WorldWideScience

Sample records for neutron flux densities

  1. Neutron Flux Density Measured by Analysis of Annealing Heat

    Institute of Scientific and Technical Information of China (English)

    WANG; Fan; SHI; Yong-qian; ZHU; Qing-fu; LU; Jin; LI; Lai-dong

    2015-01-01

    Neutron flux density measurement by thermal analysis is a new method different from the previous.This method is first put the sample to the neutron field.Second,measure the annealingheat of the sample.Find out the suitable mixture of crystal boron and apatite to measure the neutron flux density.Then put the sample to the neutron field in

  2. Abnormal changes in the density of thermal neutron flux in biocenoses near the earth surface.

    Science.gov (United States)

    Plotnikova, N V; Smirnov, A N; Kolesnikov, M V; Semenov, D S; Frolov, V A; Lapshin, V B; Syroeshkin, A V

    2007-04-01

    We revealed an increase in the density of thermal neutron flux in forest biocenoses, which was not associated with astrogeophysical events. The maximum spike of this parameter in the biocenosis reached 10,000 n/(sec x m2). Diurnal pattern of the density of thermal neutron flux depended only on the type of biocenosis. The effects of biomodulation of corpuscular radiation for balneology are discussed.

  3. Using thermalizers in measuring 'Ukryttia' object's FCM neutron fluxes

    CERN Document Server

    Krasnyanskaya, O G; Odinokin, G I; Pavlovich, V N

    2003-01-01

    The results of research of a thermalizer (heater) width influence on neutron thermalization efficiency during FCM neutron flux measuring in the 'Ukryttia' are described. The calculations of neutron flux densities were performed by the Monte-Carlo method with the help of computer code MCNP-4C for FCM different models.Three possible installations of detectors were considered: on FCM surface,inside the FCM, and inside the concrete under the FCM layer. It was shown,that in order to increase the sensitivity of neutron detectors in intermediate and fast neutrons field,and consequently, to decrease the dependence of the readings of spectral distribution of neutron flux,it is necessary to position the detector inside the so-called thermalizer or heater. The most reasonable application of thick 'heaters' is the situation, when the detector is placed on FCM surface.

  4. On the limit of neutron fluxes in the fission-based pulsed neutron sources

    Science.gov (United States)

    Aksenov, V. L.; Ananiev, V. D.; Komyshev, G. G.; Rogov, A. D.; Shabalin, E. P.

    2017-09-01

    The upper limit of the density of the thermal neutron flux from pulsed sources based on the fission reaction is established. Three types of sources for research on ejected beams are considered: a multiplying target of the proton accelerator (a booster), a booster with the reactivity modulation (a superbooster), and a pulsing reactor. Comparison with other high-flux sources is carried out. The investigation has been performed at the Frank Laboratory of Neutron Physics of JINR.

  5. Neutrons in the moon. [neutron flux and production rate calculations

    Science.gov (United States)

    Kornblum, J. J.; Fireman, E. L.; Levine, M.; Aronson, A.

    1973-01-01

    Neutron fluxes for energies between 15 MeV and thermal at depths of 0 to 300 g/sq cm in the moon are calculated by the discrete ordinate mathod with the ANISN code. With the energy spectrum of Lingenfelter et al. (1972). A total neutron-production rate for the moon of 26 plus or minus neutrons/sq cm sec is determined from the Ar-37 activity measurements in the Apollo 16 drill string, which are found to have a depth dependence in accordance with a neutron source function that decreases exponentially with an attenuation length of 155 g/sq cm.

  6. Fusion Neutron Flux Monitor for ITER

    Institute of Scientific and Technical Information of China (English)

    YANG Jinwei; YANG Qingwei; XIAO Gongshan; ZHANG Wei; SONG Xianying; LI Xu

    2008-01-01

    Neutron flux monitor (NFM) as an important diagnostic sub-system in ITER (international thermonuclear experimental reactor) provides a global neutron source intensity, fusion power and neutron flux in real time. Three types of neutron flux monitor assemblies with different sensitivities and shielding materials have been designed. Through MCNP (Mante-Carlo neutral particle transport code) calculations, this extended system of NFM can detect the neutron flux in a range of 104 n/(cm2·s) to 1014 n/(cm2·s). It is capable of providing accurate neutron yield measurements for all operational modes encountered in the ITER experiments including the in-situ calibration. Combining both the counting mode and Campbelling (MSV; Mean Square Voltage) mode in the signal processing units, the requirement of the dynamic range (107) for these NFMs and time resolution (1 ms) can be met. Based on a uncertainty analysis, the estimated absolute measurement accuracies of the total fusion neutron yield can reach the required 10% level in both the early stage of the DD-phase and the full power DT operation mode. In the advanced DD-phase, the absolute measurement accuracy would be better than 20%.

  7. Neutron flux measurements around PLT

    Energy Technology Data Exchange (ETDEWEB)

    Zankl, G.; Strachan, J.D.; Lewis, R.; Pettus, W.; Schmotzer, J.

    1980-09-01

    Using Indium activation foils, the toroidal and poloidal neutron emission patterns were determined for PLT plasmas which include ICRF and neutral beam heating. The activities produced the /sup 115/In (n,n') /sup 115m/In reaction were determined by counting the 336 keV ..gamma.. line of the /sup 115m/In decay. This activation cross section falls just below 2.5 MeV so that the influence of scattered neutrons of degraded energies is reduced. From the magnitude of the activity, the absolute calibration of the PLT fusion neutron emission is obtained with less than or equal to 40% accuracy.

  8. Modulating the Neutron Flux from a Mirror Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D D

    2011-09-01

    A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronous detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.

  9. An alternative method for the measurement of neutron flux

    Indian Academy of Sciences (India)

    Rupa Sarkar; Prasanna Kumar Mondal; Barun Kumar Chatterjee

    2015-10-01

    A simple and easy method for measuring the neutron flux is presented. This paper deals with the experimental verification of neutron dose rate–flux relationship for a non-dissipative medium. Though the neutron flux cannot be obtained from the dose rate in a dissipative medium, experimental result shows that for non-dissipative medium one can obtain the neutron flux from dose rate. We have used a 241 AmBe neutron source for neutron irradiation, and the neutron dose rate and count rate were measured using a NM2B neutron monitor and R-12 superheated droplet detector (SDD), respectively. Here, the neutron flux inferred from the neutron count rate obtained with R-12 SDD shows an excellent agreement with the flux inferred from the neutron dose rate in a non-dissipative medium.

  10. EL-2 reactor: Thermal neutron flux distribution; EL-2: Repartition du flux de neutrons thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A.; Genthon, J.P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The flux distribution of thermal neutrons in EL-2 reactor is studied. The reactor core and lattices are described as well as the experimental reactor facilities, in particular, the experimental channels and special facilities. The measurement shows that the thermal neutron flux increases in the central channel when enriched uranium is used in place of natural uranium. However the thermal neutron flux is not perturbed in the other reactor channels by the fuel modification. The macroscopic flux distribution is measured according the radial positioning of fuel rods. The longitudinal neutron flux distribution in a fuel rod is also measured and shows no difference between enriched and natural uranium fuel rods. In addition, measurements of the flux distribution have been effectuated for rods containing other material as steel or aluminium. The neutron flux distribution is also studied in all the experimental channels as well as in the thermal column. The determination of the distribution of the thermal neutron flux in all experimental facilities, the thermal column and the fuel channels has been made with a heavy water level of 1825 mm and is given for an operating power of 1000 kW. (M.P.)

  11. Nodal model for calculating the variations in neutron flux density due to stochastic vibrations of control elements of hexagonal cross section; Nodales Modell zur Berechnung der Neutronenflussdichteschwankungen infolge stochastischer Schwingungen von Regelelementen mit hexagonalem Querschnitt

    Energy Technology Data Exchange (ETDEWEB)

    Hollstein, F.

    1994-08-01

    Based on a three-dimensional modal geometry model for the WWER 440 reacotr, with nodes in the hexagonal z geometry, the equations for the interative calculation of the mean neutron flux density in a node and their variations due to stochastic control element vibration are shown. For modelling sources of noise, two different geometric and neutron-physics equations are used, according to the design of a control element as a spatial double pendulum with the absorber and fuel part. The neutron flux noise caused by vibration of the fuel parts is due to area sources. These are induced by material parameter variation due to control element displacement within the guide duct. The model of the `thermal black body` absorbing hollow cylinder is transferred to bodies of hexagonal crossection for the absorber part. Both sources of noise are described as disturbances for the partial neutron current densities averaged over the node surfaces in the two group diffusion approximation. The transfer of the noise signals is dealt with in the prompt response approximation. The `two group swelling nodes` are coupled to the `one group transmission nodes` on the basis of the modified one group diffusion approximation. The algorithms shown are the basis for development of a computer program for examining the transfer functions depending on location of neutron flux density variations with stochastic control element vibrations as the source of noise. (orig./HP) [Deutsch] Auf der Basis eines dreidimensionalen nodalen Geometriemodells fuer den WWER-440-Reaktor mit Nodes in Hexagonal-z-Geometrie werden die Beziehungen zur iterativen Berechnung der mittleren Neutronenflussdichte in einer Node sowie deren Schwankungen infolge stochastischer Regelelementschwingungen dargestellt. Fuer die Rauschquellenmodellierung werden entsprechend der Konstruktion eines Regelelements als raeumliches Doppelpendel mit Absorber- und Brennstoffteil zwei verschiedene geometrische und neutronenphysikalische Ansaetze

  12. Constitutive laws for the neutron density current

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186 Col. Vicentina, Mexico, D.F., 09340 (Mexico)], E-mail: gepe@xanum.uam.mx; Morales-Sandoval, Jaime B. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Mor. (Mexico); Vazquez-Rodriguez, Rodolfo [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186 Col. Vicentina, Mexico, D.F., 09340 (Mexico); Espinosa-Martinez, Erick-G. [Retorno Quebec 6, Col. Burgos de Cuernavaca 62580, Temixco, Mor. (Mexico)

    2008-10-15

    In this technical note, a fractional wave equation for the average neutron motion in nuclear reactor is considered. This representation covers the full spectrum of the average neutron transport behavior, i.e., Fickian and non-Fickian effects. The fractional diffusion model retains the main dynamic characteristics of the neutron motion in which the relaxation time associated with a rapid variation in the neutron flux contains a fractional exponent that can be manipulated to obtain the best representation of the neutron transport phenomena. The detrended fluctuation analysis (DFA) method is presented in this paper to estimate the fractional exponent.

  13. First flux measurement in a SINQ supermirror neutron guide

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S.; Schlumpf, N.; Bauer, G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    On Dec. 3, 1996, the Swiss spallation neutron source SINQ was taken into operation and produced its first neutrons successfully. The neutron spectrum within one of the supermirror guides was estimated by a chopper Time-of-Flight method. The result shows a 30% higher neutron intensity at the flux maximum than expected from previous Monte-Carlo simulations. (author) 1 fig., 4 refs.

  14. OPAL REACTOR: Calculation/Experiment comparison of Neutron Flux Mapping in Flux Coolant Channels

    Energy Technology Data Exchange (ETDEWEB)

    Barbot, L.; Domergue, C.; Villard, J. F.; Destouches, C. [CEA, Paris (France); Braoudakis, G.; Wassink, D.; Sinclair, B.; Osborn, J. C.; Huayou, Wu [ANSTO, Syeney (Australia)

    2013-07-01

    The measurement and calculation of the neutron flux mapping of the OPAL research reactor are presented. Following an investigation of fuel coolant channels using sub-miniature fission chambers to measure thermal neutron flux profiles, neutronic calculations were performed. Comparison between calculation and measurement shows very good agreement.

  15. Simulation Study of Double Values Dynamic Matrix Control of the Nuclear Reactor Neutron Flux Density%核反应堆中子通量密度的双值动态矩阵控制仿真研究

    Institute of Scientific and Technical Information of China (English)

    史小平; 伞冶

    2001-01-01

    In this paper, a sort of non-parameter model is constructed with the unit step response of the nuclear reactor neutron kinetics system. Furthermore, a sort of constant neutron flux density control law is presented using the double values dynamic matrix control principle. In contrast to the other control methods based on the accurate model, the method presented in this paper has good tracking performance and robustness. It can work despite the existence of un-measurable disturbances. The simulation experiment testifies the correctness and effectiveness of the method.%利用核反应堆中子动力学系统的单位阶跃响应数据,获得了该系统的非参数模型,且提出了一种中子通量密度恒值问题的双值动态矩阵控制新方法。与基于精确模型的控制方法相比,此方法不必苛求模型的具体形式,且实时控制的计算量小、跟踪调节性能好、鲁棒性强、能消除不可测干扰。仿真结果验证了这种控制律的有效性和优越性。

  16. Enhancement of the sterile neutrinos yield at high matter density and at increasing the medium neutronization

    CERN Document Server

    Khruschov, V V; Nadyozhin, D K; Fomichev, S V

    2014-01-01

    The relative yields of active and sterile neutrinos in the matter with a high density and different degree of neutronization are calculated. A significant increase in the proportion of sterile neutrinos produced in superdense matter when approaching the medium neutronization degree to value of two is found. The results obtained can be used in the calculations of the neutrino fluxes for media with a high density and different neutronization degrees in astrophysical processes such as the formation of protoneutron core of a supernova.

  17. Development of Prototype Neutron Flux Monitor for ITER

    Institute of Scientific and Technical Information of China (English)

    Yang Jinwei; Song Xianying; Zhang Wei; Li Xu; Lee Wenzhong; Wang Shiqing; Xiao Gongshan; Yang Bo; Lu Shuangtong

    2005-01-01

    The prototype neutron flux monitor consists of a high purity 235U fission chamberdetector and a "blank" detector, which is a fissile material free detector with the same dimensionas the fission chamber detector to identify noise issues such as noise coming from gamma rays. Themain parameters of the fission chamber assembly that have been measured in the laboratory areconfirmed to approach the technological level of the International Thermonuclear ExperimentalReactor (ITER) in the near future. This prototype neutron flux monitor will be further developedto become a neutron flux monitor suitable for the operation phase of D-D fusion on the ITER.

  18. Analysis of natural neutron flux in a seismically active zone

    Directory of Open Access Journals (Sweden)

    V. F. Ostapenko

    2003-01-01

    Full Text Available In a seismically active zone in the near Almaty area (Kazakhstan since 1996 observations of variations of a natural neutron flux have been conducted. Sometimes the neutron flux rises sharply within the one-hour interval in comparison with the background. It occurs on the eve of activation of seismic processes. Increase of the neutron flux level had taken place from 1 h to 10 days prior to earthquakes. It is also indicated a tendency of growth of the anomaly level in accordance with the growth of energetic class of the subsequent earthquake. A character of connection between the neutron flux and earthquakes is still not clear. It is proposed that the neutron flux anomalies caused by variations of cosmic radiation intensity under action of fluxes of solar material, which is burst into interplanetary space (solar wind during solar flares. Energy of the solar wind transferred to Earth puts into action a trigger mechanism of the process of initiation of earthquakes at those places where conditions have already been prepared for them. The neutron flux anomalies can be used as substantial additional information for classical geophysical methods of short-term earthquake prediction.

  19. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium-Beryllium source

    Energy Technology Data Exchange (ETDEWEB)

    Didi, Abdessamad; Dadouch, Ahmed; Tajmouati, Jaouad; Bekkouri, Hassane [Advanced Technology and Integration System, Dept. of Physics, Faculty of Science Dhar Mehraz, University Sidi Mohamed Ben Abdellah, Fez (Morocco); Jai, Otman [Laboratory of Radiation and Nuclear Systems, Dept. of Physics, Faculty of Sciences, Tetouan (Morocco)

    2017-06-15

    Americium–beryllium (Am-Be; n, γ) is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci), yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources) experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

  20. Recent developments on micrometric fission chambers for high neutron fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Letourneau, A. [Irfu, Service de Physique Nucleaire, CEA-Saclay, 91191 Gif-sur-Yvette (France); Bringer, O.; Dupont, E.; Marie, F.; Panebianco, S.; Toussaint, J. C.; Veyssiere, C. [Irfu, CEA-Saclay, 91191 Gif-sur-Yvette (France); Chabod, S. [LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3 (France); Breaud, S.; Oriol, L. [DEN/DER/SPEX, CEA-Cadarache, Saint-Paul-lez-Durances (France)

    2009-07-01

    With the development of innovative nuclear systems and new generation neutron sources, the nuclear instrumentation should be adapted. Since several years, we developed microscopic fission chambers to study the transmutation of minor actinides in high thermal-neutron fluxes. The recent developments done to fulfill the drastic conditions of irradiations are described in this paper together with the feedback from the measurements. Two installations were used: the HFR of the ILL for its highest thermal neutron flux of the world and the MEGAPIE target which was the first 1 MW liquid Pb-Bi spallation target in the world. (authors)

  1. Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion.

    Science.gov (United States)

    Sztejnberg Gonçalves-Carralves, M L; Miller, M E

    2015-12-01

    Neutron generators based on inertial electrostatic confinement fusion were considered for the design of a neutron irradiation facility for explanted organ Boron Neutron Capture Therapy (BNCT) that could be installed in a health care center as well as in research areas. The chosen facility configuration is "irradiation chamber", a ~20×20×40 cm(3) cavity near or in the center of the facility geometry where samples to be irradiated can be placed. Neutron flux calculations were performed to study different manners for improving scattering processes and, consequently, optimize neutron flux in the irradiation position. Flux distributions were assessed through numerical simulations of several models implemented in MCNP5 particle transport code. Simulation results provided a wide spectrum of combinations of net fluxes and energy spectrum distributions. Among them one can find a group that can provide thermal neutron fluxes per unit of production rate in a range from 4.1·10(-4) cm(-2) to 1.6·10(-3) cm(-2) with epithermal-to-thermal ratios between 0.3% and 13% and fast-to-thermal ratios between 0.01% to 8%. Neutron generators could be built to provide more than 10(10) n s(-1) and, consequently, with an arrangement of several generators appropriate enough neutron fluxes could be obtained that would be useful for several BNCT-related irradiations and, eventually, for clinical practice.

  2. Neutron flux optimization in irradiation channels at NUR research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Meftah, B. [Division Reacteur, Centre de Recherche Nucleaire Draria (CRND), BP 43 Sebala DRARIA, Alger (Algeria)]. E-mail: b_meftah@yahoo.com; Zidi, T. [Division Reacteur, Centre de Recherche Nucleaire Draria (CRND), BP 43 Sebala DRARIA, Alger (Algeria); Bousbia-Salah, A. [Dipartimento di Ingegneria Meccanica, Nucleari e della Produzione, Facolta di Ingegneria, Universita di Pisa, Via Diotisalvi, 2 - 56126 Pisa (Italy)

    2006-09-15

    Optimization of neutron fluxes in experimental channels is of great concern in research reactor utilization. The general approach used at the NUR research reactor for neutron flux optimization in irradiation channels is presented. The approach is essentially based upon a judicious optimization of the core configuration combined with the improvement of reflector characteristics. The method allowed to increase the thermal neutron flux for radioisotope production purposes by more than 800%. Increases of up to 60% are also observed in levels of useful fluxes available for neutron diffraction experiments (small angle neutron scattering (SANS), neutron reflectometry, etc.). Such improvements in the neutronic characteristics of the NUR reactor opened new perspectives in terms of its utilization. More particularly, it is now possible to produce at industrial scales major radio-isotopes for medicine and industry and to perform, for the first time, material testing experiments. The cost of the irradiations in the optimized configuration is generally small when compared to those performed in the old configuration and an average reduction factor of about of 10 is expected in the case of production of Molybdenum-99 (isotope required for the manufacturing of Technetium-99 medical kits). In addition to these important results, safety analysis studies showed that the more symmetrical nature of the core geometry leads to a more adequately balanced reactivity control system and contributes quite efficiently to the operational safety of the NUR reactor. Results of comparisons between calculations and measurements for a series of parameters of importance in reactor operation and safety showed good agreement.

  3. Determination of spallation neutron flux through spectral adjustment techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, M.A., E-mail: mosbym@lanl.gov; Engle, J.W.; Jackman, K.R.; Nortier, F.M.; Birnbaum, E.R.

    2016-08-15

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed. However, the energy distribution and magnitude of the flux is not well understood. A modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  4. Determination of spallation neutron flux through spectral adjustment techniques

    Science.gov (United States)

    Mosby, M. A.; Engle, J. W.; Jackman, K. R.; Nortier, F. M.; Birnbaum, E. R.

    2016-08-01

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed. However, the energy distribution and magnitude of the flux is not well understood. A modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  5. Beam choppers for neutron reflectometers at steady flux reactors

    Science.gov (United States)

    Pleshanov, N. K.

    2017-09-01

    Realizations of the TOF technique for neutron reflectometers at steady flux reactors are compared. Beam choppers for neutron reflectometers divide into choppers of type 1 (Δλ = const) and 2 (Δλ / λ = const) . It follows from Monte-Carlo simulations that choppers of type 1 do not yield to more intricate choppers of type 2, widely used at neutron reflectometers. Because of a very fast drop of neutron reflectivities with the momentum transfer q, non-optimality of measurements with a chopper of type 1 is fully compensated by better statistics at large q, and is not so much essential at small q. To vary the TOF resolution with choppers of type 1, a phasing of two discs and a turning of the system of two discs are suggested. The fluxes of neutrons with wavelengths beyond the working range and the efficiencies of their elimination by means of a bandwidth limiting prechopper are evaluated.

  6. Global Maps of Lunar Neutron Fluxes from the LEND Instrument

    Science.gov (United States)

    Litvak, M. L.; Mitrofanov, I. G.; Sanin, A.; Malakhov, A.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Golovin, D. V.; Harshman, K.; McClanahan, T. P.; Mokrousov, M. I.; Mazarico, E.; Milikh, G.; Neumann, G.; Sagdeev, R.; Smith, D. E.; Starr, R.; Zuber, M. T.

    2012-01-01

    The latest neutron spectrometer measurements with the Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) are presented. It covers more than 1 year of mapping phase starting on 15 September 2009. In our analyses we have created global maps showing regional variations in the flux of thermal (energy range 0.5 MeV), and compared these fluxes to variances in soil elemental composition, and with previous results obtained by the Lunar Prospector Neutron Spectrometer (LPNS). We also processed data from LEND collimated detectors and derived a value for the collimated signal of epithermal neutrons based on the comparative analysis with the LEND omnidirectional detectors. Finally, we have compared our final (after the data reduction) global epithermal neutron map with LPNS data.

  7. Neutron flux reduction programs for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, C.S. [Korea Atomic Energy Research Inst. KAERI, 150 Deogjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, B.C. [Korea Reactor Integrity Surveillance Technology KRIST, 150 Deogjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2011-07-01

    The objective of this work is to implement various fast neutron flux reduction programs on the belt-line region of the reactor pressure vessel to reduce the increasing rate of reference temperature for pressurized thermal shock (RT PTS) for Korea Nuclear Unit 1. A pressurized thermal shock (PTS) event is an event or transient in pressurized water reactors (PWRs) causing severe overcooling (thermal shock) concurrent with or followed by significant pressure in the reactor vessel. A PTS concern arises if one of these transients acts in the belt-line region of a reactor vessel where a reduced fracture resistance exists because of neutron irradiation. Generally, the RT PTS value is continuously increasing according to the fast neutron irradiation during the reactor operation, and it can reach the screening criterion prior to the expiration of the operating license. To reduce the increasing rate of RT PTS, various neutron flux reduction programs can be implemented, which are focused on license renewal. In this paper, neutron flux reduction programs, such as low leakage loading pattern strategy, loading of neutron absorber rods, and dummy fuel assembly loading are considered for Korea Nuclear Unit 1, of which the RT PTS value of the leading material (circumferential weld) is going to reach the screening criterion in the near future. To evaluate the effects of the neutron flux reduction programs, plant and cycle specific forward neutron transport calculations for the various neutron flux reduction programs were carried out. For the analysis, all transport calculations were carried out by using the DORT 3.1 discrete ordinate code and BUGLE-96 cross-section library. (authors)

  8. Accelerator-driven sub-critical research facility with low-enriched fuel in lead matrix: Neutron flux calculation

    Directory of Open Access Journals (Sweden)

    Avramović Ivana

    2007-01-01

    Full Text Available The H5B is a concept of an accelerator-driven sub-critical research facility (ADSRF being developed over the last couple of years at the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. Using well-known computer codes, the MCNPX and MCNP, this paper deals with the results of a tar get study and neutron flux calculations in the sub-critical core. The neutron source is generated by an interaction of a proton or deuteron beam with the target placed inside the sub-critical core. The results of the total neutron flux density escaping the target and calculations of neutron yields for different target materials are also given here. Neutrons escaping the target volume with the group spectra (first step are used to specify a neutron source for further numerical simulations of the neutron flux density in the sub-critical core (second step. The results of the calculations of the neutron effective multiplication factor keff and neutron generation time L for the ADSRF model have also been presented. Neutron spectra calculations for an ADSRF with an uranium tar get (highest values of the neutron yield for the selected sub-critical core cells for both beams have also been presented in this paper.

  9. The measurements of thermal neutron flux distribution in a paraffin phantom

    Indian Academy of Sciences (India)

    Parisa Akhlaghi; Laleh Rafat-Motavalli; Seyed Hashem Miri-Hakimabad

    2013-05-01

    The term `thermal flux' implies a Maxwellian distribution of velocity and energy corresponding to the most probable velocity of 2200 ms-1 at 293.4 K. In order to measure the thermal neutron flux density, the foil activation method was used. Thermal neutron flux determination in paraffin phantom by counting the emitted rays of indium foils with two different detectors (Geiger–Muller counter and NaI(Tl)) was the aim of this project. The relative differences of the outcome of the experiments were between 2.5% and 5%. The final results were compared with MCNP4C outputs and the best agreement was generated using NaI(Tl) by a minimum discrepancy of about 0.6% for the foil placed 8.5 cm from the neutron source.

  10. CR-39 detector based thermal neutron flux measurements, in the photo neutron project

    Energy Technology Data Exchange (ETDEWEB)

    Mameli, A.; Greco, F.; Fidanzio, A. [U.O. di Fisica Sanitaria Policlinico A. Gemelli, Universita Cattolica S. Cuore, Roma (Italy); Fusco, V. [U.O. di Radioterapia, Centro di Riferimento Oncologico della Basilicata, CROB Rionero Pz (Italy); Cilla, S.; D' Onofrio, G.; Grimaldi, L.; Augelli, B.G. [U.O. di Fisica Sanitaria, Centro di Ricerca e Formazione ad Alta Tecnologia nelle Scienze Biomediche dell' Universita Cattolica S. Cuore, Campobasso (Italy); Giannini, G.; Bevilacqua, R.; Totaro, P. [Dipartimento di Fisica-Universita di Trieste e INFN Sez Trieste, Padriciano, Trieste (Italy); Tommasino, L. [Consultant, Via Cassia 1727, 00123 Roma (Italy); Azario, L. [Istituto di Fisica, Universita Cattolica del S. Cuore, Roma (Italy); Piermattei, A. [Istituto di Fisica, Universita Cattolica del S. Cuore, Roma (Italy)], E-mail: a.piermattei@rm.unicatt.it

    2008-08-15

    PhoNeS (photo neutron source) is a project aimed at the production and moderation of neutrons by exploiting high energy linear accelerators, currently used in radiotherapy. A feasibility study has been carried out with the scope in mind to use the high energy photon beams from these accelerators for the production of neutrons suitable for boron neutron capture therapy (BNCT). Within these investigations, it was necessary to carry out preliminary measurements of the thermal neutron component of neutron spectra, produced by the photo-conversion of X-ray radiotherapy beams supplied by three LinAcs: 15 MV, 18 MV and 23 MV. To this end, a simple passive thermal neutron detector has been used which consists of a CR-39 track detector facing a new type of boron-loaded radiator. Once calibrated, this passive detector has been used for the measurement of both the thermal neutron component and the cadmium ratio of different neutron spectra. In addition, bubble detectors with a response highly sensitive to thermal neutrons have also been used. Both thermal neutron detectors are simple to use, very compact and totally insensitive to low-ionizing radiation such as electrons and X-rays. The resultant thermal neutron flux was above 10{sup 6} n/cm{sup 2}s and the cadmium ratio was no greater than 15 for the first attempt of photo-conversion of X-ray radiotherapy beams.

  11. Neutron spatial flux profile measurement in compact subcritical system using miniature neutron detectors

    Science.gov (United States)

    Shukla, Mayank; Desai, Shraddha S.; Roy, Tushar; Kashyap, Yogesh; Ray, Nirmal; Bajpai, Shefali; Patel, Tarun; Sinha, Amar

    2015-02-01

    A zero power multiplying assembly in subcritical regime serves as a benchmark for validating subcritical reactor physics. The utilization of a subcritical assembly for the determination of nuclear parameters in a multiplying medium requires a well-defined neutron flux to carry out the experiments. For this it is necessary to know the neutron flux profile inside a subcritical system. A compact subcritical assembly BRAHMMA has been developed in India. The experimental channels in this assembly are typically less than 8 mm diameter. This requires use of miniature detectors that can be mounted in these experimental channels. In this article we present the thermal neutron flux profile measurement in a compact subcritical system using indigenously developed miniature gas filled neutron detectors. These detectors were specially designed and fabricated considering the restrictive dimensional requirements of the subcritical core. Detectors of non-standard size with various sensitivities, from 0.4 to 0.001 cps/nv were used for neutron flux of interest ranging from 103 to 107 n-cm-2 s-1. A comparison of measured neutron flux using these detectors and simulated Monte Carlo calculations are also presented in this article.

  12. Determination of the neutron flux in the reactor zones with the strong neutron absorption and leakage

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan

    2004-01-01

    Full Text Available The procedures for the numerical and experimental determination of the neutron flux in the zones with the strong neutron absorption and leakage are described in this paper. Numerical procedure is based on the application of the SCALE-4.4a code system where the Dancoff factors are determined by the VEGA2DAN code. Two main parts of the experimental methodology are measurement of the activity of irradiated foils and determination of the averaged neutron absorption cross-section in the foils by the SCALE-4.4a calculation procedure. The proposed procedures have been applied for the determination of the neutron flux in the internal neutron converter used with the RB reactor core configuration number 114.

  13. Computational program to neutron flux calculation; Programa computacional para calculo de fluxo de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Maria Ines Silvani; Furieri, Rosanne Cefaly de Aranda Amado [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    2000-07-01

    The absolute value of the neutron flux is of paramount importance in reactor physics and other application on the nuclear field. Due to several corrections which should be done, such as radioactive decay of the produced nuclides, normalization factors between different irradiations, neutron spectrum perturbation, cross section behaviour and growing of the reactor power, among other factors, make the calculation of the neutron flux very cumbersome. the software FLUXO was developed to overcome these inconveniences. It is programmed in FORTRAN language, and was written to calculate the absolute flux of thermal, epithermal and fast neutrons, through the foil activation technique. The magnitude of this activation can be measured by a 4{pi} {beta}-{gamma} coincidence measurement or by gamma spectroscopy alone. The software calculates as well, the absolute activity of radioactive sources, and reactor-irradiated samples. (author)

  14. Isotopic characterization and thermal neutron flux determination of a PuBe neutron source.

    Science.gov (United States)

    Purty, Ravi Ankit; Akanchha; Prasad, Shikha

    2017-07-01

    The Indian Institute of Technology Kanpur (IIT Kanpur) possesses a PuBe neutron source facility with an initial activity of 5 Ci, dated September 1966 (nearly 50 years ago). An understanding of the present activity and the rate of its change will allow implementation of proper radiological safety procedures and future radiological safety planning. Knowing the absolute neutron flux will help us in future neutron activation studies. These details are also important to ensure proper security precautions. In our work, we attempt to identify the isotopic composition to determine the rate of change of the source and the absolute thermal neutron flux of plutonium beryllium (PuBe) sample at IIT Kanpur. We have used gamma-ray spectroscopy for determining the isotopic composition of the PuBe neutron source. After utilizing gamma-ray spectroscopy it is found that the source is composed of (239)Pu and a small amount of (241)Am is present as an impurity. The mass ratio of (241)Am to (239)Pu is found to be approximately 18.1µg/g with an uncertainty of 1.39%. Delayed gamma neutron activation analysis (DGNAA) is used to determine the thermal neutron flux of the same PuBe neutron source using copper, cobalt, nickel and cadmium samples. The average thermal neutron flux as calculated from DGNAA is approximately 1.27×10(3)n/(cm(2)-s) at 1cm above the PuBe neutron source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Flux-Vortex Pinning and Neutron Star Evolution

    Science.gov (United States)

    Alpar, M. Ali

    2017-09-01

    G. Srinivasan et al. (1990) proposed a simple and elegant explanation for the reduction of the neutron star magnetic dipole moment during binary evolution leading to low mass X-ray binaries and eventually to millisecond pulsars: Quantized vortex lines in the neutron star core superfluid will pin against the quantized flux lines of the proton superconductor. As the neutron star spins down in the wind accretion phase of binary evolution, outward motion of vortex lines will reduce the dipole magnetic moment in proportion to the rotation rate. The presence of a toroidal array of flux lines makes this mechanism inevitable and independent of the angle between the rotation and magnetic axes. The incompressibility of the flux-line array (Abrikosov lattice) determines the epoch when the mechanism will be effective throughout the neutron star. Flux vortex pinning will not be effective during the initial young radio pulsar phase. It will, however, be effective and reduce the dipole moment in proportion with the rotation rate during the epoch of spindown by wind accretion as proposed by Srinivasan et al. The mechanism operates also in the presence of vortex creep.

  16. Alternative method for thermal neutron flux measurements based on common boric acid as converter and Lr-15 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, D.; Greaves, E. D.; Sajo B, L.; Barros, H. [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Apdo. Postal 89000, Caracas (Venezuela, Bolivarian Republic of); Ingles, R. [Universidad Nacional de San Antonio Abad del Cusco, Av. de la Cultura No. 733, Cusco (Peru)

    2010-02-15

    A method to determine the flux and angular distribution of thermal neutrons with the use of Lr-115 detectors was developed. The use of the Lr-115 detector involves the exposure of a pressed boric acid sample (tablet) as a target, in tight contact with the track detector, to a flux of thermalized neutrons. The self-absorption effects in thin films or foil type thermal neutron detectors can be neglected by using the Lr-115 detector and boric acid tablet setup to operate via backside irradiation. The energy window and the critical angle-residual energy curve were determined by comparisons between the experimental and simulated track parameters. A computer program was developed to calculate the detector registration efficiency, so that the thermal neutron flux can be calculated from the track densities induced in the Lr-115 detector using the derived empirical formula. The proposed setup can serves as directional detector of thermal neutrons. (Author)

  17. Measurement of neutron flux spectra in a Tungsten Benchmark by neutron foil activation method

    OpenAIRE

    Negoita, Cezar Ciprian

    2004-01-01

    The nuclear design of fusion devices such as ITER (International Thermonuclear Experimental Reactor), which is an experimental fusion reactor based on the "tokamak" concept, rely on the results of neutron physical calculations. These depend on the knowledge of the neutron and photon flux spectra which is particularly important because it permits to anticipate the possible answers of the whole structure to phenomena such as nuclear heating, tritium breeding, atomic displaceme...

  18. Neutron flux measurements at the TRIGA reactor in Vienna for the prediction of the activation of the biological shield

    Energy Technology Data Exchange (ETDEWEB)

    Merz, Stefan [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria); Djuricic, Mile [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria); Nuclear Engineering Seibersdorf, 2444 Seibersdorf (Austria); Villa, Mario; Boeck, Helmuth [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria); Steinhauser, Georg, E-mail: georg.steinhauser@ati.ac.at [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

    2011-11-15

    The activation of the biological shield is an important process for waste management considerations of nuclear facilities. The final activity can be estimated by modeling using the neutron flux density rather than the radiometric approach of activity measurements. Measurement series at the TRIGA reactor Vienna reveal that the flux density next to the biological shield is in the order of 10{sup 9} cm{sup -2} s{sup -1} at maximum power; but it is strongly influenced by reactor installations. The data allow the estimation of the final waste categorization of the concrete according to the Austrian legislation. - Highlights: > Neutron activation is an important process for the waste management of nuclear facilities. > Biological shield of the TRIGA reactor Vienna has been topic of investigation. > Flux values allow a categorization of the concrete concerning radiation protection legislation. > Reactor installations are of great importance as neutron sources into the biological shield. > Every installation shows distinguishable flux profiles.

  19. Determination of the neutron flux in the reactor zones with the strong neutron absorption and leakage

    OpenAIRE

    Ljubenov Vladan; Milošević Miodrag 1

    2004-01-01

    The procedures for the numerical and experimental determination of the neutron flux in the zones with the strong neutron absorption and leakage are described in this paper. Numerical procedure is based on the application of the SCALE-4.4a code system where the Dancoff factors are determined by the VEGA2DAN code. Two main parts of the experimental methodology are measurement of the activity of irradiated foils and determination of the averaged neutron absorption cross-section in the foils by t...

  20. Characterization of neutron yield and x-ray spectra of a High Flux Neutron Generator (HFNG)

    Science.gov (United States)

    Nnamani, Nnaemeka; HFNG Collaboration

    2015-04-01

    The High Flux Neutron Generator (HFNG) is a DD plasma-based source, with a self-loading target intended for fundamental science and engineering applications, including 40 Ar/39 Ar geochronology, neutron cross section measurements, and radiation hardness testing of electronics. Our first estimate of the neutron yield, based on the population of the 4.486 hour 115 In isomer gave a neutron yield of the order 108 n/sec; optimization is ongoing to achieve the design target of 1011 n/sec. Preliminary x-ray spectra showed prominent energy peaks which are likely due to atomic line-emission from back-streaming electrons accelerated up to 100 keV impinging on various components of the HFNG chamber. Our x-ray and neutron diagnostics will aid us as we continue to evolve the design to suppress back-streaming electrons, necessary to achieve higher plasma beam currents, and thus higher neutron flux. This talk will focus on the characterization of the neutron yield and x-ray spectra during our tests. A collimation system is being installed near one of the chamber ports for improved observation of the x-ray spectra. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and the UC Office of the President Award 12-LR-238745.

  1. 47 CFR 25.208 - Power flux density limits.

    Science.gov (United States)

    2010-10-01

    ... Region 2, the single-entry equivalent power-flux density, in the space-to-Earth direction, (EPFDdown), at... in Region 1 and 12.2-12.7 GHz in Region 2, the aggregate equivalent power-flux density, in the space... power flux density levels defined below. (1) In the region of the contiguous United States,...

  2. Simulation of neutron fluxes around the W7-X Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jenny

    1999-12-01

    A new fusion experiment, the WENDELSTEIN 7-X Stellarator (W7-X), will be undertaken in Greifswald in Germany. Measurements of the neutron flux will provide information on fusion reaction rates and possibly also on ion temperatures as function of time. For this purpose moderating neutron counters will be designed, tested, calibrated and eventually used at W7-X. Extensive Monte-Carlo simulations have been performed in order to select the most suitable detector and moderator combination with a flat response function and highest achievable efficiency. Different detector configurations with different moderating materials have been tried out, showing that a 32 cm thick graphite moderating BF{sub 3} -counter gives the desired flat response and sufficient efficiency. Neutron spectra calculations have been made for different torus models and the influence of floor, walls and ceiling (i.e. reactor hall) have been investigated. Presented results suggest that a more detailed torus model significantly reduces the number of neutron counts at the detector. Calculations including the reactor hall indicate a tendency of shifting the neutron spectra towards the thermal region. The main part of the scattered neutrons are back-scattered from the floor. Finally, calculations on the graphite moderating BF{sub 3} -counter in the detailed torus environment were performed in order to assess the absolute response function under the influence of the reactor hall. The results show that the detector count rate will increase by only 5-7 % when the reactor hall is taken into account. With a stellarator generating 10{sup 12} to 10{sup 16} neutrons per second the detector count rate will be 2x10{sup 5} to 2x10{sup 9} neutrons per second.

  3. In-situ SEOP polarizer and initial tests on a high flux neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, E., E-mail: e.babcock@fz-juelich.d [Institut Laue Langevin, Grenoble (France); Jeulich Centre for Neutron Science, Garching (Germany); Boag, S. [ISIS, Chilton, Didcot, OX11 QX (United Kingdom); Andersen, K.H.; Becker, M. [Institut Laue Langevin, Grenoble (France); Beecham, C. [ISIS, Chilton, Didcot, OX11 QX (United Kingdom); Institut Laue Langevin, Grenoble (France); Bordenave, F.; Chastagnier, J. [Institut Laue Langevin, Grenoble (France); Chen, W.C. [NIST Gaithersburg, MD (United States); Chung, R. [Institut Laue Langevin, Grenoble (France); Chupp, T.E. [FOCUS, University of Michigan, Ann Arbor, MI (United States); Elmore, S. [ISIS, Chilton, Didcot, OX11 QX (United Kingdom); Fouilloux, P. [Institut Laue Langevin, Grenoble (France); Gentile, T.R. [NIST Gaithersburg, MD (United States); Jullien, D.; Lelievre-Berna, E.; Mouveau, P.; Petoukhov, A.; Revert, M.; Soldner, T. [Institut Laue Langevin, Grenoble (France)

    2009-09-01

    Polarized {sup 3}He has shown its unique characteristics in many areas of polarized neutron scattering, its ability to polarize neutrons at short wavelengths, accept wide-angle and divergent beams and low backgrounds enable new classes of experiments. While polarized {sup 3}He is not a steady state solution as commonly applied, the benefits have been shown to offset the drawbacks of polarizing and refreshing the polarization in the neutron spin filter cells. As an extension of this work, in-situ polarization using the spin-exchange optical pumping (SEOP) method was explored as a means to construct a system which could be used to polarize {sup 3}He in the state used for an effective neutron spin filter to constant polarization while on the neutron beam. An in-situ SEOP polarizer was constructed. This device utilized many devices and principles developed for neutron spin filters which are polarized off the beam line using either SEOP or metastability exchange optical pumping (MEOP) under the same research program. As a collimation of this work effects of extremely high neutron capture flux density >1x10{sup 10}cm{sup -2}s{sup -1} incident on the in-situ polarizer were explored.

  4. Operation REDWING. Project 2.51, Neutron-Flux Measurements. Extracted Version

    Science.gov (United States)

    1981-05-15

    The attenuation of the thermal -neutron flux is increased by adding borax. The neutron dose was reduced by a factor of approximately four by a...the thermal -neutron flux is increased by adding borax. The neutron dose was reduced by a factor of approximately four by a concrete box three feet on a...the ,, eutrons and their spatial distribution is of basic importance to the assessment of the effects of the neutrons from a device. Measurements of this

  5. Influence of thermal and resonance neutron on fast neutron flux measurement by Pu-239 fission chamber

    CERN Document Server

    zeng, Lina; Song, Lingli; Zheng, Chun

    2014-01-01

    The Pu-239 fission chambers are widely used to measure fission spectrum neutron flux due to a flat response to fast neutrons. However, in the mean time the resonance and thermal neutrons can cause a significant influence on the measurement if they are moderated, which could be eliminated by using B and Cd covers. At a column enriched uranium fast neutron critical assembly, the fission reaction rates of Pu-239 are measured as 1.791*10-16,2.350*10-16 and 1.385*10-15 per second for 15mm thick B cover, 0.5mm thick Cd cover, and no cover respectively. While the fission reaction rate of Pu-239 is rapidly increased to 2.569*10-14 for a 20mm thick polythene covering fission chamber. The average Pu-239 fission cross-section of thermal and resonance neutrons is calculated to be 500b and 24.95b with the assumption of 1/v and 1/E spectra respectively, then thermal, resonance and fast neutron flux are achieved to be 2.30*106,2.24*106 and 1.04*108cm-2s-1.

  6. Energy Density Functional for Nuclei and Neutron Stars

    Energy Technology Data Exchange (ETDEWEB)

    Erler, J. [UTK/ORNL/German Cancer Research Center-Heidelberg; Horowitz, C. J. [UTK/ORNL/Indiana University; Nazarewicz, Witold [UTK/ORNL/University of Warsaw; Rafalski, M. [UTK/ORNL; Reinhard, P.-G. [Universitat Erlangen, Germany

    2013-01-01

    Background: Recent observational data on neutron star masses and radii provide stringent constraints on the equation of state of neutron rich matter [ Annu. Rev. Nucl. Part. Sci. 62 485 (2012)]. Purpose: We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. Methods: We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one. Results: The new functional TOV-min yields results for nuclear bulk properties (energy, rms radius, diffraction radius, and surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When comparing SV-min and TOV-min, isoscalar nuclear matter indicators vary slightly while isovector properties are changed considerably. We discuss neutron skins, dipole polarizability, separation energies of the heaviest elements, and proton and neutron drip lines. We confirm a correlation between the neutron skin of 208Pb and the neutron star radius. Conclusions: We demonstrate that standard energy density functionals optimized to nuclear data do not carry information on the expected maximum neutron star mass, and that predictions can only be made within an extremely broad uncertainty band. For atomic nuclei, the new functional TOV-min performs at least as well as the standard nuclear functionals, but it also reproduces expected neutron star data

  7. Average fast neutron flux in three energy ranges in the Quinta assembly irradiated by two types of beams

    Directory of Open Access Journals (Sweden)

    Strugalska-Gola Elzbieta

    2017-01-01

    Full Text Available This work was performed within the international project “Energy plus Transmutation of Radioactive Wastes” (E&T - RAW for investigations of energy production and transmutation of radioactive waste of the nuclear power industry. 89Y (Yttrium 89 samples were located in the Quinta assembly in order to measure an average high neutron flux density in three different energy ranges using deuteron and proton beams from Dubna accelerators. Our analysis showed that the neutron density flux for the neutron energy range 20.8 - 32.7 MeV is higher than for the neutron energy range 11.5 - 20.8 MeV both for protons with an energy of 0.66 GeV and deuterons with an energy of 2 GeV, while for deuteron beams of 4 and 6 GeV we did not observe this.

  8. 宽量程中子通量密度测量数字化处理系统设计%Design of Wide Range Digital Processing System for Neutron Flux Density Measurement

    Institute of Scientific and Technical Information of China (English)

    袁超; 黄跃峰; 李勇平

    2015-01-01

    The real-time and accurate measurement of reactor neutron flux is directly related to safe operation of the reactor.Neutron flux measurement system with fission chamber based on the analog technology had some shortage, a fission chamber of digital output signal processing system was designed.The combination of two kinds of fission chamber working mode which is pulse and Campbell were applied in this system.Using high-speed ADC digitalized signal from the fission chamber, FPGA could be used in a variety of digital signal pro-cessing algorithms.And using MATLAB simulated output pulse signal of the fission chamber, which imported arbitrary waveform signal generator as neutron source, to be used in a preliminary validation of the algorithm. Test results showed that the digital processing system had good linearity and good performance.%实时准确地测量反应堆的中子通量变化状况,对于确保反应堆的安全运行有着重要意义。基于模拟测量系统存在的一些不足,设计一种数字化的宽量程裂变室输出信号处理系统。该数字化信号处理系统将裂变室的脉冲和坎贝尔两种工作模式相结合,利用高速ADC对裂变室输出脉冲信号数字化,在FPGA中运用数字信号处理算法实现两种工作模式的信号处理,并仿真了裂变室的输出脉冲信号导入任意波形信号发生器模拟中子信号源,用于对处理算法的初步验证。测试结果表明数字化处理系统线性度和性能良好。

  9. Relativistic density functional theory for finite nuclei and neutron stars

    CERN Document Server

    Piekarewicz, J

    2015-01-01

    The main goal of the present contribution is a pedagogical introduction to the fascinating world of neutron stars by relying on relativistic density functional theory. Density functional theory provides a powerful--and perhaps unique--framework for the calculation of both the properties of finite nuclei and neutron stars. Given the enormous densities that may be reached in the core of neutron stars, it is essential that such theoretical framework incorporates from the outset the basic principles of Lorentz covariance and special relativity. After a brief historical perspective, we present the necessary details required to compute the equation of state of dense, neutron-rich matter. As the equation of state is all that is needed to compute the structure of neutron stars, we discuss how nuclear physics--particularly certain kind of laboratory experiments--can provide significant constrains on the behavior of neutron-rich matter.

  10. Thermal neutron flux distribution in ET-RR-2 reactor thermal column

    OpenAIRE

    Imam Mahmoud M.; Roushdy Hassan

    2002-01-01

    The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a) to provide a thermal neutron flux in the neutron transmutation silicon doping, (b) to provide a thermal flux in the neutron activation analysis position, and (c) to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, ...

  11. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  12. Symmetry energy effects on properties of neutron star crusts around the neutron drip density

    CERN Document Server

    Bao, S S; Zhang, Z W; Shen, H

    2014-01-01

    We study the effects of the symmetry energy on the neutron drip density and properties of nuclei in neutron star crusts. The nonuniform matter around the neutron drip point is calculated using the Thomas--Fermi approximation with the relativistic mean-field model. The neutron drip density and the composition of the crust are found to be correlated with the symmetry energy and its slope. We compare the self-consistent Thomas--Fermi approximation with other treatments of surface and Coulomb energies, and find that these finite-size effects play an essential role in determining the equilibrium state at low density.

  13. The study of the thermal neutron flux in the deep underground laboratory DULB-4900

    CERN Document Server

    Gavrilyuk, Yu M; Gezhaev, A M; Kazalov, V V; Kuzminov, V V; Panasenko, S I; Ratkevich, S S; Tekueva, D A; Yakimenko, S P

    2015-01-01

    We report on the study of thermal neutron flux using monitors based on mixture of ZnS(Ag) and LiF enriched with a lithium-6 isotope at the deep underground laboratory DULB-4900 at the Baksan Neutrino Observatory. An annual modulation of thermal neutron flux in DULB-4900 is observed. Experimental evidences were obtained of correlation between the long-term thermal neutron flux variations and the absolute humidity of the air in laboratory. The amplitude of the modulation exceed 5\\% of total neutron flux flux.

  14. Measurement of in-phantom neutron flux and gamma dose in Tehran research reactor boron neutron capture therapy beam line

    OpenAIRE

    Elham Bavarnegin; Alireza Sadremomtaz; Hossein Khalafi; Yaser Kasesaz

    2016-01-01

    Aim: Determination of in-phantom quality factors of Tehran research reactor (TRR) boron neutron capture therapy (BNCT) beam. Materials and Methods: The doses from thermal neutron reactions with 14N and 10B are calculated by kinetic energy released per unit mass approach, after measuring thermal neutron flux using neutron activation technique. Gamma dose is measured using TLD-700 dosimeter. Results: Different dose components have been measured in a head phantom which has been designed an...

  15. Energy density functional for nuclei and neutron stars

    CERN Document Server

    Erler, J; Nazarewicz, W; Rafalski, M; Reinhard, P -G

    2012-01-01

    We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals -- a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties -- are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one. The new functional TOV-min yields results for nuclear bulk properties (energy, r.m.s. radius, diffraction radius, surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When c...

  16. Neutron skin uncertainties of Skyrme energy density functionals

    CERN Document Server

    Kortelainen, M; Nazarewicz, W; Birge, N; Gao, Y; Olsen, E

    2013-01-01

    Background: Neutron-skin thickness is an excellent indicator of isovector properties of atomic nuclei. As such, it correlates strongly with observables in finite nuclei that depend on neutron-to-proton imbalance and the nuclear symmetry energy that characterizes the equation of state of neutron-rich matter. A rich worldwide experimental program involving studies with rare isotopes, parity violating electron scattering, and astronomical observations is devoted to pinning down the isovector sector of nuclear models. Purpose: We assess the theoretical systematic and statistical uncertainties of neutron-skin thickness and relate them to the equation of state of nuclear matter, and in particular to nuclear symmetry energy parameters. Methods: We use the nuclear superfluid Density Functional Theory with several Skyrme energy density functionals and density dependent pairing. To evaluate statistical errors and their budget, we employ the statistical covariance technique. Results: We find that the errors on neutron s...

  17. Development of self-powered neutron detectors for neutron flux monitoring in HCLL and HCPB ITER-TBM

    Energy Technology Data Exchange (ETDEWEB)

    Angelone, M., E-mail: maurizio.angelone@enea.it [Associazione ENEA-EURATOM sulla FusioneENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Klix, A. [Association KIT-EURATOM, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Pillon, M.; Batistoni, P. [Associazione ENEA-EURATOM sulla FusioneENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Fischer, U. [Association KIT-EURATOM, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Santagata, A. [ENEA C.R. Casaccia, via Anguillarese Km. 1,300, 00100 Roma (Italy)

    2014-10-15

    Highlights: •Self powered neutron detector (SPND) is attractive neutron monitor for TBM in ITER. •In hard neutron spectra (e.g. TBM) there is the need to optimize their response. •Three state-of-the-art SPNDs were tested using fast and 14 MeV neutrons. •The response of SPNDs is much lower than in thermal neutron flux. •FISPACT calculations performed to find out candidate materials in hard spectra. -- Abstract: Self powered neutron detectors (SPND) have a number of interesting properties (e.g. small dimensions, capability to operate in harsh environments, absence of external bias), so they are attractive neutron monitors for TBM in ITER. However, commercially available SPNDs are optimized for operation in a thermal nuclear reactor where the neutron spectrum is much softer than that expected in a TBM. This fact can limit the use of SPND in a TBM since the effective cross sections for the production of beta emitters are much lower in a fast neutron spectrum. This work represents the first attempt to study SPNDs as neutron flux monitors for TBM. Three state-of-the-art SPND available on the market were bought and tested using fast neutrons at TAPIRO fast neutron source of ENEA Casaccia and with 14 MeV neutrons at the Frascati neutron generator (FNG). The results clearly indicate that in fast neutron spectra, the response of SPNDs is much lower than in thermal neutron flux. Activation calculations were performed using the FISPACT code to find out possible material candidates for SPND suitable for operation in TBM neutron spectra.

  18. The preliminary results of fast neutron flux measurements in the DULB laboratory at Baksan

    OpenAIRE

    2000-01-01

    One of the main sources of a background in underground physics experiments (such as the investigation of solar neutrino flux, neutrino oscillations, neutrinoless double beta decay, and the search for annual and daily Cold Dark Matter particle flux modulation) are fast neutrons originating from the surrounding rocks. The measurements of fast neutron flux in the new DULB Laboratory situated at a depth of 4900 m w.e. in the Baksan Neutrino Observatory have been performed. The relative neutron sh...

  19. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium–Beryllium source

    Directory of Open Access Journals (Sweden)

    Abdessamad Didi

    2017-06-01

    Full Text Available Americium–beryllium (Am-Be; n, γ is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci, yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

  20. Neutron stars as probes of extreme energy density matter

    Indian Academy of Sciences (India)

    Madappa Prakash

    2015-05-01

    Neutron stars have long been regarded as extraterrestrial laboratories from which we can learn about extreme energy density matter at low temperatures. In this article, some of the recent advances made in astrophysical observations and related theory are highlighted. Although the focus is on the much needed information on masses and radii of several individual neutron stars, the need for additional knowledge about the many facets of neutron stars is stressed. The extent to which quark matter can be present in neutron stars is summarized with emphasis on the requirement of non-perturbative treatments. Some longstanding and new questions, answers to which will advance our current status of knowledge, are posed.

  1. MATERIAL COMPOSITIONS AND NUMBER DENSITIES FOR NEUTRONICS CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Thomas

    1996-01-02

    The purpose of this analysis is to calculate the number densities and isotopic weight percentages of the standard materials to be used in the neutronics (criticality and radiation shielding) evaluations by the Waste Package Development Department. The objective of this analysis is to provide material number density information which can be referenced by future neutronics design analyses, such as for those supporting the Conceptual Design Report.

  2. Neutron Capture Cross Sections of Zr and La: Probing Neutron Exposure and Neutron Flux in Red Giant Stars

    CERN Multimedia

    Kitis, G; Wiescher, M; Dahlfors, M; Soares, J

    2002-01-01

    We propose to measure the neutron capture cross sections of $^{139}$La, of $^{93}$Zr (t$_{1/2}$)=1.5 10$^{6}$ yr), and of all the stable Zr isotopes at n_TOF. The aim of these measurements is to improve the accuracy of existing results by at least a factor of three in order to meet the quality required for using the s-process nucleosynthesis as a diagnostic tool for neutron exposure and neutron flux during the He burning stages of stellar evolution. Combining these results with a wealth of recent information coming from high-resolution stellar spectroscopy and from the detailed analysis of presolar dust grains will shed new light on the chemical history of the universe. The investigated cross sections are also needed for technological applications, in particular since $^{93}$Zr is one of the major long-lived fission products.

  3. Neutron-star matter within the energy-density functional theory and neutron-star structure

    Energy Technology Data Exchange (ETDEWEB)

    Fantina, A. F.; Chamel, N.; Goriely, S. [Institut d' Astronomie et d' Astrophysique, CP226, Université Libre de Bruxelles (ULB), 1050 Brussels (Belgium); Pearson, J. M. [Dépt. de Physique, Université de Montréal, Montréal (Québec), H3C 3J7 (Canada)

    2015-02-24

    In this lecture, we will present some nucleonic equations of state of neutron-star matter calculated within the nuclear energy-density functional theory using generalized Skyrme functionals developed by the Brussels-Montreal collaboration. These equations of state provide a consistent description of all regions of a neutron star. The global structure of neutron stars predicted by these equations of state will be discussed in connection with recent astrophysical observations.

  4. Study on spatial resolution of micromegas as a neutron detector under condition of high neutron flux and γ ray background

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-Xin; ZHANG Yi; WANG Ji-Jin; HU Bi-Tao

    2009-01-01

    In this paper Micromegas has been designed to detect neutrons. The simulation of the spatial reso-lution of Micromegas as neutron detector is carried out by GEANT4 toolkit. The neutron track reconstruction method based on the time coincidence technology is employed in the present work. The influence of the flux of incident 14 MeV neutron and high gamma background on the spatial resolution is carefully studied. Our results show that the spatial resolution of the detector is sensitive to the neutron flux, but insensitive to the intensity of γ background if the neutron track reconstruction method proposed by our group is used. The γ insensitivity makes it possible for us to use the Micromegas detector under condition which has high γ-rays background.

  5. Refractive Interstellar Scintillation for Flux Density Variations of Two Pulsars

    Institute of Scientific and Technical Information of China (English)

    周爱芝; 吴鑫基; 艾力·伊沙木丁

    2003-01-01

    The flux density structure functions of PSRs B0525+21 and B2111+46 are calculated with the refractive interstellar scintillation (RISS) theory. The theoretical curves are in good agreement with observations [Astrophys.J. 539 (2000) 300] (hereafter S2000). The spectra of the electron density fluctuations both are of Kolmogorov spectra. We suggest that the flux density variations observed for these two pulsars are attributed to refractive interstellar scintillation, not to intrinsic variability.

  6. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor.

    Science.gov (United States)

    Yavar, A R; Sarmani, S B; Wood, A K; Fadzil, S M; Radir, M H; Khoo, K S

    2011-05-01

    Determination of thermal to fast neutron flux ratio (f(fast)) and fast neutron flux (ϕ(fast)) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f(fast) and subsequently ϕ(fast) were determined using the absolute method. The f(fast) ranged from 48 to 155, and the ϕ(fast) was found in the range 1.03×10(10)-4.89×10(10) n cm(-2) s(-1). These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  7. Neutron density distributions of neutron-rich nuclei studied with the isobaric yield ratio difference

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chun-Wang; Bai, Xiao-Man; Yu, Jiao; Wei, Hui-Ling [Henan Normal University, Institute of Particle and Nuclear Physics, Xinxiang (China)

    2014-09-15

    The isobaric yield ratio difference (IBD) between two reactions of similar experimental setups is found to be sensitive to nuclear density differences between projectiles. In this article, the IBD probe is used to study the density variation in neutron-rich {sup 48}Ca. By adjusting diffuseness in the neutron density distribution, three different neutron density distributions of {sup 48}Ca are obtained. The yields of fragments in the 80A MeV {sup 40,} {sup 48}Ca + {sup 12}C reactions are calculated by using a modified statistical abrasion-ablation model. It is found that the IBD results obtained from the prefragments are sensitive to the density distribution of the projectile, while the IBD results from the final fragments are less sensitive to the density distribution of the projectile. (orig.)

  8. Neutron flux and power in RTP core-15

    Science.gov (United States)

    Rabir, Mohamad Hairie; Zin, Muhammad Rawi Md; Usang, Mark Dennis; Bayar, Abi Muttaqin Jalal; Hamzah, Na'im Syauqi Bin

    2016-01-01

    PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core with literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.

  9. Neutron flux and power in RTP core-15

    Energy Technology Data Exchange (ETDEWEB)

    Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Zin, Muhammad Rawi Md; Usang, Mark Dennis; Bayar, Abi Muttaqin Jalal; Hamzah, Na’im Syauqi Bin [Nuclear and reactor Physics Section, Nuclear Technology Center, Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core with literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.

  10. Neutron flux spectra and radiation damage parameters for the Russian Bor-60 and SM-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karasiov, A.V. [D.V. Efremov Scientific Rresearch Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Greenwood, L.R. [Pacific Northwest Laboratory, Richland, WA (United States)

    1995-04-01

    The objective is to compare neutron irradiation conditions in Russian reactors and similar US facilities. Neutron fluence and spectral information and calculated radiation damage parameters are presented for the BOR-60 (Fast Experimental Reactor - 60 MW) and SM-2 reactors in Russia. Their neutron exposure characteristics are comparable with those of the Experimental Breeder Reactor (ERB-II), the Fast Flux Test Facility (FFTF), and the High Flux Isotope Reactor (HFIR) in the United States.

  11. An ultracold neutron storage bottle for UCN density measurements

    CERN Document Server

    Bison, G; Daum, M; Kirch, K; Krempel, J; Lauss, B; Meier, M; Ries, D; Schmidt-Wellenburg, P; Zsigmond, G

    2016-01-01

    We have developed a storage bottle for ultracold neutrons (UCN) in order to measure the UCN density at the beamports of the Paul Scherrer Institute's (PSI) UCN source. This paper describes the design, construction and commissioning of the robust and mobile storage bottle with a volume comparable to typical storage experiments 32 liter e.g. searching for an electric dipole moment of the neutron.

  12. An ultracold neutron storage bottle for UCN density measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bison, G.; Burri, F.; Daum, M. [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Kirch, K. [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule (ETH), Zürich (Switzerland); Krempel, J. [Institute for Particle Physics, Eidgenössische Technische Hochschule (ETH), Zürich (Switzerland); Lauss, B., E-mail: bernhard.lauss@psi.ch [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Meier, M. [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Ries, D., E-mail: dieter.ries@psi.ch [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule (ETH), Zürich (Switzerland); Schmidt-Wellenburg, P.; Zsigmond, G. [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland)

    2016-09-11

    We have developed a storage bottle for ultracold neutrons (UCNs) in order to measure the UCN density at the beamports of the Paul Scherrer Institute's (PSI) UCN source. This paper describes the design, construction and commissioning of the robust and mobile storage bottle with a volume comparable to typical storage experiments (32 L) e.g. searching for an electric dipole moment of the neutron.

  13. Thermal neutron flux distribution in ET-RR-2 reactor thermal column

    Directory of Open Access Journals (Sweden)

    Imam Mahmoud M.

    2002-01-01

    Full Text Available The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a to provide a thermal neutron flux in the neutron transmutation silicon doping, (b to provide a thermal flux in the neutron activation analysis position, and (c to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, necessary to determine the thermal neutron flux at above mentioned positions. In the present work, the neutron flux in the ET-RR-2 reactor system was calculated by applying the three dimensional diffusion depletion code TRITON. According to these calculations, the reactor system is composed of the core, surrounding external irradiation grid, beryllium block, thermal column and the water reflector in the reactor tank next to the tank wall. As a result of these calculations, the thermal neutron fluxes within the thermal column and at irradiation positions within the thermal column were obtained. Apart from this, the burn up results for the start up core calculated according to the TRITION code were compared with those given by the reactor designer.

