WorldWideScience

Sample records for neutron direct-radiation response

  1. Neutron response study

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Fix, J.J.; Thorson, M.R.; Nichols, L.L.

    1981-01-01

    Neutron response of the albedo type dosimeter is strongly dependent on the energy of the incident neutrons as well as the moderating material on the backside of the dosimeter. This study characterizes the response of the Hanford dosimeter for a variety of neutron energies for both a water and Rando phantom (a simulated human body consisting of an actual human skeleton with plastic for body muscles and certain organs). The Hanford dosimeter response to neutrons of different energies is typical of albedo type dosimeters. An approximate two orders of magnitude difference in response is observed between neutron energies of 100 keV and 10 MeV. Methods were described to compensate for the difference in dosimeter response between a laboratory neutron spectrum and the different spectra encountered at various facilities in the field. Generally, substantial field support is necessary for accurate neutron dosimetry

  2. Understanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change

    Science.gov (United States)

    Li, Xiaoqiong; Ting, Mingfang

    2017-10-01

    Future hydroclimate projections from state-of-the-art climate models show large uncertainty and model spread, particularly in the tropics and over the monsoon regions. The precipitation and circulation responses to rising greenhouse gases involve a fast component associated with direct radiative forcing and a slow component associated with sea surface temperature (SST) warming; the relative importance of the two may contribute to model discrepancies. In this study, regional hydroclimate responses to greenhouse warming are assessed using output from coupled general circulation models in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) and idealized atmospheric general circulation model experiments from the Atmosphere Model Intercomparison Project. The thermodynamic and dynamic mechanisms causing the rainfall changes are examined using moisture budget analysis. Results show that direct radiative forcing and SST change exert significantly different responses both over land and ocean. For most part of the Asian monsoon region, the summertime rainfall changes are dominated by the direct CO2 radiative effect through enhanced monsoon circulation. The response to SST warming shows a larger model spread compared to direct radiative forcing, possibly due to the cancellation between the thermodynamical and dynamical components. While the thermodynamical response of the Asian monsoon is robust across the models, there is a lack of consensus for the dynamical response among the models and weak multi-model mean responses in the CMIP5 ensemble, which may be related to the multiple physical processes evolving on different time scales.

  3. Neutronic analysis of JET external neutron monitor response

    Energy Technology Data Exchange (ETDEWEB)

    Snoj, Luka, E-mail: luka.snoj@ijs.si [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Lengar, Igor; Čufar, Aljaž [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Syme, Brian; Popovichev, Sergey [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom (United Kingdom); Batistoni, Paola [ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Conroy, Sean [VR Association, Uppsala University, Department of Physics and Astronomy, PO Box 516, SE-75120 Uppsala (Sweden)

    2016-11-01

    Highlights: • We model JET tokamak containing JET remote handling system. • We investigate effect of remote handling system on external neutron monitor response. • Remote handling system correction factors are calculated. • Integral correction factors are relatively small, i.e up to 8%. - Abstract: The power output of fusion devices is measured in terms of the neutron yield which relates directly to the fusion yield. JET made a transition from Carbon wall to ITER-Like Wall (Beryllium/Tungsten/Carbon) during 2010–11. Absolutely calibrated measurement of the neutron yield by JET neutron monitors was ensured by direct measurements using a calibrated {sup 252}Cf neutron source (NS) deployed by the in-vessel remote handling system (RHS) inside the JET vacuum vessel. Neutronic calculations were required in order to understand the neutron transport from the source in the vacuum vessel to the fission chamber detectors mounted outside the vessel on the transformer limbs of the tokamak. We developed a simplified computational model of JET and the JET RHS in Monte Carlo neutron transport code MCNP and analyzed the paths and structures through which neutrons reach the detectors and the effect of the JET RHS on the neutron monitor response. In addition we performed several sensitivity studies of the effect of substantial massive structures blocking the ports on the external neutron monitor response. As the simplified model provided a qualitative picture of the process only, some calculations were repeated using a more detailed full 3D model of the JET tokamak.

  4. NRC TLD Direct Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Struckmeyer, R.

    1994-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1993. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program

  5. NRC TLD Direct Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1993-03-01

    This report present the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1992. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program

  6. Response of electret dosemeter to slow neutrons

    International Nuclear Information System (INIS)

    Ghilardi, A.J.P.; Pela, C.A.; Zimmerman, R.L.

    1987-01-01

    The response of electret dosemeter to slow neutrons exposure is cited, mentioning the preparation and the irradiation of dosemeter with Am-Be source. Some theory considerations about the response of electret dosemeter to slow and fast neutrons are also presented. (C.G.C.) [pt

  7. A search for solar neutron response in neutron monitor data

    International Nuclear Information System (INIS)

    Kudela, K.

    1990-01-01

    The search for an impulsive increase corresponding to a solar neutron response on high-mountain neutron monitors requires control of the stability of the measurement and elimination of other sources of short-time increases of different kinds which are involved in fluctuations of cosmic-ray intensity. For the solar flare of June 3, 1982 the excess of counting rate on the Lomnicky stit neutron monitor is, within a factor or 1.8, equal to that expected from solar neutrons. Superposed epoch analysis of 17 flares with gamma-ray or hard X-ray production gives a slight tendency of an occurring signal in cases of high heliocentric angles, indicating anisotropic production of neutrons on the sun. The low statistical significance of the result indicates that higher temporal resolution, better evaluation of multiplicity, better knowledge of the power spectra of short-term intensity fluctuations on neutron monitors, as well as coordinated measurements of solar gamma-rays and neutrons on satellites, are required. 21 refs

  8. Neutron response study using PADC

    International Nuclear Information System (INIS)

    El-Badry, B.A; Hegazy, T.M; Morsy, A.A.; Zaki, M.F.

    2007-01-01

    The results of an experimental work aimed at improving the performances of the Cr-39 nuclear track detector for neutron dosimetry applications. So, a set of Cr-39 plastic detectors was exposed to 252 Cf neutron source, which has the emission rate of 0.68 x 10 8 s ( -1), and neutron dose equivalent rate 1m apart from the source is equal to 3.8 mrem/h. The detection of fast neutrons performed with Cr-39 detector foils, subsequent chemical etching and evaluation of the etched tracks by an automatic track counting system was studied. It is found that the track density grows with the increase of neutron dose and etching time. These results. are compared with previous work. It is found that there is a matching and good agreement with their investigations

  9. Neutron energy response measurement of scintillation detectors

    International Nuclear Information System (INIS)

    Yang Hongqiong; Peng Taiping; Yang Jianlun; Tang Zhengyuan; Yang Gaozhao; Li Linbo; Hu Mengchun; Wang Zhentong; Zhang Jianhua; Li Zhongbao; Wang Lizong

    2004-01-01

    Neutron sensitivities of detectors composed of plastic scintillator ST401, ST1422, ST1423 and phyotomultiplier tube in primary energy range of fission neutron are calibrated by direct current. The energy response curve of the detectors is obtained in this experiment. The experimental result has been compared with the theoretical calculation and they are in agreement within measuring uncertainty. (authors)

  10. NRC TLD Direct Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1991-04-01

    This report presents the results of the NRC [Nuclear Regulatory Commission] Direct Radiation Monitoring Network for the fourth quarter of 1990. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs

  11. Climatic responses to the shortwave and longwave direct radiative effects of sea salt aerosol in present day and the last glacial maximum

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xu [Chinese Academy of Sciences (CAS), Climate Change Research Center (CCRC), Beijing (China); Chinese Academy of Sciences (CAS), Nansen-Zhu International Research Center, Institute of Atmospheric Physics (IAP), Beijing (China); Harvard University, School of Engineering and Applied Sciences, Cambridge, MA (United States); Liao, Hong [Chinese Academy of Sciences (CAS), State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), P.O. Box 9804, Beijing (China)

    2012-12-15

    We examine the climatic responses to the shortwave (SW) and longwave (LW) direct radiative effects (RE) of sea salt aerosol in present day and the last glacial maximum (LGM) using a general circulation model with online simulation of sea salt cycle. The 30-year control simulation predicts a present-day annual emission of sea salt of 4,253 Tg and a global burden of 8.1 Tg for the particles with dry radii smaller than 10 {mu}m. Predicted annual and global mean SW and LW REs of sea salt are, respectively, -1.06 and +0.14 W m{sup -2} at the top of atmosphere (TOA), and -1.10 and +0.54 W m{sup -2} at the surface. The LW warming of sea salt is found to decrease with altitude, which leads to a stronger net sea salt cooling in the upper troposphere. The changes in global mean air temperature by the present-day sea salt are simulated to be -0.55, -0.63, -0.86, and -0.91 K at the surface, 850, 500a, and 200 hPa, respectively. The emission of sea salt at the LGM is estimated to be 4,075 Tg year{sup -1}. Relative to present day, the LGM sea salt emission is higher by about 18% over the tropical and subtropical oceans, and is lower by about 35% in the mid- and high-latitudes in both hemispheres because of the expansion of sea ice. As a result of the weakened LGM water cycle, the LGM annual and global mean burden of sea salt is predicted to be higher by 4% as compared to the present-day value. Compared with the climatic effect of sea salt in present day, the sea-salt-induced reductions in surface air temperature at the LGM have similar magnitude in the tropics but are weakened by about 0.18 and 0.14 K in the high latitudes of the Southern and Northern Hemispheres, respectively. We also perform a sensitivity study to explore the upper limit of the climatic effect of the LGM sea salt. We assume an across-the-board 30% increase in the glacial wind speed and consider sea salt emissions over sea ice, so that the model can reproduce the ratio of sea salt deposition between the LGM and

  12. Phototransistor response under a neutron fluence

    International Nuclear Information System (INIS)

    Santos, Luiz A.P.; Barros, Fabio R.; Ursulino, Luciano C.; Silva Junior, Eronides F.; Antonio Filho, Joao

    2009-01-01

    The purpose of this communication is to show some effects on a bipolar phototransistor after it has been under a neutron fluence. Unlike a transistor, a phototransistor is designed so that the collector has a large area and consequently it has a higher radiation detection probability. Then, it is possible to have a certain number of interactions so that any changes in the internal structure of the phototransistor can be observed after a neutron irradiation. If a phototransistor is under a certain spectra of neutron fluence the interaction depends on the cross section of the either silicon chip or its encapsulation, and recoil protons could be the charged particle responsible for changes in the semiconductor structure. Furthermore, neutron irradiation could give to the device a state of vanishing in its electrical characteristic which can be performed tracing the current versus voltage curve (I x V). The experimental arrangement basically consists of a photonic device, a neutron-gamma radiation source and a Flip-Flop electrometer second generation (EFF-2G). One of the main parameters of evaluation was the phototransistor dark current. In fact, the first results demonstrate that when the phototransistor is neutron irradiated there is a significant variation in its I x V characteristic curve. (author)

  13. Response functions of superfluid neutron matter

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jochen; Sedrakian, Armen [Institut fuer Theoretische Physik, Goethe Universitaet, 60438 Frankfurt/Main (Germany)

    2011-07-01

    We investigate the response of pair-correlated neutron matter under conditions relevant to neutron stars to external weak probes and compute its neutrino emissivity in vector and axialvector channels. To derive the response functions we sum up an infinite chain of particle-hole ladder diagrams within finite-temperature Green's function theory. The polarization tensor of matter is evaluated in the limit of small momentum transfers. The calculated neutrino emission via the weak neutral current processes of pair-breaking and recombination of Cooper-pairs in neutron stars causes a cooling of their baryonic interior, and represents an important mechanism for the thermal evolution of the star within a certain time domain.

  14. Response characteristics of selected personnel neutron dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Fix, J.J.; Hadley, R.T.; Holbrook, K.L.; Yoder, R.C.; Roberson, P.L.; Endres, G.W.R.; Nichols, L.L.; Schwartz, R.B.

    1983-09-01

    Performance characteristics of selected personnel neutron dosimeters in current use at Department of Energy (DOE) facilities were determined from their evaluation of neutron dose equivalent received after irradiations with specific neutron sources at either the National Bureau of Standards (NBS) or the Pacific Northwest Laboratory (PNL). The characteristics assessed included: lower detection level, energy response, precision and accuracy. It was found that when all of the laboratories employed a common set of calibrations, the overall accuracy was approximately +-20%, which is within uncertainty expected for these dosimeters. For doses above 80 mrem, the accuracy improved to better than 10% when a common calibration was used. Individual differences found in this study may reflect differences in calibration technique rather than differences in the dose rates of actual calibration standards. Second, at dose rates above 100 mrem, the precision for the best participants was generally below +-10% which is also within expected limits for these types of dosimeters. The poorest results had a standard deviation of about +-25%. At the lowest doses, which were sometimes below the lower detection limit, the precision often approached or exceeded +-100%. Third, the lower level of detection for free field 252 Cf neutrons generally ranged between 20 and 50 mrem. Fourth, the energy dependence study provided a characterization of the response of the dosimeters to neutron energies far from the calibration energy. 11 references, 22 figures, 26 tables

  15. Response of electret dosemeter to slow neutrons

    International Nuclear Information System (INIS)

    Ghilardi, A.J.P.; Pela, C.A.; Zimmerman, R.L.

    1987-01-01

    The response of the electret dosemeter to exposition of slow neutrons is studied. Different external coatings are used on the dosemeter (polyethylene, alminium, polyethylene + boron, aluminium + boron) and exposure curves (with and without water) are compared. (M.A.C.) [pt

  16. Photon response of silicon diode neutron detectors

    International Nuclear Information System (INIS)

    McCall, R.C.; Jenkins, T.M.; Oliver, G.D. Jr.

    1976-07-01

    The photon response of silicon diode neutron detectors was studied to solve the problem on detecting neutrons in the presence of high energy photons at accelerator neutron sources. For the experiment Si diodes, Si discs, and moderated activation foil detectors were used. The moderated activation foil detector consisted of a commercial moderator and indium foils 2'' in diameter and approximately 2.7 grams each. The moderator is a cylinder of low-density polyethylene 6 1 / 4 '' in diameter by 6 1 / 16 '' long covered with 0.020'' of cadmium. Neutrons are detected by the reaction 115 In (n,γ) 116 In(T/sub 1 / 2 / = 54 min). Photons cannot be detected directly but photoneutrons produced in the moderator assembly can cause a photon response. The Si discs were thin slices of single-crystal Si about 1.4 mils thick and 1'' in diameter which were used as activation detectors, subsequently being counted on a thin-window pancake G.M. counter. The Si diode fast neutron dosimeter 5422, manufactured by AB Atomenergi in Studsvik, Sweden, consists of a superdoped silicon wafer with a base width of 0.050 inches between two silver contacts coated with 2 mm of epoxy. For this experiment, the technique of measuring the percent change of voltage versus dose was used. Good precision was obtained using both unirradiated and preirradiated diodes. All diodes, calibrated against 252 CF in air,were read out 48 hours after irradiation to account for any room temperature annealing. Results are presented and discussed

  17. Energy response study of modified CR-39 neutron personnel dosimeter

    International Nuclear Information System (INIS)

    Sathian, Deepa; Bakshi, A.K.; Datta, D.; Nair, Sreejith S.; Sathian, V.; Mishra, Jitendra; Sen, Meghnath

    2018-01-01

    Personnel neutron dosimetry is an integral part of radiation protection. No single dosimeter provides the satisfactory energy response, sensitivity, angular dependence characteristics and accuracy necessary to meet the requirement of an ideal personnel neutron dosimeter. The response of a personnel neutron dosimeter is critically dependent upon the energy distribution of the neutron field. CR-39 personnel neutron dosimeters were typically calibrated in the standard neutron field of 252 Cf and 241 Am-Be in our laboratory, although actual neutron fields may vary from the calibration neutron spectrum. Recently the badge cassette of the personnel neutron dosimeter was changed due to frequent damage of the PVC badge used earlier. This paper discusses energy response of CR-39 solid state nuclear track detector loaded in this modified badge cassette as per latest ISO recommendation

  18. Photosynthesis of a scots pine shoot: the effect of shoot inclination on the photosynthetic response of a shoot subjected to direct radiation

    International Nuclear Information System (INIS)

    Oker-Blom, P.; Kellomaki, S.; Smolander, H.

    1983-01-01

    A set of photosynthetic responses of a Scots pine (Pinus sylvestris L.) shoot to light was derived from the shoot geometry and the photosynthetic response of a single needle. Computations showed that the shape of the photosynthesis light-curves varies substantially depending on the direction of radiation relative to the shoot position. Differences in the initial and maximum rates of photosynthesis were due to changes in the effective projection area and the irradiated fraction of the shoot, respectively

  19. Energy response of neutron area monitor with silicon semiconductor detector

    International Nuclear Information System (INIS)

    Kitaguchi, Hiroshi; Izumi, Sigeru; Kobayashi, Kaoru; Kaihara, Akihisa; Nakamura, Takashi.

    1993-01-01

    A prototype neutron area monitor with a silicon semiconductor detector has been developed which has the energy response of 1 cm dose equivalent recommended by the ICRP-26. Boron and proton radiators are coated on the surface of the silicon semiconductor detector. The detector is set at the center of a cylindrical polyethylene moderator. This moderator is covered by a porous cadmium board which serves as the thermal neutron absorber. Neutrons are detected as α-particles generated by the nuclear reaction 10 B(n,α) 7 Li and as recoil protons generated by the interaction of fast neutrons with hydrogen. The neutron energy response of the monitor was measured using thermal neutrons and monoenergetic fast neutrons generated by an accelerator. The response was consistent with the 1 cm dose equivalent response required for the monitor within ±34% in the range of 0.025 - 15 Mev. (author)

  20. Response of six neutron survey meters in mixed fields of fast and thermal neutrons.

    Science.gov (United States)

    Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S

    2013-10-01

    Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.

  1. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    Science.gov (United States)

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  2. NRC TLD Direct Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1991-12-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facilities throughout the country for the third quarter of 1991

  3. Response of a neutron monitor area with TLDs pairs

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A.; Borja H, C. G.; Valero L, C.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A., E-mail: ing_karen_guzman@yahoo.com.mx [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, Jose Gutierrez Abascal 2, E-28006 Madrid (Spain)

    2011-10-15

    The response of a passive neutron monitor area has been calculated using the Monte Carlo code MCNP5. The response was the amount of n({sup 6}Li, T){alpha} reactions occurring in a TLD-600 located at the center of a cylindrical polyethylene moderator. Fluence, (n, a) and H*(10) responses were calculated for 47 monoenergetic neutron sources. The H*(10) relative response was compared with responses of commercially available neutron monitors being alike. Due to {sup 6}Li cross section (n, {alpha}) reactions are mainly produced by thermal neutrons, however TLD-600 is sensitive to gamma-rays; to eliminate the signal due to photons monitor area was built to hold 2 pairs of TLD-600 and 2 pairs of TLD-700, thus from the difference between TLD-600 and TLD-700 readouts the net signal due to neutrons is obtained. The monitor area was calibrated at the Universidad Politecnica de Madrid using a {sup 241}AmBe neutron source; net TLD readout was compared with the H*(10) measured with a Bert hold Lb-6411. Performance of the neutron monitor area was determined through two independent experiments, in both cases the H*(10) was statistically equal to H*(10) measured with a Bert hold Lb-6411. Neutron monitor area with TLDs pairs can be used in working areas with intense, mixed and pulsed radiation fields. (Author)

  4. Review of current neutron detection systems for emergency response

    Science.gov (United States)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul; Kruschwitz, Craig

    2014-09-01

    Neutron detectors are used in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 (3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution. Neutron detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 (10B), lithium-6 (6Li), and gadollinium-157 (157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 (4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Modern microfabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.

  5. Plastic fiber scintillator response to fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2014-11-15

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  6. Sound response of superheated drop bubble detectors to neutrons

    International Nuclear Information System (INIS)

    Gao Size; Chen Zhe; Liu Chao; Ni Bangfa; Zhang Guiying; Zhao Changfa; Xiao Caijin; Liu Cunxiong; Nie Peng; Guan Yongjing

    2012-01-01

    The sound response of the bubble detectors to neutrons by using 252 Cf neutron source was described. Sound signals were filtered by sound card and PC. The short-time signal energy. FFT spectrum, power spectrum, and decay time constant were got to determine the authenticity of sound signal for bubbles. (authors)

  7. Evaluation of response matrix of a multisphere neutron spectrometer ...

    Indian Academy of Sciences (India)

    Abstract. Neutron energy responses of water sphere spectrometers (WSS) to 30 MeV have been calculated by means of Monte Carlo calculations, using the computer code MCNP4C with ENDF/. B-VI.0 neutron cross-section. The calculations have been performed for 3He detector (typical SP9) placed inside 2, 3, 5, 8, ...

