogation must be carried out effectively and legally. Meanwhile, the interrogaters are expected to have the excellent language skills of interrogation.%讯问是公安机关侦查活动中经常、普遍进行的一种重要的侦查行为。在侦察取证中,犯罪嫌疑人、被告人的口供是刑事诉讼法规定的证据之一,它对于及时地侦破案件、准确的起诉、指控和定罪量刑有非常重要的作用。讯问必须有效而合法的进行,同时要求讯问人员有着高超的讯问言语技巧。

  1. Facilitating biomedical researchers' interrogation of electronic health record data: Ideas from outside of biomedical informatics.

    Science.gov (United States)

    Hruby, Gregory W; Matsoukas, Konstantina; Cimino, James J; Weng, Chunhua

    2016-04-01

    Electronic health records (EHR) are a vital data resource for research uses, including cohort identification, phenotyping, pharmacovigilance, and public health surveillance. To realize the promise of EHR data for accelerating clinical research, it is imperative to enable efficient and autonomous EHR data interrogation by end users such as biomedical researchers. This paper surveys state-of-art approaches and key methodological considerations to this purpose. We adapted a previously published conceptual framework for interactive information retrieval, which defines three entities: user, channel, and source, by elaborating on channels for query formulation in the context of facilitating end users to interrogate EHR data. We show the current progress in biomedical informatics mainly lies in support for query execution and information modeling, primarily due to emphases on infrastructure development for data integration and data access via self-service query tools, but has neglected user support needed during iteratively query formulation processes, which can be costly and error-prone. In contrast, the information science literature has offered elaborate theories and methods for user modeling and query formulation support. The two bodies of literature are complementary, implying opportunities for cross-disciplinary idea exchange. On this basis, we outline the directions for future informatics research to improve our understanding of user needs and requirements for facilitating autonomous interrogation of EHR data by biomedical researchers. We suggest that cross-disciplinary translational research between biomedical informatics and information science can benefit our research in facilitating efficient data access in life sciences.

  2. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement.

    Science.gov (United States)

    Friedt, J-M; Droit, C; Martin, G; Ballandras, S

    2010-01-01

    Monitoring physical quantities using acoustic wave devices can be advantageously achieved using the wave characteristic dependence to various parametric perturbations (temperature, stress, and pressure). Surface acoustic wave (SAW) resonators are particularly well suited to such applications as their resonance frequency is directly influenced by these perturbations, modifying both the phase velocity and resonance conditions. Moreover, the intrinsic radio frequency (rf) nature of these devices makes them ideal for wireless applications, mainly exploiting antennas reciprocity and piezoelectric reversibility. In this paper, we present a wireless SAW sensor interrogation unit operating in the 434 MHz centered ISM band--selected as a tradeoff between antenna dimensions and electromagnetic wave penetration in dielectric media--based on the principles of a frequency sweep network analyzer. We particularly focus on the compliance with the ISM standard which reveals complicated by the need for switching from emission to reception modes similarly to radar operation. In this matter, we propose a fully digital rf synthesis chain to develop various interrogation strategies to overcome the corresponding difficulties and comply with the above-mentioned standard. We finally assess the reader interrogation range, accuracy, and dynamics.

  3. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.

    Science.gov (United States)

    Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo

    2016-11-26

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  4. High-efficiency generation-collection microelectrochemical platform for interrogating electroactive thin films.

    Science.gov (United States)

    Anderson, Morgan J; Crooks, Richard M

    2014-10-07

    Here we report on the development of a high-efficiency, dual channel-electrode (DCE) generation-collection system and its application for interrogating redox-active surface-adsorbed thin films. DCE systems consist of two electrodes configured on the base of a microfluidic channel. Under laminar flow conditions, a redox reaction can be driven on the upstream generator electrode, and the products carried by convection to the downstream collector electrode where the reverse redox reaction occurs. One significant outcome of this report is that simple fabrication techniques can be used to prepare DCE systems that have collection efficiencies of up to 97%. This level of efficiency makes it possible to quantitatively measure the charge associated with redox-active thin films interposed between the generator and collector electrodes. This is important, because it provides a means for interrogating species that are not in sufficiently close proximity to an electrode to enable direct electron transfer or electroactive films adsorbed to insulating surfaces. Here, the method is demonstrated by comparing results from this indirect surface interrogation method, using Fe(CN)6(3-) as the redox probe, and direct electroreduction of Au oxide thin films. These experimental results are further compared to finite-element simulations.

  5. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Friedt, J.-M [SENSeOR, 32 Avenue de l' Observatoire, 25044 Besancon (France); Droit, C.; Martin, G.; Ballandras, S. [Department of Time and Frequency, FEMTO-ST, 32 Avenue de l' Observatoire, 25044 Besancon (France)

    2010-01-15

    Monitoring physical quantities using acoustic wave devices can be advantageously achieved using the wave characteristic dependence to various parametric perturbations (temperature, stress, and pressure). Surface acoustic wave (SAW) resonators are particularly well suited to such applications as their resonance frequency is directly influenced by these perturbations, modifying both the phase velocity and resonance conditions. Moreover, the intrinsic radio frequency (rf) nature of these devices makes them ideal for wireless applications, mainly exploiting antennas reciprocity and piezoelectric reversibility. In this paper, we present a wireless SAW sensor interrogation unit operating in the 434 MHz centered ISM band--selected as a tradeoff between antenna dimensions and electromagnetic wave penetration in dielectric media--based on the principles of a frequency sweep network analyzer. We particularly focus on the compliance with the ISM standard which reveals complicated by the need for switching from emission to reception modes similarly to radar operation. In this matter, we propose a fully digital rf synthesis chain to develop various interrogation strategies to overcome the corresponding difficulties and comply with the above-mentioned standard. We finally assess the reader interrogation range, accuracy, and dynamics.