  14. Flux and Spectrum of Neutrons Generated from 25 Mv Medical X-Ray Therapy Machine

    Science.gov (United States)

    1989-05-01

    neutron absorption cross section at t. By using this relation in equation (1) the integration is possible over...0 n td f dat) n (it, rpLthprmQJ where 000 is defined as the microscopic neutron absorption cross - section at 2200 m/s, the most probable speed of a... neutron - absorption cross - section of the target as a function of energy O(E) is neutron flux per unit of energy as a function of energy. 1,d is

  15. Study of Collimated Neutron Flux Monitors for MAST and MAST Upgrade

    OpenAIRE

    Sangaroon, Siriyaporn

    2014-01-01

    Measurements of the neutron emission, resulting from nuclear fusion reactions between the hydrogen isotopes deuterium and tritium, can provide a wealth of information on the confinement properties of fusion plasmas and how these are affected by Magneto-Hydro-Dynamic (MHD) instabilities. This thesis describes work aimed to develop neutron measurement techniques for nuclear fusion plasma experiments, specifically regarding the performance and design of collimated neutron flux monitors (neutron ...

  16. Particle Filter-Based Recursive Data Fusion With Sensor Indexing for Large Core Neutron Flux Estimation

    Science.gov (United States)

    Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol

    2017-06-01

    We introduce a sequential importance sampling particle filter (PF)-based multisensor multivariate nonlinear estimator for estimating the in-core neutron flux distribution for pressurized heavy water reactor core. Many critical applications such as reactor protection and control rely upon neutron flux information, and thus their reliability is of utmost importance. The point kinetic model based on neutron transport conveniently explains the dynamics of nuclear reactor. The neutron flux in the large core loosely coupled reactor is sensed by multiple sensors measuring point fluxes located at various locations inside the reactor core. The flux values are coupled to each other through diffusion equation. The coupling facilitates redundancy in the information. It is shown that multiple independent data about the localized flux can be fused together to enhance the estimation accuracy to a great extent. We also propose the sensor anomaly handling feature in multisensor PF to maintain the estimation process even when the sensor is faulty or generates data anomaly.

  17. Density Functional Calculations for the Neutron Star Matter at Subnormal Density

    Science.gov (United States)

    Kashiwaba, Yu; Nakatsukasa, Takashi

    The pasta phases of nuclear matter, whose existence is suggested at low density, may influence observable properties of neutron stars. In order to investigate properties of the neutron star matter, we calculate self-consistent solutions for the ground states of slab-like phase using the microscopic density functional theory with Bloch wave functions. The calculations are performed at each point of fixed average density and proton fraction (\\bar{ρ },Yp), varying the lattice constant of the unit cell. For small Yp values, the dripped neutrons emerge in the ground state, while the protons constitute the slab (crystallized) structure. The shell effect of protons affects the thickness of the slab nuclei.

  18. International Fusion Material Irradiation Facility (IFMIF) neutron source term simulation and neutronics analyses of the high flux test module

    CERN Document Server

    Simakov, S P; Heinzel, V; Moellendorff, U V

    2002-01-01

    The report describes the new results of the development work performed at Forschungszentrum Karlsruhe on the neutronics of the International Fusion Materials Irradiation Facility (IFMIF). An important step forward has been done in the simulation of neutron production of the deuteron-lithium source using the Li(d,xn) reaction cross sections from evaluated data files. The developed Monte Carlo routine and d-Li reaction data newly evaluated at INPE Obninsk have been verified against available experimental data on the differential neutron yield from deuteron-bombarded thick lithium targets. With the modified neutron source three-dimensional distributions of neutron and photon fluxes, displacement and gas production rates and nuclear heating inside the high flux test module (HFTM) were calculated. In order to estimate the uncertainty resulting from the evaluated data, two independent libraries, recently released by INPE and LANL, have been used in the transport calculations. The proposal to use a reflector around ...

  19. Flux dependence of cluster formation in neutron-irradiated weld material

    Science.gov (United States)

    Bergner, F.; Ulbricht, A.; Hein, H.; Kammel, M.

    2008-03-01

    The effect of neutron flux on the formation of irradiation-induced clusters in reactor pressure vessel (RPV) steels is an unresolved issue. Small-angle neutron scattering was measured for a neutron-irradiated RPV weld material containing 0.22 wt% impurity Cu. The experiment was focused on the influence of neutron flux on the formation of irradiation-induced clusters at fixed fluence. The aim was to separate and tentatively interpret the effect of flux on the characteristics of the cluster size distribution. We have observed a pronounced effect of neutron flux on cluster size, whereas the total volume fraction of irradiation-induced clusters is insensitive to the level of flux. The result is compatible with a rate theory model according to which the range of applied fluxes covers the transition from a flux-independent regime at lower fluxes to a regime of decelerating cluster growth. The results are confronted with measured irradiation-induced changes of mechanical properties. Despite the observed flux effect on cluster size, both yield stress increase and transition temperature shift turned out to be independent of flux. This is in agreement with the volume fraction of irradiation-induced clusters being insensitive to the level of flux.

  20. Injury response of Phaseolus vulgaris to ozone flux density

    Science.gov (United States)

    Amiro, B. D.; Gillespie, T. J.; Thurtell, G. W.

    This study describes a quantitative relationship between mean O 3 flux density and the length of exposure needed for the occurrence of visual injury to Phaseolus vulgaris L. Similar relationships were found for 14 day old and 6 week old plants using a whole leaf gas exchange cuvette system. Cultivars Seafarer (O 3 sensitive) and Gold Crop (O 3 resistant) exhibited similar responses at flux densities > 3 mg m -2 h -1 but only Seafarer was injured below this flux density. O 3 concentration and length of exposure period alone did not contain sufficient information to describe the onset of visual foliar injury. The use of O 3 concentrations in excess of normal ambient conditions compensated for low leaf conductances so that flux densities in the cuvette were similar to those found in the field.

  1. Metastable states of hydrogen: their geometric phases and flux densities

    CERN Document Server

    Gasenzer, T; Trappe, M -I

    2011-01-01

    We discuss the geometric phases and flux densities for the metastable states of hydrogen with principal quantum number n=2 being subjected to adiabatically varying external electric and magnetic fields. Convenient representations of the flux densities as complex integrals are derived. Both, parity conserving (PC) and parity violating (PV) flux densities and phases are identified. General expressions for the flux densities following from rotational invariance are derived. Specific cases of external fields are discussed. In a pure magnetic field the phases are given by the geometry of the path in magnetic field space. But for electric fields in presence of a constant magnetic field and for electric plus magnetic fields the geometric phases carry information on the atomic parameters, in particular, on the PV atomic interaction. We show that for our metastable states also the decay rates can be influenced by the geometric phases and we give a concrete example for this effect. Finally we emphasise that the general...

  2. Neutron Flux Characterization of Irradiation Holes for Irradiation Test at HANARO

    Directory of Open Access Journals (Sweden)

    Yang Seong Woo

    2016-01-01

    Full Text Available The High flux Advanced Neutron Application ReactOr (HANARO is a unique research reactor in the Republic of Korea, and has been used for irradiation testing since 1998. To conduct irradiation tests for nuclear materials, the irradiation holes of CT and OR5 have been used due to a high fast-neutron flux. Because the neutron flux must be accurately calculated to evaluate the neutron fluence of irradiated material, it was conducted using MCNP. The neutron flux was measured using fluence monitor wires to verify the calculated result. Some evaluations have been conducted, however, more than 20% errors have frequently occurred at the OR irradiation hole, while a good agreement between the calculated and measured data was shown at the CT irradiation hole.

  3. Notes on neutron flux measurement; Notas sobre medida de flujos neutronicos

    Energy Technology Data Exchange (ETDEWEB)

    Alcala Ruiz, F.

    1984-07-01

    The main purpose of this work is to get an useful guide to carry out topical neutron flux measurements. Although the foil activation technique is used in the majority of the cases, other techniques, such as those based on fission chambers and self-powered neutron detectors, are also shown. Special interest is given to the description and application of corrections on the measurement of relative and absolute induced activities by several types of detectors (scintillators, G-M and gas proportional counters). The thermal arid epithermal neutron fluxes, as determined in this work, are conventional or effective (West cots fluxes), which are extensively used by the reactor experimentalists; however, we also give some expressions where they are related to the integrated neutron fluxes, which are used in neutron calculations. (Author) 16 refs.

  4. Neutron stars as probes of extreme energy density matter

    CERN Document Server

    Prakash, Madappa

    2014-01-01

    Neutron stars have long been regarded as extra-terrestrial laboratories from which we can learn about extreme energy density matter at low temperatures. In this article, I highlight some of the recent advances made in astrophysical observations and related theory. Although the focus is on the much needed information on masses and radii of several individual neutron stars, the need for additional knowledge about the many facets of neutron stars is stressed. The extent to which quark matter can be present in neutron stars is summarized with emphasis on the requirement of non-perturbative treatments. Some longstanding and new questions, answers to which will advance our current status of knowledge, are posed.

  5. Thermal, intermediate and fast neutron flux measurements using activation detectors; Mesure des flux de neutrons thermiques, intermediaires et rapides au moyen de detecteurs par activation

    Energy Technology Data Exchange (ETDEWEB)

    Brisbois, J.; Lott, M.; Manent, G. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The problem of neutron flux measurements using activation detectors is studied in the particular case of protection research. It is shown how it possible, it is possible, using a known thermal flux, to organise a coherent calibration system for all the detectors. The rapid neutron detectors are calibrated with respect to a reference detector (phosphorus) in a natural uranium converter; the intermediate neutron detectors with respect to gold in the axial channel of ZOE. This method makes it possible to minimise the errors due to the activation cross-sections. A brief description is given of the counting room of the Pile Safety Study Service, as well of the practical utilisation characteristics of the counters employed. (authors) [French] Le probleme de la mesure des flux de neutrons au moyen de detecteurs par activation est etudie dans le cas particulier des etudes de protections. On montre comment, a partir d'un flux thermique connu, on peut organiser un systeme coherent d'etalonnage de tous les detecteurs. Les detecteurs de neutrons rapides sont etalonnes par rapport a un detecteur de reference (phosphore) dans un convertisseur en uranium naturel; les detecteurs de neutrons intermediaires, par rapport a l'or dans le canal axial de ZOE, Cette methode permet de minimiser les erreurs dues aux sections efficaces d'activation. On decrit sommairement la salle de comptage du Service d'Etudes de Protections de Piles et on indique les caracteristiques d'emploi pratique des detecteurs utilises. (auteurs)

  6. Influence of Fast Neutron Irradiation on Critical Current Densities of Bi-2223/Ag Tape

    Institute of Scientific and Technical Information of China (English)

    Duan Zhenzhong

    2004-01-01

    Experimental results on the magnetic field behavior of the critical current in silver sheathed Bi-2223 tapes are presented. The experiments consist of transport and magnetic measurements in a wide temperature range and in external magnetic field up to 6 T. Significant enhancement of the intragrain critical current densities Jc are observed after irradiation with fast neutron. This is attributed to an improvement of flux pinning capability by the neutron induced defects, but the weak link structure is somewhat damaged as evidenced by the small degradation of transport critical current at low field. According to the measurement of remanent magnetic moment before and after irradiation with fast neutron, the connectivity in Bi-2223 tapes is reduced by 50% after irradiated to a fluence of 2 × 1021 m-2, which resulted in the critical currents degradated by a factor of 10%.

  7. Advection of magnetic flux by accretion disks around neutron stars

    Science.gov (United States)

    Flores-Tulian, S.; Reisenegger, A.

    The aim of our research is to address why millisecond pulsars have relatively weak surface magnetic fields, of about 10^8 G, with a narrow spread. We propose that the accretion of plasma from the companion star fully screens the original neutron star field, but the accretion disk carries additional magnetic flux from the companion star, or itself can generate field by means of dynamo processes. For a strongly magnetized star, the field prevents the disk from approaching the star. The accretion is along the field lines and deposits the matter on the polar cap. Then, the accreted plasma flows, dragging with itself the magnetic field lines, from the pole to the equator (Payne & Melatos 2004). In a following stage, when the star becomes non-magnetic, because the field has been buried, the disk touches the star. We suggest that some effective mechanism of magnetic flux transport such as that proposed by Spruit & Uzdensky 2005 (or Bisnovatyi-Kogan & Lovelace 2007), operates and necessarily leads to a "strongly magnetized disk''. It becomes laminar because the magneto-rotational instability saturates (it is considered to be responsible for turbulence in the disk), and the magnetic difussivity is negligible. Then, the loss of angular momentum allowing the accretion is only caused by the magneto-centrifugal disk-wind (Blandford & Payne 1982). Meanwhile, the wind-driven transport of the magnetic flux by the disk re-magnetizes the star. This process continues until the Lorentz force due to the star's magnetic field forbids any further accretion of matter and magnetic flux, in the Ideal Magneto-Hydro-Dynamics approach. Additional of material can fall onto the star (but at lower rate) if some instability process sets in, allowing the diffusion of mass through the magnetic field lines (e.g the Interchange Instability, Spruit & Taam 1990). All these processes might lead to an asymptotic magnetic field of 10^8 G,as is inferred from observations. We are developing a self

  8. The neutron polaron as a constraint on nuclear density functionals

    CERN Document Server

    Forbes, M M; Hebeler, K; Lesinski, T; Schwenk, A

    2013-01-01

    We study the energy of an impurity that interacts strongly in a sea of fermions when the effective range of the impurity-fermion interaction becomes important. This directly maps the Fermi polaron of condensed matter physics and ultracold atoms to strongly interacting neutrons. We present first Quantum Monte Carlo results for the neutron polaron and compare these with calculations based on effective field theory that also include contributions beyond effective-range effects. We show that predictions of state-of-the-art nuclear density functionals vary substantially and generally underestimate the neutron polaron energy. Our results thus provide a novel constraint for nuclear density functionals, in particular for the time-odd components.

  9. Electronic Flux Density beyond the Born-Oppenheimer Approximation.

    Science.gov (United States)

    Schild, Axel; Agostini, Federica; Gross, E K U

    2016-05-19

    In the Born-Oppenheimer approximation, the electronic wave function is typically real-valued and hence the electronic flux density (current density) seems to vanish. This is unfortunate for chemistry, because it precludes the possibility to monitor the electronic motion associated with the nuclear motion during chemical rearrangements from a Born-Oppenheimer simulation of the process. We study an electronic flux density obtained from a correction to the electronic wave function. This correction is derived via nuclear velocity perturbation theory applied in the framework of the exact factorization of electrons and nuclei. To compute the correction, only the ground state potential energy surface and the electronic wave function are needed. For a model system, we demonstrate that this electronic flux density approximates the true one very well, for coherent tunneling dynamics as well as for over-the-barrier scattering, and already for mass ratios between electrons and nuclei that are much larger than the true mass ratios.

  10. Polarized neutron diffraction and its application to spin density studies

    Institute of Scientific and Technical Information of China (English)

    Brenda; A.; DOUGAN

    2009-01-01

    Spin density distributions in molecular compounds containing unpaired electrons have been studied by polarized neutron diffraction (PND). The spin density distributions provide a unique perspective of the magnetic properties of the compounds. The background and fundamentals of polarized neutron diffraction are summarized in this review,followed by examples of applications in inorganic and organic chemistry. Spin densities in several compounds that are obtained by polarized neutron diffraction are highlighted. Spin densities in single molecular magnet [Fe8O2(OH)12(tacn)6]8+ and cyano-bridged K2[Mn(H2O)2]3[Mo(CN)7]2·6H2O demonstrate how to obtain magnetic interaction in the complexes by PND. PND studies of Ru(acac)3,containing one single unpaired electron,show small spin densities in this complex. Finally the use of PND in studying nitronyl nitroxide radicals is given. Our goal in this review is to illustrate how PND functions and how it serves as a sensitive tool in directly probing spin density in molecules.

  11. The preliminary results of fast neutron flux measurements in the DULB laboratory at Baksan

    CERN Document Server

    Abdurashitov, J N; Kalikhov, A V; Shikhin, A A; Yants, V E; Zaborskaia, O S; Klimenko, A A; Osetrov, S B; Smolnikov, A A; Vasilev, S I

    2000-01-01

    One of the main sources of a background in underground physics experiments (such as the investigation of solar neutrino flux, neutrino oscillations, neutrinoless double beta decay, and the search for annual and daily Cold Dark Matter particle flux modulation) are fast neutrons originating from the surrounding rocks. The measurements of fast neutron flux in the new DULB Laboratory situated at a depth of 4900 m w.e. in the Baksan Neutrino Observatory have been performed. The relative neutron shielding properties of several commonly available natural materials were investigated too. The preliminary results obtained with a high-sensitive fast neutron spectrometer at the level of sensitivity of about 10^(-7) neutron/ (cm^2 sec) are presented and discussed.

  12. Systematic investigation of background sources in neutron flux measurements with a proton-recoil silicon detector

    Science.gov (United States)

    Marini, P.; Mathieu, L.; Acosta, L.; Aïche, M.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I.

    2017-01-01

    Proton-recoil detectors (PRDs), based on the well known standard H(n,p) elastic scattering cross section, are the preferred instruments to perform precise quasi-absolute neutron flux measurements above 1 MeV. The limitations of using a single silicon detector as PRD at a continuous neutron beam facility are investigated, with the aim of extending such measurements to neutron energies below 1 MeV. This requires a systematic investigation of the background sources affecting the neutron flux measurement. Experiments have been carried out at the AIFIRA facility to identify these sources. A study on the role of the silicon detector thickness on the background is presented and an energy limit on the use of a single silicon detector to achieve a neutron flux precision better than 1% is given.

  13. Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements.

    Science.gov (United States)

    Kaiba, Tanja; Žerovnik, Gašper; Jazbec, Anže; Štancar, Žiga; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-10-01

    For efficient utilization of research reactors, such as TRIGA Mark II reactor in Ljubljana, it is important to know neutron flux distribution in the reactor as accurately as possible. The focus of this study is on the neutron flux redistributions due to control rod movements. For analyzing neutron flux redistributions, Monte Carlo calculations of fission rate distributions with the JSI TRIGA reactor model at different control rod configurations have been performed. Sensitivity of the detector response due to control rod movement have been studied. Optimal radial and axial positions of the detector have been determined. Measurements of the axial neutron flux distribution using the CEA manufactured fission chambers have been performed. The experiments at different control rod positions were conducted and compared with the MCNP calculations for a fixed detector axial position. In the future, simultaneous on-line measurements with multiple fission chambers will be performed inside the reactor core for a more accurate on-line power monitoring system.

  14. The Experimental Determination of Thermal Neutron Flux in the Radiochemistry Curriculum

    Science.gov (United States)

    Grant, Patrick M.

    1977-01-01

    Describes an experiment for determining the thermal neutron flux of the light-water nuclear reactor at the University of California, Irvine. The difficulty of the activity can be varied to match the student's level of proficiency. (SL)

  15. Low-energy neutron flux measurement using a resonance absorption filter surrounding a lithium glass scintillator

    Science.gov (United States)

    Ghal-Eh, N.; Koohi-Fayegh, R.; Hamidi, S.

    2007-06-01

    The resonance absorption filter technique has been used to determine the thermal/epithermal neutron flux. The main idea in this technique is to use an element with a high and essentially singular resonance in the neutron absorption cross section as a filter surrounding a miniature-type lithium glass scintillator. The count with and without the filter surrounding the detector gives the number of resonance-energy neutrons. Some preliminary results and a comparison with the MCNP code are shown.

  16. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    Science.gov (United States)

    Croci, G.; Rebai, M.; Cazzaniga, C.; Palma, M. Dalla; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Pasqualotto, R.; Cippo, E. Perelli; Tardocchi, M.; Tollin, M.; Cavenago, M.; Gorini, G.

    2014-08-01

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  17. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Croci, G.; Tardocchi, M. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Rebai, M.; Cippo, E. Perelli; Gorini, G. [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Cazzaniga, C. [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano (Italy); Palma, M. Dalla; Pasqualotto, R.; Tollin, M. [Consorzio RFX - Associazione Euratom-Enea sulla Fusione, Padova (Italy); Grosso, G.; Muraro, A. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); Murtas, F.; Claps, G. [INFN, Laboratori Nazionali di Frascati, Frascati (Roma) (Italy); Cavenago, M. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy)

    2014-08-21

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  18. Variation of environmental neutron flux with altitude and depth of both water and soil

    Institute of Scientific and Technical Information of China (English)

    K. KOMURA; N.K. AHMED; A.H. EL-KAMEL; A.M.M. YOUSEF

    2004-01-01

    Applying the extreme low-level γ-ray spectroscopic analysis the environmental neutron flux is measured using different moderator construction and environment through the reaction 197Au (n, γ) 198Au. The contribution of thermal and resonance neutrons is separated using the cadmium difference technique, while fast neutrons are measured by the paraffin moderator. The results of altitude dependence of the neutron flux are discussed. The thermal neutron flux near the surface of sea water is less than its value at 100 cm over ground near sea water, while the value over the surfaces of fresh water is higher than that near the surface of sea water. Also the thermal neutron flux at 5 cm soil depth increases, then decreases to its original value at 10 cm depth and still constant until 25 cm, then decreases rapidly to reach 27% of its original value at 60 cm depth. The soil compositions, corresponding neutron temperatures and effective absorption cross sections of earth are the most effective factors on the equilibrium region of thermal neutrons in the ground.

  19. Studies on the origin of neutron flux fluctuations- Final report; Untersuchungen der Ursachen fuer Neutronenflussschwankungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Blaesius, Christoph; Herb, Joachim; Kuentzel, Matthias

    2016-01-15

    Aim of the project was to find possible explanations for the neutron flux fluctuations and their changes over the last decades in German PWR. Several models concerning thermal hydraulics, structural mechanics and neutron physics were evaluated. It was shown that up to now no models are available that could explain the observed phenomena. Future studies should focus on interdisciplinary coupling of different models.

  20. Probing Microarcsecond Structure in AGN using Continuous Flux Density Monitoring

    Science.gov (United States)

    Senkbeil, C.; Lovell, J.; Ellingsen, S.; Jauncey, D.; Cimò, G.

    2009-08-01

    Active Galactic Nuclei (AGN) exhibit radio flux density variability on a wide range of time scales from hours to years. The rapid cm-wavelength variability on timescales from hours to days has been shown to be caused by interstellar scintillation. Interstellar scintillation implies the presence of microarcsecond scale structure in the scintillating source. We have quasi-continuously monitored the 6.7 GHz flux density of six interstellar scintillating sources since 2003 using the University of Tasmania Ceduna Radio Telescope. The launch of the VSOP 2 ASTRO-G mission will allow us to compare the microarcsecond AGN structure at 22 and 43 GHz with microarcsecond structure implied by scintillation at 5 GHz using the Hobart Interferometer, which will supersede the Ceduna flux density monitoring program in 2009.

  1. Magnetic flux density in the heliosphere through several solar cycles

    Energy Technology Data Exchange (ETDEWEB)

    Erdős, G. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Balogh, A., E-mail: erdos.geza@wigner.mta.hu [The Blackett Laboratory, Imperial College London, London SW7 2BZ (United Kingdom)

    2014-01-20

    We studied the magnetic flux density carried by solar wind to various locations in the heliosphere, covering a heliospheric distance range of 0.3-5.4 AU and a heliolatitudinal range from 80° south to 80° north. Distributions of the radial component of the magnetic field, B{sub R} , were determined over long intervals from the Helios, ACE, STEREO, and Ulysses missions, as well as from using the 1 AU OMNI data set. We show that at larger distances from the Sun, the fluctuations of the magnetic field around the average Parker field line distort the distribution of B{sub R} to such an extent that the determination of the unsigned, open solar magnetic flux density from the average (|B{sub R} |) is no longer justified. We analyze in detail two methods for reducing the effect of fluctuations. The two methods are tested using magnetic field and plasma velocity measurements in the OMNI database and in the Ulysses observations, normalized to 1 AU. It is shown that without such corrections for the fluctuations, the magnetic flux density measured by Ulysses around the aphelion phase of the orbit is significantly overestimated. However, the matching between the in-ecliptic magnetic flux density at 1 AU (OMNI data) and the off-ecliptic, more distant, normalized flux density by Ulysses is remarkably good if corrections are made for the fluctuations using either method. The main finding of the analysis is that the magnetic flux density in the heliosphere is fairly uniform, with no significant variations having been observed either in heliocentric distance or heliographic latitude.

  2. Bayesian calibration of reactor neutron flux spectrum using activation detectors measurements: Application to CALIBAN reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, J. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, DIF, F-91297 Arpajon (France); Casoli, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, Valduc, F-21120 Is sur Tille (France); Chappert, F. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, DIF, F-91297 Arpajon (France)

    2013-07-01

    In this paper, we present calibration methods in order to estimate reactor neutron flux spectrum and its uncertainties by using integral activation measurements. These techniques are performed using Bayesian and MCMC framework. These methods are applied to integral activation experiments in the cavity of the CALIBAN reactor. We estimate the neutron flux and its related uncertainties. The originality of this work is that these uncertainties take into account measurements uncertainties, cross-sections uncertainties and model error. In particular, our results give a very good approximation of the total flux and indicate that neutron flux from MCNP simulation for energies above about 5 MeV seems to overestimate the 'real flux'. (authors)

  3. Preliminary Design of Neutron Flux and Spectrum Diagnostics in NT-TBM

    Institute of Scientific and Technical Information of China (English)

    YANG Jinwei; FENG Kaiming; CHENG Zhi

    2007-01-01

    A special neutron diagnostic system is proposed that facilitates the measurement of neutron fluxes and spectra in the neutronics and tritium production-test blanket module (NTTBM) without interrupting the operation of the International Thermal-nuclear Experimental Reactor (ITER),for studying the multiplication rate in the neutron multiplier and breeding ratio of tritium in the breeder.This system includes an encapsulated foil activation system,micro-fission chamber detectors (MFC),and a compact neutron spectrometer using a natural diamond detector (NDD).A helium coolant loop with a reasonable diameter is designed carefully for every measurement channel that ensures that the neutron detectors and preamplifiers would work well under a high temperature scenario and that the filling rates of the neutron multiplier (beryllium pebble)and tritium breeder material (Li4Si04) would not decrease excessively (the expected value≥80%)due to the dimensions of the helium coolant loop.

  4. Neutron conversion and cascaded cooling in paramagnetic systems for a high-flux source of very cold neutrons

    Science.gov (United States)

    Zimmer, Oliver

    2016-03-01

    A new neutron-cooling mechanism is proposed with potential benefits for novel intense sources of very cold neutrons with wavelengths >2 nm, and for enhancing the production of ultracold neutrons. It employs inelastic magnetic scattering in weakly absorbing, cold paramagnetic systems. Kinetic energy is removed from the neutron stepwise in constant decrements determined by the Zeeman energy of paramagnetic atoms or ions in an external magnetic field, or by zero-field level splittings in magnetic molecules. The stationary neutron transport equation is analyzed for an infinite, homogeneous medium with Maxwellian neutron sources, using inelastic scattering cross sections derived in an appendix. Nonmagnetic inelastic scattering processes are neglected. The solution therefore still underestimates very cold neutron densities that should be achievable in a real medium. Molecular oxygen with its triplet ground state appears particularly promising, notably as a host in fully deuterated O2-clathrate hydrate. Other possibilities are dry O2-4He van der Waals clusters and O2 intercalated in fcc-C60. For conversion of cold to ultracold neutrons, where an incident neutron imparts only a single energy quantum to the medium, the paramagnetic scattering in the clathrate system is found to be stronger, by more than an order of magnitude, than the single-phonon emission in superfluid helium, when evaluated for an incident neutron spectrum with the optimum temperature for the respective medium. Moreover, the multistep paramagnetic cooling cascade leads to further strong enhancements of very cold neutron densities, e.g., by a factor 14 (57) for an initial neutron temperature of 30 K (100 K ), for the moderator held at about 1.3 K . Due to a favorable Bragg cutoff of the O2 clathrate, the cascade-cooling can take effect in a moderator with linear extensions smaller than a meter.

  5. Three new nondestructive evaluation tools based on high flux neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, C.R.; Raine, D.; Peascoe, R.; Wright, M. [and others

    1997-03-01

    Nondestructive evaluation methods and systems based on specific attributes of neutron interactions with materials are being developed. The special attributes of neutrons are low attenuation in most engineering materials, strong interaction with low Z elements, and epithermal neutron absorption resonances. The three methods under development at ORNL include neutron based tomography and radiography; through thickness, nondestructive texture mapping; and internal, noninvasive temperature measurement. All three techniques require high flux sources such as the High Flux Isotope Reactor, a steady state source, or the Oak Ridge Electron Linear Accelerator, a pulsed neutron source. Neutrons are quite penetrating in most engineering materials and thus can be useful to detect internal flaws and features. Hydrogen atoms, such as in a hydrocarbon fuel, lubricant, or a metal hydride, are relatively opaque to neutron transmission and thus neutron based tomography/radiography is ideal to image their presence. Texture, the nonrandom orientation of crystalline grains within materials, can be mapped nondestructively using neutron diffraction methods. Epithermal neutron resonance absorption is being studied as a noncontacting temperature sensor. This paper highlights the underlying physics of the methods, progress in development, and the potential benefits for science and industry of the three facilities.

  6. Neutron-diffraction investigations of flux-lines in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Forgan, E.M. [Birmingham Univ. (United Kingdom); Lee, S.L. [Saint Andrews Univ. (United Kingdom); McKPaul, D. [Warwick Univ., Coventry (United Kingdom); Mook, H.A. [Oak Ridge National Lab., TN (United States); Cubitt, R. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    SANS has proved an extremely useful tool for investigating flux-line structures within the bulk of superconductors. With high-T{sub c} materials, the scattered intensities are weak, but careful measurements are giving important new information about flux lattices, flux pinning and flux-lattice melting. (author). 10 refs.

  7. Analyzer of neutron flux in real time; Analizador de flujo neutronico en tiempo real

    Energy Technology Data Exchange (ETDEWEB)

    Rojas S, A.S.; Carrillo M, R.A.; Balderas, E.G. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    With base in the study of the real signals of neutron flux of instability events occurred in the Laguna Verde nuclear power plant where the nucleus oscillation phenomena of the reactor are in the 0 to 2.5 Hz range, it has been seen the possibility about the development a surveillance and diagnostic equipment capable to analyze in real time the behavior of nucleus in this frequencies range. An important method for surveillance the stability of the reactor nucleus is the use of the Power spectral density which allows to determine the frequencies and amplitudes contained in the signals. It is used an instrument carried out by LabVIEW graphic programming with a data acquisition card of 16 channels which works at Windows 95/98 environment. (Author)

  8. The influence of plasma horizontal position on the neutron rate and flux of neutral atoms in injection heating experiment on the TUMAN-3M tokamak

    Science.gov (United States)

    Kornev, V. A.; Chernyshev, F. V.; Melnik, A. D.; Askinazi, L. G.; Wagner, F.; Vildjunas, M. I.; Zhubr, N. A.; Krikunov, S. V.; Lebedev, S. V.; Razumenko, D. V.; Tukachinsky, A. S.

    2013-11-01

    Horizontal displacement of plasma along the major radius has been found to significantly influence the fluxes of 2.45 MeV DD neutrons and high-energy charge-exchange atoms from neutral beam injection (NBI) heated plasma of the TUMAN-3M tokamak. An inward shift by Δ R = 1 cm causes 1.2-fold increase in the neutron flux and 1.9-fold increase in the charge-exchange atom flux. The observed increase in the neutron flux is attributed to joint action of several factors-in particular, improved high-energy ion capture and confinement and, probably, decreased impurity inflow from the walls, which leads to an increase in the density of target ions. A considerable increase in the flux of charge-exchange neutrals in inward-shifted plasma is due to the increased number of captured high-energy ions and, to some extent, the increased density of the neutral target. As a result of the increase in the content of high-energy ions, the central ion temperature T i (0) increased from 250 to 350 eV. The dependence of the neutron rate on major radius R 0 should be taken into account when designing compact tokamak-based neutron sources.

  9. Neutronic analysis for in situ calibration of ITER in-vessel neutron flux monitor with microfission chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Masao, E-mail: ishikawa.masao@jaea.go.jp [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Ibaraki 311-0193 (Japan); Kondoh, Takashi; Kusama, Yoshinori [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Ibaraki 311-0193 (Japan); Bertalot, Luciano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► Neutronic analysis is performed for in situ calibration of the microfission chamber (MFC). ► The source transfer system deigned in this study does not affect MFC detection efficiency. ► The rotation method is appropriate for full calibration because the calibration time is shorter. ► But, point-by-point method should be performed to check the accuracy of the MCNP model. ► Combination of two methods are important to perform in situ calibration efficiently. -- Abstract: Neutronic analysis is performed for in situ calibration of the microfission chamber (MFC), which is the in-vessel neutron-flux monitor at the International Thermonuclear Experimental Reactor (ITER). We present the design of the transfer system for a neutron generator, which consists of two toroidal rings and a neutron-generator holder, and estimate the effect of the system on MFC detection efficiency through neutronic analysis with the Monte Carlo N-particle (MCNP) code. The result indicates that the designed transfer system does not affect MFC detection efficiency. In situ calibrations by the point-by-point method and by the rotation method are also simulated and compared by neutronic analysis. The results indicate that the rotation method is appropriate for full calibration because the calibration time is shorter (all neutron-flux monitors can be calibrated simultaneously). However, the rotation method makes it difficult to compare the results with neutronic analysis, so the point-by-point method should be performed prior to full calibration to check the accuracy of the MCNP model.

  10. Monitoring of the thermal neutron flux in the LSM underground laboratory

    CERN Document Server

    Rozov, S; Augier, C; Bergé, L; Benoit, A; Besida, O; Blümer, J; Broniatowski, A; Brudanin, V; Chantelauze, A; Chapellier, M; Chardin, G; Charlieux, F; Collin, S; Crauste, O; De Jesus, M; Defay, X; Di Stefano, P; Dolgorouki, Y; Domange, J; Dumoulin, L; Eitel, K; Filosofov, D; Gascon, J; Gerbier, G; Gros, M; Hannawald, M; Juillard, A; Kluck, H; Kozlov, V; Lemrani, R; Lubashevskiy, A; Marrach, C; Marnieros, S; Navick, X-F; Nones, C; Olivieri, E; Pari, P; Paul, B; Sanglard, V; Scorza, S; Semikh, S; Verdier, M-A; Vagneron, L; Yakushev, E

    2010-01-01

    This paper describes precise measurements of the thermal neutron flux in the LSM underground laboratory in proximity of the EDELWEISS-II dark matter search experiment together with short measurements at various other locations. Monitoring of the flux of thermal neutrons is accomplished using a mobile detection system with low background proportional counter filled with $^3$He. On average 75 neutrons per day are detected with a background level below 1 count per day (cpd). This provides a unique possibility of a day by day study of variations of the neutron field in a deep underground site. The measured average 4$\\pi$ neutron flux per cm$^{2}$ in the proximity of EDELWEISS-II is $\\Phi_{MB}=3.57\\pm0.05^{stat}\\pm0.27^{syst}\\times 10^{-6}$ neutrons/sec. We report the first experimental observation that the point-to-point thermal neutron flux at LSM varies by more than a factor two.

  11. Conformity Between LR0 Mock-Ups and Vvers Npp Rpv Neutron Flux Attenuation

    Science.gov (United States)

    Belousov, Sergey; Ilieva, Krassimira; Kirilova, Desislava

    2009-08-01

    The conformity of the mock-up results and those for reactor pressure vessel (RPV) of nuclear power plants (NPP) has been evaluated in order to qualify if the mock-ups data could be used for benchmark's purpose only, or/and for simulating of the NPP irradiation conditions. Neutron transport through the vessel has been calculated by the three-dimensional discrete ordinate code TORT with problem oriented multigroup energy neutron cross-section library BGL. Neutron flux/fluence and spectrum shape represented by normalized group neutron fluxes in the multigroup energy structure, for neutrons with energy above 0.5 MeV, have been used for conformity analysis. It has been demonstrated that the relative difference of the attenuation factor as well as the group neutron fluxes did not exceed 10% at all considered positions for VVER-440. For VVER-1000, it has been obtained the same consistency, except for the location behind the RPV. The neutron flux attenuation behind the RPV is 18% higher than the mock-up attenuation. It has been shown that this difference arises from the dissimilarity of the biological shielding. The obtained results have demonstrated that the VVERs' mock-ups are appropriate for simulating the NPP irradiation conditions. The mock-up results for VVER-1000 have to be applied more carefully i.e. taking into account the existing peculiarity of the biological shielding and RPV attenuation azimuthal dependence.

  12. High-accuracy determination of the neutron flux at n{sub T}OF

    Energy Technology Data Exchange (ETDEWEB)

    Barbagallo, M.; Colonna, N.; Mastromarco, M.; Meaze, M.; Tagliente, G.; Variale, V. [Sezione di Bari, INFN, Bari (Italy); Guerrero, C.; Andriamonje, S.; Boccone, V.; Brugger, M.; Calviani, M.; Cerutti, F.; Chin, M.; Ferrari, A.; Kadi, Y.; Losito, R.; Versaci, R.; Vlachoudis, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Tsinganis, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); National Technical University of Athens (NTUA), Athens (Greece); Tarrio, D.; Duran, I.; Leal-Cidoncha, E.; Paradela, C. [Universidade de Santiago de Compostela, Santiago (Spain); Altstadt, S.; Goebel, K.; Langer, C.; Reifarth, R.; Schmidt, S.; Weigand, M. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (Germany); Andrzejewski, J.; Marganiec, J.; Perkowski, J. [Uniwersytet Lodzki, Lodz (Poland); Audouin, L.; Leong, L.S.; Tassan-Got, L. [Centre National de la Recherche Scientifique/IN2P3 - IPN, Orsay (France); Becares, V.; Cano-Ott, D.; Garcia, A.R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S. [Charles University, Prague (Czech Republic); Belloni, F.; Fraval, K.; Gunsing, F.; Lampoudis, C.; Papaevangelou, T. [Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Berthoumieux, E.; Chiaveri, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Billowes, J.; Ware, T.; Wright, T. [University of Manchester, Manchester (United Kingdom); Bosnar, D.; Zugec, P. [University of Zagreb, Department of Physics, Faculty of Science, Zagreb (Croatia); Calvino, F.; Cortes, G.; Gomez-Hornillos, M.B.; Riego, A. [Universitat Politecnica de Catalunya, Barcelona (Spain); Carrapico, C.; Goncalves, I.F.; Sarmento, R.; Vaz, P. [Universidade Tecnica de Lisboa, Instituto Tecnologico e Nuclear, Instituto Superior Tecnico, Lisboa (Portugal); Cortes-Giraldo, M.A.; Praena, J.; Quesada, J.M.; Sabate-Gilarte, M. [Universidad de Sevilla, Sevilla (Spain); Diakaki, M.; Karadimos, D.; Kokkoris, M.; Vlastou, R. [National Technical University of Athens (NTUA), Athens (Greece); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Dressler, R.; Kivel, N.; Schumann, D.; Steinegger, P. [Paul Scherrer Institut, Villigen PSI (Switzerland); Dzysiuk, N.; Mastinu, P.F. [Laboratori Nazionali di Legnaro, INFN, Rome (Italy); Eleftheriadis, C.; Manousos, A. [Aristotle University of Thessaloniki, Thessaloniki (Greece); Ganesan, S.; Gurusamy, P.; Saxena, A. [Bhabha Atomic Research Centre (BARC), Mumbai (IN); Griesmayer, E.; Jericha, E.; Leeb, H. [Technische Universitaet Wien, Atominstitut, Wien (AT); Hernandez-Prieto, A. [European Organization for Nuclear Research (CERN), Geneva (CH); Universitat Politecnica de Catalunya, Barcelona (ES); Jenkins, D.G.; Vermeulen, M.J. [University of York, Heslington, York (GB); Kaeppeler, F. [Institut fuer Kernphysik, Karlsruhe Institute of Technology, Campus Nord, Karlsruhe (DE); Koehler, P. [Oak Ridge National Laboratory (ORNL), Oak Ridge (US); Lederer, C. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE); University of Vienna, Faculty of Physics, Vienna (AT); Massimi, C.; Mingrone, F.; Vannini, G. [Universita di Bologna (IT); INFN, Sezione di Bologna, Dipartimento di Fisica, Bologna (IT); Mengoni, A.; Ventura, A. [Agenzia nazionale per le nuove tecnologie, l' energia e lo sviluppo economico sostenibile (ENEA), Bologna (IT); Milazzo, P.M. [Sezione di Trieste, INFN, Trieste (IT); Mirea, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Mondalaers, W.; Plompen, A.; Schillebeeckx, P. [Institute for Reference Materials and Measurements, European Commission JRC, Geel (BE); Pavlik, A.; Wallner, A. [University of Vienna, Faculty of Physics, Vienna (AT); Rauscher, T. [University of Basel, Department of Physics and Astronomy, Basel (CH); Roman, F. [European Organization for Nuclear Research (CERN), Geneva (CH); Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Rubbia, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Laboratori Nazionali del Gran Sasso dell' INFN, Assergi (AQ) (IT); Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE)

    2013-12-15

    The neutron flux of the n{sub T}OF facility at CERN was measured, after installation of the new spallation target, with four different systems based on three neutron-converting reactions, which represent accepted cross sections standards in different energy regions. A careful comparison and combination of the different measurements allowed us to reach an unprecedented accuracy on the energy dependence of the neutron flux in the very wide range (thermal to 1 GeV) that characterizes the n{sub T}OF neutron beam. This is a pre-requisite for the high accuracy of cross section measurements at n{sub T}OF. An unexpected anomaly in the neutron-induced fission cross section of {sup 235}U is observed in the energy region between 10 and 30keV, hinting at a possible overestimation of this important cross section, well above currently assigned uncertainties. (orig.)

  13. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yavar, A.R. [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Sarmani, S.B. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Wood, A.K. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor (Malaysia); Fadzil, S.M. [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Radir, M.H. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor (Malaysia); Khoo, K.S., E-mail: khoo@ukm.m [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2011-05-15

    Determination of thermal to fast neutron flux ratio (f{sub fast}) and fast neutron flux ({phi}{sub fast}) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f{sub fast} and subsequently {phi}{sub fast} were determined using the absolute method. The f{sub fast} ranged from 48 to 155, and the {phi}{sub fast} was found in the range 1.03x10{sup 10}-4.89x10{sup 10} n cm{sup -2} s{sup -1}. These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  14. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Science.gov (United States)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  15. Underground physics and the barometric pumping effect observed for thermal neutron flux underground

    Science.gov (United States)

    Stenkin, Yu. V.; Alekseenko, V. V.; Gromushkin, D. M.; Sulakov, V. P.; Shchegolev, O. B.

    2017-05-01

    It is known that neutron background is a major problem for low-background experiments carrying out underground, such as dark matter search, double-beta decay searches and other experiments known as Underground Physics. We present here some results obtained with the en-detector of 0.75 m2, which is running for more than 4 years underground at a depth of 25 m water equivalent in Skobeltsyn Institute of Nuclear Physics, Moscow State University. Some spontaneous increases in thermal neutron flux up to a factor of 3 were observed in delayed anti-correlation with barometric pressure. The phenomenon can be explained by the radon barometric pumping effect resulting in similar effect in neutron flux being produced in (α, n)-reactions by alpha-decays of radon and its daughters in surrounding rock. This is the first demonstration of the barometric pumping effect observed in thermal neutron flux underground.

  16. Neutron flux optimization in irradiation facilities at Peruvian research reactor RP-10

    Energy Technology Data Exchange (ETDEWEB)

    Vela, M.; Arrieta, R.; Salazar, A.; Urcia, A.; Canaza, D.; Felix, J; Veramendi, E.; Ovalle, E.; Giol, R.; Zapata, L.; Ramos, F.; Tordocillo, J. [Instituto Peruano de Energia Nuclear (IPEN), Lima (Peru). Direccion de Instalaciones. Dept. de Reactores]. E-mail: mvela@ipen.gob.pe; rarrieta@ipen.gob.pe

    2005-07-01

    In this work we show the values distribution of the neutron flux at Peruvian Research Reactor RP-10, determined under two different safety and control rods configurations. The method applied was to irradiate small gold foils in irradiation facilities of the core to carry out the nuclear reaction {sup 197}Au(n, {gamma}){sup 198}Au; then using a gamma spectrometry system and the Westcott formalism we obtained the neutron flux. The results confirm the favorable effect of such configurations, increasing the neutron flux, both thermal and epithermal. These results have consistency with the weekly activity reports of radioisotopes lots given by the Radioisotopes Production Plant and Neutron Activation Analysis Group. (author)

  17. A digital wide range neutron flux measuring system for HL-2A

    Science.gov (United States)

    Yuan, Chen; Wu, Jun; Yin, Zejie

    2017-08-01

    To achieve wide-range, high-integration, and real-time performance on the neutron flux measurement on the HL-2A tokamak, a digital neutron flux measuring (DNFM) system based on the peripheral component interconnection (PCI) eXtension for Instrumentation express (PXIe) bus was designed. This system comprises a charge-sensitive preamplifier and a field programmable gate array (FPGA)-based main electronics plug-in. The DNFM totally covers source-range and intermediate-range neutron flux measurements, and increases system integration by a large margin through joining the pulse-counting mode and Campbell mode. Meanwhile, the neutron flux estimation method based on pulse piling proportions is able to choose and switch measuring modes in accordance with current flux, and this ensures the accuracy of measurements when the neutron flux changes suddenly. It has been demonstrated by simulated signals that the DNFM enhances the full-scale measuring range up to 1.9 × 108 cm-2 s-1, with relative error below 6.1%. The DNFM has been verified to provide a high temporal sensitivity at 10 ms time intervals on a single fission chamber on HL-2A. Contributed paper, published as part of the Proceedings of the 3rd Domestic Electromagnetic Plasma Diagnostics Workshop, September 2016, Hefei, China.

  18. Measurements of neutron fluxes with energies from thermal to several MeV in near-Earth space: SINP results.

    Science.gov (United States)

    Shavrin, P I; Kuzhevskij, B M; Kuznetsov, S N; Nechaev, O Yu; Panasyuk, M I; Ryumin, S P; Yushkov, B Yu; Bratolyubova-Tsulukidze, L S; Lyagushin, V I; Germantsev, Yu L

    2002-10-01

    Neutron measurement results obtained at SINP MSU since 1970 are presented. These measurements were made using techniques based on neutron moderation and subsequent detection in a Li6I(Eu) crystal or a He3 coronal counter. The measurements were mainly carried out in orbits with inclination of 52 degrees and altitudes of 200-450 km. The spatial and angular distributions of the measured neutron fluxes were studied. The albedo neutron flux was estimated according to the count rate difference for opposite detector orientations towards Earth and away from it. This flux is comparable to the local neutron flux outside the Brazil anomaly region, where local neutrons dominate. Neutron fluxes, generated by solar protons, were detected during a solar flare on June 6, 1991 for the first time. Their spectrum was estimated as a power law with alpha>2.

  19. Measurement of neutron flux and beam divergence at the cold neutron guide system of the new Munich research reactor FRM-II

    Science.gov (United States)

    Zeitelhack, K.; Schanzer, C.; Kastenmüller, A.; Röhrmoser, A.; Daniel, C.; Franke, J.; Gutsmiedl, E.; Kudryashov, V.; Maier, D.; Päthe, D.; Petry, W.; Schöffel, T.; Schreckenbach, K.; Urban, A.; Wildgruber, U.

    2006-05-01

    A sophisticated neutron guide system has been installed at the new Munich neutron source FRM-II to transport neutrons from the D 2 cold neutron source to several instruments, which are situated in a separate neutron guide hall. The guide system takes advantage of supermirror coatings and includes a worldwide unique "twisted" guide for a desired phase space transformation of the neutron beam. During the initial reactor commissioning in summer 2004, the integral and differential neutron flux as well as the distribution of beam divergence at the exit of two representative and the twisted neutron guide were measured using time-of-flight spectroscopy and gold-foil activation. The experimental results can be compared to extensive simulation calculations based on MCNP and McStas. The investigated guides fulfill the expectations of providing high neutron fluxes and reveal good quality with respect to the reflective coatings and the installation precision.

  20. Measurement of neutron flux and beam divergence at the cold neutron guide system of the new Munich research reactor FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Zeitelhack, K. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany)]. E-mail: karl.zeitelhack@frm2.tum.de; Schanzer, C. [Physik-Department E21, TU Muenchen, D-85747 Garching (Germany); Kastenmueller, A. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Roehrmoser, A. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Daniel, C. [Physik-Department E22, TU Muenchen, D-85747 Garching (Germany); Franke, J. [Max-Planck-Institut fuer Metallforschung, D-70569 Stuttgart (Germany); Gutsmiedl, E. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Kudryashov, V. [GKSS Forschungszentrum GmbH, D-21502 Geesthacht (Germany); Maier, D. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Paethe, D. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Petry, W. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Schoeffel, T. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Schreckenbach, K. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Urban, A. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Wildgruber, U. [Max-Planck-Institut fuer Metallforschung, D-70569 Stuttgart (Germany)

    2006-05-10

    A sophisticated neutron guide system has been installed at the new Munich neutron source FRM-II to transport neutrons from the D{sub 2} cold neutron source to several instruments, which are situated in a separate neutron guide hall. The guide system takes advantage of supermirror coatings and includes a worldwide unique 'twisted' guide for a desired phase space transformation of the neutron beam. During the initial reactor commissioning in summer 2004, the integral and differential neutron flux as well as the distribution of beam divergence at the exit of two representative and the twisted neutron guide were measured using time-of-flight spectroscopy and gold-foil activation. The experimental results can be compared to extensive simulation calculations based on MCNP and McStas. The investigated guides fulfill the expectations of providing high neutron fluxes and reveal good quality with respect to the reflective coatings and the installation precision.

  1. Operation TEAPOT. Project 2.2. Neutron Flux Measurements

    Science.gov (United States)

    1981-01-01

    Shot 2, Slow ( g-I7 eutron Data ..... .. 29 5.17 Shot 2, Intermediate Neutron Data; Pu, Np, U2 3 8 . .. 30 7 15.18~~~~M- Sht2, ______3 3.24 Shot 6...radiation-shielding studies conducted by Project 2.7. 1.2 BACKGROUND AND THEORY It has been shown empirically that the neutrons from thermal fission have an...detector, if thermal neutrons causing fission are shielded out with Bl°. Its effective threshold depends on the thickness of Bl° used and can be varied from

  2. Proposal of thermal neutron flux monitors based on vibrating wire

    CERN Document Server

    Arutunian, S G; Chung, M; Harutyunyan, G S; Lazareva, E G

    2015-01-01

    Two types of neutron monitors with fine spatial resolution are proposed based on vibrating wire. In the first type, neutrons interact with the vibrating wire, heat it, and lead to the change of natural frequency, which can be precisely measured. To increase the heat deposition during the neutron scattering, use of gadolinium layer which has the highest thermal neutron capture cross section among all elements is proposed. The second type of the monitor uses vibrating wire as a resonant target. Besides the measurement of beam profile according to the average signal, the differential signal synchronized with the wire oscillations defines the gradient of beam profile. Spatial resolution of the monitor is defined by the diameter of the wire.

  3. Thunderstorms as probable reason of high background neutron fluxes on L<1.2

    Science.gov (United States)

    Bratolyubova-Tsulukidze, L.; Grachev, E.; Grigoryan, O.; Kunitsyn, V.; Kuzhevskiy, B.; Nechaev, O.; Usanova, M.

    In this paper we analyze the neutron emission observations made in the experiment onboard MIR orbital station (1991), ISS (2002) and Colibri-2002 satellite (2002) at the altitude of 400 km. The helium discharge detectors made it possible to detect neutrons with energies ranging from 0.25eV to 1.9MeV. The spatial distribution of high background neutron fluxes has a longitude dependence. These events have been observed at -200 ... 600 and 1350 ...1800 ...- 1350 longitudinal intervals. The most intensive fluxes near the geomagnetic equator were registered in the African region. They are not found to be associated with increases of proton fluxes (Ep >50MeV). As a statistical set, the events appear to coincide with the most active region of atmospheric weather. In this paper we assess the possibility that the occurrence of high background neutron fluxes in the African region is connected with lightning discharges. To observe neutron emission at the altitude of 400 km ~101 0 neutrons are required to be produced by lightning discharge. These theoretical predictions suggest cloud charge values of about 250-300 Coulomb.

  4. Characterization of the structure of polydisperse human low-density lipoprotein by neutron scattering.

    Science.gov (United States)

    Meyer, D F; Nealis, A S; Bruckdorfer, K R; Perkins, S J

    1995-09-01

    Low-density lipoproteins (LDL) in plasma are constructed from a single molecule of apolipoprotein B-100 (M(r) 512000) in association with lipid (approximate M(r) 2-3 x 10(6)). The gross structure was studied using an updated pulsed-neutron camera LOQ with an area detector to establish the basis for the interpretation of structural changes seen during dynamic studies of LDL oxidation. Neutron-scattering data for LDL in 100% 2H2O buffers emphasize their external appearance. Guinier analysis on a continuous-flux neutron camera D17 revealed pronounced concentration-dependences in the radius of gyration, RG, and the intensity of forward scattering, I(0) (equivalent to the M(r) of LDL) between 0.5 and 11 mg of LDL protein/ml. LDL preparations from different donors gave different RG values. When extrapolated to zero concentration, RG values ranged between 8.3 and 10.6 nm and were linearly correlated with M(r), which is consistent with a spherical structure. The distance-distribution function P(r) in real space showed a single maximum at 9.1-10.9 nm, which is just under half the observed maximum dimension of 23.1 +/- 1.2 nm expected for a spherical structure. The neutron radial-density function p(r) exhibited a plateau of high and featureless density at the centre of LDL. LDL can be modelled by a polydisperse assembly of spheres with two internal densities and a mean radius close to 10.0 nm in a normal distribution of radii with a standard deviation of 2.0 nm. The data are consistent with recent electron-microscopy and ultracentrifugation data.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Strange Stars: Can Their Crust Reach the Neutron Drip Density?

    Institute of Scientific and Technical Information of China (English)

    Hai Fu; Yong-Feng Huang

    2003-01-01

    The electrostatic potential of electrons near the surface of static strange stars at zero temperature is studied within the frame of the MIT bag model. We find that for QCD parameters within rather wide ranges, if the nuclear crust on the strange star is at a density leading to neutron drip, then the electrostatic potential will be insufficient to establish an outwardly directed electric field, which is crucial for the survival of such a crust. If a minimum gap width of 200 fm is brought in as a more stringent constraint, then our calculations will completely rule out the possibility of such crusts. Therefore, our results argue against the existence of neutron-drip crusts in nature.

  6. Barometric pumping effect for radon-due neutron flux in underground laboratories

    CERN Document Server

    Stenkin, Yu V; Gromushkin, D M; Shchegolev, O B; Sulakov, V P

    2016-01-01

    It is known that neutron background is a big problem for low-background experiments in underground Laboratories. Our global net of en-detectors sensitive to thermal neutrons includes the detectors running both on the surface and at different depths underground. We present here results obtained with the en-detector of 0.75 m^2 which is running more than 3 years in underground room at a depth of 25 m of water equivalent in Skobeltsyn Institute of Nuclear Physics, Moscow. Spontaneous increases in thermal neutron flux up to a factor of 3 were observed in delayed anti-correlation with barometric pressure. The phenomenon can be explained by a radon barometric pumping effect resulting in similar effect in neutron flux produced in (alpha,n)-reactions by alpha-decays of radon and its daughters in surrounding rock

  7. Neutron Flux Measurement at TAPIRO Fast Reactor for APD's Irradiation Fluence Evaluation

    CERN Document Server

    Angelone, M; Diemoz, Marcella; Festinesi, Armando; Longo, Egidio; Organtini, Giovanni; Rosi, G

    1998-01-01

    The Avalanche Photodiodes ( APD) were chosen as photon sensors for the region of the CMS electromagnetic calorimeter. The LHC will be a hard environment for what concerns the radiation levels in the detectors. The most relevant damage on APDs is caused by neutrons that produce an increase in the dark current of these devices. In the CMS-ECAL collaboration a big effort was indeed done to understand this damage, but the evaluation of the absolute effect was limited by the knowledge of the neutron flux calibration of the various irradiation facilities. This investigation describes the calibration of the neutron flux of the Tapiro reactor in Rome and the calculation of the Non-Ionizing-Energy-Loss on Silicon for this reactor. The damage parameter alpha for the APDs is evaluated to be about 10-11*10^-17 A/cm/neutron at 18C and 2 days after the irradiation. Some cross-checks with other irradiation facilities are also presented.

  8. Thermal neutron flux measurement using the DUPIC SPND-instrumented rig

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. Y.; Moon, J. S.; Park, H. S.; Kang, K. H.; Ryu, H. J.; Jeong, I. H.; Song, K. C.; Yang, M. S. [KAERI, Taejon (Korea, Republic of)

    2002-05-01

    The 3rd irradiation test of DUPIC fuel, which was fabricated in the DFDF(DUPIC Fuel Development Facility) was performed in HANARO. For the objectives of this irradiation test, the newly designed irradiation rig was equipped with three Rh- type SPND sensors around DUPIC mini-elements for estimating the thermal neutron flux in the OR4 hole. The thermal neutron flux was measured at this location for 5 months the start of the test. The measured data were transmitted to monitoring system. We confirmed that the trend of SPND signal is well agree with that of HANARO power. The measured average thermal neutron flux is 0.45 n/cm{sup 2} {center_dot}s and the average linear power of DUPIC mini-element was estimated to be 33.5 KW/m.

  9. Neutron matter at low density and the unitary limit

    CERN Document Server

    Baldo, M

    2007-01-01

    Neutron matter at low density is studied within the hole-line expansion. Calculations are performed in the range of Fermi momentum $k_F$ between 0.4 and 0.8 fm$^{-1}$. It is found that the Equation of State is determined by the $^1S_0$ channel only, the three-body forces contribution is quite small, the effect of the single particle potential is negligible and the three hole-line contribution is below 5% of the total energy and indeed vanishing small at the lowest densities. Despite the unitary limit is actually never reached, the total energy stays very close to one half of the free gas value throughout the considered density range. A rank one separable representation of the bare NN interaction, which reproduces the physical scattering length and effective range, gives results almost indistinguishable from the full Brueckner G-matrix calculations with a realistic force. The extension of the calculations below $k_F = 0.4$ fm$^{-1}$ does not indicate any pathological behavior of the neutron Equation of State.

  10. Rates, Flux Densities, and Spectral Indices of Meteor Radio Afterglows

    CERN Document Server

    Obenberger, K S; Hancock, P J; Holmes, J M; Pedersen, T R; Schinzel, F K; Taylor, G B

    2016-01-01

    Using the narrowband all-sky imager mode of the LWA1 we have now detected 30 transients at 25.6 MHz, 1 at 34 MHz, and 93 at 38.0 MHz. While we have only optically confirmed that 37 of these events are radio afterglows from meteors, evidence suggests that most, if not all, are. Using the beam-forming mode of the LWA1 we have also captured the broadband spectra between 22.0 and 55.0 MHz of four events. We compare the smooth, spectral components of these four events and fit the frequency dependent flux density to a power law, and find that the spectral index is time variable, with the spectrum steepening over time for each meteor afterglow. Using these spectral indices along with the narrow band flux density measurements of the 123 events at 25.6 and 38 MHz, we predict the expected flux densities and rates for meteor afterglows potentially observable by other low frequency radio telescopes.

  11. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, A.A., E-mail: a.a.ivanova@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Zubarev, P.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Ivanenko, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Khilchenko, A.D. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Kotelnikov, A.I. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Polosatkin, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Puryga, E.A.; Shvyrev, V.G. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Sulyaev, Yu.S. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2016-08-11

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL–3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL–3 and GDT devices. This analyzer was tested and calibrated with the help of {sup 137}Cs and {sup 252}Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented. - Highlights: • Electronic equipment for measurement of fast neutron flux with stilbene scintillator is presented. • FPGA-implemented digital pulse-shape discrimination algorithm by charge comparison method is shown. • Calibration of analyzer was carried out with {sup 137}Cs and {sup 252}Cf. • Figures of Merit (FOM) values for energy cuts from 1/8 Cs to 2 Cs are from 1.264 to 2.34 respectively.

  12. The effect of craters on the lunar neutron flux

    CERN Document Server

    Eke, V R; Diserens, S; Ryder, M; Yeomans, P E L; Teodoro, L F A; Elphic, R C; Feldman, W C; Hermalyn, B; Lavelle, C M; Lawrence, D J

    2015-01-01

    The variation of remotely sensed neutron count rates is measured as a function of cratercentric distance using data from the Lunar Prospector Neutron Spectrometer. The count rate, stacked over many craters, peaks over the crater centre, has a minimum near the crater rim and at larger distances it increases to a mean value that is up to 1% lower than the mean count rate observed over the crater. A simple model is presented, based upon an analytical topographical profile for the stacked craters fitted to data from the Lunar Orbiter Laser Altimeter (LOLA). The effect of topography coupled with neutron beaming from the surface largely reproduces the observed count rate profiles. However, a model that better fits the observations can be found by including the additional freedom to increase the neutron emissivity of the crater area by ~0.35% relative to the unperturbed surface. It is unclear what might give rise to this effect, but it may relate to additional surface roughness in the vicinities of craters. The ampl...

  13. Exotic geophysical phenomena observed in an environmental neutron flux study using EAS PRISMA detectors

    Directory of Open Access Journals (Sweden)

    Alekseenko Victor

    2017-01-01

    Full Text Available Some exotic geophysical events are observed by a global net of electron-neutron detectors (en-detectors developed in the framework of the PRISMA EAS project. Our en-detectors running both on the Earth's surface and underground are continuously measuring the environmental thermal neutron flux. Thermal neutrons are in equilibrium with media and are therefore sensitive to many geophysical phenomena, which are exotic for people studying ultra high-energy cosmic rays or carrying out low background experiments deep underground.

  14. Enhancement of flux pinning properties in nanosized MgO added Bi-2212 superconductor through neutron irradiation

    Science.gov (United States)

    Mohiju, Zaahidah'Atiqah; Hamid, Nasri A.; Abdullah, Yusof

    2017-01-01

    For superconducting material to maintain high critical current density, Jc in any applications, effective flux pinning centers are needed. The addition of small size MgO particles in bulk Bi2Sr2CaCu2O8 (Bi-2212) superconductor has been proven to enhance the effective flux pinning centers in the superconducting material by creating a desired microstructure with appropriate defects. To further enhance the pinning properties, radiation is one of the convenient ways to improve the microstructure of the material that has correlation with basic properties of superconductors. Neutron irradiation is one of the niche techniques that can be used to perform the task. Defects with larger radius have dimension comparable to the coherence length of the material and thus improved its superconducting properties. In this paper, a small amount of nanosized MgO particles was used to create defects in the Bi-2212 superconducting material. The Bi-2212/MgO compounds were heat treated, followed by partial melting and slow cooling. Part of the samples was subjected to neutron irradiation using the TRIGA-MARK-II research reactor at the Malaysian Nuclear Agency. Characterization of non-irradiated and irradiated samples was performed via the temperature dependence on electrical resistance measurements, X-ray Diffraction Patterns (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) analysis. From the analysis, there was changed in the critical current density and transition temperature of samples subjected to neutron irradiation due to formation of point defects in the microstructure. Higher critical current density indicates better flux pinning properties in the Bi-2212/MgO compounds.

  15. Flux density calibration in diffuse optical tomographic systems.

    Science.gov (United States)

    Biswas, Samir Kumar; Rajan, Kanhirodan; Vasu, Ram M

    2013-02-01

    The solution of the forward equation that models the transport of light through a highly scattering tissue material in diffuse optical tomography (DOT) using the finite element method gives flux density (Φ) at the nodal points of the mesh. The experimentally measured flux (Umeasured) on the boundary over a finite surface area in a DOT system has to be corrected to account for the system transfer functions (R) of various building blocks of the measurement system. We present two methods to compensate for the perturbations caused by R and estimate true flux density (Φ) from Umeasuredcal. In the first approach, the measurement data with a homogeneous phantom (Umeasuredhomo) is used to calibrate the measurement system. The second scheme estimates the homogeneous phantom measurement using only the measurement from a heterogeneous phantom, thereby eliminating the necessity of a homogeneous phantom. This is done by statistically averaging the data (Umeasuredhetero) and redistributing it to the corresponding detector positions. The experiments carried out on tissue mimicking phantom with single and multiple inhomogeneities, human hand, and a pork tissue phantom demonstrate the robustness of the approach.