  8. Development and deployment of the Collimated Directional Radiation Detection System

    Science.gov (United States)

    Guckes, Amber L.; Barzilov, Alexander

    2017-09-01

    The Collimated Directional Radiation Detection System (CDRDS) is capable of imaging radioactive sources in two dimensions (as a directional detector). The detection medium of the CDRDS is a single Cs2LiYCl6:Ce3+ scintillator cell enriched in 7Li (CLYC-7). The CLYC-7 is surrounded by a heterogeneous high-density polyethylene (HDPE) and lead (Pb) collimator. These materials make-up a coded aperture inlaid in the collimator. The collimator is rotated 360° by a stepper motor which enables time-encoded imaging of a radioactive source. The CDRDS is capable of spectroscopy and pulse shape discrimination (PSD) of photons and fast neutrons. The measurements of a radioactive source are carried out in discrete time steps that correlate to the angular rotation of the collimator. The measurement results are processed using a maximum likelihood expectation (MLEM) algorithm to create an image of the measured radiation. This collimator design allows for the directional detection of photons and fast neutrons simultaneously by utilizing only one CLYC-7 scintillator. Directional detection of thermal neutrons can also be performed by utilizing another suitable scintillator. Moreover, the CDRDS is portable, robust, and user friendly. This unit is capable of utilizing wireless data transfer for possible radiation mapping and network-centric applications. The CDRDS was tested by performing laboratory measurements with various gamma-ray and neutron sources.

  9. SIMULATED 8 MeV NEUTRON RESPONSE FUNCTIONS OF A THIN SILICON NEUTRON SENSOR.

    Science.gov (United States)

    Takada, Masashi; Matsumoto, Tetsuro; Masuda, Akihiko; Nunomiya, Tomoya; Aoyama, Kei; Nakamura, Takashi

    2017-12-22

    Neutron response functions of a thin silicon neutron sensor are simulated using PHITS2 and MCNP6 codes for an 8 MeV neutron beam at angles of incidence of 0°, 30° and 60°. The contributions of alpha particles created from the 28Si(n,α)25Mg reaction and the silicon nuclei scattered elastically by neutrons in the silicon sensor have not been well reproduced using the MCNP6 code. The 8 MeV neutron response functions simulated using the PHITS2 code with an accurate event generator mode are in good agreement with experimental results and include the contributions of the alpha particles and silicon nuclei. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Fast Neutrons - LET Distributions and the Response of Mammalian Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bewley, D. K. [Medical Research Council Cyclotron Unit, Hammersmith Hospital, London (United Kingdom)

    1968-03-15

    Distributions of stopping power (LET) are given for four beams of fast neutrons, namely, neutrons of 14.6 MeV, neutrons produced by bombarding a thick beryllium target with 15 MeV deuterons, neutrons of 3 MeV, and fast neutrons produced by bombardment of a {sup 235}U converter plate with thermal neutrons. The track average LET is correlated with mean neutron energy, but the dose average is approximately constant. However, neither of these types of average is expected to have much relevance to radiobiology. Further, specification of a ''biologically effective LET'' depends on the biological test used, and is not solely a function of the radiation quality. An attempt has been made to calculate the response of T.I. kidney cells in tissue culture to these four beams of neutrons, based on their response to charged particles using the track-segment method. The calculated RBE's of the neutron beams are lower than the observed values and the calculated values of the oxygen enhancement ratio are higher. These differences seem too great to be explained by errors in dosimetry and in the calculated LET spectra. The suggestion is made that LET is not an adequate criterion of radiation quality, and that the discrepancies may be explained by more detailed consideration of the part played by delta rays and by heavy recoil tracks of short range. (author)

  11. Study on the energy response to neutrons for a new scintillating-fiber-array neutron detector

    CERN Document Server

    Zhang Qi; Wang Qun; Xie Zhong Shen

    2003-01-01

    The energy response of a new scintillating-fiber-array neutron detector to neutrons in the energy range 0.01 MeV<=E sub n<=14 MeV was modeled by combining a simplified Monte Carlo model and the MCNP 4b code. In order to test the model and get the absolute sensitivity of the detector to neutrons, one experiment was carried out for 2.5 and 14 MeV neutrons from T(p,n) sup 3 He and T(d,n) sup 4 He reactions at the Neutron Generator Laboratory at the Institute of Modern Physics, the Chinese Academy of Science. The absolute neutron fluence was obtained with a relative standard uncertainty 4.5% or 2.0% by monitoring the associated protons or sup 4 He particles, respectively. Another experiment was carried out for 0.5, 1.0, 1.5, 2.0, 2.5 MeV neutrons from T(p,n) sup 3 He reaction, and for 3.28, 3.50, 4.83, 5.74 MeV neutrons from D(d,n) sup 3 He reaction on the Model 5SDH-2 accelerator at China Institute of Atomic Energy. The absolute neutron fluence was obtained with a relative standard uncertainty 5.0% by usin...

  12. Evaluation of response function of moderating-type neutron detector and application to environmental neutron measurement

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Nakamura, Takashi; Iwai, Satoshi; Katsuki, Shinji; Kamata, Masashi.

    1983-08-01

    The energy-dependent response function of a multi-cylinder moderating-type BF 3 counter, so-called Bonner counter, was calculated by the time-dependent multi-group Monte Carlo code, TMMCR. The calculated response function was evaluated experimentally for neutron energy below about 50 keV down to epithermal energy by the time-of-flight method combining with a large lead pile at the Nuclear Engineering Research Laboratory, University of Tokyo and also above 50 keV by using the monoenergetic neutron standard field a t the Electrotechnical Laboratory. The time delay in the polyethylene moderator of the Bonner counter due to multiple collisions with hydrogen was analyzed by the TMMCR code and used for the time-spectrum analysis of the time-of-flight measurement. The response function obtained by these two experiments showed good agreement with the calculated results. This Bonner counter having a response function evaluated from thermal to MeV energy range was used for spectrometry and dosimetry of environmental neutrons around some nuclear facilities. The neutron spectra and dose measured in the environment around a 252 Cf fission source, fast neutron source reactor and electron synchrotron were all in good agreement with the calculated results and the measured results with other neutron detectors. (author)

  13. Characterizing Scintillator Response with Neutron Time-of-Flight

    Science.gov (United States)

    Palmisano, Kevin; Visca, Hannah; Caves, Louis; Wilkinson, Corey; McClow, Hannah; Padalino, Stephen; Forrest, Chad; Katz, Joe; Sangster, Craig; Regan, Sean

    2017-10-01

    Neutron scintillator diagnostics for ICF can be characterized using the neutron time-of-flight (nTOF) line on Geneseo's 1.7 MV Tandem Pelletron Accelerator. Neutron signals can be differentiated from gamma signals by employing a coincidence method called the associated particle technique (APT). In this measurement, a 2.1 MeV beam of deuterons incident on a deuterated polyethylene target produces neutrons via the d(d,n)3He reaction. A BC-412 plastic scintillator, placed at a scattering angle of 152º, detects 1.76 MeV neutrons in coincidence with the 2.56 MeV 3He ions at an associated angle of 10º. The APT is used to identify the 1.76 MeV neutron while the nTOF line determines its energy. By gating only mono-energetic neutrons, the instrument response function of the scintillator can be determined free from background scattered neutrons and gamma rays. Funded in part by a Grant from the DOE, through the Laboratory for Laser Energetics.

  14. In phantom dosimetric response of tooth enamel to neutrons

    International Nuclear Information System (INIS)

    Fattibene, P.; Angelone, M.; Pillon, M.; De Coste, V.

    2004-01-01

    Electron Paramagnetic Resonance dosimetry based on tooth enamel has one important application in dose reconstruction of nuclear plant workers, where the contribution of neutrons to individual dose is often important. Evaluation of tooth enamel response to neutrons is thus an important goal. A few experimental data at thermal and fast neutron energies are available. A first evaluation of the tooth enamel relative response to 60 Co in monoenergetic neutron flux of 2.8 and of 14 MeV, published elsewhere, has provided results apparently non-consistent with the results obtained at lower and higher energies. A comparison of those results in the 2.8 and 14 MeV beams with those available in the literature for other beams is reported and possible reasons for incongruities are discussed. Dose conversion factors of enamel to the water and air are also calculated and reported. (authors)

  15. Transient response of self-powered neutron detectors

    International Nuclear Information System (INIS)

    Boeck, H.; Gebureck, P.; Stegemann, D.

    The behaviour of self-powered neutron detectors with Co, Er, Hf and Pt emitters was investigated during reactor square wave and pulse operation. The detector's response was compared with the current of an excore ionization chamber. Characteristical deviations from linearity were observed with all detectors at fast reactor periods. The exact cause of these deviations is not yet fully understood but several possibilities for the nonlinear behaviour of self-powered neutron detectors are outlined. (author)

  16. Photon and neutron energy response of Thermoluminescent (TL) dosimeters

    International Nuclear Information System (INIS)

    Thilagam, L.; Priya, M.R.; Mohapatra, D.K.

    2018-01-01

    Theoretical Monte Carlo (MC) simulations are carried out to investigate the relative thermoluminesence (TL) response of the most commonly used TLD materials to a wide range of photon energy. The effect of polytetrafluoroethylene (PTFE) on TL response of CaSO 4 :Dy is also studied. Additionally, the neutron response of LiF:Mg,Ti TL materials with different concentrations of 6 Li is estimated in terms of the number of 6 Li(n, t) 4 He capture reactions for a wider neutron energy

  17. Fast neutron response of coumarin in water and heavy water

    International Nuclear Information System (INIS)

    Krishnan, D.; Kher, R.K.; Gopakumar, K.; Bhandari, N.S.

    1979-01-01

    Response of coumarin in aqueous solution has been studied earlier for gamma rays and fast neutrons by fluorescence measurement. For further fast neutron studies, two systems viz coumarin in H 2 0 and coumarin in D 2 0, were irradiated with fast neutrons in SNIF facility in the swimming pool type APSARA reactor at Trombay. Neutron fluence was estimated by measuring induced activity in sulphur pellet and associated gamma radiation was estimated using CaS0 4 :Dy TLD powder. The KERMA values were calculated for H 2 0 and D 2 0, assuming modified fission spectrum for fast neutron in SNIF position, and they were in the ratio of 2:1. Response of a chemical dosimetric system is expected to be proportional to the absorbed dose in the respective system for the same neutron fluence. This was experimentally found to be the case for coumarin in H 2 0 or D 2 0. These results are likely to be true in general for any aqueous chemical system. The limitations of using such a dual system for dosimetry in a mixed field is discussed. (author)

  18. Prediction analysis of dose equivalent responses of neutron dosemeters used at a MOX fuel facility

    International Nuclear Information System (INIS)

    Tsujimura, N.; Yoshida, T.; Takada, C.

    2011-01-01

    To predict how accurately neutron dosemeters can measure the neutron dose equivalent (rate) in MOX fuel fabrication facility work environments, the dose equivalent responses of neutron dosemeters were calculated by the spectral folding method. The dosemeters selected included two types of personal dosemeter, namely a thermoluminescent albedo neutron dosemeter and an electronic neutron dosemeter, three moderator-based neutron survey meters, and one special instrument called an H p (10) monitor. The calculations revealed the energy dependences of the responses expected within the entire range of neutron spectral variations observed in neutron fields at workplaces. (authors)

  19. Investigation of Response of Several Neutron Surveymeters by a DT Neutron Generator

    International Nuclear Information System (INIS)

    Kim, Sang In; Jang, In Su; Kim, Jang Lyul; Lee, Jung IL; Kim, Bong Hwan

    2012-01-01

    Several neutron measuring devices were tested under the neutron fields characterized with two distinct kinds of thermal and fast neutron spectrum. These neutron fields were constructed by the mixing of both thermal neutron fields and fast neutron fields. The thermal neutron field was constructed using by a graphite pile with eight AmBe neutron sources. The fast neutron field of 14 MeV was made by a DT neutron generator. In order to change the fraction of fast neutron fluence rate in each neutron fields, a neutron generator was placed in the thermal neutron field at 50 cm and 150 cm from the reference position. The polyethylene neutron collimator was used to make moderated 14 MeV neutron field. These neutron spectra were measured by using a Bonner sphere system with an LiI scintillator, and dosimetric quantities delivered to neutron surveymeters were determined from these measurement results.

  20. Study of response of 3He detectors to monoenergetic neutrons

    International Nuclear Information System (INIS)

    Abanades, A.; Andriamonje, S.; Arnould, H.; Barreau, G.; Bercion, M.; Casagrande, F.; Cennini, P.; Del Moral, R.; Gonzales, E.; Lacoste, V.; Pdemay, G.; Pravikoff, M.S.

    1997-01-01

    In the search of a hybrid system (the coupling of the particle accelerator to an under-critical reactor) for radioactive waste transmutation the TARC (Transmutation by Adiabatic Resonance Crossing) program has been developed. Due to experimental limitations, the time-energy relation at higher neutron energies, particularly, around 2 MeV, which is an important domain for TARC, cannot be applied. Consequently the responses of the 3 He ionization neutron detector developed for TARC experiment have been studied using a fast monoenergetic neutron source. The neutrons were produced by the interaction of the proton delivered by Van de Graaff accelerator of CENBG. The originality of the detector consists in its structure of three series of electric conductors which are mounted around the anode: a grid ensuring the detector proportionality, a cylindrical suit of alternating positive voltage and grounded wires aiming at eliminating the radial end effects, serving as veto and two cylinders serving as end plugs to eliminate the perpendicular end effects. Examples of anode spectra conditioned (in anticoincidence) by the mentioned vetoes are given. One can see the contribution of the elastic scattering from H and 3 He. By collimating the neutron beam through a borated polyethylene system it was possible to obtain a mapping of the detector allowing the study of its response as a function of the irradiated zones (anode and grid)

  1. Response of neutron-irradiated RPV steels to thermal annealing

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels

  2. Neutron sensitivity of prompt-response self-powered neutron detectors and the interval rule

    International Nuclear Information System (INIS)

    Molina Avila, J.; Carmolopes, M.

    1989-01-01

    This paper is devoted to the calculation of thermal s th and epithermal s epi sensitivities of cobalt prompt-response Self-Powered Neutron Detectors (SPNDs). The thermal sensitivity was obtained for a Maxwellian neutron field, and the effect of scattering on the self-shielding correction was taken into consideration in the second-collision approximation. The dependence of s th on the emitter radius R was studied in a wide region of R (0.025 to 0.2 cm). The differential and global epithermal sensitivities were calculated using a simple expression for the first-collision neutron absorption probability. Finally, a criterion to evaluate the accuracy of the parameters of the model was established in the form of some Interval Rule which is very sensitive to the radial dependence of the flux perturbation correction and other parameters of the model in both the thermal and epithermal regions

  3. Neutron flux response to regulating rod random vibrations

    International Nuclear Information System (INIS)

    Dach, K.; Nemec, J.; Pecinka, L.

    The relation is presented for the mean square value of the deflection of the rod for the n-th vibration shape on an arbitrary site. The relation may serve the obtaining of a variable which may be used both in a mechanical, i.e., stress analysis and in the determination of neutron flux fluctuations. It is demonstrated that the vibration frequency introduced in the reactor by the regulating rod has the same response in the neutron flux. This effect was used in the localization of an enormously vibrating regulating rod. (J.P.)

  4. Acoustic response of superheated droplet detectors to neutrons

    International Nuclear Information System (INIS)

    Gao Size; Zhang Guiying; Ni Bangfa; Zhao Changjun; Zhang Huanqiao; Guan Yongjing; Chen Zhe; Xiao Caijin; Liu Chao; Liu Cunxiong

    2012-01-01

    The search for dark matter (DM) is a hot field nowadays, a number of innovative techniques have emerged. The superheated droplet technique is relatively mature; however, it is recently revitalized in a number of frontier fields including the search for DM. In this work, the acoustic response of Superheated Droplet Detectors (SDDs) to neutrons was studied by using a 252 Cf neutron source, SDDs developed by the China Institute of Atomic Energy, a sound sensor, a sound card and a PC. Sound signals were filtered. The characteristics of FFT spectra, power spectra and time constants were used to determine the authenticity of the bubbles analyzed.

  5. Evaluation of Neutron Response of Criticality Accident Alarm System Detector to Quasi-Monoenergetic 24 keV Neutrons

    Science.gov (United States)

    Tsujimura, Norio; Yoshida, Tadayoshi; Yashima, Hiroshi

    The criticality accident alarm system (CAAS), which was recently developed and installed at the Japan Atomic Energy Agency's Tokai Reprocessing Plant, consists of a plastic scintillator combined with a cadmium-lined polyethylene moderator and thereby responds to both neutrons and gamma rays. To evaluate the neutron absorbed dose rate response of the CAAS detector, a 24 keV quasi-monoenergetic neutron irradiation experiment was performed at the B-1 facility of the Kyoto University Research Reactor. The detector's evaluated neutron response was confirmed to agree reasonably well with prior computer-predicted responses.

  6. Evaluation of neutron response of criticality accident alarm system detector to quasi-monoenergetic 24 keV neutrons

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Yashima, Hiroshi

    2016-01-01

    The criticality accident alarm system (CAAS), which was recently developed and installed at the Japan Atomic Energy Agency's Tokai Reprocessing Plant, consists of a plastic scintillator combined with a cadmium-lined polyethylene moderator and thereby responds to both neutrons and gamma rays. To evaluate the neutron absorbed dose rate response of the CAAS detector, a 24 keV quasi-monoenergetic neutron irradiation experiment was performed at the B-1 facility of the Kyoto University Research Reactor. The detector's evaluated neutron response was confirmed to agree reasonably well with prior computer-predicted responses. (author)

  7. NRC TLD Direct Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1992-06-01

    The US Nuclear Regulatory Commission (NRC) Direct Radiation Monitoring Network is operated by the NRC in cooperation with participating states to provide continuous measurement of the ambient radiation levels around licensed NRC facilities, primarily power reactors. Ambient radiation levels result from naturally occurring radionuclides present in the soil, cosmic radiation constantly bombarding the earth from outer space, and the contribution, if any, from the monitored facilities and other man-made sources. The Network is intended to measure radiation levels during routine facility operations and to establish background radiation levels used to assess the radiological impact of an unusual condition, such as an accident. This report presents the radiation levels measured around all facilities in the Network for the first quarter of 1992. All radiation measurements are made using small, passive detectors called thermoluminescent dosimeters (TLDs), which provide a quantitative measurement of the radiation levels in the area in which they are placed. Each site is monitored by arranging approximately 40 to 50 TLD stations in two concentric rings extending to about five miles from the facility. All TLD stations are outside the site boundary of the facility

  8. Response function measurement of plastic scintillator for high energy neutrons

    International Nuclear Information System (INIS)

    Sanami, Toshiya; Ban, Syuichi; Takahashi, Kazutoshi; Takada, Masashi

    2003-01-01

    The response function and detection efficiency of 2''φ x 2''L plastic (PilotU) and NE213 liquid (2''NE213) scintillators, which were used for the measurement of secondary neutrons from high energy electron induced reactions, were measured at Heavy Ion Medical Accelerator in Chiba (HIMAC). High energy neutrons were produced via 400 MeV/n C beam bombardment on a thick graphite target. The detectors were placed at 15 deg with respect to C beam axis, 5 m away from the target. As standard, a 5''φ x 5''L NE213 liquid scintillator (5''NE213) was also placed at same position. Neutron energy was determined by the time-of-flight method with the beam pickup scintillator in front of the target. In front of the detectors, veto scintillators were placed to remove charged particle events. All detector signals were corrected with list mode event by event. We deduce neutron spectrum for each detectors. The efficiency curves for pilotU and 2''NE213 were determined on the bases of 5 N E213 neutron spectrum and its efficiency calculated by CECIL code. (author)

  9. The electric dipole response of neutron rich tin isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Horvat, Andrea; Aumann, Thomas; Rossi, Dominic; Schindler, Fabia [Institut fuer Kernphysik, TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Johansen, Jacob [Aarhus University (Denmark); Schrock, Philipp [The University of Tokyo (Japan); Collaboration: R3B-Collaboration

    2016-07-01

    Studies of the dipole response in medium heavy and heavy neutron rich nuclei reveal valuable information about the isospin dependence of the nuclear equation of state. Therefore an experimental campaign investigating both the electric dipole response via Coulomb excitation and neutron removal along the tin isotope chain ({sup 124-134}Sn) has been carried out at the R3B (Reactions with Relativistic Radioactive Beams) setup at GSI (Helmholtzzentrum fuer Schwerionenforschung) for which the analysis is ongoing. The E1 response was induced via relativistic Coulomb scattering by a lead target in inverse kinematics, and calls for a kinematically complete determination of all reaction products in order to reconstruct the excitation energy by means of the invariant mass method. The goal is to obtain the Coulomb excitation cross section up to the adiabatic cut-off energy, covering the giant dipole resonance (GDR) range.