  6. Neutron signal transfer analysis

    CERN Document Server

    Pleinert, H; Lehmann, E

    1999-01-01

    A new method called neutron signal transfer analysis has been developed for quantitative determination of hydrogenous distributions from neutron radiographic measurements. The technique is based on a model which describes the detector signal obtained in the measurement as a result of the action of three different mechanisms expressed by signal transfer functions. The explicit forms of the signal transfer functions are determined by Monte Carlo computer simulations and contain only the distribution as a variable. Therefore an unknown distribution can be determined from the detector signal by recursive iteration. This technique provides a simple and efficient tool for analysis of this type while also taking into account complex effects due to the energy dependency of neutron interaction and single and multiple scattering. Therefore this method provides an efficient tool for precise quantitative analysis using neutron radiography, as for example quantitative determination of moisture distributions in porous buil...

  7. Temperature of neutron stars

    Science.gov (United States)

    Tsuruta, Sachiko

    2016-07-01

    We start with a brief introduction to the historical background in the early pioneering days when the first neutron star thermal evolution calculations predicted the presence of neutron stars hot enough to be observable. We then report on the first detection of neutron star temperatures by ROSAT X-ray satellite, which vindicated the earlier prediction of hot neutron stars. We proceed to present subsequent developments, both in theory and observation, up to today. We then discuss the current status and the future prospect, which will offer useful insight to the understanding of basic properties of ultra-high density matter beyond the nuclear density, such as the possible presence of such exotic particles as pion condensates.

  8. Decoherence Free Neutron Interferometry

    CERN Document Server

    Pushin, Dmitry A; Cory, David G

    2016-01-01

    Perfect single-crystal neutron interferometers are adversely sensitive to environmental disturbances, particularly mechanical vibrations. The sensitivity to vibrations results from the slow velocity of thermal neutrons and the long measurement time that are encountered in a typical experiment. Consequently, to achieve a good interference solutions for reducing vibration other than those normally used in optical experiments must be explored. Here we introduce a geometry for a neutron interferometer that is less sensitive to low-frequency vibrations. This design may be compared with both dynamical decoupling methods and decoherence-free subspaces that are described in quantum information processing. By removing the need for bulky vibration isolation setups, this design will make it easier to adopt neutron interferometry to a wide range of applications and increase its sensitivity.

  9. Neutron Stars Recent Developments

    CERN Document Server

    Heiselberg, H

    1999-01-01

    Recent developments in neutron star theory and observation are discussed. Based on modern nucleon-nucleon potentials more reliable equations of state for dense nuclear matter have been constructed. Furthermore, phase transitions such as pion, kaon and hyperon condensation, superfluidity and quark matter can occur in cores of neutron stars. Specifically, the nuclear to quark matter phase transition and its mixed phases with intriguing structures is treated. Rotating neutron stars with and without phase transitions are discussed and compared to observed masses, radii and glitches. The observations of possible heavy $\\sim 2M_\\odot$ neutron stars in X-ray binaries and QPO's require relatively stiff equation of states and restrict strong phase transitions to occur at very high nuclear densities only.

  10. The intense neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W.B

    1966-07-01

    The presentation discusses both the economic and research contexts that would be served by producing neutrons in gram quantities at high intensities by electrical means without uranium-235. The revenue from producing radioisotopes is attractive. The array of techniques introduced by the multipurpose 65 megawatt Intense Neutron Generator project includes liquid metal cooling, superconducting magnets for beam bending and focussing, super-conductors for low-loss high-power radiofrequency systems, efficient devices for producing radiofrequency power, plasma physics developments for producing and accelerating hydrogen, ions at high intensity that are still far out from established practice, a multimegawatt high voltage D.C. generating machine that could have several applications. The research fields served relate principally to materials science through neutron-phonon and other quantum interactions as well as through neutron diffraction. Nuclear physics is served through {mu}-, {pi}- and K-meson production. Isotope production enters many fields of applied research. (author)

  11. 235U Determination using In-Beam Delayed Neutron Counting Technique at the NRU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, M. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bentoumi, G. [Canadian Nuclear Labs., Chalk River, ON (Canada); Corcoran, E. C. [Royal Military College of Canada, Kingston, ON (United States); Dimayuga, I. [Canadian Nuclear Labs., Chalk River, ON (Canada); Kelly, D. G. [Royal Military College of Canada, Kingston, ON (United States); Li, L. [Canadian Nuclear Labs., Chalk River, ON (Canada); Sur, B. [Canadian Nuclear Labs., Chalk River, ON (Canada); Rogge, R. B. [Canadian Nuclear Labs., Chalk River, ON (Canada)

    2015-11-17

    This paper describes a collaborative effort that saw the Royal Military College of Canada (RMC)’s delayed neutron and gamma counting apparatus transported to Canadian Nuclear Laboratories (CNL) for use in the neutron beamline at the National Research Universal (NRU) reactor. Samples containing mg quantities of fissile material were re-interrogated, and their delayed neutron emissions measured. This collaboration offers significant advantages to previous delayed neutron research at both CNL and RMC. This paper details the determination of 235U content in enriched uranium via the assay of in-beam delayed neutron magnitudes and temporal behavior. 235U mass was determined with an average absolute error of ± 2.7 %. This error is lower than that obtained at RMCC for the assay of 235U content in aqueous solutions (3.6 %) using delayed neutron counting. Delayed neutron counting has been demonstrated to be a rapid, accurate, and precise method for special nuclear material detection and identification.