  16. Neutron flux from a 14-MeV neutron generator with tungsten filter for research in NDA methods for nuclear safeguards and security

    Science.gov (United States)

    Rennhofer, H.; Pedersen, B.; Crochemore, J.-M.

    2009-12-01

    The Joint Research Centre has taken into operation a new experimental device designed for research in the fields of nuclear safeguards and security applications. The research projects currently undertaken include detection of shielded contraband materials, detection of fissile materials, and mass determination of small fissile materials in shielded containers. The device, called the Pulsed Neutron Interrogation Test Assembly (PUNITA), incorporates a pulsed 14-MeV (D-T) neutron generator and a large graphite mantle surrounding the sample cavity. By pulsing the neutron generator with a frequency in the range of 10 to 150 Hz, a sample may be interrogated first by fast neutrons and a few hundred micro-seconds later by a pure thermal neutron flux. The permanent detection systems incorporated in PUNITA include 3He neutrons detectors, HPGe gamma detectors, and lanthanum bromide scintillation detectors. We have studied the effects of placing a tungsten liner around the neutron generator target. The 14-MeV neutrons induce (n, 2n) and (n, 3n) reactions. In addition the mean neutron energy emitted from generator/tungsten assembly is reduced to about 1 MeV. Both of these effects increase the thermal neutron flux in the sample cavity. The paper describes the observed advantages of the tungsten liner with respect to increase in thermal flux, and better shielding capabilities of the nearby gamma and neutron detectors.

  17. MONDO: A neutron tracker for particle therapy secondary emission fluxes measurements

    Science.gov (United States)

    Marafini, M.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E.

    2016-07-01

    Cancer treatment is performed, in Particle Therapy, using accelerated charged particles whose high irradiation precision and conformity allows the tumor destruction while sparing the surrounding healthy tissues. Dose release monitoring devices using photons and charged particles produced by the beam interaction with the patient body have already been proposed, but no attempt based on the detection of the abundant secondary radiation neutron component has been made yet. The reduced attenuation length of neutrons yields a secondary particle sample that is larger in number when compared to photons and charged particles. Furthermore, neutrons allow for a backtracking of the emission point that is not affected by multiple scattering. Since neutrons can release a significant dose far away from the tumor region, a precise measurement of their flux, production energy and angle distributions is eagerly needed in order to improve the Treatment Planning Systems (TPS) software, so to predict not only the normal tissue toxicity in the target region but also the risk of late complications in the whole body. All the aforementioned issues underline the importance for an experimental effort devoted to the precise characterization of the neutron production gaining experimental access both to the emission point and production energy. The technical challenges posed by a neutron detector aiming for a high detection efficiency and good backtracking precision will be addressed within the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project. The MONDO's main goal is to develop a tracking detector targeting fast and ultrafast secondary neutrons. The tracker is composed by a scintillating fiber matrix (4 × 4 × 8cm3). The full reconstruction of protons, produced in elastic interactions, will be used to measure energy and direction of the impinging neutron. The neutron tracker will measure the neutron production yields, as a function of production angle and energy, using different

  18. High Torque Density Transverse Flux Machine without the Need to Use SMC Material for 3D Flux Paths

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Wu, Weimin

    2015-01-01

    This paper presents a new transverse flux permanent magnet machine. In a normal transverse flux machine, complicated 3-D flux paths often exist. Such 3-D flux paths would require the use of soft magnetic composites material instead of laminations for construction of the machine stator. In the new...... machine topology proposed in this paper, by advantageously utilizing the magnetic flux path provided by an additional rotor, use of laminations that allow 2-D flux paths only will be sufficient to accomplish the required 3-D flux paths. The machine also has a high torque density and is therefore...

  19. Non-Fick ian law for the neutron density current; Atomos para el desarrollo de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa P, G.; Vazquez R, R. [UAM-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico D.F. 09340 (Mexico); Morales S, J. [UNAM, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62550 (Mexico)]. e-mail: gepe@xanum.uam.mx

    2008-07-01

    In this paper, a fractional wave equation for the average neutron motion in a nuclear reactor is considered. This representation covers the full spectrum of the average neutron transport behavior, i.e., Fick ian and non-Fick ian effects. The fractional diffusion model retains the main dynamic characteristics of the neutron motion. The relaxation time associated with a rapid variation in the neutron flux contains an adjustable parameter, which can be manipulated to obtain the best representation of the neutron transport phenomena. (Author)

  20. The 2.5 MeV neutron flux monitor for MAST

    Science.gov (United States)

    Cecconello, M.; Sangaroon, S.; Conroy, S.; Donato, M.; Ericsson, G.; Marini-Bettolo, C.; Ronchi, R.; Stro¨m, P.; Weiszflog, M.; Wodniak, I.; Turnyanskiy, M.; Akers, R.; Cullen, A.; Fitzgerald, I.; McArdle, G.; Pacoto, C.; Thomas-Davies, N.

    2014-07-01

    A proof-of-principle collimated Neutron flux Camera (NC) monitor for the measurement of the 2.45 MeV neutron emission from the deuterium-deuterium fusion reactions has been developed, installed and put into use at the Mega Ampere Spherical Tokamak (MAST). The NC measures the spatial and time resolved volume integrated neutron emissivity in deuterium fusion plasmas in the presence of auxiliary plasma heating along two equatorial and two diagonal lines of sight whose tangency radius can be varied between plasma discharges. This paper describes the NC design principles, their technical realization and its performances illustrated with experimental observations of different plasma scenarios. Neutron count rates in the range 0.1-1.5 MHz are routinely observed allowing time resolutions as high as 1 ms with a statistical uncertainty less than 10% and an energy threshold of 0.5 MeV. Examples of the effect of plasma instabilities on the neutron emission are presented. The good results obtained will be used for the design of the neutron flux camera monitor for MAST Upgrade.

  1. The 2.5 MeV neutron flux monitor for MAST

    Energy Technology Data Exchange (ETDEWEB)

    Cecconello, M., E-mail: marco.cecconello@physics.uu.se [Department of Physics and Astronomy, Uppsala University, EURATOM-VR Association, Uppsala (Sweden); Sangaroon, S.; Conroy, S.; Donato, M.; Ericsson, G.; Marini-Bettolo, C.; Ronchi, R.; Stroem, P.; Weiszflog, M.; Wodniak, I. [Department of Physics and Astronomy, Uppsala University, EURATOM-VR Association, Uppsala (Sweden); Turnyanskiy, M.; Akers, R.; Cullen, A.; Fitzgerald, I.; McArdle, G.; Pacoto, C.; Thomas-Davies, N. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom)

    2014-07-01

    A proof-of-principle collimated Neutron flux Camera (NC) monitor for the measurement of the 2.45 MeV neutron emission from the deuterium–deuterium fusion reactions has been developed, installed and put into use at the Mega Ampere Spherical Tokamak (MAST). The NC measures the spatial and time resolved volume integrated neutron emissivity in deuterium fusion plasmas in the presence of auxiliary plasma heating along two equatorial and two diagonal lines of sight whose tangency radius can be varied between plasma discharges. This paper describes the NC design principles, their technical realization and its performances illustrated with experimental observations of different plasma scenarios. Neutron count rates in the range 0.1–1.5 MHz are routinely observed allowing time resolutions as high as 1 ms with a statistical uncertainty less than 10% and an energy threshold of 0.5 MeV. Examples of the effect of plasma instabilities on the neutron emission are presented. The good results obtained will be used for the design of the neutron flux camera monitor for MAST Upgrade.

  2. Method for determining transport critical current densities and flux penetration depth in bulk superconductors

    Science.gov (United States)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1992-01-01

    A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.

  3. Computer program calculates gamma ray source strengths of materials exposed to neutron fluxes

    Science.gov (United States)

    Heiser, P. C.; Ricks, L. O.

    1968-01-01

    Computer program contains an input library of nuclear data for 44 elements and their isotopes to determine the induced radioactivity for gamma emitters. Minimum input requires the irradiation history of the element, a four-energy-group neutron flux, specification of an alloy composition by elements, and selection of the output.

  4. Uncovering flux line correlations in superconductors by reverse monte carlo refinement of neutron scattering data

    DEFF Research Database (Denmark)

    Laver, M.; Forgan, E.M.; Abrahamsen, Asger Bech

    2008-01-01

    We describe the use of reverse Monte Carlo refinement to extract structural information from angle-resolved data of a Bragg peak. Starting with small-angle neutron scattering data, the positional order of an ensemble of flux lines in superconducting Nb is revealed. We discuss the uncovered correl...

  5. Discussion about modeling the effects of neutron flux exposure for nuclear reactor core analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1986-04-01

    Methods used to calculate the effects of exposure to a neutron flux are described. The modeling of the nuclear-reactor core history presents an analysis challenge. The nuclide chain equations must be solved, and some of the methods in use for this are described. Techniques for treating reactor-core histories are discussed and evaluated.

  6. A charge-collection method for measurements of pulsed fast-neutron flux

    CERN Document Server

    Ouyang, X P; Ho, Y K; Zhang, Z B

    2002-01-01

    A charge-collection method for measuring the flux of pulsed fast neutrons in current mode has been developed, which is based on the well-known recoil-proton method combined with ion-induced secondary electron emission from solid surfaces. The detection unit consists of four elements: an n-p converter, an absorber, a collector, and a rear insulator. The assembly does not require vacuum for operation. Recoil protons from the n-p converter and the secondary electrons induced by the passing protons on the interface of the absorber and the collector contribute to the detector output signal. By properly choosing the materials and the combination of the absorber and the collector, the fraction of secondary electrons in the output signal can be determined experimentally. This detection concept allows one to design a medium type of fast-neutron detector for measurements of extremely intense pulsed neutron flux with a number of advantages over the existing systems.

  7. Seasonal and Lunar month periods observed in natural neutron flux at high altitude

    CERN Document Server

    Stenkin, Yuri; Cai, Zeyu; Cao, Zhen; Cattaneo, Claudio; Cui, Shuwang; Giroletti, Elio; Gromushkin, Dmitry; Guo, Xuewen; Guo, Cong; He, Huihai; Liu, Ye; Ma, Xinhua; Shchegolev, Oleg; Vallania, Piero; Vigorito, Carlo; Zhao, Jing

    2016-01-01

    Air radon concentration measurement is useful for research on geophysical effects, but it is strongly sensitive to site geology and many geophysical and microclimatic processes such as wind, ventilation, air humidity and so on that induce very big fluctuations on the concentration of radon in air. On the contrary, monitoring the radon concentration in soil by measuring the thermal neutron flux reduces environmental effects. In this paper we report some experimental results on the natural thermal neutron flux as well as the concentration of air radon and its variations at 4300 m a.s.l. These results were obtained with unshielded thermal neutron scintillation detectors (en-detectors) and radon monitors located inside the ARGO-YBJ experimental hall. The correlation of these variations with the lunar month and 1-year period is undoubtedly confirmed. A method for earthquakes prediction provided by a global net of the en-detectors is currently under study.

  8. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium–Beryllium source

    National Research Council Canada - National Science Library

    Abdessamad Didi; Ahmed Dadouch; Otman Jaï; Jaouad Tajmouati; Hassane El Bekkouri

    2017-01-01

    Americium–beryllium (Am-Be; n, γ) is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences...

  9. Flux gain for a next-generation neutron reflectometer resulting from improved supermirror performance

    CERN Document Server

    Rehm, C

    2002-01-01

    Next-generation spallation neutron source facilities will offer instruments with unprecedented capabilities through simultaneous enhancement of source power and usage of advanced optical components. The Spallation Neutron Source (SNS), already under construction at Oak Ridge National Laboratory and scheduled to be completed by 2006, will provide greater than an order of magnitude more effective source flux than current state-of-the-art facilities, including the most advanced research reactors. An additional order of magnitude gain is expected through the use of new optical devices and instrumentation concepts. Many instrument designs require supermirror neutron guides with very high critical angles for total reflection. In this contribution, we will discuss how the performance of a modern neutron-scattering instrument depends on the efficiency of these supermirrors. We summarize current limitations of supermirror coatings and outline ideas for enhancing their performance, particularly for improving the reflec...

  10. A novel method to measure low flux ambient thermal neutrons with 3He proportional counters

    Science.gov (United States)

    Zeng, Z. M.; Gong, H.; Yue, Q.; Li, J. M.

    2017-09-01

    A pulse shape discrimination method to discriminate neutron events from backgrounds based on the double-pulse effect of 3He proportional counters is proposed and detailed in this paper. We made an ambient thermal neutron measurement system composed of a commercial 3He proportional counter tube and the corresponding readout electronics. The background of the system has been measured and the minimum detectable amount of the 3He proportional counter tube will be reduced by an order of magnitude with this method. The system was applied to measure the ambient thermal neutron flux inside a large neutron shielding structure at a deep underground laboratory and the pulse shape discrimination method proves to be effective.

  11. Dust Absorption and the Cosmic UV Flux Density

    CERN Document Server

    Massarotti, M; Buzzoni, A

    2001-01-01

    We study the evolution of the galaxy UV luminosity density as a function of redshift in the Hubble Deep Field North (HDF-N). We estimate the amount of energy absorbed by dust and hidden from optical observations by analyzing the HDF-N photometric data with the spectral energy distribution fitting method. According to our results, at redshifts 1 < z < 4.5, the global energy observed in the UV rest-frame at lambda=1500 A corresponds to only 7-11% of the stellar energy output, the rest of it being absorbed by dust and re-emitted in the far-IR. Our estimates of the comoving star formation rate density in the universe from the extinction-corrected UV emission are consistent with the recent results obtained with Submillimeter Common-User Bolometer Array (SCUBA) at faint sub-millimeter flux levels.

  12. Spillage and flux density on a receiver aperture lip. [of solar thermal collector

    Science.gov (United States)

    Jaffe, L. D.

    1985-01-01

    In a dish-type point-focusing solar thermal collector, the spillage and the flux density on the receiver aperture lip are related in a very simple way, if the aperture is circular and centered on the optical axis. Specifically, the flux density on the lip is equal to the spillage times the peak flux density in the plane of the lip.

  13. Neutron flux variations near the Earth’s crust. A possible tectonic activity detection

    Directory of Open Access Journals (Sweden)

    B. M. Kuzhevskij

    2003-01-01

    Full Text Available The present work contains some results of observations of neutron flux variations near the Earth’s surface. The Earth’s crust is determined to be a significant source of thermal and slow neutrons, originated from the interaction between the nuclei of the elements of the Earth’s crust and the atmosphere and α-particles, produced by decay of radioactive gases (Radon, Thoron and Actinon. In turn, variations of radioactive gases exhalation is connected with geodynamical processes in the Earth’s crust, including tectonic activity. This determined relation between the processes in the Earth’s crust and neutrons’ flux allow to use variations of thermal and slow neutrons’ flux in order to observe increasing tectonic activity and to develop methods for short-term prediction of natural hazards.

  14. Neutron and gamma (density) logging in welded tuff

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W

    1998-09-12

    This Technical Implementation Procedure (TIP) describes the field operation, and the management of data records pertaining to neutron logging and density logging in welded tuff. This procedure applies to all borehole surveys performed in support of Engineered Barrier System Field Tests (EBSFT), including the Earge Block Tests (LBT) and Initial Engineered Barrier System Field Tests (IEBSFT) - WBS 1.2.3.12.4. The purpose of this TIP is to provide guidelines so that other equally trained and qualified personnel can understand how the work is performed or how to repeat the work if needed. The work will be documented by the use of Scientific Notebooks (SNs) as discussed in 033-YMP-QP 3.4. The TIP will provide a set of guidelines which the scientists will take into account in conducting the mea- surements. The use of this TIP does not imply that this is repetitive work that does not require profes- sional judgment.

  15. Neutron and gamma (density) logging in welded tuff

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W

    1998-09-12

    This Technical Implementation Procedure (TIP) describes the field operation, and the management of data records pertaining to neutron logging and density logging in welded tuff. This procedure applies to all borehole surveys performed in support of Engineered Barrier System Field Tests (EBSFT), including the Earge Block Tests (LBT) and Initial Engineered Barrier System Field Tests (IEBSFT) - WBS 1.2.3.12.4. The purpose of this TIP is to provide guidelines so that other equally trained and qualified personnel can understand how the work is performed or how to repeat the work if needed. The work will be documented by the use of Scientific Notebooks (SNs) as discussed in 033-YMP-QP 3.4. The TIP will provide a set of guidelines which the scientists will take into account in conducting the mea- surements. The use of this TIP does not imply that this is repetitive work that does not require profes- sional judgment.

  16. Evaluation of neutronic characteristic of irradiation field in MEU6-core. Comparison of neutron flux and neutron spectrum in MEU6-core and Mixed-core

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yoshiharu; Komukai, Bunsaku; Tabata, Toshio; Takeda, Takashi; Fujiki, Kazuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1999-08-01

    In JMTR (Japan Materials Testing Reactor, 50 MW), the core configuration has been changed from previously employed Mixed-core (25 LEUs(low enrichment uranium (19.8%) fuel elements) and 2 MEUs (medium enrichment uranium (45%) fuel elements)) to MEU6-core (21 LEUs and 6 MEUs), since 125th operating cycle (started in Nov. 17, 1998). In order to investigate the effect of core configuration change on the irradiation tests, neutron flux distribution and neutron spectrum of irradiation field in MEU6-core were calculated by diffusion code CITATION and Monte Carlo code MCNP. As the result, it was confirmed that irradiation field in the MEU6-core has the neutronic characteristics almost equivalent to the irradiation field in the Mixed-core. (author)

  17. Photoneutron Flux Measurement via Neutron Activation Analysis in a Radiotherapy Bunker with an 18 MV Linear Accelerator

    Directory of Open Access Journals (Sweden)

    Çeçen Yiğit

    2017-01-01

    Full Text Available In cancer treatment, high energy X-rays are used which are produced by linear accelerators (LINACs. If the energy of these beams is over 8 MeV, photonuclear reactions occur between the bremsstrahlung photons and the metallic parts of the LINAC. As a result of these interactions, neutrons are also produced as secondary radiation products (γ,n which are called photoneutrons. The study aims to map the photoneutron flux distribution within the LINAC bunker via neutron activation analysis (NAA using indium-cadmium foils. Irradiations made at different gantry angles (0°, 90°, 180° and 270° with a total of 91 positions in the Philips SLI-25 linear accelerator treatment room and location-based distribution of thermal neutron flux was obtained. Gamma spectrum analysis was carried out with high purity germanium (HPGe detector. Results of the analysis showed that the maximum neutron flux in the room occurred at just above of the LINAC head (1.2x105 neutrons/cm2.s which is compatible with an americium-beryllium (Am-Be neutron source. There was a 90% decrease of flux at the walls and at the start of the maze with respect to the maximum neutron flux. And, just in front of the LINAC door, inside the room, neutron flux was measured less than 1% of the maximum.

  18. Neutron Imager and Flux Monitor Based on Micro Channel Plates (MCP) in Electrostatic Mirror Configuration

    Science.gov (United States)

    Variale, V.

    In this paper, a new high transparency device based on MCP for the monitoring the flux and spatial profile of a neutron beam will be described. The assembly consists of a carbon foil with a 6Li deposit, placed in the beam, and a MCP equipped with a phosphor screen readout viewed by a CCD camera, placed outside the beam. Secondary emitted electrons (SEE) produced in the carbon foil by the alpha-particles and tritons from the 6Li+n reaction, are deflected to the MCP detector by means of an electrostatic mirror, suitably designed to preserve the spatial resolution. The conductive layer on the phosphor can be used for neutron counting, and to obtain time-of-flight information. A peculiar feature of this device is that the use of an electrostatic mirror minimizes the perturbation of the neutron beam, i.e. absorption and scattering. It can be used at existing time-of-flight (TOF) facilities, in particular at the n_TOF facility at CERN, for monitoring the flux and special profile of the neutron beam in the thermal and epithermal region. In this work, the device principle and design will be presented, together with the main features in terms of resolution and neutron detection efficiency.

  19. Study of the beam-induced neutron flux and required shielding for DIANA

    Energy Technology Data Exchange (ETDEWEB)

    Best, Andreas, E-mail: abest1@nd.edu [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Couder, Manoel [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Famiano, Michael [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Lemut, Alberto [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Wiescher, Michael [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2013-11-01

    Low energy accelerators in underground locations have emerged as a powerful tool for the measurement of critical nuclear reactions for the study of energy production and element synthesis in astrophysics. While cosmic ray induced background is substantially reduced, beam induced background on target impurities and depositions on target and collimator materials remain a matter of serious concern. The Dual Ion Accelerator for Nuclear Astrophysics (DIANA) is proposed to operate as a low-level background facility in an underground location. One of the main goals of DIANA is the study of neutron sources in stellar helium burning. For these experiments DIANA is a neutron radiation source which may affect other nearby low background level experiments. We therefore investigated the required laboratory layout to attenuate the neutron flux generated in a worst-case scenario to a level below the natural background in the underground environment. Detailed Monte Carlo calculations of the neutron propagation in the laboratory show that a neutron flux many orders of magnitude above expected values gets attenuated below the natural background rate using a 1 m thick water-shielded door as well as an emergency access/egress maze.

  20. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  1. Neutronic characterization of cylindrical core of minor excess reactivity in the nuclear reactor IPEN/MB-01 from the measure of spatial and energetic distribution of neutron flux distribution; Caracterizacao do nucleo cilindrico de menor excesso de reatividade do reator IPEN/MB-01, pela medida da distribuicao espacial e energetica do fluxo de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Aredes, Vitor Ottoni Garcia

    2014-07-01

    In this work was conducted the mapping of the thermal and epithermal neutrons flux and the energy spectrum of the neutrons in the reactor core IPEN/MB-01 for a cylindrical core configuration with minor excess reactivity, which is 28 x 28 fuel rods arranged in north-south and east-west directions. The calibration of control rods for this configuration determined their excess reactivity. The lower excess reactivity in the core decreased neutron flux disturbance caused by the neutron absorbing rods , given that the nuclear reactor was operated with the rods almost completely removed . Was used the 'Activation Analysis Technique' with the thin foil activation detectors ( infinitely diluted and hyper-pure), of different materials that work in different energy ranges, to calculate the saturation activity, used for determining the neutron flux and in the SANDBP code as input for the calculation of the neutrons energy spectrum. To discriminate thermal and epithermal flux , was used the 'Cadmium RatioTechnique' . The activation detectors were distributed in a total of 140 radial and axial positions in the reactor core and 16 irradiation, with bare and covered with cadmium activation foils. A model of this configuration was simulated by MCNP-5 code to determine the cadmium correction factor and comparison of the results obtained experimentally. The cylindrical configuration desired, with 17% less fuel than the standard rectangular configuration (28 x 26 fuel rods), reached criticality with the control rods approximately 90% removed, which decreased considerably the disturbance in neutron flux. Given the highest power density of the 28 x 28 cylindrical core, the neutron flux increased by over 50% in the central regions of the core compared to the values of the 28 x 26 standard rectangular core. (author)

  2. High-sensitive spectrometer of fast neutrons and the results of fast neutron background flux measurements at the Gallium-Germanium Solar Neutrino Experiment

    CERN Document Server

    Abdurashitov, J N; Kalikhov, A V; Matushko, V L; Shikhin, A A; Yants, V E; Zaborskaia, O S

    2002-01-01

    The principle of operation, design, registration system and main characteristics of a fast neutron spectrometer are described. The spectrometer is intended for direct measurements of ultra low fluxes of fast neutrons. It is sensitive to neutron fluxes of 10 sup - sup 7 cm sup - sup 2 s sup - sup 1 and lower. The detection efficiency of fast neutrons with simultaneous energy measurement was determined from Monte-Carlo simulation to be equal to 0.11+-0.01. The background counting rate in the detector corresponds to a neutron flux of (6.5+-2.1)x10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in the range 1.0-11.0 MeV. The natural neutron flux from the surrounding mine rock at the depth of 4600 m of water equivalent was measured to be (7.3+-2.4)x10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in the range 1.0-11.0 MeV. The flux of fast neutrons in the SAGE main room was measured to be <2.3x10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in 1.0-11.0 MeV energy range.

  3. Factors influencing the density profiles of granular flux in a two-dimensional inclined channel

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The two-dimensional dilute granular flow on a smooth incline bounded by rough sidewalls is investigated experimentally, and the transverse density profiles of granular flux (ξ = ρ v) across the channel are measured. The results show that the transverse density profiles of granular flux are symmetric about the channel center and that the density of granular flux near the boundary is clearly lower than that of the center. There is a critical width of channel Wc for the transition of the density of granular flux. The density of granular flux near the boundary decays with the increasing of inclination (sinθ ) of the channel.

  4. Factors influencing the density profiles of granular flux in a two-dimensional inclined channel

    Institute of Scientific and Technical Information of China (English)

    BAO DeSong; ZHOU Ying; ZHANG XunSheng; TANG XiaoWei

    2009-01-01

    The two-dimensional dilute granular flow on a smooth incline bounded by rough sidewalls is investigated experimentally, and the transverse density profiles of granular flux (ξ=pv) across the channel are measured. The results show that the transverse density profiles of granular flux are symmetric about the channel center and that the density of granular flux near the boundary is clearly lower than that of the center. There is a critical width of channel Wc for the transition of the density of granular flux. The density of granular flux near the boundary decays with the increasing of inclination (sinθ) of the channel.

  5. Test of high density UC targets development at Gatchina for neutron rich radioactive beam facilities

    CERN Document Server

    Lhersonneau, G; Lanchais, A; Rizzi, V; Tecchio, L.B; Bajeat, O; Essabaa, S; Lau, C; Cheikh Mhamed, M; Roussière, B; Barzakh, A.E; Fedorov, D.V; lonan, A.M; lvanov, V.S; Mezilev, K.A; Moroz, F.V; Orlov, S.YU; Panteleevc, V.N; Volkovc, YU.M; Dubois, M; Eléon, C; Gaubert, G; Jardin, P; Leroy, R; Saint Laurent, M.G; Villari, A.C.C; Stroe, L; 10.1016/j.nimb.2008.05.033

    2008-01-01

    Production of on-line mass separator neutron rich isotopes using fission induced by 1 GeV protons on high density uranium carbide has been investigate and results compared with the low density targets yields.

  6. Wide dynamic range neutron flux monitor having fast time response for the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, M., E-mail: isobe@nifs.ac.jp; Takeiri, Y. [National Institute for Fusion Science, Toki 509-5292 (Japan); Department of Fusion Science, The Graduate University for Advanced Studies, Toki 509-5292 (Japan); Ogawa, K.; Miyake, H.; Hayashi, H.; Kobuchi, T. [National Institute for Fusion Science, Toki 509-5292 (Japan); Nakano, Y.; Watanabe, K.; Uritani, A. [Department of Materials, Physics and Energy Engineering, Nagoya University, Nagoya 464-8603 (Japan); Misawa, T. [Kyoto University Research Reactor Institute, Kumatori 590-0494 (Japan); Nishitani, T. [Japan Atomic Energy Agency, Rokkasho 039-3212 (Japan); Tomitaka, M.; Kumagai, T.; Mashiyama, Y.; Ito, D.; Kono, S. [Toshiba Corporation, Fuchu 183-8511 (Japan); Yamauchi, M. [Toshiba Nuclear Engineering Services Corporation, Yokohama 235-8523 (Japan)

    2014-11-15

    A fast time response, wide dynamic range neutron flux monitor has been developed toward the LHD deuterium operation by using leading-edge signal processing technologies providing maximum counting rate up to ∼5 × 10{sup 9} counts/s. Because a maximum total neutron emission rate over 1 × 10{sup 16} n/s is predicted in neutral beam-heated LHD plasmas, fast response and wide dynamic range capabilities of the system are essential. Preliminary tests have demonstrated successful performance as a wide dynamic range monitor along the design.

  7. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, Lance [Indiana Univ., Bloomington, IN (United States)

    2014-01-01

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  8. Internal wave pressure, velocity, and energy flux from density perturbations

    CERN Document Server

    Allshouse, Michael R; Morrison, Philip J; Swinney, Harry L

    2016-01-01

    Determination of energy transport is crucial for understanding the energy budget and fluid circulation in density varying fluids such as the ocean and the atmosphere. However, it is rarely possible to determine the energy flux field $\\mathbf{J} = p \\mathbf{u}$, which requires simultaneous measurements of the pressure and velocity perturbation fields, $p$ and $\\mathbf{u}$. We present a method for obtaining the instantaneous $\\mathbf{J}(x,z,t)$ from density perturbations alone: a Green's function-based calculation yields $p$, and $\\mathbf{u}$ is obtained by integrating the continuity equation and the incompressibility condition. We validate our method with results from Navier-Stokes simulations: the Green's function method is applied to the density perturbation field from the simulations, and the result for $\\mathbf{J}$ is found to agree typically to within $1\\%$ with $\\mathbf{J}$ computed directly using $p$ and $ \\mathbf{u}$ from the Navier-Stokes simulation. We also apply the Green's function method to densit...

  9. Scattering length density profile of Ni film under controlled corrosion: A study in neutron reflectometry

    Indian Academy of Sciences (India)

    Surendra Singh; A K Poswal; S K Ghosh; Saibal Basu

    2008-11-01

    We report the density depth profile of an as-deposited Ni film and density profile for the same film after controlled electrochemical corrosion by chloride ions, measured by unpolarized neutron reflectometry. The neutron reflectometry measurement of the film after corrosion shows density degradation along the thickness of the film. The density profile as a function of depth, maps the growth of pitting and void networks due to corrosion. The profile after corrosion shows an interesting peaking nature.

  10. Measuring the Density of Different Materials by Using the Collimated Fast Neutron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Sudac, D.; Nad, K.; Orlic, Z.; Obhodas, J. [Rudjer Boskovic Institute, Bijenicka c. 54, 10000 Zagreb (Croatia); Valkovic, V. [Rudjer Boskovic Institute, Zagreb (Croatia); Kvinticka 62, Zagreb (Croatia)

    2015-07-01

    It was demonstrated in the previous work that various threat materials could be detected inside the sea going cargo container by measuring the three variables, carbon and oxygen concentration and density of investigated material. Density was determined by measuring transmitted neutrons, which is not always practical in terms of setting up the instrument geometry. In order to enable more geometry flexibility, we have investigated the possibility of using the scattered neutrons in cargo material identification. For that purpose, the densities of different materials were measured depending on the position of neutron detectors and neutron generator with respect to the target position. One neutron detector was put above the target, one behind and one in front of the target, above the neutron generator. It was shown that all three positions of neutron detectors can be successfully used to measure the target density, but only if the detected neutrons are successfully discriminated from the gamma rays. Although the associated alpha particle technique/associate particle imaging (API) was used to discriminate the neutrons from the gamma rays, it is believed that the same results would be obtained by using the pulse shape discrimination method. In that way API technique can be avoided and the neutron generator which produces much higher beam intensity than 10{sup 8} n/s can be used. (authors)

  11. Micro-pocket fission detectors (MPFD) for in-core neutron flux monitoring

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas S. [S.M.A.R.T. Laboratory, Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)]. E-mail: mcgregor@ksu.edu; Ohmes, Martin F. [S.M.A.R.T. Laboratory, Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Ortiz, Rylan E. [S.M.A.R.T. Laboratory, Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Sabbir Ahmed, A.S.M. [S.M.A.R.T. Laboratory, Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Kenneth Shultis, J. [S.M.A.R.T. Laboratory, Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)

    2005-12-01

    Micro-pocket fission detectors (MPFD) have been fabricated and tested as in-core flux monitors in the 250 kW TRIGA nuclear reactor at Kansas State University. The prototype devices have been coated with a natural uranyl-nitrate to provide a neutron reactive coating. The devices are composed of alumina substrates sealed together to form a miniature gas pocket 3 mm in diameter and 1 mm wide. The devices are radiation hard and can operate in pulse mode in a neutron flux exceeding 10{sup 12} cm{sup -2} s{sup -1}. Placed in the central thimble of the reactor core, the MPFDs have shown count rate linearity from low to high power. Dead time losses become apparent at power levels exceeding 100 kW, yet are still low enough to allow for pulse mode operation.

  12. Thermal neutrons' flux near the Earth's surface as an evidence of the crustal stress

    Science.gov (United States)

    Sigaeva, Ekaterina; Nechayev, Oleg; Volodichev, Nikolay; Antonova, Valentina; Kryukov, Sergey; Chubenko, Alexander; Shchepetov, Alexander

    There are some ideas about the Earth’s global seismic activity appearance due to tidal forces. At the same time, the correlations between the big series of the earthquakes and the New and Full Moons and between the New and Full Moons and the increasings of the thermal neutrons’ flux from the Earth’s crust were observed. It is as though there are internal links between these three natural phenomena and the physical reasons for their appearance are the same. The paper presents the results of the ground-based thermal neutrons observations during different time periods characterized with phenomena in the near-Earth space (for instance, the New and Full Moon). Basing on the up-to-date conception of the tidal waves influence on the Earth's crust the authors confirm the role of the Moon in the production of the neutron flux near the Earth's surface.

  13. Neutron Spectral Brightness of Cold Guide 4 at the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Winn, B L; Robertson, J L; Iverson, E B; Selby, D L, E-mail: winnbl@ornl.gov

    2010-11-01

    The High Flux Isotope Reactor resumed operation in June of 2007 with a supercritical hydrogen cold source in horizontal beam tube 4. Cold guide 4 is a guide system designed to deliver neutrons from this source with a reasonable flux at wavelengths greater than 4 A to several instruments, and includes a 15-m, 96-section, 4-channel bender. A time-of-flight spectrum with calibrated detector was recorded at port C of cold guide 4, and compared to McStas simulations, to generate a brightness spectrum.

  14. Neutron Spectral Brightness of Cold Guide 4 at the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Winn, B. L. [Brookhaven National Lab. (BNL), Upton, NY (United States). Neutron Scattering Group; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Facilities Development Div.; Robertson, J. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Facilities Development Div.; Iverson, Erik B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Facilities Development Div.; Selby, D. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Facilities Development Div.

    2009-05-03

    The High Flux Isotope Reactor resumed operation in June of 2007 with a super-critical hydrogen cold source in horizontal beam tube 4. Cold guide 4 is a guide system designed to deliver neutrons from this source at reasonable flux at wavelengths greater than 4 Å to several instruments, and includes a 15-m, 96-section, 4-channel bender. A time-of-flight spectrum with calibrated detector was recorded at port C of cold guide 4, and compared to McStas simulations, to generate a brightness spectrum.

  15. Neutron Spectral Brightness of Cold Guide 4 at the High Flux Isotope Reactor

    Science.gov (United States)

    Winn, B. L.; Robertson, J. L.; Iverson, E. B.; Selby, D. L.

    2010-11-01

    The High Flux Isotope Reactor resumed operation in June of 2007 with a supercritical hydrogen cold source in horizontal beam tube 4. Cold guide 4 is a guide system designed to deliver neutrons from this source with a reasonable flux at wavelengths greater than 4 Å to several instruments, and includes a 15-m, 96-section, 4-channel bender. A time-of-flight spectrum with calibrated detector was recorded at port C of cold guide 4, and compared to McStas simulations, to generate a brightness spectrum.

  16. Energy distribution of the neutron flux measurements at the Chilean Reactor RECH-1 using multi-foil neutron activation and the Expectation Maximization unfolding algorithm.

    Science.gov (United States)

    Molina, F; Aguilera, P; Romero-Barrientos, J; Arellano, H F; Agramunt, J; Medel, J; Morales, J R; Zambra, M

    2017-08-04

    We present a methodology to obtain the energy distribution of the neutron flux of an experimental nuclear reactor, using multi-foil activation measurements and the Expectation Maximization unfolding algorithm, which is presented as an alternative to well known unfolding methods such as GRAVEL. Self-shielding flux corrections for energy bin groups were obtained using MCNP6 Monte Carlo simulations. We have made studies at the at the Dry Tube of RECH-1 obtaining fluxes of 1.5(4)×10(13)cm(-2)s(-1) for the thermal neutron energy region, 1.9(5)×10(12)cm(-2)s(-1) for the epithermal neutron energy region, and 4.3(11)×10(11)cm(-2)s(-1) for the fast neutron energy region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Calculations of the thermal and fast neutron fluxes in the Syrian miniature neutron source reactor using the MCNP-4C code.

    Science.gov (United States)

    Khattab, K; Sulieman, I

    2009-04-01

    The MCNP-4C code, based on the probabilistic approach, was used to model the 3D configuration of the core of the Syrian miniature neutron source reactor (MNSR). The continuous energy neutron cross sections from the ENDF/B-VI library were used to calculate the thermal and fast neutron fluxes in the inner and outer irradiation sites of MNSR. The thermal fluxes in the MNSR inner irradiation sites were also measured experimentally by the multiple foil activation method ((197)Au (n, gamma) (198)Au and (59)Co (n, gamma) (60)Co). The foils were irradiated simultaneously in each of the five MNSR inner irradiation sites to measure the thermal neutron flux and the epithermal index in each site. The calculated and measured results agree well.

  18. Electromagnetic potentials basis for energy density and power flux

    Science.gov (United States)

    Puthoff, H. E.

    2016-09-01

    In rounding out the education of students in advanced courses in applied electromagnetics it is incumbent on us as mentors to raise issues that encourage appreciation of certain subtle aspects that are often overlooked during first exposure to the field. One of these has to do with the interplay between fields and potentials, with the latter often seen as just a convenient mathematical artifice useful in solving Maxwell’s equations. Nonetheless, to those practiced in application it is well understood that various alternatives in the use of fields and potentials are available within electromagnetic (EM) theory for the definitions of energy density, momentum transfer, EM stress-energy tensor, and so forth. Although the various options are all compatible with the basic equations of electrodynamics (e.g., Maxwell’s equations, Lorentz force law, gauge invariance), nonetheless certain alternative formulations lend themselves to being seen as preferable to others with regard to the transparency of their application to physical problems of interest. Here we argue for the transparency of an energy density/power flux option based on the EM potentials alone.

  19. Radiation Hardness tests with neutron flux on different Silicon photomultiplier devices

    Science.gov (United States)

    Cattaneo, P. W.; Cervi, T.; Menegolli, A.; Oddone, M.; Prata, M.; Prata, M. C.; Rossella, M.

    2017-07-01

    Radiation hardness is an important requirement for solid state readout devices operating in high radiation environments common in particle physics experiments. The MEG II experiment, at PSI, Switzerland, investigates the forbidden decay μ+ → e+ γ. Exploiting the most intense muon beam of the world. A significant flux of non-thermal neutrons (kinetic energy Ek>= 0.5 MeV) is present in the experimental hall produced along the beam-line and in the hall itself. We present the effects of neutron fluxes comparable to the MEG II expected doses on several Silicon Photomultiplier (SiPMs). The tested models are: AdvanSiD ASD-NUV3S-P50 (used in MEG II experiment), AdvanSiD ASD-NUV3S-P40, AdvanSiD ASD-RGB3S-P40, Hamamatsu and Excelitas C30742-33-050-X. The neutron source is the thermal Sub-critical Multiplication complex (SM1) moderated with water, located at the University of Pavia (Italy). We report the change of SiPMs most important electric parameters: dark current, dark pulse frequency, gain, direct bias resistance, as a function of the integrated neutron fluency.

  20. Neutron Radiography Facility at IBR-2 High Flux Pulsed Reactor: First Results

    Science.gov (United States)

    Kozlenko, D. P.; Kichanov, S. E.; Lukin, E. V.; Rutkauskas, A. V.; Bokuchava, G. D.; Savenko, B. N.; Pakhnevich, A. V.; Rozanov, A. Yu.

    A neutron radiography and tomography facilityhave been developed recently at the IBR-2 high flux pulsed reactor. The facility is operated with the CCD-camera based detector having maximal field of view of 20x20 cm, and the L/D ratio can be varied in the range 200 - 2000. The first results of the radiography and tomography experiments with industrial materials and products, paleontological and geophysical objects, meteorites, are presented.

  1. Optimized Design of Spacing in Pulsed Neutron Gamma Density Logging While Drilling

    Directory of Open Access Journals (Sweden)

    ZHANG Feng;HAN Zhong-yue;WU He;HAN Fei

    2016-10-01

    Full Text Available Radioactive source, used in traditional density logging, has great impact on the environment, while the pulsed neutron source applied in the logging tool is more safety and greener. In our country, the pulsed neutron-gamma density logging technology is still in the stage of development. Optimizing the parameters of neutron-gamma density instrument is essential to improve the measuring accuracy. This paper mainly studied the effects of spacing to typical neutron-gamma density logging tool which included one D-T neutron generator and two gamma scintillation detectors. The optimization of spacing were based on measuring sensitivity and counting statistic. The short spacing from 25 to 35 cm and long spacing from 60 to 65 cm were selected as the optimal position for near and far detector respectively. The result can provide theoretical support for design and manufacture of the instrument.

  2. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one

  3. High-flux neutron source based on a liquid-lithium target

    Science.gov (United States)

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-01

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  4. Progress towards boron neutron capture therapy at the High Flux Reactor Petten.

    Science.gov (United States)

    Moss, R L

    1990-01-01

    During 1988 the first positive steps were taken to proceed with the design and construction of a neutron capture therapy facility on the High Flux Reactor (HFR) at Petten. The immediate aim is to realise within a short time (summer 1989), an epithermal neutron beam for radiobiological and filter optimisation studies on one of the 10 small aperture horizontal beam tubes. The following summer, a much larger neutron beam, i.e., in cross section and neutron fluence rate, will be constructed on one of the two large beam tubes that replaced the old thermal column in 1984. This latter beam tube faces one whole side of the reactor vessel, extending from a 50 x 40 cm input aperture to a 35 x 35 cm exit hole. The radiotherapeutic facility will be housed here, with the intention to start clinical trials at the beginning of 1991. This paper describes the present status of the project and includes: a general description of the pertinent characteristics with respect to NCT of the HFR; results of the recently completed preliminary neutron metrology and computer modeling at the input end of the candidate beam tube; the structure and planning of the proposed Work Programme; and the respective direct and indirect participation and collaboration with the Netherlands Cancer Institute and the European Collaboration Group on BNCT.

  5. Feasibility study of photo-neutron flux in various irradiation channels of Ghana MNSR using a Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Birikorang, S.A., E-mail: anddydat@yahoo.com [Department of Nuclear Engineering and Material Science, School of Nuclear and Allied Sciences (SNAS), University of Ghana, P.O. Box AE 1, Atomic Energy, Accra (Ghana); Akaho, E.H.K.; Nyarko, B.J.B. [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra-Ghana (Ghana); Ampomah-Amoako, E.; Seth, Debrah K.; Gyabour, R.A.; Sogbgaji, R.B.M. [Department of Nuclear Engineering and Material Science, School of Nuclear and Allied Sciences (SNAS), University of Ghana, P.O. Box AE 1, Atomic Energy, Accra (Ghana)

    2011-07-15

    Highlights: > The photo-neutron source was investigated within Ghana MNSR irradiation channels. > Irradiation channels under study were inner, outer and the fission chamber. > Thermal rated power at sub-critical state was estimated. > Neutron flux variation was investigated within the channels. > MCNP code has been used to investigate the flux variation. - Abstract: Computer simulation was carried out for photo-neutron source variation in outer irradiation channel, inner irradiation channels and the fission channel of a tank-in-pool reactor, a Miniature Neutron Source Reactor (MNSR) in sub-critical condition. Evaluation of the photo-neutron was done after the reactor has been in sub-critical condition for three month period using Monte Carlo Neutron Particle (MCNP) code. Neutron flux monitoring from the Micro Computer Control Loop System (MCCLS) was also investigated at sub-critical condition. The recorded neutron fluxes from the MCCLS after investigations were used to calculate the power of the reactor at sub-critical state. The computed power at sub-critical state was used to normalize the un-normalized results from the MCNP.

  6. Single-charge-exchange reactions and the neutron density at the surface of the nucleus

    Science.gov (United States)

    Loc, Bui Minh; Auerbach, Naftali; Khoa, Dao T.

    2017-07-01

    In this paper, we study the charge-exchange reaction to the isobaric analog state using two types of transition densities. One transition density is equal to the difference of the total neutron density minus the total proton density and the other one is the density of the excess neutrons only. We show that for projectiles that do not probe the interior of the nucleus but mostly the surface of this nucleus, distinct differences in the cross section arise when two types of transition densities are employed. We demonstrate this by considering the (3He,t ) reaction.

  7. Flux Loop Measurements of the Magnetic Flux Density in the CMS Magnet Yoke

    CERN Document Server

    Klyukhin, V I; Ball, A.; Curé, B.; Gaddi, A.; Gerwig, H.; Mulders, M.; Hervé, A.; Loveless, R.

    2016-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 3-D Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The first attempt is made to measure the magnetic flux density in the steel blocks of the CMS magnet yoke using the standard magnet discharge with the current ramp down speed of 1.5 A/...

  8. Measurement of the Ratio of High Energy Neutron in the Pulse Nuclear Reactor

    Institute of Scientific and Technical Information of China (English)

    MAO; Guo-shu; DING; You-qian; YANG; Lei; MA; Peng; YU; Zhen-hua

    2012-01-01

    <正>In the production of radioisotopes and neutron activation analysis, the fast neutron densities are very important to estimate the yields of the radioisotopes. In order to determine the fast neutron flux ratio, different foils are used to measure the thermal neutron flux and the fast neutron flux. In this paper 238U was used as only a monitor to measure the ratio of high energy neutron (>6 MeV). By measuring the

  9. Monitoring method of neutron flux for the spallation target used in an accelerator driven sub-critical systems

    CERN Document Server

    Zhao, Qiang; Yang, Lei; Zhang, Xueying; Cui, Wenjuan; Chen, Zhiqiang; Xu, Hushan

    2015-01-01

    In this paper, we study the monitoring method of neutron flux for the spallation target used in an accelerator driven sub-critical (ADS) system, where the spallation target located vertically at the centre of a sub-critical core is bombarded vertically by the high-energy protons from an accelerator. First, by considering the characteristics in the spatial variation of neutron flux from the spallation target, we propose the following multi-point measurement technique, i.e. the spallation neutron flux should be measured at multiple vertical locations. To explain why the flux should be measured at multiple locations, we have studied the neutron production from tungsten target bombarded by a 250 MeV-proton beam with the Geant4-based Monte Carlo simulations. The simulation results have indicated that the neutron flux at the central location is up to three orders of magnitude higher than the flux at the lower locations. Secondly, we have developed an effective technique in order to measure the spallation neutron fl...

  10. Uncertainties in measuring trace amounts of cobalt and europium with low-flux neutron activation analysis

    Directory of Open Access Journals (Sweden)

    Burnham Steven

    2017-01-01

    Full Text Available Neutron activation analysis is widely used for identification of elements and their quantities even in trace amounts in the samples of almost any type. The challenges in detecting trace amounts of particular elements are often associated with the neutron flux produced at the research reactors. Low-flux neutron activation analysis usually presents the biggest challenge when analyzing trace quantities of elements with lower magnitude of radiative capture cross-sections. In this paper, we present the methodology and the quantified uncertainties associated with the detection of trace amounts of cobalt and europium, using as an example concrete aggregates. Recent growing interest is in improving structural concrete (increasing its strength but reducing its activation in nuclear power plant environments. Aside from buildings, structural concrete is also used as a biological shield in nuclear power plant that become radioactive after exposure to neutron flux. Due to radiative capture interactions, artificial radionuclides are generated to high enough concentrations that classify concrete as low-level radioactive waste at the time of the plant's decommissioning. Disposal of this concrete adds to the expense of nuclear power plant financing and its construction. Three radionuclides, 60Co, 152Eu, and 154Eu, account for 99 % of total residual radioactivity of nuclear power plant decommissioned concrete. IAEA document RS-G-1.7, Application of the Concepts of Exclusion, Exemption, and Clearance, specifies clearance levels of radionuclides specific activities: a specific activity lower than 0.1 Bqg-1 for 60Co and 152Eu, and 154Eu allows for a concrete to be recycled after decommissioning of the nuclear power plant. Therefore, low-flux neutron activation analysis is used to test the detection limits of trace elements in samples of cement, coarse, and fine concrete aggregates. These samples are irradiated at the University of Utah's 100 kW TRIGA Reactor at

  11. Measured and Predicted Neutron Flux Distributions in a Material Surrounding a Cylindrical Duct

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, J.; Sandlin, R.

    1966-03-15

    The radial fast neutron flux attenuations in the material (iron) surrounding ducts of diameters 7, 9, and 15 cm and total duct length of about 1.5 m have been investigated with and without neutron scattering cans filled with D{sub 2}O in the duct. Experimentally the problem was solved by the use of foil activation techniques. Theoretically it was attacked by, in the first place, a Monte Carlo program specially written for this purpose and utilizing an importance sampling technique. In the second place non- and single-scattering removal flux codes were tried, and also simple hand calculations. The Monte Carlo results accounted well for the fast flux attenuation, while the non- and single-scattering methods overestimated the attenuation generally by a factor of 10 or less. Simple hand calculations using three empirical parameters could be fitted to the measured data within a factor of 1.2 - 1.3 at penetration depths greater than 3 - 4 cm. The distribution of the D{sub 2}O-scattered flux could well be described in terms of single scattering.

  12. Preliminary Design of LEU MNSR for BNCT with Excellent Epithermal Neutron Flux Treatment Beam%高额超热中子束流治疗孔道低浓化BNCT堆初步设计方案

    Institute of Scientific and Technical Information of China (English)

    于涛; 钱金栋; 谢金森

    2012-01-01

    Based on the Miniature Neutron Source Reactor (MNSR) with high enrichment uranium (HEU) fuel and accordance with the requirements of BNCT, the 19.5% of enriched fuel UO2 fuel core for BNCT with epithermal neutron treatment beam was primary designed, the reactor core parameters such as epithermal neutron flux density,epithermal neutron flux unit of fast neutron dose rate,epithermal neutron flux unit photon dose rate of γ,epithermal neutron flux ratio of thermal neutron flux, neutron spectrum were calculated and analyzed. The results show that the design program was an excellent epithermal neutron treatment beam.%根据硼中子俘获治疗( BNCT)中子源的要求,在高浓铀为燃料的微型反应堆(MNSR)的基础上,以富集度19.5%的UO2为燃料,将其堆芯低浓化并且添加水平超热中子束流治疗孔道,开展超热中子束流BNCT堆堆芯低浓化初步设计.计算BNCT堆的超热中子注量率、单位超热中子注量的快中子剂量率、单位超热中子注量的γ光子剂量率、超热中子注量与热中子的注量之比、中子束流能谱等关键参数.结果表明,该设计可以得到优良的超热中子束流.

  13. Scattered and (n,2n) neutrons as a measure of areal density in ICF capsules

    CERN Document Server

    Wilson, D C; Disdier, L; Houry, M; Bourgade, J L; Murphy, T J

    2002-01-01

    The fraction of low-energy neutrons created from 14 MeV neutrons by elastic scattering and (n,2n) reactions on D and T has been proposed as a measure of the areal density (radial integral of density) of ICF targets. In simple situations the fraction of neutrons between 9.4 (the upper energy of T+T neutrons) and 13 MeV (below the Doppler broadened 14.1 MeV peak) is proportional to the at the time of neutron production. This ratio does not depend upon the temperature of the fuel, as does the number of reaction-in-flight neutrons. The ratio of neutrons elastically scattered at a specific energy (e.g. 13 MeV) to the total number of neutrons can be measured along different lines of sight. The ratio of two perpendicular measurements provides a quantitative measure of asymmetry. A detector can be placed inside the target chamber to measure these low-energy neutrons. If it is close enough to the target that measurements are made before the 14 MeV neutrons reach the chamber wall, gamma rays can be a negligible back...

  14. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J.M.

    1992-02-01

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  15. Calculation of intermediate neutron flux in the radial reflectors of graphite reactors, comparison with experiments; Calcul du flux de neutrons intermediaires dans les reflecteurs lateraux des piles a graphite. Comparaison avec l'experience

    Energy Technology Data Exchange (ETDEWEB)

    Brisbois, J.; Vergnaud, T.; Oceraies, Y

    1967-12-01

    In a graphite pile, EDF or Inca type reactor, it is necessary to know the value of the intermediate neutron flux at the output of the lateral reflector in order to determine more precisely the neutron flux at the level of ionisation chambers. A sub critical pile of graphite and natural uranium was built, allowing to reconstitute the geometry of the radiation sources and the disposition of inferior and lateral protections of these piles. This pile is supplied with thermal neutrons coming from the Nereide light water type reactor. Some measurements of intermediate neutron flux have been made in this pile in order to establish a formalism for neutron flux calculation in slowing down in a whole core-lateral reflector, from the distribution of the thermal neutrons flux in the core. The flux calculation is done by age theory in three dimensions, in two homogenous media, separated by an axially semi infinite and laterally finite plane. One of these media includes a distribution of source. The constants are modified in order to take into account the presence of empty channels in the stacking. These calculations are done by the Malaga code. The checking of the formalism has been made in a greater complex geometry of these reactors that introduces an uncertainty factor in the comparison of results. We can however tell that we estimate correctly the variation of the intermediate neutrons flux in the core as well as its descending in a holed lateral reflector. The ratio between the calculation and the experiment is inferior to 2 or 3. Most of the time to a factor 2. [French] Dans une pile a graphite, du type EdF ou Inca, il est necessaire de connaitre la valeur du flux de neutrons intermediaires a la sortie du reflecteur lateral, afin de determiner avec plus de precision le flux de neutrons au niveau des chambres d'ionisation. Il a ete construit un empilement sous-critique, graphite uranium naturel, qui permet de reconstituer la geometrie des sources de rayonnement et la

  16. Localized fast neutron flux enhancement for damage experiments in a research reactor; Accroissement local du flux rapide pour des experiences de dommages dans un reacteur de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Malouch, F

    2003-06-01

    In irradiation experiments on materials in the core of the Osiris reactor (CEA-Saclay) we seek to increase damage in irradiated samples and to reduce the duration of their stay in the core. Damage is essentially caused by fast neutrons (E {>=} 1 MeV); we have therefore pursued the possibility of a localized increase of their level in an irradiation experiment by using a flux converter device made up of fissile material arranged according to a suitable geometry that allows the converter to receive experiments. We have studied several parameters that are influential in the increase of fast neutron flux within the converter. We have also considered the problem of the converter's cooling in the core and its effect on the operation of the reactor. We have carried out a specific neutron calculation scheme based on the modular 2D-transport code APOLLO2 using a two-level transport method. Experimental validation of the flux calculation scheme was carried out in the ISIS reactor, the mock-up of OSIRIS, by optimizing the loading of fuel elements in the core. The experimental results show that the neutron calculation scheme computes the fluxes in close agreement with the measurements especially the fast flux. This study allows us to master the essential physical parameters needed for the design of a flux converter in an MTR reactor. (author)

  17. A study on signal processing for wide-range neutron flux measurement using improved algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Hong; Lee, Yeun Hee; Lee, Jeong Yang [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-03-01

    ENFMS(ex-core neutron flux monitoring system) is divided to source range, intermediate range and power ranger in accordance with its range and the output signal measurements of that are carried out with BF{sub 3} counter, fission chamber. There have been lots of study to adopt the wide-range measurement method which use only fission chamber through the whole reactor power. To do that is needs extending the power measurement range which is covered by fission chamber to lower power range. In lower power range the effect of noise in signal is greater relatively than that of high power range. The existing signal processing method to measurement plant power range in ENFMS in which the individual neutron flux pulse can be countered as the reactor power increased is MSV (mean square voltage) measurement. In this paper the extended method from MSV (2nd moment) mode to 3rd moment to improve the discrimination between neutron signal and background noise was studied. The simulation was shown that accuracy of power measurement in ENFMS using the method mention above would be improved. 2 tabs., 10 figs., 18 refs. (Author) .new.

  18. Neutron flux parameters for k{sub 0}-NAA method at the Malaysian nuclear agency research reactor after core reconfiguration

    Energy Technology Data Exchange (ETDEWEB)

    Yavar, A.R. [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Sarmani, S. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Wood, A.K. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, Kajang, Selangor 43000 (Malaysia); Fadzil, S.M. [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Masood, Z. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, Kajang, Selangor 43000 (Malaysia); Khoo, K.S., E-mail: khoo@ukm.m [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia)

    2011-02-15

    The Malaysian Nuclear Agency (MNA) research reactor, commissioned in 1982, is a TRIGA Mark II swimming pool type reactor. When the core configuration changed in June 2009, it became essential to re-determine such neutron flux parameters as thermal to epithermal neutron flux ratio (f), epithermal neutron flux shape factor ({alpha}), thermal neutron flux ({phi}{sub th}) and epithermal neutron flux ({phi}{sub epi}) in the irradiation positions of MNA research reactor in order to guarantee accuracy in the application of k{sub 0}-neutron activation analysis (k{sub 0}-NAA).The f and {alpha} were determined using the bare bi-isotopic monitor and bare triple monitor methods, respectively; Au and Zr monitors were utilized in present study. The results for four irradiation positions are presented and discussed in the present work. The calculated values of f and {alpha} ranged from 33.49 to 47.33 and -0.07 to -0.14, respectively. The {phi}{sub th} and the {phi}{sub epi} were measured as 2.03 x 10{sup 12} (cm{sup -2} s{sup -1}) and 6.05 x 10{sup 10} (cm{sup -2} s{sup -1}) respectively. These results were compared to those of previous studies at this reactor as well as to those of reactors in other countries. The results indicate a good conformity with other findings.

  19. Visualization of crust in metallic piping through real-time neutron radiography obtained with low intensity thermal neutron flux

    Energy Technology Data Exchange (ETDEWEB)

    Luiz, Leandro C.; Crispim, Verginia R. [Nuclear Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Ferreira, Francisco J. O. [National Nuclear Energy Commission, CNEN/IEN, Division Reactors, Rio de Janeiro (Brazil)

    2017-06-15

    The presence of crust on the inner walls of metallic ducts impairs transportation because crust completely or partially hinders the passage of fluid to the processing unit and causes damage to equipment connected to the production line. Its localization is crucial. With the development of the electronic imaging system installed at the Argonauta/Nuclear Engineering Institute (IEN)/National Nuclear Energy Commission (CNEN) reactor, it became possible to visualize crust in the interior of metallic piping of small diameter using real-time neutron radiography images obtained with a low neutron flux. The obtained images showed the resistance offered by crust on the passage of water inside the pipe. No discrepancy of the flow profile at the bottom of the pipe, before the crust region, was registered. However, after the passage of liquid through the pipe, images of the disturbances of the flow were clear and discrepancies in the flow profile were steep. This shows that this technique added the assembled apparatus was efficient for the visualization of the crust and of the two-phase flows.

  20. Coupled neutronics and thermal hydraulics of high density cores for FRM II

    Energy Technology Data Exchange (ETDEWEB)

    Breitkreutz, Harald

    2011-03-04

    According to the 'Verwaltungsvereinbarung zwischen Bund und Land vom 30.5.2003' and its updating on 13.11.2010, the Forschungs-Neutronenquelle Heinz Maier-Leibnitz, Frm II, has to convert its fuel element to an uranium enrichment which is significantly lower than the current 93%, in case this is economically reasonable and doesn't impact the reactor performance immoderate. In the framework of this conversion, new calculations regarding neutronics and thermal hydraulics for the anticipated core configurations have to be made. The computational power available nowadays allows for detailed 3D calculations, on the neutronic as well as on the thermal hydraulic side. In this context, a new program system, 'X{sup 2}', was developed. It couples the Monte Carlo code McnpX, the computational fluid dynamics code Cfx and the burn-up code sequence MonteBurns. The codes were modified and extended to meet the requirements of the coupled calculation concept. To verify the new program system, highly detailed calculations for the current fuel element were made and compared to simulations and measurements that were performed in the past. The results strengthen the works performed so far and show that the original, conservative approach overestimates all critical thermal hydraulic values. Using the CFD software, effects like the impact of the combs that fix the fuel plates and the pressure drop at the edges of the fuel plates were studied in great detail for the first time. Afterwards, a number of possible new fuel elements with lower enrichment, based on disperse and monolithic UMo (uranium with 8 wt.-% Mo) were analysed. A number of straight-forward conversion scenarios was discussed, showing that a further compaction of the fuel element, an extended cycle length or an increased reactor power is needed to compensate the flux loss, which is caused by the lower enrichment. This flux loss is in excess of 7%. The discussed new fuel elements include a 50

  1. Influence of density and chemical composition of soils in the neutrons probes answer; Influencia da densidade e da composicao quimica dos solos na resposta de sondas de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Crispino, Marcos Luiz; Antonino, Antonio Celso Dantas; Dall`Olio, Attilio; Oliveira Lira, Carlos Alberto Brayner de [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear; Carneiro, Clemente J. Gusmao [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    1996-08-01

    The determination of soil humidity with neutron probes is based in the measure of the thermal neutron flux intensity and its behavior with the soil depend: soil`s chemical composition; soils physical parameters; neutrons` energetic spectrum and neutron-source detector geometry.The objective of this paper is to apply the multigroup function theory to calculate a neutron probe calibration curve utilizing representatives parameters and coefficients of soils horizons in a experimental station in Zona da Mata, Pernambuco, Brazil 2 tabs., 3 figs.

  2. Influence of neutron flux, frequency and temperature to electrical impedance of nano silica particles

    Energy Technology Data Exchange (ETDEWEB)

    Huseynov, Elchin, E-mail: hus.elchin@yahoo.com, E-mail: hus.elchin@gmail.com; Garibov, Adil; Mehdiyeva, Ravan [Institute of Radiation Problems of Azerbaijan National Academy of Sciences, AZ 1143, B.Vahabzadeh 9, Baku (Azerbaijan); Andreja, Eršte, E-mail: andreja.erste@ijs.si [Condensed Matter Physics Department, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana Slovenia (Slovenia); Rustamov, Anar, E-mail: a.rustamov@cern.ch [Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany)

    2014-11-15

    We studied electric impedance of SiO{sub 2} nanomaterial at its initial state and after being exposed to continuous neutron irradiation for up to 20 hours. In doing so we employed a flux of neutrons of 2x10{sup 13} n⋅cm{sup −2}s{sup −1} while the frequency and temperature ranges amounted to 0,09 – 2.3 MHz and 100 – 400 K correspondingly. Analysis in terms of the Cole-Cole expression revealed that with increasing irradiation period the polarization and relaxation times decrease as a result of combination of nanoparticles. Moreover, it is demonstrated that the electric conductivity of samples, on the other hand, increases with the increasing irradiation period. At low temperatures formations of clusters at three distinct states with different energies were resolved.

  3. Further investigations on the Neutron Flux Generation in a Plasma Discharge Electrolytic Cell

    CERN Document Server

    Faccini, R; Polosa, A D; Angelone, M; Castagna, E; Lecci, S; Loreti, S; Pietropaolo, A; Pillon, M; Sansovini, M; Sarto, F; Violante, V; Bedogni, R; Esposito, A

    2014-01-01

    Our recent paper on the "Search for Neutron Flux Generation in a Plasma Discharge Electrolytic Cell" [1] has as main goal the validation of the experiment in Ref.[2]. As a follow-up, Ref.[3] moves a set of objections on our procedure and presents argumentations on why the experiments should not yield the same results. We collect here additional material and calculations that contribute to understanding the observed discrepancies. Furthermore we prove that the absence of signals from Indium activation detectors reported also for the experiment of Ref.[2] is a clear indication that neutron production does not occur. [1] R.Faccini et al arXiv:1310.4749 [2] D.Cirillo et al, Key Engineering Materials 495, 104 (2012). [3] A.Widom et al. arXiv:1311.2447

  4. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.

    Science.gov (United States)

    Liu, H B; Brugger, R M; Rorer, D C; Tichler, P R; Hu, J P

    1994-10-01

    Beams of epithermal neutrons are being used in the development of boron neutron capture therapy for cancer. This report describes a design study in which 235U fission plates and moderators are used to produce an epithermal neutron beam with higher intensity and better quality than the beam currently in use at the Brookhaven Medical Research Reactor (BMRR). Monte Carlo calculations are used to predict the neutron and gamma fluxes and absorbed doses produced by the proposed design. Neutron flux measurements at the present epithermal treatment facility (ETF) were made to verify and compare with the computed results where feasible. The calculations indicate that an epithermal neutron beam produced by a fission-plate converter could have an epithermal neutron intensity of 1.2 x 10(10) n/cm2.s and a fast neutron dose per epithermal neutron of 2.8 x 10(-11) cGy.cm2/nepi plus being forward directed. This beam would be built into the beam shutter of the ETF at the BMRR. The feasibility of remodeling the facility is discussed.