  10. Determination for energy response and directionality of neutron survey meters

    International Nuclear Information System (INIS)

    Chen Changmao; Liu Jinhua; Xie Jianlun; Su Jingling

    1992-01-01

    The energy response and directionality of neutron survey meter type MK7 and 2202D are determined. The reactor thermal column beam, reactor filtered beams (6 eV, 24.4 keV and 144 keV), 226 Ra-Be, 241 Am-Be, 252 Cf and its moderated sources are used for the measurement. The results shows: the survey meters are influenced obviously by the direction; the response of middle-energy region is large, the energy response of 2202D is better than MK7

  11. The measurement of the fluorescence response of plastic scintillator ST1422 to neutron

    International Nuclear Information System (INIS)

    Luo Xiaobing; Xia Yijun; Yang Zhihua; Zhang Chuanfei; Peng Taiping; Li Rurong; Zhang Jianhua

    2004-01-01

    By using the T(p,n) and D(d,n) reactions as neutron resources, the fluorescence response of ST1422 plastic scintillators (40 mm in diameter and 5 mm in thickness) was determined in he neutron energy range of 0.655-5 MeV. The experimental results show a nonlinear response of fluorescence with neutron energy. (authors)

  12. Radioactive source recovery program responses to neutron source emergencies

    International Nuclear Information System (INIS)

    Dinehart, S.M.; Hatler, V.A.; Gray, D.W.; Guillen, A.D.

    1997-01-01

    Recovery of neutron sources containing Pu 239 and Be is currently taking place at Los Alamos National Laboratory. The program was initiated in 1979 by the Department of Energy (DOE) to dismantle and recover sources owned primarily by universities and the Department of Defense. Since the inception of this program, Los Alamos has dismantled and recovered more than 1000 sources. The dismantlement and recovery process involves the removal of source cladding and the chemical separation of the source materials to eliminate neutron emissions. While this program continues for the disposal of 239 Pu/Be sources, there is currently no avenue for the disposition of any sources other than those containing Pu 239 . Increasingly, there have been demands from agencies both inside and outside the Federal Government and from the public to dispose of unwanted sources containing 238 Pu/Be and 241 Am/Be. DOE is attempting to establish a formal program to recover these sources and is working closely with the Nuclear Regulatory Commission (NRC) on a proposed Memorandum of Understanding to formalize an Acceptance Program. In the absence of a formal program to handle 238 Pu/Be and 241 Am/Be neutron sources, Los Alamos has responded to several emergency requests to receive and recover sources that have been determined to be a threat to public health and safety. This presentation will: (1) review the established 239 Pu neutron source recovery program at Los Alamos, (2) detail plans for a more extensive neutron source disposal program, and (3) focus on recent emergency responses

  13. Responses of commercially available neutron electronic personal dosemeters in neutron fields simulating workplaces at MOX fuel fabrication facilities

    International Nuclear Information System (INIS)

    Tsujimura, N.; Yoshida, T.; Takada, C.

    2011-01-01

    The authors investigated the performance of three commercially available electronic personal dosemeters (EPDs) in evaluating neutron dose equivalents and discussed their suitability to work environments in MOX fuel fabrication facilities. The EPDs selected for this study were NRY21 (Fuji Electric Systems), PDM-313 (Aloka) and DMC 2000 GN (MGP Instruments). All tests were conducted in moderated 252 Cf neutron fields with neutron spectral and dosimetric characteristics similar to those found in MOX fuel facilities. The test results revealed trends and the magnitude of response variations in relation to neutron spectral changes expected in work environments.

  14. Investigation of the response characteristics of OSL albedo neutron dosimeters in a 241AmBe reference neutron field

    Science.gov (United States)

    Liamsuwan, T.; Wonglee, S.; Channuie, J.; Esoa, J.; Monthonwattana, S.

    2017-06-01

    The objective of this work was to systematically investigate the response characteristics of optically stimulated luminescence Albedo neutron (OSLN) dosimeters to ensure reliable personal dosimetry service provided by Thailand Institute of Nuclear Technology (TINT). Several batches of InLight® OSLN dosimeters were irradiated in a reference neutron field generated by the in-house 241AmBe neutron irradiator. The OSL signals were typically measured 24 hours after irradiation using the InLight® Auto 200 Reader. Based on known values of delivered neutron dose equivalent, the reading correction factor to be used by the reader was evaluated. Subsequently, batch homogeneity, dose linearity, lower limit of detection and fading of the OSLN dosimeters were examined. Batch homogeneity was evaluated to be 0.12 ± 0.05. The neutron dose response exhibited a linear relationship (R2=0.9974) within the detectable neutron dose equivalent range under test (0.4-3 mSv). For this neutron field, the lower limit of detection was between 0.2 and 0.4 mSv. Over different post-irradiation storage times of up to 180 days, the readings fluctuated within ±5%. Personal dosimetry based on the investigated OSLN dosimeter is considered to be reliable under similar neutron exposure conditions, i.e. similar neutron energy spectra and dose equivalent values.

  15. The Response of Alanine Dosimeters in Thermal Neutron Fields

    DEFF Research Database (Denmark)

    Schmitz, T.; Bassler, Niels; Sharpe, P.

    response of all pellets could be reproduced by calculations within a uncertainty of 5 %. For all experiments three dose components have been separated. A proton dose is generated in the 14N(n,p)14C reaction. Secondary gammas are generated by various (n,γ) reactions, dominated by the 2.2 MeV photon from...... experiments the dosimeters will be exposed to higher neutron energies, which are more typical for BNCT treatments. References: [1] Barth, R.F; 2009: Boron neutron capture therapy at the crossroads: Challenges and opportunities. Applied Radiation and Isotopes 67, 3-6. [2] Rogus, R.D.; Harling, O.K.; Yanch, J.C...... for treatment of liver metastases. Applied Radiation and Isotopes 67, 238-241. [4] Sharpe, P.; Sephtan, J.; 2000: An automated system for the measurement of alanine/EPR dosimeters. Applied Radiation and Isotopes 52, 1185-1188....

  16. NRC TLD Direct Radiation Monitoring Network. Progress report, October-December 1985. Volume 5, No. 4

    International Nuclear Information System (INIS)

    Jang, J.; Rabatin, K.; Cohen, L.

    1986-05-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1985. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program

  17. NRC TLD [thermoluminescent dosimeter] Direct Radiation Monitoring Network: Progress report, October--December 1988

    International Nuclear Information System (INIS)

    Struckmeyer, R.; NcNamara, N.

    1989-04-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1988. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 4 tabs

  18. NRC TLD Direct Radiation Monitoring Network progress report, October--December 1994. Volume 14, No. 4

    Energy Technology Data Exchange (ETDEWEB)

    Struckmeyer, R.

    1995-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1994. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  19. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    International Nuclear Information System (INIS)

    Struckmeyer, R.

    1997-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs

  20. NRC TLD Direct Radiation Monitoring Network progress report, October--December 1994. Volume 14, No. 4

    International Nuclear Information System (INIS)

    Struckmeyer, R.

    1995-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1994. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program

  1. NRC TLD [Nuclear Regulatory Commission thermoluminescent dosimeter] direct radiation monitoring network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1990-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1989. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program

  2. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Struckmeyer, R.

    1997-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  3. Results of the systematic study of neutron dosimeters and neutron radiometers responses from Bruyeres and Valduc's experiments

    International Nuclear Information System (INIS)

    Pras, Ph.; Ledoux, X.; Patin, Y.

    1999-01-01

    This document gives the results of the systematic study of neutron dosimeters (Bubbles detectors) and neutron radiometers (Cramal, Nausicaa, EGG Lb6411) with standard sources and with the Bruyeres Van de Graaff 4MV accelerator. The dose equivalent rate response as a function of the neutron energy is parameterized. Even for low dose equivalent rate, a good reproducibility of the measurements is found in the strict respect of a given method. The response of the different systems is independent of the dose equivalent rate. (author)

  4. A measurement of the response to fast neutrons of several materials dosemeters

    International Nuclear Information System (INIS)

    Jones, L.T.; Kitching, S.J.; Lewis, T.A.; Playle, T.S.

    1986-07-01

    The response to fast neutrons was measured for three types of materials testing dosemeters: fast neutron dosimetry silicon diodes; beryllia, alumina and calcium fluoride TLDs; graphite walled ionisation chambers. The calibrations were made using a 3MW positive ion accelerator. The arrangement of the target, beam monitor and devices is described, and the measured fast neutron sensitivities are presented. (UK)

  5. Neutron dosemeter responses in workplace fields and the implications of using realistic neutron calibration fields

    International Nuclear Information System (INIS)

    Thomas, D.J.; Horwood, N.; Taylor, G.C.

    1999-01-01

    The use of realistic neutron calibration fields to overcome some of the problems associated with the response functions of presently available dosemeters, both area survey instruments and personal dosemeters, has been investigated. Realistic calibration fields have spectra which, compared to conventional radionuclide source based calibration fields, more closely match those of the workplace fields in which dosemeters are used. Monte Carlo simulations were performed to identify laboratory systems which would produce appropriate workplace-like calibration fields. A detailed analysis was then undertaken of the predicted under- and over-responses of dosemeters in a wide selection of measured workplace field spectra assuming calibration in a selection of calibration fields. These included both conventional radionuclide source calibration fields, and also several proposed realistic calibration fields. The present state of the art for dosemeter performance, and the possibilities of improving accuracy by using realistic calibration fields are both presented. (author)

  6. Massively parallel performance of neutron transport response matrix algorithms

    International Nuclear Information System (INIS)

    Hanebutte, U.R.; Lewis, E.E.

    1993-01-01

    Massively parallel red/black response matrix algorithms for the solution of within-group neutron transport problems are implemented on the Connection Machines-2, 200 and 5. The response matrices are dericed from the diamond-differences and linear-linear nodal discrete ordinate and variational nodal P 3 approximations. The unaccelerated performance of the iterative procedure is examined relative to the maximum rated performances of the machines. The effects of processor partitions size, of virtual processor ratio and of problems size are examined in detail. For the red/black algorithm, the ratio of inter-node communication to computing times is found to be quite small, normally of the order of ten percent or less. Performance increases with problems size and with virtual processor ratio, within the memeory per physical processor limitation. Algorithm adaptation to courser grain machines is straight-forward, with total computing time being virtually inversely proportional to the number of physical processors. (orig.)

  7. Aerial Neutron Detection: Neutron Signatures for Nonproliferation and Emergency Response Applications

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Richard J.; Stampahar, Thomas G.; Smith, Ethan X.; Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Rourke, Timothy J.; LeDonne, Jeffrey P.; Avaro, Emanuele; Butler, D. Andre; Borders, Kevin L.; Stampahar, Jezabel; Schuck, William H.; Selfridge, Thomas L.; McKissack, Thomas M.; Duncan, William W.; Hendricks, Thane J.

    2012-10-17

    From 2007 to the present, the Remote Sensing Laboratory has been conducting a series of studies designed to expand our fundamental understanding of aerial neutron detection with the goal of designing an enhanced sensitivity detection system for long range neutron detection. Over 35 hours of aerial measurements in a helicopter were conducted for a variety of neutron emitters such as neutron point sources, a commercial nuclear power reactor, nuclear reactor spent fuel in dry cask storage, depleted uranium hexafluoride and depleted uranium metal. The goals of the project were to increase the detection sensitivity of our instruments such that a 5.4 × 104 neutron/second source could be detected at 100 feet above ground level at a speed of 70 knots and to enhance the long-range detection sensitivity for larger neutron sources, i.e., detection ranges above 1000 feet. In order to increase the sensitivity of aerial neutron detection instruments, it is important to understand the dynamics of the neutron background as a function of altitude. For aerial neutron detection, studies have shown that the neutron background primarily originates from above the aircraft, being produced in the upper atmosphere by galactic cosmic-ray interactions with air molecules. These interactions produce energetic neutrons and charged particles that cascade to the earth’s surface, producing additional neutrons in secondary collisions. Hence, the neutron background increases as a function of altitude which is an impediment to long-range neutron detection. In order to increase the sensitivity for long range detection, it is necessary to maintain a low neutron background as a function of altitude. Initial investigations show the variation in the neutron background can be decreased with the application of a cosmic-ray shield. The results of the studies along with a representative data set are presented.

  8. Detector Response to Neutrons Slowed Down in Media Containing Cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1943-07-01

    This report was written by E. Broda, H. Hereward and L. Kowarski at the Cavendish Laboratory (Cambridge) in September 1943 and is about the detector response to neutrons slowed down in media containing cadmium. The following measurement description and the corresponding results can be found in this report: B, Mn, In, I, Dy and Ir detectors were activated, with and without a Cd shield, near the source in a vessel containing 7 litres of water or solutions of CdSO{sub 4} ranging between 0.1 and 2.8 mols per litre. Numerical data on observed activities are discussed in two different ways and the following conclusions can be drawn: The capture cross-section of dysprosium decreases quicker than 1/v and this discrepancy becomes noticeable well within the limits of the C-group. This imposes obvious limitations on the use of Dy as a detector of thermal neutrons. Cadmium differences of manganese seem to be a reliable 1/v detector for the whole C-group. Indium and iridium show definite signs of an increase of vσ in the upper regions of the C-group. Deviations shown by iodine are due to the imperfections of the technique rather than to a definite departure from the 1/v law. (nowak)

  9. Response of combined albedo-track neutron personnel dosimeters behind IHEP proton synchrotron shielding

    International Nuclear Information System (INIS)

    Sannikov, A.V.; Korshunova, E.P.

    1989-01-01

    The method of readings interpretation of combined albedo-track neutron personnel dosemeters based on calculationsl analysis of the detector responses in various neutron spectra is described. The measurements of dose equivalent responses have been performed in various points behind IHEP proton synchrotron shielding. It is shown that CDs with fission track detectors have a small dose equivalent response dispersion behind IHEP proton synchrotron shielding, that shows the promise of their using for neutron personnel monitoring, that shows the promise of their using for neutron personnel monitoring at high energy accelerators. 16 refs.; 7 figs.; 3 tabs

  10. The side-on response of a standard long counter to fast neutrons

    International Nuclear Information System (INIS)

    Johnson, F.A.

    1979-01-01

    The response of a standard long counter to neutrons incident into its front face relative to its response to those incident into its side was measured for a range of neutron energies, and an increasing sensitivity to high-energy neutrons incident into the side was evident. The effect of a shadow bar in contributing to an initial degradation in energy of neutrons which then scatter from the surroundings into the counter was suggested by the response of the counter in the side-on orientation as a function of the separation distance of the bar from a source. (Auth.)

  11. A Monte-Carlo method for ex-core neutron response

    International Nuclear Information System (INIS)

    Gamino, R.G.; Ward, J.T.; Hughes, J.C.

    1997-10-01

    A Monte Carlo neutron transport kernel capability primarily for ex-core neutron response is described. The capability consists of the generation of a set of response kernels, which represent the neutron transport from the core to a specific ex-core volume. This is accomplished by tagging individual neutron histories from their initial source sites and tracking them throughout the problem geometry, tallying those that interact in the geometric regions of interest. These transport kernels can subsequently be combined with any number of core power distributions to determine detector response for a variety of reactor Thus, the transport kernels are analogous to an integrated adjoint response. Examples of pressure vessel response and ex-core neutron detector response are provided to illustrate the method

  12. Evaluation of the Neutron Detector Response for Cosmic Ray Energy Spectrum by Monte Carlo Transport Simulation

    International Nuclear Information System (INIS)

    Pazianotto, Mauricio T.; Carlson, Brett V.; Federico, Claudio A.; Gonzalez, Odair L.

    2011-01-01

    Neutrons generated by the interaction of cosmic rays with the atmosphere make an important contribution to the dose accumulated in electronic circuits and aircraft crew members at flight altitude. High-energy neutrons are produced in spallation reactions and intranuclear cascade processes by primary cosmic-ray particle interactions with atoms in the atmosphere. These neutrons can produce secondary neutrons and also undergo a moderation process due to atmosphere interactions, resulting in a wider energy spectrum, ranging from thermal energies (0.025 eV) to energies of several hundreds of MeV. The Long-Counter (LC) detector is a widely used neutron detector designed to measure the directional flux of neutrons with about constant response over a wide energy range (thermal to 20 MeV). ). Its calibration process and the determination of its energy response for the wide-energy of cosmic ray induced neutron spectrum is a very difficult process due to the lack of installations with these capabilities. The goal of this study is to assess the behavior of the response of a Long Counter using the Monte Carlo (MC) computational code MCNPX (Monte Carlo N-Particle eXtended). The dependence of the Long Counter response on the angle of incidence, as well as on the neutron energy, will be carefully investigated, compared with the experimental data previously obtained with 241 Am-Be and 252 Cf neutron sources and extended to the neutron spectrum produced by cosmic rays. (Author)

  13. SUSD, Sensitivity and Uncertainty in Neutron Transport and Detector Response

    International Nuclear Information System (INIS)

    Furuta, Lazuo; Kondo, Shunsuke; Oka, Yoshika

    1991-01-01

    1 - Description of program or function: SUSD calculates sensitivity coefficients for one and two-dimensional transport problems. Variance and standard deviation of detector responses or design parameters can be obtained using cross-section covariance matrices. In neutron transport problems, this code is able to perform sensitivity-uncertainty analysis for secondary angular distribution (SAD) or secondary energy distribution (SED). 2 - Method of solution: The first-order perturbation theory is used to obtain sensitivity coefficients. The method described in the distributed report is employed to consider SAD/SED effect. 3 - Restrictions on the complexity of the problem: Variable dimension is used so that there is no limitation in each array size but the total core size

  14. Low-dose neutron dose response of zebrafish embryos obtained from the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility

    International Nuclear Information System (INIS)

    Ng, C.Y.P.; Kong, E.Y.; Konishi, T.; Kobayashi, A.; Suya, N.; Cheng, S.H.; Yu, K.N.

    2015-01-01

    The dose response of embryos of the zebrafish, Danio rerio, irradiated at 5 h post fertilization (hpf) by 2-MeV neutrons with ≤100 mGy was determined. The neutron irradiations were made at the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility in the National Institute of Radiological Sciences (NIRS), Chiba, Japan. A total of 10 neutron doses ranging from 0.6 to 100 mGy were employed (with a gamma-ray contribution of 14% to the total dose), and the biological effects were studied through quantification of apoptosis at 25 hpf. The responses for neutron doses of 10, 20, 25, and 50 mGy approximately fitted on a straight line, while those for neutron doses of 0.6, 1 and 2.5 mGy exhibited neutron hormetic effects. As such, hormetic responses were generically developed by different kinds of ionizing radiations with different linear energy transfer (LET) values. The responses for neutron doses of 70 and 100 mGy were significantly below the lower 95% confidence band of the best-fit line, which strongly suggested the presence of gamma-ray hormesis. - Highlights: • Neutron dose response was determined for embryos of the zebrafish, Danio rerio. • Neutron doses of 0.6, 1 and 2.5 mGy led to neutron hormetic effects. • Neutron doses of 70 and 100 mGy accompanied by gamma rays led to gamma-ray hormesis

  15. Salient features, response and operation of Lead-Free Gulmarg Neutron Monitor

    International Nuclear Information System (INIS)

    Mufti, S.; Chatterjee, S.; Ishtiaq, P.M.; Darzi, M.A.; Mir, T.A.; Shah, G.N.

    2016-01-01

    Lead-Free Gulmarg Neutron Monitor (LFGNM) provides continuous ground level intensity measurements of atmospheric secondary neutrons produced in interactions of primary cosmic rays with the Earth's constituent atmosphere. We report the LFGNM detector salient features and simulation of its energy response for 10"−"1"1 MeV to 10"4 MeV energy incident neutrons using the FLUKA Monte Carlo package. An empirical calibration of the LFGNM detector carried out with a Pu–Be neutron source for maximising its few MeV neutron counting sensitivity is also presented. As an illustration of its functionality a single representative transient solar modulation event recorded by LFGNM depicting Forbush decrease in integrated neutron data for which the geospace consequences are well known is also presented. Performance of LFGNM under actual observation conditions for effectively responding to transient solar modulation is seen to compare well with other world-wide conventional neutron monitors.

  16. Measurement and simulation of neutron response function of organic liquid scintillator detector

    International Nuclear Information System (INIS)

    Gohil, M.; Banerjee, K.; Bhattacharya, S.; Bhattacharya, C.; Kundu, S.; Rana, T.K.; Mukherjee, G.; Meena, J.K.; Pandey, R.; Pai, H.; Ghosh, T.K.; Dey, A.; Mukhopadhyay, S.; Pandit, D.; Pal, S.; Banerjee, S.R.; Bandhopadhyay, T.