  12. Introduction to neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.

  13. Neutron scattering in dimers

    DEFF Research Database (Denmark)

    Gudel, H. U.; Furrer, A.; Kjems, Jørgen

    1986-01-01

    Insulating compounds containing dimers of transition metal and rare earth ions have been studied by inelastic neutron scattering (INS). Energy splittings can be directly determined, and the corresponding parameters are easily extracted from the experimental data. The intensities of dimer excitati......Insulating compounds containing dimers of transition metal and rare earth ions have been studied by inelastic neutron scattering (INS). Energy splittings can be directly determined, and the corresponding parameters are easily extracted from the experimental data. The intensities of dimer...

  14. Pulsed spallation Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.M. [Argonne National Lab., IL (United States)

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  15. Neutron Resonance Transmission Analysis (NRTA): Initial Studies of a Method for Assaying Plutonium in Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; James W. Sterbentz

    2011-05-01

    Neutron Resonance Transmission Analysis (NRTA) is an analytical technique that uses neutrons to assay the isotopic content of bulk materials. The technique uses a pulsed accelerator to produce an intense, short pulse of neutrons in a time-of-flight configuration. These neutrons, traveling at different speeds according to their energy, can be used to interrogate a spent fuel (SF) assembly to determine its plutonium content. Neutron transmission through the assembly is monitored as a function of neutron energy (time after the pulse), similar to the way neutron cross-section data is often collected. The transmitted neutron intensity is recorded as a function of time, with faster (higher-energy) neutrons arriving first and slower (lower-energy) neutrons arriving later. The low-energy elastic scattering and absorption resonances of plutonium and other isotopes modulate the transmitted neutron spectrum. Plutonium content in SF can be determined by analyzing this attenuation. Work is currently underway at Idaho National Laboratory, as a part of United States Department of Energy's Next Generation Safeguards Initiative (NGSI), to investigate the NRTA technique and to assess its feasibility for quantifying the plutonium content in SF and for determining the diversion of SF pins from assemblies. Preliminary results indicate that NRTA has great potential for being able to assay intact SF assemblies. Operating in the 1-40 eV range, it can identify four plutonium isotopes (239, 240, 241, & 242Pu), three uranium isotopes (235, 236, & 238U), and six resonant fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm). It can determine the areal density or mass of these isotopes in single- or multiple-pin integral transmission scans. Further, multiple observables exist to allow the detection of material diversion (pin defects) including fast-neutron and x-ray radiography, gross-transmission neutron counting, plutonium resonance absorption analysis, and fission

  16. Elliptic Curve Blind Digital Signature Schemes

    Institute of Scientific and Technical Information of China (English)

    YOULin; YANGYixian; WENQiaoyan

    2003-01-01

    Blind signature schemes are important cryptographic protocols in guaranteeing the privacy or anonymity of the users.Three new blind signature schemes and their corresponding generalizations are pro-posed. Moreover, their securities are simply analyzed.

  17. Neutron scattering in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Knott, R.B. [Australian Nuclear Science and Technology Organisation, Menai (Australia)

    1994-12-31

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.

  18. Coded source neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Philip R [ORNL; Santos-Villalobos, Hector J [ORNL

    2011-01-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100 m) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100um and 10um aperture hole diameters show resolutions matching the hole diameters.

  19. Coded source neutron imaging

    Science.gov (United States)

    Bingham, Philip; Santos-Villalobos, Hector; Tobin, Ken

    2011-03-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100μm) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100μm and 10μm aperture hole diameters show resolutions matching the hole diameters.

  20. Neutron Nucleic Acid Crystallography.

    Science.gov (United States)

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.

  1. Observation of Neutrons with a Gadolinium Doped Water Cerenkov Detector

    CERN Document Server

    Dazeley, S; Bowden, N S; Svoboda, R

    2008-01-01

    Spontaneous and induced fission in Special Nuclear Material (SNM) such as 235U and 239Pu results in the emission of neutrons and high energy gamma-rays. The multiplicities of and time correlations between these particles are both powerful indicators of the presence of fissile material. Detectors sensitive to these signatures are consequently useful for nuclear material monitoring, search, and characterization. In this article, we demonstrate sensitivity to both high energy gamma-rays and neutrons with a water Cerenkov based detector. Electrons in the detector medium, scattered by gamma-ray interactions, are detected by their Cerenkov light emission. Sensitivity to neutrons is enhanced by the addition of a gadolinium compound to the water in low concentrations. Cerenkov light is similarly produced by an 8 MeV gamma-ray cascade following neutron capture on the gadolinium. The large solid angle coverage and high intrinsic efficiency of this detection approach can provide robust and low cost neutron and gamma-ray...

  2. A workshop on enhanced national capability for neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

    2009-01-01

    This two-day workshop will engage the international neutron scattering community to vet and improve the Lujan Center Strategic Plan 2007-2013 (SP07). Sponsored by the LANL SC Program Office and the University of California, the workshop will be hosted by LANSCE Professor Sunny Sinha (UCSD). Endorsement by the Spallation Neutron Source will be requested. The discussion will focus on the role that the Lujan Center will play in the national neutron scattering landscape assuming full utilization of beamlines, a refurbished LANSCE, and a 1.4-MW SNS. Because the Lujan Strategic Plan is intended to set the stage for the Signature Facility era at LANSCE, there will be some discussion of the long-pulse spallation source at Los Alamos. Breakout groups will cover several new instrument concepts, upgrades to present instruments, expanded sample environment capabilities, and a look to the future. The workshop is in keeping with a request by BES to update the Lujan strategic plan in coordination with the SNS and the broader neutron community. Workshop invitees will be drawn from the LANSCE User Group and a broad cross section of the US, European, and Pacific Rim neutron scattering research communities.