  5. Neutron flux mapping of Argonauta reactor in the new configuration of its reactor core; Mapeamento do fluxo de neutrons do reator Argonauta na nova configuracao do seu nucleo

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Maria Ines Silvani; Furieri, Rosanne Cefaly de Aranda Amado [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    2000-07-01

    Whenever tasks involving the use of a nuclear reactor are carried out, e.g., radioisotope production, activation analysis, neutrongraphy, etc., it is necessary to know the magnitude of the associate neutron flux. The Argonauta reactor operating in Rio de Janeiro, at Instituto de Engenharia Nuclear - IEN/CNEN, was submitted to some modifications in its core, which made necessary to measure again its new neutronic characteristics, not only in the core itself, but also at the irradiation pads. In this type of research reactor, the neutrons are energetically distributed from values below 1 eV, to values reaching the magnitude of MeV. Therefore, depending on the kind of experiment to be conducted, it may become necessary to know the integrated neutron flux within certain energy ranges. In this work, the neutron flux for thermal and epithermal regions were determined by using the foil activation method. To accomplish this goal, two different techniques were applied. In the first technique {beta}-{gamma} gamma coincidence measurements were performed using a proportional 4{pi}{beta} gaseous detector and a NaI(Tl) scintillation detector, while in the second one, gamma spectroscopy was carried out using Hp-Ge and NaI(Tl) detectors. In both cases, the flux was computed using the FLUXO software, specially developed for this purpose. (author)

  6. Silicon detectors for the neutron flux and beam profile measurements of the n_TOF facility at CERN

    Science.gov (United States)

    Musumarra, Agatino; Cosentino, Luigi; Barbagallo, Massimo; Colonna, Nicola; Damone, Lucia; Pappalardo, Alfio; Piscopo, Massimo; Finocchiaro, Paolo

    2016-09-01

    The demand of new and high precision cross section data for neutron-induced reactions is continuously growing, driven by the requirements from several fields of fundamental physics, as well as from nuclear technology, medicine, etc. Several neutron facilities are operational worldwide, and new ones are being built. In the coming years, neutron beam intensities never reached up to now will be available, thus opening new scientific and technological frontiers. Among existing facilities, n_TOF at CERN provides a high intensity pulsed neutron beam in a wide energy range (thermal to GeV) and with an extremely competitive energy resolution that also allows spectroscopy studies. In order to ensure high quality measurements, the neutron beams must be fully characterized as a function of the neutron energy, in particular by measuring the neutron flux and the beam transverse profile with high accuracy. In 2014 a new experimental area (EAR2), with a much higher neutron flux, has been completed and commissioned at n_TOF. In order to characterize the neutron beam in the newly built experimental area at n_TOF, two suitable diagnostics devices have been built by the INFN-LNS group. Both are based on silicon detectors coupled with 6Li converter foils, in particular Single Pad for the flux measurement and Position Sensitive (strips and others) for the beam profile. The devices have been completely characterized with radioactive sources and with the n_TOF neutron beam, fulfilling all the specifications and hence becoming immediately operational. The performances of these devices and their high versatility, in terms of neutron beam intensity, make them suitable to be used in both n_TOF experimental areas. A description of the devices and the main results obtained so far will be presented.

  7. Neutron Flux Measurements in an ICRF Mode Conversion Regime Heating Plasmas on HT-7

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Ling; WAN Bao-Nian; ZHONG Guo-Qiang; HU Li-Qun; LIN Shi-Yao; ZHANG Xin-Jun; ZANG Qing

    2011-01-01

    Ion cyclotron resonance heating experiments using antenna, in the high Reid side (HFS) have been carried out on HT-7 in different target plasmas. Unlike a standard-mode conversion heating scheme with dominant electron heating, anomalous ion heating and DD neutron fluxes higher than those estimated from thermal ions were observed in the present experiments with the ion-ion hybrid resonant layer near the center of plasma. The features of ion cyclotron range frequency (ICRF) antenna in HFS and experiments suggest that this is most probably due to the nonlinear 3/2 harmonic deuterium heating by the mode-converted ion Bernstein wave, which could produce a high energy tail on ion energy distribution.%Ion cyclotron resonance heating experiments using antenna in the high field side (HFS) have been carried out on HT-7 in different target plasmas.Unlike a standard-mode conversion heating scheme with dominant electron heating,anomalous ion heating and DD neutron fluxes higher than those estimated from thermal ions were observed in the present experiments with the ion-ion hybrid resonant layer near the center of plasma.The features of ion cyclotron range frequency (ICRF) antenna in HFS and experiments suggest that this is most probably due to the nonlinear 3/2 harmonic deuterium heating by the mode-converted ion Bernstein wave,which could produce a high energy tail on ion energy distribution.Neutron diagnostics have been applied in ion cyclotron range frequency (ICRF) plasmas on HT-7 for measurements of the fusion reaction product,which give a direct measure of the ICRF heating.The neutron emission is recorded by a 3He proportional counter,whose sensitive size is φ30 mm × 300 mm,gas pressure is 49.34 kPa and the responsibility to thermal neutrons is 133 cps/n.cm-2.s-1.It exploits large reaction cross sections and is therefore embedded in polythene moderators to thermalize the incident neutrons.

  8. The symmetry energy at subnuclear densities and nuclei in neutron star crusts

    CERN Document Server

    Oyamatsu, K; Iida, Kei; Oyamatsu, Kazuhiro

    2006-01-01

    We examine how the properties of inhomogeneous nuclear matter at subnuclear densities depend on the density dependence of the symmetry energy. Using a macroscopic nuclear model we calculate the size and shape of nuclei in neutron star matter at zero temperature in a way dependent on the density dependence of the symmetry energy. We find that for smaller symmetry energy at subnuclear densities, corresponding to larger density symmetry coefficient L, the charge number of nuclei is smaller, and the critical density at which matter with nuclei or bubbles becomes uniform is lower. The decrease in the charge number is associated with the dependence of the surface tension on the nuclear density and the density of a sea of neutrons, while the decrease in the critical density can be generally understood in terms of proton clustering instability in uniform matter.

  9. Effect of neutron flux on the frequency dependencies of electrical conductivity of silicon nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huseynov, E.; Garibli, A., E-mail: elchin.huse@yahoo.com [National Nuclear Research Center, Department of Nanotechnology and Radiation Material Science, 1073, Inshaatchilar pr. 4, Baku (Azerbaijan)

    2016-11-01

    It has been reviewed the frequency dependencies of electrical conductivity of nanoparticles affected by neutron flux at different times and initial state, at various constant temperatures such as 100, 200, 300 and 400 K. Measurements have been carried out at each temperature at the different 97 values of frequency in the 1 Hz - 1 MHz range. From interdependence between real and imaginary parts of electrical conductivity it has been determined the type of conductivity. Moreover, in the work it is given the mechanism of electrical conductivity according to the obtained results. (Author)

  10. A High-Speed Baseline Restorer for Neutron Flux Detection in ITER

    Institute of Scientific and Technical Information of China (English)

    曹宏睿; 李世平; 徐修峰; 袁国梁; 杨青巍; 阴泽杰

    2012-01-01

    A neutron flux monitor .(NFM) is a key diagnostic system in the International Ther- monuclear Experimental Reactor (ITER), and may provide readings of a series of important parameters in fusion reaction processes. As a valuable part of the main electronics system of the NFM, the high-speed baseline restorer we designed is an important signal conversion plug-in which can restore the input signal baseline offset to a zero level, while keeping the output pulse signal waveform from the preamplifier basically unchanged.

  11. Flux lattice behavior in high- T sub c materials studied by neutron depolarization

    Energy Technology Data Exchange (ETDEWEB)

    Crow, M.L.; Goyette, R.J.; Nunes, A.C.; Pickart, S.J. (University of Rhode Island, Kingston, Rhode Island 02881 (USA)); McGuire, T.R.; Shinde, S.; Shaw, T.M. (IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (USA))

    1990-05-01

    The depolarization of a neutron beam passing through a sample of the high-{ital T}{sub {ital c}} superconductor YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} has been measured as a function of temperature and applied field. The difference in behavior between field-cooled and zero-field-cooled states, the observation of hysteresis correlated with {ital H}{sub {ital c}1}, and the disappearance of the effect near 55 K (below {ital T}{sub {ital c}}) suggest an explanation in terms of vortex line lattice formation with possible connection to recently proposed flux line entanglement and melting.

  12. A neutron study of the flux lattice in the superconductor CeRu{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Huxley, A. [CEA Centre d`Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee; Cubitt, R. [Institut Max von Laue -Paul Langevin, 38 - Grenoble (France); McPaul, D. [Warwick Univ., Coventry (United Kingdom). Dept. of Physics; Forgan, E. [Birmingham Univ. (United Kingdom). School of Physics and Space Research; Nutley, M. [Birmingham Univ. (United Kingdom). School of Physics and Space Research; Mook, H. [Oak Ridge National Lab., TN (United States). Solid State Div.; Yethiraj, M. [Oak Ridge National Lab., TN (United States). Solid State Div.; Lejay, P. [CEA Centre d`Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee; Caplan, D. [CEA Centre d`Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee; Penisson, J.M. [CEA Centre d`Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee

    1996-07-01

    Small-angle neutron diffraction measurements from the flux lattice in a single crystal of the cubic Laves` phase superconductor, CeRu{sub 2}, are reported. The mixed state is described in terms of aligned rigid bundles of vortices. The bundle diameters decrease above 1/2H{sub c2} (consistent with collective weak pinning theory) and become comparable with the penetration length at a field at which a `peak effect` is seen in magnetisation measurements. A clear memory of field histories that pass through the `peak effect` region is also found; however, some of the induced disorder can be removed by subsequently cycling the field. (orig.).

  13. Experimental energy-density flux characterization of ultrashort laser pulse filaments.

    Science.gov (United States)

    Faccio, Daniele; Lotti, Antonio; Matijosius, Aidas; Bragheri, Francesca; Degiorgio, Vittorio; Couairon, Arnaud; Di Trapani, Paolo

    2009-05-11

    Visualization of the energy density flux gives a unique insight into the propagation properties of complex ultrashort pulses. This analysis, formerly relegated to numerical investigations, is here shown to be an invaluable experimental diagnostic tool. By retrieving the spatio-temporal amplitude and phase we experimentally obtain the energy density flux within complex ultrashort pulses generated by filamentation in a nonlinear Kerr medium.

  14. Sensitivity of the Meridional Overturning Circulation to the Pattern of the Surface Density Flux

    Science.gov (United States)

    2010-09-01

    a better prognosis of anthropogenic climate change . Figure 1. Classical representation of the global thermohaline circulation and oceanic...modeling efforts and long-term strategy related to climate change . 15. NUMBER OF PAGES 105 14. SUBJECT TERMS Meridional Overturning Circulation ... Thermohaline Circulation , Thermocline, Residual-Mean Theory, Air-Sea Fluxes, Surface Density Flux , Mixed-Layer Density, Water-mass Transformation

  15. Density effect of the neutron halo nucleus induced reactions in intermediate energy heavy ion collisions

    Institute of Scientific and Technical Information of China (English)

    CAO Xi-Guang; CHEN Jin-Gen; MA Yu-Gang; FANG De-Qing; TIAN Wen-Dong; YAN Ting-Zhi; CAI Xiang-Zhou

    2009-01-01

    Using an isospin-dependent quantum molecular dynamics (IQMD) model, we study the 15C induced reactions from 30-120 MeV/nucleon systematically. Here the valence neutron of 15C is assigned at both 1d5/2 and 2s1/2 states respectively in order to study the density effect of reaction mechanism. It is. believed that the existent neutron halo structure at the 2s1/2 state of 15C will affect the light particle emission evidently.In our calculation, the different density distributions of 15C at two states are calculated by relativistic mean field (RMF) model and introduced in the initiation of IQMD model, respectively. It is found that some observables such as emission fragmentation multiplicity, emission neutron/proton ratio and emission neutrons'kinetic energy spectrum are sensitive to the initial density distribution.

  16. Proton and neutron density distributions at supranormal density in low- and medium-energy heavy-ion collisions

    Science.gov (United States)

    Stone, J. R.; Danielewicz, P.; Iwata, Y.

    2017-07-01

    Background: The distribution of protons and neutrons in the matter created in heavy-ion collisions is one of the main points of interest for the collision physics, especially at supranormal densities. These distributions are the basis for predictions of the density dependence of the symmetry energy and the density range that can be achieved in a given colliding system. We report results of the first systematic simulation of proton and neutron density distributions in central heavy-ion collisions within the beam energy range of Ebeam≤800 MeV /nucl . The symmetric 40Ca+40Ca , 48Ca+48Ca , 100Sn+100Sn , and 120Sn+120Sn and asymmetric 40Ca+48Ca and 100Sn+120Sn systems were chosen for the simulations. Purpose: We simulate development of proton and neutron densities and asymmetries as a function of initial state, beam energy, and system size in the selected collisions in order to guide further experiments pursuing the density dependence of the symmetry energy. Methods: The Boltzmann-Uhlenbeck-Uehling (pBUU) transport model with four empirical models for the density dependence of the symmetry energy was employed. Results of simulations using pure Vlasov dynamics were added for completeness. In addition, the time-dependent Hartree-Fock (TDHF) model, with the SV-bas Skyrme interaction, was used to model the heavy-ion collisions at Ebeam≤40 MeV /nucl . Maximum proton and neutron densities ρpmax and ρnmax, reached in the course of a collision, were determined from the time evolution of ρp and ρn. Results: The highest total densities predicted at Ebeam=800 MeV /nucl . were of the order of ˜2.5 ρ0 (ρ0=0.16 fm-3 ) for both Sn and Ca systems. They were found to be only weakly dependent on the initial conditions, beam energy, system size, and a model of the symmetry energy. The proton-neutron asymmetry δ =(ρnmax-ρpmax) /(ρnmax+ρpmax) at maximum density does depend, though, on these parameters. The highest value of δ found in all systems and at all investigated beam

  17. Distribution of Magnetic Flux Density in Soft-Contact EMCC Rectangular Mold

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lin-tao; WANG En-gang; DENG An-yuan; HE Ji-cheng

    2006-01-01

    The distribution of the magnetic flux density in a soft-contact electromagnetic continuous casting (EMCC) rectangular mold was investigated. The experimental results show that with an increase in electric power, the magnetic flux density increases. The position where the maximum magnetic flux density appears will shift up when the coil moves to the top of the mold. At the same time, the maximum magnetic flux density will increase and the effective acting range of electromagnetic pressure will widen. As a result, in practice, the coil should be placed near the top part of the mold. The meniscus should be controlled near the top part of the coil, as this not only remarkably improves the billet surface quality but also saves energy. With the same electric power input, the higher the frequency, the lower the magnetic flux density.

  18. The study of aeroball system for measuring 3D neutron flux distribution in reactor core

    Institute of Scientific and Technical Information of China (English)

    LuoZheng-Pei; LiFu; 等

    1997-01-01

    Aeroball system is attractive in several aspects because it can easily transport the map of neutron flux distribution to be measured from incore to outside of a reactor vessel.However,before the aeroball system is put to practical use in the heating reactor.there are four topics that have to be further studied.They are the stability of the activated positions,enhancement of signal/noise(S/N)ratio,distributed control and data-acquisition system and on-lin nbeutron flux distribution reconstruction.Besides describing the rasons for them,this paper gives out the theory,concept and solution about the first two topics and it is helptul to give the possibility to enhance the reactor-power.

  19. Calibration system for measuring the radon flux density.

    Science.gov (United States)

    Onishchenko, A; Zhukovsky, M; Bastrikov, V

    2015-06-01

    The measurement of radon flux from soil surface is the useful tool for the assessment of radon-prone areas and monitoring of radon releases from uranium mining and milling residues. The accumulation chambers with hollow headspace and chambers with activated charcoal are the most used devices for these purposes. Systematic errors of the measurements strongly depend on the geometry of the chamber and diffusion coefficient of the radon in soil. The calibration system for the attestation of devices for radon flux measurements was constructed. The calibration measurements of accumulation chambers and chambers with activated charcoal were conducted. The good agreement between the results of 2D modelling of radon flux and measurements results was observed. It was demonstrated that reliable measurements of radon flux can be obtained by chambers with activated charcoal (equivalent volume ~75 l) or by accumulation chambers with hollow headspace of ~7-10 l and volume/surface ratio (height) of >15 cm.

  20. Performance testing of the neutron flux monitors from 10keV to 1MeV developed for BNCT: A preliminary study.

    Science.gov (United States)

    Guan, Xingcai; Manabe, Masanobu; Tamaki, Shingo; Sato, Fuminobu; Murata, Isao; Wang, Tieshan

    2017-07-01

    The neutron flux monitors from 10keV to 1MeV designed for boron neutron capture therapy (BNCT) were experimentally tested with prototype monitors in an appropriate neutron field produced at the intense deuterium-tritium neutron source facility OKTAVIAN of Osaka University, Japan. The experimental test results and related analysis indicated that the performance of the monitors was good and the neutron fluxes from 10keV to 1MeV of practical BNCT neutron sources can be measured within 10% by the monitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Polarized neutron imaging and three-dimensional calculation of magnetic flux trapping in bulk of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Treimer, Wolfgang; Ebrahimi, Omid; Karakas, Nursel; Prozorov, Ruslan

    2012-05-17

    Polarized neutron radiography was used to study the three-dimensional magnetic flux distribution inside of single-crystal and polycrystalline Pb cylinders with large (cm3) volume and virtually zero demagnetization. Experiments with single crystals being in the Meissner phase (Tflux was nearly constant. The expelled field outside of the samples followed 1/R dependence. These measurements provided a unique and detailed picture of macroscopic superconducting samples, confirming the existence of both uniform bulk Meissner expulsion in single crystals and bulk flux trapping with nearly-Bean-model profiles due to flux pinning in polycrystalline samples.

  2. Flux pinning and flux creep in neutron irradiated (Y,Gd)Ba sub 2 Cu sub 3 O sub x

    Energy Technology Data Exchange (ETDEWEB)

    Willis, J.O. (Los Alamos Scientific Lab., NM (United States) Superconductivity Research Lab., Tokyo (Japan)); Sickafus, K.E.; Peterson, D.E. (Los Alamos National Lab., NM (United States))

    1991-01-01

    Powder samples of Y{sub 0.9}Gd{sub 0.1}Ba{sub 2}Cu{sub 3}O{sub x} were irradiated with mixed spectrum ({approximately}50% E<0.5eV, 50% E>0.5eV) neutrons with most interactions expected to occur at the Gd site. As a function of fluence the samples showed increased ({approximately}X3-X8) magnetically measured critical current densities J{sub c} at low fluences, falling off at the highest values. An analysis of magnetic relaxation data, which allows for a nonlinear pinning potential U vs J relationship, revealed substantial increases in U at constant J, indicating that the irradiation introduced more effective pinning centers than those originally present. 13 refs., 3 figs., 1 tab.

  3. Development of a computer code for neutronic calculations of a hexagonal lattice of nuclear reactor using the flux expansion nodal method

    Directory of Open Access Journals (Sweden)

    Mohammadnia Meysam

    2013-01-01

    Full Text Available The flux expansion nodal method is a suitable method for considering nodalization effects in node corners. In this paper we used this method to solve the intra-nodal flux analytically. Then, a computer code, named MA.CODE, was developed using the C# programming language. The code is capable of reactor core calculations for hexagonal geometries in two energy groups and three dimensions. The MA.CODE imports two group constants from the WIMS code and calculates the effective multiplication factor, thermal and fast neutron flux in three dimensions, power density, reactivity, and the power peaking factor of each fuel assembly. Some of the code's merits are low calculation time and a user friendly interface. MA.CODE results showed good agreement with IAEA benchmarks, i. e. AER-FCM-101 and AER-FCM-001.

  4. Measuring neutron fluences and gamma/x ray fluxes with CCD cameras

    Science.gov (United States)

    Yates, G. J.; Smith, G. W.; Zagarino, P.; Thomas, M. C.

    The capability to measure bursts of neutron fluences and gamma/x-ray fluxes directly with charge coupled device (CCD) cameras while being able to distinguish between the video signals produced by these two types of radiation, even when they occur simultaneously, has been demonstrated. Volume and area measurements of transient radiation-induced pixel charge in English Electric Valve (EEV) Frame Transfer (FT) charge coupled devices (CCD's) from irradiation with pulsed neutrons (14 MeV) and Bremsstrahlung photons (4-12 MeV endpoint) are utilized to calibrate the devices as radiometric imaging sensors capable of distinguishing between the two types of ionizing radiation. Measurements indicate approx. = .05 V/rad responsivity with greater than or = 1 rad required for saturation from photon irradiation. Neutron-generated localized charge centers or 'peaks' binned by area and amplitude as functions of fluence in the 105 to 107 n/cc range indicate smearing over approx. 1 to 10 percent of the CCD array with charge per pixel ranging between noise and saturation levels.

  5. Neutron and Gamma Fluxes and dpa Rates for HFIR Vessel Beltline Region (Present and Upgrade Designs)

    Energy Technology Data Exchange (ETDEWEB)

    Blakeman, E.D.

    2001-01-11

    The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) is currently undergoing an upgrading program, a part of which is to increase the diameters of two of the four radiation beam tubes (HB-2 and HB-4). This change will cause increased neutron and gamma radiation dose rates at and near locations where the tubes penetrate the vessel wall. Consequently, the rate of radiation damage to the reactor vessel wall at those locations will also increase. This report summarizes calculations of the neutron and gamma flux (particles/cm{sup 2}/s) and the dpa rate (displacements/atom/s) in iron at critical locations in the vessel wall. The calculated dpa rate values have been recently incorporated into statistical damage evaluation codes used in the assessment of radiation induced embrittlement. Calculations were performed using models based on the discrete ordinates methodology and utilizing ORNL two-dimensional and three-dimensional discrete ordinates codes. Models for present and proposed beam tube designs are shown and their results are compared. Results show that for HB-2, the dpa rate in the vessel wall where the tube penetrates the vessel will be increased by {approximately}10 by the proposed enlargement. For HB-4, a smaller increase of {approximately}2.6 is calculated.

  6. Study on the impact of pair production interaction on D-T controllable neutron density logging.

    Science.gov (United States)

    Yu, Huawei; Zhang, Li; Hou, Boran

    2016-05-01

    This paper considers the effect of pair production on the precision of D-T controllable neutron source density logging. Firstly, the principle of the traditional density logging and pulsed neutron density logging are analyzed and then gamma ray cross sections as a function of energy for various minerals are compared. In addition, the advantageous areas of Compton scattering and pair production interactions on high-energy gamma ray pulse height spectrum and the errors of a controllable source density measurement are studied using a Monte Carlo simulation method. The results indicate that density logging mainly utilizes the Compton scattering of gamma rays, while the attenuation of neutron induced gamma rays and the precision of neutron gamma density measurements are affected by pair production interactions, particularly in the gamma rays with energy higher than 2MeV. By selecting 0.2-2MeV energy range and performing proper lithology correction, the effect of pair production can be eliminated effectively and the density measurement error can be rendered close to the precision of chemical source density logging.

  7. An investigation of the neutron flux in bone-fluorine phantoms comparing accelerator based in vivo neutron activation analysis and FLUKA simulation data

    Energy Technology Data Exchange (ETDEWEB)

    Mostafaei, F.; McNeill, F.E.; Chettle, D.R.; Matysiak, W.; Bhatia, C.; Prestwich, W.V.

    2015-01-01

    We have tested the Monte Carlo code FLUKA for its ability to assist in the development of a better system for the in vivo measurement of fluorine. We used it to create a neutron flux map of the inside of the in vivo neutron activation analysis irradiation cavity at the McMaster Accelerator Laboratory. The cavity is used in a system that has been developed for assessment of fluorine levels in the human hand. This study was undertaken to (i) assess the FLUKA code, (ii) find the optimal hand position inside the cavity and assess the effects on precision of a hand being in a non-optimal position and (iii) to determine the best location for our γ-ray detection system within the accelerator beam hall. Simulation estimates were performed using FLUKA. Experimental measurements of the neutron flux were performed using Mn wires. The activation of the wires was measured inside (1) an empty bottle, (2) a bottle containing water, (3) a bottle covered with cadmium and (4) a dry powder-based fluorine phantom. FLUKA was used to simulate the irradiation cavity, and used to estimate the neutron flux in different positions both inside, and external to, the cavity. The experimental results were found to be consistent with the Monte Carlo simulated neutron flux. Both experiment and simulation showed that there is an optimal position in the cavity, but that the effect on the thermal flux of a hand being in a non-optimal position is less than 20%, which will result in a less than 10% effect on the measurement precision. FLUKA appears to be a code that can be useful for modeling of this type of experimental system.

  8. Neutronic density perturbation by probes; Pertubacion de densidades neutronicas por sondas

    Energy Technology Data Exchange (ETDEWEB)

    Vigon, M. A.; Diez, L.

    1956-07-01

    The introduction of absorbent materials of neutrons in diffuser media, produces local disturbances of neutronic density. The disturbance depends especially on the nature and size of the absorbent. Approximated equations which relates te disturbance and the distance to the absorbent in the case of thin disks have been drawn. The experimental comprobation has been carried out in two especial cases. In both cases the experimental results are in agreement with the calculated values from these equations. (Author)

  9. Underground low flux neutron background measurements in LSM using a large volume (1m3) spherical proportional counter

    Science.gov (United States)

    Savvidis, I.; Giomataris, I.; Bougamont, E.; Irastorza, I.; Aune, S.; Chapelier, M.; Charvin, P. H.; Colas, P.; Derre, J.; Ferrer, E.; Gerbier, G.; Gros, M.; Mangier, P.; Navick, X. F.; Salin, P.; Vergados, J. D.; Zampalo, M.

    2010-01-01

    A large volume (1m3) spherical proportional counter has been developed at CEA/Saclay, for low flux neutron measurements. The high voltage is applied to a small sphere 15mm in diameter, located in the center of the counter and the wall of the counter is grounded. Neutrons can be measured successfully, with high sensitivity, using 3He gas in the detector. The proton and tritium energy deposition in the drift gaseous volume, from the reaction 3He(n,p)3H, can provide the neutron spectra from thermal neutrons up to several MeV. The detector has been installed in the underground laboratory in Modane (LSM) to measure the neutron background. The sphere has been has been filled with gas mixture of Ar + 2% CH4 +3gr He-3, at 275 mbar. The thermal neutron peak is well separated from the cosmic ray and gamma background, permitting of neutron flux calculation. Other potential applications requiring large volume of about 10 m in radius are described in detail in reference

  10. DEVELOPMENT OF THE CONTROL METHODOLOGY OF THE GIANT MAGNETOSTRICTIVE ACTUATOR BASED ON MAGNETIC FLUX DENSITY

    Institute of Scientific and Technical Information of China (English)

    Jia Zhenyuan; Yang Xing; Shi Chun; Guo Dongming

    2003-01-01

    According to the principle of the magnetostriction generating mechanism, the control model of giant magnetostriction material based on magnetic field and the control method with magnetic flux density are developed. Furthermore, this control method is used to develop a giant magnetostrictive micro-displacement actuator (GMA) and its driving system. Two control methods whose control variables are current intensity and magnetic flux density are compared with each other by experimental studies. Finally, effective methods on improving the linearity and control precision of micro-displacement actuator and reducing the hysteresis based on the controlling magnetic flux density are obtained.

  11. Sourceless formation evaluation. An LWD solution providing density and neutron measurements without the use of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, R.; Reichel, N. [Schlumberger, Sungai Buloh (Malaysia)

    2013-08-01

    For many years the industry has been searching for a way to eliminate the logistical difficulties and risk associated with deployment of radioisotopes for formation evaluation. The traditional gamma-gamma density (GGD) measurement uses the scattering of 662-keV gamma rays from a 137Cs radioisotopic source, with a 30.17-year half-life, to determine formation density. The traditional neutron measurement uses an Am-Be source emitting neutrons with an energy around 4 MeV, with a half-life of 432 years. Both these radioisotopic sources pose health, security, and environmental risks. Pulsed-neutron generators have been used in the industry for several decades in wireline tools and more recently in logging-while-drilling tools. These generators produce 14-MeV neutrons, many of which interact with the nuclei in the formation. Elastic collisions allow a neutron porosity measurement to be derived, which has been available to the industry since 2005. Inelastic interactions are typically followed by the emission of a variety of high-energy gamma rays. Similar to the case of the GGD measurement, the transport and attenuation of these gamma rays is a strong function of the formation density. However, the gamma-ray source is now distributed over a volume within the formation, where gamma rays have been induced by neutron interactions and the source can no longer be considered to be a point as in the case of a radioisotopic source. In addition, the extent of the induced source region depends on the transport of the fast neutrons from the source to the point of gamma-ray production. Even though the physics is more complex, it is possible to measure the formation density if the fast neutron transport is taken into account when deriving the density answer. This paper briefly reviews the physics underlying the sourceless neutron porosity and recently introduced neutron-gamma density (SNGD) measurement, demonstrates how they can be used in traditional workflows and illustrates their

  12. Comparative assessment of surface fluxes from different sources using probability density distributions

    Science.gov (United States)

    Gulev, Sergey; Tilinina, Natalia; Belyaev, Konstantin

    2015-04-01

    Surface turbulent heat fluxes from modern era and first generation reanalyses (NCEP-DOE, ERA-Interim, MERRA NCEP-CFSR, JRA) as well as from satellite products (SEAFLUX, IFREMER, HOAPS) were intercompared using framework of probability distributions for sensible and latent heat fluxes. For approximation of probability distributions and estimation of extreme flux values Modified Fisher-Tippett (MFT) distribution has been used. Besides mean flux values, consideration is given to the comparative analysis of (i) parameters of the MFT probability density functions (scale and location), (ii) extreme flux values corresponding high order percentiles of fluxes (e.g. 99th and higher) and (iii) fractional contribution of extreme surface flux events in the total surface turbulent fluxes integrated over months and seasons. The latter was estimated using both fractional distribution derived from MFT and empirical estimates based upon occurrence histograms. The strongest differences in the parameters of probability distributions of surface fluxes and extreme surface flux values between different reanalyses are found in the western boundary current extension regions and high latitudes, while the highest differences in the fractional contributions of surface fluxes may occur in mid ocean regions being closely associated with atmospheric synoptic dynamics. Generally, satellite surface flux products demonstrate relatively stronger extreme fluxes compared to reanalyses, even in the Northern Hemisphere midlatitudes where data assimilation input in reanalyses is quite dense compared to the Southern Ocean regions.

  13. Accuracy and borehole influences in pulsed neutron gamma density logging while drilling

    Energy Technology Data Exchange (ETDEWEB)

    Yu Huawei [College of Geo-Resources and Information, China University of Petroleum, Qingdao, Shandong 266555 (China); Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Sun Jianmeng [College of Geo-Resources and Information, China University of Petroleum, Qingdao, Shandong 266555 (China); Wang Jiaxin [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Gardner, Robin P., E-mail: gardner@ncsu.edu [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2011-09-15

    A new pulsed neutron gamma density (NGD) logging has been developed to replace radioactive chemical sources in oil logging tools. The present paper describes studies of near and far density measurement accuracy of NGD logging at two spacings and the borehole influences using Monte-Carlo simulation. The results show that the accuracy of near density is not as good as far density. It is difficult to correct this for borehole effects by using conventional methods because both near and far density measurement is significantly sensitive to standoffs and mud properties. - Highlights: > Monte Carlo evaluation of pulsed neutron gamma-ray density tools. > Results indicate sensitivity of the tool to standoff and mudcake properties. > Accuracy of far spaced detector is better than near spaced.

  14. Influence of particle flux density and temperature on surface modifications of tungsten and deuterium retention

    Energy Technology Data Exchange (ETDEWEB)

    Buzi, Luxherta, E-mail: l.buzi@fz-juelich.de [Ghent University, Department of Applied Physics, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany); Université de Lorraine, Institut Jean Lamour, CNRS UMR 7198, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); Temmerman, Greg De [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Unterberg, Bernhard; Reinhart, Michael; Litnovsky, Andrey; Philipps, Volker [Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany); Oost, Guido Van [Ghent University, Department of Applied Physics, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Möller, Sören [Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany)

    2014-12-15

    Systematic study of deuterium irradiation effects on tungsten was done under ITER – relevant high particle flux density, scanning a broad surface temperature range. Polycrystalline ITER – like grade tungsten samples were exposed in linear plasma devices to two different ranges of deuterium ion flux densities (high: 3.5–7 · 10{sup 23} D{sup +}/m{sup 2} s and low: 9 · 10{sup 21} D{sup +}/m{sup 2} s). Particle fluence and ion energy, respectively 10{sup 26} D{sup +}/m{sup 2} and ∼38 eV were kept constant in all cases. The experiments were performed at three different surface temperatures 530 K, 630 K and 870 K. Experimental results concerning the deuterium retention and surface modifications of low flux exposure confirmed previous investigations. At temperatures 530 K and 630 K, deuterium retention was higher at lower flux density due to the longer exposure time (steady state plasma operation) and a consequently deeper diffusion range. At 870 K, deuterium retention was found to be higher at high flux density according to the thermal desorption spectroscopy (TDS) measurements. While blisters were completely absent at low flux density, small blisters of about 40–50 nm were formed at high flux density exposure. At the given conditions, a relation between deuterium retention and blister formation has been found which has to be considered in addition to deuterium trapping in defects populated by diffusion.

  15. Multispecies Density and Temperature Gradient Dependence of Quasilinear Particle and Energy Fluxes

    Energy Technology Data Exchange (ETDEWEB)

    G. Rewoldt; R.V. Budny; W.M. Tang

    2004-08-09

    The variations of the normalized quasilinear particle and energy fluxes with artificial changes in the density and temperature gradients, as well as the variations of the linear growth rates and real frequencies, for ion temperature gradient and trapped-electron modes, are calculated. The quasilinear fluxes are normalized to the total energy flux, summed over all species. Here, realistic cases for tokamaks and spherical torii are considered which have two impurity species. For situations where there are substantial changes in the normalized fluxes, the ''diffusive approximation,'' in which the normalized fluxes are taken to be linear in the gradients, is seen to be inaccurate. Even in the case of small artificial changes in density or temperature gradients, changes in the fluxes of different species (''off-diagonal'') generally are significant, or even dominant, compared to those for the same species (''diagonal'').

  16. A Re-examination of Density Effects in Eddy Covariance Measurements of CO2 Fluxes

    Institute of Scientific and Technical Information of China (English)

    Heping LIU

    2009-01-01

    Corrections of density effects resulting from air-parcel expansion/compression are important in interpreting eddy covariance fluxes of water vapor and CO2 when open-path systems are used. To account for these effects, mean vertical velocity and perturbation of the density of dry air are two critical parameters in treating those physical processes responsible for density variations. Based on various underlying assumptions, different studies have obtained different formulas for the mean vertical velocity and perturbation of the density of dry air, leading to a number of approaches to correct density effects. In this study, we re-examine physical processes related to different assumptions that are made to formulate the density effects. Specifically, we re-examine the assumptions of a zero dry air flux and a zero moist air flux in the surface layer, used for treating density variations, and their implications for correcting density effects. It is found that physical processes in relation to the assumption of a zero dry air flux account for the influence of dry air expansion/compression on density variations. Meanwhile, physical processes in relation to the assumption of a zero moist air flux account for the influence of moist air expansion/compression on density variations. In this study, we also re-examine mixing ratio issues. Our results indicate that the assumption of a zero dry air flux favors the use of the mixing ratio relative to dry air, while the assumption of a zero moist air flux favors the use of the mixing ratio relative to the total moist air. Additionally, we compare different formula for the mean vertical velocity, generated by air-parcel expansion/compression, and for density effect corrections using eddy covariance data measured over three boreal ecosystems.

  17. A novel method for detecting neutrons using low density high porosity aerogel and saturated foam

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Kyle A., E-mail: knelson1@ksu.edu [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Neihart, James L.; Riedel, Todd A.; Schmidt, Aaron J.; McGregor, Douglas S. [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)

    2012-09-11

    As a result of the recent shortage of {sup 3}He for neutron detection, several new detectors have been proposed as viable alternatives. Thin-film coated diodes and boron-lined proportional counters are suggested options, but both suffer from the 'wall-effect', where only one interaction product can be measured per event. The 'wall-effect' greatly reduces the neutron detection efficiency of the device. A new method is presented using low-density high-porosity materials where both reaction products can escape the absorber and contribute to a single event. Measuring both reaction products simultaneously greatly increases the detection efficiency of the device. Experimentally obtained pulse-height spectra from saturated foam and borosilicate aerogel detectors are presented. Aerogel is a low-density solid, typically less than 50 mg/cm{sup 3}, and can be developed with {sup 10}B in the structure. The thermal neutron response pulse-height spectrum from borosilicate aerogel is presented. Additionally, polyurethane foam, another low-density high-porosity material, was saturated with LiF and B{sub 2}O{sub 3} to levels greater than 20 percent by weight and tested as a neutron detection medium. The foam saturated with 4.5 percent {sup 6}LiF was cut into 10 sheets, each 2 mm thick, and a neutron response pulse-height spectrum was collected. The thermal neutron detection efficiency was measured to be 7.3 percent, and the neutron to gamma-ray rejection ratio, acquired using a {sup 137}Cs gamma-ray source, was calculated to be 1.71 Multiplication-Sign 10{sup 6}. Theoretical calculations also show that neutron detection efficiencies above 60 percent can be easily achieved using enriched {sup 6}LiF foam at 20 percent or higher saturation levels.

  18. Determination flux in the Reactor JEN-1; Medida de flujos de neutrones en el nucleo del Reactor JEN-1

    Energy Technology Data Exchange (ETDEWEB)

    Manas Diaz, L.; Montes Ponce de leon, J.

    1960-07-01

    This report summarized several irradiations that have been made to determine the neutron flux distributions in the core of the JEN-1 reactor. Gold foils of 380 {mu} gr and Mn-Ni (12% de Ni) of 30 mg have been employed. the epithermal flux has been determined by mean of the Cd radio. The resonance integral values given by Macklin and Pomerance have been used. (Author) 9 refs.

  19. Progress in the development of the neutron flux monitoring system of the French GEN-IV SFR: simulations and experimental validations [ANIMMA--2015-IO-98

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, C.; Filliatre, P.; De Izarra, G. [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance, (France); Elter, Zs.; Pazsit, I. [Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Goteborg, (Sweden); Verma, V.; Hellesen, C.; Jacobsson, S. [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala, (Sweden); Hamrita, H.; Bakkali, M. [CEA, DRT, LIST, Sensors and Electronic Architecture Laboratory, Saclay, F-91191 Gif Sur Yvette, (France); Chapoutier, N.; Scholer, A-C.; Verrier, D. [AREVA NP, 10 rue Juliette Recamier F-69456 Lyon, (France); Cantonnet, B.; Nappe, J-C. [PHONIS France S.A.S, Nuclear Instrumentation, Avenue Roger Roncier, B.P. 520, F-19106 Brive Cedex, (France); Molinie, P.; Dessante, P.; Hanna, R.; Kirkpatrick, M.; Odic, E. [Supelec, Department of Power and Energy System, F-91192 Gif Sur Yvette, (France); Jadot, F. [CEA, DEN, DER, ASTRID Project Group, Cadarache, F-13108 Saint-Paul-lez-Durance, (France)

    2015-07-01

    The neutron flux monitoring system of the French GEN-IV sodium-cooled fast reactor will rely on high temperature fission chambers installed in the reactor vessel and capable of operating over a wide-range neutron flux. The definition of such a system is presented and the technological solutions are justified with the use of simulation and experimental results. (authors)

  20. Influence of particle flux density and temperature on surface modifications of tungsten and deuterium retention

    NARCIS (Netherlands)

    Buzi, L.; De Temmerman, G.; Unterberg, B.; M. Reinhart,; Litnovsky, A.; Philipps, V.; Van Oost, G.; Möller, S.

    2014-01-01

    Systematic study of deuterium irradiation effects on tungsten was done under ITER - relevant high particle flux density, scanning a broad surface temperature range. Polycrystalline ITER - like grade tungsten samples were exposed in linear plasma devices to two different ranges of deuterium ion flux

  1. [Rapid measurements of CO2 flux density and water use efficiency of crop community].

    Science.gov (United States)

    Zhu, Zhilin; Sun, Xiaomin; Zhang, Renhua; Su, Hongbo; Tang, Xinzai

    2004-09-01

    In this paper, Eddy Correlation (EC) method was employed to measure the latent heat and CO2 flux density and to calculate Water Use Efficiency (WUE) of winter wheat community in Yucheng district, Shandong Province in 1997. The results showed that the CO2 flux density had an obvious diurnal change, with a maximum about 1.5 mg x s(-1) x m(-2), which appeared at about 9:00-10:00 am in general. The WUE of wheat community presented a fall trend from morning to afternoon, and the CO2 flux density and WUE also had an obvious seasonal change, being lower in the early and late growth stages, and higher in the middle growth stage. The ranges of daily mean CO2 flux density and WUE were 0.2-0.9 mg x s(-1) x m(-2) and 5-20 gCO2 x kg(-1) H2O, respectively.

  2. Fourier transform magnetic resonance current density imaging (FT-MRCDI) from one component of magnetic flux density.

    Science.gov (United States)

    Ider, Yusuf Ziya; Birgul, Ozlem; Oran, Omer Faruk; Arikan, Orhan; Hamamura, Mark J; Muftuler, L Tugan

    2010-06-01

    Fourier transform (FT)-based algorithms for magnetic resonance current density imaging (MRCDI) from one component of magnetic flux density have been developed for 2D and 3D problems. For 2D problems, where current is confined to the xy-plane and z-component of the magnetic flux density is measured also on the xy-plane inside the object, an iterative FT-MRCDI algorithm is developed by which both the current distribution inside the object and the z-component of the magnetic flux density on the xy-plane outside the object are reconstructed. The method is applied to simulated as well as actual data from phantoms. The effect of measurement error on the spatial resolution of the current density reconstruction is also investigated. For 3D objects an iterative FT-based algorithm is developed whereby the projected current is reconstructed on any slice using as data the Laplacian of the z-component of magnetic flux density measured for that slice. In an injected current MRCDI scenario, the current is not divergence free on the boundary of the object. The method developed in this study also handles this situation.

  3. The causal relation between turbulent particle flux and density gradient

    Energy Technology Data Exchange (ETDEWEB)

    Milligen, B. Ph. van; Martín de Aguilera, A.; Hidalgo, C. [CIEMAT - Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); Carreras, B. A. [BACV Solutions, 110 Mohawk Road, Oak Ridge, Tennessee 37830 (United States); García, L.; Nicolau, J. H. [Universidad Carlos III, 28911 Leganés, Madrid (Spain)

    2016-07-15

    A technique for detecting the causal relationship between fluctuating signals is used to investigate the relation between flux and gradient in fusion plasmas. Both a resistive pressure gradient driven turbulence model and experimental Langmuir probe data from the TJ-II stellarator are studied. It is found that the maximum influence occurs at a finite time lag (non-instantaneous response) and that quasi-periodicities exist. Furthermore, the model results show very long range radial influences, extending over most of the investigated regions, possibly related to coupling effects associated with plasma self-organization. These results clearly show that transport in fusion plasmas is not local and instantaneous, as is sometimes assumed.

  4. Time development and flux dependence of neutron-irradiation induced defects in silicon pad detectors

    CERN Document Server

    Zontar, D; Kramberger, G; Mikuz, M

    1999-01-01

    1x1 cm sup 2 silicon pad p sup + -n-n sup + detectors were irradiated with fast neutrons from the TRIGA research reactor in Ljubljana to fluences from 5x10 sup 1 sup 3 to 10 sup 1 sup 4 n/cm sup 2. The observed time development of annealing of the full-depletion voltage (FDV) could be fitted by a constant and two exponentials. The characteristic time of the fast component is 4 h, independent of temperature in the interval 0-15 deg. C. A comparison of MESA and planar pad detectors shows a 20-30% lower FDV for the MESA. A search for a flux dependence of the radiation damage was performed in the range from 2x10 sup 8 to 5x10 sup 1 sup 5 n/cm sup 2 s and no systematic differences were observed.

  5. Detailed studies of Minor Actinide transmutation-incineration in high-intensity neutron fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Bringer, O. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Al Mahamid, I. [Lawrence Berkeley National Laboratory, E.H. and S. Div., CA (United States); Blandin, C. [CEA/Cadarache/DEN/DER/SPEX, Saint-Paul-lez-Durances (France); Chabod, S. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Chartier, F. [CEA/Cadarache/DEN/DPC/SECR, Gif-sur-Yvette (France); Dupont, E.; Fioni, G. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Isnard, H. [CEA/Cadarache/DEN/DPC/SECR, Gif-sur-Yvette (France); Letourneau, A.; Marie, F. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Mutti, P. [Institut Laue-Langevin, Grenoble (France); Oriol, L. [CEA/Cadarache/DEN/DER/SPEX, Saint-Paul-lez-Durances (France); Panebianco, S.; Veyssiere, C. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France)

    2006-07-01

    The Mini-INCA project is dedicated to the measurement of incineration-transmutation chains and potentials of minor actinides in high-intensity thermal neutron fluxes. In this context, new types of detectors and methods of analysis have been developed. The {sup 241}Am and {sup 232}Th transmutation-incineration chains have been studied and several capture and fission cross sections measured very precisely, showing some discrepancies with existing data or evaluated data. An impact study was made on different based-like GEN-IV reactors. It underlines the necessity to proceed to precise measurements for a large number of minor-actinides that contribute to these future incineration scenarios. (authors)

  6. Simulation of the neutron flux in the irradiation facility at RA-3 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bortolussi, S., E-mail: silva.bortolussi@pv.infn.it [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6 27100, Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6 27100, Pavia (Italy); Pinto, J.M. [Department of Research and Production Reactors, Comision Nacional de Energia Atomica (CNEA), Av. del Libertador 8250 (1429), Buenos Aires (Argentina); Thorp, S.I. [Department of Instrumentations and Control, Comision Nacional de Energia Atomica (CNEA), Presbitero Luis Gonzalez y Aragon 15 (B1802AYA), Buenos Aires (Argentina); Farias, R.O. [CONICET, Avda. Rivadavia 1917, (1033) C.A.B.A. Argentina (Argentina); Soto, M.S. [FCEyN, Universidad de Buenos Aires (1428), Cdad. Universitaria. C.A.B.A. Argentina (Argentina); Sztejnberg, M. [Department of Instrumentations and Control, Comision Nacional de Energia Atomica (CNEA), Presbitero Luis Gonzalez y Aragon 15 (B1802AYA), Buenos Aires (Argentina); Pozzi, E.C.C. [Department of Research and Production Reactors, Comision Nacional de Energia Atomica (CNEA), Av. del Libertador 8250 (1429), Buenos Aires (Argentina)] [Department of Radiobiology, Comision Nacional de Energia Atomica (CNEA), Av. del Libertador 8250 (1429), Buenos Aires (Argentina)

    2011-12-15

    A facility for the irradiation of a section of patients' explanted liver and lung was constructed at RA-3 reactor, Comision Nacional de Energia Atomica, Argentina. The facility, located in the thermal column, is characterized by the possibility to insert and extract samples without the need to shutdown the reactor. In order to reach the best levels of security and efficacy of the treatment, it is necessary to perform an accurate dosimetry. The possibility to simulate neutron flux and absorbed dose in the explanted organs, together with the experimental dosimetry, allows setting more precise and effective treatment plans. To this end, a computational model of the entire reactor was set-up, and the simulations were validated with the experimental measurements performed in the facility.

  7. Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research

    CERN Document Server

    Murazaki, M; Uno, Y

    2003-01-01

    We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of +-13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, alpha, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and sup 3 He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, ...

  8. Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Murazaki, Minoru; Uno, Yuichi; Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of {+-}13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, {alpha}, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and {sup 3}He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, calculated value agreed well with measurement data of PSPC without Cd cover. (author)

  9. Accuracy and borehole influences in pulsed neutron gamma density logging while drilling.

    Science.gov (United States)

    Yu, Huawei; Sun, Jianmeng; Wang, Jiaxin; Gardner, Robin P

    2011-09-01

    A new pulsed neutron gamma density (NGD) logging has been developed to replace radioactive chemical sources in oil logging tools. The present paper describes studies of near and far density measurement accuracy of NGD logging at two spacings and the borehole influences using Monte-Carlo simulation. The results show that the accuracy of near density is not as good as far density. It is difficult to correct this for borehole effects by using conventional methods because both near and far density measurement is significantly sensitive to standoffs and mud properties.

  10. EURISOL Multi-MW Target Station - MAFF Configuration - Neutron Fluxes, Fission Rates, Dose Rates and Activation

    CERN Document Server

    Luis, R; Goncalves, I. F; Vaz, P; Kadi, Y; Kharoua, C; Rocca, R; Bermudez, J; Tecchio, L; Negoita, F; Ene, D; David, J.C

    The EURISOL (The EURopean Isotope Separation On-Line Radioactive Ion Beam) project aims atproducing high intensity radioactive ion beams produced by neutron-induced fission on fissile targets(235U) surrounding a liquid mercury converter. A proton beam of 1GeV and 4MW impinges on theconverter, generating, by spallation reactions, high neutron fluxes that induce fission in thesurrounding fissile targets.In this work the state-of-the-art Monte Carlo codes MCNPX and FLUKA were used to assess theneutronics performance of the system, which geometry, inspired in the MAFF concept, allows aversatile manipulation of the fission targets. The first objective of the study was to optimize thegeometry and the materials used in the fuel and reflector elements of the system, in order to achievethe highest possible fission rates. Indeed, it is shown that the appropriate combination of fission targetmaterial and surrounding reflector material leads to the aimed value of 1015 fissions/s per fissiontarget. The second part of this...

  11. 232Th, 233Pa, and 234U capture cross-section measurements in moderated neutron flux

    Science.gov (United States)

    Bringer, O.; Isnard, H.; AlMahamid, I.; Chartier, F.; Letourneau, A.

    2008-07-01

    The Th-U cycle was studied through the evolution of a 100 μg 232Th sample irradiated in a moderated neutron flux of 8.010 14 n/cm 2/s, intensity close to that of a thermal molten salt reactor. After 43 days of irradiation and 6 months of cooling, a precise mass spectrometric analysis, using both TIMS and MC-ICP-MS techniques, was performed, according to a rigorous methodology. The measured thorium and uranium isotopic ratios in the final irradiated sample were then compared with integral simulations based on evaluated data; an overall good agreement was seen. Four important thermal neutron-capture cross-sections were also extracted from the measurements, 232Th (7.34±0.21 b), 233Pa (38.34±1.78 b), 234U (106.12±3.34 b), and 235U (98.15±11.24 b). Our 232Th and 235U results confirmed existing values whereas the cross-sections of 233Pa and 234U (both key parameters) have been redefined.

  12. Neutron-gamma flux and dose calculations in a Pressurized Water Reactor (PWR

    Directory of Open Access Journals (Sweden)

    Brovchenko Mariya

    2017-01-01

    Full Text Available The present work deals with Monte Carlo simulations, aiming to determine the neutron and gamma responses outside the vessel and in the basemat of a Pressurized Water Reactor (PWR. The model is based on the Tihange-I Belgian nuclear reactor. With a large set of information and measurements available, this reactor has the advantage to be easily modelled and allows validation based on the experimental measurements. Power distribution calculations were therefore performed with the MCNP code at IRSN and compared to the available in-core measurements. Results showed a good agreement between calculated and measured values over the whole core. In this paper, the methods and hypotheses used for the particle transport simulation from the fission distribution in the core to the detectors outside the vessel of the reactor are also summarized. The results of the simulations are presented including the neutron and gamma doses and flux energy spectra. MCNP6 computational results comparing JEFF3.1 and ENDF-B/VII.1 nuclear data evaluations and sensitivity of the results to some model parameters are presented.

  13. Measuring the Magnetic Flux Density in the CMS Steel Yoke

    CERN Document Server

    Klyukhin, V I; Ball, A; Curé, B; Gaddi, A; Gerwig, H; Hervé, A; Mulders, M; Loveless, R

    2012-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. Accurate characterization of the magnetic field everywhere in the CMS detector is required. To measure the field in and around the steel, a system of 22 flux-loops and 82 3-D Hall sensors is installed on the return yoke blocks. Fast discharges of the solenoid (190 s time-constant) made during the CMS magnet surface commissioning test at the solenoid central fields of 2.64, 3.16, 3.68 and 4.01 T were used to induce voltages in the flux-loops. The voltages are measured on-line a...

  14. Estimating the amount and distribution of radon flux density from the soil surface in China.

    Science.gov (United States)

    Zhuo, Weihai; Guo, Qiuju; Chen, Bo; Cheng, Guan

    2008-07-01

    Based on an idealized model, both the annual and the seasonal radon ((222)Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil (226)Ra content and a global ecosystems database. Digital maps of the (222)Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average (222)Rn flux density from the soil surface across China was estimated to be 29.7+/-9.4 mBq m(-2)s(-1). Both regional and seasonal variations in the (222)Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil (226)Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China.

  15. Measuring the Magnetic Flux Density with Flux Loops and Hall Probes in the CMS Magnet Flux Return Yoke

    CERN Document Server

    Curé, B; Ball, A; Gaddi, A; Gerwig, H; Hervé, A; Klyukhin, V I; Loveless, R; Mulders, M

    2016-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The flux return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 3-D Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume that was measured with the field-mapping machine. The voltages induced in the flux loops by the magnetic flux changing during the CMS magnet standard ramps down are measured with six 16-bit DAQ modules. The off-line inte...

  16. Neutron scattering studies of the flux line lattice in ErNi{sub 2}B{sub 2}C

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, T. E-mail: nagata@phys.ocha.ac.jp; Yano, F.; Habuta, E.; Kawano-Furukawa, H.; Nagao, M.; Yoshizawa, H.; Furukawa, N.; Takeya, H.; Kadowaki, K

    2004-05-01

    We examined the flux line lattice in ErNi{sub 2}{sup 11}B{sub 2}C by small angle neutron scattering technique. On field cooling process, effective field (H{sub eff}) determined by the observed vortex distance increased by 200 Oe below the weak ferromagnetic transition temperature T{sub WFM}.

  17. Neutron Densities from a Global Analysis of Medium Energy Proton Nucleus Elastic Scattering

    CERN Document Server

    Clark, B C; Kerr, L J

    2003-01-01

    A new method for extracting neutron densities from intermediate energy elastic proton-nucleus scattering observables uses a global Dirac phenomenological (DP) approach based on the Relativistic Impulse Approximation (RIA). Data sets for Ca40, Ca48 and Pb208 in the energy range from 500 MeV to 1040 MeV are considered. The global fits are successful in reproducing the data and in predicting data sets not included in the analysis. Using this global approach, energy independent neutron densities are obtained. The vector point proton density distribution is determined from the empirical charge density after unfolding the proton form factor. The other densities are parametrized. The RMS neutron radius, R_n and the neutron skin thickness S_n obtained from the global fits using the most conservative errors are given as follows: for Ca40 R_n is (3.325 +/- 0.025) fm and S_n (-0.044 +/- 0.036) fm; for Ca48 R_n is (3.463 +/- 0.042) fm and S_n (0.103 +/- 0.045) fm; and for Pb208 R_n is (5.551 +/- 0.038) and S_n (0.116 +/-...

  18. Determining the Magnitude of Neutron and Galactic Cosmic Ray (GCR) Fluxes at the Moon using the Lunar Exploration Neutron Detector during the Historic Space-Age Era of High GCR Flux

    Science.gov (United States)

    Chin, G.; Sagdeev, R.; Boynton, W. V.; Mitrofanov, I. G.; Milikh, G. M.; Su, J. J.; Livengood, T. A.; McClanahan, T. P.; Evans, L.; Starr, R. D.; litvak, M. L.; Sanin, A.

    2013-12-01

    The Lunar Reconnaissance Orbiter (LRO) was launched June 18, 2009 during an historic space-age era of minimum solar activity [1]. The lack of solar sunspot activity signaled a complex set of heliospheric phenomena [2,3,4] that also gave rise to a period of unprecedentedly high Galactic Cosmic Ray (GCR) flux [5]. These events coincided with the primary mission of the Lunar Exploration Neutron Detector (LEND, [6]), onboard LRO in a nominal 50-km circular orbit of the Moon [7]. Methods to calculate the emergent neutron albedo population using Monte Carlo techniques [8] rely on an estimate of the GCR flux and spectra calibrated at differing periods of solar activity [9,10,11]. Estimating the actual GCR flux at the Moon during the LEND's initial period of operation requires a correction using a model-dependent heliospheric transport modulation parameter [12] to adjust the GCR flux appropriate to this unique solar cycle. These corrections have inherent uncertainties depending on model details [13]. Precisely determining the absolute neutron and GCR fluxes is especially important in understanding the emergent lunar neutrons measured by LEND and subsequently in estimating the hydrogen/water content in the lunar regolith [6]. LEND is constructed with a set of neutron detectors to meet differing purposes [6]. Specifically there are two sets of detector systems that measure the flux of epithermal neutrons: a) the uncollimated Sensor for Epi-Thermal Neutrons (SETN) and b) the Collimated Sensor for Epi-Thermal Neutrons (CSETN). LEND SETN and CSETN observations form a complementary set of simultaneous measurements that determine the absolute scale of emergent lunar neutron flux in an unambiguous fashion and without the need for correcting to differing solar-cycle conditions. LEND measurements are combined with a detailed understanding of the sources of instrumental back-ground, and the performance of CSETN and SETN. This comparison allows us to calculate a constant scale factor

  19. Methods and applications in high flux neutron imaging; Methoden und Anwendungen fuer bildgebende Verfahren mit hohen Neutronenfluessen

    Energy Technology Data Exchange (ETDEWEB)

    Ballhausen, H.

    2007-02-07

    This treatise develops new methods for high flux neutron radiography and high flux neutron tomography and describes some of their applications in actual experiments. Instead of single images, time series can be acquired with short exposure times due to the available high intensity. To best use the increased amount of information, new estimators are proposed, which extract accurate results from the recorded ensembles, even if the individual piece of data is very noisy and in addition severely affected by systematic errors such as an influence of gamma background radiation. The spatial resolution of neutron radiographies, usually limited by beam divergence and inherent resolution of the scintillator, can be significantly increased by scanning the sample with a pinhole-micro-collimator. This technique circumvents any limitations in present detector design and, due to the available high intensity, could be successfully tested. Imaging with scattered neutrons as opposed to conventional total attenuation based imaging determines separately the absorption and scattering cross sections within the sample. For the first time even coherent angle dependent scattering could be visualized space-resolved. New applications of high flux neutron imaging are presented, such as materials engineering experiments on innovative metal joints, time-resolved tomography on multilayer stacks of fuel cells under operation, and others. A new implementation of an algorithm for the algebraic reconstruction of tomography data executes even in case of missing information, such as limited angle tomography, and returns quantitative reconstructions. The setup of the world-leading high flux radiography and tomography facility at the Institut Laue-Langevin is presented. A comprehensive appendix covers the physical and technical foundations of neutron imaging. (orig.)

  20. The development of a high count rate neutron flux monitoring channel using silicon carbide semiconductor radiation detectors

    Science.gov (United States)

    Reisi Fard, Mehdi

    In this dissertation, a fast neutron flux-monitoring channel, which is based on the use of SiC semiconductor detectors is designed, modeled and experimentally evaluated as a power monitor for the Gas Turbine Modular Helium Reactors. A detailed mathematical model of the SiC diode detector and the electronic processing channel is developed using TRIM, MATLAB and PSpice simulation codes. The flux monitoring channel is tested at the OSU Research Reactor. The response of the SiC neutron-monitoring channel to neutrons is in close agreement to simulation results. Linearity of the channel response to thermal and fast neutron fluxes, pulse height spectrum of the channel, energy calibration of the channel and the detector degradation in a fast neutron flux are presented. Along with the model of the neutron monitoring channel, a Simulink model of the GT-MHR core has been developed to evaluate the power monitoring requirements for the GT-MHR that are most demanding for the SiC diode power monitoring system. The Simulink model is validated against a RELAP5 model of the GT-MHR. This dyanamic model is used to simulate reactor transients at the full power and at the start up, in order to identify the response time requirements of the GT-MHR. Based on the response time requirements that have been identified by the Simulink model and properties of the monitoring channel, several locations in the central reflector and the reactor cavity are identified to place the detector. The detector lifetime and dynamic range of the monitoring channel at the detector locations are calculated. The channel dynamic range in the GT-MHR central reflector covers four decades of the reactor power. However, the detector does not survive for a reactor refueling cycle in the central reflector. In the reactor cavity, the detector operates sufficiently long; however, the dynamic range of the channel is smaller than the dynamic range of the channel in the central reflector.

  1. Neutron flux measurements in the side-core region of Hunterston B advanced gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.A. [Serco, Rutherford House, Quedgeley, Gloucester, GL2 4NF (United Kingdom); Shaw, S.E. [British Energy, Barnett Way, Barnwood, Gloucester, GL4 3RS (United Kingdom); Huggon, A.P.; Steadman, R.J.; Thornton, D.A. [Serco, Rutherford House, Quedgeley, Gloucester, GL2 4NF (United Kingdom); Whiley, G.S. [British Energy, Barnett Way, Barnwood, Gloucester, GL4 3RS (United Kingdom)

    2011-07-01

    The core restraints of advanced gas-cooled reactors are important structural components that are required to maintain the geometric integrity of the cores. A review of neutron dosimetry for the sister stations Hunterston B and Hinkley Point B identified that earlier conservative assessments predicted high thermal neutron dose rates to key components of the restraint structure (the restraint rod welds), with the implication that some of them may be predicted to fail during a seismic event. A revised assessment was therefore undertaken [Thornton, D. A., Allen, D. A., Tyrrell, R. J., Meese, T. C., Huggon, A.P., Whiley, G. S., and Mossop, J. R., 'A Dosimetry Assessment for the Core Restraint of an Advanced Gas Cooled Reactor,' Proceedings of the 13. International Symposium on Reactor Dosimetry (ISRD-13, May 2008), World Scientific, River Edge, NJ, 2009, W. Voorbraak, L. Debarberis, and P. D'hondt, Eds., pp. 679-687] using a detailed 3D model and a Monte Carlo radiation transport program, MCBEND. This reassessment resulted in more realistic fast and thermal neutron dose recommendations, the latter in particular being much lower than had been thought previously. It is now desirable to improve confidence in these predictions by providing direct validation of the MCBEND model through the use of neutron flux measurements. This paper describes the programme of work being undertaken to deploy two neutron flux measurement 'stringers' within the side-core region of one of the Hunterston B reactors for the purpose of validating the MCBEND model. The design of the stringers and the determination of the preferred deployment locations have been informed by the use of detailed MCBEND flux calculations. These computational studies represent a rare opportunity to design a flux measurement beforehand, with the clear intention of minimising the anticipated uncertainties and obtaining measurements that are known to be representative of the neutron fields to which

  2. Maximum flux density of the gyrosynchrotron spectrum in a nonuniform source

    Institute of Scientific and Technical Information of China (English)

    Ai-Hua Zhou; Rong-Chuan Wang; Cheng-Wen Shao

    2009-01-01

    The maximum flux density of a gyrosynchrotron radiation spectrum in a mag- netic dip|oe model with self absorption and gyroresonance is calculated. Our calculations show that the maximum flux density of the gyrosynchrotron spectrum increases with in- creasing low-energy cutoff, number density, input depth of energetic electrons, magnetic field strength and viewing angle, and with decreasing energy spectral index of energetic electrons, number density and temperature of thermal electrons. It is found that there are linear correlations between the logarithms of the maximum flux density and the above eight parameters with correlation coefficients higher than 0.91 and fit accuracies better than 10%. The maximum flux density could be a good indicator of the changes of these source parameters. In addition, we find that there are very good positive linear correla- tions between the logarithms of the maximum flux density and peak frequency when the above former five parameters vary respectively. Their linear correlation coefficients are higher than 0.90 and the fit accuracies are better than 0.5%.

  3. Axial Neutron Flux Evaluation in a Tokamak System: a Possible Transmutation Blanket Position for a Fusion-Fission Transmutation System

    Science.gov (United States)

    Velasquez, Carlos E.; de P. Barros, Graiciany; Pereira, Claubia; Fortini Veloso, Maria A.; Costa, Antonella L.