    2012-01-01

    Response functions of monoenergetic neutrons at various energies, corresponding to a measured neutron energy spectrum have been extracted. The experimental response functions for neutron energies in the range of ∼2-20 MeV have been compared with the respective GEANT4 predictions. It has been found that, there is some discrepancy between the experimental and the GEANT4 simulated neutron response functions at lower pulse height regions, which increases with the increase of neutron energy. This might be due to the incompleteness of the physics processes used in the present GEANT4 simulations. In particular, higher order reaction processes which become more significant at higher energies should be properly taken into account in the calculation of response function.

  17. Dynamical response of the nuclear 'pasta' in neutron star crusts

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Perez-Garcia, M.A.; Berry, D.K.; Piekarewicz, J.

    2005-01-01

    The nuclear pasta - a novel state of matter having nucleons arranged in a variety of complex shapes - is expected to be found in the crust of neutron stars and in core-collapse supernovae at subnuclear densities of about 10 14 g/cm 3 . Owing to frustration, a phenomenon that emerges from the competition between short-range nuclear attraction and long-range Coulomb repulsion, the nuclear pasta displays a preponderance of unique low-energy excitations. These excitations could have a strong impact on many transport properties, such as neutrino propagation through stellar environments. The excitation spectrum of the nuclear pasta is computed via a molecular-dynamics simulation involving up to 100,000 nucleons. The dynamic response of the pasta displays a classical plasma oscillation in the 1- to 2-MeV region. In addition, substantial strength is found at low energies. Yet this low-energy strength is missing from a simple ion model containing a single-representative heavy nucleus. The low-energy strength observed in the dynamic response of the pasta is likely to be a density wave involving the internal degrees of freedom of the clusters

  18. Evaluation of energy responses for neutron dose-equivalent meters made in Japan

    International Nuclear Information System (INIS)

    Saegusa, J.; Yoshizawa, M.; Tanimura, Y.; Yoshida, M.; Yamano, T.; Nakaoka, H.

    2004-01-01

    Energy responses of three types of Japanese neutron dose-equivalent (DE) meters were evaluated by Monte Carlo simulations and measurements. The energy responses were evaluated for thermal neutrons, monoenergetic neutrons with energies up to 15.2 MeV, and also for neutrons from such radionuclide sources as 252 Cf and 241 Am-Be. The calculated results were corroborated with the measured ones. The angular dependence of the response and the DE response were also evaluated. As a result, reliable energy responses were obtained by careful simulations of the proportional counter, moderator and absorber of the DE meters. Furthermore, the relationship between pressure of counting gas and response of the DE meter was discussed. By using the obtained responses, relations between predicted readings of the DE meters and true DE values were studied for various workplace spectra

  19. Neutron response matrix for unfolding NE-213 measurements to 21 MeV

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Wehring, B.W.; Johnson, R.H.

    1976-01-01

    A neutron response matrix from measured neutron responses of NE-213 in the energy range of 0.2 to 22 MeV is presented. An interpolation scheme was used to construct an 81-column matrix from the data of Verbinski, Burrus, Love, Zobel, and Hill. As a test of the new response matrix, the Cf-252 neutron spectrum was measured and unfolded using the new response matrix and the FORIST unfolding code. The spectrum agrees well with previous measurements at lower energies, while providing new information above 8 MeV

  20. Biophysical interpretation of the response of Chinese hamster cells to 24 keV neutrons

    International Nuclear Information System (INIS)

    Holt, P.D.

    1988-01-01

    The response of V79 Chinese hamster cells to a 24 keV neutron spectrum has been compared with data for the response of V79 cells to a range of higher neutron energies (up to 15 MeV). The linear energy transfer (LET) distributions of the neutron spectra were calculated and the expected responses of the cells to the different spectra were calculated using published track-segment data on the response of V79 cells to charged particles with various LET values. The response of the cells to 24 keV neutrons was predicted satisfactorily by the LET distribution, in spite of the fact that the maximum range of the recoil protons is only 0.5 μm. The response was not correctly predicted by the microdosimetric parameter y-bar D * evaluated in a 1 μm diameter sphere. (author)

  1. Dosimetric response evaluation of tooth enamel for accelerator-based neutron radiation

    International Nuclear Information System (INIS)

    Khan, R.F.H.; Rink, W.J.; Boreham, D.R.

    2003-01-01

    To study the neutron response of human tooth enamel, a number of experiments with an accelerator-based neutron source have been designed. The neutron beam was produced with the low gamma yield, 7 Li(p,n) 7 Be type thick target, using the 3 MV McMaster K.N. Van de Graaff accelerator. The dosimetry was done using a pre-calibrated snoopy type neutron dosimeter. Neutron irradiation induces a dosimetric signal in the tooth enamel at the same defect site as gamma produced damage with the same g-values (g parallel =1.9973, width 0.4 mT g perpendicular =2.002, width 0.3 mT). The dosimetric signal grows linearly with neutron dose from 6-35 Gy tissue dose. Dosimetric response in two different grain sizes (300-500 μm, and grains <4 mm) has shown increased dosimetric amplitude in the larger grains. Dose build up effect on tooth inside the mouth due to cheek was simulated by placing a 4 mm thick paraffin wax layer between the beam and tooth, but had little effect. These results show that for mean neutron energy of 280 keV, the relative neutron response of the human tooth enamel ranges from 8% to 12% of the equivalent gamma ray response

  2. Variable dead time counters. 1 - theoretical responses and the effects of neutron multiplication

    International Nuclear Information System (INIS)

    Lees, E.W.; Hooton, B.W.

    1978-10-01

    A theoretical expression is derived for calculating the response of any variable dead time counter (VDC) used in the passive assay of plutonium by neutron counting of the natural spontaneous fission activity. The effects of neutron multiplication in the sample arising from interactions of the original spontaneous fission neutrons is shown to modify the linear relationship between VDC signal and Pu mass. Numerical examples are shown for the Euratom VDC and a systematic investigation of the various factors affecting neutron multiplication is reported. Limited comparisons between the calculations and experimental data indicate provisional validity of the calculations. (author)

  3. Experimental research of plastic scintillation detector loaded 6Li neutron energy response

    International Nuclear Information System (INIS)

    Wang Lizong; Zhang Chuanfei; Peng Taiping; Guo Cun; Yang Hongqiong; Zhang Jianhua

    2005-01-01

    A new plastic scintillator, plastic scintillator loaded 6 Li, is brought forward and developed in this paper in order to increase low energy neutron sensitivity. Neutron sensitivity of several plastic scintillation detectors loaded 6 Li new developed in neutron energy range 0.2 MeV-5.0 MeV are calibrated by direct current at serial accelerator. Energy response curves of the detectors are obtained in this experiment. It is shown that this new plastic scintillation detector can increase low energy neutron sensitivity in experimental results. (authors)

  4. Calibration of the time response functions of a quenched plastic scintillator for neutron time of flight

    CERN Document Server

    Chen, J B; Peng, H S; Tang, C H; Zhang, B H; Ding, Y K; Chen, M; Chen, H S; Li, C G; Wen, T S; Yu, R Z

    2002-01-01

    The time response functions of an ultrafast quenched plastic scintillation detector used to measure neutron time of flight spectra were calibrated by utilizing cosmic rays and implosion neutrons from DT-filled capsules at the Shenguang II laser facility. These sources could be regarded as delta function pulses due to their much narrower time widths than those of the time response functions of the detection system. The results showed that the detector responses to DT neutrons and to cosmic rays were 1.18 and 0.96 ns FWHM, respectively.

  5. The CLYC-6 and CLYC-7 response to γ-rays, fast and thermal neutrons

    International Nuclear Information System (INIS)

    Giaz, A.; Pellegri, L.; Camera, F.; Blasi, N.; Brambilla, S.; Ceruti, S.; Million, B.; Riboldi, S.; Cazzaniga, C.; Gorini, G.; Nocente, M.; Pietropaolo, A.; Pillon, M.; Rebai, M.; Tardocchi, M.

    2016-01-01

    The crystal Cs 2 LiYCl 6 :Ce (CLYC) is a very interesting scintillator material because of its good energy resolution and its capability to identify γ-rays and fast/thermal neutrons. The crystal Cs 2 LiYCl 6 :Ce contains 6 Li and 35 Cl isotopes, therefore, it is possible to detect thermal neutrons through the reaction 6 Li(n, α)t while 35 Cl ions allow to measure fast neutrons through the reactions 35 Cl(n, p) 35 S and 35 Cl(n, α) 32 P. In this work two CLYC 1″×1″ crystals were used: the first crystal, enriched with 6 Li at 95% (CLYC-6) is ideal for thermal neutron measurements while the second one, enriched with 7 Li at >99% (CLYC-7) is suitable for fast neutron measurements. The response of CLYC scintillators was measured with different PMT models: timing or spectroscopic, with borosilicate glass or quartz window. The energy resolution, the neutron-γ discrimination and the internal activity are discussed. The capability of CLYC scintillators to discriminate γ rays from neutrons was tested with both thermal and fast neutrons. The thermal neutrons were measured with both detectors, using an AmBe source. The measurements of fast neutrons were performed at the Frascati Neutron Generator facility (Italy) where a deuterium beam was accelerated on a deuterium or on a tritium target, providing neutrons of 2.5 MeV or 14.1 MeV, respectively. The different sensitivity to thermal and fast neutrons of a CLYC-6 and of a CLYC-7 was additionally studied.

  6. Directional radiative cooling thermal compensation for gravitational wave interferometer mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Justin Kamp, Carl [Department of Chemical Reaction Engineering, Chalmers University of Technology, SE-412 96 Goteborg (Sweden)], E-mail: carl.kamp@chalmers.se; Kawamura, Hinata [Yokoyama Junior High School, Sanda, Hachioji, Tokyo 193-0832 (Japan); Passaquieti, Roberto [Dipartimento di Fisica ' Enrico Fermi' and INFN Sezione di Pisa, Universita' di Pisa, Largo Bruno Pontecorvo, I-56127 Pisa (Italy); DeSalvo, Riccardo [LIGO Observatories, California Institute of Technology, Pasadena, CA 91125 (United States)

    2009-08-21

    The concept of utilizing directional radiative cooling to correct the problem of thermal lensing in the mirrors of the LIGO/VIRGO gravitational wave detectors has been shown and has prospects for future use. Two different designs utilizing this concept, referred to as the baffled and parabolic mirror solutions, have been proposed with different means of controlling the cooling power. The technique takes advantage of the power naturally radiated by the mirror surfaces at room temperature to prevent their heating by the powerful stored laser beams. The baffled solution has been simulated via COMSOL Multiphysics as a design tool. Finally, the parabolic mirror concept was experimentally validated with the results falling in close agreement with theoretical cooling calculations. The technique of directional radiative thermal correction can be reversed to image heat rings on the mirrors periphery to remotely and dynamically correct their radius of curvature without subjecting the mirror to relevant perturbations.

  7. SPECTRUM WEIGHTED RESPONSES OF SEVERAL DETECTORS IN MIXED FIELDS OF FAST AND THERMAL NEUTRONS

    Directory of Open Access Journals (Sweden)

    SANG IN KIM

    2014-04-01

    Full Text Available The spectrum weighted responses of various detectors were calculated to provide guidance on the proper selection and use of survey instruments on the basis of their energy response characteristics on the neutron fields. To yield the spectrum weighted response, the detector response functions of 17 neutron-measuring devices were numerically folded with each of the produced calibration neutron spectra through the in-house developed software ‘K-SWR’. The detectors’ response functions were taken from the IAEA Technical Reports Series No. 403 (TRS-403. The reference neutron fields of 21 kinds with 2 spectra groups with different proportions of thermal and fast neutrons have been produced using neutrons from the 241Am-Be sources held in a graphite pile, a bare 241Am-Be source, and a DT neutron generator. Fluence-average energy (Eave varied from 3.8 MeV to 16.9 MeV, and the ambient-dose-equivalent rate [H*(10/h] varied from 0.99 to 16.5 mSv/h.

  8. A Bayesian method to estimate the neutron response matrix of a single crystal CVD diamond detector

    International Nuclear Information System (INIS)

    Reginatto, Marcel; Araque, Jorge Guerrero; Nolte, Ralf; Zbořil, Miroslav; Zimbal, Andreas; Gagnon-Moisan, Francis

    2015-01-01

    Detectors made from artificial chemical vapor deposition (CVD) single crystal diamond are very promising candidates for applications where high resolution neutron spectrometry in very high neutron fluxes is required, for example in fusion research. We propose a Bayesian method to estimate the neutron response function of the detector for a continuous range of neutron energies (in our case, 10 MeV ≤ E n ≤ 16 MeV) based on a few measurements with quasi-monoenergetic neutrons. This method is needed because a complete set of measurements is not available and the alternative approach of using responses based on Monte Carlo calculations is not feasible. Our approach uses Bayesian signal-background separation techniques and radial basis function interpolation methods. We present the analysis of data measured at the PTB accelerator facility PIAF. The method is quite general and it can be applied to other particle detectors with similar characteristics

  9. Calculation of Multisphere Neutron Spectrometer Response Functions in Energy Range up to 20 MeV

    CERN Document Server

    Martinkovic, J

    2005-01-01

    Multisphere neutron spectrometer is a basic instrument of neutron measurements in the scattered radiation field at charged-particles accelerators for radiation protection and dosimetry purposes. The precise calculation of the spectrometer response functions is a necessary condition of the propriety of neutron spectra unfolding. The results of the response functions calculation for the JINR spectrometer with LiI(Eu) detector (a set of 6 homogeneous and 1 heterogeneous moderators, "bare" detector within cadmium cover and without it) at two geometries of the spectrometer irradiation - in uniform monodirectional and uniform isotropic neutron fields - are given. The calculation was carried out by the code MCNP in the neutron energy range 10$^{-8}$-20 MeV.

  10. Dose-equivalent response CR-39 track detector for personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Oda, K.; Ito, M.; Yoneda, H.; Miyake, H.; Yamamoto, J.; Tsuruta, T.

    1991-01-01

    A dose-equivalent response detector based on CR-39 has been designed to be applied for personnel neutron dosimetry. The intrinsic detection efficiency of bare CR-39 was first evaluated from irradiation experiments with monoenergetic neutrons and theoretical calculations. In the second step, the radiator effect was investigated for the purpose of sensitization to fast neutrons. A two-layer radiator consisting of deuterized dotriacontane (C 32 D 66 ) and polyethylene (CH 2 ) was designed. Finally, we made the CR-39 detector sensitive to thermal neutrons by doping with orthocarbone (B 10 H 12 C 2 ), and also estimated the contribution of albedo neutrons. It was found that the new detector - boron-doped CR-39 with the two-layer radiator - would have a flat response with an error of about 70% in a wide energy region, ranging from thermal to 15 MeV. (orig.)

  11. Track-etch dosemeter response to neutrons up to 300 MeV

    International Nuclear Information System (INIS)

    Devine, R.T.; Walker, S.; Staples, P.; Duran, M.; Mundis, R.; Miller, J.

    1996-01-01

    Electro-chemical and chemical track-etch dosemeters were obtained from commercial suppliers and exposed to neutrons produced at the LANTF WNR white neutron source at 15 degree with no shielding and filtered by polyethylene blocks of 2.5, 5.1, 10.2, 20.3 and 40.6 cin thickness. The neutron spectrum was determined using calculations. Mean energies from 28 to 300 MeV were produced. Dose was calculated from the NCRP-38 flux-to-dose conversion. The results are compared with NTA film which was exposed in the same configuration. The response of track etch dosimeters was found to reach a minimum and then rise as the average neutron energy increased. The response of the NTA film increased as the neutron energy increased

  12. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Harada, Yasunori; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable to the high intensity proton accelerator facility. (author)

  13. Radiobiological response of fast neutrons on seedling growth of rice varieties with different amylose content

    International Nuclear Information System (INIS)

    Baradjanegara, A.A.; Sugiyanto, T.; Rahayu, S.

    1978-01-01

    Many studies are reported on radiation effects and on factors modifying the biological response of radiation in rice. However, little attention was directed towards studying effects of fast neutrons on seedling growth response of rice as a function of chemical constituents (e.g. amylose content). Experiments were conducted to investigate the dependency of amylose content in 4 rice cultivars on radiosensitivity to fast neutrons. From the results obtained a clear relationship between amylose content and sensitivity to fast neutrons could be shown. (author)

  14. In vitro studies of cellular response to DNA damage induced by boron neutron capture therapy

    International Nuclear Information System (INIS)

    Perona, M.; Pontiggia, O.; Carpano, M.; Thomasz, L.; Thorp, S.; Pozzi, E.; Simian, M.; Kahl, S.; Juvenal, G.; Pisarev, M.; Dagrosa, A.

    2011-01-01

    The aim of these studies was to evaluate the mechanisms of cellular response to DNA damage induced by BNCT. Thyroid carcinoma cells were incubated with 10 BPA or 10 BOPP and irradiated with thermal neutrons. The surviving fraction, the cell cycle distribution and the expression of p53 and Ku70 were analyzed. Different cellular responses were observed for each irradiated group. The decrease of Ku70 in the neutrons +BOPP group could play a role in the increase of sensitization to radiation.

  15. Quantitative radiation dose-response relationships for normal tissues in man - I. Gustatory tissues response during photon and neutron radiotherapy

    International Nuclear Information System (INIS)

    Mossman, K.L.

    1982-01-01

    Quantitative radiation dose-response curves for normal gustatory tissue in man were studied. Taste function, expressed as taste loss, was evaluated in 84 patients who were given either photon or neutron radiotherapy for tumors in the head and neck region. Patients were treated to average tumor doses of 6600 cGy (photon) or 2200 cGy intervals for photon patients and 320-cGy intervals for neutron patients during radiotherapy. The dose-response curves for photons and neutrons were analyzed by fitting a four-parameter logistic equation to the data. Photon and neutron curves differed principally in their relative position along the dose axis. Comparison of the dose-response curves were made by determination of RBE. At 320 cGy, the lowest neutron dose at which taste measurements were made, RBE = 5.7. If this RBE is correct, then the therapeutic gain factor may be equal to or less than 1, indicating no biological advantage in using neutrons over photons for this normal tissue. These studies suggest measurements of taste function and evaluation of dose-response relationships may also be useful in quantitatively evaluating the efficacy of chemical modifiers of radiation response such as hypoxic cell radiosensitizers and radioprotectors

  16. NRC TLD Direct Radiation Monitoring Network. Volume 15, No. 4: Quarterly progress report, October--December 1995

    International Nuclear Information System (INIS)

    Struckmeyer, R.

    1996-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1995. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program

  17. NRC TLD Direct Radiation Monitoring Network. Volume 15, No. 4: Quarterly progress report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Struckmeyer, R.

    1996-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1995. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  18. RBE and clinical response in radiotherapy with neutron beams

    International Nuclear Information System (INIS)

    Ellis, F.

    1984-01-01

    Consideration of the clinical results reported, when a cyclotron produced neutron beam was used for treatments in the pelvis region, suggested that a constant RBE of 3 should not have been used for all neutron doses. Instead a variable RBE, which increased from approximately 3 to 8 (with decreasing dose), should have been used. Although some of these RBE values are much higher than 3, they have been observed in clinical practice. An ''equivalent photon'' isodose plan was produced by employing a variable RBE and, by taking a TDF limit of 86 for bowel, an isoeffect plan was produced. This shows that in the clinical situation under consideration much of the pelvis was overdosed. Doses to tumour cells and late effects are also briefly considered. It is suggested that, in neutron therapy, both an ''equivalent photon'' isodose plan and an isoeffect plan should be produced prior to treatment. (author)

  19. NeuLAND prototype: response to fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Jaehrling, Simon; Scheit, Heiko [Technische Universitaet Darmstadt (Germany); Aumann, Thomas [Technische Universitaet Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Boretzky, Konstanze; Heil, Michael; Kresan, Dmytro; Simon, Haik [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Gasparic, Igor [Technische Universitaet Darmstadt (Germany); Rudjer Boskovic Institute, Zagreb (Croatia); Collaboration: R3B-Collaboration

    2014-07-01

    Within the R3B collaboration (Reactions with Relativistic Radioactive Beams), a new neutron detector NeuLAND (New Large Area Neutron Detector) is being developed. It will be a fully active scintillation detector consisting of 3000 scintillator bars, arranged in 30 double layers. Within a double layer 50 bars are horizontal and 50 vertical orientated. The whole detector measures 2.5 x 2.5 x 3 m{sup 3}. A prototype with 150 NeuLAND bars was tested at GSI using quasi-mono-energetic neutrons with different energies from 200 to 1500 MeV stemming from quasi-free deuteron breakup reactions on a CH{sub 2} target. The experimental setup is described, and preliminary results for the time resolution and efficiency of the NeuLAND prototype detector are presented.