  3. Partially Blind Signatures Based on Quantum Cryptography

    Science.gov (United States)

    Cai, Xiao-Qiu; Niu, Hui-Fang

    2012-12-01

    In a partially blind signature scheme, the signer explicitly includes pre-agreed common information in the blind signature, which can improve the availability and performance. We present a new partially blind signature scheme based on fundamental properties of quantum mechanics. In addition, we analyze the security of this scheme, and show it is not possible to forge valid partially blind signatures. Moreover, the comparisons between this scheme and those based on public-key cryptography are also discussed.

  4. Quantum group blind signature scheme without entanglement

    Science.gov (United States)

    Xu, Rui; Huang, Liusheng; Yang, Wei; He, Libao

    2011-07-01

    In this paper we propose a quantum group blind signature scheme designed for distributed e-voting system. Our scheme combines the properties of group signature and blind signature to provide anonymity of voters in an e-voting system. The unconditional security of our scheme is ensured by quantum mechanics. Without employing entanglement, the proposed scheme is easier to be realized comparing with other quantum signature schemes.

  5. Blind Signature Scheme Based on Chebyshev Polynomials

    Directory of Open Access Journals (Sweden)

    Maheswara Rao Valluri

    2011-12-01

    Full Text Available A blind signature scheme is a cryptographic protocol to obtain a valid signature for a message from a signer such that signer’s view of the protocol can’t be linked to the resulting message signature pair. This paper presents blind signature scheme using Chebyshev polynomials. The security of the given scheme depends upon the intractability of the integer factorization problem and discrete logarithms ofChebyshev polynomials.

  6. Blind Signature Scheme Based on Chebyshev Polynomials

    OpenAIRE

    Maheswara Rao Valluri

    2011-01-01

    A blind signature scheme is a cryptographic protocol to obtain a valid signature for a message from a signer such that signer’s view of the protocol can’t be linked to the resulting message signature pair. This paper presents blind signature scheme using Chebyshev polynomials. The security of the given scheme depends upon the intractability of the integer factorization problem and discrete logarithms ofChebyshev polynomials.

  7. Post-quantum signatures for today

    OpenAIRE

    Dahmen, Erik

    2009-01-01

    Digital signatures are essential for the security of computer networks such as the Internet. For example, digital signatures are widely used to ensure the authenticity and integrity of updates for operating systems and other software applications. The security of the few practically used signature schemes is threatened by quantum computers. When large quantum computers are built, all currently used signature schemes will become insecure. It is therefore of extreme importance to develop altern...

  8. SIGNCRYPTION BASED ON DIFFERENT DIGITAL SIGNATURE SCHEMES

    OpenAIRE

    Adrian Atanasiu; Laura Savu

    2012-01-01

    This article presents two new signcryption schemes. The first one is based on Schnorr digital signature algorithm and the second one is using Proxy Signature scheme introduced by Mambo. Schnorr Signcryption has been implemented in a program and here are provided the steps of the algorithm, the results and some examples. The Mambo’s Proxy Signature is adapted for Shortened Digital Signature Standard, being part of a new Proxy Signcryption scheme.

  9. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  10. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  11. Associated-particle sealed-tube neutron probe for characterization of materials

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, E.; Dickerman, C.E. [Argonne National Lab., IL (United States); Peters, C.W. [5235 N. Whispering Hills Lane, Tucson, AZ (United States)

    1993-10-01

    A neutron diagnostic probe system has been developed that can identify and image most elements having a larger atomic number than boron. It can satisfy van-mobile and fixed-portal requirements for nondestructive detection of contraband drugs, explosives, and nuclear and chemical warfare weapon materials, and for treaty verification of sealed munitions and remediation of radioactive waste. The probe is based on a nonpulsed associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object with a 14-MeV neutrons and detects alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions (primarily inelastic scattering) identify nuclides associated with drugs, explosives, and other contraband. Flight times determined from detection times of gamma-rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. Chemical substances are identified and imaged by comparing relative spectra fine intensities with ratios of elements in reference compounds. The High-energy neutrons in gamma-rays will penetrate large objects and dense materials. The source and emission detection systems can be on the same side, allowing measurements with access to one side only. A high signal-to-background ratio is obtained and maximum information is extracted from each detected gamma-ray, yet high-bandwidth data acquisition is not required. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system. No collimators are required, and only minimal shielding is needed. The small and relatively inexpensive neutron generator tube exhibits high reliability and can be quickly replaced. The detector arrays and associated electronics can be made reliable with low maintenance cost.

  12. Fundamental neutron physics at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.

    1995-10-01

    Modern neutron sources and science share a common origin in mid-20th-century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for studying condensed matter with modern neutron sources being primarily used (and justified) as tools for neutron scattering and materials science research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities performed at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high-flux neutron facilities. Future sources, particularly high-power spallation sources, offer exciting possibilities for continuing this research.

  13. Integrated Transcriptomics Establish Macrophage Polarization Signatures and have Potential Applications for Clinical Health and Disease

    Science.gov (United States)

    Becker, Matheus; De Bastiani, Marco A.; Parisi, Mariana M.; Guma, Fátima T. C. R.; Markoski, Melissa M.; Castro, Mauro A. A.; Kaplan, Mark H.; Barbé-Tuana, Florencia M.; Klamt, Fábio