    2012-08-01

    A sub-critical advanced reactor based on Tokamak technology with a D-T fusion neutron source is an innovative type of nuclear system. Due to the large number of neutrons produced by fusion reactions, such a system could be useful in the transmutation process of transuranic elements (Pu and minor actinides (MAs)). However, to enhance the MA transmutation efficiency, it is necessary to have a large neutron wall loading (high neutron fluence) with a broad energy spectrum in the fast neutron energy region. Therefore, it is necessary to know and define the neutron fluence along the radial axis and its characteristics. In this work, the neutron flux and the interaction frequency along the radial axis are evaluated for various materials used to build the first wall. W alloy, beryllium, and the combination of both were studied, and the regions more suitable to transmutation were determined. The results demonstrated that the best zone in which to place a transmutation blanket is limited by the heat sink and the shield block. Material arrangements of W alloy/W alloy and W alloy/beryllium would be able to meet the requirements of the high fluence and hard spectrum that are needed for transuranic transmutation. The system was simulated using the MCNP code, data from the ITER Final Design Report, 2001, and the Fusion Evaluated Nuclear Data Library/MC-2.1 nuclear data library.

  4. Density-dependent potential for multi-neutron halo nuclei

    Institute of Scientific and Technical Information of China (English)

    CHEN Shuang; CHU Yan-Yun; REN Zhong-Zhou

    2009-01-01

    We apply a simple density-dependent potential model to the three-body calculation of the ground-state structure of drip-line nuclei with a weakly bound core. The hyperspherical harmonics method is used to solve the Faddeev equations. There are no undetermined potential parameters in this calculation. We find that for the halo nuclei with a weakly-bound core, the calculated properties of the ground-state structure are in better agreement with experimental data than the results calculated from the standard Woods-Saxon and Gauss type potentials. We also successfully reproduce the experimental cross sections by using the density calculated from this method. This may be explained by the fact that the simple Fermi or Gaussian function can not exactly describe the density distribution of the drip-line nuclei.

  5. Neutron-proton effective mass splitting in terms of symmetry energy and its density slope

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S. [M. M. M. College, Department of Physics (India); Sahoo, B. [DIATM, Department of Applied Sciences (India); Sahoo, S., E-mail: sukadevsahoo@yahoo.com [National Institute of Technology, Department of Physics (India)

    2015-01-15

    Using a simple density-dependent finite-range effective interaction having Yukawa form, the density dependence of isoscalar and isovector effective masses is studied. The isovector effective mass is found to be different for different pairs of like and unlike nucleons. Using HVH theorem, the neutron-proton effective mass splitting is represented in terms of symmetry energy and its density slope. It is again observed that the neutron-proton effective mass splitting has got a positive value when isoscalar effective mass is greater than the isovector effective mass and has a negative value for the opposite case. Furthermore, the neutron-proton effective mass splitting is found to have a linear dependence on asymmetry β. The second-order symmetry potential has a vital role in the determination of density slope of symmetry energy but it does not have any contribution on neutron-proton effective mass splitting. The finite-range effective interaction is compared with the SLy2, SKM, f{sub −}, f{sub 0}, and f{sub +} forms of interactions.

  6. Maxwell equation violation by density dependent magnetic fields in neutron stars

    CERN Document Server

    Menezes, Débora P

    2016-01-01

    We show that the widely used density dependent magnetic field prescriptions, necessary to account for the variation of the field intensity from the crust to the core of neutron stars violate one of the Maxwell equations. We estimate how strong the violation is when different equations of state are used and check for which cases the pathological problem can be cured.

  7. Kaon condensation in neutron stars and high density behaviour of nuclear symmetry energy

    CERN Document Server

    Kubis, S

    1999-01-01

    We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases.

  8. Flux quantum tunneling effect and its influence on the experimental critical current density

    Institute of Scientific and Technical Information of China (English)

    闻海虎; 赵忠贤; GriessenR.

    1995-01-01

    By using magnetic sweeping method, the temperature and magnetic field dependencies of the experimental current density and the normalized relaxation rate have been obtained. The true critical current density corresponding to the zero activation energy has been carried out based on the collective-pinning and the thermally-activated flux motion models, and therefore the influences of the quantum tunneling effect and the thermal activation effect on the experimental critical current density are distinguished. It is found that, with temperature lower than 10 K, the relaxation rate will not drop to zero when T approaches zero K because of the occurrence of the flux quantum tunneling. This additional flux motion further reduces the experimental critical current density j making it saturated with lowering temperature.

  9. 3-D density imaging with muon flux measurements from underground galleries

    Science.gov (United States)

    Lesparre, N.; Cabrera, J.; Marteau, J.

    2017-03-01

    Atmospheric muon flux measurements provide information on subsurface density distribution. In this study, muon flux was measured underground, in the Tournemire experimental platform (France). The objective was to image the medium between the galleries and the surface and evaluate the feasibility to detect the presence of discontinuities, for example, produced by secondary subvertical faults or by karstic networks. Measurements were performed from three different sites with a partial overlap of muon trajectories, offering the possibility to seek density variations at different depths. The conversion of the measured muon flux to average density values showed global variations further analysed through a 3-D nonlinear inversion procedure. Main results are the presence of a very low density region at the level of the upper aquifer, compatible with the presence of a karstic network hosting local cavities, and the absence of secondary faults. We discuss the validity of the present results and propose different strategies to improve the accuracy of such measurements and analysis.

  10. Density measurement of confined water with neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang [ORNL; Faraone, Antonio [National Institute of Standards and Technology (NIST); Kamitakahara, William [ORNL; Liu, Kao-Hsiang [National Taiwan University; Mou, Chung-Yuan [National Taiwan University; Leao, Juscelino B [ORNL; Chang, Sung C [ORNL; Chen, Sow-hsin H [ORNL

    2011-01-01

    This is a response to Soper's two comments (1) regarding our papers (2, 3) in PNAS that (a) the distribution of water across the pores is not uniform and (b) the majority of water may reside outside the pores. Here, we show that we have given proper consideration to both issues and have reconfirmed the validity of our method and conclusion as elaborated in the following. The possibility that layering effects across the pores may introduce errors in associating the (100) interchannel peak height with density is not a new idea (reference 3 in ref. 1), and it has already been addressed (2). The arguments of Sopor (4) mainly rest on the assumption that the average density of water does not depend on temperature.

  11. Transmutation of minor actinides in high and representative neutron fluxes: the mini-INCA and MEGAPIE projects

    Energy Technology Data Exchange (ETDEWEB)

    Letourneau, A.; Chabod, S.; Marie, F.; Ridikas, D.; Toussaint, J.C.; Veyssiere, C. [CEA/DSM/DAPNIA Saclay, Gif-sur-Yvette (France); Blandin, C. [CEA/DEN/DER/SPEX Cadarache - Saint-Paul-lez-Durances (France); Mutti, P. [Inst. Laue-Langevin, Grenoble (France)

    2003-07-01

    In the framework of nuclear waste transmutation studies, the Mini-INCA project has been initiated at CEA/DSM with objectives to determine optimal conditions for transmutation and incineration of minor actinides (MA) in high intensity neutron fluxes. Our experimental tools based on alpha- and gamma-spectroscopy of the samples and the development of micro fission chambers could gather either microscopic information on nuclear reactions (total or partial cross sections for neutron capture and/or fission reactions) or macroscopic information on transmutation and incineration potentials. Neutron capture cross sections of selected actinides ({sup 241}Am, {sup 242}Am, {sup 242}Pu, {sup 237}Np) have already been measured at ILL, showing some discrepancies when compared to evaluated data libraries but in overall good agreement with recent data. The studies and possibilities offer by the MEGAPIE project to assess neutronic performances of a 1 MW spallation target and the incineration of MA in a representative neutron flux of a spallation source are also discussed. (orig.)

  12. Comparison between different flux traps assembled in the core of the nuclear reactor IPEN/MB-01 by measuring of the thermal and epithermal neutron fluxes using activation foils

    Energy Technology Data Exchange (ETDEWEB)

    Mura, Luiz Ernesto Credidio; Bitelli, Ulysses d' Utra; Mura, Luis Felipe Liambos; Carluccio, Thiago; Andrade, Graciete Simoes de, E-mail: ubitelli@ipen.b, E-mail: gsasilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The production of radioisotopes is one of the most important applications of nuclear research reactors. This study investigated a method called Flux Trap, which is used to increase the yield of production of radioisotopes in nuclear reactors. The method consists in the rearrangement of the fuel rods to allow the increase of the thermal neutron flux in the irradiation region inside the reactor core, without changing the standard reactor power level. Various configurations were assembled with the objective of finding the configuration with the highest thermal neutron flux in the region of irradiation. The method of activation analysis was used to measure the thermal neutron flux and determine the most efficient reactor core configuration . It was found that there was an increase in the thermal neutron flux of 337% in the most efficient configuration, which demonstrates the effectiveness of the method. (author)

  13. Corrections in the gold foil activation method for determination of neutron beam density

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1967-01-01

    example for a reactor beam transmitted through a 30 cm Bi filter. The effective cross section differs 0.5% from the capture cross section at 2200 m/s. For a 20 mg/cm2 Au foil the correction for beam attenuation and hardening through the foil is 0.7% and the activity correction is 1.5%.......A finite foil thickness and deviation in the cross section from the 1ν law imply corrections in the determination of neutron beam densities by means of foil activation. These corrections, which depend on the neutron velocity distribution, have been examined in general and are given in a specific...

  14. Nuclear "pasta" structures in low-density nuclear matter and neutron star crust

    CERN Document Server

    Okamoto, Minoru; Yabana, Kazuhiro; Tatsumi, Toshitaka

    2013-01-01

    In neutron star crust, non-uniform structure of nuclear matter is expected, which is called the "pasta" structure. From the recent studies of giant flares in magnetars, these structures might be related to some observables and physical quantities of the neutron star crust. To investigate the above quantities, we numerically explore the pasta structures with a fully threedimensional geometry and study the properties of low-density nuclear matter, based on the relativistic mean-field model and the Thomas-Fermi approximation. We observe typical pasta structures for fixed proton number-fraction and two of them for cold catalyzed matter. We also discuss the crystalline configuration of "pasta".

  15. Analysis of recoverable current from one component of magnetic flux density in MREIT and MRCDI.

    Science.gov (United States)

    Park, Chunjae; Lee, Byung Il; Kwon, Oh In

    2007-06-01

    Magnetic resonance current density imaging (MRCDI) provides a current density image by measuring the induced magnetic flux density within the subject with a magnetic resonance imaging (MRI) scanner. Magnetic resonance electrical impedance tomography (MREIT) has been focused on extracting some useful information of the current density and conductivity distribution in the subject Omega using measured B(z), one component of the magnetic flux density B. In this paper, we analyze the map Tau from current density vector field J to one component of magnetic flux density B(z) without any assumption on the conductivity. The map Tau provides an orthogonal decomposition J = J(P) + J(N) of the current J where J(N) belongs to the null space of the map Tau. We explicitly describe the projected current density J(P) from measured B(z). Based on the decomposition, we prove that B(z) data due to one injection current guarantee a unique determination of the isotropic conductivity under assumptions that the current is two-dimensional and the conductivity value on the surface is known. For a two-dimensional dominating current case, the projected current density J(P) provides a good approximation of the true current J without accumulating noise effects. Numerical simulations show that J(P) from measured B(z) is quite similar to the target J. Biological tissue phantom experiments compare J(P) with the reconstructed J via the reconstructed isotropic conductivity using the harmonic B(z) algorithm.

  16. INFLUENCE OF SCATTERED NEUTRON RADIATION ON METROLOGICAL CHARACTERISTICS OF АТ140 NEUTRON CALIBRATION FACILITY

    Directory of Open Access Journals (Sweden)

    D. I. Komar

    2017-01-01

    Full Text Available Today facilities with collimated radiation field are widely used as reference in metrological support of devices for neutron radiation measurement. Neutron fields formed by radionuclide neutron sources. The aim of this research was to study characteristics of experimentally realized neutron fields geometries on АТ140 Neutron Calibration Facility using Monte Carlo method.For calibration, we put a device into neutron field with known flux density or ambient equivalent dose rate. We can form neutron beam from radionuclide fast-neutron source in different geometries. In containercollimator of АТ140 Neutron Calibration Facility we can install special inserts to gather fast-neutron geometry or thermal-neutron geometry. We need to consider neutron scattering from air and room’s walls. We can conduct measurements of neutron field characteristics in several points and get the other using Monte Carlo method.Thermal neutron collimator forms a beam from radionuclide source with a significant amount of neutrons with thermal energies. From found relationship between full neutron flux and distance to neutron source we see that inverse square law is violated. Scattered radiation contribution into total flux increases when we are moving away from neutron source and significantly influences neutron fields characteristics. While source is exposed in shadow-cone geometry neutron specter has pronounced thermal component from wall scattering.In this work, we examined main geometry types used to acquire reference neutron radiation using radionuclide sources. We developed Monte Carlo model for 238Pu-Be neutron source and АТ140 Neutron Calibration Facility’s container-collimator. We have shown the most significant neutron energy distribution factor to be scattered radiation from room’s walls. It leads to significant changes of neutron radiation specter at a distance from the source. When planning location, and installing the facility we should consider

  17. Multiple-capillary measurement of RBC speed, flux, and density with optical coherence tomography.

    Science.gov (United States)

    Lee, Jonghwan; Wu, Weicheng; Lesage, Frederic; Boas, David A

    2013-11-01

    As capillaries exhibit heterogeneous and fluctuating dynamics even during baseline, a technique measuring red blood cell (RBC) speed and flux over many capillaries at the same time is needed. Here, we report that optical coherence tomography can capture individual RBC passage simultaneously over many capillaries located at different depths. Further, we demonstrate the ability to quantify RBC speed, flux, and linear density. This technique will provide a means to monitor microvascular flow dynamics over many capillaries at different depths at the same time.

  18. Diurnal and seasonal variability in radial distribution of sap flux density: Implications for estimating stand transpiration.

    Science.gov (United States)

    Fiora, Alessandro; Cescatti, Alessandro

    2006-09-01

    Daily and seasonal patterns in radial distribution of sap flux density were monitored in six trees differing in social position in a mixed coniferous stand dominated by silver fir (Abies alba Miller) and Norway spruce (Picea abies (L.) Karst) in the Alps of northeastern Italy. Radial distribution of sap flux was measured with arrays of 1-cm-long Granier probes. The radial profiles were either Gaussian or decreased monotonically toward the tree center, and seemed to be related to social position and crown distribution of the trees. The ratio between sap flux estimated with the most external sensor and the mean flux, weighted with the corresponding annulus areas, was used as a correction factor (CF) to express diurnal and seasonal radial variation in sap flow. During sunny days, the diurnal radial profile of sap flux changed with time and accumulated photosynthetic active radiation (PAR), with an increasing contribution of sap flux in the inner sapwood during the day. Seasonally, the contribution of sap flux in the inner xylem increased with daily cumulative PAR and the variation of CF was proportional to the tree diameter, ranging from 29% for suppressed trees up to 300% for dominant trees. Two models were developed, relating CF with PAR and tree diameter at breast height (DBH), to correct daily and seasonal estimates of whole-tree and stand sap flow obtained by assuming uniform sap flux density over the sapwood. If the variability in the radial profile of sap flux density was not accounted for, total stand transpiration would be overestimated by 32% during sunny days and 40% for the entire season.

  19. Nucleon-nucleon momentum-correlation function as a probe of the density distribution of valence neutrons in neutron-rich nuclei

    Science.gov (United States)

    Cao, X. G.; Cai, X. Z.; Ma, Y. G.; Fang, D. Q.; Zhang, G. Q.; Guo, W.; Chen, J. G.; Wang, J. S.

    2012-10-01

    Proton-neutron, neutron-neutron, and proton-proton momentum-correlation functions (Cpn,Cnn, and Cpp) are systematically investigated for 15C and other C-isotope-induced collisions at different entrance channel conditions within the framework of the isospin-dependent quantum-molecular-dynamics model complemented by the correlation after burner (crab) computation code. 15C is a prime exotic nucleus candidate due to the weakly bound valence neutron coupling with closed-neutron-shell nucleus 14C. To study density dependence of the correlation function by removing the isospin effect, the initialized 15C projectiles are sampled from two kinds of density distribution from the relativistic mean-field (RMF) model in which the valence neutron of 15C is populated in both 1d5/2 and 2s1/2 states, respectively. The results show that the density distributions of the valence neutron significantly influence the nucleon-nucleon momentum-correlation function at large impact parameters and high incident energies. The extended density distribution of the valence neutron largely weakens the strength of the correlation function. The size of the emission source is extracted by fitting the correlation function by using the Gaussian source method. The emission source size as well as the size of the final-state phase space are larger for projectile samplings from more extended density distributions of the valence neutron, which corresponds to the 2s1/2 state in the RMF model. Therefore, the nucleon-nucleon momentum-correlation function can be considered as a potentially valuable tool to diagnose exotic nuclear structures, such as the skin and halo.

  20. Magnetic flux density reconstruction using interleaved partial Fourier acquisitions in MREIT.

    Science.gov (United States)

    Park, Hee Myung; Nam, Hyun Soo; Kwon, Oh In

    2011-04-01

    Magnetic resonance electrical impedance tomography (MREIT) has been introduced as a non-invasive modality to visualize the internal conductivity and/or current density of an electrically conductive object by the injection of current. In order to measure a magnetic flux density signal in MREIT, the phase difference approach in an interleaved encoding scheme cancels the systematic artifacts accumulated in phase signals and also reduces the random noise effect. However, it is important to reduce scan duration maintaining spatial resolution and sufficient contrast, in order to allow for practical in vivo implementation of MREIT. The purpose of this paper is to develop a coupled partial Fourier strategy in the interleaved sampling in order to reduce the total imaging time for an MREIT acquisition, whilst maintaining an SNR of the measured magnetic flux density comparable to what is achieved with complete k-space data. The proposed method uses two key steps: one is to update the magnetic flux density by updating the complex densities using the partially interleaved k-space data and the other is to fill in the missing k-space data iteratively using the updated background field inhomogeneity and magnetic flux density data. Results from numerical simulations and animal experiments demonstrate that the proposed method reduces considerably the scanning time and provides resolution of the recovered B(z) comparable to what is obtained from complete k-space data.

  1. Symmetry energy effects on isovector properties of neutron rich nuclei with a density functional approach

    CERN Document Server

    Papazoglou, M C

    2014-01-01

    We employ a variational method to study the effect of the symmetry energy on the neutron skin thickness and the symmetry energy coefficients of various neutron rich nuclei. We concentrate our interest on $^{208}$Pb, $^{124}$Sn, $^{90}$Zr, and $^{48}$Ca, although the method can be applied in the totality of medium and heavy neutron rich nuclei. Our approach has the advantage that the isospin asymmetry function $\\alpha(r)$, which is the key quantity to calculate isovector properties of various nuclei, is directly related with the symmetry energy as a consequence of the variational principle. Moreover, the Coulomb interaction is included in a self-consistent way and its effects can be separated easily from the nucleon-nucleon interaction. We confirm, both qualitatively and quantitatively, the strong dependence of the symmetry energy on the various isovector properties for the relevant nuclei, using possible constraints between the slope and the value of the symmetry energy at the saturation density.

  2. Search for causes of the low epithermal neutron flux anomaly in the Arabia Terra region (Mars)

    Science.gov (United States)

    Basilevsky, A. T.; Rodin, A. V.; Raitala, J.; Neukum, G.; Werner, S.; Kozyrev, A. S.; Sanin, A. B.; Mitrofanov, I. G.; Head, J. W.; Boynton, W.; Saunders, R. S.

    2006-10-01

    A geologic analysis of 274 images acquired by the high-resolution MOC camera onboard the Mars Global Surveyor spacecraft within the Arabia Terra low neutron flux anomaly (which is indicative of an anomalously high abundance of hydrogen: up to 16 wt % of the equivalent amount of water) was performed. Correlation between the enhanced abundance of equivalent water with the presence of dust on the surface was found. Since dust plays a key role in condensation of water from the atmosphere, we suppose that the anomalies could result from the retention of atmospheric moisture. To analyze this suggestion, we performed a theoretical modeling that allowed us to map the planetary-scale distributions of several meteorological parameters responsible for the atmospheric moisture condensation. Two antipodal regions coinciding rather well with the Arabia Terra anomaly and the geographically antipodal anomaly southwest of Olympus Mons were found in the maps. This suggests that the anomalies are rather recent than ancient formations. They were probably formed by a sink of moisture from the atmosphere in the areas where present meteorological conditions support this sink. Geological parameters, primarily the presence of dust, only promote this process. We cannot exclude the possibility that the Martian cryosphere, rather than the atmosphere, supplied the studied anomalies with moisture during their formation: the thermodynamic conditions in the anomaly areas could block the moisture flux from the Martian interior in the upper regolith layer. The moisture coming from the atmosphere or from the interior is likely held as chemically bound water entering into the structure of water-bearing minerals (probably, hydrated magnesium sulfates) directly from the vapor; or the moisture precipitates as frost, penetrates into microfissures, and then is bound in minerals. Probably, another geologic factor—the magnesium sulfate abundance—works in the Arabia Terra anomaly.

  3. Research and Evaluation of the Energy Flux Density of the Mobile Phone Electromagnetic Field

    Directory of Open Access Journals (Sweden)

    Pranas Baltrėnas

    2012-12-01

    Full Text Available The article analyses variations in the energy flux density of the electromagnetic field of 10 mobile phones depending on distance. The studies have been conducted using three modes: sending a text message, receiving a text message and connecting a mobile phone to the Internet. When text messages are received or sent from a mobile phone, the values of the energy flux density of the mobile phone electromagnetic field exceed the safe allowable limit and make 10 μW / cm². A distance of 10, 20 and 30 cm from a mobile phone is effective protection against the energy flux density of the electromagnetic field when writing texts, receiving messages or connecting to the mobile Internet.Article in Lithuanian

  4. Effect of the Heat Flux Density on the Evaporation Rate of a Distilled Water Drop

    Directory of Open Access Journals (Sweden)

    Ponomarev Konstantin

    2016-01-01

    Full Text Available This paper presents the experimental dependence of the evaporation rate of a nondeaerated distilled water drop from the heat flux density on the surfaces of non-ferrous metals (copper and brass. A drop was placed on a heated substrate by electronic dosing device. To obtain drop profile we use a shadow optical system; drop symmetry was controlled by a high-speed video camera. It was found that the evaporation rate of a drop on a copper substrate is greater than on a brass. The evaporation rate increases intensively with raising volume of a drop. Calculated values of the heat flux density and the corresponding evaporation rates are presented in this work. The evaporation rate is found to increase intensively on the brass substrate with raising the heat flux density.

  5. Measurement of the thermal and fast neutron flux in a research reactor with a Li and Th loaded optical fibre detector

    CERN Document Server

    Yamane, Y; Misawa, T; Karlsson, J K H; Pázsit, I

    1999-01-01

    The spatial dependence of thermal and fast neutron flux was measured axially in the core of a 1 MW research reactor. The measurements were made by a thin optical fibre detector with a neutron sensitive ZnS(Ag) scintillation tip. For thermal neutrons sup 6 Li was used, whereas for fast neutrons sup 2 sup 3 sup 2 Th was used as neutron converter. The spatial dependence was measured by moving the fibre axially with a uniform speed. The measurement takes a few minutes, compared to up to 10 h with the conventional wire activation method. Comparison with traditional measurements shows a good agreement. (author)

  6. Neutron flux distribution inside the cylindrical core of minor excess of reactivity in the IPEN/MB-01 reactor and comparison with citation code and MCNP- 5 code

    Energy Technology Data Exchange (ETDEWEB)

    Aredes, Vitor Ottoni; Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10{sup 8} ± 5.25% n/cm{sup 2}s. (author)

  7. On the Inner Radius Evolution with Fluxes of the Neutron Star Binary Serpens X-1

    CERN Document Server

    Chiang, Chia-Ying; Cackett, Edward M; Miller, Jon M; Bhattacharyya, Sudip; Strohmayer, Tod E

    2016-01-01

    We analyze the latest Suzaku observation of the bright neutron star system Serpens X-1 taken in 2013 October and 2014 April. The observation was taken using the burst mode and only suffered mild pile-up effects. A broad iron line is detected in the X-ray spectrum. We test different models and find that the iron line is asymmetric and best interpreted by relativistic reflection. The relativistically broadened iron line is generally believed to originate from the innermost regions of the accretion disk, where strong gravity causes a series of special and general relativistic effects. The iron line profile indicates an inner radius of ~8 $R_{\\rm G}$. The asymmetric iron line has been observed in a number of previous observations, which gives several inner radius measurements at different flux states. We find the inner radius to be consistent over a wide range of luminosity, implying that the inner radius of Serpens X-1 does not evolve significantly over the range of $L/L_{\\rm Edd}$ ~ 0.2-0.6.

  8. Evaluation of neutron flux parameters in irradiation sites of research reactor using the Westcott-formalism for the k0 neutron activation analysis method

    Science.gov (United States)

    Kasban, H.; Hamid, Ashraf

    2015-12-01

    Instrumental Neutron Activation Analysis using k0 (k0-INAA) method has been used to determine a number of elements in sediment samples collected from El-Manzala Lake in Egypt. k0-INAA according to Westcott's formalism has been implemented using the complete irradiation kit of the fast pneumatic rabbit and some selected manually loaded irradiation sites for short and long irradiation at Egypt Second Research Reactor (ETRR-2). Zr-Au and Co sets as neutron flux monitors are used to determine the neutron flux parameters (f and α) in each irradiation sites. Two reference materials IAEA Soil-7 samples have been inserted and implemented for data validation and an internal monostandard multi monitor used (k0 based IM-NAA). It was given a good agreement between the experimental analyzed values and that obtained of the certified values. The major and trace elements in the sediment samples have been evaluated with the use of Co as an internal and Au as an external monostandard comparators. The concentrations of the elements (Cr, Mn and Zn) in the sediment samples of the present work are discussed regarding to those obtained from other sites.

  9. The Infrared and Radio Flux Densities of Galactic H ii regions

    Science.gov (United States)

    Makai, Z.; Anderson, L. D.; Mascoop, J. L.; Johnstone, B.

    2017-09-01

    We derive infrared and radio flux densities of all ∼1000 known Galactic H ii regions in the Galactic longitude range 17\\buildrel{\\circ}\\over{.} 5population is uncertain. Compared to a sample of IR color indices from star-forming galaxies, H ii regions show higher {{log}}10({F}70μ {{m}}/{F}12μ {{m}}) ratios. We find a weak trend of decreasing infrared to ∼20 cm flux density ratios with increasing R gal, in agreement with previous extragalactic results, possibly indicating a decreased dust abundance in the outer Galaxy.

  10. Production of a faithful realistic phantom to human head and thermal neutron flux measurement on the brain surface. Cooperative research

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Kazuyoshi; Kumada, Hiroaki; Kishi, Toshiaki; Torii, Yoshiya; Uchiyama, Junzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Endo, Kiyoshi; Yamamoto, Tetsuya; Matsumura, Akira; Nose, Tadao [Tsukuba Univ., Tsukuba, Ibaraki (Japan)

    2002-12-01

    Thermal neutron flux is determined using the gold wires in current BNCT irradiation, so evaluation of arbitrary points after the irradiation is limited in the quantity of these detectors. In order to make up for the weakness, dose estimation of a patient is simulated by a computational dose calculation supporting system. In another way without computer simulation, a medical irradiation condition can be replicate experimentally using of realistic phantom which was produced from CT images by rapid prototyping technique. This phantom was irradiated at a same JRR-4 neutron beam as clinical irradiation condition of the patient and the thermal neutron distribution on the brain surface was measured in detail. This experimental evaluation technique using a realistic phantom is applicable to in vitro cell irradiation experiments for radiation biological effects as well as in-phantom experiments for dosimetry under the nearly medical irradiation condition of patient. (author)

  11. EURISOL-DS Multi-MWatt Hg Target: Neutron flux and fission rate calculations for the MAFF configuration

    CERN Document Server

    Romanets, Y; Vaz, P; Herrera-Martinez, A; Kadi, Y; Kharoua, C; Lettry, J; Lindroos, M

    The EURISOL (The EURopean Isotope Separation On-Line Radioactive Ion Beam) project aims at producing high intensity radioactive ion beams produced by neutron induced fission on a fissile target (235U) surrounding a liquid mercury converter. A proton beam of 1 GeV and 4 MW impinges on the Hg converter generating by spallation reactions high neutron fluxes. In this work the state-of-the-art Monte Carlo codes MCNPX and FLUKA were used to assess the neutronics performance of the system which geometry, inspired from the MAFF concept, allows a versatile manipulation of the fission targets. The objective of the study was to optimize the geometry of the system and the materials used in the fuel and reflector elements of the system, in order to achieve the highest possible fission rate.

  12. Production of a faithful realistic phantom to human head and thermal neutron flux measurement on the brain surface. Cooperative research

    CERN Document Server

    Yamamoto, K; Kishi, T; Kumada, H; Matsumura, A; Nose, T; Torii, Y; Uchiyama, J; Yamamoto, T

    2002-01-01

    Thermal neutron flux is determined using the gold wires in current BNCT irradiation, so evaluation of arbitrary points after the irradiation is limited in the quantity of these detectors. In order to make up for the weakness, dose estimation of a patient is simulated by a computational dose calculation supporting system. In another way without computer simulation, a medical irradiation condition can be replicate experimentally using of realistic phantom which was produced from CT images by rapid prototyping technique. This phantom was irradiated at a same JRR-4 neutron beam as clinical irradiation condition of the patient and the thermal neutron distribution on the brain surface was measured in detail. This experimental evaluation technique using a realistic phantom is applicable to in vitro cell irradiation experiments for radiation biological effects as well as in-phantom experiments for dosimetry under the nearly medical irradiation condition of patient.

  13. Characterization of neutron flux spectra in the irradiation sites of a 37 GBq 241Am-Be isotopic source

    Science.gov (United States)

    Yücel, Haluk; Budak, Mustafa Guray; Karadag, Mustafa; Yüksel, Alptuğ Özer

    2014-11-01

    For the applicability of instrumental neutron activation analysis (NAA) technique, an irradiation unit with a 37 GBq 241Am-Be neutron source was installed at Institute of Nuclear Sciences of Ankara University. Design and configuration properties of the irradiation unit are described. It has two different sample irradiation positions, one is called site #1 having a pneumatic sample transfer system and the other is site #2 having a location for manual use. In order to characterize neutron flux spectra in the irradiation sites, the measurement results were obtained for thermal (Фth) and epithermal neutron fluxes (Фepi), thermal to epithermal flux ratio (f) and epithermal spectrum shaping factors (α) by employing cadmium ratios of gold (Au) and molybdenum (Mo) monitors. The activities produced in these foils were measured by using a p-type, 44.8% relative efficiency HPGe well detector. For the measured γ-rays, self-absorption and true coincidence summing effects were taken into account. Additionally, thermal neutron self-shielding and resonance neutron self-shielding effects were taken into account in the measured results. For characterization of site #1, the required parameters were found to be Фth = (2.11 ± 0.05) × 103 n cm-2 s-1, Фepi = (3.32 ± 0.17) × 101 n cm-2 s-1, f = 63.6 ± 1.5, α = 0.045 ± 0.009, respectively. Similarly, those parameters were measured in site #2 as Фth = (1.49 ± 0.04) × 103 n cm-2 s-1, Фepi = (2.93 ± 0.15) × 101 n cm-2 s-1, f = 50.9 ± 1.3 and α = 0.038 ± 0.008. The results for f-values indicate that good thermalization of fast neutrons on the order of 98% was achieved in both sample irradiation sites. This is because an optimum combination of water and paraffin moderator is used in the present configuration. In addition, the shielding requirements are met by using natural boron oxide powder (5.5 cm) and boron loaded paraffin layers against neutrons, and a 15 cm thick lead bricks against gamma-rays from source and its

  14. Nucleon-nucleon momentum correlation function as a probe of the density distribution of valence neutron in neutron-rich nucleus

    CERN Document Server

    Cao, X G; Ma, Y G; Fang, D Q; Zhang, G Q; Guo, W; Chen, J G; Wang, J S; 10.1103/PhysRevC.86.044620

    2012-01-01

    Proton-neutron, neutron-neutron and proton-proton momentum correlation functions ($C_{pn}$, $C_{nn}$, $C_{pp}$) are systematically investigated for $^{15}$C and other C isotopes induced collisions at different entrance channel conditions within the framework of the isospin-dependent quantum molecular dynamics (IDQMD) model complemented by the CRAB (correlation after burner) computation code. $^{15}$C is a prime exotic nucleus candidate due to the weakly bound valence neutron coupling with closed-neutron shell nucleus $^{14}$C. In order to study density dependence of correlation function by removing the isospin effect, the initialized $^{15}$C projectiles are sampled from two kinds of density distribution from RMF model, in which the valence neutron of $^{15}$C is populated on both 1$d$5/2 and 2$s$1/2 states, respectively. The results show that the density distributions of valence neutron significantly influence nucleon-nucleon momentum correlation function at large impact parameter and high incident energy. T...

  15. Arbitrary quadratures determination of the monoenergetic neutron density in an homogeneous finite sphere with isotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez G, J., E-mail: julian.sanchez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The solution of the so-called Canonical problems of neutron transport theory has been given by Case, who developed a method akin to the classical eigenfunction expansion procedure, extended to admit singular eigenfunctions. The solution is given as a set consisting of a Fredholm integral equation coupled with a transcendental equation, which has to be solved for the expansion coefficients by iteration. CASE's method make extensive use of the results of the theory of functions of a complex variable and many successful approaches to solve in an approximate form the above mentioned set have been reported in the literature. We present here an entirely different approach which deals with the canonical problems in a more direct and elementary manner. As far as we know, the original idea for the latter method is due to Carlvik who devised the escape probability approximation to the solution of the neutron transport equation in its integral form. In essence, the procedure consists in assuming a sectionally constant form of the neutron density that in turn yields a set of linear algebraic equations obeyed by the assumed constant values of the density. Very well established techniques of numerical analysis for the solution of integral equations consist in independent approaches that generalize the sectionally constant approach by assuming a sectionally low degree polynomial for the unknown function. This procedure also known as the arbitrary quadratures method is especially suited to deal with cases where the kernel of the integral equation is singular. The author wishes to present the results obtained with the arbitrary quadratures method for the numerical calculation of the monoenergetic neutron density in a critical, homogeneous sphere of finite radius with isotropic scattering. The singular integral equation obeyed by the neutron density in the critical sphere is introduced, an outline of the method's main features is given, and tables and graphs of the density

  16. Calculation of neutron and gamma fluxes in support to the interpretation of measuring devices irradiated in the core periphery of the OSIRIS Material Testing Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Malouch, Fadhel [Alternative Energies and Atomic Energy Commission - CEA, Saclay Center, DEN/DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette Cedex (France)

    2015-07-01

    Technological irradiations carried out in material testing reactors (MTRs) are used to study the behavior of materials under irradiation conditions required by different types of nuclear power plants (NPPs). For MTRs, specific instrumentation is required for the experiment monitoring and for the characterization of irradiation conditions, in particular the flux of neutrons and photons. To measure neutron and photon flux in experimental locations, different sensors can be used, such as SPNDs (self-powered neutron detectors), SPGDs (self-powered gamma detectors) and ionization chambers. These sensors involve interactions producing ultimately a measurable electric current. Various sensors have been recently tested in the core periphery of the OSIRIS reactor (located at the CEA-Saclay center) in order to qualify their responses to the neutron and the photon flux. One of the key input data for this qualification is to have a relevant evaluation of neutron and gamma fluxes at the irradiation location. The objective of this work is to evaluate the neutron and the gamma flux in the core periphery of the OSIRIS reactor. With this intention, specific neutron-photonic three-dimensional calculations have been performed and are mainly based on the TRIPOLI-4{sup R} three-dimensional continuous-energy Monte Carlo code, developed by CEA (Saclay Center) and extensively validated against reactor dosimetry benchmarks. In the case of the OSIRIS reactor, TRIPOLI-4{sup R} code has been validated against experimental results based on neutron flux and nuclear heating measurements performed in ex-core and in-core experiments. In this work, simultaneous contribution of neutrons and gamma photons in the core periphery is considered using neutron-photon coupled transport calculations. Contributions of prompt and decay photons have been taken into account for the gamma flux calculation. Specific depletion codes are used upstream to provide the decay-gamma sources required by TRIPOLI-4

  17. Nuclear level densities of 64,66Zn from neutron evaporation

    Science.gov (United States)

    Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; Schiller, A.; Brune, C. R.; Massey, T. N.; Salas-Bacci, A.

    2013-12-01

    Double differential cross sections of neutrons from d+63,65Cu reactions have been measured at deuteron energies of 6 and 7.5 MeV. The cross sections measured at backward angles have been compared to theoretical calculations in the framework of the statistical Hauser-Feshbach model. Three different level density models were tested: the Fermi-gas model, the Gilbert-Cameron model, and the microscopic approach through the Hartree-Fock-Bogoliubov method (HFBM). The calculations using the Gilbert-Cameron model are in best agreement with our experimental data. Level densities of the residual nuclei 64Zn and 66Zn have been obtained from statistical neutron evaporation spectra. The angle-integrated cross sections have been analyzed with the exciton model of nuclear reaction.

  18. Adiabatic electronic flux density: a Born-Oppenheimer Broken Symmetry ansatz

    CERN Document Server

    Pohl, Vincent

    2016-01-01

    The Born-Oppenheimer approximation leads to the counterintuitive result of a vanishing electronic flux density upon vibrational dynamics in the electronic ground state. To circumvent this long known issue, we propose using pairwise anti-symmetrically translated vibronic densities to generate a symmetric electronic density that can be forced to satisfy the continuity equation approximately. The so-called Born-Oppenheimer broken symmetry ansatz yields all components of the flux density simultaneously while requiring only knowledge about the nuclear quantum dynamics on the electronic adiabatic ground state potential energy surface. The underlying minimization procedure is transparent and computationally inexpensive, and the solution can be computed from the standard output of any quantum chemistry program. Taylor series expansion reveals that the implicit electron dynamics originates from non-adiabatic coupling to the explicit Born-Oppenheimer nuclear dynamics. The new approach is applied to the ${\\rm H}_2^+$ mo...

  19. Estimation of low energy neutron flux ($E_n\\leq15$ MeV) in India-based Neutrino Observatory cavern using Monte Carlo techniques

    CERN Document Server

    Dokania, N; Mathimalar, S; Garai, A; Nanal, V; Pillay, R G; Bhushan, K G

    2015-01-01

    The neutron flux at low energy ($E_n\\leq15$ MeV) resulting from the radioactivity of the rock in the underground cavern of the India-based Neutrino Observatory is estimated using Geant4-based Monte Carlo simulations. The neutron production rate due to the spontaneous fission of U, Th and ($\\alpha, n$) interactions in the rock is determined employing the actual rock composition. It has been demonstrated that the total flux is equivalent to a finite size cylindrical rock ($D=L=140$ cm) element. The energy integrated neutron flux thus obtained at the center of the underground tunnel is 2.76 (0.47) $\\times 10^{-6}\\rm~n ~cm^{-2}~s^{-1}$. The estimated neutron flux is of the same order ($\\sim10^{-6}\\rm~n ~cm^{-2}~s^{-1}$)~as measured in other underground laboratories.

  20. Density analysis of the neutron structure factor and the determination of the pair potential of krypton

    Science.gov (United States)

    Barocchi, F.; Zoppi, M.; Egelstaff, P. A.

    1985-04-01

    We propose a method of analysis of the density behavior of the experimental neutron scattering structure factor which permits us to derive directly from the experimental results an ``experimental'' pair potential. We apply the method to the recent results of Teitsma and Egelstaff in krypton gas and derive a pair potential which is in good agreement with the empirical potential of Barker et al. Some discrepancies in the range 4

  1. Symmetry energy at subsaturation densities and the neutron skin thickness of 208Pb

    CERN Document Server

    Fan, Xiaohua; Zuo, Wei

    2015-01-01

    The mass-dependent symmetry energy coefficients $a_{sym}(A)$ has been extracted by analysing the heavy nuclear mass differences reducing the uncertainties as far as possible in our previous work. Taking advantage of the obtained symmetry energy coefficient $a_{sym}(A)$ and the density profiles obtained by switching off the Coulomb interaction in $^{208}\\text{Pb}$, we calculated the slope parameter $L_{0.11}$ of the symmetry energy at the density of $0.11\\text{fm}^{-3}$. The calculated $L_{0.11}$ ranges from 40.5 MeV to 60.3 MeV. The slope parameter $L_{0.11}$ of the symmetry energy at the density of $0.11\\text{fm}^{-3}$ is also calculated directly with Skyrme interactions for nuclear matter and is found to have a fine linear relation with the neutron skin thickness of $^{208}\\text{Pb}$, which is the difference of the neutron and proton rms radii of the nucleus. With the linear relation the neutron skin thickness $ \\Delta R_{np} $ of $^{208}\\text{Pb}$ is predicted to be 0.15 - 0.21 fm.

  2. Ferroelectric behaviour in solid croconic acid using neutron scattering and first-principles density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S., E-mail: sanghamitra.mukhopadhyay@stfc.ac.uk [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Gutmann, M.J.; Jura, M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Jochym, D.B. [Scientific Computing Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Jimenez-Ruiz, M. [Institut Laue Langevin, 6 rue Jules Horowitz 38042, Grenoble Cedex 9 (France); Sturniolo, S.; Refson, K. [Scientific Computing Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Fernandez-Alonso, F. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2013-12-12

    Highlights: • We have presented results of neutron diffraction on croconic acid (CA). • We have presented results of inelastic neutron scattering (INS) spectra. • INS is compared with lattice dynamical simulations using density functional theory. • The prominent doublet in INS spectra around 1000 cm{sup −1} are from two hydrogen ions. • We identify the role of these H ions in the ferroelectricity of the CA crystal. - Abstract: A combination of neutron-scattering experiments and first-principles calculations using density-functional theory have been performed to explore the structural and dynamical properties of the single-component organic ferroelectric croconic acid. Neutron diffraction and spectroscopy have been used to determine the location and underlying vibrational motions of the hydrogen ions within the crystalline lattice, respectively. On the computational front we find that dispersion corrections within the generalised-gradient approximation are essential to obtain a satisfactory crystal structure for this organic solid. Two distinct types of hydrogen ions in the crystal also have been identified, located at the ‘hinge’ and ‘terrace’ positions of a pleated, accordion-like structure. Phonon calculations and simulated neutron spectra show that the prominent doublet observed at ca. 1000 cm{sup −1} arises from out-of-plane motions associated with these two types of hydrogen ions. Calculated Born-effective-charge tensors yield an anomalously high dynamic charge centered on the hydrogen ions at the hinges, a finding which serves to identify the primary motif underpinning ferroelectric behaviour in this novel material.

  3. Behaviour of carbon dioxide and water vapour flux densities from a disturbed raised peat bog

    NARCIS (Netherlands)

    Nieveen, J.P.; Jacobs, A.F.G.

    2002-01-01

    Measurements of carbon dioxide and water vapour flux densities were carried out for a disturbed raised peat bog in the north of the Netherlands during an 18 month continuous experiment. Tussock grass (sp. Molinea caerulae) mainly dominated the vegetation of the bog area. The maximum leaf area index

  4. Measurement of induced magnetic flux density using injection current nonlinear encoding (ICNE) in MREIT.

    Science.gov (United States)

    Park, Chunjae; Lee, Byung Il; Kwon, Ohin; Woo, Eung Je

    2007-02-01

    Magnetic resonance electrical impedance tomography (MREIT) measures induced magnetic flux densities subject to externally injected currents in order to visualize conductivity distributions inside an electrically conducting object. Injection currents induce magnetic flux densities that appear in phase parts of acquired MR image data. In the conventional current injection method, we inject currents during the time segment between the end of the first RF pulse and the beginning of the reading gradient in order to ensure the gradient linearity. Noting that longer current injections can accumulate more phase changes, we propose a new pulse sequence called injection current nonlinear encoding (ICNE) where the duration of the injection current pulse is extended until the end of the reading gradient. Since the current injection during the reading gradient disturbs the gradient linearity, we first analyze the MR signal produced by the ICNE pulse sequence and suggest a novel algorithm to extract the induced magnetic flux density from the acquired MR signal. Numerical simulations and phantom experiments show that the new method is clearly advantageous in terms of the reduced noise level in measured magnetic flux density data. The amount of noise reduction depends on the choice of the data acquisition time and it was about 24% when we used a prolonged data acquisition time of 10.8 ms. The ICNE method will enhance the clinical applicability of the MREIT technique when it is combined with an appropriate phase artefact minimization method.

  5. Estimation of electrical conductivity distribution within the human head from magnetic flux density measurement.

    Science.gov (United States)

    Gao, Nuo; Zhu, S A; He, Bin

    2005-06-01

    We have developed a new algorithm for magnetic resonance electrical impedance tomography (MREIT), which uses only one component of the magnetic flux density to reconstruct the electrical conductivity distribution within the body. The radial basis function (RBF) network and simplex method are used in the present approach to estimate the conductivity distribution by minimizing the errors between the 'measured' and model-predicted magnetic flux densities. Computer simulations were conducted in a realistic-geometry head model to test the feasibility of the proposed approach. Single-variable and three-variable simulations were performed to estimate the brain-skull conductivity ratio and the conductivity values of the brain, skull and scalp layers. When SNR = 15 for magnetic flux density measurements with the target skull-to-brain conductivity ratio being 1/15, the relative error (RE) between the target and estimated conductivity was 0.0737 +/- 0.0746 in the single-variable simulations. In the three-variable simulations, the RE was 0.1676 +/- 0.0317. Effects of electrode position uncertainty were also assessed by computer simulations. The present promising results suggest the feasibility of estimating important conductivity values within the head from noninvasive magnetic flux density measurements.

  6. Vertical foliage distribution determines the radial pattern of sap flux density in Picea abies.

    Science.gov (United States)

    Fiora, Alessandro; Cescatti, Alessandro

    2008-09-01

    Understanding the causes determining the radial pattern of sap flux density is important both for improving knowledge of sapwood functioning and for up-scaling sap flow measurements to canopy transpiration and ecosystem water use. To investigate the anatomical connection between whorls and annual sapwood rings, pruning-induced variation in the radial pattern of sap flux density was monitored with Granier probes in a 35-year-old Picea abies (L.) Karst tree that was pruned from the crown bottom up. Modifications in the radial pattern of sap flux density were quantified by a shape index (SI), which varies with the relative contribution of the outer and inner sapwood to tree transpiration. The SI progressively diminished during bottom up pruning, indicating a significant reduction in sap flow contribution of the inner sapwood. Results suggest that the radial pattern of sap flux density depends mainly on the vertical distribution of foliage in the crown, with lower shaded branches hydraulically connected with inner sapwood and upper branches connected with the outer rings.

  7. Dynamics of photosynthetic photon flux density (PPFD) and estimates in coastal northern California

    Science.gov (United States)

    The seasonal trends and diurnal patterns of Photosynthetically Active Radiation (PAR) were investigated in the San Francisco Bay Area of Northern California from March through August in 2007 and 2008. During these periods, the daily values of PAR flux density (PFD), energy loading with PAR (PARE), a...

  8. Unusual increase in the 325 MHz flux density of PSR B0655+64

    NARCIS (Netherlands)

    Galama, TJ; deBruyn, AG; vanParadijs, J; Hanlon, L; Bennett, K

    1997-01-01

    We report on the detection of a large amplification of the flux density of PSR B0655+64 at 325 MHz (a factor of similar to 43) that lasted about one hour. To the best of our knowledge such a large amplification has not been reported before. The phenomenon is restricted to a very narrow bandwidth (50

  9. Measurements of solar flux density distribution on a plane receiver due to a flat heliostat

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, M.M.; Fathalah, K.A.; Al-Rabghi, O.M. [King Abdulaziz Univ., Jeddah (Saudi Arabia)

    1995-06-01

    An experimental facility is designed and manufactured to measure the solar flux density distribution on a central flat receiver due to a single flat heliostat. The tracking mechanism of the heliostat is controlled by two stepping motors, one for tilt angle control and the other for azimuth angle control. A x-y traversing mechanism is also designed and mounted on a vertical central receiver plane, where the solar flux density is to be measured. A miniature solar sensor is mounted on the platform of the traversing mechanism, where it is used to measure the solar flux density distribution on the receiver surface. The sensor is connected to a data acquisition card in a host computer. The two stepping motors of the heliostat tracking mechanism and the two stepping motors of the traversing mechanism are all connected to a controller card in the same host computer. A software `TOWER` is prepared to let the heliostat track the sun, move the platform of the traversing mechanism to the points of a preselected grid, and to measure the solar flux density distribution on the receiver plane. Measurements are carried out using rectangular flat mirrors of different dimensions at several distances from the central receiver. Two types of images were identified on the receiver plane - namely, apparent (or visible) and mirror-reflected radiation images. Comparison between measurements and a mathematical model validates the mathematical model. 13 refs., 12 figs., 1 tab.

  10. Characterization of neutron flux spectra in the irradiation sites of a 37 GBq {sup 241}Am-Be isotopic source

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, Haluk [Ankara University, Institute of Nuclear Sciences, 06100 Tandogan, Ankara (Turkey); Budak, Mustafa Guray, E-mail: mbudak@gazi.edu.tr [Gazi University, Gazi Education Faculty, 06500 Teknikokullar, Ankara (Turkey); Karadag, Mustafa [Gazi University, Gazi Education Faculty, 06500 Teknikokullar, Ankara (Turkey); Yüksel, Alptuğ Özer [Ankara University, Institute of Nuclear Sciences, 06100 Tandogan, Ankara (Turkey)

    2014-11-01

    Highlights: • An irradiation unit was installed using a 37 GBq {sup 241}Am-Be neutron source. • The source neutrons moderated by using both water and paraffin. • Irradiation unit was shielded by boron oxide and lead against neutrons and gammas. • There are two sites for irradiations, one of them has a pneumatic transfer system. • Cadmium ratio method was used for irradiation site characterization. - Abstract: For the applicability of instrumental neutron activation analysis (NAA) technique, an irradiation unit with a 37 GBq {sup 241}Am-Be neutron source was installed at Institute of Nuclear Sciences of Ankara University. Design and configuration properties of the irradiation unit are described. It has two different sample irradiation positions, one is called site #1 having a pneumatic sample transfer system and the other is site #2 having a location for manual use. In order to characterize neutron flux spectra in the irradiation sites, the measurement results were obtained for thermal (φ{sub th}) and epithermal neutron fluxes (φ{sub epi}), thermal to epithermal flux ratio (f) and epithermal spectrum shaping factors (α) by employing cadmium ratios of gold (Au) and molybdenum (Mo) monitors. The activities produced in these foils were measured by using a p-type, 44.8% relative efficiency HPGe well detector. For the measured γ-rays, self-absorption and true coincidence summing effects were taken into account. Additionally, thermal neutron self-shielding and resonance neutron self-shielding effects were taken into account in the measured results. For characterization of site #1, the required parameters were found to be φ{sub th} = (2.11 ± 0.05) × 10{sup 3} n cm{sup −2} s{sup −1}, φ{sub epi} = (3.32 ± 0.17) × 10{sup 1} n cm{sup −2} s{sup −1}, f = 63.6 ± 1.5, α = 0.045 ± 0.009, respectively. Similarly, those parameters were measured in site #2 as φ{sub th} = (1.49 ± 0.04) × 10{sup 3} n cm{sup −2} s{sup −1}, φ{sub epi} = (2.93 ± 0

  11. Tackling the s-process stellar neutron density via the 147Pm(n,?) reaction

    CERN Multimedia

    Branching points along the reaction path of the slow nucleosynthesis process are very special isotopes for which there is competition between neutron capture and β-decay. The accurate knowledge of the decay properties and capture cross sections in the vicinity of these branching points are of key importance for determining the stellar conditions, namely the neutron density and temperature during the main s-process component in low-mass AGB stars. However, accurate values of these quantities, in particular capture cross sections at the corresponding stellar temperatures, are difficult to measure; thus data are very scarce and, when existing, very limited. For the particular and important case of the branching at A=147/148, the main branching point is $^{147}$Pm; for which there was a very challenging and successful activation measurement in 2003 at the stellar neutron energy of kT=25 keV using just 28 ng of material. In the main s-process, however, 95% of the neutron exposure takes place during H-burning epis...

  12. Microscopic description of fission in neutron-rich radium isotopes with the Gogny energy density functional

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Guzman, R. [Kuwait University, Physics Department, Kuwait (Kuwait); Robledo, L.M. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain)

    2016-01-15

    Mean-field calculations, based on the D1S, D1N and D1M parametrizations of the Gogny energy density functional, have been carried out to obtain the potential energy surfaces relevant to fission in several Ra isotopes with the neutron number 144 ≤ N ≤ 176. Inner and outer barrier heights as well as first and second isomer excitation energies are given. The existence of a well-developed third minimum along the fission paths of Ra nuclei is analyzed in terms of the energetics of the ''fragments'' defining such elongated configuration. The masses and charges of the fission fragments are studied as functions of the neutron number in the parent Ra isotope. The comparison between fission and α-decay half-lives, reveals that the former becomes faster for increasing neutron numbers. Though there exists a strong variance of the results with respect to the parameters used in the computation of the spontaneous fission rate, a change in tendency is observed at N = 164 with a steady increase that makes heavier neutron-rich Ra isotopes stable against fission, diminishing the importance of fission recycling in the r-process. (orig.)

  13. SPHERES, Jülich's high-flux neutron backscattering spectrometer at FRM II.

    Science.gov (United States)

    Wuttke, Joachim; Budwig, Alfred; Drochner, Matthias; Kämmerling, Hans; Kayser, Franz-Joseph; Kleines, Harald; Ossovyi, Vladimir; Pardo, Luis Carlos; Prager, Michael; Richter, Dieter; Schneider, Gerald J; Schneider, Harald; Staringer, Simon

    2012-07-01

    SPHERES is a third-generation neutron backscattering spectrometer, located at the 20 MW German neutron source FRM II and operated by the Jülich Centre for Neutron Science. It offers an energy resolution (fwhm) better than 0.65 μeV, a dynamic range of ± 31 μeV, and a signal-to-noise ratio of up to 1750:1.

  14. SPHERES, J\\"ulich's High-Flux Neutron Backscattering Spectrometer at FRM II

    CERN Document Server

    Wuttke, Joachim; Drochner, Matthias; Kämmerling, Hans; Kayser, Franz-Joseph; Pardo, Luis Carlos; Prager, Michael; Ossovyi, Vladimir; Schneider, Gerald J; Schneider, Harald; Staringer, Simon; Richter, Dieter

    2012-01-01

    SPHERES (SPectrometer with High Energy RESolution) is a third-generation neutron backscattering spectrometer, located at the 20 MW German neutron source FRM II and operated by the J\\"ulich Centre for Neutron Science. It offers an energy resolution (fwhm) better than 0.65 micro-eV, a dynamic range of +-31 micro-eV, and a signal-to-noise ratio of up to 1750:1.

  15. SPHERES, Juelich's high-flux neutron backscattering spectrometer at FRM II

    Energy Technology Data Exchange (ETDEWEB)

    Wuttke, Joachim; Budwig, Alfred; Drochner, Matthias; Kaemmerling, Hans; Kayser, Franz-Joseph; Kleines, Harald; Ossovyi, Vladimir; Pardo, Luis Carlos; Prager, Michael; Richter, Dieter; Schneider, Gerald J.; Schneider, Harald; Staringer, Simon [Forschungszentrum Juelich GmbH, 52425 Juelich (Germany)

    2012-07-15

    SPHERES is a third-generation neutron backscattering spectrometer, located at the 20 MW German neutron source FRM II and operated by the Juelich Centre for Neutron Science. It offers an energy resolution (fwhm) better than 0.65 {mu}eV, a dynamic range of {+-} 31 {mu}eV, and a signal-to-noise ratio of up to 1750:1.

  16. The Impact of Craters on Neutron Fluxes and Lunar Polar Hydrogen Abundances

    Science.gov (United States)

    Eke, V.; Bower, K.; Diserens, S.; Ryder, M.; Yeomans, P.; Teodoro, L.; Elphic, R.; Feldman, W.; Hermalyn, B.; Lavelle, C.; Lawrence, D.; Maurice, S.

    2015-10-01

    Hydrogen abundances in lunar polar cold traps are investigated using remotely-sensed neutron count rates. The effect of neutron beaming from craters is measured using data from the Lunar Prospector Neutron Spectrometer (LPNS) and understood in the context of a simple model. This enables a reanalysis of data near the lunar poles, accounting for the topographical impact on the neutron count rates, leading to improved estimates of the hydrogen abundance in the various cold traps. For the case of Cabeus, taking into account the topographical effect increases the inferred water- equivalent hydrogen weight percentage from˜1%to˜4%, consistent with that measured using the LCROSS impactor.

  17. Precision measurement of thermal neutron beam densities using a 3He proportional counter

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Bahnsen, A.; Brown, W.K.

    1967-01-01

    A new method, based on the 3He(n, p)T reaction, has been developed for the accurate determination of thermal neutron beam densities. Several comparisons were made with the conventional Au-foil activation method, and agreement was obtained between the two methods within an experimental uncertainty...... of ±0.4%. Fundamental advantages of the method include the 1ν dependence of the 3He(n, p)T cross section up to 1 keV, and the assurance of homogeneity even for very small macroscopic cross sections, because of the gaseous detector material. Although the method requires a relatively clean neutron beam......, it can be used over a wide range of neutron densities and, in particular, is capable of measuring extremely weak beams. A detector has been constructed with a well-defined efficiency and which is able to accept beams of diameters up to 10 cm. The 3He counter method is proposed as a precision standard...

  18. Pairing in high-density neutron matter including short- and long-range correlations

    CERN Document Server

    Ding, D; Dickhoff, W H; Dussan, H; Polls, A; Witte, S J

    2015-01-01

    The influence of short-range correlations (SRC) on the spectral distribution of neutrons is incorporated in the solution of the gap equation for the ${}^3P_2-{}^3F_2$ coupled channel in pure neutron matter at high density. This effect is studied for three different realistic interactions. The gap in this channel is strongly suppressed by these correlations but does not vanish. For a consistent treatment we also include for the first time the effect of long-range correlations (LRC) by incorporating polarization terms in addition to the bare interaction. This allows the neutrons to exchange density and spin fluctuations governed by the strength of Landau parameters with values that are consistent with the available literature. While these LRC have an antiscreening tendency, they only slightly increase the gap in the ${}^3P_2-{}^3F_2$ coupled channel for all three realistic interactions as long as SRC are included. All three interactions generate maximum gaps around 0.1 to 0.2 MeV at most with a small dependence...

  19. Optimal cytoplasmatic density and flux balance model under macromolecular crowding effects.

    Science.gov (United States)

    Vazquez, Alexei

    2010-05-21

    Macromolecules occupy between 34% and 44% of the cell cytoplasm, about half the maximum packing density of spheres in three dimension. Yet, there is no clear understanding of what is special about this value. To address this fundamental question we investigate the effect of macromolecular crowding on cell metabolism. We develop a cell scale flux balance model capturing the main features of cell metabolism at different nutrient uptakes and macromolecular densities. Using this model we show there are two metabolic regimes at low and high nutrient uptakes. The latter regime is characterized by an optimal cytoplasmatic density where the increase of reaction rates by confinement and the decrease by diffusion slow-down balance. More important, the predicted optimal density is in the range of the experimentally determined density of Escherichia coli.

  20. Exploring properties of high-density matter through remnants of neutron-star mergers

    Energy Technology Data Exchange (ETDEWEB)

    Bauswein, Andreas [Aristotle University of Thessaloniki, Department of Physics, Thessaloniki (Greece); Heidelberger Institut fuer Theoretische Studien, Heidelberg (Germany); Stergioulas, Nikolaos [Aristotle University of Thessaloniki, Department of Physics, Thessaloniki (Greece); Janka, Hans-Thomas [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    2016-03-15

    Remnants of neutron-star mergers are essentially massive, hot, differentially rotating neutron stars, which are initially strongly oscillating. As such they represent a unique probe for high-density matter because the oscillations are detectable via gravitational-wave measurements and are strongly dependent on the equation of state. The impact of the equation of state for instance is apparent in the frequency of the dominant oscillation mode of the remnant. For a fixed total binary mass a tight relation between the dominant postmerger oscillation frequency and the radii of nonrotating neutron stars exists. Inferring observationally the dominant postmerger frequency thus determines neutron star radii with high accuracy of the order of a few hundred meters. By considering symmetric and asymmetric binaries of the same chirp mass, we show that the knowledge of the binary mass ratio is not critical for this kind of radius measurements. We perform simulations which show that initial intrinsic neutron star rotation is unlikely to affect this method of constraining the high-density equation of state. We also summarize different possibilities about how the postmerger gravitational-wave emission can be employed to deduce the maximum mass of nonrotating neutron stars. We clarify the nature of the three most prominent features of the postmerger gravitational-wave spectrum and argue that the merger remnant can be considered to be a single, isolated, self-gravitating object that can be described by concepts of asteroseismology. We sketch how the consideration of the strength of secondary gravitational-wave peaks leads to a classification scheme of the gravitational-wave emission and postmerger dynamics. The understanding of the different mechanisms shaping the gravitational-wave signal yields a physically motivated analytic model of the gravitational-wave emission, which may form the basis for template-based gravitational-wave data analysis. We explore the observational

  1. Light flux density threshold at which protein denaturation is induced by synchrotron radiation circular dichroism beamlines.

    Science.gov (United States)

    Miles, A J; Janes, Robert W; Brown, A; Clarke, D T; Sutherland, J C; Tao, Y; Wallace, B A; Hoffmann, S V

    2008-07-01

    New high-flux synchrotron radiation circular dichroism (SRCD) beamlines are providing important information for structural biology, but can potentially cause denaturation of the protein samples under investigation. This effect has been studied at the new CD1 dedicated SRCD beamline at ISA in Denmark, where radiation-induced thermal damage effects were observed, depending not only on the radiation flux but also on the focal spot size of the light. Comparisons with similar studies at other SRCD facilities worldwide has lead to the estimation of a flux density threshold under which SRCD beamlines should be operated when samples are to be exposed to low-wavelength vacuum ultraviolet radiation for extended periods of time.

  2. Development of an Axial Flux MEMS BLDC Micromotor with Increased Efficiency and Power Density

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ding

    2015-06-01

    Full Text Available This paper presents a rigorous design and optimization of an axial flux microelectromechanical systems (MEMS brushless dc (BLDC micromotor with dual rotor improving both efficiency and power density with an external diameter of only around 10 mm. The stator is made of two layers of windings by MEMS technology. The rotor is developed by film permanent magnets assembled over the rotor yoke. The characteristics of the MEMS micromotor are analyzed and modeled through a 3-D magnetic equivalent circuit (MEC taking the leakage flux and fringing effect into account. Such a model yields a relatively accurate prediction of the flux in the air gap, back electromotive force (EMF and electromagnetic torque, whilst being computationally efficient. Based on 3-D MEC model the multi-objective firefly algorithm (MOFA is developed for the optimal design of this special machine. Both 3-D finite element (FE simulation and experiments are employed to validate the MEC model and MOFA optimization design.

  3. PERFORMANCE OPTIMIZATION OF LINEAR INDUCTION MOTOR BY EDDY CURRENT AND FLUX DENSITY DISTRIBUTION ANALYSIS

    Directory of Open Access Journals (Sweden)

    M. S. MANNA

    2011-12-01

    Full Text Available The development of electromagnetic devices as machines, transformers, heating devices confronts the engineers with several problems. For the design of an optimized geometry and the prediction of the operational behaviour an accurate knowledge of the dependencies of the field quantities inside the magnetic circuits is necessary. This paper provides the eddy current and core flux density distribution analysis in linear induction motor. Magnetic flux in the air gap of the Linear Induction Motor (LIM is reduced to various losses such as end effects, fringes, effect, skin effects etc. The finite element based software package COMSOL Multiphysics Inc. USA is used to get the reliable and accurate computational results for optimization the performance of Linear Induction Motor (LIM. The geometrical characteristics of LIM are varied to find the optimal point of thrust and minimum flux leakage during static and dynamic conditions.