  20. Non-induction of radioadaptive response in zebrafish embryos by neutrons

    International Nuclear Information System (INIS)

    Ng, Candy Y.P.; Kong, Eva Y.; Kobayashi, Alisa; Suya, Noriyoshi; Uchihori, Yukio; Cheng, Shuk Han; Konishi, Teruaki; Yu, Kwan Ngok

    2016-01-01

    In vivo neutron-induced radioadaptive response (RAR) was studied using zebrafish (Danio rerio) embryos. The Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Japan, was employed to provide 2-MeV neutrons. Neutron doses of 0.6, 1, 25, 50 and 100 mGy were chosen as priming doses. An X-ray dose of 2 Gy was chosen as the challenging dose. Zebrafish embryos were dechorionated at 4 h post fertilization (hpf), irradiated with a chosen neutron dose at 5 hpf and the X-ray dose at 10 hpf. The responses of embryos were assessed at 25 hpf through the number of apoptotic signals. None of the neutron doses studied could induce RAR. Non-induction of RAR in embryos having received 0.6- and 1-mGy neutron doses was attributed to neutron-induced hormesis, which maintained the number of damaged cells at below the threshold for RAR induction. On the other hand, non-induction of RAR in embryos having received 25-, 50- and 100-mGy neutron doses was explained by gamma-ray hormesis, which mitigated neutron-induced damages through triggering high-fidelity DNA repair and removal of aberrant cells through apoptosis. Separate experimental results were obtained to verify that high-energy photons could disable RAR. Specifically, 5- or 10-mGy X-rays disabled the RAR induced by a priming dose of 0.88 mGy of alpha particles delivered to 5-hpf zebrafish embryos against a challenging dose of 2 Gy of X-rays delivered to the embryos at 10 hpf

  1. Directional Radiation Dosimeter for Area and Environmental Monitoring

    International Nuclear Information System (INIS)

    Manzoli, J.E.; Campos, V.P.; Moura, E.S.

    2009-01-01

    It is presented a dosimeter that is able to measure the photon exposure and the direction from where the radiation came from. Preliminary measurements performed by this new directional radiation dosimeter demonstrate its application. This dosimeter consists of a small lead cube with thermoluminescent discs on each face, placed in well known coordinates. Only one dosimeter of this kind indicates the direction of the radiation beam, if it came from a unique position. This study was conducted inside the radiation room of a Cobalt-60 Gamma Irradiator and the dosimeter indicated the source position

  2. Determination of the spatial response of neutron based analysers using a Monte Carlo based method

    International Nuclear Information System (INIS)

    Tickner, James

    2000-01-01

    One of the principal advantages of using thermal neutron capture (TNC, also called prompt gamma neutron activation analysis or PGNAA) or neutron inelastic scattering (NIS) techniques for measuring elemental composition is the high penetrating power of both the incident neutrons and the resultant gamma-rays, which means that large sample volumes can be interrogated. Gauges based on these techniques are widely used in the mineral industry for on-line determination of the composition of bulk samples. However, attenuation of both neutrons and gamma-rays in the sample and geometric (source/detector distance) effects typically result in certain parts of the sample contributing more to the measured composition than others. In turn, this introduces errors in the determination of the composition of inhomogeneous samples. This paper discusses a combined Monte Carlo/analytical method for estimating the spatial response of a neutron gauge. Neutron propagation is handled using a Monte Carlo technique which allows an arbitrarily complex neutron source and gauge geometry to be specified. Gamma-ray production and detection is calculated analytically which leads to a dramatic increase in the efficiency of the method. As an example, the method is used to study ways of reducing the spatial sensitivity of on-belt composition measurements of cement raw meal

  3. Cadmium-Zinc-Telluride photon detector for epithermal neutron spectroscopy--pulse height response characterisation

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Bracco, A.; D'Angelo, A.; Gorini, G.; Imberti, S.; Senesi, R.; Rhodes, N.J.; Schooneveld, E.M.

    2004-01-01

    The Resonance Detector Spectrometer was recently revised for neutron spectroscopic studies in the eV energy region. In this technique one makes use of a photon detector to record the gamma emission from analyser foils used as neutron-gamma converters. The pulse-height response of a Cadmium-Zinc-Telluride photon detector to neutron capture emission from 238 U and 197 Au analyser foils was characterised in the neutron energy range 1-200 eV. The experiment was performed on the VESUVIO spectrometer at the ISIS neutron-pulsed source. A biparametric data acquisition, specifically developed for these measurements, allowed the simultaneous measurements of both the neutron time of flight and γ pulse-height spectra. Through the analysis of the γ pulse-height spectra the main components of the signal associated with resonant and non-resonant neutron absorption were identified. It was also shown that, in principle, energy discrimination can be used to improve the signal to background ratio of the neutron time-of-flight measurement

  4. Timing and position response of a block detector for fast neutron time-of-flight imaging

    Energy Technology Data Exchange (ETDEWEB)

    Laubach, M.A., E-mail: mlaubach@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Hayward, J.P., E-mail: jhayward@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Zhang, X., E-mail: xzhang39@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Cates, J.W., E-mail: jcates7@vols.utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2014-11-01

    Our research effort seeks to improve the spatial and timing performance of a block detector made of a pixilated plastic scintillator (EJ-200), first demonstrated as part of Oak Ridge National Laboratory's Advanced Portable Neutron Imaging System. Improvement of the position and time response is necessary to achieve better resolution and contrast in the images of shielded special nuclear material. Time-of-flight is used to differentiate between gamma and different sources of neutrons (e.g., transmission and fission neutrons). Factors limiting the timing and position performance of the neutron detector have been revealed through simulations and measurements. Simulations have suggested that the degradation in the ability to resolve pixels in the neutron detector is due to those interactions occurring near the light guide. The energy deposition within the neutron detector is shown to affect position performance and imaging efficiency. This examination details how energy cuts improve the position performance and degrade the imaging efficiency. Measurements have shown the neutron detector to have a timing resolution of σ=238 ps. The majority of this timing uncertainty is from the depth-of-interaction (DOI) of the neutron which is confirmed by simulations and analytical calculations.

  5. The fast neutron response of 7LiF thermoluminescent dosemeters

    International Nuclear Information System (INIS)

    Knipe, A.D.

    1990-02-01

    A series of experiments was performed in 1982 to determine the neutron energy response of the 7 LiF thermoluminescent dosemeter (TLD) employed in European zero power fast reactor gamma-ray energy deposition studies. Preliminary results of this work were included in a 1985 International experimental data-base of TLD neutron sensitivities and provided the most consistent set of data within the 7 LiF compilation. A more detailed interpretation of these data has improved the results still further, giving a mean relative neutron to gamma efficiency of 0.118±0.005. The main objective of this re-evaluation was to establish recommended neutron energy response values to replace a 1974 data set for the analysis of in-core fast reactor measurements. This was achieved by combining the mean experimental relative efficiency of 0.118 with calculated energy dependent kerma factors. The kerma factors for the TLD were based on US National Bureau of Standards values and a composition determined by chemical analysis. Adoption of the revised neutron energy response data set produces a small increase in the measured gamma-ray energy deposition of typically 2% relative to the 1974 data. However, more importantly, the detailed analysis of the experimental response data has significantly improved confidence in the neutron corrections applied to in-core TLD gamma-ray energy deposition measurements. (author)

  6. Monte carlo calculation of energy-dependent response of high-sensitive neutron monitor, HISENS

    International Nuclear Information System (INIS)

    Imanaka, Tetsuji; Ebisawa, Tohru; Kobayashi, Keiji; Koide, Hiroaki; Seo, Takeshi; Kawano, Shinji

    1988-01-01

    A highly sensitive neutron monitor system, HISENS, has been developed to measure leakage neutrons from nuclear facilities. The counter system of HISENS contains a detector bank which consists of ten cylindrical proportional counters filled with 10 atm 3 He gas and a paraffin moderator mounted in an aluminum case. The size of the detector bank is 56 cm high, 66 cm wide and 10 cm thick. It is revealed by a calibration experiment using an 241 Am-Be neutron source that the sensitivity of HISENS is about 2000 times as large as that of a typical commercial rem-counter. Since HISENS is designed to have a high sensitivity in a wide range of neutron energy, the shape of its energy dependent response curve cannot be matched to that of the dose equivalent conversion factor. To estimate dose equivalent values from neutron counts by HISENS, it is necessary to know the energy and angular characteristics of both HISENS and the neutron field. The area of one side of the detector bank is 3700 cm 2 and the detection efficiency in the constant region of the response curve is about 30 %. Thus, the sensitivity of HISENS for this energy range is 740 cps/(n/cm 2 /sec). This value indicates the extremely high sensitivity of HISENS as compared with exsisting highly sensitive neutron monitors. (Nogami, K.)

  7. Investigation of the response of improved self-powered neutron detectors

    International Nuclear Information System (INIS)

    Erk, S.

    1982-01-01

    The self-powered neutron detectors have been successfully employed for the most important parameters both for neutron flux and flux fluence determination. Their preference for such measurements due to their simplicity, convenience in use, rigidity, voluminal smallness and low price. However, self-powered neutron detectors depend on the type used, can only follow the neutron flux changes with a certain delay when they are compared to fission chambers which are thought to be the best detectors. In this thesis, a system has been proposed and considered carefully in order to speed up the response time, in another word, to correct the detector response to a level very near to fission chamber performance, a circuitry has been realized in the frame of principles so forth and applied to the experiments carried out in the TR-1 Reactor. Their positive results are presented. (author)

  8. The alanine detector in BNCT dosimetry: dose response in thermal and epithermal neutron fields.

    Science.gov (United States)

    Schmitz, T; Bassler, N; Blaickner, M; Ziegner, M; Hsiao, M C; Liu, Y H; Koivunoro, H; Auterinen, I; Serén, T; Kotiluoto, P; Palmans, H; Sharpe, P; Langguth, P; Hampel, G

    2015-01-01

    The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a (60)Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes fluka and mcnp. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen & Olsen alanine response model. The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. The alanine detector can be used without

  9. Angular dependence of dose equivalent response of an albedo neutron dosimeter

    International Nuclear Information System (INIS)

    Torres, B.A.; Boswell, E.; Schwartz, R.B.

    1994-01-01

    The ANSI provides procedures for testing the performance of dosimetry services. Although neutron dose equivalent angular response studies are not now mandated, future standards may well require that such studies be performed. Current studies with an albedo dosimeter will yield information regarding the angular dependence of dose equivalent response for this type of personnel dosimeter. Preliminary data for bare 252 Cf fluences show a marked decrease in dosimeter reading with increasing angle. The response decreased by an approximate factor of four. For the horizontal orientation, the same response was noted from both positive and negative angles. However, for the vertical orientation, the response was unexplainably assymetric. We are also examining the response of the personnel badge in moderated 252 Cf fluences. Responses from the moderated and unmoderated 252 Cf fields and theoretical calculations of the neutron angular response will be compared. This information will assist in building a data base for future comparisons of neutron angular responses with other neutron albedo dosimeters and phantoms

  10. Direct Radiative Effect of Mineral Dust on the Middle East and North Africa Climate

    KAUST Repository

    Bangalath, Hamza Kunhu

    2016-11-01

    Dust-climate interaction over the Middle East and North Africa (MENA) has long been studied, as it is the "dustiest" region on earth. However, the quantitative and qualitative understanding of the role of dust direct radiative effect on MENA climate is still rudimentary. The present dissertation investigates dust direct radiative effect on MENA climate during summer with a special emphasis on the sensitivity of climate response to dust shortwave absorption, which is one of the most uncertain components of dust direct radiative effect. Simulations are conducted with and without dust radiative effect, to differentiate the effect of dust on climate. To elucidate the sensitivity of climate response to dust shortwave absorption, simulations with dust assume three different cases of dust shortwave absorption, representing dust as a very efficient, standard and inefficient shortwave absorber. The non-uniformly distributed dust perturb circulations at various scales. Therefore, the present study takes advantage of the high spatial resolution capabilities of an Atmospheric General Circulation Model (AGCM), High Resolution Atmospheric Model (HiRAM), which incorporates global and regional circulations. AMIP-style global high-resolution simulations are conducted at a spatial resolution of 25 km. A significant response in the strength and position of the local Hadley circulation is predicted in response to meridionally asymmetric distribution of dust and the corresponding radiative effects. Significant responses are also found in regional circulation features such as African Easterly Jet and West African Monsoon circulation. Consistent with these dynamic responses at various scales, the tropical rainbelt across MENA strengthens and shifts northward. Similarly, the temperature under rainbelt cools and that over subtropical deserts warms. Inter-comparison of various dust shortwave absorption cases shows that the response of the MENA tropical rainbelt is extremely sensitive to the

  11. Response of a BGO detector to photon and neutron sources simulations and measurements

    CERN Document Server

    Vincke, H H; Fabjan, Christian Wolfgang; Otto, T

    2002-01-01

    In this paper Monte Carlo simulations (FLUKA) and measurements of the response of a BGO detector are reported. %For the measurements different radioactive sources were used to irradiate the BGO crystal. For the measurements three low-energy photon emitters $\\left({}^{60}\\rm{Co},\\right.$ ${}^{54}\\rm{Mn},$ $\\left. {}^{137}\\rm{Cs}\\right)$ were used to irradiate the BGO from various distances and angles. The neutron response was measured with an Am--Be neutron source. Simulations of the experimental irradiations were carried out. Our study can also be considered as a benchmark for FLUKA in terms of its reliability to predict the detector response of a BGO scintillator.

  12. MONTE CARLO CALCULATION OF THE ENERGY RESPONSE OF THE NARF HURST-TYPE FAST- NEUTRON DOSIMETER

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, T. W.

    1963-06-15

    The response function for the fast-neutron dosimeter was calculated by the Monte Carlo technique (Code K-52) and compared with a calculation based on the Bragg-Gray principle. The energy deposition spectra so obtained show that the response spectra become softer with increased incident neutron energy ahove 3 Mev. The K-52 calculated total res nu onse is more nearly constant with energy than the BraggGray response. The former increases 70 percent from 1 Mev to 14 Mev while the latter increases 135 percent over this energy range. (auth)

  13. Neutron scattering facility for the calibration of the response to nuclear recoils

    International Nuclear Information System (INIS)

    Jochum, J.; Feilitzsch, F. von; Huber, M.; Jagemann, T.; Lachenmaier, T.; Lanfranchi, J.-C.; Potzel, W.; Ruedig, A.; Schnagl, J.; Stark, M.; Wulandari, H.; Chambon, B.; Drain, D.; Gascon, J.; Jesus, M. de; Martineau, O.; Simon, E.; Stern, M.

    2002-01-01

    A possibility to search for elementary particles as dark matter candidates is to detect elastic scattering with cryogenic detectors. For the interpretation of the data one has to determine the detector response to nuclear recoils, the so-called quenching factors. They can differ for the heat-, for the scintillation- and for the ionization-signal and can be measured by scattering of neutrons. The CRESST- and the EDELWEISS-collaborations have set up a neutron scattering facility for cryogenic detectors at the tandem-accelerator of the Munich 'Maier-Leibniz-Labor.' The scattering angle and the time-of-flight of the neutrons are measured by an array of liquid scintillator cells. The pulsed high energy (11 MeV) neutron beam is created by nuclear reaction of a 11 B on a H 2 -gas target. The set-up and the results of first tests are presented

  14. Solid polystyrene and deuterated polystyrene light output response to fast neutrons

    International Nuclear Information System (INIS)

    Simpson, R.; Danly, C.; Merrill, F. E.; Volegov, P. L.; Wilde, C.; Glebov, V. Yu.; Hurlbut, C.

    2016-01-01

    The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.

  15. Solid polystyrene and deuterated polystyrene light output response to fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, R., E-mail: raspberry@lanl.gov; Danly, C.; Merrill, F. E.; Volegov, P. L.; Wilde, C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Glebov, V. Yu. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Hurlbut, C. [Eljen Technology, Sweetwater, Texas 79556 (United States)

    2016-04-15

    The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.

  16. A multi-detector neutron spectrometer with nearly isotropic response for environmental and workplace monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Ros, J.M., E-mail: jm.gomezros@ciemat.e [CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Bedogni, R. [INFN-LNF Frascati National Laboratory-U.F. Fisica Sanitaria, via E. Fermi n. 40, 00044 Frascati (Italy); Moraleda, M.; Delgado, A.; Romero, A. [CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Esposito, A. [INFN-LNF Frascati National Laboratory-U.F. Fisica Sanitaria, via E. Fermi n. 40, 00044 Frascati (Italy)

    2010-01-21

    This communication describes an improved design for a neutron spectrometer consisting of {sup 6}Li thermoluminescent dosemeters located at selected positions within a single moderating polyethylene sphere. The spatial arrangement of the dosemeters has been designed using the MCNPX Monte Carlo code to calculate the response matrix for 56 log-equidistant energies from 10{sup -9} to 100 MeV, looking for a configuration that permits to obtain a nearly isotropic response for neutrons in the energy range from thermal to 20 MeV. The feasibility of the proposed spectrometer and the isotropy of its response have been evaluated by simulating exposures to different reference and workplace neutron fields. The FRUIT code has been used for unfolding purposes. The results of the simulations as well as the experimental tests confirm the suitability of the prototype for environmental and workplace monitoring applications.

  17. Direct radiative effects during intense Mediterranean desert dust outbreaks

    Directory of Open Access Journals (Sweden)

    A. Gkikas

    2018-06-01

    Full Text Available The direct radiative effect (DRE during 20 intense and widespread dust outbreaks, which affected the broader Mediterranean basin over the period March 2000–February 2013, has been calculated with the NMMB-MONARCH model at regional (Sahara and European continent and short-term temporal (84 h scales. According to model simulations, the maximum dust aerosol optical depths (AODs range from  ∼  2.5 to  ∼  5.5 among the identified cases. At midday, dust outbreaks locally induce a NET (shortwave plus longwave strong atmospheric warming (DREATM values up to 285 W m−2; Niger–Chad; dust AODs up to  ∼  5.5 and a strong surface cooling (DRENETSURF values down to −337 W m−2, whereas they strongly reduce the downward radiation at the ground level (DRESURF values down to −589 W m−2 over the Eastern Mediterranean, for extremely high dust AODs, 4.5–5. During night-time, reverse effects of smaller magnitude are found. At the top of the atmosphere (TOA, positive (planetary warming DREs up to 85 W m−2 are found over highly reflective surfaces (Niger–Chad; dust AODs up to  ∼  5.5 while negative (planetary cooling DREs down to −184 W m−2 (Eastern Mediterranean; dust AODs 4.5–5 are computed over dark surfaces at noon. Dust outbreaks significantly affect the mean regional radiation budget, with NET DREs ranging from −8.5 to 0.5 W m−2, from −31.6 to 2.1 W m−2, from −22.2 to 2.2 W m−2 and from −1.7 to 20.4 W m−2 for TOA, SURF, NETSURF and ATM, respectively. Although the shortwave DREs are larger than the longwave ones, the latter are comparable or even larger at TOA, particularly over the Sahara at midday. As a response to the strong surface day-time cooling, dust outbreaks cause a reduction in the regional sensible and latent heat fluxes by up to 45 and 4 W m−2, respectively, averaged over land areas of the simulation domain. Dust outbreaks reduce the

  18. Calculation and applications of the frequency dependent neutron detector response functions

    International Nuclear Information System (INIS)

    Van Dam, H.; Van Hagen, T.H.J.J. der; Hoogenboom, J.E.; Keijzer, J.

    1994-01-01

    The theoretical basis is presented for the evaluation of the frequency dependent function that enables to calculate the response of a neutron detector to parametric fluctuations ('noise') or oscillations in reactor core. This function describes the 'field view' of a detector and can be calculated with a static transport code under certain conditions which are discussed. Two applications are presented: the response of an ex-core detector to void fraction fluctuations in a BWR and of both in and ex-core detectors to a rotating neutron absorber near or inside a research reactor core. (authors). 7 refs., 4 figs

  19. Neutron dosimetry at commercial nuclear plants. Final report of Subtask B: dosimeter response

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, F.M.; Endres, G.W.R.; Brackenbush, L.W.

    1983-03-01

    As part of a larger program to evaluate personnel neutron dosimetry at commercial nuclear power plants, this study was designed to characterize neutron dosimeter responses inside the containment structure of commercial nuclear plants. In order to characterize those responses, dosimeters were irradiated inside containment at 2 pressurized water reactors and at pipe penetrations outside the biological shield at two boiling water reactors. The reactors were operating at full power during the irradiations. Measurements were also performed with electronic instruments, the tissue equivalent proportional counter (TEPC), and portable remmeters, SNOOPY, RASCAL and PNR-4.