    2015-01-01

    Growing evidence defines macrophages (Mφ) as plastic cells with wide-ranging states of activation and expression of different markers that are time and location dependent. Distinct from the simple M1/M2 dichotomy initially proposed, extensive diversity of macrophage phenotypes have been extensively demonstrated as characteristic features of monocyte-macrophage differentiation, highlighting the difficulty of defining complex profiles by a limited number of genes. Since the description of macrophage activation is currently contentious and confusing, the generation of a simple and reliable framework to categorize major Mφ phenotypes in the context of complex clinical conditions would be extremely relevant to unravel different roles played by these cells in pathophysiological scenarios. In the current study, we integrated transcriptome data using bioinformatics tools to generate two macrophage molecular signatures. We validated our signatures in in vitro experiments and in clinical samples. More importantly, we were able to attribute prognostic and predictive values to components of our signatures. Our study provides a framework to guide the interrogation of macrophage phenotypes in the context of health and disease. The approach described here could be used to propose new biomarkers for diagnosis in diverse clinical settings including dengue infections, asthma and sepsis resolution. PMID:26302899

  14. Nos3-/- iPSCs model concordant signatures of in utero cardiac pathogenesis.

    Science.gov (United States)

    Campbell, Katherine A; Li, Xing; Biendarra, Sherri M; Terzic, Andre; Nelson, Timothy J

    2015-10-01

    Through genome-wide transcriptional comparisons, this study interrogates the capacity of in vitro differentiation of induced pluripotent stem cells (iPSCs) to accurately model pathogenic signatures of developmental cardiac defects. Herein, we studied the molecular etiology of cardiac defects in Nos3(-/-) mice via transcriptional analysis of stage-matched embryonic tissues and iPSC-derived cells. In vitro comparisons of differentiated cells were calibrated to in utero benchmarks of health and disease. Integrated systems biology analysis of WT and Nos3(-/-) transcriptional profiles revealed 50% concordant expression patterns between in utero embryonic tissues and ex vivo iPSC-derived cells. In particular, up-regulation of glucose metabolism (p-value=3.95×10(-12)) and down-regulation of fatty acid metabolism (p-value=6.71×10(-12)) highlight a bioenergetic signature of early Nos3 deficiency during cardiogenesis that can be recapitulated in iPSC-derived differentiated cells. The in vitro concordance of early Nos3(-/-) disease signatures supports the utility of iPSCs as a cellular model of developmental heart defects. Moreover, this study supports the use of iPSCs as a platform to pinpoint initial stages of congenital cardiac pathogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Processing Interrogative Sentence Mood at the Semantic-Syntactic Interface: An Electrophysiological Research in Chinese, German, and Polish

    Science.gov (United States)

    Kao, Chung-Shan; Dietrich, Rainer; Sommer, Werner

    2010-01-01

    Background Languages differ in the marking of the sentence mood of a polar interrogative (yes/no question). For instance, the interrogative mood is marked at the beginning of the surface structure in Polish, whereas the marker appears at the end in Chinese. In order to generate the corresponding sentence frame, the syntactic specification of the interrogative mood is early in Polish and late in Chinese. In this respect, German belongs to an interesting intermediate class. The yes/no question is expressed by a shift of the finite verb from its final position in the underlying structure into the utterance initial position, a move affecting, hence, both the sentence's final and the sentence's initial constituents. The present study aimed to investigate whether during generation of the semantic structure of a polar interrogative, i.e., the processing preceding the grammatical formulation, the interrogative mood is encoded according to its position in the syntactic structure at distinctive time points in Chinese, German, and Polish. Methodology/Principal Findings In a two-choice go/nogo experimental design, native speakers of the three languages responded to pictures by pressing buttons and producing utterances in their native language while their brain potentials were recorded. The emergence and latency of lateralized readiness potentials (LRP) in nogo conditions, in which speakers asked a yes/no question, should indicate the time point of processing the interrogative mood. The results revealed that Chinese, German, and Polish native speakers did not differ from each other in the electrophysiological indicator. Conclusions/Significance The findings suggest that the semantic encoding of the interrogative mood is temporally consistent across languages despite its disparate syntactic specification. The consistent encoding may be ascribed to economic processing of interrogative moods at various sentential positions of the syntactic structures in languages or, more

  16. Processing interrogative sentence mood at the semantic-syntactic interface: an electrophysiological research in Chinese, German, and Polish.

    Directory of Open Access Journals (Sweden)

    Chung-Shan Kao

    Full Text Available BACKGROUND: Languages differ in the marking of the sentence mood of a polar interrogative (yes/no question. For instance, the interrogative mood is marked at the beginning of the surface structure in Polish, whereas the marker appears at the end in Chinese. In order to generate the corresponding sentence frame, the syntactic specification of the interrogative mood is early in Polish and late in Chinese. In this respect, German belongs to an interesting intermediate class. The yes/no question is expressed by a shift of the finite verb from its final position in the underlying structure into the utterance initial position, a move affecting, hence, both the sentence's final and the sentence's initial constituents. The present study aimed to investigate whether during generation of the semantic structure of a polar interrogative, i.e., the processing preceding the grammatical formulation, the interrogative mood is encoded according to its position in the syntactic structure at distinctive time points in Chinese, German, and Polish. METHODOLOGY/PRINCIPAL FINDINGS: In a two-choice go/nogo experimental design, native speakers of the three languages responded to pictures by pressing buttons and producing utterances in their native language while their brain potentials were recorded. The emergence and latency of lateralized readiness potentials (LRP in nogo conditions, in which speakers asked a yes/no question, should indicate the time point of processing the interrogative mood. The results revealed that Chinese, German, and Polish native speakers did not differ from each other in the electrophysiological indicator. CONCLUSIONS/SIGNIFICANCE: The findings suggest that the semantic encoding of the interrogative mood is temporally consistent across languages despite its disparate syntactic specification. The consistent encoding may be ascribed to economic processing of interrogative moods at various sentential positions of the syntactic structures in

  17. Processing interrogative sentence mood at the semantic-syntactic interface: an electrophysiological research in Chinese, German, and Polish.