  4. High-density ultracold neutron sources for the WWR-M and PIK reactors

    Science.gov (United States)

    Serebrov, A. P.; Fomin, A. K.; Kharitonov, A. G.; Lyamkin, V. A.; Prudnikov, D. V.; Ivanov, S. A.; Erykalov, A. N.; Onegin, M. S.; Gridnev, K. A.

    2016-01-01

    It is proposed to equip the PIK and WWR-M research reactors at the Petersburg Nuclear Physics Institute (PNPI) with high-density ultracold neutron (UCN) sources, where UCNs will be obtained based on the effect of their accumulation in superfluid helium (due to the specific features of this quantum fluid). The maximum UCN storage time in superfluid helium is obtained at temperatures on the order of 1 K. These sources are expected to yield UCN densities of 103-104 cm-3, i.e., approximately three orders of magnitude higher than the density from existing UCN sources throughout the world. The development of highest intensity UCN sources will make PNPI an international center of fundamental UCN research.

  5. High-density ultracold neutron sources for the WWR-M and PIK reactors

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Fomin, A. K.; Kharitonov, A. G.; Lyamkin, V. A.; Prudnikov, D. V.; Ivanov, S. A.; Erykalov, A. N.; Onegin, M. S. [National Research Centre “Kurchatov Institute”, Petersburg Nuclear Physics Institute (Russian Federation); Gridnev, K. A. [St. Petersburg State University (Russian Federation)

    2016-01-15

    It is proposed to equip the PIK and WWR-M research reactors at the Petersburg Nuclear Physics Institute (PNPI) with high-density ultracold neutron (UCN) sources, where UCNs will be obtained based on the effect of their accumulation in superfluid helium (due to the specific features of this quantum fluid). The maximum UCN storage time in superfluid helium is obtained at temperatures on the order of 1 K. These sources are expected to yield UCN densities of 10{sup 3}–10{sup 4} cm{sup –3}, i.e., approximately three orders of magnitude higher than the density from existing UCN sources throughout the world. The development of highest intensity UCN sources will make PNPI an international center of fundamental UCN research.

  6. Double-cavity radiometer for high-flux density solar radiation measurements.

    Science.gov (United States)

    Parretta, A; Antonini, A; Armani, M; Nenna, G; Flaminio, G; Pellegrino, M

    2007-04-20

    A radiometric method has been developed, suitable for both total power and flux density profile measurement of concentrated solar radiation. The high-flux density radiation is collected by a first optical cavity, integrated, and driven to a second optical cavity, where, attenuated, it is measured by a conventional radiometer operating under a stationary irradiation regime. The attenuation factor is regulated by properly selecting the aperture areas in the two cavities. The radiometer has been calibrated by a pulsed solar simulator at concentration levels of hundreds of suns. An optical model and a ray-tracing study have also been developed and validated, by which the potentialities of the radiometer have been largely explored.

  7. An Accurate Flux Density Scale from 50 MHz to 50 GHz

    CERN Document Server

    Perley, R A

    2016-01-01

    The flux density scale of Perley and Butler (2013) is extended downwards to ~50 MHz by utilizing recent observations with the Karl G. Jansky Very Large Array (VLA) of 20 sources between 220 MHz and 48.1 GHz, and legacy VLA observations at 73.8 MHz. The derived spectral flux densities are placed on an absolute scale by utilizing the Baars et al. (1977) values of Cygnus A (3C405) for frequencies below 2 GHz, and the Mars-based polynomials for 3C286, 3C295, and 3C196 from Perley and Butler (2013) above 2 GHz. Polynomial expressions are presented for all 20 sources, with accuracy limited by the primary standards to 3 -- 5% over the entire frequency range. Corrections to the scales proposed by Perley and Butler (2013) and by Scaife and Heald (2012) are given.

  8. Design of a new neutron delivery system for high flux source

    OpenAIRE

    Boffy, Romain

    2016-01-01

    La construcción en la actualidad de nuevas fuentes para el uso de haces de neutrones así como los programas de renovación en curso en algunas de las instalaciones experimentales existentes han evidenciado la necesidad urgente de desarrollar la tecnología empleada para la construcción de guías de neutrones con objeto de hacerlas mas eficientes y duraderas. Esto viene motivado por el hecho de que varias instalaciones de experimentación con haces de neutrones han reportado un número de incidente...

  9. Flux and instrumentation upgrade for the epithermal neutron beam facility at Washington State University.

    Science.gov (United States)

    Nigg, D W; Venhuizen, J R; Wemple, C A; Tripard, G E; Sharp, S; Fox, K

    2004-11-01

    An epithermal neutron beam facility for preclinical neutron capture therapy research has been constructed at the Washington State University TRIGA research reactor installation. Subsequent to a recent upgrade, this new facility offers a high-purity epithermal beam with intensity on the order of 1.2x10(9)n/cm(2)s. Key features include a fluoride-based design for the neutron filtering and moderating components as well as a novel collimator design that allows ease of assembly and disassembly of the beamline components.

  10. Design and expected performance of a fast neutron attenuation probe for light element density measurements

    Science.gov (United States)

    Sweany, M.; Marleau, P.

    2016-10-01

    We present the design and expected performance of a proof-of-concept 32 channel material identification system. Our system is based on the energy-dependent attenuation of fast neutrons for four elements: hydrogen, carbon, nitrogen and oxygen. We describe a new approach to obtaining a broad range of neutron energies to probe a sample, as well as our technique for reconstructing the molar densities within a sample. The system's performance as a function of time-of-flight energy resolution is explored using a Geant4-based Monte Carlo. Our results indicate that, with the expected detector response of our system, we will be able to determine the molar density of all four elements to within a 20-30% accuracy in a two hour scan time. In many cases this error is systematically low, thus the ratio between elements is more accurate. This degree of accuracy is enough to distinguish, for example, a sample of water from a sample of pure hydrogen peroxide: the ratio of oxygen to hydrogen is reconstructed to within 8±0.5% of the true value. Finally, with future algorithm development that accounts for backgrounds caused by scattering within the sample itself, the accuracy of molar densities, not ratios, may improve to the 5-10% level for a two hour scan time.

  11. Correlation between the Flux Density and Polarization for Flat Spectrum Radio Quasars

    Indian Academy of Sciences (India)

    Fei-Peng Pi; Yong-Xiang Wang; Jing Pan

    2011-03-01

    In this paper, using the preliminary database of the University of Michigan Radio Astronomy Observatory (UMRAO) at the radio frequencies, we calculated the weighted polarization at 8 GHz and investigated the correlation between the polarization and the flux density for 92 flat spectrum radio quasars (FSRQs). We found that the two observations are closely and positively correlated for FSRQs. This is perhaps from a relativistic beaming effect.

  12. Energy Flux and Density of Nonuniform Electromagnetic Waves with Total Reflection

    Science.gov (United States)

    Petrov, N. S.

    2014-07-01

    Analytic expressions are obtained for the energy flux and density of refracted nonuniform waves produced during total reflection at the boundary between two isotropic media for the general case of elliptically polarized incident light. The average values are determined as functions of the parameters of the adjoining media and the angle of incidence. The cases of linearly and circularly polarized incident waves are examined in detail. An explicit general expression relating the energy fl ux and density of these waves for arbitrarily polarized incident light is obtained.

  13. A LOFAR census of non-recycled pulsars: average profiles, dispersion measures, flux densities, and spectra

    CERN Document Server

    Bilous, A; Kramer, M; Keane, E; Hessels, J; Stappers, B; Malofeev, V; Sobey, C; Breton, R; Cooper, S; Falcke, H; Karastergiou, A; Michilli, D; Osłowski, S; Sanidas, S; ter Veen, S; van Leeuwen, J; Verbiest, J; Weltevrede, P; Zarka, P; Grießmeier, J -M; Serylak, M; Bell, M; Broderick, J; Eislöffel, J; Markoff, S; Rowlinson, A

    2015-01-01

    We present first results from a LOFAR census of non-recycled pulsars. The census includes almost all such pulsars known (194 sources) at declinations Dec$> 8^\\circ$ and Galactic latitudes |Gb|$> 3^\\circ$, regardless of their expected flux densities and scattering times. Each pulsar was observed contiguously in the frequency range from 110$-$188 MHz and for $\\geq 20$ minutes, recording full-Stokes data. We present the dispersion measures, flux densities, and calibrated total intensity profiles for the 158 pulsars detected in the sample. The median uncertainty in census dispersion measures ($1.5 \\times 10^{-4}$ pc cm$^{-3}$) is ten times smaller, on average, than in the ATNF pulsar catalogue. We combined census flux densities with those in the literature and fitted the resulting broadband spectra with single or broken power-law functions. For 48 census pulsars such fits are being published for the first time. Typically, the choice between single and broken power-laws, as well as the location of the spectral bre...

  14. Uncertainty and Sensitivity of Alternative Rn-222 Flux Density Models Used in Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Greg J. Shott, Vefa Yucel, Lloyd Desotell

    2007-06-01

    Performance assessments for the Area 5 Radioactive Waste Management Site on the Nevada Test Site have used three different mathematical models to estimate Rn-222 flux density. This study describes the performance, uncertainty, and sensitivity of the three models which include the U.S. Nuclear Regulatory Commission Regulatory Guide 3.64 analytical method and two numerical methods. The uncertainty of each model was determined by Monte Carlo simulation using Latin hypercube sampling. The global sensitivity was investigated using Morris one-at-time screening method, sample-based correlation and regression methods, the variance-based extended Fourier amplitude sensitivity test, and Sobol's sensitivity indices. The models were found to produce similar estimates of the mean and median flux density, but to have different uncertainties and sensitivities. When the Rn-222 effective diffusion coefficient was estimated using five different published predictive models, the radon flux density models were found to be most sensitive to the effective diffusion coefficient model selected, the emanation coefficient, and the radionuclide inventory. Using a site-specific measured effective diffusion coefficient significantly reduced the output uncertainty. When a site-specific effective-diffusion coefficient was used, the models were most sensitive to the emanation coefficient and the radionuclide inventory.

  15. Microscopic description of fission in neutron-rich Radium isotopes with the Gogny energy density functional

    CERN Document Server

    Rodriguez-Guzman, R R

    2015-01-01

    Mean field calculations, based on the D1S, D1N and D1M parametrizations of the Gogny energy density functional, have been carried out to obtain the potential energy surfaces relevant to fission in several Ra isotopes with the neutron number 144 $\\le$ N $\\le$ 176. Inner and outer barrier heights as well as first and second isomer excitation energies are given. The existence of a well developed third minimum along the fission paths of Ra nuclei, is analyzed in terms of the energetics of the "fragments" defining such elongated configuration. The masses and charges of the fission fragments are studied as functions of the neutron number in the parent Ra isotope. The comparison between fission and $\\alpha$-decay half-lives, reveals that the former becomes faster for increasing neutron numbers. Though there exists a strong variance of the results with respect to the parameters used in the computation of the spontaneous fission rate, a change in tendency is observed at N=164 with a steady increase that makes heavier ...

  16. Δ (1232 ) effects in density-dependent relativistic Hartree-Fock theory and neutron stars

    Science.gov (United States)

    Zhu, Zhen-Yu; Li, Ang; Hu, Jin-Niu; Sagawa, Hiroyuki

    2016-10-01

    The density-dependent relativistic Hartree-Fock (DDRHF) theory is extended to include Δ isobars for the study of dense nuclear matter and neutron stars. To this end, we solve the Rarita-Schwinger equation for spin-3/2 particle. Both the direct and exchange terms of the Δ isobars' self-energies are evaluated in detail. In comparison with the relativistic mean field theory (Hartree approximation), a weaker parameter dependence is found for DDRHF. An early appearance of Δ isobars is recognized at ρB˜0.28 fm-3, comparable with that of hyperons. Also, we find that the Δ isobars' softening of the equation of state is mainly due to the reduced Fock contributions from the coupling of the isoscalar mesons, while the pion contributions are negligibly small. We finally conclude that with typical parameter sets, neutron stars with Δ isobars in their interiors could be as heavy as the two massive pulsars whose masses are precisely measured, with slightly smaller radii than normal neutron stars.

  17. Gravimetric and density profiling using the combination of surface acoustic waves and neutron reflectivity.

    Science.gov (United States)

    Toolan, Daniel T W; Barker, Robert; Gough, Tim; Topham, Paul D; Howse, Jonathan R; Glidle, Andrew

    2017-02-01

    A new approach is described herein, where neutron reflectivity measurements that probe changes in the density profile of thin films as they absorb material from the gas phase have been combined with a Love wave based gravimetric assay that measures the mass of absorbed material. This combination of techniques not only determines the spatial distribution of absorbed molecules, but also reveals the amount of void space within the thin film (a quantity that can be difficult to assess using neutron reflectivity measurements alone). The uptake of organic solvent vapours into spun cast films of polystyrene has been used as a model system with a view to this method having the potential for extension to the study of other systems. These could include, for example, humidity sensors, hydrogel swelling, biomolecule adsorption or transformations of electroactive and chemically reactive thin films. This is the first ever demonstration of combined neutron reflectivity and Love wave-based gravimetry and the experimental caveats, limitations and scope of the method are explored and discussed in detail.

  18. The final power calibration of the IPEN/MB-01 nuclear reactor for various configurations obtained from the measurements of the absolute average neutron flux

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandre Fonseca Povoa da, E-mail: alexandre.povoa@mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto Credidio; Lima, Ana Cecilia de Souza; Betti, Flavio; Santos, Diogo Feliciano dos, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The use of neutron activation foils is a widely spread technique applied to obtain nuclear parameters then comparing the results with those calculated using specific methodologies and available nuclear data. By irradiation of activation foils and subsequent measurement of its induced activity, it is possible to determine the neutron flux at the position of irradiation. The power level during operation of the reactor is a parameter which is directly proportional to the average neutron flux throughout the core. The objective of this work is to gather data from irradiation of gold foils symmetrically placed along a cylindrically configured core which presents only a small excess reactivity in order to derive the power generated throughout the spatial thermal and epithermal neutron flux distribution over the core of the IPEN/MB-01 Nuclear Reactor, eventually lending to a proper calibration of its nuclear channels. The foils are fixed in a Lucite plate then irradiated with and without cadmium sheaths so as to obtain the absolute thermal and epithermal neutron flux. The correlation between the average power neutron flux resulting from the gold foils irradiation, and the average power digitally indicated by the nuclear channel number 6, allows for the calibration of the nuclear channels of the reactor. The reactor power level obtained by thermal neutron flux mapping was (74.65 ± 2.45) watts to a mean counting per seconds of 37881 cps to nuclear channel number 10 a pulse detector, and 0.719.10{sup -5} ampere to nuclear linear channel number 6 (a non-compensated ionization chamber). (author)

  19. On the Spectral Index-Flux Density Relation for Large Samples of Radio Sources

    Institute of Scientific and Technical Information of China (English)

    Xi-Zhen Zhang; W. Reich; P. Reich; R. Wielebinski

    2003-01-01

    We present new statistical results on the spectral index-flux densityrelation for large samples of radio sources using archival data of the most sensitivesurveys, such as 6C, Miyun, WENSS, B3, NVSS, GB87. Instrumental selectioneffects and the completeness of the catalogs are discussed. Based on the spec-tral indices calculated for about 200 000 sources from the WENSS (327 MHz) andNVSS (1.4 GHz) catalogs, we obtained (1) The median spectral index increases fromαmed ~ -0.9 to αmed ~ -0.8 (Sν∝να), while S327 flux densities decrease from0.1 Jy down to 25 mJy. The median spectral indices nearly show no variation withinthe error bars when the flux density is larger than 0.1 Jy. (2) A dependence of thefraction of ultra-steep spectrum sources (USS, -1.5 ≤α<-1.0), steep spectrumsources (SSS, -1.0 ≤α< -0.5) and flat spectrum sources (FSS, -0.5 ≤α≤ 0.0) ispartly responsible for the spectral flattening. Another contribution to the spectralflattening comes from the variation of αmed of steep spectrum sources (α<-0.5)themselves which increases with decreasing flux densities. (3) The spectral flatteningfor faint sources (down to S327 ~ 20 mJy) with steep spectra (α<-0.5) suggeststhat αmed is correlated with luminosity rather than redshift according to the Con-don' model. (4) A strong spectral selection effect occurs when spectral indices arecalculated from samples with a large frequency separation.

  20. Impact of a hollow density profile on turbulent particle fluxes: Gyrokinetic and fluid simulations

    Science.gov (United States)

    Tegnered, D.; Oberparleiter, M.; Strand, P.; Nordman, H.

    2017-07-01

    Hollow density profiles may occur in connection with pellet fuelling and L to H transitions. A positive density gradient could potentially stabilize the turbulence or change the relation between convective and diffusive fluxes, thereby reducing the turbulent transport of particles towards the center, making the pellet fuelling scheme inefficient. In the present work, the particle transport driven by Ion Temperature Gradient/Trapped Electron (ITG/TE) mode turbulence in hollow density profiles is studied by fluid as well as gyrokinetic simulations. The fluid model used, an extended version of the Weiland transport model, Extended Drift Wave Model (EDWM), incorporates an arbitrary number of ion species in a multi-fluid description and an extended wavelength spectrum. The fluid model, which is fast and hence suitable for use in predictive simulations, is compared to gyrokinetic simulations using the code GENE. Typical tokamak parameters are used based on the Cyclone Base Case. Parameter scans in key plasma parameters like plasma β, R/LT, and magnetic shear are investigated. In addition, the effects of a fast species are studied and global ITG simulations in a simplified physics description are performed in order to investigate nonlocal effects. It is found that β in particular, has a stabilizing effect in the negative R/Ln region. Both nonlinear GENE and EDWM simulations show a decrease in inward flux for negative R/Ln and a change in the direction from inward to outward for positive R/Ln. Moreover, the addition of fast particles was shown to decrease the inward main ion particle flux in the positive gradient region further. This might have serious consequences for pellet fuelling of high β plasmas. Additionally, the heat flux in global ITG turbulence simulations indicates that nonlocal effects can play a different role from usual in connection with pellet fuelling.

  1. Coupled-channels quantum theory of electronic flux density in electronically adiabatic processes: fundamentals.

    Science.gov (United States)

    Diestler, D J

    2012-03-22

    The Born-Oppenheimer (BO) description of electronically adiabatic molecular processes predicts a vanishing electronic flux density (j(e)), =1/2∫dR[Δ(b) (x;R) - Δ(a) (x;R)] even though the electrons certainly move in response to the movement of the nuclei. This article, the first of a pair, proposes a quantum-mechanical "coupled-channels" (CC) theory that allows the approximate extraction of j(e) from the electronically adiabatic BO wave function . The CC theory is detailed for H(2)(+), in which case j(e) can be resolved into components associated with two channels α (=a,b), each of which corresponds to the "collision" of an "internal" atom α (proton a or b plus electron) with the other nucleus β (proton b or a). The dynamical role of the electron, which accommodates itself instantaneously to the motion of the nuclei, is submerged in effective electronic probability (population) densities, Δ(α), associated with each channel (α). The Δ(α) densities are determined by the (time-independent) BO electronic energy eigenfunction, which depends parametrically on the configuration of the nuclei, the motion of which is governed by the usual BO nuclear Schrödinger equation. Intuitively appealing formal expressions for the electronic flux density are derived for H(2)(+).

  2. Modeling the radiolysis of supercritical water by fast neutrons: density dependence of the yields of primary species at 400°c.

    Science.gov (United States)

    Butarbutar, Sofia Loren; Meesungnoen, Jintana; Guzonas, David A; Stuart, Craig R; Jay-Gerin, Jean-Paul

    2014-12-01

    A reliable understanding of radiolysis processes in supercritical water (SCW)-cooled reactors is crucial to developing chemistry control strategies that minimize the corrosion and degradation of materials. However, directly measuring the chemistry in reactor cores is difficult due to the extreme conditions of high temperature and pressure and mixed neutron and gamma-radiation fields, which are incompatible with normal chemical instrumentation. Thus, chemical models and computer simulations are an important route of investigation for predicting the detailed radiation chemistry of the coolant in a SCW reactor and the consequences for materials. Surprisingly, information on the fast neutron radiolysis of water at high temperatures is limited, and even more so for fast neutron irradiation of SCW. In this work, Monte Carlo simulations were used to predict the G values for the primary species e(-)aq, H(•), H2, (•)OH and H2O2 formed from the radiolysis of pure, deaerated SCW (H2O) by 2 MeV monoenergetic neutrons at 400°C as a function of water density in the range of ∼0.15-0.6 g/cm(3). The 2 MeV neutron was taken as representative of a fast neutron flux in a reactor. For light water, the moderation of these neutrons after knock-on collisions with water molecules generated mostly recoil protons of 1.264, 0.465, 0.171 and 0.063 MeV. Neglecting oxygen ion recoils and assuming that the most significant contribution to the radiolysis came from these first four recoil protons, the fast neutron yields were estimated as the sum of the G values for these protons after appropriate weightings were applied according to their energy. Calculated yields were compared with available experimental data and with data obtained for low-LET radiation. Most interestingly, the reaction of H(•) atoms with water was found to play a critical role in the formation yields of H2 and (•)OH at 400°C. Recent work has underscored the potential importance of this reaction above 200°C, but its

  3. Neutron Flux and Activation Calculations for a High Current Deuteron Accelerator

    CERN Document Server

    Coniglio, Angela; Sandri, Sandro

    2005-01-01

    Neutron analysis of the first Neutral Beam (NB) for the International Thermonuclear Experimental Reactor (ITER) was performed to provide the basis for the study of the following main aspects: personnel safety during normal operation and maintenance, radiation shielding design, transportability of the NB components in the European countries. The first ITER NB is a medium energy light particle accelerator. In the scenario considered for the calculation the accelerated particles are negative deuterium ions with maximum energy of 1 MeV. The average beam current is 13.3 A. To assess neutron transport in the ITER NB structure a mathematical model of the components geometry was implemented into MCNP computer code (MCNP version 4c2. "Monte Carlo N-Particle Transport Code System." RSICC Computer Code Collection. June 2001). The neutron source definition was outlined considering both D-D and D-T neutron production. FISPACT code (R.A. Forrest, FISPACT-2003. EURATOM/UKAEA Fusion, December 2002) was used to assess neutron...

  4. Neutronics Conversion Analyses of the Laue-Langevin Institute (ILL) High Flux Reactor (RHF)

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Calzavara, Y. [Inst. Laue-Langevin (ILL), Grenoble (France)

    2014-09-30

    The following report describes the neutronics results obtained with the MCNP model of the RHF U7Mo LEU reference design that has been established in 2010 during the feasibility analysis. This work constitutes a complete and detailed neutronics analysis of that LEU design using models that have been significantly improved since 2010 and the release of the feasibility report. When possible, the credibility of the neutronics model is tested by comparing the HEU model results with experimental data or other codes calculations results. The results obtained with the LEU model are systematically compared to the HEU model. The changes applied to the neutronics model lead to better comparisons with experimental data or improved the calculation efficiency but do not challenge the conclusion of the feasibility analysis. If the U7Mo fuel is commercially available, not cost prohibitive, a back-end solution is established and if it is possible to manufacture the proposed element, neutronics analyses show that the performance of the reactor would not be challenged by the conversion to LEU fuel.

  5. Improving sap flux density measurements by correctly determining thermal diffusivity, differentiating between bound and unbound water.

    Science.gov (United States)

    Vandegehuchte, Maurits W; Steppe, Kathy

    2012-07-01

    Several heat-based sap flow methods, such as the heat field deformation method and the heat ratio method, include the thermal diffusivity D of the sapwood as a crucial parameter. Despite its importance, little attention has been paid to determine D in a plant physiological context. Therefore, D is mostly set as a constant, calculated during zero flow conditions or from a method of mixtures, taking into account wood density and moisture content. In this latter method, however, the meaning of the moisture content is misinterpreted, making it theoretically incorrect for D calculations in sapwood. A correction to this method, which includes the correct application of the moisture content, is proposed. This correction was tested for European and American beech and Eucalyptus caliginosa Blakely & McKie. Depending on the dry wood density and moisture content, the original approach over- or underestimates D and, hence, sap flux density by 10% and more.

  6. Vertical variation of particle speed and flux density in aeolian saltation: Measurement and modeling

    Science.gov (United States)

    Rasmussen, Keld R.; SøRensen, Michael

    2008-06-01

    Particle dynamics in aeolian saltation has been studied in a boundary layer wind tunnel above beds composed of quartz grains having diameters of either 242 μm or 320 μm. The cross section of the tunnel is 600 mm × 900 mm, and its thick boundary layer allows precise estimation of the fluid friction speed. Saltation is modeled using a numerical saltation model, and predicted grain speeds agree fairly well with experimental results obtained from laser-Doppler anemometry. The use of laser-Doppler anemometry to study aeolian saltation is thoroughly discussed and some pitfalls are identified. At 80 mm height the ratio between air speed and grain speed is about 1.1 and from there it increases toward the bed so that at 5 mm it is about 2.0. All grain speed profiles converge toward a common value of about 1 m/s at 2-3 mm height. Moreover, the estimated launch velocity distributions depend only very weakly on the friction speed in contrast to what has often been assumed in the literature. Flux density profiles measured with a laser-Doppler appear to be similar to most other density profiles measured with vertical array compartment traps; that is, two exponential segments will fit data between heights from a few millimeters to 100-200 mm. The experimental flux density profiles are found to agree well with model predictions. Generally, validation rates are low from 30 to 50% except at the highest level of 80 mm, where they approach 80%. When flux density profiles based on the validated data are used to estimate the total mass transport rate results are in fair agreement with measured transport rates except for conditions near threshold where as much as 50% difference is observed.

  7. Long-term Longitudinal Recurrences of the Open Magnetic Flux Density in the Heliosphere

    Science.gov (United States)

    Dósa, M.; Erdős, G.

    2017-04-01

    Open magnetic flux in the heliosphere is determined from the radial component of the magnetic field vector measured onboard interplanetary space probes. Previous Ulysses research has shown remarkable independence of the flux density from heliographic latitude, explained by super-radial expansion of plasma. Here we are investigating whether any longitudinal variation exists in the 50 year long OMNI magnetic data set. The heliographic longitude of origin of the plasma package was determined by applying a correction according to the solar wind travel time. Significant recurrent enhancements of the magnetic flux density were observed throughout solar cycle 23, lasting for several years. Similar, long-lasting recurring features were observed in the solar wind velocity, temperature and the deviation angle of the solar wind velocity vector from the radial direction. Each of the recurrent features has a recurrence period slightly differing from the Carrington rotation rate, although they show a common trend in time. Examining the coronal temperature data of ACE leads to the possible explanation that these long-term structures are caused by slow–fast solar wind interaction regions. A comparison with MESSENGER data measured at 0.5 au shows that these longitudinal magnetic modulations do not exist closer to the Sun, but are the result of propagation.

  8. One-point fitting of the flux density produced by a heliostat

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco J. [Univ. Zaragoza, CPS-B, Dpto de Ingenieria Mecanica, Maria de Luna 3, 50018 Zaragoza (Spain)

    2010-04-15

    Accurate and simple models for the flux density reflected by an isolated heliostat should be one of the basic tools for the design and optimization of solar power tower systems. In this work, the ability and the accuracy of the Universidad de Zaragoza (UNIZAR) and the DLR (HFCAL) flux density models to fit actual energetic spots are checked against heliostat energetic images measured at Plataforma Solar de Almeria (PSA). Both the fully analytic models are able to acceptably fit the spot with only one-point fitting, i.e., the measured maximum flux. As a practical validation of this one-point fitting, the intercept percentage of the measured images, i.e., the percentage of the energetic spot sent by the heliostat that gets the receiver surface, is compared with the intercept calculated through the UNIZAR and HFCAL models. As main conclusions, the UNIZAR and the HFCAL models could be quite appropriate tools for the design and optimization, provided the energetic images from the heliostats to be used in the collector field were previously analyzed. Also note that the HFCAL model is much simpler and slightly more accurate than the UNIZAR model. (author)

  9. A high-resolution optical measurement system for rapid acquisition of radiation flux density maps

    Science.gov (United States)

    Thelen, Martin; Raeder, Christian; Willsch, Christian; Dibowski, Gerd

    2017-06-01

    To identify the power and flux density of concentrated solar radiation the Institute of Solar Research at the German Aerospace Center (DLR - Deutsches Zentrum für Luft-und Raumfahrt e. V.) has used the camera-based measurement system FATMES (Flux and Temperature Measurement System) since 1995. The disadvantages of low resolution, difficult handling and poor computing power required a revision of the existing measurement system. The measurement system FMAS (Flux Mapping Acquisition system) is equipped with state-of-the-art-hardware, is compatible with computers off-the-shelf and is programmed in LabView. The expenditure of time for an image evaluation is reduced by the factor 60 compared to FATMES. The new measurement system is no longer associated with the facilities Solar Furnace and High Flux Solar Simulator at the DLR in Cologne but is also applicable as a mobile system. The data and the algorithms are transparent throughout the complete process. The measurement accuracy of FMAS is determined to at most ±3 % until now. The error of measurement of FATMES is at least 2 % higher according to the conducted comparison tests.

  10. The CG-1D Neutron Imaging Beamline at the Oak Ridge National Laboratory High Flux Isotope Reactor

    Science.gov (United States)

    Santodonato, Lou; Bilheux, Hassina; Bailey, Barton; Bilheux, Jean; Nguyen, Phong; Tremsin, Anton; Selby, Doug; Walker, Lakeisha

    The Oak Ridge National Laboratory Neutron Sciences Directorate has installed a neutron imaging beamline at the High Flux Isotope Reactor (HFIR) cold guide hall. CG-1D is one of the three instruments that make up the CG1 instrument suite. The beamline optics and detector have recently been upgraded to meet the needs of the neutron imaging community (better "smoothing" of guide system artifacts, higher flux or spatial resolution). These upgrades comprise a new diffuser/aperture system, two new detectors, a He-filled flight tube and silicon (Si) windows. Shielding inside the flight tube, beam scrapers and a beam stop ensure that biological dose is less than 50 μSv/hr outside of the radiation boundary. A set of diffusers and apertures (pinhole geometry) has been installed at the exit of the guide system to allow motorized L/D variation. Samples sit on a translation/rotation stage for alignment and tomography purposes. Detectors for the CG-1D beamline are (1) an ANDOR DW936 charge coupled device (CCD) camera with a field of view of approximately 7 cm x 7 cm and ∼ 80 microns spatial resolution and 1 frame per second time resolution, (2) a new Micro-Channel Plate (MCP) detector with a 2.8 cm x 2.8 cm field of view and 55 microns spatial resolution, and 5 μs timing capability. 6LiF/ZnS scintillators of thickness varying from 50 to 200 microns are being used at this facility. An overview of the beamline upgrade and preliminary data is presented here.

  11. Measurement of the High Energy Neutron Flux on the Surface of the Natural Uranium Target Assembly QUINTA Irradiated by Deuterons of 4 and 8 GeV Energy

    Science.gov (United States)

    Adam, J.; Baldin, A. A.; Chilap, V.; Furman, W.; Katovsky, K.; Khushvaktov, J.; Kumar, V.; Pronskikh, V.; Mar'in, I.; Solnyshkin, A.; Suchopar, M.; Tsupko-Sitnikov, V.; Tyutyunnikov, S.; Vrzalova, J.; Wagner, V.; Zavorka, L.

    Experiments with the natural uranium target assembly "QUINTA" exposed to 4 and 8 GeV deuteron beams of the Nuclotron accelerator at the Joint Institute for Nuclear Research (Dubna) are analyzed. The reaction rates of 27Al(n,y1)24Na, 27Al(n,y2)22Na and 27Al(n,y3)7Be reactions with effective threshold energies of 5, 27, and 119 MeV were measured at both 4 GeV and 8 GeV deuteron beam energies. The average neutron fluxes between the effective threshold energies and the effective ends of the neutron spectra (which are 800 or 1000 MeV for 4 or 8 GeV deuterons) were determined. The evidence for the intensity shift of the neutron spectra to higher neutron energies with the increase of the deuteron energy from 4 GeV to 8 GeV was found from the ratios of the average neutron fluxes. The reaction rates and the average neutron fluxes were calculated with the MCNPX 2.7 code.

  12. Neutron flux measurement based on the 2 nd Campbell theorem; Medicion del flujo neutronico basada en el segundo teorema de Campbell

    Energy Technology Data Exchange (ETDEWEB)

    Giuliodori, Luis M.; Milberg, Mario; Zalcman, Julio [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Unidad de Actividades de Reactores y Centrales Nucleares. Sector Instrumentacion y Control

    1997-10-01

    Generally, nuclear flux measurement in research and production reactor are carried out in two stages: first, low level fluxes are measured by counting the pulses produced by fission or boron trifluoride chambers. Second, for high flux levels the parameter measured is the mean current generated in a compensated ionization chamber. A method which shows the feasibility of measuring neutron flux in the second stage with the same counting chamber used in the first stage, without the need to move it from its placement, is presented. (author). 6 refs., 4 figs.

  13. Evaluation of the thermal neutron flux in the core of IPEN/MB-01 reactor using the code Monte Carlo (MCNP)

    Energy Technology Data Exchange (ETDEWEB)

    Salome, Jean A.D.; Cardoso, Fabiano; Faria, Rochkhudson B.; Pereira, Claubia, E-mail: jadsalome@yahoo.com.br, E-mail: fabinuclear@yahoo.com.br, E-mail: rockdefaria@yahoo.com.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2015-07-01

    The IPEN/MB-01 reactor, located in the city of Sao Paulo - Brazil, reached its first criticality on the year of 1988. The reactor is characterized by a low output power of 100 W only, even because its purpose is to produce knowledge about nuclear power plants on a smaller geometric scale without the requirement of an extremely complex cooling system. The use of devices such as this it is very interesting because it achieves the demands of nuclear engineering about the neutronic parameters needed in the design of large nuclear plants through relatively simple and inexpensive methods. In this paper, the computational mathematical code MCNP5 is used to perform the calculation of the thermal neutron flux in the core of the IPEN/MB-01 reactor. To do this is used an experiment from the LEU-COMP-THERM-077 benchmark that represents the standard rectangular configuration of the IPEN/MB-01 reactor. The thermal neutron flux is calculated at some axial planes of different heights and, after that, axial profiles of the thermal neutron flux are done and compared to experimental results issued previously. The experimental values used as reference refer to a cylindrical configuration of the core of the reactor. Finally, the pertinence and relevance of the results are checked. With this work is expected to produce more knowledge about the dynamics of neutron flux in the core of the IPEN/MB-01 reactor. (author)

  14. Sensing magnetic flux density of artificial neurons with a MEMS device.

    Science.gov (United States)

    Tapia, Jesus A; Herrera-May, Agustin L; García-Ramírez, Pedro J; Martinez-Castillo, Jaime; Figueras, Eduard; Flores, Amira; Manjarrez, Elías

    2011-04-01

    We describe a simple procedure to characterize a magnetic field sensor based on microelectromechanical systems (MEMS) technology, which exploits the Lorentz force principle. This sensor is designed to detect, in future applications, the spiking activity of neurons or muscle cells. This procedure is based on the well-known capability that a magnetic MEMS device can be used to sense a small magnetic flux density. In this work, an electronic neuron (FitzHugh-Nagumo) is used to generate controlled spike-like magnetic fields. We show that the magnetic flux density generated by the hardware of this neuron can be detected with a new MEMS magnetic field sensor. This microdevice has a compact resonant structure (700 × 600 × 5 μm) integrated by an array of silicon beams and p-type piezoresistive sensing elements, which need an easy fabrication process. The proposed microsensor has a resolution of 80 nT, a sensitivity of 1.2 V.T(-1), a resonant frequency of 13.87 kHz, low power consumption (2.05 mW), quality factor of 93 at atmospheric pressure, and requires a simple signal processing circuit. The importance of our study is twofold. First, because the artificial neuron can generate well-controlled magnetic flux density, we suggest it could be used to analyze the resolution and performance of different magnetic field sensors intended for neurobiological applications. Second, the introduced MEMS magnetic field sensor may be used as a prototype to develop new high-resolution biomedical microdevices to sense magnetic fields from cardiac tissue, nerves, spinal cord, or the brain.

  15. A turnkey data logger program for field-scale energy flux density measurements using eddy covariance and surface renewal

    Science.gov (United States)

    Micrometeorological methods and ecosystem-scale energy and mass flux density measurements have become increasingly important in soil, agricultural, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Eddy cov...

  16. Spin-density correlations in the dynamic spin-fluctuation theory: Comparison with polarized neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, N.B., E-mail: melnikov@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Reser, B.I., E-mail: reser@imp.uran.ru [Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Paradezhenko, G.V., E-mail: gparadezhenko@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2016-08-01

    To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.

  17. Energy flux density and angular momentum density of Pearcey-Gauss vortex beams in the far field

    Science.gov (United States)

    Cheng, K.; Lu, G.; Zhong, X.

    2017-02-01

    The longitudinal and transverse energy flux density (EFD) and angular momentum density (AMD) of a Pearcey-Gauss vortex beam in the far field are studied using the vector angular spectrum representation and stationary phase method, where the influence of topological charge, noncanonical strength and off-axis distance of the embedded optical vortex on far-field vectorial structures of the corresponding beam is emphasized. For comparison, the EFD and AMD of the Pearcey-Gauss beam with non-vortex in the far field are also discussed. The results show that the longitudinal EFDs of the Pearcey-Gauss vortex beam exhibit parabolic patterns, and the number of parabolic dark zones equals the absolute value of topological charge of the embedded optical vortex in the input plane. While for the Pearcey-Gauss beam, the dark zones are not found owing to the non-vortex in the input plane. The motion of zero-intensity spot of whole beam appears by varying the off-axis distance. Noncanonical strength and off-axis distance both can adjust the magnitudes and directions of transverse EFD and control the spatial energy distributions of longitudinal EFD, but not change the net AMD.

  18. $\\Delta$ (1232) effects in density-dependent relativistic Hartree-Fock theory and neutron stars

    CERN Document Server

    Zhu, Zhen-Yu; Hu, Jin-Niu; Sagawa, Hiroyuki

    2016-01-01

    The density-dependent relativistic Hartree-Fock (DDRHF) theory is extended to include $\\Delta$-isobars for the study of dense nuclear matter and neutron stars. To this end, we solve the Rarita-Schwinger equation for spin-3/2 particle. Both the direct and exchange terms of the $\\Delta$-isobars' self-energies are evaluated in details. In comparison with the relativistic mean field theory (Hartree approximation), a weaker parameter dependence is found for DDRHF. An early appearance of $\\Delta$-isobars is recognized at $\\rho_B\\sim0.27$fm$^{-3}$, comparable with that of hyperons. Also, we find that the $\\Delta$-isobars' softening of the equation of state is found to be mainly due to the reduced Fock contributions from the coupling of the isoscalar mesons, while the pion contributions are found negligibly small. We finally conclude that with typical parameter sets, neutron stars with $\\Delta$-isobars in their interiors could be as heavy as the two massive pulsars whose masses are precisely measured, with slightly s...

  19. Temperature and Magnetic Field Dependence of Critical Current Density of YBCO with Varying Flux Pinning Additions (POSTPRINT)

    Science.gov (United States)

    2010-03-01

    AFRL-RZ-WP-TP-2010-2083 TEMPERATURE AND MAGNETIC FIELD DEPENDENCE OF CRITICAL CURRENT DENSITY OF YBCO WITH VARYING FLUX PINNING ADDITIONS...MAGNETIC FIELD DEPENDENCE OF CRITICAL CURRENT DENSITY OF YBCO WITH VARYING FLUX PINNING ADDITIONS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b...20 ‒ 77 K. Films were prepared with pulsed laser deposition by (M/ YBCO )N multilayer or ( YBCO )1-x Mx single-target methods, for different M phases

  20. Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements.

    Science.gov (United States)

    Vandegehuchte, Maurits W; Steppe, Kathy

    2012-10-01

    • To our knowledge, to date, no nonempirical method exists to measure reverse, low or high sap flux density. Moreover, existing sap flow methods require destructive wood core measurements to determine sapwood water content, necessary to convert heat velocity to sap flux density, not only damaging the tree, but also neglecting seasonal variability in sapwood water content. • Here, we present a nonempirical heat-pulse-based method and coupled sensor which measure temperature changes around a linear heater in both axial and tangential directions after application of a heat pulse. By fitting the correct heat conduction-convection equation to the measured temperature profiles, the heat velocity and water content of the sapwood can be determined. • An identifiability analysis and validation tests on artificial and real stem segments of European beech (Fagus sylvatica L.) confirm the applicability of the method, leading to accurate determinations of heat velocity, water content and hence sap flux density. • The proposed method enables sap flux density measurements to be made across the entire natural occurring sap flux density range of woody plants. Moreover, the water content during low flows can be determined accurately, enabling a correct conversion from heat velocity to sap flux density without destructive core measurements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  1. GPU Acceleration of Mean Free Path Based Kernel Density Estimators for Monte Carlo Neutronics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Burke, TImothy P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kiedrowski, Brian C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martin, William R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-19

    Kernel Density Estimators (KDEs) are a non-parametric density estimation technique that has recently been applied to Monte Carlo radiation transport simulations. Kernel density estimators are an alternative to histogram tallies for obtaining global solutions in Monte Carlo tallies. With KDEs, a single event, either a collision or particle track, can contribute to the score at multiple tally points with the uncertainty at those points being independent of the desired resolution of the solution. Thus, KDEs show potential for obtaining estimates of a global solution with reduced variance when compared to a histogram. Previously, KDEs have been applied to neutronics for one-group reactor physics problems and fixed source shielding applications. However, little work was done to obtain reaction rates using KDEs. This paper introduces a new form of the MFP KDE that is capable of handling general geometries. Furthermore, extending the MFP KDE to 2-D problems in continuous energy introduces inaccuracies to the solution. An ad-hoc solution to these inaccuracies is introduced that produces errors smaller than 4% at material interfaces.

  2. Computation of the electronic flux density in the Born-Oppenheimer approximation.

    Science.gov (United States)

    Diestler, D J; Kenfack, A; Manz, J; Paulus, B; Pérez-Torres, J F; Pohl, V

    2013-09-12

    A molecule in the electronic ground state described in the Born–Oppenheimer approximation (BOA) by the wave function ΨBO = Φ0χ0 (where Φ0 is the time-independent electronic energy eigenfunction and χ0 is a time-dependent nuclear wave packet) exhibits a nonzero nuclear flux density, whereas it always displays zero electronic flux density (EFD), because the electrons are in a stationary state. A hierarchical approach to the computation of the EFD within the context of the BOA, which utilizes only standard techniques of quantum chemistry (to obtain Φ0) and quantum dynamics (to describe the evolution of χ0 on the ground-state potential energy surface), provides a resolution of this puzzling, nonintuitive result. The procedure is applied to H2(+) oriented parallel with the z-axis and vibrating in the ground state (2)Σg(+). First, Φ0 and χ0 are combined by the coupled-channels technique to give the normally dominant z-component of the EFD. Imposition of the constraints of electronic continuity, cylindrical symmetry of Φ0 and two boundary conditions on the EFD through a scaling procedure yields an improved z-component, which is then used to compute the complementary orthogonal ρ-component. The resulting EFD agrees with its highly accurate counterpart furnished by a non-BOA treatment of the system.

  3. Microsystem for remote sensing of high energy radiation with associated extremely low photon flux densities

    Science.gov (United States)

    Otten, A.; Jain, V. K.

    2015-08-01

    This paper presents a microsystem for remote sensing of high energy radiation in extremely low flux density conditions. With wide deployment in mind, potential applications range from nuclear non-proliferation, to hospital radiation-safety. The daunting challenge is the low level of photon flux densities - emerging from a Scintillation Crystal (SC) on to a ~1 mm-square detector, which are a factor of 10000 or so lower than those acceptable to recently reported photonic chips (including `single-photon detection' chips), due to a combination of low Lux, small detector size, and short duration SC output pulses - on the order of 1 μs. These challenges are attempted to be overcome by the design of an innovative `System on a Chip' type microchip, with high detector sensitivity, and effective coupling from the SC to the photodetector. The microchip houses a tiny n+ diff p-epi photodiode (PD) as well as the associated analog amplification and other related circuitry, all fabricated in 0.5micron, 3-metal 2-poly CMOS technology. The amplification, together with pulse-shaping of the photocurrent-induced voltage signal, is achieved through a tandem of two capacitively coupled, double-cascode amplifiers. Included in the paper are theoretical estimates and experimental results.

  4. Analytical function for the flux density due to sunlight reflected from a heliostat

    Energy Technology Data Exchange (ETDEWEB)

    Collado, F.J.; Gomez, A.; Turegano, J.A.

    1986-01-01

    An analytical model is presented for the flux density due to a focused heliostat over the receiver plane of a tower solar plant. The main assumptions are: spherical and continuous surface of the mirror, linear conformal transformation in the complex plane equivalent to the reflection mapping between an on-axis aligned heliostat and the objective located on the receiver at the slant range necessary to produce the minimum circle of confusion, circular Gaussian distribution of the effective sunshape and the concentration function constant on the receiver or the image plane. Under the hypotheses presented earlier an exact convolution is obtained. The result, an analytic flux density function, relatively simple and very flexible, is confronted with experimental measurements taken from four heliostat prototypes of second-generation placed at the Central Receiver Test Facility (CRTF), Albuquerque, New Mexico, and compared indirectly with the predictions of the Helios model for the same heliostats. The model is an essential tool in the problem of the determination of collector field parameters by optimization methods.

  5. Flux densities of meteoroids derived from optical double-station observations

    Science.gov (United States)

    Koschny, D.; Drolshagen, E.; Drolshagen, S.; Kretschmer, J.; Ott, T.; Drolshagen, G.; Poppe, B.

    2017-09-01

    We have developed a new method to determine flux densities of meteoroids using optical double-station meteor observations. It is based on the assumption that the velocity distribution is constant for all mass bins. By comparing the observed velocity distribution with a model distribution we determine de-biasing factors to correct for meteors too slow to emit a detectable amount of light. We use this method to correct a dataset of about 20000 double-station meteoroids detected over a period of about 3.5 years with the Canary Island Long-Baseline Observatory (CILBO). The resulting cumulative flux density has a slope comparable to the model of Grün et al. (1985). The largest uncertainty is the luminous efficiency. Depending on which values for the luminous efficiency are assumed, the mass estimate deviates by about one to 1.5 orders of magnitude. Using the luminous efficiencies derived by Weryk et al. (2013) results in an excellent agreement of our data with the Grün data.

  6. The 30 cm radio flux as a solar proxy for thermosphere density modelling

    Directory of Open Access Journals (Sweden)

    Dudok de Wit Thierry

    2017-01-01

    Full Text Available The 10.7 cm radio flux (F10.7 is widely used as a proxy for solar UV forcing of the upper atmosphere. However, radio emissions at other centimetric wavelengths have been routinely monitored since the 1950 s, thereby offering prospects for building proxies that may be better tailored to space weather needs. Here we advocate the 30 cm flux (F30 as a proxy that is more sensitive than F10.7 to longer wavelengths in the UV and show that it improves the response of the thermospheric density to solar forcing, as modelled with DTM (Drag Temperature Model. In particular, the model bias drops on average by 0–20% when replacing F10.7 by F30; it is also more stable (the standard deviation of the bias is 15–40% smaller and the density variation at the the solar rotation period is reproduced with a 35–50% smaller error. We compare F30 to other solar proxies and discuss its assets and limitations.

  7. THERMAL NEUTRON FLUX MAPPING ON A TARGET CAPSULE AT RABBIT FACILITY OF RSG-GAS REACTOR FOR USE IN k0-INAA

    Directory of Open Access Journals (Sweden)

    Sutisna Sutisna

    2015-03-01

    Full Text Available Instrumental neutron activation analysis based on the k0 method (k0-INAA requires the availability of the accurate reactor parameter data, in particular a thermal neutron flux that interact with a targets inside the target capsule. This research aims to determine and map the thermal neutron flux inside the capsule and irradiation channels used for the elemental quantification using the k0-AANI. Mapping of the thermal neutron flux (фth on two type of irradiation capsule have been done for RS01 and RS02 facilities of RSG-GAS reactor. Thermal neutron flux determined using Al-0,1%Au alloy through 197Au(n,g 198Au nuclear reaction, while the flux mapping done using statistics R. Thermal neutron flux are calculated using k0-IAEA software provided by IAEA. The results showed the average thermal neutron flux is (5.6±0.3×10+13 n.cm-2.s-1; (5.6±0.4×10+13 n.cm-2.s-1; (5.2±0.4×10+13 n.cm-2.s-1 and (5.3±0.4×10+13 n.cm-2.s-1 for Polyethylene capsule of 1st , 2nd, 3rd and 4th layer respectively. In the case of Aluminum capsule, the thermal neutron flux was lower compared to that on Polyethylene capsule. There were (3.0±0.2×10+13 n.cm-2.s-1; (2.8±0.1×10+13 n.cm-2.s-1; (3.2±0.3×10+13 n.cm-2.s-1 for 1st, 2nd and 3rd layers respectively. For each layer in the capsule, the thermal neutron flux is not uniform and it was no degradation flux in the axial direction, both for polyethylene and aluminum capsules. Contour map of eight layer on polyethylene capsule and six layers on aluminum capsule for RS01 and RS02 irradiation channels had a similar pattern with a small diversity for all type of the irradiation capsule. Keywords: thermal neutron, flux, capsule, NAA   Analisis aktivasi neutron instrumental berbasis metode k0 (k0-AANI memerlukan ketersediaan data parameter reaktor yang akurat, khususnya data fluks neutron termal yang berinteraksi dengan inti sasaran di dalam kapsul target. Penelitian ini bertujuan menentukan dan memetakan fluks neutron termal

  8. Density effect on critical current density and flux pinning properties of polycrystalline SmFeAsO1 - xFx superconductor

    Science.gov (United States)

    Ding, Y.; Sun, Y.; Zhuang, J. C.; Cui, L. J.; Shi, Z. X.; Sumption, M. D.; Majoros, M.; Susner, M. A.; Kovacs, C. J.; Li, G. Z.; Collings, E. W.; Ren, Z. A.

    2011-12-01

    A series of polycrystalline SmFeAs1 - xOx bulks was prepared to systematically investigate the influence of sample density on flux pinning properties. Different sample densities were achieved by controlling the pelletizing pressure. The superconducting volume fraction, the critical current densities Jcm and the flux pinning force densities Fp were estimated from the magnetization measurements. Experimental results show that: (1) the superconducting volume fraction increases with the increasing of sample density; (2) the Jcm values have a similar trend except for the sample with very high density due to different connectivity and pinning mechanisms, moreover, the Jcm(B) curve develops a peak effect at approximately the same field at which the high density sample shows a kink; (3) the Fp(B) curve of the high density sample shows a low-field peak and a high-field peak at several temperatures, which can be explained by improved intergranular current, while only one peak can be observed in Fp(B) of the low density samples. Based on the scaling behaviour of flux pinning force densities, the main intragranular pinning is normal point pinning.

  9. Spatial heterogeneity of satellite derived land surface parameters and energy flux densities for LITFASS-area

    Directory of Open Access Journals (Sweden)

    A. Tittebrand

    2009-03-01

    Full Text Available Based on satellite data in different temporal and spatial resolution, the current use of frequency distribution functions (PDF for surface parameters and energy fluxes is one of the most promising ways to describe subgrid heterogeneity of a landscape. Objective of this study is to find typical distribution patterns of parameters (albedo, NDVI for the determination of the actual latent heat flux (L.E determined from highly resolved satellite data within pixel on coarser scale.

    Landsat ETM+, Terra MODIS and NOAA-AVHRR surface temperature and spectral reflectance were used to infer further surface parameters and radiant- and energy flux densities for LITFASS-area, a 20×20 km2 heterogeneous area in Eastern Germany, mainly characterised by the land use types forest, crop, grass and water. Based on the Penman-Monteith-approach L.E, as key quantity of the hydrological cycle, is determined for each sensor in the accordant spatial resolution with an improved parametrisation. However, using three sensors, significant discrepancies between the inferred parameters can cause flux distinctions resultant from differences of the sensor filter response functions or atmospheric correction methods. The approximation of MODIS- and AVHRR- derived surface parameters to the reference parameters of ETM (via regression lines and histogram stretching, respectively, further the use of accurate land use classifications (CORINE and a new Landsat-classification, and a consistent parametrisation for the three sensors were realized to obtain a uniform base for investigations of the spatial variability.

    The analyses for 4 scenes in 2002 and 2003 showed that for forest clear distribution-patterns for NDVI and albedo are found. Grass and crop distributions show higher variability and differ significantly to each other in NDVI but only marginal in albedo. Regarding NDVI-distribution functions NDVI was found to be the key variable for L.E-determination.

  10. Spatial distributions of the energy and energy flux density of partially coherent electromagnetic beams in atmospheric turbulence.

    Science.gov (United States)

    Li, Jianlong; Lü, Baida; Zhu, Shifu

    2009-07-06

    The formulas of the energy and energy flux density of partially coherent electromagnetic beams in atmospheric turbulence are derived by using Maxwell's equations. Expressions expressed by elements of electric cross spectral density matrixes of the magnetic and the mutual cross spectral density matrix are obtained for the partially coherent electromagnetic beams. Taken the partially coherent Cosh-Gaussian (ChG) electromagnetic beam as a typical example, the spatial distributions of the energy and energy flux density in atmospheric turbulence are numerically calculated. It is found that the turbulence shows a broadening effect on the spatial distributions of the energy and energy flux density. Some interesting results are obtained and explained with regard to their physical nature.

  11. [Project for] a high-flux extracted neutron beam reactor [for physicists]; Un [projet de] reacteur a haut flux et faisceaux sortis [pour physiciens

    Energy Technology Data Exchange (ETDEWEB)

    Ageron, P. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-07-01

    French requirements in neutron beams of different energies extracted from a reactor are briefly described. The well-known importance of cold neutrons (above 4 Angstrom) is emphasized. The main characteristics of a reactor suitable for physicists are outlined: They are: 1 - A flux of about 7. 10{sup 14} thermal neutrons in the heavy water of the reflector, 2 - Maximum flexibility obtained by: - physical separation of the core and the reflector, - independence of the different experiments, - possibility of modifying physical experiments up to - and including - the nature of the used reflector, without any appreciable interruption in the operation of the reactor, - reduction of fixed shields to a minimum; ample use of liquid shields (water) and fluid shields (sands). 3 - Technological continuity as far as possible with French research reactors (Siloe, Pegase, Osiris) already existing or under construction. 4 - Safety of operation arising from simplicity of conception. 5 - Minimised construction costs. Lowering of the operating costs is looked for indirectly in the simplification of the solutions and the reduction of operating staff, rather than directly by reducing the consumption of fuel elements and energy. The recommended solution can be described as a closed-core non-pressurized swimming-pool reactor, highly under-moderated by the cooling light water. Surrounding the reactor are a number of 'beam tubes-loops' each consisting of: - a part of the reflector (heavy water in the example described), - a part of neutron extraction beam tube, - the circuits required for their cooling, - the inlet systems of suitable fluids to the beam tube nose (liquid hydrogen in the example described), - the necessary outlets for measurement and control system. The whole 'beam tubes loops' is immersed in the water of the metallic self-supporting swimming-pool. The shielding outside the swimming-pool is composed for the most part by heavy sand in which is the rest of

  12. VERITAS: a high-flux neutron reflectometer with vertical sample geometry for a long pulse spallation source

    Science.gov (United States)

    Mattauch, S.; Ioffe, A.; Lott, D.; Menelle, A.; Ott, F.; Medic, Z.

    2016-04-01

    An instrument concept of a reflectometer with a vertical sample geometry fitted to the long pulse structure of a spallation source, called “VERITAS” at the ESS, is presented. It focuses on designing a reflectometer with high intensity at the lowest possible background following the users' demand to investigate thin layers or interfacial areas in the sub-nanometer length scale. The high intensity approach of the vertical reflectometer fits very well to the long pulse structure of the ESS. Its main goal is to deliver as much usable intensity as possible at the sample position and be able to access a reflectivity range of 8 orders of magnitude and more. The concept assures that the reflectivity measurements can be performed in its best way to maximize the flux delivered to the sample. The reflectometer is optimized for studies of (magnetic) layers having thicknesses down to 5Å and a surface area of 1x1cm2. With reflectivity measurements the depth-resolved, laterally averaged chemical and magnetic profile can be investigated. By using polarised neutrons, additional vector information on the in-plane magnetic correlations (off-specular scattering at the pm length scale, GISANS at the nm length scale) can be studied. The full polarisation analysis could be used for soft matter samples to correct for incoherent scattering which is presently limiting neutron reflectivity studies to a reflectivity range on the order of 10-6.

  13. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes.

    Science.gov (United States)

    Wullschleger, Stan D; Childs, Kenneth W; King, Anthony W; Hanson, Paul J

    2011-06-01

    A variety of thermal approaches are used to estimate sap flux density in stems of woody plants. Models have proved valuable tools for interpreting the behavior of heat pulse, heat balance and heat field deformation techniques, but have seldom been used to describe heat transfer dynamics for the heat dissipation method. Therefore, to better understand the behavior of heat dissipation probes, a model was developed that takes into account the thermal properties of wood, the physical dimensions and thermal characteristics of the probes, and the conductive and convective heat transfer that occurs due to water flow in the sapwood. Probes were simulated as aluminum tubes 20 mm in length and 2 mm in diameter, whereas sapwood, heartwood and bark each had a density and water fraction that determined their thermal properties. Base simulations assumed a constant sap flux density with sapwood depth and no wounding or physical disruption of xylem beyond the 2 mm diameter hole drilled for probe installation. Simulations across a range of sap flux densities showed that the dimensionless quantity k [defined as (ΔT(m) -ΔT)/ΔT, where ΔT(m) is the temperature differential (ΔT) between the heated and unheated probe under zero-flow conditions] was dependent on the thermal conductivity of the sapwood. The relationship between sap flux density and k was also sensitive to radial gradients in sap flux density and to xylem disruption near the probe. Monte Carlo analysis in which 1000 simulations were conducted while simultaneously varying thermal conductivity and wound diameter revealed that sap flux density and k showed considerable departure from the original calibration equation used with this technique. The departure was greatest for variation in sap flux density typical of ring-porous species. Depending on the specific combination of thermal conductivity and wound diameter, use of the original calibration equation resulted in an 81% under- to 48% overestimation of sap flux density

  14. Quantitative evaluation of magnetic flux density in a magnetic recording head and pseudo soft underlayer by electron holography.

    Science.gov (United States)

    Xia, Weixing; Hirata, Kei; Yanagisawa, Keiichi; Ishida, Yoichi; Kasai, Hiroto; Yanagiuchi, Katsuaki; Shindo, Daisuke; Tonomura, Akira

    2010-01-01

    The magnetic interaction between the pole tip of a single-pole head and a pseudo soft underlayer in perpendicular magnetic recording was observed by electron holography. The magnetic flux density inside the soft underlayer was quantitatively evaluated. The distribution of magnetic flux density was calculated using the finite element method, and the influences of the modulation of the reference wave and stray fields were investigated by comparison with experimental results. The flux density observed was found to be underestimated due to the modulation of the phase shift in reference wave. The magnetic flux measured experimentally was larger than that inside the specimen because of the relatively large stray fields above and below the specimen in the direction of the electron beam.

  15. The revised electromagnetic fields directive and worker exposure in environments with high magnetic flux densities.

    Science.gov (United States)

    Stam, Rianne

    2014-06-01

    Some of the strongest electromagnetic fields (EMF) are found in the workplace. A European Directive sets limits to workers' exposure to EMF. This review summarizes its origin and contents and compares magnetic field exposure levels in high-risk workplaces with the limits set in the revised Directive. Pubmed, Scopus, grey literature databases, and websites of organizations involved in occupational exposure measurements were searched. The focus was on EMF with frequencies up to 10 MHz, which can cause stimulation of the nervous system. Selected studies had to provide individual maximum exposure levels at the workplace, either in terms of the external magnetic field strength or flux density or as induced electric field strength or current density. Indicative action levels and the corresponding exposure limit values for magnetic fields in the revised European Directive will be higher than those in the previous version. Nevertheless, magnetic flux densities in excess of the action levels for peripheral nerve stimulation are reported for workers involved in welding, induction heating, transcranial magnetic stimulation, and magnetic resonance imaging (MRI). The corresponding health effects exposure limit values for the electric fields in the worker's body can be exceeded for welding and MRI, but calculations for induction heating and transcranial magnetic stimulation are lacking. Since the revised European Directive conditionally exempts MRI-related activities from the exposure limits, measures to reduce exposure may be necessary for welding, induction heating, and transcranial nerve stimulation. Since such measures can be complicated, there is a clear need for exposure databases for different workplace scenarios with significant EMF exposure and guidance on good practices.

  16. Study of neutronic flux in IPR-R1 reactor with MCNPX; Estudo do fluxo neutronico no reator IPR-R1 com o MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Melo, J.A.S.; Castrillo, L.S., E-mail: julio.angelo@poli.br, E-mail: lazara@poli.br [Universidade de Pernambuco (UPE), Recife, PE (Brazil). Escola Politecnica; Oliveira, R.M.B.M., E-mail: romero.matias@educacao.pe.gov.br [Secretaria Executiva de Educacao do Estado de Pernambuco (SEE), Recife, PE (Brazil)

    2016-11-01

    MCNPX computer code, one of the latest versions of code MCNP transport were used to study the flux distribution and its neutronic fluence as a function of energy in two research reactor irradiation IPR-R1. The model developed was validated with research conducted by Dalle (2005). Initially, in the simulation is considered fresh fuel whose core configuration contained three neutron rods control, being two of them 100% ejected while the other inserted 3,1 x 10{sup -1} m deep, as adopted in the literature situation. The neutron source used was the critical type, through KSRC card. The results of the neutron flow and neutronic fluence were obtained in the central tube and the turntable on a range of energy spectrum that ranged from 1.0 x 10{sup -9} MeV to 10 MeV, showing good correlations with the model used in validation. Finally, a hypothetical situation wherein the three reactor control rods are ejected simultaneously was simulated. The simulation results showed an increase in the neutron flux of 7% in the central tube and 5% on the turntable.