  20. Neutron dosimetry at commercial nuclear plants. Final report of Subtask B: dosimeter response

    International Nuclear Information System (INIS)

    Cummings, F.M.; Endres, G.W.R.; Brackenbush, L.W.

    1983-03-01

    As part of a larger program to evaluate personnel neutron dosimetry at commercial nuclear power plants, this study was designed to characterize neutron dosimeter responses inside the containment structure of commercial nuclear plants. In order to characterize those responses, dosimeters were irradiated inside containment at 2 pressurized water reactors and at pipe penetrations outside the biological shield at two boiling water reactors. The reactors were operating at full power during the irradiations. Measurements were also performed with electronic instruments, the tissue equivalent proportional counter (TEPC), and portable remmeters, SNOOPY, RASCAL and PNR-4

  1. Use of borated polyethylene to improve low energy response of a prompt gamma based neutron dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Priyada, P.; Ashwini, U.; Sarkar, P.K., E-mail: pradip.sarkar@manipal.edu

    2016-05-21

    The feasibility of using a combined sample of borated polyethylene and normal polyethylene to estimate neutron ambient dose equivalent from measured prompt gamma emissions is investigated theoretically to demonstrate improvements in low energy neutron dose response compared to only polyethylene. Monte Carlo simulations have been carried out using the FLUKA code to calculate the response of boron, hydrogen and carbon prompt gamma emissions to mono energetic neutrons. The weighted least square method is employed to arrive at the best linear combination of these responses that approximates the ICRP fluence to dose conversion coefficients well in the energy range of 10{sup −8} MeV to 14 MeV. The configuration of the combined system is optimized through FLUKA simulations. The proposed method is validated theoretically with five different workplace neutron spectra with satisfactory outcome. - Highlights: • An improved method is proposed for estimating H⁎(10) using prompt gamma emissions. • A combination of BHDPE and HDPE cylinders is used as a sample. • Linear combination of prompt gamma intensities approximates ICRP-DCC closely. • Feasibility of the method was tested theoretically using workplace neutron spectra.

  2. Importance diagrams - a novel presentation of the response of a material to neutron irradiation

    International Nuclear Information System (INIS)

    Forrest, R.A.

    1998-01-01

    Activation of fusion materials following neutron irradiation is of great technological importance, especially in the study of safety and environmental impacts. Currently, activation calculations are performed for a particular neutron spectrum, appropriate to a region in a particular fusion device, which makes it difficult to extract generic information. The present work gives details of a method to present the dominant nuclides for the radiological responses or an irradiated material in a fashion that is independent of the neutron spectrum and almost independent of the flux. The importance diagrams show regions in the decay time versus neutron energy space where a nuclide contributes >50% of the response. The importance diagrams for pure iron and SS316 are described, and it is noted that the shapes of the various regions vary very little with the total neutron flux. Variation of the diagrams with irradiation time occurs at short decay times in a systematic fashion. The use of the diagrams in a realistic spectrum relies on an expansion, which while not generally true, does hold approximately for many of the nuclides of interest. The diagrams are therefore a valuable summary of the universal, device-independent, response of the materials, and when combined with pathway information give a comprehensive description of activation for that material. (orig.)

  3. Study of spectral response of a neutron filter. Design of a method to adjust spectra

    International Nuclear Information System (INIS)

    Colomb-Dolci, F.

    1999-02-01

    The first part of this thesis describes an experimental method which intends to determine a neutron spectrum in the epithermal range [1 eV -10 keV]. Based on measurements of reaction rates provided by activation foils, it gives flux level in each energy range corresponding to each probe. This method can be used in any reactor location or in a neutron beam. It can determine scepter on eight energy groups, five groups in the epithermal range. The second part of this thesis presents a study of an epithermal neutron beam design, in the frame of Neutron Capture Therapy. A beam tube was specially built to test filters made up of different materials. Its geometry was designed to favour epithermal neutron crossing and to cut thermal and fast neutrons. A code scheme was validated to simulate the device response with a Monte Carlo code. Measurements were made at ISIS reactor and experimental spectra were compared to calculated ones. This validated code scheme was used to simulate different materials usable as shields in the tube. A study of these shields is presented at the end of this thesis. (author)

  4. ENERGY RESPONSE OF FLUORESCENT NUCLEAR TRACK DETECTORS OF VARIOUS COLORATIONS TO MONOENERGETIC NEUTRONS.

    Science.gov (United States)

    Fomenko, V; Moreno, B; Million, M; Harrison, J; Akselrod, M

    2017-10-25

    The neutron-energy dependence of the track-counting sensitivity of fluorescent nuclear track detectors (FNTDs) at two ranges of Mg doping, resulting in different crystal colorations, was investigated. The performance of FNTDs was studied with the following converters: Li-glass for thermal to intermediate-energy neutrons, polyethylene for fast neutrons, and polytetrafluoroethylene (Teflon™) for photon- and radon-background subtraction. The irradiations with monoenergetic neutrons were performed at the National Physics Laboratory (NPL), UK. The energy range was varied from 144 keV to 16.5 MeV in the personal dose equivalent range from 1 to 3 mSv. Monte Carlo simulations were performed to model the response of FNTDs to monoenergetic neutrons. A good agreement with the experimental data was observed suggesting the development of a basic model for future MC studies. Further work will focus on increasing FNTD sensitivity to low-energy neutrons and developing a faster imaging technique for scanning larger areas to improve counting statistics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Investigating the response of Micromegas detector to low-energy neutrons using Monte Carlo simulation

    Science.gov (United States)

    Khezripour, S.; Negarestani, A.; Rezaie, M. R.

    2017-08-01

    Micromegas detector has recently been used for high-energy neutron (HEN) detection, but the aim of this research is to investigate the response of the Micromegas detector to low-energy neutron (LEN). For this purpose, a Micromegas detector (with air, P10, BF3, 3He and Ar/BF3 mixture) was optimized for the detection of 60 keV neutrons using the MCNP (Monte Carlo N Particle) code. The simulation results show that the optimum thickness of the cathode is 1 mm and the optimum of microgrid location is 100 μm above the anode. The output current of this detector for Ar (3%) + BF3 (97%) mixture is greater than the other ones. This mixture is considered as the appropriate gas for the Micromegas neutron detector providing the output current for 60 keV neutrons at the level of 97.8 nA per neutron. Consecuently, this detector can be introduced as LEN detector.

  6. Response of CMS avalanche photo-diodes to low energy neutrons

    Science.gov (United States)

    Brown, R. M.; Deiters, K.; Ingram, Q.; Renker, D.

    2012-12-01

    The response of the Avalanche Photo-diodes (APDs) installed in the CMS detector at the LHC to neutrons from 241AmBe and 252Cf sources is reported. Signals in size equivalent to those of up to 106 photo-electrons with the nominal APD gain are observed. Measurements with an APD with the protective epoxy coating removed and with the source placed behind the APD show that there is an important response due to recoil protons from neutron interactions with the hydrogen in the epoxy, in addition to signals from neutron interactions with the silicon of the diode. The effective gain of these signals is much smaller than the diode's nominal gain.

  7. Response matrix of a multisphere neutron spectrometer with an 3 He proportional counter

    International Nuclear Information System (INIS)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Mercado S, G.A.

    2005-01-01

    The response matrix of a Bonner sphere spectrometer was calculated by use of the MCNP code. As thermal neutron counter, the spectrometer has a 3.2 cm-diameter 3 He-filled proportional counter which is located at the center of a set of polyethylene spheres. The response was calculated for 0, 3, 5, 6, 8, 10, 12, and 16 inches-diameter polyethylene spheres for neutrons whose energy goes from 10 -9 to 20 MeV. The response matrix was compared with a set of responses measured with several monoenergetic neutron sources. In this comparison the calculated matrix agrees with the experimental results. The matrix was also compared with the response matrix calculated for the PTB C spectrometer. Even though that calculation was carried out using a detailed model to describe the proportional counter; both matrices do agree, but small differences are observed in the bare case because of the difference in the model used during calculations. Other differences are in some spheres for 14.8 and 20 MeV neutrons, probably due to the differences in the cross sections used during both calculations. (Author) 28 refs., 1 tab., 6 figs

  8. Computed neutron response of spherical moderator-detector systems for radiation protection monitoring

    International Nuclear Information System (INIS)

    Dhairyawan, M.P.

    1979-01-01

    Neutrons of energies below 500 keV are important from the point of view of radiation protection of personnel working around reactors. However, as no neutron sources are available at lower energies, no measured values of neutron energy response are available between thermal and 0.5 MeV (but for Sb-Be source at 24 keV). The response functions in this range are, therefore, arrived at theoretically. After giving a comprehensive review of the work done in the field of response of moderated neutron detectors, a Monte Carlo method developed for this purpose is described and used to calculate energy response functions of the two spherical moderator-detector systems, namely, one using a central BF 3 counter and the other using 6 LiI(Eu) scintillator of 0.490 dia crystal. The polythene sphere diameter ranged from 2'' to 12''. The results obtained follow the trend predicted by other calculations and experiments, but are a definite improvement over them, because the most recent data on cross sections and angular distribution are used and the opacity of the detector i.e. the presence and size of the detector within the moderator is taken into account in the present calculations. The reasons for the discrepancies in the present results and those obtained earlier by other methods are discussed. The response of the Leake counter arrived at by the present method agrees very well with experimental calibration. (M.G.B.)

  9. Effects of flow gradients on directional radiation of human voice.

    Science.gov (United States)

    Pulkki, Ville; Lähivaara, Timo; Huhtakallio, Ilkka

    2018-02-01

    In voice communication in windy outdoor conditions, complex velocity gradients appear in the flow field around the source, the receiver, and also in the atmosphere. It is commonly known that voice emanates stronger towards the downstream direction when compared with the upstream direction. In literature, the atmospheric effects are used to explain the stronger emanation in the downstream direction. This work shows that the wind also has an effect to the directivity of voice also favouring the downstream direction. The effect is addressed by measurements and simulations. Laboratory measurements are conducted by using a large pendulum with a loudspeaker mimicking the human head, whereas practical measurements utilizing the human voice are realized by placing a subject through the roof window of a moving car. The measurements and a simulation indicate congruent results in the speech frequency range: When the source faces the downstream direction, stronger radiation coinciding with the wind direction is observed, and when it faces the upstream direction, radiation is not affected notably. The simulated flow gradients show a wake region in the downstream direction, and the simulated acoustic field in the flow show that the region causes a wave-guide effect focusing the sound in the direction.

  10. Directional radiative properties of anisotropic rough silicon and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.J.; Chen, Y.B.; Zhang, Z.M. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2006-11-15

    Recent studies have shown that the topography of some chemically etched microrough silicon surfaces is non-Gaussian and may be strongly anisotropic. However, the bidirectional reflectance distribution function (BRDF) of anisotropic surfaces has not been fully understood. The present study uses the Monte Carlo method to investigate the out-of-plane BRDF, multiple scattering, and the change of the polarization state upon reflection. Two ray-tracing algorithms are developed that incorporate the surface topography or slope distribution of the samples obtained by the use of an atomic force microscope. The predicted BRDFs for silicon surfaces with or without a gold coating are in reasonable agreement with the results measured using a laser scatterometer at a wavelength of 635nm. The employment of surface topographic data is indispensable to the BRDF modeling of anisotropic surfaces. While first-order scattering makes the dominant contribution to reflections from the studied surfaces, it is critical to consider the polarization state change in order to correctly predict the out-of-plane BRDF. The versatile Monte Carlo modeling tools developed through the present study help gain a better understanding of the directional radiative properties of microrough surfaces and, furthermore, will have an impact on thermal metrology in the semiconductor industry. (author)

  11. Research of the system response of neutron double scatter imaging for MLEM reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M., E-mail: wyj2013@163.com [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); State Key Laboratory of Intense Pulsed Radiation-Simulation and Effect, Xi’an 710024 (China); Peng, B.D.; Sheng, L.; Li, K.N.; Zhang, X.P.; Li, Y.; Li, B.K.; Yuan, Y.; Wang, P.W.; Zhang, X.D.; Li, C.H. [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); State Key Laboratory of Intense Pulsed Radiation-Simulation and Effect, Xi’an 710024 (China)

    2015-03-01

    A Maximum Likelihood image reconstruction technique has been applied to neutron scatter imaging. The response function of the imaging system can be obtained by Monte Carlo simulation, which is very time-consuming if the number of image pixels and particles is large. In this work, to improve time efficiency, an analytical approach based on the probability of neutron interaction and transport in the detector is developed to calculate the system response function. The response function was applied to calculate the relative efficiency of the neutron scatter imaging system as a function of the incident neutron energy. The calculated results agreed with simulations by the MCNP5 software. Then the maximum likelihood expectation maximization (MLEM) reconstruction method with the system response function was used to reconstruct data simulated by Monte Carlo method. The results showed that there was good consistency between the reconstruction position and true position. Compared with back-projection reconstruction, the improvement in image quality was obvious, and the locations could be discerned easily for multiple radiation point sources.

  12. DOSIMETRIC response of a REM-500 in low energy neutron fields typical of nuclear power plants.

    Science.gov (United States)

    Aslam; Matysiak, W; Atanackovic, J; Waker, A J

    2012-06-01

    This study investigates the response of a REM-500 to assess neutron quality factor and dose equivalent in low energy neutron fields, which are commonly encountered in the workplace environment of nuclear power stations. The McMaster University 3 MV Van de Graaff accelerator facility was used to measure the response of the instrument in monoenergetic neutron fields in the energy range 51 to 727 keV by bombarding a thin LiF target with 1.93-2.50 MeV protons. The energy distribution of the neutron fields produced in the facility was measured by a (3)He filled gas ionization chamber. The MCA mode of the REM-500 instrument was used to collect lineal energy distributions at varying neutron energies and to calculate the frequency and dose-mean lineal energies. The effective quality factor, Q-, was also calculated using the values of Q(y)listed in the REM-500 operation manual and compared with those of ICRP 60. The authors observed a continuously increasing trend in y - F, y-D, and Q-with an increase in neutron energy. It is interesting to note that standard tissue equivalent proportional counters (TEPCs) filled with tissue equivalent(TE) gas give rise to a similar trend for these microdosimetric quantities of interest in the same energy range; however, the averages calculated in this study are larger by about 15%compared to a TEPC filled with propane-based TE gas probably because of the larger stopping power of protons in propane compared to TE gas. These somewhat larger event sizes did not result in any significant increase in the Q-compared to those obtained from a TEPC filled with TE gas and were found to be in good agreement with other measurements reported earlier at corresponding neutron energies. The instrument quality factor response, R(Q), defined as the ratio of measured quality factor to the calculated quality factor in an ICRU tissue sphere,was found to vary with neutron energy. The instrument response,R(Q), was ~0.6 at 727 keV, which deteriorates further to

  13. Measurement of detector neutron energy response using time-of-flight techniques

    International Nuclear Information System (INIS)

    Janee, H.S.

    1973-09-01

    The feasibility of using time-of-flight techniques at the EG and G/AEC linear accelerator for measuring the neutron response of relatively sensitive detectors over the energy range 0.5 to 14 MeV has been demonstrated. The measurement technique is described in detail as are the results of neutron spectrum measurements from beryllium and uranium photoneutron targets. The sensitivity of a fluor photomultiplier LASL detector with a 2- by 1-inch NE-111 scintillator was determined with the two targets, and agreement in the region of overlap was very good. (U.S.)

  14. Dose equivalent response of personal neutron dosemeters as a function of angle

    International Nuclear Information System (INIS)

    Tanner, J.E.; McDonald, J.C.; Stewart, R.D.; Wernli, C.

    1997-01-01

    The measured and calculated dose equivalent response as a function of angle has been examined for an albedo-type thermoluminescence dosemeter (TLD) that was exposed to unmoderated and D 2 O-moderated 252 Cf neutron sources while mounted on a 40 x 40 15 cm 3 polymethylmethacrylate phantom. The dosemeter used in this study is similar to many neutron personal dosemeters currently in use. The detailed construction of the dosemeter was modelled, and the dose equivalent response was calculated, using the MCNP code. Good agreement was found between the measured and calculated values of the relative dose equivalent angular response for the TLD albedo dosemeter. The relative dose equivalent angular response was also compared with the values of directional and personal dose equivalent as a function of angle published by Siebert and Schuhmacher. (author)

  15. Rapid response and wide range neutronic power measuring systems for fast pulsed reactors

    International Nuclear Information System (INIS)

    Sumita, Kenji; Iida, Toshiyuki; Wakayama, Naoaki.

    1976-01-01

    This paper summarizes our investigation on design principles of the rapid, stable and wide range neutronic power measuring system for fast pulsed reactors. The picoammeter, the logarithmic amplifier, the reactivity meter and the neutron current chamber are the items of investigation. In order to get a rapid response, the method of compensation for the stray capacitance of the feedback circuits and the capacitance of signal cables is applied to the picoammeter, the logarithmic amplifier and the reactivity meter with consideration for the stability margin of a whole detecting system. The response of an ionization current chamber and the method for compensating the ion component of the chamber output to get optimum responses high pass filters are investigated. Statistical fluctuations of the current chamber output are also considered in those works. The optimum thickness of the surrounding moderator of the neutron detector is also discussed from the viewpoint of the pulse shape deformation and the neutron sensitivity increase. The experimental results are reported, which were observed in the pulse operations of the one shot fast pulsed reactor ''YAYOI'' and the one shot TRIGA ''NSRR'' with the measuring systems using those principles. (auth.)

  16. Neutronic analysis of the Three Mile Island Unit 2 ex-core detector response

    International Nuclear Information System (INIS)

    Malloy, D.J.; Chang, Y.I.

    1981-10-01

    A neutronic analysis has been made with respect to the ex-core neutron detector response during the TMI-2 incident. A series of transport theory calculations quantified the impact upon the detector count rate of various core and downcomer conditions. In particular, various combinations of coolant void content and spatial distributions were investigated to yield the resulting transmission of the photoneutron source to the detector. The impact of a hypothetical distributed source within the downcomer region was also examined in order to simulate the potential effect of the release of neutron producing fission products into the coolant. These results are then offered as potential explanations for the anomalous behavior of the detector during the period of approx. 20 minutes through approx. 3 hours following the reactor scram

  17. Response of CR-39 based personnel neutron dosemeter in terms of directional dose equivalent, in free air and on phantom

    International Nuclear Information System (INIS)

    Pal, Rupali R.; Sathian, Deepa; Jayalakshmi, V.; Chougaonkar, M.P.

    2011-01-01

    CR-39 is the most sensitive of nuclear track detectors for protons and is recommended as an effective neutron dosimeter because of it's low threshold energy of 100 keV neutrons. The fraction of protons that gives detectable tracks in CR-39 depends on the energy of the proton angle of incidence and etching conditions. As a consequence the registration efficiency of neutrons in the CR-39 plastics used for neutron personnel monitoring is strongly influenced by the direction of radiation incidence. This paper presents the relative response of CR-39 at varying neutron incident angles, for 241 Am-Be neutron source spectra in free air and on ISO phantom, in terms of operational quantities. It is observed that the angular dependence of CR-39 for irradiations in air and on phantom is essentially the same indicating that the phantom does not affect the directional response of CR-39. (author)

  18. Applicability of the two-angle differential method to response measurement of neutron-sensitive devices at the RCNP high-energy neutron facility

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Akihiko, E-mail: aki-masuda@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Matsumoto, Tetsuro [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Iwamoto, Yosuke [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195 (Japan); Hagiwara, Masayuki [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Satoh, Daiki; Sato, Tatsuhiko [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195 (Japan); Iwase, Hiroshi [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yashima, Hiroshi [Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Sennan, Osaka 590-0494 (Japan); Nakane, Yoshihiro [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195 (Japan); Nishiyama, Jun [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550 (Japan); Shima, Tatsushi; Tamii, Atsushi; Hatanaka, Kichiji [Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Harano, Hideki [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Nakamura, Takashi [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aramaki, Aoba, Sendai, Miyagi 980-8578 (Japan)

    2017-03-21

    Quasi-monoenergetic high-energy neutron fields induced by {sup 7}Li(p,n) reactions are used for the response evaluation of neutron-sensitive devices. The quasi-monoenergetic high-energy field consists of high-energy monoenergetic peak neutrons and unwanted continuum neutrons down to the low-energy region. A two-angle differential method has been developed to compensate for the effect of the continuum neutrons in the response measurements. In this study, the two-angle differential method was demonstrated for Bonner sphere detectors, which are typical examples of moderator-based neutron-sensitive detectors, to investigate the method's applicability and its dependence on detector characteristics. Experiments were performed under 96–387 MeV quasi-monoenergetic high-energy neutron fields at the Research Center for Nuclear Physics (RCNP), Osaka University. The measurement results for large high-density polyethylene (HDPE) sphere detectors agreed well with Monte Carlo calculations, which verified the adequacy of the two-angle differential method. By contrast, discrepancies were observed in the results for small HDPE sphere detectors and metal-induced sphere detectors. The former indicated that detectors that are particularly sensitive to low-energy neutrons may be affected by penetrating neutrons owing to the geometrical features of the RCNP facility. The latter discrepancy could be consistently explained by a problem in the evaluated cross-section data for the metals used in the calculation. Through those discussions, the adequacy of the two-angle differential method was experimentally verified, and practical suggestions were made pertaining to this method.