    Science.gov (United States)

    Kao, Chung-Shan; Dietrich, Rainer; Sommer, Werner

    2010-09-29

    Languages differ in the marking of the sentence mood of a polar interrogative (yes/no question). For instance, the interrogative mood is marked at the beginning of the surface structure in Polish, whereas the marker appears at the end in Chinese. In order to generate the corresponding sentence frame, the syntactic specification of the interrogative mood is early in Polish and late in Chinese. In this respect, German belongs to an interesting intermediate class. The yes/no question is expressed by a shift of the finite verb from its final position in the underlying structure into the utterance initial position, a move affecting, hence, both the sentence's final and the sentence's initial constituents. The present study aimed to investigate whether during generation of the semantic structure of a polar interrogative, i.e., the processing preceding the grammatical formulation, the interrogative mood is encoded according to its position in the syntactic structure at distinctive time points in Chinese, German, and Polish. In a two-choice go/nogo experimental design, native speakers of the three languages responded to pictures by pressing buttons and producing utterances in their native language while their brain potentials were recorded. The emergence and latency of lateralized readiness potentials (LRP) in nogo conditions, in which speakers asked a yes/no question, should indicate the time point of processing the interrogative mood. The results revealed that Chinese, German, and Polish native speakers did not differ from each other in the electrophysiological indicator. The findings suggest that the semantic encoding of the interrogative mood is temporally consistent across languages despite its disparate syntactic specification. The consistent encoding may be ascribed to economic processing of interrogative moods at various sentential positions of the syntactic structures in languages or, more generally, to the overarching status of sentence mood in the semantic

  18. WH-words are not ‘interrogative’ pronouns : the derivation of interrogative interpretations for constituent questions

    OpenAIRE

    Wiese, Heike

    2010-01-01

    I discuss the status of WH-words for interrogative interpretations, and show that the derivation of constituent questions evolves from a specific interplay of syntactic and semantic representations with pragmatics. I argue that WH-pronouns are not ‘interrogative’. Rather, they are underspecified elements; due to this underspecification, WH-words can form a constitutive part not only of interrogative, but also of exclamative and declarative clauses. WH-words introduce a variable of a particula...

  19. Evaluation of infrared signature suppression of ships

    NARCIS (Netherlands)

    Schleijpen, H.M.A.

    1996-01-01

    Reduction of the infrared signature of warships helps to increase their survivability. Two methods to reduce the infrared signature are discussed: the cooling of exhaust gases and the application of low emissivity paint. The infrared signature of a generic frigate has been calculated with and

  20. 27 CFR 17.6 - Signature authority.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Signature authority. 17.6... PRODUCTS General Provisions § 17.6 Signature authority. No claim, bond, tax return, or other required... other proper notification of signature authority has been filed with the TTB office where the...

  1. Evaluation of infrared signature suppression of ships

    NARCIS (Netherlands)

    Schleijpen, H.M.A.

    1996-01-01

    Reduction of the infrared signature of warships helps to increase their survivability. Two methods to reduce the infrared signature are discussed: the cooling of exhaust gases and the application of low emissivity paint. The infrared signature of a generic frigate has been calculated with and withou

  2. 25 CFR 213.10 - Lessor's signature.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Lessor's signature. 213.10 Section 213.10 Indians BUREAU... MEMBERS OF FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING How to Acquire Leases § 213.10 Lessor's signature... thumbprint which shall be designated as “right” or “left” thumbmark. Such signatures must be witnessed by...

  3. 42 CFR 424.36 - Signature requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Signature requirements. 424.36 Section 424.36... (CONTINUED) MEDICARE PROGRAM CONDITIONS FOR MEDICARE PAYMENT Claims for Payment § 424.36 Signature requirements. (a) General rule. The beneficiary's own signature is required on the claim unless the...

  4. 17 CFR 12.12 - Signature.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Signature. 12.12 Section 12.12... General Information and Preliminary Consideration of Pleadings § 12.12 Signature. (a) By whom. All... document on behalf of another person. (b) Effect. The signature on any document of any person acting...

  5. 48 CFR 4.102 - Contractor's signature.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Contractor's signature. 4... ADMINISTRATIVE MATTERS Contract Execution 4.102 Contractor's signature. (a) Individuals. A contract with an... be signed by that individual, and the signature shall be followed by the individual's typed,...

  6. Characterization of silicon carbide and diamond detectors for neutron applications

    Science.gov (United States)

    Hodgson, M.; Lohstroh, A.; Sellin, P.; Thomas, D.

    2017-10-01

    The presence of carbon atoms in silicon carbide and diamond makes these materials ideal candidates for direct fast neutron detectors. Furthermore the low atomic number, strong covalent bonds, high displacement energies, wide bandgap and low intrinsic carrier concentrations make these semiconductor detectors potentially suitable for applications where rugged, high-temperature, low-gamma-sensitivity detectors are required, such as active interrogation, electronic personal neutron dosimetry and harsh environment detectors. A thorough direct performance comparison of the detection capabilities of semi-insulating silicon carbide (SiC–SI), single crystal diamond (D–SC), polycrystalline diamond (D–PC) and a self-biased epitaxial silicon carbide (SiC–EP) detector has been conducted and benchmarked against a commercial silicon PIN (Si–PIN) diode, in a wide range of alpha (Am-241), beta (Sr/Y-90), ionizing photon (65 keV to 1332 keV) and neutron radiation fields (including 1.2 MeV to 16.5 MeV mono-energetic neutrons, as well as neutrons from AmBe and Cf-252 sources). All detectors were shown to be able to directly detect and distinguish both the different radiation types and energies by using a simple energy threshold discrimination method. The SiC devices demonstrated the best neutron energy discrimination ratio (E\\max (n=5 MeV)/E\\max (n=1 MeV)  ≈5), whereas a superior neutron/photon cross-sensitivity ratio was observed in the D–PC detector (E\\max (AmBe)/E\\max (Co-60)  ≈16). Further work also demonstrated that the cross-sensitivity ratios can be improved through use of a simple proton-recoil conversion layer. Stability issues were also observed in the D–SC, D–PC and SiC–SI detectors while under irradiation, namely a change of energy peak position and/or count rate with time (often referred to as the polarization effect). This phenomenon within the detectors was non-debilitating over the time period tested (> 5 h) and, as such, stable