  17. Optimization of magnetic flux density measurement using multiple RF receiver coils and multi-echo in MREIT.

    Science.gov (United States)

    Jeong, Woo Chul; Chauhan, Munish; Sajib, Saurav Z K; Kim, Hyung Joong; Serša, Igor; Kwon, Oh In; Woo, Eung Je

    2014-09-01

    Magnetic Resonance Electrical Impedance Tomography (MREIT) is an MRI method that enables mapping of internal conductivity and/or current density via measurements of magnetic flux density signals. The MREIT measures only the z-component of the induced magnetic flux density B = (Bx, By, Bz) by external current injection. The measured noise of Bz complicates recovery of magnetic flux density maps, resulting in lower quality conductivity and current-density maps. We present a new method for more accurate measurement of the spatial gradient of the magnetic flux density gradient (∇ Bz). The method relies on the use of multiple radio-frequency receiver coils and an interleaved multi-echo pulse sequence that acquires multiple sampling points within each repetition time. The noise level of the measured magnetic flux density Bz depends on the decay rate of the signal magnitude, the injection current duration, and the coil sensitivity map. The proposed method uses three key steps. The first step is to determine a representative magnetic flux density gradient from multiple receiver coils by using a weighted combination and by denoising the measured noisy data. The second step is to optimize the magnetic flux density gradient by using multi-echo magnetic flux densities at each pixel in order to reduce the noise level of ∇ Bz and the third step is to remove a random noise component from the recovered ∇ Bz by solving an elliptic partial differential equation in a region of interest. Numerical simulation experiments using a cylindrical phantom model with included regions of low MRI signal to noise ('defects') verified the proposed method. Experimental results using a real phantom experiment, that included three different kinds of anomalies, demonstrated that the proposed method reduced the noise level of the measured magnetic flux density. The quality of the recovered conductivity maps using denoised ∇ Bz data showed that the proposed method reduced the conductivity

  18. Estimating sap flux densities in date palm trees using the heat dissipation method and weighing lysimeters.

    Science.gov (United States)

    Sperling, Or; Shapira, Or; Cohen, Shabtai; Tripler, Effi; Schwartz, Amnon; Lazarovitch, Naftali

    2012-09-01

    In a world of diminishing water reservoirs and a rising demand for food, the practice and development of water stress indicators and sensors are in rapid progress. The heat dissipation method, originally established by Granier, is herein applied and modified to enable sap flow measurements in date palm trees in the southern Arava desert of Israel. A long and tough sensor was constructed to withstand insertion into the date palm's hard exterior stem. This stem is wide and fibrous, surrounded by an even tougher external non-conducting layer of dead leaf bases. Furthermore, being a monocot species, water flow does not necessarily occur through the outer part of the palm's stem, as in most trees. Therefore, it is highly important to investigate the variations of the sap flux densities and determine the preferable location for sap flow sensing within the stem. Once installed into fully grown date palm trees stationed on weighing lysimeters, sap flow as measured by the modified sensors was compared with the actual transpiration. Sap flow was found to be well correlated with transpiration, especially when using a recent calibration equation rather than the original Granier equation. Furthermore, inducing the axial variability of the sap flux densities was found to be highly important for accurate assessments of transpiration by sap flow measurements. The sensors indicated no transpiration at night, a high increase of transpiration from 06:00 to 09:00, maximum transpiration at 12:00, followed by a moderate reduction until 08:00; when transpiration ceased. These results were reinforced by the lysimeters' output. Reduced sap flux densities were detected at the stem's mantle when compared with its center. These results were reinforced by mechanistic measurements of the stem's specific hydraulic conductivity. Variance on the vertical axis was also observed, indicating an accelerated flow towards the upper parts of the tree and raising a hypothesis concerning dehydrating

  19. Electroweak Measurements of Neutron Densities in CREX and PREX at JLab, USA

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Charles J. [Indiana U.; Kumar, Krishna S. [UMass; Michaels, Robert W. [JLAB

    2014-02-01

    Measurement of the parity-violating electron scattering asymmetry is an established technique at Jefferson Lab and provides a new opportunity to measure the weak charge distribution and hence pin down the neutron radius in nuclei in a relatively clean and model-independent way. This is because the Z boson of the weak interaction couples primarily to neutrons. We will describe the PREX and CREX experiments on ${}^{208}$Pb and ${}^{48}$Ca respectively; these are both doubly-magic nuclei whose first excited state can be discriminated by the high resolution spectrometers at JLab. The heavier lead nucleus, with a neutron excess, provides an interpretation of the neutron skin thickness in terms of properties of bulk neutron matter. For the lighter ${}^{48}$Ca nucleus, which is also rich in neutrons, microscopic nuclear theory calculations are feasible and are sensitive to poorly constrained 3-neutron forces.

  20. Quasi-classical theory of electronic flux density in electronically adiabatic molecular processes.

    Science.gov (United States)

    Diestler, D J

    2012-11-26

    The standard Born-Oppenheimer (BO) description of electronically adiabatic molecular processes predicts a vanishing electronic flux density (EFD). A previously proposed "coupled-channels" theory permits the extraction of the EFD from the BO wave function for one-electron diatomic systems, but attempts at generalization to many-electron polyatomic systems are frustrated by technical barriers. An alternative "quasi-classical" approach, which eliminates the explicit quantum dynamics of the electrons within a classical framework, yet retains the quantum character of the nuclear motion, appears capable of yielding EFDs for arbitrarily complex systems. Quasi-classical formulas for the EFD in simple systems agree with corresponding coupled-channels formulas. Results of the application of the new quasi-classical formula for the EFD to a model triatomic system indicate the potential of the quasi-classical scheme to elucidate the dynamical role of electrons in electronically adiabatic processes in more complex multiparticle systems.

  1. Polarised radio sources : a study of luminosity, redshift and flux density

    Science.gov (United States)

    Grant, Julie Kristen

    2011-05-01

    Results of deep polarisation imaging at 1.4 GHz with the Dominion Radio Astrophysical Observatory as part of the DRAO Planck Deep Fields project are presented. This deep extragalactic field covers 15.16 deg2 centred at a2000 = 16h14m and d2000 = 54560, has an angular resolution of 4200-6200 at the field centre, and reaches a sensitivity of 55 mJy beam-1 in Stokes I and 45 mJy beam-1 in Stokes Q and U. There are 958 radio sources in Stokes I of which 136 are detected in polarisation. The Euclidean-normalized polarised differential source counts are determined down to 400 mJy. These counts indicate that sources have a higher percentage polarisation at fainter Stokes I flux density levels than for brighter sources. The majority of the polarised sources are steep-spectrum objects with a mean spectral index of -0.77, and there is no correlation between fractional polarisation and spectral index. Of the polarised sources, 77% show structure at the arc-second scale whereas only 38% of the sources with no detectable polarisation show such structure. This indicates that polarised sources tend to have structure at arcsecond scales and that the polarised emission is most likely not beamed. This confirms that the polarised radio sources tend to be lobe-dominated radio galaxies. The median percentage polarisation for resolved sources is 6.8%, while it is 4.4% for compact objects. Radio sources in the DRAO deep field have been matched with the Spitzer Wide-Area Infrared Extragalactic survey of the European Large Area ISO Survey North 1 field. In the redshift range of 0.04 FRIIs, which are seen to populate the polarized source counts at fainter flux density levels. There is no correlation between redshift and percentage polarisation for this sample. However, there is a correlation between increasing percentage polarisation and decreasing luminosity for polarised radio sources.

  2. Frequency spectra from current vs. magnetic flux density measurements for mobile phones and other electrical appliances.

    Science.gov (United States)

    Straume, Aksel; Johnsson, Anders; Oftedal, Gunnhild; Wilén, Jonna

    2007-10-01

    The frequency spectra of electromagnetic fields have to be determined to evaluate human exposure in accordance to ICNIRP guidelines. In the literature, comparisons with magnetic field guidelines have been performed by using the frequency distribution of the current drawn from the battery. In the present study we compared the frequency spectrum in the range 217 Hz to 2.4 kHz of the magnetic flux density measured near the surface of a mobile phone with the frequency spectrum of the supply current. By using the multiple frequency rule, recommended in the ICNIRP guidelines, we estimated the magnetic field exposure in the two cases. Similar measurements and estimations were done for an electric drill, a hair dryer, and a fluorescent desk lamp. All the devices have a basic frequency of 50 Hz, and the frequency spectra were evaluated up to 550 Hz. We also mapped the magnetic field in 3D around three mobile phones. The frequency distributions obtained from the two measurement methods are not equal. The frequency content of the current leads to an overestimation of the magnetic field exposure by a factor up to 2.2 for the mobile phone. For the drill, the hair dryer, and the fluorescent lamp, the supply current signal underestimated the exposure by a factor up to 2.3. In conclusion, an accurate exposure evaluation requires the magnetic flux density spectrum of the device to be measured directly. There was no indication that the devices studied would exceed the reference levels at the working distances normally used.

  3. A study on the excore neutron flux monitoring system for the wide range measurement

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Jun; Jeong, Dae Won; Baek, Kwang Il; Lee, Jeong Yang; Ha, Jae Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-11-01

    This paper describes a study in which only one kind of neutron detector were used in the advanced ENFMS. The conceptual design was performed for overall system with unified fission chamber. The system consists of detector, junction box, wide-range amplifier and signal processing device. Also the requirements of 10CFR50 App. R were considered in design. On the other hand, through computer simulation, the characteristics of pulse-count mode and MSV mode was scrutinized and each noise withstanding capability was analyzed. The results say that 3rd moment has the more stable characteristics to background noise than MSV method. Also, to remain the integrity of information against noise, during installation and operation, the overall system of KSNP was analyzed from a view of noise. By administration for the cause of noise and noise-coupling paths, through the full understanding of noise characteristics, the transfer of the noise source can be minimized. (Author).

  4. Determination of nitrogen in wheat flour through Activation analysis using Fast neutron flux of a Thermal nuclear reactor; Determinacion de nitrogeno en harina de trigo mediante analisis por activacion empleando el flujo de neutrones rapidos de un reactor nuclear termico

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, T

    1976-07-01

    In this work is done a technical study for determining Nitrogen (protein) and other elements in wheat flour Activation analysis, with Fast neutrons from a Thermal nuclear reactor. Initially it is given an introduction about the basic principles of the methods of analysis. Equipment used in Activation analysis and a brief description of the neutron source (Thermal nuclear reactor). The realized experiments for determining the flux form in the irradiation site, the half life of N-13 and the interferences due to the sample composition are included too. Finally, the obtained results by Activation and the Kjeldahl method are tabulated. (Author)

  5. An investigation into the torque density capabilities of flux-focusing magnetic gearboxes

    Science.gov (United States)

    Uppalapati, Krishna Kiran

    Wind and many rotary based ocean energy conversion devices rely on a mechanical gearbox to increase their speed so as to match the requirements of the electromagnetic generator. However, mechanical gearboxes have a number of disadvantages such as the need for gear lubrication, no overload protection and the creation of acoustic noise. Frequently direct-drive generators are employed to overcome these issues, wherein the gearbox is removed and the shaft of the turbine is directly connected to the synchronous generator, either with an electrically excited or permanent magnet rotor. If the input speed to the generator is very low the torque must be very high in order to generate the necessary power. However, as the electrical loading of a synchronous generator is thermally limited, the size of the generator will become excessively large at high power levels. An alternative to these technologies is to consider replacing the mechanical gearbox with a magnetic gear. A magnetic gear can create speed change without any physical contact. It has inherent overload protection, and its non-contact operation offers the potential for high reliability. Despite significant progress, existing magnetic gear designs do not achieve torque densities that are competitive with mechanical gearboxes. This research has focused on designing a coaxial magnetic gear that can operate at a volumetric torque density that is comparable to a mechanical gearbox. A flux-focusing rotor topology also called spoke-type rotor magnet arrangement was adopted to improve the air-gap magnetic flux density which in turn improves the torque transferred between the rotors. Finite element analysis was utilized to conduct a parameter sweep analysis of the different geometric parameters of the magnetic gear. A sub-scale magnetic gear with a diameter of 110 mm and a scaled-up magnetic gear with a diameter of 228 mm was designed, constructed and experimentally evaluated. The torque and torque density of sub

  6. Low-density lipoproteins investigated under high hydrostatic pressure by elastic incoherent neutron scattering.

    Science.gov (United States)

    Peters, J; Martinez, N; Lehofer, B; Prassl, R

    2017-07-01

    Human low-density lipoprotein (LDL) is a highly complex nano-particle built up of various lipid classes and a single large protein moiety (apoB-100) owning essential physiological functions in the human body. Besides its vital role as a supplier of cholesterol and fat for peripheral tissues and cells, it is also a known key player in the formation of atherosclerosis. Due to these important roles in physiology and pathology the elucidation of structural and dynamical details is of great interest. In the current study we drew a broader picture of LDL dynamics using elastic incoherent neutron scattering (EINS) as a function of specified temperature and pressure points. We not only investigated a normolipidemic LDL sample, but also a triglyceride-rich and an oxidized one to mimic pathologic conditions as found under hyperlipidemic conditions or in atherosclerotic plaques, respectively. We could show that pressure has a significant effect on atomic motions in modified forms of LDL, whereas the normolipidemic sample seems to cope much better with high-pressure conditions irrespective of temperature. These findings might be explained by the altered lipid composition, which is either caused through elevated triglyceride content or modifications through lipid peroxidation.

  7. Correlations between the peak flux density and the position angle of inner-jet in three blazars

    CERN Document Server

    Liu, X; Liu, B -R; Li, Q -W

    2012-01-01

    We aim to investigate the relation between the long-term flux density and the position angle (PA) evolution of inner-jet in blazars. We have carried out the elliptic Gaussian model-fit to the `core' of 50 blazars from 15 GHz VLBA data, and analyzed the variability properties of three blazars from the model-fit results. Diverse correlations between the long-term peak flux density and the PA evolution of the major axis of the `core' have been found in $\\sim$ 20% of the 50 sources. Of them, three typical blazars have been analyzed, which also show quasi-periodic flux variations of a few years (T). The correlation between the peak flux density and the PA of inner-jet is positive for S5~0716+714, and negative for S4~1807+698. The two sources cannot be explained with the ballistic jet models, the non-ballistic models have been analyzed to explain the two sub-luminal blazars. A correlation between the peak flux density and the PA (with a T/4 time lag) of inner-jet is found in [HB89]~1823+568, this correlation can be...

  8. HERITAGE: the concept of a giant flux neutron reflectometer for the exploration of 3-d structure of free-liquid and solid interfaces in thin films

    Science.gov (United States)

    Mattauch, S.; Ioffe, A.; Lott, D.; Bottyán, L.; Daillant, J.; Markó, M.; Menelle, A.; Sajti, S.; Veres, T.

    2017-01-01

    The instrumental concept of HERITAGE - a reflectometer with a horizontal sample geometry - well fitted to the long pulse structure of a neutron source is presented. It is constitutes a new class of reflectometers achieving the unprecedentedly high flux for classical specular reflectometry combined with off-specular reflectometry and grazing incidence small-angle scattering (GISANS), thus resulting in a complete 3-d exploration of lateral and in depth structures in thin films. This is achieved by specially designed neutron guides. In the horizontal direction (perpendicular to the scattering plane) the guide's elliptic shape focusses the neutrons onto the sample. In the vertical direction a multichannel geometry provides a smooth divergence distribution at the sample position while accepting the entire beam from a compact high-brilliance flat moderator. The modular collimation setup of HERITAGE provides extremely high flexibility in respect to sample geometries and environments, including the possibility to study virtually all types of solid and liquid interfaces, statically or kinetically. The use of multiple beam illumination allows for reflectivity and GISANS measurements at liquid interfaces both from above and below without a need to move the sample. This concept assures the delivery of the maximum possible and usable flux to the sample in both reflectivity and GISANS measurement regimes. The presented design outperforms the flux of all present-day and already for the ESS planned reflectometers and GISANS setups in flux and in measuring time for standard samples.

  9. An empirical study of the wound effect on sap flux density measured with thermal dissipation probes.

    Science.gov (United States)

    Wiedemann, Andreas; Marañón-Jiménez, Sara; Rebmann, Corinna; Herbst, Mathias; Cuntz, Matthias

    2016-12-01

    The insertion of thermal dissipation (TD) sensors on tree stems for sap flux density (SFD) measurements can lead to SFD underestimations due to a wound formation close to the drill hole. However, the wound effect has not been assessed experimentally for this method yet. Here, we propose an empirical approach to investigate the effect of the wound healing on measured sap flux with TD probes. The approach was performed for both, diffuse-porous (Fagus sylvatica (Linnaeus)) and ring-porous (Quercus petraea (Lieblein)) species. Thermal dissipation probes were installed on different dates along the growing season to document the effects of the dynamic wound formation. The trees were cut in autumn and additional sensors were installed in the cut stems, therefore, without potential effects of wound development. A range of water pressures was applied to the stem segments and SFDs were simultaneously measured by TD sensors as well as gravimetrically in the laboratory. The formation of wounds around sensors installed in living tree stems led to underestimation of SFD by 21.4 ± 3 and 47.5 ± 3.8% in beech and oak, respectively. The differences between SFD underestimations of diffuse-porous beech and ring-porous oak were, however, not statistically significant. Sensors with 5-, 11- and 22-week-old wounds also showed no significant differences, which implies that the influence of wound formation on SFD estimates was completed within the first few weeks after perforation. These results were confirmed by time courses of SFD measurements in the field. Field SFD values decreased immediately after sensor installation and reached stable values after ~2 weeks with similar underestimations to the ones observed in the laboratory. We therefore propose a feasible approach to correct directly field observations of SFD for potential underestimations due to the wound effect.

  10. Diagnostic of fusion neutrons on JET tokamak using diamond detector

    Science.gov (United States)

    Nemtsev, G.; Amosov, V.; Marchenko, N.; Meshchaninov, S.; Rodionov, R.; Popovichev, S.; JET EFDA contributors

    2014-08-01

    In 2011-2012, an experimental campaign with a significant yield of fusion neutrons was carried out on the JET tokamak. During this campaign the facility was equipped with two diamond detectors based on natural and artificial CVD diamond. These detectors were designed and manufactured in State Research Center of Russian Federation TRINITI. The detectors measure the flux of fast neutrons with energies above 0.2 MeV. They have been installed in the torus hall and the distance from the center of plasma was about 3 m. For some of the JET pulses in this experiment, the neutron flux density corresponded to the operational conditions in collimator channels of ITER Vertical Neutron Camera. The main objective of diamond monitors was the measurement of total fast neutron flux at the detector location and the estimation of the JET total neutron yield. The detectors operate as threshold counters. Additionally a spectrometric measurement channel has been configured that allowed us to distinguish various energy components of the neutron spectrum. In this paper we describe the neutron signal measuring and calibration procedure of the diamond detector. Fluxes of DD and DT neutrons at the detector location were measured. It is shown that the signals of total neutron yield measured by the diamond detector correlate with signals measured by the main JET neutron diagnostic based on fission chambers with high accuracy. This experiment can be considered as a successful test of diamond detectors in ITER-like conditions.

  11. Nuclear charge and neutron radii and nuclear matter: Trend analysis in Skyrme density-functional-theory approach

    Science.gov (United States)

    Reinhard, P.-G.; Nazarewicz, W.

    2016-05-01

    Background: Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by the presence of nuclear surface. Purpose: In this work, by studying the correlation of charge and neutron radii, and neutron skin, with nuclear matter parameters, we assess different mechanisms that drive nuclear sizes. Method: We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of optimization protocols, which do not include any radius information. By performing the Monte Carlo sampling of reasonable functionals around the optimal parametrization, we scan all correlations between nuclear matter properties and observables characterizing charge and neutron distributions of spherical closed-shell nuclei 48Ca,208Pb, and 298Fl. Results: By considering the influence of various nuclear matter properties on charge and neutron radii in a multidimensional parameter space of Skyrme functionals, we demonstrate the existence of two strong relationships: (i) between the nuclear charge radii and the saturation density of symmetric nuclear matter ρ0, and (ii) between the neutron skins and the slope of the symmetry energy L . The impact of other nuclear matter properties on nuclear radii is weak or nonexistent. For functionals optimized to experimental binding energies only, proton and neutron radii are found to be weakly correlated due to canceling trends from different nuclear matter characteristics. Conclusion: The existence of only two strong relations connecting nuclear radii with nuclear matter properties has important consequences. First, by requiring that the nuclear functional reproduces the empirical saturation point of symmetric nuclear matter practically fixes the charge (or proton) radii, and vice versa. This explains the recent results of ab initio calculations

  12. Importance of nuclear triaxiality for electromagnetic strength, level density and neutron capture cross sections in heavy nuclei

    CERN Document Server

    Grosse, Eckart; Massarczyk, Ralph

    2014-01-01

    Cross sections for neutron capture in the range of unresolved resonances are predicted simultaneously to level distances at the neutron threshold for more than 100 spin-0 target nuclei with A >70. Assuming triaxiality in nearly all these nuclei a combined parameterization for both, level density and photon strength is presented. The strength functions used are based on a global fit to IVGDR shapes by the sum of three Lorentzians adding up to the TRK sum rule and theory-based predictions for the A-dependence of pole energies and spreading widths. For the small spins reached by capture level densities are well described by only one free global parameter; a significant collective enhancement due to the deviation from axial symmetry is observed. Reliable predictions for compound nuclear reactions also outside the valley of stability as expected from the derived global parameterization are important for nuclear astrophysics and for the transmutation of nuclear waste.

  13. Conception d'un nouveau système de distribution de neutrons pour source à haut flux

    OpenAIRE

    Boffy, Romain

    2016-01-01

    The building of new experimental neutron beam facilities as well as the renewal programmes under development at some of the already existing installations have pinpointed the urgent need to develop neutron guide technology in order to make such neutron transport devices more efficient and durable. In fact, a number of mechanical failures of neutron guides have been reported by several research centres. It is therefore important to understand the behaviour of the glass substrates on top of whi...

  14. Concept for Inclusion of Analytical and Computational Capability in Optical Plume Anomaly Detection (OPAD) for Measurement of Neutron Flux

    Science.gov (United States)

    Patrick, Marshall Clint; Cooper, Anita E.; Powers, W. T.

    2004-01-01

    Researchers are working on many fronts to make possible high-speed, automated classification and quantification of constituent materials in numerous environments. NASA's Marshall Space Flight Center has implemented a system for rocket engine flowfields/plumes. The Optical Plume Anomaly Detector (OPAD) system was designed to utilize emission and absorption spectroscopy for monitoring molecular and atomic particulates in gas plasma. An accompanying suite of tools and analytical package designed to utilize information collected by OPAD is known as the Engine Diagnostic Filtering System (EDiFiS). The current combination of these systems identifies atomic and molecular species and quantifies mass loss rates in H2/O2 rocket plumes. Capabilities for real-time processing are being advanced on several fronts, including an effort to hardware encode components of the EDiFiS for health monitoring and management. This paper addresses the OPAD with its tool suites, and discusses what is considered a natural progression: a concept for taking OPAD to the next logical level of high energy physics, incorporating fermion and boson particle analyses in measurement of neutron flux.

  15. HERITAGE: the concept of a giant flux neutron reflectometer for the exploration of 3-d structure of free-standing and solid interfaces in thin films

    CERN Document Server

    Mattauch, S; Lott, D; Bottyán, L; Markó, M; Veres, T; Sajti, S; Daillant, J; Menelle, A

    2015-01-01

    The instrumental concept of HERITAGE - a reflectometer with a horizontal sample geometry - fitted to the long pulse structure of a neutron source is presented. It is dedicated on creating a new class of reflectometers achieving the unprecedentedly high flux for classical specular reflectometry combined with off-specular reflectometry and grazing incidence small-angle scattering (GISANS), thus resulting in a complete 3-d exploration for lateral structures in thin films. This is achieved by specially designed neutron guides: in the horizontal direction (perpendicular to the scattering plane) it has an elliptic shape and focusses neutrons onto the sample. In the vertical direction it has a multichannel geometry providing a smooth divergence distribution at the sample while accepting the whole beam from a compact high-brilliance flat moderator. The modular collimation setup of HERITAGE provides an extremely high flexibility in respect to sample geometries and environments, including the possibility to study all t...

  16. Setup for polarized neutron imaging using in situ 3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline

    Science.gov (United States)

    Dhiman, I.; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X.; Jiang, C. Y.; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay

    2017-09-01

    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe3Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  17. On an evaluation of the continuous flux and dominant Eigenvalue problem for the steady state multi-group multi-layer neutron diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Ceolin, C.; Schramm, M.; Vilhena, M.T.; Bodmann, B.E.J., E-mail: celina.ceolin@gmail.com, E-mail: marceloschramm@hotmail.com, E-mail: vilhena@pq.cnpq.br, E-mail: bardo.bodmann@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

    2013-07-01

    In this work the authors solved the steady state neutron diffusion equation for a multi-layer slab assuming the multi-group energy model. The method to solve the equation system is based on a expansion in Taylor Series, which was proven to be useful in [1] [2] [3]. The results obtained can be used as initial condition for neutron space kinetics problems. The neutron scalar flux was expanded in a power series, and the coefficients were found by using the ordinary differential equation and the boundary and interface conditions. The effective multiplication factor k was evaluated using the power method [4]. We divided the domain into several slabs to guarantee the convergence with a low truncation order. We present the formalism together with some numerical simulations. (author)

  18. On an analytical evaluation of the flux and dominant eigenvalue problem for the steady state multi-group multi-layer neutron diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Ceolin, Celina; Schramm, Marcelo; Bodmann, Bardo Ernst Josef; Vilhena, Marco Tullio Mena Barreto de [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Bogado Leite, Sergio de Queiroz [Comissao Nacional de Energia Nuclear, Rio de Janeiro (Brazil)

    2014-11-15

    In this work the authors solved the steady state neutron diffusion equation for a multi-layer slab assuming the multi-group energy model. The method to solve the equation system is based on an expansion in Taylor Series resulting in an analytical expression. The results obtained can be used as initial condition for neutron space kinetics problems. The neutron scalar flux was expanded in a power series, and the coefficients were found by using the ordinary differential equation and the boundary and interface conditions. The effective multiplication factor k was evaluated using the power method. We divided the domain into several slabs to guarantee the convergence with a low truncation order. We present the formalism together with some numerical simulations.

  19. Influence of stem temperature changes on heat pulse sap flux density measurements.

    Science.gov (United States)

    Vandegehuchte, Maurits W; Burgess, Stephen S O; Downey, Alec; Steppe, Kathy

    2015-04-01

    While natural spatial temperature gradients between measurement needles have been thoroughly investigated for continuous heat-based sap flow methods, little attention has been given to how natural changes in stem temperature impact heat pulse-based methods through temporal rather than spatial effects. By modelling the theoretical equation for both an ideal instantaneous pulse and a step pulse and applying a finite element model which included actual needle dimensions and wound effects, the influence of a varying stem temperature on heat pulse-based methods was investigated. It was shown that the heat ratio (HR) method was influenced, while for the compensation heat pulse and Tmax methods changes in stem temperatures of up to 0.002 °C s(-1) did not lead to significantly different results. For the HR method, rising stem temperatures during measurements led to lower heat pulse velocity values, while decreasing stem temperatures led to both higher and lower heat pulse velocities, and to imaginary results for high flows. These errors of up to 40% can easily be prevented by including a temperature correction in the data analysis procedure, calculating the slope of the natural temperature change based on the measured temperatures before application of the heat pulse. Results of a greenhouse and outdoor experiment on Pinus pinea L. show the influence of this correction on low and average sap flux densities.

  20. Photosynthetic photon flux density and phytochrome B interact to regulate branching in Arabidopsis.

    Science.gov (United States)

    Su, Hongwen; Abernathy, Scott D; White, Richard H; Finlayson, Scott A

    2011-11-01

    Branching is regulated by environmental signals including phytochrome B (phyB)-mediated responses to the ratio of red to far red light. While the mechanisms associated with phytochrome regulation of branching are beginning to be elucidated, there is little information regarding other light signals, including photosynthetic photon flux density (PPFD) and how it influences phytochrome-mediated responses. This study shows that Arabidopsis (Arabidopsis thaliana) branching is modified by both varying PPFD and phyB status and that significant interactions occur between these variables. While phyB deficiency decreased branching when the PPFD was low, the effect was suppressed by high PPFD and some branching aspects were actually promoted. Photosynthesis measurements showed that PPFD may influence branching in phyB-deficient plants at least partially through a specific signalling pathway rather than directly through energy effects on the shoot. The expression of various genes in unelongated buds of phyB-deficient and phyB-sufficient plants grown under high and low PPFD demonstrated potential roles for several hormones, including auxin, cytokinins and ABA, and also showed imperfect correlation between expression of the branching regulators BRC1 and BRC2 and bud fate. These results may implicate additional undiscovered bud autonomous mechanisms and/or components contributing to bud outgrowth regulation by environmental signals.

  1. Leaf photosynthetic and solar-tracking responses of mallow, Malva parviflora, to photon flux density.

    Science.gov (United States)

    Greer, Dennis H; Thorpe, Michael R

    2009-10-01

    Malva parviflora L. (mallow) is a species that occupies high-light habitats as a weedy invader in orchards and vineyards. Species of the Malvaceae are known to solar track and anecdotal evidence suggests this species may also. How M. parviflora responds physiologically to light in comparison with other species within the Malvaceae remains unknown. Tracking and photosynthetic responses to photon flux density (PFD) were evaluated on plants grown in greenhouse conditions. Tracking ability was assessed in the growth conditions and by exposing leaves to specific light intensities and measuring changes in the angle of the leaf plane. Light responses were also determined by photosynthesis and chlorophyll fluorescence. Leaves followed a heliotropic response which was highly PFD-dependent, with tracking rates increasing in a curvilinear pattern. Maximum tracking rates were up to 20 degrees h(-1) and saturated for light above 1,300 micromol (photons) m(-2) s(-1). This high-light saturation, both for tracking (much higher than the other species), and for photosynthesis, confirmed mallow as a high-light demanding species. Further, because there was no photoinhibition, the leaves could capture the potential of an increased carbon gain in higher irradiance by resorting to solar tracking. Modelling suggested the tracking response could increase the annual carbon gain by as much as 25% compared with leaves that do not track the sun. The various leaf attributes associated with solar tracking, therefore, help to account for the success of this species as a weed in many locations worldwide.

  2. Excessive magnetic field flux density distribution from overhead isolated powerline conductors due to neutral line current.

    Science.gov (United States)

    Netzer, Moshe

    2013-06-01

    Overhead isolated powerline conductors (hereinafter: "OIPLC") are the most compact form for distributing low voltage currents. From the known physics of magnetic field emission from 3-phase power lines, it is expected that excellent symmetry of the 120° shifted phase currents and where compact configuration of the 3-phase+neutral line exist, the phase current vectorial summation of the magnetic field flux density (MFFD) is expected to be extremely low. However, despite this estimation, an unexpectedly very high MFFD was found in at least three towns in Israel. This paper explains the reasons leading to high MFFD emissions from compact OIPLC and the proper technique to fix it. Analysis and measurement results had led to the failure hypothsis of neutral line poor connection design and poor grounding design of the HV-LV utility transformers. The paper elaborates on the low MFFD exposure level setup by the Israeli Environmental Protection Office which adopted a rather conservative precaution principal exposure level (2 mG averaged over 24 h).

  3. Interstellar Scintillation of the Polarized Flux Density in Quasar, PKS 0405-385

    CERN Document Server

    Rickett, B J; Jauncey, D L; Rickett, Barney J.; Kedziora-Chudczer, Lucyna; Jauncey, David L.

    2002-01-01

    The remarkable rapid variations in radio flux density and polarization of the quasar PKS 0405-385 observed in 1996 are subject to a correlation analysis, from which characteristic time scales and amplitudes are derived. The variations are interpreted as interstellar scintillations. The cm wavelength observations are in the weak scintillation regime for which models for the various auto- and cross-correlations of the Stokes parameters are derived and fitted to the observations. These are well modelled by interstellar scintillation (ISS) of a 30 by 22 micro-as source, with about 180 degree rotation of the polarization angle along its long dimension. This success in explaining the remarkable intra-day variations (IDV)in polarization confirms that ISS gives rise to the IDV in this quasar. However, the fit requires the scintillations to be occurring much closer to the Earth than expected according to the standard model for the ionized interstellar medium (IISM). Scattering at distances in the range 3-30 parsec are...

  4. Observations of Poynting fluxes, ion temperatures and neutral densities during the March 2015 magnetic storm

    Science.gov (United States)

    Huang, Y.; Su, Y. J.; Huang, C. Y.; Hairston, M. R.; Sutton, E. K.

    2015-12-01

    We will present various observations regarding the geomagnetic energy input and the response of Ionosphere-Thermosphere (IT) system during the March 17, 2015 storm, the largest one in solar cycle 24. The Poynting fluxes measured by Defense Meteorological Satellite Program (DMSP) satellites (F16, F17 and F18) show significant enhancements in the auroral oval and at high latitudes poleward of the auroral oval. Moreover, the ion temperatures observed by DMSP satellites (F16, F17 and F19) at magnetic latitudes greater than 80° are higher than those in the auroral oval, and the their averaged increases are 316K in the northern hemisphere and 248 K in the southern hemisphere, respectively. In addition, the neutral density residuals measured by the Gravity Recovery and Climate Experiment (GRACE) satellite indicate the largest values at the highest orbital latitudes. The wave-like perturbations originating at high latitudes move equatorward with decreasing amplitudes along GRACE orbits, implying a source region for Traveling Atmospheric Disturbances (TADs) at polar latitudes.

  5. Chemical sputtering of graphite by low temperature nitrogen plasmas at various substrate temperatures and ion flux densities

    NARCIS (Netherlands)

    Bystrov, K.; Morgan, T. W.; Tanyeli, I.; De Temmerman, G.; M. C. M. van de Sanden,

    2013-01-01

    We report measurements of chemical sputtering yields of graphite exposed to low temperature nitrogen plasmas. The influence of surface temperature and incoming ion energy on the sputtering yields has been investigated in two distinct ion flux density regimes. Sputtering yields grow consistently with

  6. Photosynthetic photon flux density, carbon dioxide concentration, and vapor pressure deficit effects on photosynthesis in cacao seedlings

    Science.gov (United States)

    Cacao (Theobroma cacao) is a shade plant, native to the under-story of the evergreen rain forest of the Amazon basin and adapted to low levels of photosynthetic photon flux density (PPFD). The influence of PPFD, leaf to air water vapor pressure deficit (VPD) and external carbon dioxide concentration...

  7. High-temperature long-lasting stability assessment of a single-crystal diamond detector under high-flux neutron irradiation

    Science.gov (United States)

    Pilotti, R.; Angelone, M.; Marinelli, M.; Milani, E.; Verona-Rinati, G.; Verona, C.; Prestopino, G.; Montereali, R. M.; Vincenti, M. A.; Schooneveld, E. M.; Scherillo, A.; Pietropaolo, A.

    2016-11-01

    An innovative diamond detector layout is presented that is designed to operate at high temperature under intense neutron and gamma fluxes. It is made of a 500 μm “electronic grade” diamond film with 100 nm thick Ag metal contacts deposited onto each surface of the film by means of thermal evaporation. A 2 μ \\text{m} thick layer of 6LiF has been deposited on top of one of the two Ag contacts to make the detector sensitive to thermal neutrons. The device was tested at the ISIS spallation neutron source (Rutherford Appleton Laboratory, UK) using the INES beam line. The detector was continuously irradiated for 100 hours in vacuum (p = 10-5 \\text{mbar}) , exposed to a neutron flux of about 106 n cm-2 s-1 at a temperature T =150 ^\\circ \\text{C} . The aim of this experiment was to study the time dependence of the diamond detector performance while operating at high temperature under irradiation, providing a first experimental proof of reliable continuous operation for 100 hours at high temperature in a harsh environment.

  8. Caliban: distribution des fluences neutroniques et des doses gamma en fonctionnement continu (CALIBAN: distribution of neutron flux and gamma doses in continuous operation)

    Energy Technology Data Exchange (ETDEWEB)

    Morin, J.; Chevallier, J.; Blanc, R.; Mathieu, A.; Sester, C.

    1974-10-01

    In order to compensate for the temporary interruption of the PROSPERO reactor, it is desirable to use the CALIBAN reactor in continuous operation. As part of efforts to establish parameters for this service, a study was made of neutron flux and gamma dosage at distances of 50 to 70 cm from the axis of the CALIBAN core. This is a region that has hitherto been little studied during continuous operation. The results are given in this paper.

  9. Coherent {lambda}-{sigma}{sup 0} mixing in high-density neutron matter

    Energy Technology Data Exchange (ETDEWEB)

    Shinmura, S. [Department of Information Science, Gifu University, Gifu (Japan); Khin Swe Myint [Department of Physics, Mandalay University, Mandalay (Myanmar); Harada, T. [Osaka Electro-Communication University, Neyagawa, Osaka (Japan); Akaishi, Y. [Institute of Particle and Nuclear Studies, KEK, Tsukuba (Japan)

    2002-02-01

    The Brueckner theory is applied to hyperon properties in dense neutron matter. The coupled-channel Bethe-Goldstone equations are solved for the Nijmegen hyperon-nucleon potentials, NSC97 and NSC89. The coherent {lambda}-{sigma} coupling is strongly enhanced in neutron matter and causes large {sigma}{sup 0} mixing of 5 {approx} 25% at {rho}={rho}{sub 0}{approx}3{rho}{sub 0}. The coherent mixing drastically affects the hyperon composition of neutron-star matter. (author)

  10. Hydrogen concentration and mass density of diamondlike carbon films obtained by x-ray and neutron reflectivity

    DEFF Research Database (Denmark)

    Findeisen, E.; Feidenhans'l, R.; Vigild, Martin Etchells

    1994-01-01

    Specular reflectivity of neutrons and x rays can be used to determine the scattering length density profile of a material perpendicular to its surface. We have applied these techniques to study amorphous, diamondlike, hydrocarbon films. By the combination of these two techniques we obtain not only...... the mass density, but also the concentration of hydrogen, which varies in our case between 0 and 30 at.%. This method is a new and nondestructive way to determine the concentration of hydrogen within an error of less than 2 at.% in samples with sharp interfaces. It is especially suited for diamondlike...... carbon films....

  11. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  12. Measure of thermal neutron flux in the IPEN/MB-01 reactor using {sup 197} Au wire activation detectors; Medida do fluxo de neutrons termicos do reator IPEN/MB-01 com detectores de ativacao de fios de {sup 197} Au

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Andre Luis Ferreira

    1995-12-31

    This dissertation has aimed at developing a neutron flux measurement technique by means of detectors activation analysis. The main task of this work was the implementation of this thermal neutron flux measurement technique, using gold wires as activation detectors in the IPEN/MB-01 reactor core. The neutron thermal flux spatial distribution was obtained by gold wire activation technique, with wire diameters of 0.125 mm and 0.250 mm in seven selected reactor experimental channels. The values of thermal flux were about 10{sup 9} neutrons/cm{sup 2}.s. This experiment has been the first one conducted with gold wires in the IPEN/MB-01 reactor, being this technique implemented for use by experiments in flux mapping of the core 73 refs., 60 figs., 31 tabs.

  13. On the physical conditions for arising a controlled fusion chain reaction supported by neutrons in fusion facilities with magnetic plasma confinement

    Directory of Open Access Journals (Sweden)

    A.N. Shmelyov

    2015-11-01

    The fusion neutron source is considered to be the “richest”: neutron generation is accompanied by relatively small-scale processes. The thermonuclear facility with low neutron absorption blanket under consideration here could create a high density neutron flux in the blanket. It can be concluded from the above that such thermonuclear facilities could be used for fast transmutation of long-lived fission products with low neutron absorption cross-section, and perhaps even without their preliminary isotopic separation.

  14. The relation between radio flux density and ionizing ultra-violet flux for HII regions and supernova remnants in the Large Magellanic cloud

    Directory of Open Access Journals (Sweden)

    Filipović M.D.

    2003-01-01

    Full Text Available We present a comparison between the Parkes radio surveys (Filipović et al 1995 and Vacuum Ultra-Violet (VUV surveys (Smith et al. 1987 of the Large Magellanic Clouds (LMC. We have found 72 sources in common in the LMC which are known HII regions (52 and supernova remnants (SNRs (19. Some of these radio sources are associated with two or more UV stellar associations. A comparison of the radio flux densities and ionizing UV flux for HII regions shows a very good correlation, as expected from theory. Many of the Magellanic Clouds (MCs SNRs are embedded in HII regions, so there is also a relation between radio and UV which we attribute to the surrounding HII regions.

  15. Systematic Uncertainties in the Spectroscopic Measurements of Neutron-Star Masses and Radii from Thermonuclear X-ray Bursts. III. Absolute Flux Calibration

    CERN Document Server

    Guver, Tolga; Marshall, Herman; Psaltis, Dimitrios; Guainazzi, Matteo; Diaz-Trigo, Maria

    2015-01-01

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE/PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0$\\pm$0.3% less flux than the RXTE/PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared to EPIC-MOS1, MOS2 and ACIS-S detectors. We also address the calibration uncertainty in the RXTE/PCA int...

  16. Nuclear flux densities during a model pericyclic reaction with energies well above and below the potential barrier.

    Science.gov (United States)

    Bredtmann, Timm; Kono, Hirohiko; Manz, Jörn; Nakamura, Kosuke; Stemmle, Christian

    2013-05-10

    Pericyclic reactions with energies E well above the potential energy barrier B (case E>B) proceed with quantum nuclear flux densities 〈j〉 which are essentially proportional to the nuclear densities ρ in the femtosecond time domain. This corresponds to the definition of classical (cl) mechanics, j(cl)=υ(cl) ρ(cl), with almost constant velocity v(cl). For the other case Evalue close to the barrier where ρ is a minimum (in fact where ρ is close to zero). The general conclusion is that quantum mechanical nuclear flux densities may be at variance from traditional expectations based on classical trajectories. This prediction calls for experimental demonstration. The counter-intuitive proof-of-principle is demonstrated for a simple, one-dimensional model of the Cope rearrangement of semibullvalene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Detection and elimination of the electromagnetic interferences in the neutron flux measurement circuit, Source Range; Deteccion y eliminacion de interferencias electromagneticas en el circuito de medicion de flujo neutronico, rango de fuente

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, J. M.; Esguivillas, L.; Valle, J. L.

    2010-07-01

    This paper compiles an experience in Asco I Nuclear Power Plant about electromagnetic interferences associated to the neutron flux measurement system, Source Range Asco I NPP. The circuit affected is the proportional detector (BF3) located outside the reactor vessel to measure the neutron leakage in shutdown and in start-up.

  18. Status of ITER neutron diagnostic development

    Science.gov (United States)

    Krasilnikov, A. V.; Sasao, M.; Kaschuck, Yu. A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V. S.; Popovichev, S.; Iguchi, T.; Jarvis, O. N.; Källne, J.; Fiore, C. L.; Roquemore, A. L.; Heidbrink, W. W.; Fisher, R.; Gorini, G.; Prosvirin, D. V.; Tsutskikh, A. Yu.; Donné, A. J. H.; Costley, A. E.; Walker, C. I.

    2005-12-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be measured well by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors (NFMs), neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The NFMs need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented.

  19. Core Power Control of the fast nuclear reactors with estimation of the delayed neutron precursor density using Sliding Mode method

    Energy Technology Data Exchange (ETDEWEB)

    Ansarifar, G.R., E-mail: ghr.ansarifar@ast.ui.ac.ir; Nasrabadi, M.N.; Hassanvand, R.

    2016-01-15

    Highlights: • We present a S.M.C. system based on the S.M.O for control of a fast reactor power. • A S.M.O has been developed to estimate the density of delayed neutron precursor. • The stability analysis has been given by means Lyapunov approach. • The control system is guaranteed to be stable within a large range. • The comparison between S.M.C. and the conventional PID controller has been done. - Abstract: In this paper, a nonlinear controller using sliding mode method which is a robust nonlinear controller is designed to control a fast nuclear reactor. The reactor core is simulated based on the point kinetics equations and one delayed neutron group. Considering the limitations of the delayed neutron precursor density measurement, a sliding mode observer is designed to estimate it and finally a sliding mode control based on the sliding mode observer is presented. The stability analysis is given by means Lyapunov approach, thus the control system is guaranteed to be stable within a large range. Sliding Mode Control (SMC) is one of the robust and nonlinear methods which have several advantages such as robustness against matched external disturbances and parameter uncertainties. The employed method is easy to implement in practical applications and moreover, the sliding mode control exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness and stability.

  20. How sensitive is the neutron star r-mode instability window to the density dependence of nuclear symmetry energy?

    CERN Document Server

    Wen, De-Hua; Li, Bao-An

    2011-01-01

    Using a simple model of a neutron star with a perfectly rigid crust constructed with a set of crust and core equations of state that span the range of nuclear experimental uncertainty in the symmetry energy, we calculate the instability window for the onset of the Chandrasekhar-Friedmann-Schutz (CFS) instability in r-mode oscillations for canonical neutron stars ($1.4 M_{\\odot}$) and massive neutron stars ($2.0 M_{\\odot}$). The crustal thickness is calculated consistently with the core equation of state (EOS). The EOSs are calculated using a simple model for the energy density of nuclear matter and probe the dependence on the symmetry energy by varying the slope of the symmetry energy at saturation density $L$ from 25 MeV (soft symmetry energy and EOS) to 115 MeV (stiff symmetry energy and EOS) while keeping the EOS of symmetric nuclear matter fixed. The instability window is reduced by a frequency of up to $\\approx150Hz$ from the softest to the stiffest EOSs and by $\\approx 100$ Hz from $1.4 M_{\\odot}$ to $2...

  1. Neutron flux from a 14‐MeV neutron generator with tungsten filter for research in NDA methods for nuclear safeguards and security

    OpenAIRE

    2009-01-01

    The Joint Research Centre has taken into operation a new experimental device designed for research in the fields of nuclear safeguards and security applications. The research projects currently undertaken include detection of shielded contraband materials, detection of fissile materials, and mass determination of small fissile materials in shielded containers. The device, called the Pulsed Neutron Interrogation Test Assembly (PUNITA), incorporates a pulsed 14‐MeV (D‐T) neutron generator and a...

  2. X-ray and neutron diffraction measurements of dislocation density and subgrain size in a friction stir welded aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, Bjorn [Los Alamos National Laboratory; Woo, Wanchuck [ORNL; Zhili, Feng [ORNL; Edward, Kenik [ORNL; Ungar, Tamas [EOTVOS UNIV.

    2009-01-01

    The dislocation density and subgrain size were determined in the base material and friction-stir welds of 6061-T6 aluminum alloy. High-resolution X-ray diffraction measurement was performed in the base material. The result of the line profile analysis of the X-ray diffraction peak shows that the dislocation density is about 4.5 x 10{sup 14} m{sup 02} and the subgrain size is about 200 nm. Meanwhile, neutron diffraction measurements have been performed to observe the diffraction peaks during friction-stir welding (FSW). The deep penetration capability of the neutron enables us to measure the peaks from the midplane of the Al plate underneath the tool shoulder of the friction-stir welds. The peak broadening analysis result using the Williamson-Hall method shows the dislocation density of about 3.2 x 10{sup 15} m{sup -2} and subgrain size of about 160 nm. The significant increase of the dislocation density is likely due to the severe plastic deformation during FSW. This study provides an insight into understanding the transient behavior of the microstructure under severe thermomechanical deformation.

  3. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Jacqmin, R.P.

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J ({ge}K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R ({le}K) orthogonalized modes'' of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  4. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jacqmin, Robert P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J (≥K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R (≤K) orthogonalized ``modes`` of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  5. Experimental determination of gamma-ray discrimination in pillar-structured thermal neutron detectors under high gamma-ray flux

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Qinghui [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Conway, Adam M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Voss, Lars F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Radev, Radoslav P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nikolić, Rebecca J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dar, Mushtaq A. [King Saud Univ., Riyadh (Saudi Arabia); Cheung, Chin L. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Chemistry

    2015-08-04

    Silicon pillar structures filled with a neutron converter material (10B) are designed to have high thermal neutron detection efficiency with specific dimensions of 50 μm pillar height, 2 μm pillar diameter and 2 μm spacing between adjacent pillars. In this paper, we have demonstrated such a detector has a high neutron-to-gamma discrimination of 106 with a high thermal neutron detection efficiency of 39% when exposed to a high gamma-ray field of 109 photons/cm2s.

  6. Experimental determination of gamma-ray discrimination in pillar-structured thermal neutron detectors under high gamma-ray flux

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Qinghui [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Conway, Adam M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Voss, Lars F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Radev, Radoslav P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nikolić, Rebecca J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dar, Mushtaq A. [King Saud Univ., Riyadh (Saudi Arabia); Cheung, Chin L. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Chemistry

    2015-08-04

    Silicon pillar structures filled with a neutron converter material (10B) are designed to have high thermal neutron detection efficiency with specific dimensions of 50 μm pillar height, 2 μm pillar diameter and 2 μm spacing between adjacent pillars. In this paper, we have demonstrated such a detector has a high neutron-to-gamma discrimination of 106 with a high thermal neutron detection efficiency of 39% when exposed to a high gamma-ray field of 109 photons/cm2s.

  7. Optimization of multiply acquired magnetic flux density B(z) using ICNE-Multiecho train in MREIT.

    Science.gov (United States)

    Nam, Hyun Soo; Kwon, Oh In

    2010-05-01

    The aim of magnetic resonance electrical impedance tomography (MREIT) is to visualize the electrical properties, conductivity or current density of an object by injection of current. Recently, the prolonged data acquisition time when using the injected current nonlinear encoding (ICNE) method has been advantageous for measurement of magnetic flux density data, Bz, for MREIT in the signal-to-noise ratio (SNR). However, the ICNE method results in undesirable side artifacts, such as blurring, chemical shift and phase artifacts, due to the long data acquisition under an inhomogeneous static field. In this paper, we apply the ICNE method to a gradient and spin echo (GRASE) multi-echo train pulse sequence in order to provide the multiple k-space lines during a single RF pulse period. We analyze the SNR of the measured multiple B(z) data using the proposed ICNE-Multiecho MR pulse sequence. By determining a weighting factor for B(z) data in each of the echoes, an optimized inversion formula for the magnetic flux density data is proposed for the ICNE-Multiecho MR sequence. Using the ICNE-Multiecho method, the quality of the measured magnetic flux density is considerably increased by the injection of a long current through the echo train length and by optimization of the voxel-by-voxel noise level of the B(z) value. Agarose-gel phantom experiments have demonstrated fewer artifacts and a better SNR using the ICNE-Multiecho method. Experimenting with the brain of an anesthetized dog, we collected valuable echoes by taking into account the noise level of each of the echoes and determined B(z) data by determining optimized weighting factors for the multiply acquired magnetic flux density data.

  8. Electroweak Measurements of Neutron Densities in PREX and CREX at JLab, USA

    Energy Technology Data Exchange (ETDEWEB)

    Michaels, Robert W. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-08-01

    Measurement of the parity-violating electron scattering asymmetry from ${}^{208}$Pb has demonstrated a new opportunity at Jefferson Lab to measure the weak charge distribution and hence pin down the neutron radius in nuclei in a relatively clean and model-independent way. This is because the Z boson of the weak interaction couples primarily to neutrons. We will describe the PREX and CREX experiments on ${}^{208}$Pb and ${}^{48}$Ca respectively. PREX-I ran in 2010, and CREX and a second run of PREX are currently in preparation.

  9. Greenland annual accumulation along the EGIG line, 1959-2004, from ASIRAS airborne radar and neutron-probe density measurements

    Science.gov (United States)

    Overly, Thomas B.; Hawley, Robert L.; Helm, Veit; Morris, Elizabeth M.; Chaudhary, Rohan N.

    2016-08-01

    We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and high resolution neutron-probe (NP) density profiles. ASIRAS-NP-derived accumulation rates are not statistically different (95 % confidence interval) from in situ EGIG accumulation measurements from 1985 to 2004. ASIRAS-NP-derived accumulation increases by 20 % below 3000 m elevation, and increases by 13 % above 3000 m elevation for the period 1995 to 2004 compared to 1985 to 1994. Three Regional Climate Models (PolarMM5, RACMO2.3, MAR) underestimate snow accumulation below 3000 m by 16-20 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modeled density profiles in place of NP densities. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates in the dry snow region. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the Operation IceBridge campaign.

  10. Reverse propagation and negative angular momentum density flux of an optical nondiffracting nonparaxial fractional Bessel vortex beam of progressive waves.

    Science.gov (United States)

    Mitri, F G

    2016-09-01

    Energy and angular momentum flux density characteristics of an optical nondiffracting nonparaxial vector Bessel vortex beam of fractional order are examined based on the dual-field method for the generation of symmetric electric and magnetic fields. Should some conditions determined by the polarization state, the half-cone angle as well as the beam-order (or topological charge) be met, the axial energy and angular momentum flux densities vanish (representing Poynting singularities), before they become negative. These negative counterintuitive properties suggest retrograde (negative) propagation as well as a rotation reversal of the angular momentum with respect to the beam handedness. These characteristics of nondiffracting nonparaxial Bessel fractional vortex beams of progressive waves open new capabilities in optical tractor beam tweezers, optical spanners, invisibility cloaks, optically engineered metamaterials, and other applications.

  11. Effects of water salinity on the correlation scale of Root density and Evapotranspiration fluxes

    Science.gov (United States)

    Ajeel, Ali; Saeed, Ali; Dragonetti, Giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Spatial pattern and the correlation of different soil and plant parameters were examined in a green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari, Italy. The experiment aimed to evaluate the role of local processes of salt accumulation and transport which mainly influences the evapotranspiration (and thus the root uptake) processes under different water salinity levels. The experiment consisted of three transects of 30m length and 4.2 m width, irrigated with three different salinity levels (1dSm-1, 3dSm-1, 6dSm-1). Soil measurements (electrical conductivity and soil water content) were monitored along transects in 24 sites, 1 m apart by using TDR probes and Diviner 2000. Water storage measured by TDR and Diviner sensor were coupled for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Leaf Water Potential (LWP), and Root length Density (RlD). Soil and plant properties were analyzed by classical statistics, geostatistics methods and spectral analysis. Results indicated moderate to large spatial variability across the field for soil and plant parameters under all salinity treatments. Furthermore, cross-semivariograms exhibited a strong positive spatial interdependence between electrical conductivity of soil solution ECw with ET and RlD in transect treated with 3dSm-1 as well as with LAI in transect treated with 6dSm-1 at all 24 monitoring sites. Spectral analysis enabled to identify the observation window to sample the soil salinity information responsible for a given plant response (ET, OP, RlD). It is also allowed a clear identification of the spatial scale at which the soil water salinity level and distribution and the crop response in terms of actual evapotranspiration ET, RlD and OP, are actually correlated. Additionally

  12. Enhancement of critical current density in fast neutron irradiated melt-textured YBa 2Cu 3O 7- x

    Science.gov (United States)

    Puźniak, R.; Wiśniewski, A.; Baran, M.; Szymczak, H.; Pingxiang, Zhang; Jingrong, Wang; Lian, Zhou; Pytel, K.; Pytel, B.

    The critical current density in melt-textured samples obtained by the powder melting process was determined from magnetization measurements. Linear dependence between the width of the hysteresis loop and sample size was observed for both unirradiated and irradiated samples. This indicates that the critical current is circulating through the whole sample and is not disconnected by weak links, even when a magnetic field is applied in the irradiated sample. After fast neutron irradiation with fluences from 5 × 10 16 to 6 × 10 17 n cm -2 ( E > 0.5 MeV), significant enhancement of the critical current density, jc, was observed. Critical current density, determined from magnetization measurements, for magnetic field perpendicular to the a-b plane, jcab, reaches - 10 5 A cm 42 at 77 K in 1 T. For H parallel to the a-b plane, jcc along the c-axis reaches 5 × 10 3 A cm -2. An increase in the anisotropy of the critical current was observed after fast neutron irradiation in the temperature range 60 - 80 K.

  13. Neutron-Induced Failures in Semiconductor Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This slide presentation explores single event effect, environmental neutron flux, system response, the Los Alamos Neutron Science Center (LANSCE) neutron testing facility, examples of SEE measurements, and recent interest in thermal neutrons.

  14. Measurement of the light flux density patterns from luminaires proposed as photon sources for photosynthesis during space travel

    Science.gov (United States)

    Walker, Paul N.

    1989-01-01

    Two luminaires were evaluated to determine the light flux density pattern on a horizontal plane surface. NASA supplied both luminaires; one was made by NASA and the other is commercially available. Tests were made for three combinations of luminaire height and luminaire lens material using the NASA luminaire; only one configuration of the commercial luminaire was tested. Measurements were made using four sensors with different wavelength range capabilities. The data are presented in graphical and tabular formats.

  15. Neutronic analysis of a high power density hybrid reactor using innovative coolants

    Indian Academy of Sciences (India)

    Senay Yalçin; Mustafa Übeylı; Adem Acir

    2005-08-01

    In this study, neutronic investigation of a deuterium–tritium (DT) driven hybrid reactor using ceramic uranium fuels, namely UC, UO2 or UN under a high neutron wall load (NWL) of 10 MW/m2 at the first wall is conducted over a period of 24 months for fissile fuel breeding for light water reactors (LWRs). New substances, namely, Flinabe or Li20Sn80 are used as coolants in the fuel zone to facilitate heat transfer out of the blanket. Natural lithium is also utilized for comparison to these two innovative coolants. Neutron transport calculations are performed on a simple experimental hybrid blanket with cylindrical geometry with the help of the SCALE 4·3 System by solving the Boltzmann transport equation with the XSDRNPM code in 238 neutron groups and an S8-P3 approximation. The investigated blanket using Flinabe or Li20Sn80 shows better fissile fuel breeding and fuel enrichment characteristics compared to that with natural lithium which shows that these two innovative coolants can be used in hybrid reactors for higher fissile fuel breeding performance. Furthermore, using a high NWL of 10 MW/m2 at the first wall of the investigated blanket can decrease the time for fuel rods to reach the level for charging in LWRs.

  16. Optimizing Power Density and Efficiency of a Double-Halbach Array Permanent-Magnet Ironless Axial-Flux Motor

    Science.gov (United States)

    Duffy, Kirsten P.

    2016-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. This effort aims to identify design parameters that affect power density and efficiency for a double-Halbach array permanent-magnet ironless axial flux motor configuration. These parameters include both geometrical and higher-order parameters, including pole count, rotor speed, current density, and geometries of the magnets, windings, and air gap.

  17. Point defect dynamics in sodium aluminum hydrides - a combined quasielastic neutron scattering and density functional theory study

    DEFF Research Database (Denmark)

    Shi, Qing; Voss, Johannes; Jacobsen, H.S.

    2007-01-01

    we study hydrogen dynamics in undoped and TiCl3-doped samples of NaAlH4 and Na3AlH6 using a combination of density functional theory calculations and quasielastic neutron scattering. Hydrogen dynamics is found to be limited and mediated by hydrogen vacancies in both alanate phases, requiring......Understanding the catalytic role of titanium-based additives on the reversible hydrogenation of complex metal hydrides is an essential step towards developing hydrogen storage materials for the transport sector. Improved bulk diffusion of hydrogen is one of the proposed catalytic effects, and here...

  18. Hydrogen dynamics in Na3AlH6: A combined density functional theory and quasielastic neutron scattering study

    DEFF Research Database (Denmark)

    Voss, Johannes; Shi, Qing; Jacobsen, Hjalte Sylvest

    2007-01-01

    alanate with TiCl3, and here we study hydrogen dynamics in doped and undoped Na3AlH6 using a combination of density functional theory calculations and quasielastic neutron scattering. The hydrogen dynamics is found to be vacancy mediated and dominated by localized jump events, whereas long-range bulk......Understanding the elusive catalytic role of titanium-based additives on the reversible hydrogenation of complex hydrides is an essential step toward developing hydrogen storage materials for the transport sector. Improved bulk diffusion of hydrogen is one of the proposed effects of doping sodium...

  19. Coupled-channels quantum theory of electronic flux density in electronically adiabatic processes: application to the hydrogen molecule ion.

    Science.gov (United States)

    Diestler, D J; Kenfack, A; Manz, J; Paulus, B

    2012-03-22

    This article presents the results of the first quantum simulations of the electronic flux density (j(e)) by the "coupled-channels" (CC) theory, the fundamentals of which are presented in the previous article [Diestler, D. J. J. Phys. Chem. A 2012, DOI: 10.1021/jp207843z]. The principal advantage of the CC scheme is that it employs exclusively standard methods of quantum chemistry and quantum dynamics within the framework of the Born-Oppenheimer approximation (BOA). The CC theory goes beyond the BOA in that it yields a nonzero j(e) for electronically adiabatic processes, in contradistinction to the BOA itself, which always gives j(e) = 0. The CC is applied to oriented H(2)(+) vibrating in the electronic ground state ((2)Σ(g)(+)), for which the nuclear and electronic flux densities evolve on a common time scale of about 22 fs per vibrational period. The system is chosen as a touchstone for the CC theory, because it is the only one for which highly accurate flux densities have been calculated numerically without invoking the BOA [Barth et al, Chem. Phys. Lett. 2009, 481, 118]. Good agreement between CC and accurate results supports the CC approach, another advantage of which is that it allows a transparent interpretation of the temporal and spatial properties of j(e).

  20. A new measurement method of magnetic flux density using magnetorheological fluid characteristics and a variable resistor circuit

    Science.gov (United States)

    Kim, Hwan-Choong; Han, Chulhee; Kim, Pyunghwa; Choi, Seung-Bok

    2015-08-01

    This work proposes a new approach with which to measure the magnetic flux density using the characteristics of magnetorheological fluid (MRF) that is integrated with a variable resistor. For convenience, it is called a magnetorheological fluid variable resistor (MRF-VR) system in this study. The mechanism of the MRF-VR is based on the interaction between ferromagnetic iron particles of the MRF due to an external magnetic field, which causes its electrical resistance to be field dependent. Using this salient principle, the proposed MRF-VR system is constructed with electrodes and MRF, and its performance is demonstrated by evaluating its electrical resistive characteristics such as dimensional influence, response time, hysteresis and frequency response. After evaluating the performance characteristics, a feedback control system with a proportional-integral-derivative (PID) controller is established, and resistance-trajectory control experiments are carried out. Based on this MRF-VR system, a magnetic field-sensing system is constructed using a Wheatstone bridge circuit, and a polynomial model for calculating the magnetic flux density is formulated from the measured voltage. Finally, the accuracy and effectiveness of the proposed sensing system associated with the empirical polynomial model is successfully verified by comparing the calculated values of magnetic flux density with those measured by a commercial tesla meter.

  1. Neutron Capture Nucleosynthesis

    CERN Document Server

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these results most of the nuclei can formed at medium neutron capture density environment e.g. in some kind of AGB stars. Besides these observations our model is capable to use educational purpose.

  2. Influence of Different Moderator Materials on Characteristics of Neutron Fluxes Generated under Irradiation of Lead Target with Proton Beams

    CERN Document Server

    Sosnin, A N; Polanski, A; Petrochenkov, S A; Golovatyuk, V M; Krivopustov, M I; Bamblevski, V P; Westmeier, W; Odoj, R; Brandt, R; Robotham, H; Hashemi-Nezhad, S R; Zamani-Valassiadou, M

    2002-01-01

    Neutron fields generated in extended heavy (Z\\geq 82) targets under irradiation with proton beams at energies in the range of 1 GeV are investigated. Influence of different moderators on the spectra and multiplicities of neutrons escaping the surface of the assembly consisting of a lead target (\\varnothing 8 cm\\times 20 cm or \\varnothing 8cm\\times 50 cm) screened by variable thickness of polyethylene or graphite, respectively, was compared in the present work. It is shown that the effectiveness of graphite as a material used in such assemblies to moderate spallation neutrons down to thermal energies is significantly lower than that of paraffin.

  3. Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density

    Science.gov (United States)

    Lodhi, M. A. K.

    2005-01-01

    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.

  4. First observational application of a connectivity--based helicity flux density

    CERN Document Server

    Dalmasse, K; Valori, G; Démoulin, P; Green, L M

    2013-01-01

    Measuring the magnetic helicity distribution in the solar corona can help in understanding the trigger of solar eruptive events because magnetic helicity is believed to play a key role in solar activity due to its conservation property. A new method for computing the photospheric distribution of the helicity flux was recently developed. This method takes into account the magnetic field connectivity whereas previous methods were based on photospheric signatures only. This novel method maps the true injection of magnetic helicity in active regions. We applied this method for the first time to an observed active region, NOAA 11158, which was the source of intense flaring activity. We used high-resolution vector magnetograms from the SDO/HMI instrument to compute the photospheric flux transport velocities and to perform a nonlinear force-free magnetic field extrapolation. We determined and compared the magnetic helicity flux distribution using a purely photospheric as well as a connectivity-based method. While th...