  19. Multi-directional radiation detector using photographic film

    International Nuclear Information System (INIS)

    Junet, L K; Majid, Z A Abdul; Sapuan, A H; Sayed, I S; Pauzi, N F

    2014-01-01

    Ionising radiation has always been part of our surrounding and people are continuously exposed to it. Ionising radiation is harmful to human health, thus it is vital to monitor the radiation. To monitor radiation, there are three main points that should be observed cautiously, which are energy, quantity, and direction of the radiation sources. A three dimensional (3D) dosimeter is an example of a radiation detector that provide these three main points. This dosimeter is able to record the radiation dose distribution in 3D. Applying the concept of dose detection distribution, study has been done to design a multi-directional radiation detector of different filter thicknesses. This is obtained by designing a cylinder shaped aluminum filter with several layers of different thickness. Black and white photographic material is used as a radiation-sensitive material and a PVC material has been used as the enclosure. The device is then exposed to a radiation source with different exposure factors. For exposure factor 70 kVp, 16 mAs; the results have shown that optical density (OD) value at 135° is 1.86 higher compared with an OD value at 315° which is 0.71 as the 135° area received more radiation compare to 315° region. Furthermore, with an evidence of different angle of film give different value of OD shows that this device has a multidirectional ability. Materials used to develop this device are widely available in the market, thus reducing the cost of development and making it suitable for commercialisation

  20. The response of the BTI bubble detectors in mixed gamma-neutron workplace fields

    International Nuclear Information System (INIS)

    Vanhavere, F.; Coeck, M.; Lievens, B.; Reginatto, M.

    2005-01-01

    Full text: Bubble detectors have become a mature technology and are used as neutron dosemeters in a wide range of applications. At the SCK-CEN and Belgonucleaire they are used as official personal neutron dosemeter for the personnel. Two types are commercially available from Bubble Technology Industries: the BD-PND, which has a neutron energy threshold of around 100 keV, and the BDT, which is mainly sensitive to thermal neutrons. At Belgonucleaire only the BD-PND is worn, and the results are corrected with a site specific factor. At the SCK-CEN both the BD-PND and BDT are worn and a combination of both results is applied for the dose records. In the EC project EVIDOS (Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields), a whole range of neutron dosemeters were irradiated in workplace fields in nuclear installations in Europe, including both types of bubble detectors. The bubble detectors were exposed on a phantom with different angles towards the reference directions in the workplace fields. We will report the bubble detectors' results in the simulated workplace fields at Cadarache (CANEL and Sigma), in the workplaces at Kruemmel (boiling water reactor, transport cask), at Mol (Venus research reactor SCK-CEN, MOX-fuel facility Belgonucleaire) and Ringhals (pressurized water reactor, transport cask). The responses of the bubble detectors and the combination of both will be compared to the reference values determined with Bonner Spheres and a novel directional spectrometer. The dosemeter readings were checked for consistency by folding the dosemeter response functions with the corresponding workplace fluence spectra in the same workplace. (author)

  1. Evaluation and Monte Carlo modelling of the response function of the Leake neutron area survey instrument

    International Nuclear Information System (INIS)

    Tagziria, H.; Tanner, R.J.; Bartlett, D.T.; Thomas, D.J.

    2004-01-01

    All available measured data for the response characteristics of the Leake counter have been gathered together. These data, augmented by previously unpublished work, have been compared to Monte Carlo simulations of the instrument's response characteristics in the energy range from thermal to 20 MeV. A response function has been derived, which is recommended as the best currently available for the instrument. Folding this function with workplace energy distributions has enabled an assessment of the impact of this new response function to be made. Similar work, which will be published separately, has been carried out for the NM2 and the Studsvik 2202D neutron area survey instruments

  2. The effects of sunlight exposure on the neutron response of CN-85 track detector

    International Nuclear Information System (INIS)

    Ahmad, N.; Mirza, N.M.; Mirza, S.K.; Tufail, M.

    1996-01-01

    The effect of sunlight exposure on the neutron response of CN-85 track detectors has been studied. It has been observed that the response during the first 28 days of sunlight exposure is slightly enhanced (10%) and then deceases continuously with increase in the sunlight exposure. After 84 days of sunlight exposure the response of the exposed detector relative to an unexposed detector is only 22%. It is also observed that the response can not be maintained by wrapping the CN-85 etch track detectors in typewriter black carbon papers if they are exposed to sunlight. (author)

  3. Ultra-Low Power Consuming Direct Radiation Sensors Based on Floating Gate Structures

    Directory of Open Access Journals (Sweden)

    Evgeny Pikhay

    2017-07-01

    Full Text Available In this paper, we report on ultra-low power consuming single poly floating gate direct radiation sensors. The developed devices are intended for total ionizing dose (TID measurements and fabricated in a standard CMOS process flow. Sensor design and operation is discussed in detail. Original array sensors were suggested and fabricated that allowed high statistical significance of the radiation measurements and radiation imaging functions. Single sensors and array sensors were analyzed in combination with the specially developed test structures. This allowed insight into the physics of sensor operations and exclusion of the phenomena related to material degradation under irradiation in the interpretation of the measurement results. Response of the developed sensors to various sources of ionizing radiation (Gamma, X-ray, UV, energetic ions was investigated. The optimal design of sensor for implementation in dosimetry systems was suggested. The roadmap for future improvement of sensor performance is suggested.

  4. The role of phantom parameters on the response of the AEOI Neutriran Albedo Neutron Personnel Dosemeter

    International Nuclear Information System (INIS)

    Sohrabi, M.; Katouzi, M.

    1992-01-01

    The response of the AEOI Neutriran Albedo Neutron Personnel Dosemeter (NANPD) which can also be used for other albedo dosemeter types was determined on 18 different phantom configurations. The effects of type, geometry, material, thickness, dosemeter-to-phantom angle in particular with the presence of legs were investigated using a Pu-Be neutron source. It was concluded that the slab phantoms (single or double) and circular and elliptical cylinder phantoms seemed to provide a better response, whereas the ICRU sphere geometry does not seem to be appropriate for the calibration of albedo dosemeters. It is interesting to note that the presence of legs maintains the constancy of the response in a situation when a radiation worker bends down during work. (author)

  5. Analysis the Response Function of the HTR Ex-core Neutron Detectors in Different Core Status

    International Nuclear Information System (INIS)

    Fan Kai; Li Fu; Zhou Xuhua

    2014-01-01

    Modular high temperature gas cooled reactor HTR-PM demonstration plant, designed by INET, Tsinghua University, is being built in Shidao Bay, Shandong province, China. HTR-PM adopts pebble bed concept. The harmonic synthesis method has been developed to reconstruct the power distributions on HTR-PM. The method based on the assumption that the neutron detector readings are mainly determined by the status of the core through the power distribution, and the response functions changed little when the status of the core changed. To verify the assumption, the influence factors to the ex-core neutron detectors are calculated in this paper, including the control rod position and the temperature of the core. The results shows that when the status of the core changed, the power distribution changed more remarkable than the response function, but the detector readings could change about 5% because of the response function changing. (author)

  6. The Role of Grain Size on Neutron Irradiation Response of Nanocrystalline Copper

    Directory of Open Access Journals (Sweden)

    Walid Mohamed

    2016-03-01

    Full Text Available The role of grain size on the developed microstructure and mechanical properties of neutron irradiated nanocrystalline copper was investigated by comparing the radiation response of material to the conventional micrograined counterpart. Nanocrystalline (nc and micrograined (MG copper samples were subjected to a range of neutron exposure levels from 0.0034 to 2 dpa. At all damage levels, the response of MG-copper was governed by radiation hardening manifested by an increase in strength with accompanying ductility loss. Conversely, the response of nc-copper to neutron irradiation exhibited a dependence on the damage level. At low damage levels, grain growth was the primary response, with radiation hardening and embrittlement becoming the dominant responses with increasing damage levels. Annealing experiments revealed that grain growth in nc-copper is composed of both thermally-activated and irradiation-induced components. Tensile tests revealed minimal change in the source hardening component of the yield stress in MG-copper, while the source hardening component was found to decrease with increasing radiation exposure in nc-copper.

  7. Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects

    Science.gov (United States)

    Lolli, Simone; Madonna, Fabio; Rosoldi, Marco; Campbell, James R.; Welton, Ellsworth J.; Lewis, Jasper R.; Gu, Yu; Pappalardo, Gelsomina

    2018-03-01

    In the past 2 decades, ground-based lidar networks have drastically increased in scope and relevance, thanks primarily to the advent of lidar observations from space and their need for validation. Lidar observations of aerosol and cloud geometrical, optical and microphysical atmospheric properties are subsequently used to evaluate their direct radiative effects on climate. However, the retrievals are strongly dependent on the lidar instrument measurement technique and subsequent data processing methodologies. In this paper, we evaluate the discrepancies between the use of Raman and elastic lidar measurement techniques and corresponding data processing methods for two aerosol layers in the free troposphere and for two cirrus clouds with different optical depths. Results show that the different lidar techniques are responsible for discrepancies in the model-derived direct radiative effects for biomass burning (0.05 W m-2 at surface and 0.007 W m-2 at top of the atmosphere) and dust aerosol layers (0.7 W m-2 at surface and 0.85 W m-2 at top of the atmosphere). Data processing is further responsible for discrepancies in both thin (0.55 W m-2 at surface and 2.7 W m-2 at top of the atmosphere) and opaque (7.7 W m-2 at surface and 11.8 W m-2 at top of the atmosphere) cirrus clouds. Direct radiative effect discrepancies can be attributed to the larger variability of the lidar ratio for aerosols (20-150 sr) than for clouds (20-35 sr). For this reason, the influence of the applied lidar technique plays a more fundamental role in aerosol monitoring because the lidar ratio must be retrieved with relatively high accuracy. In contrast, for cirrus clouds, with the lidar ratio being much less variable, the data processing is critical because smoothing it modifies the aerosol and cloud vertically resolved extinction profile that is used as input to compute direct radiative effect calculations.

  8. Basics of Neutrons for First Responders

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Brian G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-05

    These are slides from a presentation on the basics of neutrons. A few topics covered are: common origins of terrestrial neutron radiation, neutron sources, neutron energy, interactions, detecting neutrons, gammas from neutron interactions, neutron signatures in gamma-ray spectra, neutrons and NaI, neutron fluence to dose (msV), instruments' response to neutrons.

  9. Unfolding neutron spectra from simulated response of thermoluminescence dosimeters inside a polyethylene sphere using GRNN neural network

    Science.gov (United States)

    Lotfalizadeh, F.; Faghihi, R.; Bahadorzadeh, B.; Sina, S.

    2017-07-01

    Neutron spectrometry using a single-sphere containing dosimeters has been developed recently, as an effective replacement for Bonner sphere spectrometry. The aim of this study is unfolding the neutron energy spectra using GRNN artificial neural network, from the response of thermoluminescence dosimeters, TLDs, located inside a polyethylene sphere. The spectrometer was simulated using MCNP5. TLD-600 and TLD-700 dosimeters were simulated at different positions in all directions. Then the GRNN was used for neutron spectra prediction, using the TLDs' readings. Comparison of spectra predicted by the network with the real spectra, show that the single-sphere dosimeter is an effective instrument in unfolding neutron spectra.

  10. NEULAND at R{sup 3}B: Multi-neutron response and resolution of the novel neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Kresan, Dmytro; Aumann, Thomas [Technische Universitaet Darmstadt, Darmstadt (Germany); Boretzky, Konstanze; Bertini, Denis; Heil, Michael; Rossi, Dominic; Simon, Haik [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2012-07-01

    NEULAND (New Large Area Neutron Detector) will serve for the detection of fast neutrons (200 - 1000 MeV) in the R3B experiment at the future FAIR. A high detection efficiency (> 90%), a high resolution (down to 20 keV) and a large multi-neutron-hit resolving power ({>=}5 neutrons) are demanded. The detector concept foresees a fully active and highly granular design of plastic scintillators. We present the detector capabilities, based on simulations performed within the FairRoot framework. The relevance of calorimetric properties for the multi-hit recognition is discussed, and exemplarily the performance for specific physics cases is presented.

  11. Improvement of radiation response characteristic on CdTe detectors using fast neutron irradiation

    International Nuclear Information System (INIS)

    Miyamaru, Hiroyuki; Takahashi, Akito; Iida, Toshiyuki

    1999-01-01

    The treatment of fast neutron pre-irradiation was applied to a CdTe radiation detector in order to improve radiation response characteristic. Electron transport property of the detector was changed by the irradiation effect to suppress pulse amplitude fluctuation in risetime. Spectroscopic performance of the pre-irradiated detector was compared with the original. Additionally, the pre-irradiated detector was employed with a detection system using electrical signal processing of risetime discrimination (RTD). Pulse height spectra of 241 Am, 133 Ba, and 137 Cs gamma rays were measured to examine the change of the detector performance. The experimental results indicated that response characteristic for high-energy photons was improved by the pre-irradiation. The combination of the pre-irradiated detector and the RTD processing was found to provide further enhancement of the energy resolution. Application of fast neutron irradiation effect to the CdTe detector was demonstrated. (author)

  12. The calculated neutron response of a sphere with the multi-counters

    International Nuclear Information System (INIS)

    Li Taosheng; Yang Lianzhen; Li Dongyu

    2004-01-01

    Based on the difference of the neutron distribution in the moderator, three position sensitive proportional counters which are perpendicular to each other are inserted into the moderator. The energy responses with six spherical moderators and six incidence directions have been calculated by MCNP4A code. The calculated results for two divided region methods in the radial of the spherical moderator have been analyzed and compared. (authors)

  13. Response of a carbon-walled proportional counter to 14 MeV neutrons

    International Nuclear Information System (INIS)

    Lewis, K.D.

    1982-01-01

    The response of a carbon-walled spherical proportional counter filled with a methane-based tissue-equivalent gas mixture at low pressure and irradiated with 14 MeV neutrons is first measured experimentally and is then calculated theoretically by using an analytical model. The model, called the CISS model, is derived from a consideration of four basic modes of interaction of charged particles generated in neutron-nucleus reactions with the spherical cavity of the detector. Since several quantities which have application in neutron dosimetry, radiation protection, and radiation biology make direct use of such spectra, it is desirable to have the ability to theoretically predict what is expected experimentally. Thus, a comparison between the two response curves is made. The discrepancy between them is investigated by considering several physical phenomena occurring within the detector wall which tend to distort the experimental response curve. In particular, the C(n,n',3α) reaction occurring in the detector wall gives rise to multiple events, originating from a single neutron interaction in the wall simultaneously strike the detector cavity, and are recorded as a single larger event in an experimental spectra. In the analytic model, the simultaneous entry of two charged particles into the cavity is scored as two separate smaller events, uncorrelated in their production. In this work, an effort is made to modify the analytic model prediction of the response curve by correcting for the multiple events which occur. Finally, the CISS model is used to compute mass stopping power corrections for this inhomogeneous detector

  14. A study of the responses of neutron dose equivalent survey meters with computer codes

    International Nuclear Information System (INIS)

    Sartori, D.E.; Beer, G.P. de

    1983-01-01

    The ANISN and DOT discrete-ordinates radiation transport codes for one and two dimensions have been proved as effective and simple techniques to study the response of dose equivalent neutron detectors. Comparisons between results of an experimental calibration of the Harwell 95/0075 survey meter and calculated results rendered satisfactory agreement, considering the different techniques and sources of error involved. Possible improvements in the methods and designs and causes of error are discussed. (author)

  15. Computational response study of personal and albedo neutron dosemeters composed of solid state track detectors based on (n,α) reaction

    International Nuclear Information System (INIS)

    Palfalvi, J.

    1984-03-01

    The combined effect of incident and albedo neutrons on the response of several fission and (n,α) track detectors was investigated by calculations for monoenergetic neutrons and for neutrons from different energetic sources. The response functions are presented in tables and plots. (author)

  16. Response of the oral mucosa to porphyrin mediated boron neutron capture therapy

    International Nuclear Information System (INIS)

    Morris, G.M.

    2003-01-01

    Pre-clinical studies are now in progress to develop boron neutron capture therapy (BNCT) modalities for the treatment of head and neck carcinomas. BNCT is a bimodal therapy which involves the administration of a boron-10 enriched compound, that accumulates preferentially in tumours, prior to irradiation with low energy neutrons. These neutrons are captured by boron-10 atoms to produce a highly localised radiation exposure. More recently, it has been demonstrated that various boronated porphyrins can target a variety of tumours. Of the porphyrins evaluated to date, copper tetracarboranylphenyl porphyrin (CuTCPH) is a strong candidate for potential clinical evaluation. It has extremely high specificity for a variety of tumour models. Therapeutic efficacy of CuTCPH mediated BNCT has been demonstrated in pre-clinical studies using the murine EMT-6 carcinoma model. In the present investigation the response of the oral mucosa to CuTCPH mediated boron neutron capture (BNC) irradiation was assessed using a standard rat model (ventral tongue). Single exposure irradiation was carried out on the thermal neutron beam at the Brookhaven Medical Research Reactor, at 3 days after the final injection of the boronated porphyrin. The impact of CuTCPH mediated BNC irradiation on oral mucosa at therapeutically effective exposure times, assessed using the ventral tongue model, was minimal. This was primarily due to the fact that blood boron levels (from CuTCPH) were very low at the time of irradiation. Analysis of the dose-effect data for CuTCPH gave a compound biological effectiveness (CBE) factor of 2.5. It can be concluded that, although, the CBE factor (calculated using blood boron concentrations) was relatively high, CuTCPH mediated BNC irradiation should not cause significant damage at clinically relevant radiation doses. This is because blood boron levels would be very low at the time of irradiation

  17. Determination of the response function for the Portsmouth Gaseous Diffusion Plant criticality accident alarm system neutron detectors

    International Nuclear Information System (INIS)

    Tayloe, R.W. Jr.; Brown, A.S.; Dobelbower, M.C.; Woollard, J.E.

    1997-03-01

    Neutron-sensitive radiation detectors are used in the Portsmouth Gaseous Diffusion Plant's (PORTS) criticality accident alarm system (CAAS). The CAAS is composed of numerous detectors, electronics, and logic units. It uses a telemetry system to sound building evacuation horns and to provide remote alarm status in a central control facility. The ANSI Standard for a CAAS uses a free-in-air dose rate to define the detection criteria for a minimum accident-of-concern. Previously, the free-in-air absorbed dose rate from neutrons was used for determining the areal coverge of criticality detection within PORTS buildings handling fissile materials. However, the free-in-air dose rate does not accurately reflect the response of the neutron detectors in use at PORTS. Because the cost of placing additional CAAS detectors in areas of questionable coverage (based on a free-in-air absorbed dose rate) is high, the actual response function for the CAAS neutron detectors was determined. This report, which is organized into three major sections, discusses how the actual response function for the PORTS CAAS neutron detectors was determined. The CAAS neutron detectors are described in Section 2. The model of the detector system developed to facilitate calculation of the response function is discussed in Section 3. The results of the calculations, including confirmatory measurements with neutron sources, are given in Section 4

  18. Response of CsI:Pb Scintillator Crystal to Neutron Radiation

    Science.gov (United States)

    Costa Pereira, Maria da Conceição; Filho, Tufic Madi; Berretta, José Roberto; Náhuel Cárdenas, José Patrício; Iglesias Rodrigues, Antonio Carlos

    2018-01-01

    The helium-3 world crisis requires a development of new methods of neutron detection to replace commonly used 3He proportional counters. In the past decades, great effort was made to developed efficient and fast scintillators to detect radiation. The inorganic scintillator may be an alternative. Inorganic scintillators with much higher density should be selected for optimal neutron detection efficiency taking into consideration the relevant reactions leading to light emission. These detectors should, then, be carefully characterized both experimentally and by means of advanced simulation code. Ideally, the detector should have the capability to separate neutron and gamma induced events either by amplitude or through pulse shape differences. As neutron sources also generate gamma radiation, which can interfere with the measurement, it is necessary that the detector be able to discriminate the presence of such radiation. Considerable progress has been achieved to develop new inorganic scintillators, in particular increasing the light output and decreasing the decay time by optimized doping. Crystals may be found to suit neutron detection. In this report, we will present the results of the study of lead doped cesium iodide crystals (CsI:Pb) grown in our laboratory, using the vertical Bridgman technique. The concentration of the lead doping element (Pb) was studied in the range 5x10-4 M to 10-2 M . The crystals grown were subjected to annealing (heat treatment). In this procedure, vacuum of 10-6 mbar and continuous temperature of 350°C, for 24 hours, were employed. In response to neutron radiation, an AmBe source with energy range of 1 MeV to 12 MeV was used. The activity of the AmBe source was 1Ci Am. The fluency was 2.6 x 106 neutrons/second. The operating voltage of the photomultiplier tube was 1700 V; the accumulation time in the counting process was 600 s and 1800 s. The scintillator crystals used were cut with dimensions of 20 mm diameter and 10 mm height.