  7. On the Interrogative Sentences in the Book——Hanfeizi%《韩非子》疑问句研究

    Institute of Scientific and Technical Information of China (English)

    刘春萍

    2012-01-01

    The book Hanfeizi reflects the linguistic characteristics of the Warring States Period.It is a precious linguistic material in the field of researching grammar history of Chinese.Through an exhaustive examination on the interrogative sentences in Hanfeizi,the article reveals that interrogative words are used to ask questions,including interrogative pronouns,interrogative adverbs,and interrogative modal particles.The interrogative sentences in the book can be divided into six kinds:special questions,yes or no questions,alternative questions,VP-neg-VP questions,rhetorical questions,and imperative questions.%《韩非子》一书反映了战国末期的语言特点,是汉语史研究不可多得的珍贵语料。在对《韩非子》疑问句穷尽调查后发现,其疑问句几乎都是由疑问词来发问的。疑问词包括疑问代词、疑问副词和疑问语气词;疑问句可分为特指问句、是非问句、选择问句、正反问句、反问句和测度问句六大类型。

  8. Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System

    CERN Document Server

    Bromberger, B; Brandis, M; Dangendorf, V; Goldberg, M B; Kaufmann, F; Mor, I; Nolte, R; Schmiedel, M; Tittelmeier, K; Vartsky, D; Wershofen, H

    2012-01-01

    An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron and gamma radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. T...

  9. Polarization signatures of airborne particulates

    Science.gov (United States)

    Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.

    2013-07-01

    Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.

  10. Searching for topological defect dark matter via nongravitational signatures.

    Science.gov (United States)

    Stadnik, Y V; Flambaum, V V

    2014-10-10

    We propose schemes for the detection of topological defect dark matter using pulsars and other luminous extraterrestrial systems via nongravitational signatures. The dark matter field, which makes up a defect, may interact with standard model particles, including quarks and the photon, resulting in the alteration of their masses. When a topological defect passes through a pulsar, its mass, radius, and internal structure may be altered, resulting in a pulsar "quake." A topological defect may also function as a cosmic dielectric material with a distinctive frequency-dependent index of refraction, which would give rise to the time delay of a periodic extraterrestrial light or radio signal, and the dispersion of a light or radio source in a manner distinct to a gravitational lens. A topological defect passing through Earth may alter Earth's period of rotation and give rise to temporary nonzero electric dipole moments for an electron, proton, neutron, nuclei and atoms.

  11. Neutron-Induced Failures in Semiconductor Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This slide presentation explores single event effect, environmental neutron flux, system response, the Los Alamos Neutron Science Center (LANSCE) neutron testing facility, examples of SEE measurements, and recent interest in thermal neutrons.

  12. Interrogating Diaspora

    DEFF Research Database (Denmark)

    Pærregaard, Karsten

    2010-01-01

    Kapitlet diskuterer generelt de analytiske muligheder og begrænsninger for brugen af diasporabegrebet og undersøger, hvordan det kan anvendes på et studie af peruansk migration med særlig henblik på migrationens politiske, solidariske og klassemæssige aspekter....

  13. Neutron drip transition in accreting and nonaccreting neutron star crusts

    CERN Document Server

    Chamel, N; Zdunik, J L; Haensel, P

    2015-01-01

    The neutron-drip transition in the dense matter constituting the interior of neutron stars generally refers to the appearance of unbound neutrons as the matter density reaches some threshold density $\\rho_\\textrm{drip}$. This transition has been mainly studied under the cold catalyzed matter hypothesis. However, this assumption is unrealistic for accreting neutron stars. After examining the physical processes that are thought to be allowed in both accreting and nonaccreting neutron stars, suitable conditions for the onset of neutron drip are derived and general analytical expressions for the neutron drip density and pressure are obtained. Moreover, we show that the neutron-drip transition occurs at lower density and pressure than those predicted within the mean-nucleus approximation. This transition is studied numerically for various initial composition of the ashes from X-ray bursts and superbursts using microscopic nuclear mass models.

  14. Enhance Confidentiality of Threshold Signature for MANET

    Institute of Scientific and Technical Information of China (English)

    GUO Wei; XIONG Zhongwei

    2006-01-01

    The participating wireless mobile node that mobile ad hoc network (MANET) communications need to forward may be malicious. That means not only adversary might be able to acquire some sensitive information of the threshold signatures from the compromised node, but also the partial signatures may be fabricated by malicious node, the advantages of threshold signatures would disappear. Signing and encrypting the sensitive information of the threshold signatures, and only the specified receiver can recover it, which will improve the confidentiality of threshold signatures. The security analysis shows the method is suitable for the secure characteristic of MANET that has the malicious nodes, and the message transmission is secure can against the attack.

  15. A New Signature Scheme with Shared Verification

    Institute of Scientific and Technical Information of China (English)

    JIA Xiao-yun; LUO Shou-shan; YUAN Chao-wei

    2006-01-01

    With expanding user demands, digital signature techniques are also being expanded greatly, from single signature and single verification techniques to techniques supporting multi-users. This paper presents a new digital signature scheme vith shared verification based on the fiat-shamir signature scheme. This scheme is suitable not only for digital signatures of one public key, but also for situations where multiple public keys are required. In addition, the scheme can resist all kinds of collusion, making it more practicable and safer. Additionally it is more efficient than other schemes.