  5. Progress in the development of the neutron flux monitoring system of the French GEN-IV SFR: simulations and experimental validations [ANIMMA--2015-IO-392

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, C.; Filliatre, P.; Izarra, G. de [CEA, DEN, Cadarache, Reactor Studies Department, 13108 Saint-Paul-lez-Durance (France); Elter, Zs. [CEA, DEN, Cadarache, Reactor Studies Department, 13108 Saint-Paul-lez-Durance (France); Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Goeteborg (Sweden); Verma, V. [CEA, DEN, Cadarache, Reactor Studies Department, 13108 Saint-Paul-lez-Durance (France); Uppsala University, Division of Applied Nuclear Physics, Box 516, SE-75120 Uppsala (Sweden); Hamrita, H.; Bakkali, M. [CEA, DRT, LIST, Metrology, Instrumentation and Information Department, Saclay, 91191 Gif-sur-Yvette (France); Chapoutier, N.; Scholer, A.C.; Verrier, D. [AREVA NP, 10 rue Juliette Recamier F-69456 Lyon (France); Hellesen, C.; Jacobsson, S. [Uppsala University, Division of Applied Nuclear Physics, Box 516, SE-75120 Uppsala (Sweden); Pazsit, I. [Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Goeteborg (Sweden); Cantonnet, B.; Nappe, J.C. [PHOTONIS France, Nuclear Instrumentation, 19100 Brive-la-Gaillarde (France); Molinie, P.; Dessante, P.; Hanna, R.; Kirkpatrick, M.; Odic, E. [Supelec, Energy Department, 3 rue Joliot-Curie, 91191 Gif-sur-Yvette (France)

    2015-07-01

    France has a long experience of about 50 years in designing, building and operating sodium-cooled fast reactors (SFR) such as RAPSODIE, PHENIX and SUPER PHENIX. Fast reactors feature the double capability of reducing nuclear waste and saving nuclear energy resources by burning actinides. Since this reactor type is one of those selected by the Generation IV International Forum, the French government asked, in the year 2006, CEA, namely the French Alternative Energies and Atomic Energy Commission, to lead the development of an innovative GEN-IV nuclear- fission power demonstrator. The major objective is to improve the safety and availability of an SFR. The neutron flux monitoring (NFM) system of any reactor must, in any situation, permit both reactivity control and power level monitoring from startup to full power. It also has to monitor possible changes in neutron flux distribution within the core region in order to prevent any local melting accident. The neutron detectors will have to be installed inside the reactor vessel because locations outside the vessel will suffer from severe disadvantages; radially the neutron shield that is also contained in the reactor vessel will cause unacceptable losses in neutron flux; below the core the presence of a core-catcher prevents from inserting neutron guides; and above the core the distance is too large to obtain decent neutron signals outside the vessel. Another important point is to limit the number of detectors placed in the vessel in order to alleviate their installation into the vessel. In this paper, we show that the architecture of the NFM system will rely on high-temperature fission chambers (HTFC) featuring wide-range flux monitoring capability. The definition of such a system is presented and the justifications of technological options are brought with the use of simulation and experimental results. Firstly, neutron-transport calculations allow us to propose two in-vessel regions, namely the above-core and under

  6. Order and creep in flux lattices and charge density wave pinned by planar defects.

    Science.gov (United States)

    Petković, Aleksandra; Nattermann, Thomas

    2008-12-31

    The influence of randomly distributed point impurities and planar defects on the order and transport in type-II superconductors and related systems is considered theoretical. For random planar defects of identical orientation, the flux line lattice exhibits a new glassy phase with diverging shear and tilt modulus, a transverse Meissner effect, large sample to sample fluctuations of the susceptibility, and an exponential decay of translational long range order. The flux creep resistivity for currents J parallel to the defects is p(J) to approximately exp-(J0/J)mu with mu = 3/2. Strong disorder enforces an array of dislocations to relax shear

  7. Neutron diffraction study of quantum effects on the pair correlation function of low-density {sup 4}He

    Energy Technology Data Exchange (ETDEWEB)

    Guarini, E. [Istituto Nazionale per la Fisica della Materia, Unita di Ricerca di Firenze, Polo Scientifico Universita di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Barocchi, F. [Istituto Nazionale per la Fisica della Materia, Unita di Ricerca di Firenze, Polo Scientifico Universita di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Dipartimento di Fisica, Polo Scientifico Universita di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Celli, M.; Zoppi, M. [Istituto Nazionale per la Fisica della Materia, Unita di Ricerca di Firenze, Polo Scientifico Universita di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Istituto di Fisica Applicata ' ' Nello Carrara' ' , Consiglio Nazionale delle Ricerche, via Panciatichi 56/30, 50127 Firenze (Italy); Fischer, H.E. [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Magli, R. [Istituto Nazionale per la Fisica della Materia, Unita di Ricerca di Firenze, Polo Scientifico Universita di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Dipartimento di Chimica e Biochimica Medica, Universita di Milano, LITA, via F. lli Cervi 93, 20090 Segrate Milano (Italy)

    2002-07-01

    An extensive neutron diffraction investigation on low-density (n<4.35 nm{sup -3}) states of helium gas along the 6-K isotherm has been performed by means of both wide- and small-angle experiments, allowing for the extraction of the zero- and first-order density coefficients of c(k), the Fourier transform of the direct correlation function, in a very wide wavevector region extending from k=1 nm{sup -1} to k=160 nm{sup -1}. The two independent measurements provide quantitatively consistent results, and the experimental quantities show a good agreement with the thermodynamic (i.e. k=0) data. The comparison of the experimental pure two-body correlation with the corresponding result of a classical calculation clearly indicates the need of a quantum-mechanical approach. (orig.)

  8. Neutron flux calculation and fluence in the encircling of the core and vessel of a reactor BWR; Calculo de flujo neutronico y fluencia en la envolvente del nucleo y la vasija de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.

    2011-07-01

    One of the main objectives related to the safety of any nuclear power plant, including the nuclear power plant of Laguna Verde is to ensure the structural integrity of reactor pressure vessel. To identify and quantify the damage caused by neutron irradiation in the vessel of any nuclear reactor, it is necessary to know both the neutron flux and the neutron fluence that the vessel has been receiving during its operation lifetime, and that the damage observed by mechanical testing are products of microstructural effects induced by neutron irradiation; therefore, it is important the study and prediction of the neutron flux in order to have a better understanding of the damage that these materials are receiving. The calculation here described uses the DORT code, which solves the neutron transport equation in discrete ordinates in two dimensions (x-y, r-{theta} and r-z), according to a regulatory guide, it should make an approximation of the neutron flux in three dimensions by the so called synthesis method. It is called in that way because it achieves a representation of 3 Dimensional neutron flux combining or summarizing the fluxes calculated by DORT r-{theta}, r-z and r. This work presents the application of synthesis method, according to Regulatory Guide 1190, to determine the 3 Dimensional fluxes in internal BWR reactor using three different spatial meshes. The results of the neutron flux and fluence, using three different meshes in the directions r, {theta} and z were compared with results reported in the literature obtaining a difference not larger than 9.61%, neutron flux reached its maximum, 1.58 E + 12 n/cm{sup 2}s, at a height H 4 (239.07 cm) and angle 32.236{sup o} in the core shroud and 4.00 E + 09 n/cm{sup 2}s at a height H 4 and angle 35.27{sup o} in the inner wall of the reactor vessel, positions that are consistent to within {+-}10% over the ones reported in the literature. (Author)

  9. Spontaneous synthesis of carbon nanowalls, nanotubes and nanotips using high flux density plasmas

    NARCIS (Netherlands)

    Bystrov, K.; M. C. M. van de Sanden,; Arnas, C.; Marot, L.; Mathys, D.; Liu, F.; L.K. Xu,; X.B. Li,; A.V. Shalpegin,; De Temmerman, G.

    2014-01-01

    We have investigated the formation of various carbon nanostructures using extreme plasma fluxes up to four orders of magnitude larger than in conventional plasma-enhanced chemical vapor deposition processing. Carbon nanowalls, multi-wall nanotubes, spherical nanoparticles and nanotips are among the

  10. Neutron transport study of a beam port based dynamic neutron radiography facility

    Science.gov (United States)

    Khaial, Anas M.

    Neutron radiography has the ability to differentiate between gas and liquid in two-phase flow due both to the density difference and the high neutron scattering probability of hydrogen. Previous studies have used dynamic neutron radiography -- in both real-time and high-speed -- for air-water, steam-water and gas-liquid metal two-phase flow measurements. Radiography with thermal neutrons is straightforward and efficient as thermal neutrons are easier to detect with relatively higher efficiency and can be easily extracted from nuclear reactor beam ports. The quality of images obtained using neutron radiography and the imaging speed depend on the neutron beam intensity at the imaging plane. A high quality neutron beam, with thermal neutron intensity greater than 3.0x 10 6 n/cm2-s and a collimation ratio greater than 100 at the imaging plane, is required for effective dynamic neutron radiography up to 2000 frames per second. The primary objectives of this work are: (1) to optimize a neutron radiography facility for dynamic neutron radiography applications and (2) to investigate a new technique for three-dimensional neutron radiography using information obtained from neutron scattering. In this work, neutron transport analysis and experimental validation of a dynamic neutron radiography facility is studied with consideration of real-time and high-speed neutron radiography requirements. A beam port based dynamic neutron radiography facility, for a target thermal neutron flux of 1.0x107 n/cm2-s, has been analyzed, constructed and experimentally verified at the McMaster Nuclear Reactor. The neutron source strength at the beam tube entrance is evaluated experimentally by measuring the thermal and fast neutron fluxes using copper activation flux-mapping technique. The development of different facility components, such as beam tube liner, gamma ray filter, beam shutter and biological shield, is achieved analytically using neutron attenuation and divergence theories. Monte

  11. The effect of a spatially heterogeneous transmural water flux on concentration polarization of low density lipoprotein in arteries.

    Science.gov (United States)

    Vincent, Peter E; Sherwin, Spencer J; Weinberg, Peter D

    2009-04-22

    Uptake of low density lipoprotein (LDL) by the arterial wall is likely to play a key role in atherogenesis. A particular process that may cause vascular scale heterogeneity in the rate of transendothelial LDL transport is the formation of a flow-dependent LDL concentration polarization layer on the luminal surface of the arterial endothelium. In this study, the effect of a spatially heterogeneous transmural water flux (that traverses the endothelium only via interendothelial cell clefts) on such concentration polarization is investigated numerically. Unlike in previous investigations, realistic intercellular cleft dimensions are used here and several values of LDL diffusivity are considered. Particular attention is paid to the spatially averaged LDL concentration adjacent to different regions of the endothelial surface, as such measures may be relevant to the rate of transendothelial LDL transport. It is demonstrated in principle that a heterogeneous transmural water flux can act to enhance such measures, and cause them to develop a shear dependence (in addition to that caused by vascular scale flow features, affecting the overall degree of LDL concentration polarization). However, it is shown that this enhancement and additional shear dependence are likely to be negligible for a physiologically realistic transmural flux velocity of 0.0439 mum s(-1) and an LDL diffusivity (in blood plasma) of 28.67 mum(2) s(-1). Hence, the results imply that vascular scale studies of LDL concentration polarization are justified in ignoring the effect of a spatially heterogeneous transmural water flux.

  12. Measurements of the neutron capture cross sections and incineration potentials of minor-actinides in high thermal neutron fluxes: Impact on the transmutation of nuclear wastes; Mesures des sections efficaces de capture et potentiels d'incineration des actinides mineurs dans les hauts flux de neutrons: Impact sur la transmutation des dechets

    Energy Technology Data Exchange (ETDEWEB)

    Bringer, O

    2007-10-15

    This thesis comes within the framework of minor-actinide nuclear transmutation studies. First of all, we have evaluated the impact of minor actinide nuclear data uncertainties within the cases of {sup 241}Am and {sup 237}Np incineration in three different reactor spectra: EFR (fast), GT-MHR (epithermal) and HI-HWR (thermal). The nuclear parameters which give the highest uncertainties were thus highlighted. As a result of fact, we have tried to reduce data uncertainties, in the thermal energy region, for one part of them through experimental campaigns in the moderated high intensity neutron fluxes of ILL reactor (Grenoble). These measurements were focused onto the incineration and transmutation of the americium-241, the curium-244 and the californium-249 isotopes. Finally, the values of 12 different cross sections and the {sup 241}Am isomeric branching ratio were precisely measured at thermal energy point. (author)

  13. Sap flow measurements combining sap-flux density radial profiles with punctual sap-flux density measurements in oak trees (Quercus ilex and Quercus pyrenaica) - water-use implications in a water-limited savanna-

    Science.gov (United States)

    Reyes, J. Leonardo; Lubczynski1, Maciek W.

    2010-05-01

    Sap flow measurement is a key aspect for understanding how plants use water and their impacts on the ecosystems. A variety of sensors have been developed to measure sap flow, each one with its unique characteristics. When the aim of a research is to have accurate tree water use calculations, with high temporal and spatial resolution (i.e. scaled), a sensor with high accuracy, high measurement efficiency, low signal-to-noise ratio and low price is ideal, but such has not been developed yet. Granier's thermal dissipation probes (TDP) have been widely used in many studies and various environmental conditions because of its simplicity, reliability, efficiency and low cost. However, it has two major flaws when is used in semi-arid environments and broad-stem tree species: it is often affected by high natural thermal gradients (NTG), which distorts the measurements, and it cannot measure the radial variability of sap-flux density in trees with sapwood thicker than two centimeters. The new, multi point heat field deformation sensor (HFD) is theoretically not affected by NTG, and it can measure the radial variability of the sap flow at different depths. However, its high cost is a serious limitation when simultaneous measurements are required in several trees (e.g. catchment-scale studies). The underlying challenge is to develop a monitoring schema in which HFD and TDP are combined to satisfy the needs of measurement efficiency and accuracy in water accounting. To assess the level of agreement between TDP and HFD methods in quantifying sap flow rates and temporal patterns on Quercus ilex (Q.i ) and Quercus pyrenaica trees (Q.p.), three measurement schemas: standard TDP, TDP-NTG-corrected and HFD were compared in dry season at the semi-arid Sardon area, near Salamanca in Spain in the period from June to September 2009. To correct TDP measurements with regard to radial sap flow variability, a radial sap flux density correction factor was applied and tested by adjusting TDP

  14. Optimization of Magneto-Rheological Damper for Maximizing Magnetic Flux Density in the Fluid Flow Gap Through FEA and GA Approaches

    Science.gov (United States)

    Krishna, Hemanth; Kumar, Hemantha; Gangadharan, Kalluvalappil

    2016-06-01

    A magneto rheological (MR) fluid damper offers cost effective solution for semiactive vibration control in an automobile suspension. The performance of MR damper is significantly depends on the electromagnetic circuit incorporated into it. The force developed by MR fluid damper is highly influenced by the magnetic flux density induced in the fluid flow gap. In the present work, optimization of electromagnetic circuit of an MR damper is discussed in order to maximize the magnetic flux density. The optimization procedure was proposed by genetic algorithm and design of experiments techniques. The result shows that the fluid flow gap size less than 1.12 mm cause significant increase of magnetic flux density.

  15. Optimization of Magneto-Rheological Damper for Maximizing Magnetic Flux Density in the Fluid Flow Gap Through FEA and GA Approaches

    Science.gov (United States)

    Krishna, Hemanth; Kumar, Hemantha; Gangadharan, Kalluvalappil

    2017-08-01

    A magneto rheological (MR) fluid damper offers cost effective solution for semiactive vibration control in an automobile suspension. The performance of MR damper is significantly depends on the electromagnetic circuit incorporated into it. The force developed by MR fluid damper is highly influenced by the magnetic flux density induced in the fluid flow gap. In the present work, optimization of electromagnetic circuit of an MR damper is discussed in order to maximize the magnetic flux density. The optimization procedure was proposed by genetic algorithm and design of experiments techniques. The result shows that the fluid flow gap size less than 1.12 mm cause significant increase of magnetic flux density.

  16. Demonstration of the density dependence of x-ray flux in a laser-driven hohlraum.

    Science.gov (United States)

    Young, P E; Rosen, M D; Hammer, J H; Hsing, W S; Glendinning, S G; Turner, R E; Kirkwood, R; Schein, J; Sorce, C; Satcher, J H; Hamza, A; Reibold, R A; Hibbard, R; Landen, O; Reighard, A; McAlpin, S; Stevenson, M; Thomas, B

    2008-07-18

    Experiments have been conducted using laser-driven cylindrical hohlraums whose walls are machined from Ta2O5 foams of 100 mg/cc and 4 g/cc densities. Measurements of the radiation temperature demonstrate that the lower density walls produce higher radiation temperatures than the high density walls. This is the first experimental demonstration of the prediction that this would occur [M. D. Rosen and J. H. Hammer, Phys. Rev. E 72, 056403 (2005)10.1103/PhysRevE.72.056403]. For high density walls, the radiation front propagates subsonically, and part of the absorbed energy is wasted by the flow kinetic energy. For the lower wall density, the front velocity is supersonic and can devote almost all of the absorbed energy to heating the wall.

  17. ITER中子通量监测器的优化计算%Optical Calculations of Neutron Flux Monitor for ITER

    Institute of Scientific and Technical Information of China (English)

    李初; 王强; 兰礼; 刘虓瀚; 曾军; 刘艺琴; 罗小兵

    2012-01-01

    中子通量监测器(NFM)可实现ITER实时的中子通量测定,转化得到聚变功率,功率密度,等离子体温度等.获得NFM探测效率对能量的相对平坦响应对准确诊断十分必要.论文针对特定的NFM裂变室结构,运用MCNP—4C对裂变室包裹层慢化剂/屏蔽材料种类及厚度进行了优化计算.这些工作对探测器裂变室结构的优化设计实验标定及定型具有重要意义.%The Neutron Flux Monitor(NFM) can provide the real - time flux of ITER( International Thermonuclear Experimental Reactor ) , and get the fusion power and temperature of the plasma after transformation. A relative flat energy response curve of neutron detection efficiency is essential for accurate diagnosis of NFM in ITER. The paper makes an optimal computation on thickness of different moderator/ shielding material with the MCNP - 4C as to the specific structure of NFM fission chamber. It is significant for the optimal design and the experimental calibration of the NFM

  18. Neutron Monitors and muon detectors for solar modulation studies: Interstellar flux, yield function, and assessment of critical parameters in count rate calculations

    CERN Document Server

    Maurin, D; Derome, L; Ghelfi, A; Hubert, G

    2014-01-01

    Particles count rates at given Earth location and altitude result from the convolution of (i) the interstellar (IS) cosmic-ray fluxes outside the solar cavity, (ii) the time-dependent modulation of IS into Top-of-Atmosphere (TOA) fluxes, (iii) the rigidity cut-off (or geomagnetic transmission function) and grammage at the counter location, (iv) the atmosphere response to incoming TOA cosmic rays (shower development), and (v) the counter response to the various particles/energies in the shower. Count rates from neutron monitors or muon counters are therefore a proxy to solar activity. In this paper, we review all ingredients, discuss how their uncertainties impact count rate calculations, and how they translate into variation/uncertainties on the level of solar modulation $\\phi$ (in the simple Force-Field approximation). The main uncertainty for neutron monitors is related to the yield function. However, many other effects have a significant impact, at the 5-10% level on $\\phi$ values. We find no clear ranking...

  19. Calibration and evaluation of CCD spectroradiometers for ground-based and airborne measurements of spectral actinic flux densities

    Science.gov (United States)

    Bohn, Birger; Lohse, Insa

    2017-09-01

    The properties and performance of charge-coupled device (CCD) array spectroradiometers for the measurement of atmospheric spectral actinic flux densities (280-650 nm) and photolysis frequencies were investigated. These instruments are widely used in atmospheric research and are suitable for aircraft applications because of high time resolutions and high sensitivities in the UV range. The laboratory characterization included instrument-specific properties like the wavelength accuracy, dark signal, dark noise and signal-to-noise ratio (SNR). Spectral sensitivities were derived from measurements with spectral irradiance standards. The calibration procedure is described in detail, and a straightforward method to minimize the influence of stray light on spectral sensitivities is introduced. From instrument dark noise, minimum detection limits ≈ 1 × 1010 cm-2 s-1 nm-1 were derived for spectral actinic flux densities at wavelengths around 300 nm (1 s integration time). As a prerequisite for the determination of stray light under field conditions, atmospheric cutoff wavelengths were defined using radiative transfer calculations as a function of the solar zenith angle (SZA) and total ozone column (TOC). The recommended analysis of field data relies on these cutoff wavelengths and is also described in detail taking data from a research flight on HALO (High Altitude and Long Range Research Aircraft) as an example. An evaluation of field data was performed by ground-based comparisons with a double-monochromator-based, highly sensitive reference spectroradiometer. Spectral actinic flux densities were compared as well as photolysis frequencies j(NO2) and j(O1D), representing UV-A and UV-B ranges, respectively. The spectra expectedly revealed increased daytime levels of stray-light-induced signals and noise below atmospheric cutoff wavelengths. The influence of instrument noise and stray-light-induced noise was found to be insignificant for j(NO2) and rather limited for j(O1D

  20. Stochastic Geomorphology: Indexing Climate Change Through Shifts in Probability Densities of Erosion, Sediment Flux, Storage and Habitats

    Science.gov (United States)

    Benda, L. E.

    2009-12-01

    Stochastic geomorphology refers to the interaction of the stochastic field of sediment supply with hierarchically branching river networks where erosion, sediment flux and storage are described by their probability densities. The conceptual and numerical framework can generate a series of general principles (hypotheses) on how basin-scale erosion and sedimentation regimes, viewed through the lens of probability distributions, change with variations in climate, topography, geology, vegetation, basin scale, and network topology; for more detail on the general principles see AGU session EP02. The conceptual and numerical framework of stochastic geomorphology is well suited for forecasting and interpreting affects of climate change on geomorphological systems, including the habitats associated with them. Climate change involves shifts in probability distributions of precipitation (rain and snow), fires, and wind. Consequently, shifts in distributions of precipitation frequency and magnitude or wildfire frequency, intensity and size should lead to shifts in erosion, sediment flux and sedimentation distributions. Shifts could include either a greater or lesser skew of their attendant probability densities. For example, increasing the frequency of fires in a stochastic simulation model of erosion and sedimentation will lead to altered frequency and magnitude of hillslope erosion in the form of pulses of sediment through the river network. This will be reflected in shifts in the probability densities of erosion and sedimentation and also how sediment flux and storage distributions evolve downstream in river networks. Heightened erosion frequency and magnitude due to climate change can increase Hurst Effects in time series of sediment flux and thus an increase in depletion of hillslope stores of sediment can result in temporally lingering sedimentation affects throughout river networks, even if climate relaxed to pre-change conditions. Similarly, heightened hillslope

  1. A study of the effects of flux density and frequency of pulsed electromagnetic field on neurite outgrowth in PC12 cells.

    Science.gov (United States)

    Zhang, Yang; Ding, Jun; Duan, Wei

    2006-01-01

    The aim of this study was to investigate the influence of pulsed electromagnetic fields with various flux densities and frequencies on neurite outgrowth in PC12 rat pheochromocytoma cells. We have studied the percentage of neurite-bearing cells, average length of neurites and directivity of neurite outgrowth in PC12 cells cultured for 96 hours in the presence of nerve growth factor (NGF). PC12 cells were exposed to 50 Hz pulsed electromagnetic fields with a flux density of 1.37 mT, 0.19 mT and 0.016 mT respectively. The field was generated through a Helmholtz coil pair housed in one incubator and the control samples were placed in another identical incubator. It was found that exposure to both a relatively high flux density (1.37 mT) and a medium flux density (0.19 mT) inhibited the percentage of neurite-bearing cells and promoted neurite length significantly. Exposure to high flux density (1.37 mT) also resulted in nearly 20% enhancement of neurite directivity along the field direction. However, exposure to low flux density field (0.016 mT) had no detectable effect on neurite outgrowth. We also studied the effect of frequency at the constant flux density of 1.37 mT. In the range from 1 approximately 100 Hz, only 50 and 70 Hz pulse frequencies had significant effects on neurite outgrowth. Our study has shown that neurite outgrowth in PC12 cells is sensitive to flux density and frequency of pulsed electromagnetic field.

  2. UCN Source at an External Beam of Thermal Neutrons

    Directory of Open Access Journals (Sweden)

    E. V. Lychagin

    2015-01-01

    Full Text Available We propose a new method for production of ultracold neutrons (UCNs in superfluid helium. The principal idea consists in installing a helium UCN source into an external beam of thermal or cold neutrons and in surrounding this source with a solid methane moderator/reflector cooled down to ~4 K. The moderator plays the role of an external source of cold neutrons needed to produce UCNs. The flux of accumulated neutrons could exceed the flux of incident neutrons due to their numerous reflections from methane; also the source size could be significantly larger than the incident beam diameter. We provide preliminary calculations of cooling of neutrons. These calculations show that such a source being installed at an intense source of thermal or cold neutrons like the ILL or PIK reactor or the ESS spallation source could provide the UCN density 105 cm−3, the production rate 107 UCN/s−1. Main advantages of such an UCN source include its low radiative and thermal load, relatively low cost, and convenient accessibility for any maintenance. We have carried out an experiment on cooling of thermal neutrons in a methane cavity. The data confirm the results of our calculations of the spectrum and flux of neutrons in the methane cavity.

  3. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    Science.gov (United States)

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.

  4. Exact versus Taylor-expanded energy density in the study of the neutron star crust-core transition

    Science.gov (United States)

    Routray, T. R.; Viñas, X.; Basu, D. N.; Pattnaik, S. P.; Centelles, M.; Robledo, L. B.; Behera, B.

    2016-10-01

    The importance of the fourth and higher order terms in the Taylor series expansion of energy of isospin asymmetric nuclear matter in studies of the neutron star crust-core phase transition is investigated using the finite-range simple effective interaction. Analytic expressions for the evaluation of the second and fourth order derivative terms in the Taylor series expansion for any general finite-range interaction of Yukawa, exponential or Gaussian form have been obtained. The effect of the nuclear matter incompressibility, symmetry energy and slope parameters on the predictions for the crust-core transition density is examined. The crustal moment of inertia is calculated and the prediction for the radius of the Vela pulsar is analyzed using different equations of state.

  5. Exact versus Taylor-expanded energy density in the study of the neutron star crust-core transition

    CERN Document Server

    Routray, T R; Basu, D N; Pattnaik, S P; Centelles, M; Robledo, L; Behera, B

    2016-01-01

    The importance of the fourth and higher order terms in the Taylor series expansion of the energy of the isospin asymmetric nuclear matter in the study of the neutron star crust-core phase transition is investigated using the finite range simple effective interaction. Analytic expressions for the evaluation of the second and fourth order derivative terms in the Taylor series expansion for any general finite range interaction of Yukawa, exponential or Gaussian form have been obtained. The effect of the nuclear matter incompressibility, symmetry energy and slope parameters on the predictions for the crust-core transition density is examined. The crustal moment of inertia is calculated and the prediction for the radius of the Vela pulsar is analyzed using different equations of state.

  6. Characterization of the neutron flux in the Hohlraum of the thermal column of the TRIGA Mark III reactor of the ININ; Caracterizacion del flujo neutronico en el Hohlraum de la columna termica del reactor TRIGA Mark III del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Delfin L, A.; Palacios, J.C.; Alonso, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: adl@nuclear.inin.mx

    2006-07-01

    Knowing the magnitude of the neutron flux in the reactor irradiation facilities, is so much importance for the operation of the same one, like for the investigation developing. Particularly, knowing with certain precision the spectrum and the neutron flux in the different positions of irradiation of a reactor, it is essential for the evaluation of the results obtained for a certain irradiation experiment. The TRIGA Mark III reactor account with irradiation facilities designed to carry out experimentation, where the reactor is used like an intense neutron source and gamma radiation, what allows to make irradiations of samples or equipment in radiation fields with components and diverse levels in the different facilities, one of these irradiation facilities is the Thermal Column where the Hohlraum is. In this work it was carried out a characterization of the neutron flux inside the 'Hohlraum' of the irradiation facility Thermal Column of the TRIGA Mark III reactor of the Nuclear Center of Mexico to 1 MW of power. It was determined the sub cadmic neutron flux and the epi cadmic by means of the neutron activation technique of thin sheets of gold. The maps of the distribution of the neutron flux for both energy groups in three different positions inside the 'Hohlraum' are presented, these maps were obtained by means of the irradiation of undressed thin activation sheets of gold and covered with cadmium in arrangements of 10 x 12, located parallel to 11.5 cm, 40.5 cm and 70.5 cm to the internal wall of graphite of the installation in inverse address to the position of the reactor core. Starting from the obtained values of neutron flux it was found that, for the same position of the surface of irradiation of the experimental arrangement, the relative differences among the values of neutron flux can be of 80%, and that the differences among different positions of the irradiation surfaces can vary until in a one order of magnitude. (Author)

  7. Evaluation of the thermal neutron flux in samples of Al–Au alloy irradiated in the carrousel channels of the TRIGA MARK I IPR-R1 reactor using MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Salomé, J.A.D.; Guerra, B.T. [Departamento de Engenharia Nuclear, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 – PCA1 – Anexo Engenharia – Pampulha, CEP 31270-901, Belo Horizonte, MG (Brazil); Pereira, C., E-mail: claubia@nuclear.ufmg.br [Departamento de Engenharia Nuclear, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 – PCA1 – Anexo Engenharia – Pampulha, CEP 31270-901, Belo Horizonte, MG (Brazil); Menezes, M.Â.B.C. de [Centro de Desenvolvimento da Tecnologia Nuclear, Comissão Nacional de Energia Nuclear, Campus da UFMG, Av. Antônio Carlos, 6627 31270-901, P.O. Box 941, Belo Horizonte, MG (Brazil); Silva, C.A.M. da [Departamento de Engenharia Nuclear, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 – PCA1 – Anexo Engenharia – Pampulha, CEP 31270-901, Belo Horizonte, MG (Brazil); Dalle, H.M. [Centro de Desenvolvimento da Tecnologia Nuclear, Comissão Nacional de Energia Nuclear, Campus da UFMG, Av. Antônio Carlos, 6627 31270-901, P.O. Box 941, Belo Horizonte, MG (Brazil)

    2014-07-01

    Highlights: • The TRIGA IPR-R1 was modelled using MCNP. • The thermal neutron flux through the samples in eleven irradiation channels was obtained. • The simulated results were compared to experimental values. • The relative error, the relative trend, the z-score test and uncertainty were analysed. - Abstract: The TRIGA IPR-R1 was modelled using MCNP. The model consists of a cylinder filled with water, fuel elements, radial reflectors, central tube, control rods and neutron source. Around the core is placed the Rotary Specimen Rack (RSR) with adequate groove to insert the samples to irradiation. The values of the thermal neutron flux through the samples in eleven irradiation channels were simulated and compared to the experimental results to validate the model. After that, the values of the thermal neutron flux, in the same channels, were simulated on two horizontal planes at different heights and compared to validate the model. These channels were characterized as representative channels of the neutron flux distribution in the RSR. To evaluate the results, the relative errors, the relative trend, the z-score test and the relevance to a confidence interval of 95% were analysed. Good agreement has been obtained for the most channels when compared with the experimental results.

  8. Influences of environmental factors on the radial profile of sap flux density in Fagus crenata growing at different elevations in the Naeba Mountains, Japan.

    Science.gov (United States)

    Kubota, Mitsumasa; Tenhunen, John; Zimmerman, Reiner; Schmidt, Markus; Adiku, Samuel; Kakubari, Yoshitaka

    2005-05-01

    Sap flux density was measured continuously during the 1999 and 2000 growing seasons by the heat dissipation method in natural Fagus crenata Blume (Japanese beech) forests growing between 550 and 1600 m on the northern slope of the Kagura Peak of the Naeba Mountains, Japan. Sap flux density decreased radially toward the inner xylem and the decrease was best expressed in relation to the number of annual rings from the cambium, or in relation to the relative depth between the cambium and the trunk center, rather than as a function of absolute depth. The relative influences of radiation, vapor pressure deficit and soil water on sap flux density during the growing season were similar for the outer and inner xylem, and at all sites. Measurements of soil water content and water potential at a depth of 0.25 m demonstrated that sap flux density responded similarly and sensitively to water potential changes in this soil layer, despite large differences in rooting depth at different elevations, localizing one important control point in the functioning of this forest ecosystem. Identification of the relative influences of radiation, vapor pressure deficit and drying of the upper soil layer on sap flux density provides a framework for in-depth analysis of the control of transpiration in Japanese beech forests. In addition, the finding that the same general controls are operating on sap flux density despite climate gradients and large differences in overall forest stand structure will enhance understanding of water use by forests along elevation gradients.

  9. A DETERMINATION OF THE FLUX DENSITY IN CORE OF DISTRIBUTION TRANSFORMERS, WHAT BUILT WITH THE COMMON USING OF GRAIN AND NON GRAIN ORIENTED MAGNETIC STEELS

    Directory of Open Access Journals (Sweden)

    I.V. Pentegov

    2015-12-01

    Full Text Available Purpose. The development of calculation method to determinate the flux densities in different parts of the magnetic cores of distribution transformers, what built from different types magnetic steel (mixed core. Methodology. The method is based on the scientific positions of Theoretical Electrical Engineering – the theory of the electromagnetic field in nonlinear mediums to determine the distribution of magnetic flux in mixed core of transformer, what are using different types of steel what have the different magnetic properties. Results. The developed method gives possible to make calculation of the flux density and influence of skin effect in different parts of the magnetic cores of distribution transformer, where are used mix of grain oriented (GO and non grain oriented (NGO steels. Was determinate the general basic conditions for the calculation of flux density in the laminations from grain and non grain oriented steels of the magnetic core: the strength of magnetic field for the laminations of particular part of mixed core is the same; the sum of the magnetic fluxes in GO and NGO steels in particular part of mixed core is equal with the designed magnetic flux in this part of mixed core. Discover, the magnetic flux in mixed core of the transformer has specific distribution between magnetic steels. The flux density is higher in laminations from GO steel and smaller in laminations from the NGO steel. That is happened because for magnetic flux is easier pass through laminations from GO steel, what has better magnetic conductance than laminations from NGO steel. Originality. The common using of different types of magnetic steels in cores for distribution transformers gives possibility to make design of transformer with low level of no load losses, high efficiency and with optimal cost. Practical value. The determination of the flux density in different parts of magnetic core with GO and NGO steels gives possibility make accurate calculation of

  10. Gamma-ray and neutron diffraction studies of CoF2: magnetostriction, electron density and magnetic moments.

    Science.gov (United States)

    Jauch, W; Reehuis, M; Schultz, A J

    2004-01-01

    Accurate structure factors up to sin theta/lambda = 1.6 A(-1) have been measured with 316.5 keV gamma-rays from CoF(2), both at room temperature and in the antiferromagnetic state at 10 K. The same crystal was used to collect extended time-of-flight neutron diffraction data in the two magnetic states, which allowed an accurate determination of the fluorine positional parameter. For room temperature, the standard structural parameters are reported. At 10 K, a complete charge-density study has been carried out. The total number of 3d electrons on Co is found to be 6.95 (3). The experimental populations of the d orbitals agree with expectation from crystal field theory. The fluorine valence region exhibits a strong dipolar deformation. Electronic properties at the bond critical points and integrated atomic properties are derived from the static model electron density, revealing the Co-F interactions as purely ionic. On magnetic ordering, a shift of the fluorine ions of 1.5 (4) x 10(-3) A is found which confirms a prediction from theory of optical birefringence. The effect of magnetostriction on the distortion of the ligand coordination octahedra is compared for the late members of the 3d transition-metal difluorides. From neutron powder diffraction, an ordered magnetic moment of 2.60 (4) mu(B) per cobalt ion is found. Despite the strong deviation from the ideal spin value of 3 mu(B), there is still an appreciable orbital contribution to the local magnetic moment.

  11. Responses of Sap Flux Density to Changing Atmospheric Humidity in Three Common Street Tree Species in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Pantana Tor-ngern

    2016-09-01

    Full Text Available Efficient water management in urban landscape is imperative under the projected increases in drought stress under future climate. Because different tree species have different stomatal regulations to prevent water loss under water limitation, comparative study of species-specific responses of water use to changing weather conditions will benefit selective planting of urban trees for sustainable urban greening management. Here, we performed a simple and short-term investigation of water use characteristics of three common street tree species in Bangkok, a major city in Southeast Asia. Species included Pterocarpus indicus (Pi, Swietenia macrophylla (Sm and Lagerstroemia speciosa (Ls. We used self-constructed heat dissipation probes to track water uptake rates, expressed as sap flux density (JS, in stems of potted trees and examined their diurnal variations with changing atmospheric humidity, represented by vapor pressure deficit (D. The results implied that two of the three species: Pi and Sm, may be selected for planting because their Js was less sensitive to changing D compared to Ls. The sap flux density of Ls increased more rapidly with rising D, implying higher sensitivity to drought in Ls, compared to the other two species. Nevertheless, further study on large trees and under longer period of investigation, covering both dry and wet seasons, is required to confirm this finding.

  12. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  13. Laser-driven magnetic-flux compression in high-energy-density plasmas.

    Science.gov (United States)

    Gotchev, O V; Chang, P Y; Knauer, J P; Meyerhofer, D D; Polomarov, O; Frenje, J; Li, C K; Manuel, M J-E; Petrasso, R D; Rygg, J R; Séguin, F H; Betti, R

    2009-11-20

    The demonstration of magnetic field compression to many tens of megagauss in cylindrical implosions of inertial confinement fusion targets is reported for the first time. The OMEGA laser [T. R. Boehly, Opt. Commun. 133, 495 (1997)10.1016/S0030-4018(96)00325-2] was used to implode cylindrical CH targets filled with deuterium gas and seeded with a strong external field (>50 kG) from a specially developed magnetic pulse generator. This seed field was trapped (frozen) in the shock-heated gas fill and compressed by the imploding shell at a high implosion velocity, minimizing the effect of resistive flux diffusion. The magnetic fields in the compressed core were probed via proton deflectrometry using the fusion products from an imploding D3He target. Line-averaged magnetic fields between 30 and 40 MG were observed.

  14. Emergence flux declines disproportionately to larval density along a stream metals gradient.

    Science.gov (United States)

    Schmidt, Travis S; Kraus, Johanna M; Walters, David M; Wanty, Richard B

    2013-08-01

    Effects of contaminants on adult aquatic insect emergence are less well understood than effects on insect larvae. We compared responses of larval density and adult emergence along a metal contamination gradient. Nonlinear threshold responses were generally observed for larvae and emergers. Larval densities decreased significantly at low metal concentrations but precipitously at concentrations of metal mixtures above aquatic life criteria (cumulative criterion accumulation ratio (CCAR) ≥ 1). In contrast, adult emergence declined precipitously at low metal concentrations (CCAR ≤ 1), followed by a modest decline above this threshold. Adult emergence was a more sensitive indicator of the effect of low metals concentrations on aquatic insect communities compared to larvae, presumably because emergence is limited by a combination of larval survival and other factors limiting successful emergence. Thus effects of exposure to larvae are not manifest until later in life (during metamorphosis and emergence). This loss in emergence reduces prey subsidies to riparian communities at concentrations considered safe for aquatic life. Our results also challenge the widely held assumption that adult emergence is a constant proportion of larval densities in all streams.

  15. A probability density function of liftoff velocities in mixed-size wind sand flux

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With the discrete element method(DEM) ,employing the diameter distribution of natural sands sampled from the Tengger Desert,a mixed-size sand bed was produced and the particle-bed collision was simulated in the mixed-size wind sand movement. In the simulation,the shear wind velocity,particle diameter,incident velocity and incident angle of the impact sand particle were given the same values as the experimental results. After the particle-bed collision,we collected all the initial velocities of rising sand particles,including the liftoff angular velocities,liftoff linear velocities and their horizontal and vertical components. By the statistical analysis on the velocity sample for each velocity component,its probability density functions were obtained,and they are the functions of the shear wind velocity. The liftoff velocities and their horizontal and vertical components are distributed as an exponential density function,while the angular velocities are distributed as a normal density function.

  16. Ionisation in turbulent magnetic molecular clouds. I. Effect on density and mass-to-flux ratio structures

    Science.gov (United States)

    Bailey, Nicole D.; Basu, Shantanu; Caselli, Paola

    2017-05-01

    Context. Previous studies show that the physical structures and kinematics of a region depend significantly on the ionisation fraction. These studies have only considered these effects in non-ideal magnetohydrodynamic simulations with microturbulence. The next logical step is to explore the effects of turbulence on ionised magnetic molecular clouds and then compare model predictions with observations to assess the importance of turbulence in the dynamical evolution of molecular clouds. Aims: In this paper, we extend our previous studies of the effect of ionisation fractions on star formation to clouds that include both non-ideal magnetohydrodynamics and turbulence. We aim to quantify the importance of a treatment of the ionisation fraction in turbulent magnetised media and investigate the effect of the turbulence on shaping the clouds and filaments before star formation sets in. In particular, here we investigate how the structure, mass and width of filamentary structures depend on the amount of turbulence in ionised media and the initial mass-to-flux ratio. Methods: To determine the effects of turbulence and mass-to-flux ratio on the evolution of non-ideal magnetised clouds with varying ionisation profiles, we have run two sets of simulations. The first set assumes different initial turbulent Mach values for a fixed initial mass-to-flux ratio. The second set assumes different initial mass-to-flux ratio values for a fixed initial turbulent Mach number. Both sets explore the effect of using one of two ionisation profiles: step-like (SL) or cosmic ray only (CR-only). We compare the resulting density and mass-to-flux ratio structures both qualitatively and quantitatively via filament and core masses and filament fitting techniques (Gaussian and Plummer profiles). Results: We find that even with almost no turbulence, filamentary structure still exists although at lower density contours. Comparison of simulations shows that for turbulent Mach numbers above 2, there is

  17. Neutron stars with hyperon cores: stellar radii and EOS near nuclear density

    CERN Document Server

    Fortin, M; Haensel, P; Bejger, M

    2014-01-01

    The existence of 2 Msun pulsars puts very strong constraints on the equation of state (EOS) of neutron stars (NSs) with hyperon cores, which can be satisfied only by special models of hadronic matter. The radius-mass relation for these models is so specific that it could be submitted to an observational test with forthcoming X-ray observatories. We want to study the impact of the presence of hyperon cores on the radius-mass relation for NS. We aim at finding how, and for which particular stellar mass range, a specific relation R(M), where M is gravitational mass, and R is radius, is associated with the presence of an hyperon core. We consider a large set of theoretical EOSs of dense matter, based on the relativistic mean-field (RMF) approximation, allowing for the presence of hyperons in NSs. We seek for correlations between R(M) and the stiffness of the EOS below the hyperon threshold, needed to pass the 2 Msun test. For NS masses 1.013km, which is due to a very stiff pre-hyperon segment of the EOS. At nucle...

  18. New Kohn-Sham density functional based on microscopic nuclear and neutron matter equations of state

    Science.gov (United States)

    Baldo, M.; Robledo, L. M.; Schuck, P.; Viñas, X.

    2013-06-01

    A new version of the Barcelona-Catania-Paris energy functional is applied to a study of nuclear masses and other properties. The functional is largely based on calculated ab initio nuclear and neutron matter equations of state. Compared to typical Skyrme functionals having 10-12 parameters apart from spin-orbit and pairing terms, the new functional has only 2 or 3 adjusted parameters, fine tuning the nuclear matter binding energy and fixing the surface energy of finite nuclei. An energy rms value of 1.58 MeV is obtained from a fit of these three parameters to the 579 measured masses reported in the Audi and Wapstra [Nucl. Phys. ANUPABL0375-947410.1016/j.nuclphysa.2003.11.003 729, 337 (2003)] compilation. This rms value compares favorably with the one obtained using other successful mean field theories, which range from 1.5 to 3.0 MeV for optimized Skyrme functionals and 0.7 to 3.0 for the Gogny functionals. The other properties that have been calculated and compared to experiment are nuclear radii, the giant monopole resonance, and spontaneous fission lifetimes.

  19. Hydrogen dynamics in Na3AlH6: A combined density functional theory and quasielastic neutron scattering study

    DEFF Research Database (Denmark)

    Zsigmond, G.; Manoshin, S.; Lieutenant, K.

    2007-01-01

    Handling of polarization became very important in simulations of neutron scattering. One of the very comprehensive and open-source neutron simulation package, VITESS, has been intensely involved in polarized neutron simulations. Several examples will be shown here. Another similar package NISP al...

  20. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.

    Science.gov (United States)

    Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph

    2008-12-01

    Forest transpiration estimates are frequently based on xylem sap flux measurements in the outer sections of the hydro-active stem sapwood. We used Granier's constant-heating technique with heating probes at various xylem depths to analyze radial patterns of sap flux density in the sapwood of seven broad-leaved tree species differing in wood density and xylem structure. Study aims were to (1) compare radial sap flux density profiles between diffuse- and ring-porous trees and (2) analyze the relationship between hydro-active sapwood area and stem diameter. In all investigated species except the diffuse-porous beech (Fagus sylvatica L.) and ring-porous ash (Fraxinus excelsior L.), sap flux density peaked at a depth of 1 to 4 cm beneath the cambium, revealing a hump-shaped curve with species-specific slopes. Beech and ash reached maximum sap flux densities immediately beneath the cambium in the youngest annual growth rings. Experiments with dyes showed that the hydro-active sapwood occupied 70 to 90% of the stem cross-sectional area in mature trees of diffuse-porous species, whereas it occupied only about 21% in ring-porous ash. Dendrochronological analyses indicated that vessels in the older sapwood may remain functional for 100 years or more in diffuse-porous species and for up to 27 years in ring-porous ash. We conclude that radial sap flux density patterns are largely dependent on tree species, which may introduce serious bias in sap-flux-derived forest transpiration estimates, if non-specific sap flux profiles are assumed.

  1. A state-space modeling approach to estimating canopy conductance and associated uncertainties from sap flux density data.

    Science.gov (United States)

    Bell, David M; Ward, Eric J; Oishi, A Christopher; Oren, Ram; Flikkema, Paul G; Clark, James S

    2015-07-01

    Uncertainties in ecophysiological responses to environment, such as the impact of atmospheric and soil moisture conditions on plant water regulation, limit our ability to estimate key inputs for ecosystem models. Advanced statistical frameworks provide coherent methodologies for relating observed data, such as stem sap flux density, to unobserved processes, such as canopy conductance and transpiration. To address this need, we developed a hierarchical Bayesian State-Space Canopy Conductance (StaCC) model linking canopy conductance and transpiration to tree sap flux density from a 4-year experiment in the North Carolina Piedmont, USA. Our model builds on existing ecophysiological knowledge, but explicitly incorporates uncertainty in canopy conductance, internal tree hydraulics and observation error to improve estimation of canopy conductance responses to atmospheric drought (i.e., vapor pressure deficit), soil drought (i.e., soil moisture) and above canopy light. Our statistical framework not only predicted sap flux observations well, but it also allowed us to simultaneously gap-fill missing data as we made inference on canopy processes, marking a substantial advance over traditional methods. The predicted and observed sap flux data were highly correlated (mean sensor-level Pearson correlation coefficient = 0.88). Variations in canopy conductance and transpiration associated with environmental variation across days to years were many times greater than the variation associated with model uncertainties. Because some variables, such as vapor pressure deficit and soil moisture, were correlated at the scale of days to weeks, canopy conductance responses to individual environmental variables were difficult to interpret in isolation. Still, our results highlight the importance of accounting for uncertainty in models of ecophysiological and ecosystem function where the process of interest, canopy conductance in this case, is not observed directly. The StaCC modeling

  2. Influence of clouds on the spectral actinic flux density in the lower troposphere (INSPECTRO: overview of the field campaigns

    Directory of Open Access Journals (Sweden)

    S. Thiel

    2007-09-01

    Full Text Available Ultraviolet radiation is the key factor driving tropospheric photochemistry. It is strongly modulated by clouds and aerosols. A quantitative understanding of the radiation field and its effect on photochemistry is thus only possible with a detailed knowledge of the interaction between clouds and radiation. The overall objective of the project INSPECTRO was the characterization of the three-dimensional actinic radiation field under cloudy conditions. This was achieved during two measurement campaigns in Norfolk (East Anglia, UK and Lower Bavaria (Germany combining space-based, aircraft and ground-based measurements as well as simulations with the one-dimensional radiation transfer model UVSPEC and the three-dimensional radiation transfer model MYSTIC.

    During both campaigns the spectral actinic flux density was measured at several locations at ground level and in the air by up to four different aircraft. This allows the comparison of measured and simulated actinic radiation profiles. In addition satellite data were used to complete the information of the three dimensional input data set for the simulation. A three-dimensional simulation of actinic flux density data under cloudy sky conditions requires a realistic simulation of the cloud field to be used as an input for the 3-D radiation transfer model calculations. Two different approaches were applied, to derive high- and low-resolution data sets, with a grid resolution of about 100 m and 1 km, respectively.

    The results of the measured and simulated radiation profiles as well as the results of the ground based measurements are presented in terms of photolysis rate profiles for ozone and nitrogen dioxide. During both campaigns all spectroradiometer systems agreed within ±10% if mandatory corrections e.g. stray light correction were applied. Stability changes of the systems were below 5% over the 4 week campaign periods and negligible over a few days. The J(O1D data of

  3. Influence of clouds on the spectral actinic flux density in the lower troposphere (INSPECTRO: overview of the field campaigns

    Directory of Open Access Journals (Sweden)

    C. Topaloglou

    2008-03-01

    Full Text Available Ultraviolet radiation is the key factor driving tropospheric photochemistry. It is strongly modulated by clouds and aerosols. A quantitative understanding of the radiation field and its effect on photochemistry is thus only possible with a detailed knowledge of the interaction between clouds and radiation. The overall objective of the project INSPECTRO was the characterization of the three-dimensional actinic radiation field under cloudy conditions. This was achieved during two measurement campaigns in Norfolk (East Anglia, UK and Lower Bavaria (Germany combining space-based, aircraft and ground-based measurements as well as simulations with the one-dimensional radiation transfer model UVSPEC and the three-dimensional radiation transfer model MYSTIC.

    During both campaigns the spectral actinic flux density was measured at several locations at ground level and in the air by up to four different aircraft. This allows the comparison of measured and simulated actinic radiation profiles. In addition satellite data were used to complete the information of the three dimensional input data set for the simulation. A three-dimensional simulation of actinic flux density data under cloudy sky conditions requires a realistic simulation of the cloud field to be used as an input for the 3-D radiation transfer model calculations. Two different approaches were applied, to derive high- and low-resolution data sets, with a grid resolution of about 100 m and 1 km, respectively.

    The results of the measured and simulated radiation profiles as well as the results of the ground based measurements are presented in terms of photolysis rate profiles for ozone and nitrogen dioxide. During both campaigns all spectroradiometer systems agreed within ±10% if mandatory corrections e.g. stray light correction were applied. Stability changes of the systems were below 5% over the 4 week campaign periods and negligible over a few days. The J(O1D data of

  4. High density flux of Co nanoparticles produced by a simple gas aggregation apparatus.

    Science.gov (United States)

    Landi, G T; Romero, S A; Santos, A D

    2010-03-01

    Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

  5. High density flux of Co nanoparticles produced by a simple gas aggregation apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Landi, G. T.; Romero, S. A.; Santos, A. D. [Departamento de Fisica dos Materiais e Mecanica, Laboratorio de Materiais Magneticos, Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05314-970 Sao Paulo, SP (Brazil)

    2010-03-15

    Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

  6. Convective heat flow in space cryogenics plugs - Critical and moderate He II heat flux densities

    Science.gov (United States)

    Yuan, S. W. K.; Frederking, T. H. K.

    1990-01-01

    Plug flow rates of entropy, heat and normal fluid in phase separators and in zero net mass flow systems are, to some extent, quite similar. A simplified analysis of critical conditions is presented in agreement with data trends. A critical temperature gradient arises on the basis of the He II two-fluid model at the stability limit constraining the thermohydrodynamics of the system. Thus, the question of critical thermodynamic fluctuations associated with nucleation versus the possibility of critical gradients in externally imposed parameters is answered in favor of the latter route toward turbulence. Furthermore, a similarity equation is presented which incorporates size dependent rates for moderate heat flow densities observed in experiments.

  7. Localizing by autoradiography at -195 deg radioactive areas in rats exposed to a high flux of thermal neutrons, importance of phosphorus 32 in consecutive internal irradiation; Localisation par autoradiographie a -195 deg des zones radioactives chez le rat expose a un haut flux de neutrons thermiques, importance du phosphore 32 dans l'irradiation interne consecutive

    Energy Technology Data Exchange (ETDEWEB)

    Chanteur, J.; Pellerin, P. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    Rats weighing 25 g were exposed for 5 mn to a flux of 6.10{sup 12} thermal neutrons/cm{sup 2}/s. Anatomical autoradiography at -195 deg. C has enabled the radioactive organs to be easily localised, to follow in course of time the decrease of radioactivity, and from it to deduce the probable nature of the numerous emitters in question. In particular, the phosphorus 32 has thus appeared to be one of those responsible for internal irradiation, general, on the one hand, by activating cellular phosphorus, local, on the other, by activating bony phosphates. Owing to this, an accidental irradiation by neutrons might have consequences that are both somatic (elective irradiation of the bone marrow) and genetic (activation of nucleic acids). The gamma spectrometry has confirmed the nature of certain other emitters. (author) [French] Des rats de 25 g ont ete exposes pendant 5 mn a un flux de 6.10{sup 12} neutrons thermiques/cm{sup 2}/s. L'autoradiographie anatomique a -195 deg. C a permis de localiser facilement les organes radioactifs, de suivre dans le temps la decroissance de la radioactivite, et d'en deduire la nature probable des nombreux emetteurs en cause. En particulier, le phosphore 32 est ainsi apparu comme l'un des responsables de l'irradiation interne, d'une part generale par activation du phosphore cellulaire, d'autre part locale par activation des phosphates osseux. Une irradiations accidentelle par neutrons aurait, de ce fait, des consequences a la fois somatiques (irradiation elective de la moelle osseuse) et genetiques (activation des acides nucleiques). La spectrometrie gamma a confirme la nature de certains autres emetteurs. (auteur)

  8. Monte carlo simulation of innovative neutron and photon shielding material composing of high density concrete, waste rubber, lead and boron carbide

    Science.gov (United States)

    Aim-O, P.; Wongsawaeng, D.; Phruksarojanakun, P.; Tancharakorn, S.

    2017-06-01

    High-density concrete exhibits high strength and can perform an important role of gamma ray attenuation. In order to upgrade this material’s radiation-shielding performance, hydrogen-rich material can be incorporated. Waste rubber from vehicles has high hydrogen content which is the prominent characteristic to attenuate neutron. The objective of this work was to evaluate the radiation-shielding properties of this composite material against neutron and photon radiations. Monte Carlo transport simulation was conducted to simulate radiation through the composite material. Am-241/Be was utilized for neutron source and Co-60 for photon source. Parameters of the study included volume percentages of waste rubber, lead and boron carbide and thickness of the shielding material. These designs were also fabricated and the radiation shielding properties were experimentally evaluated. The best neutron and gamma ray shielding material was determined to be high-density concrete mixed with 5 vol% crumb rubber and 5 vol% lead powder. This shielding material increased the neutron attenuation by 64% and photon attenuation by 68% compared to ordinary concrete. Also, increasing the waste rubber content to greater than 5% resulted in a decrease in the radiation attenuation. This innovative composite radiation shielding material not only benefits nuclear science and engineering applications, but also helps solve the environmental issue of waste rubber.

  9. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa2Cu3O7 thin films

    Science.gov (United States)

    Xing, W.; Heinrich, B.; Zhou, HU; Fife, A. A.; Cragg, A. R.; Grant, P. D.

    1995-01-01

    Mapping of the magnetic flux density B(sub z) (perpendicular to the film plane) for a YBa2Cu3O7 thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B(sub z) distributions. From the known sheet magnetization, the tangential (B(sub x,y)) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B(sub x,y)/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.

  10. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa{sub 2}Cu{sub 3}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Xing, W.; Heinrich, B. [Simon Fraser Univ., British Columbia (Canada); Zhou, H. [CTF Systems, Inc., British Columbia (Canada)] [and others

    1994-12-31

    Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.

  11. Local Neutron Flux Distribution Measurements by Wire-Dosimetry in the AMMON Experimental Program in the EOLE Reactor

    Directory of Open Access Journals (Sweden)

    Gruel A.

    2016-01-01

    Full Text Available Dosimetry measurements were carried out during the AMMON experimental program, in the EOLE facility. Al-0.1 wt% Au wires were positioned along curved fuel plates of JHR-type assemblies to investigate the azimuthal and axial gold capture rate profiles, directly linked to the thermal and epithermal flux. After irradiation, wires were cut into small segments (a few mm, and the gold capture rate of each part was measured by gamma spectrometry on the MADERE platform. This paper presents results in the “hafnium” configuration, and more specifically the azimuthal flux profile characterization. The final uncertainty on each measured wire lies below 1% (at 2 standard deviations. Experimental profiles are in a good agreement against Monte Carlo calculations, and the 4% capture rate increase at the plate edge is well observed. The flux dissymmetry due to assembly position in the core is also measured, and shows a 10% discrepancy between the two edges of the plate.

  12. Evaluation of an iron-filtered epithermal neutron beam for neutron-capture therapy.

    Science.gov (United States)

    Musolino, S V; McGinley, P H; Greenwood, R C; Kliauga, P; Fairchild, R G

    1991-01-01

    An epithermal neutron filter using iron, aluminum, and sulfur was evaluated to determine if the therapeutic performance could be improved with respect to aluminum-sulfur-based filters. An empirically optimized filter was developed that delivered a 93% pure beam of 24-keV epithermal neutrons. It was expected that a thick filter using iron with a density thickness greater than 200 g/cm2 would eliminate the excess gamma contamination found in Al-S filters. This research showed that prompt gamma production from neutron interactions in iron was the dominant dose component. Dosimetric parameters of the beam were determined from the measurement of absorbed dose in air, thermal neutron flux in a head phantom, neutron and gamma spectroscopy, and microdosimetry.

  13. Phototactic number-density flux in the localized bioconvection of Euglena gracilis

    Science.gov (United States)

    Shoji, Erika; Suematsu, Nobuhiko; Nishimori, Hiraku; Awazu, Akinori; Izumi, Shunsuke; Iima, Makoto

    2014-11-01

    Euglena gracilis is a unicellular phototactic flagellate; it escapes from light sources if the light intensity is higher than 200 W/m2 (negative phototaxis). When the suspension of E. gracilis is illuminated from the bottom by strong light, bioconvection patterns are generated. In the case of E. gracilis, the patterns can be spatially localized. The localization mechanism has not been clarified. We report experimental results related to the localization mechanism. In particular, we experimentally measured the strength of the phototaxis in the lateral direction as well as vertical direction. We prepared a thin container in which the suspension is included, and gave the linearly-changing light intensity. We found the number density gets a peak at a particular light intensity, which never happens if the suspension has the vertical phototaxis only. Further, we succeeded in getting the function representing lateral phototaxis. The relationship between the measured functions and the localized convection cells will be also reported.

  14. Influence of the flux density on the radiation damage of bipolar silicon transistors by protons and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bannikov, Y.; Gorin, B.; Kozhevnikov, V.; Mikhnovich, V.; Gusev, L.

    1981-11-01

    It was found experimentally that the radiation damage of bipolar n-p-n transistors increased by a factor of 8--12 when the proton flux density was reduced from 4.07 x 10/sup 10/ to 2.5 x 10/sup 7/ cm/sup -2/ sec /sup -1/. In the case of p-n-p transistors the effect was opposite: there was a reduction in the radiation damage by a factor of 2--3 when the dose rate was lowered between the same limits. A similar effect was observed for electrons but at dose rates three orders of magnitude greater. The results were attributed to the dependences of the radiation defect-forming reactions on the charge state of defects which was influenced by the formation of disordered regions in the case of proton irradiation.

  15. First results of micro-neutron tomography by use of a focussing neutron lens

    CERN Document Server

    Masschaele, B; Cauwels, P; Dierick, M; Jolie, J; Mondelaers, W

    2001-01-01

    Since the appearance of high flux neutron beams, scientists experimented with neutron radiography. This high beam flux combined with modern neutron to visible light converters leads to the possibility of performing fast neutron micro-tomography. The first results of cold neutron tomography with a neutron lens are presented in this article. Samples are rotated in the beam and the projections are recorded with a neutron camera. The 3D reconstruction is performed with cone beam reconstruction software.

  16. Neutron scattering from the flux-line lattice in Bi2Sr2CaCu2O8+#gamma#

    DEFF Research Database (Denmark)

    Paul, D.M.; Forgan, E.M.; Cubitt, R.

    1995-01-01

    Neutron small-angle diffraction has been used to investigate the flux-line lattice structure within single crystals of the high-temperature superconductor Bi2.15Sr1.95CaCu2O8+x. The diffracted intensity goes rapidly to zero as the magnetic field or the temperature is increased. Melting at low...

  17. Magnetic flux density measurement with balanced steady state free precession pulse sequence for MREIT: a simulation study.

    Science.gov (United States)

    Minhas, Atul S; Woo, Eung Je; Lee, Soo Yeol

    2009-01-01

    Magnetic Resonance Electrical Impedance Tomography (MREIT) utilizes the magnetic flux density B(z), generated due to current injection, to find conductivity distribution inside an object. This B(z) can be measured from MR phase images using spin echo pulse sequence. The SNR of B(z) and the sensitivity of phase produced by B(z) in MR phase image are critical in deciding the resolution of MREIT conductivity images. The conventional spin echo based data acquisition has poor phase sensitivity to current injection. Longer scan time is needed to acquire data with higher SNR. We propose a balanced steady state free precession (b-SSFP) based pulse sequence which is highly sensitive to small off-resonance phase changes. A procedure to reconstruct B(z) from MR signal obtained with b-SSFP sequence is described. Phases for b-SSFP signals for two conductivity phantoms of TX 151 and Gelatin are simulated from the mathematical models of b-SSFP signal. It was observed that the phase changes obtained from b-SSFP pulse sequence are highly sensitive to current injection and hence would produce higher magnetic flux density. However, the b-SSFP signal is dependent on magnetic field inhomogeneity and the signal deteriorated highly for small offset from resonance frequency. The simulation results show that the b-SSFP sequence can be utilized for conductivity imaging of a local region where magnetic field inhomogeneity is small. A proper shimming of magnet is recommended before using the b-SSFP sequence.

  18. Importance of 3-D radiant flux densities for outdoor human thermal comfort on clear-sky summer days in Freiburg, Southwest Germany

    Directory of Open Access Journals (Sweden)

    Hyunjung Lee

    2014-09-01

    Full Text Available This study concerns the role of short- and long-wave radiant flux densities from different directions in complex urban settings for human thermal comfort on clear-sky summer days. The aims of the investigation are to quantify the importance of the sky view factor as an urban design-dependent variable for the 3-D radiant flux densities absorbed by the standardized human-biometeorological reference person and to analyze the varying impact of the absorbed 3-D short- and long-wave radiant flux densities on the mean radiant temperature (Tmrt$T_{\\text{mrt}}$, near-surface air temperature (Ta$T_{\\text{a}}$ and physiologically equivalent temperature (PET.The results obtained by measuring campaigns and numerical simulations point to the different importance of the absorbed 3-D radiant flux densities for human thermal comfort characterized by Ta$T_{\\text{a}}$, Tmrt$T_{\\text{mrt}}$ and PET. The magnitude of Tmrt$T_{\\text{mrt}}$ is mainly determined by the total of the absorbed 3-D long-wave radiant flux densities. However, the fluctuations of Tmrt$T_{\\text{mrt}}$ are mainly governed by the total of the absorbed 3-D short-wave radiant flux densities. Their variance can be well explained by the variance of the sky view factor related to the southern part of the upper half space. Taking account of the different impact of the 3-D radiant flux densities, Tmrt$T_{\\text{mrt}}$ can be quite well estimated by a multiple regression using the total of the absorbed 3-D short-wave radiant flux densities and the absorbed long-wave radiant flux density from the lower half space as independent variables. PET can be well estimated by a multiple regression showing Tmrt$T_{\\text{mrt}}$ and Ta$T_{\\text{a}}$ as independent variables. On a hot summer day, the increase of the albedo of vertical building walls within a simple E-W oriented street canyon leads to a decrease of the surface temperature of the S-facing wall, but to an increase of Tmrt$T_{\\text{mrt}}$ and PET

  19. A Dynamic Density Functional Theory Approach to Diffusion in White Dwarfs and Neutron Star Envelopes

    Science.gov (United States)

    Diaw, A.; Murillo, M. S.

    2016-09-01

    We develop a multicomponent hydrodynamic model based on moments of the Born-Bogolyubov-Green-Kirkwood-Yvon hierarchy equations for physical conditions relevant to astrophysical plasmas. These equations incorporate strong correlations through a density functional theory closure, while transport enters through a relaxation approximation. This approach enables the introduction of Coulomb coupling correction terms into the standard Burgers equations. The diffusive currents for these strongly coupled plasmas is self-consistently derived. The settling of impurities and its impact on cooling can be greatly affected by strong Coulomb coupling, which we show can be quantified using the direct correlation function.

  20. Level density shell effects in neutron induced reactions on molybdenum isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ivascu, M.; Avrigeanu, M.; Avrigeanu, V.

    1986-01-01

    The gradual reduction of the level density shell effects with increasing excitation is described by two coupled phenomenological models: the back-shifted Fermi gas model for medium excitation energies (E < or approx.,10MeV) and the Ignatyuk et al. (Yad. Fiz. 21, 255, 1975) formula for higher energies. This approach is used in preequilibrium and statistical model calculations of (n,p), (n,n'p) and some (n,2n) reaction cross-sections for stable molybdenum isotopes, from threshold up to 20 MeV incident energy.