  16. Colluding attacks on a group signature scheme

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Xie and Yu (2005) proposed a group signature scheme and claimed that it is the most efficient group signature scheme so far and secure. In this paper, we show that two dishonest group members can collude to launch two attacks on the scheme. In the first attack they can derive the group secret key and then generate untraceable group signatures. In the second attack, they can impersonate other group members once they see their signatures. Therefore we conclude that the signature scheme is not secure.We show that some parameters should be carefully selected in the scheme to resist our attacks.

  17. Development of neutron/gamma generators and a polymer semiconductor detector for homeland security applications

    Science.gov (United States)

    King, Michael Joseph

    Instrumentation development is essential to the advancement and success of homeland security systems. Active interrogation techniques that scan luggage and cargo containers for shielded special nuclear materials or explosives hold great potential in halting further terrorist attacks. The development of more economical, compact and efficient source and radiation detection devices will facilitate scanning of all containers and luggage while maintaining high-throughput and low-false alarms Innovative ion sources were developed for two novel, specialized neutron generating devices and initial generator tests were performed. In addition, a low-energy acceleration gamma generator was developed and its performance characterized. Finally, an organic semiconductor was investigated for direct fast neutron detection. A main part of the thesis work was the development of ion sources, crucial components of the neutron/gamma generator development. The use of an externally-driven radio-frequency antenna allows the ion source to generate high beam currents with high, mono-atomic species fractions while maintaining low operating pressures, advantageous parameters for neutron generators. A dual "S" shaped induction antenna was developed to satisfy the high current and large extraction area requirements of the high-intensity neutron generator. The dual antenna arrangement generated a suitable current density of 28 mA/cm2 at practical RF power levels. The stringent requirements of the Pulsed Fast Neutron Transmission Spectroscopy neutron generator necessitated the development of a specialized ten window ion source of toroidal shape with a narrow neutron production target at its center. An innovative ten antenna arrangement with parallel capacitors was developed for driving the multi-antenna arrangement and uniform coupling of RF power to all ten antennas was achieved. To address the desire for low-impact, low-radiation dose active interrogation systems, research was performed on mono

  18. Measurement of reaction-in-flight neutrons using thulium activation at the National Ignition Facility

    Science.gov (United States)

    Grim, G. P.; Rundberg, R.; Fowler, M. M.; Hayes, A. C.; Jungman, G.; Boswell, M.; Klein, A.; Wilhelmy, J.; Tonchev, A.; Yeamans, C. B.

    2014-09-01

    We report on the first observation of tertiary reaction-in-flight (RIF) neutrons produced in compressed deuterium and tritium filled capsules using the National Ignition Facility at Lawrence Livermore National Laboratory, Livermore, CA. RIF neutrons are produced by third-order, out of equilibrium ("in-flight") fusion reactions, initiated by primary fusion products. The rate of RIF reactions is dependent upon the range of the elastically scattered fuel ions and therefore a diagnostic of Coulomb physics within the plasma. At plasma temperatures of ˜5 keV, the presence of neutrons with kinetic energies greater than 15 MeV is a unique signature for RIF neutron production. The reaction 169Tm(n,3n)167Tm has a threshold of 15.0 MeV, and a unique decay scheme making it a suitable diagnostic for observing RIF neutrons. RIF neutron production is quantified by the ratio of 167Tm/168Tm observed in a 169Tm foil, where the reaction 169Tm(n,2n)168Tm samples the primary neutron fluence. Averaged over 4 implosions1-4 at the NIF, the 167Tm/168Tm ratio is measured to be 1.5 +/- 0.3 x 10-5, leading to an average ratio of RIF to primary neutron ratio of 1.0 +/- 0.2 x 10-4. These ratios are consistent with the predictions for charged particle stopping in a quantum degenerate plasma.

  19. Influence of the neutron transport tube on neutron resonance densitometry

    Directory of Open Access Journals (Sweden)

    Kitatani Fumito

    2017-01-01

    Full Text Available Neutron Resonance Densitometry (NRD is a non-destructive assay technique of nuclear materials in particle-like debris that contains various materials. An aim of NRD is to quantify nuclear materials in a melting fuel of Fukusima Daiichi plant, spent nuclear fuel and annihilation disposal fuel etc. NRD consists of two techniques of Neutron Resonance Transmission Analysis (NRTA and Neutron Resonance Capture Analysis (NRCA or Prompt Gamma-ray Analysis (PGA. A density of nuclear material isotopes is decided with NRTA. The materials absorbing a neutron in a wide energy range such as boron in a sample are identified by NRCA/PGA. The information of NRCA/PGA is used in NRTA analysis to quantify nuclear material isotopes. A neutron time of flight (TOF method is used in NRD measurements. A facility, consisting of a neutron source, a neutron flight path, and a detector is required. A short flight path and a strong neutron source are needed to downsize such a facility and put NRD into practical use. A neutron transport tube covers a flight path to prevent noises. In order to investigate the effect of neutron transport tube and pulse width of a neutron source, we carried out NRTA experiments with a 2-m short neutron transport tube constructed at Kyoto University Research Reactor Institute - Linear Accelerator (KURRI-LINAC, and impacts of shield of neutron transport tube and influence of pulse width of a neutron source were examined. A shield of the neutron transport tube reduced a background and had a good influence on the measurement. The resonance dips of 183W at 27 eV was successfully observed with a pulse width of a neutron source less than 2 μs.

  20. Hybrid superconducting neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.