  19. Development of SCINFUL-CG code to calculate response functions of scintillators in various shapes used for neutron measurement

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Akira; Kim, Eunjoo; Yamaguchi, Yasuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-10-01

    A Monte Carlo code SCINFUL has been utilized for calculating response functions of organic scintillators for high-energy neutron spectroscopy. However, the applicability of SCINFUL is limited to the calculations for cylindrical NE213 and NE110 scintillators. In the present study, SCINFUL-CG was developed by introducing a geometry specifying function and high-energy neutron cross section data into SCINFUL. The geometry package MARS-CG, the extended version of the CG (Combinatorial Geometry), was programmed into SCINFUL-CG to express various geometries of detectors. Neutron spectra in the regions specified by the CG can be evaluated by the track length estimator. The cross section data of silicon, oxygen and aluminum for neutron transport calculation were incorporated up to 100 MeV using the data of LA150 library. Validity of SCINFUL-CG was examined by comparing calculated results with those by SCINFUL and MCNP and experimental data measured using high-energy neutron fields. SCINFUL-CG can be used for the calculations of the response functions and neutron spectra in the organic scintillators in various shapes. The computer code will be applicable to the designs of high-energy neutron spectrometers and neutron monitors using the organic scintillators. The present report describes the new features of SCINFUL-CG and explains how to use the code. (author)

  20. Nuclear vorticity and the low-energy nuclear response. Towards the neutron drip line

    International Nuclear Information System (INIS)

    Papakonstantinou, P.; Athens Univ.; Wambach, J.; Ponomarev, V.Y.; Mavrommatis, E.

    2004-01-01

    The transition density and current provide valuable insight into the nature of nuclear vibrations. Nuclear vorticity is a quantity related to the transverse transition current. In this work, we study the evolution of the strength distribution, related to density fluctuations, and the vorticity strength distribution, as the neutron drip line is approached. Our results on the isoscalar, natural-parity multipole response of Ni isotopes, obtained by using a self-consistent Skyrme-Hartree-Fock+continuum RPA model, indicate that, close to the drip line, the low-energy response is dominated by L > 1 vortical transitions. (orig.)

  1. Development of integrated-type dosimeter responsive to high energy neutrons (2)

    Energy Technology Data Exchange (ETDEWEB)

    Sawamura, Teruko; Murai, Ikuo; Abe, Masashi; Uoyama, Kazuya; Das, Mala [Hokkaido Univ., Sapporo, Hokkaido (Japan); Tuda, Shuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The response of superheated drop detectors or bubble detectors (BDs) was measured for quasi-monoenergetic neutron beams in the 40-75 MeV range. The experiments were performed at the AVF cyclotron facility, TAKASAKI Ion Accelerator for Advanced Radiation Application (TIARA) of Japan Atomic Energy Research Institute (JAERI). The measured dose sensitivities showed to be lowered to about a half the nominal sensitivity. A lead-breeder introduced to extend response to the high energy region were investigated and compared with Monte Carlo calculations by MCNPX code. (author)

  2. Response of the MG-63 human osteosarcoma cell line grown as multicellular spheroids to neutron irradiation

    International Nuclear Information System (INIS)

    Kubota, Nobuo; Kakehi, Masae; Matsubara, Shou; Koike, Sachiko; Ando, Koichi.

    1993-01-01

    Multicellular tumor spheroids are composed of the mixed populations of cells with regard to cell proliferation, nutrition, oxygenation and radiosensitivity. Human osteogenic sarcoma is generally considered clinically radioresistant. However, the in vitro cell survival curves for human osteogenic sarcoma cell lines do not differ from those of other tumor cell lines. In this study, the responses of human osteogenic sarcoma cell line to gamma ray and neutrons were investigated by using spheroid system. The spheroids of the osteogenic sarcoma cell line are considered to be a good in vitro model of radioresistant tumors. The purpose of this study is to measure the response of the spheroids to fast neutron irradiation. MG-63 human osteogenic sarcoma cell line was used for this study. The cell line was cultured in alpha-MEM with supplement. Cell survival was estimated after the trypsinization of spheroids 24 hours after irradiation. The method of measuring spheroid cure is explained. The mean number of surviving cells per spheroid can be obtained from the mean clonogenic number and cell survival curve. The cell survival of MG-63 spheroids exposed to gamma ray and neutrons and the dose effect curves for spheroid cure after irradiation are shown. (K.I.)

  3. Tooth enamel dosimetric response to 2.8 MeV neutrons

    Science.gov (United States)

    Fattibene, P.; Angelone, M.; Pillon, M.; De Coste, V.

    2003-03-01

    Tooth enamel dosimetry, based on electron paramagnetic resonance (EPR) spectroscopy, is recognized as a powerful method for individual retrospective dose assessment. The method is mainly used for individual dose reconstruction in the epidemiological studies aimed at the radiation risk analysis. The study of the sensitivity of tooth enamel as a function of radiation quality is one of the main goals of the research in this field. In the present work, tooth enamel dose response in a monoenergetic neutron flux of 2.8 MeV, generated by the D-D reaction, was studied for in air and in phantom irradiations of enamel samples and of whole teeth. EPR measurements were complemented by Monte Carlo calculation and by gamma dose discrimination obtained with thermoluminescent and Geiger-Muller tube measurements. The 2.8 MeV neutrons to 60Co relative sensitivity was 0.33±0.08.

  4. Tooth enamel dosimetric response to 2.8 MeV neutrons

    International Nuclear Information System (INIS)

    Fattibene, P.; Angelone, M.; Pillon, M.; De Coste, V.

    2003-01-01

    Tooth enamel dosimetry, based on electron paramagnetic resonance (EPR) spectroscopy, is recognized as a powerful method for individual retrospective dose assessment. The method is mainly used for individual dose reconstruction in the epidemiological studies aimed at the radiation risk analysis. The study of the sensitivity of tooth enamel as a function of radiation quality is one of the main goals of the research in this field. In the present work, tooth enamel dose response in a monoenergetic neutron flux of 2.8 MeV, generated by the D-D reaction, was studied for in air and in phantom irradiations of enamel samples and of whole teeth. EPR measurements were complemented by Monte Carlo calculation and by gamma dose discrimination obtained with thermoluminescent and Geiger-Muller tube measurements. The 2.8 MeV neutrons to 60 Co relative sensitivity was 0.33±0.08

  5. Response of pancreatic cancer to local irradiation with high-energy neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Lionel; Woodruff, Katherine H.; Hendrickson, Frank R.; Kurup, Parvathy D.; Mansell, Joanne; Awschalom, Miguel; Rosenberg, Ivan; Ten Haken, Randall K.

    1985-09-15

    Seventy-seven patients with locally advanced, nonresectable, biopsy-proven adenocarcinoma of the pancreas were treated by palliative bypass surgery followed by intensive neutron beam irradiation of the primary tumor site. Three dose levels, under 20, 21 to 23, and 24 to 25 Gy, were studied with the use of a treatment plan that included all known disease within a limited target volume, generally under 21. Symptomatic palliation was achieved in the majority of patients. The median survival time was 6 months. One patient remained alive and well without evidence of tumor 5 years after irradiation. Two were free of tumor at autopsy (one had died of intercurrent disease and one of radiation-related complications). A common cause of death was metastatic dissemination. Complication rates were dosedependent; life-threatening complications did not exceed 12% with doses of less than 23 Gy. Autopsies from 19 patients were reviewed. In all, the pancreatic tumor site showed extensive reactive fibrosis. Local control was achieved in two patients, but most had both residual tumor in the pancreas and metastases. Six patients had centrolobular veno-occlusive liver disease. These patients had all received the higher (22–24 Gy) neutron doses. Six patients had hemorrhagic radiation gastroenteritis. Mild skin atrophy and bone marrow hypoplasia were seen in the irradiated volumes. The kidneys and spinal cord showed no radiation effects. The authors conclude that neutron irradiation can provide a good local response with marked regression and fibrosis of the tumor. This response, coupled with many deaths due to metastases, suggests that combined treatment with neutrons and chemotherapy would be worth exploring.

  6. A preliminary inter-centre comparison study for photon, thermal neutron and epithermal neutron responses of two pairs of ionisation chambers used for BNCT

    International Nuclear Information System (INIS)

    Roca, Antoaneta; Liu, Yuan-Hao; Wojnecki, Cecile; Green, Stuart; Nievaart, Sander; Ghani, Zamir; Moss, Ray

    2009-01-01

    The dual ionisation chamber technique is the recommended method for mixed field dosimetry of epithermal neutron beams. This paper presents initial data from an ongoing inter-comparison study involving two identical pairs of ionisation chambers used at the BNCT facilities of Petten, NL and of University of Birmingham, UK. The goal of this study is to evaluate the photon, thermal neutron and epithermal neutron responses of both pairs of TE(TE) (Exradin T2 type) and Mg(Ar) (Exradin M2 type) ionisation chambers in similar experimental conditions. At this stage, the work has been completed for the M2 type chambers and is intended to be completed for the T2 type chambers in the near future.

  7. NRC [Nuclear Regulatory Commission] TLD [thermoluminescent dosimeter] direct radiation monitoring network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1989-09-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facility sites throughout the country for the second quarter of 1989

  8. NRC TLD [thermoluminescent dosimeter] Direct Radiation Monitoring Network: Progress report, January-March 1988

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1988-06-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facility sites throughout the country for the first quarter of 1988

  9. NRC TLD direct radiation monitoring network: Progress report, April--June 1988

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1988-09-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facility sites throughout the country for the second quarter of 1988

  10. Diurnal cycle of the dust instantaneous direct radiative forcing over the Arabian Peninsula

    KAUST Repository

    Osipov, Sergey

    2015-08-27

    In this study we attempted to better quantify radiative effects of dust over the Arabian Peninsula and their dependence on input parameters. For this purpose we have developed a stand-alone column radiation transport model coupled with the Mie, T-matrix and geometric optics calculations and driven by reanalysis meteorological fields and atmospheric composition. Numerical experiments were carried out for a wide range of aerosol optical depths, including extreme values developed during the dust storm on 18–20 March 2012. Comprehensive ground-based observations and satellite retrievals were used to estimate aerosol optical properties, validate calculations and carry out radiation closure. The broadband surface albedo, fluxes at the bottom and top of the atmosphere as well as instantaneous dust radiative forcing were estimated both from the model and observations. Diurnal cycle of the shortwave instantaneous dust direct radiative forcing was studied for a range of aerosol and surface characteristics representative of the Arabian Peninsula. Mechanisms and parameters responsible for diurnal variability of the radiative forcing were evaluated. We found that intrinsic variability of the surface albedo and its dependence on atmospheric conditions, along with anisotropic aerosol scattering, are mostly responsible for diurnal effects.

  11. In vitro studies of the cellular response to boron neutron capture therapy (BNCT) in thyroid carcinoma

    International Nuclear Information System (INIS)

    Rodriguez, C; Carpano, M; Perona, M; Thorp, S; Curotto, P; Pozzi, E; Casal, M; Juvenal, G; Pisarev, M; Dagrosa, A

    2012-01-01

    Background: Previously, we have started to study the mechanisms of DNA damage and repair induced by BNCT in thyroid carcinoma some years ago. We have shown different genotoxic patterns for tumor cells irradiated with gamma rays, neutrons alone or neutrons plus different compounds, boronophenylalanine (BPA) or α, β - dihydroxyethyl)-deutero-porphyrin IX (BOPP). In the present study we analyzed the expression of Ku70, Rad51 and Rad54 components of non homologous end-joing (NHEJ) and homologous recombination repair (HRR) pathways, respectively, induced by BNCT in human cells of thyroid carcinoma. Methods: A human cell line of follicular thyroid carcinoma (WRO) in exponential growth phase was distributed into the following groups: 1) Gamma Radiation, 2) Radiation with neutrons beam (NCT), 3) Radiation with n th in presence of BPA (BNCT). A control group for each treatment was added. The cells were irradiated in the thermal column facility of the RA-3 reactor (flux= 1.10 10 n/cm 2 sec) or with a source of 60 Co. The irradiations were performed during different lapses in order to obtain a total physical dose of 3 Gy (±10%). The mRNA expressions of Ku70, Rad 51 and Rad 54 were analysed by reverse transcription-polymerase chain reaction (RT-PCR) at different times post irradiation (2, 4, 6, 24 and 48 h). DNA damage was evaluated by immunofluorescence using an antibody against the phosphorylation of histone H2AX, which indicates double strand breaks in the DNA. Results: The expression of Rad51 increased at 2 h post-irradiation and it lasted until 6 h only in the neutron and neutron + BPA groups (p<0.05). Rad54 showed an up-regulation from 2 to 24 h in both groups irradiated with the neutron beam (with and without BPA) (p<0.05). On the other hand, Ku70 mRNA did not show a modification of its expression in the irradiated groups respect to the control group. Conclusion: these results would indicate an activation of the HRR pathway in the thyroid carcinoma cells treated by

  12. Development of response transforms from comparative study of commercial pulsed neutron capture logging systems

    International Nuclear Information System (INIS)

    Salaita, G.N.; Youngblood, W.E.

    1991-01-01

    This paper reports that the absence of a common calibration facility to ascertain the accuracy of commercial pulsed neutron capture logging systems, coupled with the desire for more accurate saturation determination from time-lapse logs, prompted Saudi Aramco to carry out this comparative study. Three generations of Schlumberger's Thermal Decay Time (TDT) logging devices, viz., TDT-K, TDT-M, and TDT-P along with Atlas Wireline PDK-100 system were run in an Aramco well. The wellbore 8-1/2 inch with 7-inch casing-penetrated clean sand, shaly sand, and shale streaks sequence as exhibited by the open hole natural gamma ray log. initially, the wellbore fluid was diesel. The fluid was then changed to brines of 42-kppm and 176-kppm NACl, respectively. Three repeat passes at a logging speed of 900 ft/hr were obtained by each device for each of the three borehole liquids. In the case of PDK-100, a second set of log runs was obtained at 1800 ft/hr. The results of this extensive comparative study have increased the author's understanding of the borehole liquid and the diffusion effects on the response of pulsed neutron capture logging systems and also on the relative accuracy and precision of measured formation thermal neutron capture cross section by each system

  13. Response of Inorganic Scintillators to Neutrons of 3 and 15 MeV Energy

    CERN Document Server

    Lucchini, M; Pizzichemi, M; Chipaux, R; Jacquot, F; Mazue, H; Wolff, H; Lecoq, P; Auffray, E

    2014-01-01

    In the perspective of the development of future high energy physics experiments, homogeneous calorimeters based on inorganic scintillators can be considered for the detection of hadrons (e.g., calorimeter based on dual-readout technique). Although of high importance in the high energy physics framework as well as for homeland security applications, the response of these inorganic scintillators to neutrons has been only scarcely investigated. This paper presents results obtained using five common scintillating crystals (of size around 2x2x2 cm 3), namely lead tungstate (PbWO4), bismuth germanate (BGO), cerium fluoride (CeF3), Ce-doped lutetium-yttrium orthosilicate (LYSO:Ce) and lutetium aluminum garnet (LuAG:Ce) in a pulsed flux of almost mono-energetic (similar to 3 MeV and similar to 15 MeV) neutrons provided by the Van de Graff accelerator SAMES of CEA Valduc. Energy spectra have been recorded, calibrated and compared with Geant4 simulations computed with different physics models. The neutron detection eff...

  14. Response of CR-39 Detector Against Fast Neutron Using D-Polyethylene and H-Polyethylene Radiator

    International Nuclear Information System (INIS)

    Sofyan, Hasnel

    1996-01-01

    The research on the response of detector CR-39 by using D-Polyethylene and H-Polyethylene radiator has been carried out. The optimum number of nuclear tracks was found with the use of 30 % NaOH at 80 + 0,5oC for 80 minutes of etching time. The comparison of CR-39 detector response caused by D-Polyethylene radiator against H-Polyethylene radiator of irradiation in air, were found to be 1.18 and 0.84 for 241Am-Be neutron source and neutron source from reactor respectively. For phantom irradiation, the results were found to be 1.75 for 241Am-Be neutron source, and 0.77 for neutron source from reactor

  15. Development of NRESP98 Monte Carlo codes for the calculation of neutron response functions of neutron detectors. Calculation of the response function of spherical BF{sub 3} proportional counter

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, M.; Saito, K.; Ando, H. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-05-01

    The method to calculate the response function of spherical BF{sub 3} proportional counter, which is commonly used as neutron dose rate meter and neutron spectrometer with multi moderator system, is developed. As the calculation code for evaluating the response function, the existing code series NRESP, the Monte Carlo code for the calculation of response function of neutron detectors, is selected. However, the application scope of the existing NRESP is restricted, the NRESP98 is tuned as generally applicable code, with expansion of the geometrical condition, the applicable element, etc. The NRESP98 is tested with the response function of the spherical BF{sub 3} proportional counter. Including the effect of the distribution of amplification factor, the detailed evaluation of the charged particle transportation and the effect of the statistical distribution, the result of NRESP98 calculation fit the experience within {+-}10%. (author)

  16. Impact of neutron-induced displacement damage on the ATREE response in LM124 operational amplifier

    International Nuclear Information System (INIS)

    Roig, F.; Roche, N.J.H.; Marec, R.; Calvel, P.; Bezerra, F.; Ecoffet, R.; Azais, B.

    2014-01-01

    The synergistic effect between displacement damage dose (DDD) and analog transient radiation effects on electronics (ATREE) in an operational amplifier (LM124) (op-amp) from three different manufacturers is investigated. Pulsed X-ray experiments have highlighted ATREE sensitivity on devices significantly more important following exposure to fission neutrons than for unirradiated devices. A previously developed simulation tool is used to model ATREE responses taking into account the electrical parameters degradation due to displacement damage phenomenon. A good agreement is observed between model outputs and experimental ATREE results. (authors)

  17. Formulation of detector response function to calculate the power density profiles using in-core neutron detectors

    International Nuclear Information System (INIS)

    Ahmed, S. A.; Peter, J. K.; Semmler, W.; Shultis, J. K.

    2007-01-01

    By measuring neutron fluxes at different locations throughout a core, it's possible to derive the power-density profile P k (W cm - 3), at an axial depth z of fuel rod k. Micro-pocket fission detectors (MPFD) have been fabricated to perform such in-core neutron flux measurements. The purpose of this study is to develop a mathematical model to obtain axial power density distributions in the fuel rods from the in-core responses of the MPFDs

  18. Piezoelectric Materials Under Natural and Man-Made Radiation: The Potential for Direct Radiation Detection

    Science.gov (United States)

    Wart, Megan; Simpson, Evan; Flaska, Marek

    2018-01-01

    Radiation detection systems used for monitoring long term waste storage need to be compact, rugged, and have low or no power requirements. By using piezoelectric materials it may be possible to create a reliable self-powered radiation detection system. To determine the feasibility of this approach, the electrical signal response of the piezoelectric materials to radiation must be characterized. To do so, an experimental geometry has been designed and a neutron source has been chosen as described in this paper, which will be used to irradiate a uranium foil for producing fission fragments. These future experiments will be aimed at finding the threshold of exposure of lead zirconate titanate (PZT) plates needed to produce and electrical signal. Based on the proposed experimental geometry the thermal neutron beam-line at the Breazeale Reactor at The Pennsylvania State University will be used as the neutron source. The uranium foil and neutron source will be able to supply a maximum flux of 1.5e5 fission fragments/second*cm2 to each of the PZT plates.

  19. Piezoelectric Materials Under Natural and Man-Made Radiation: The Potential for Direct Radiation Detection

    Directory of Open Access Journals (Sweden)

    Wart Megan

    2018-01-01

    Full Text Available Radiation detection systems used for monitoring long term waste storage need to be compact, rugged, and have low or no power requirements. By using piezoelectric materials it may be possible to create a reliable self-powered radiation detection system. To determine the feasibility of this approach, the electrical signal response of the piezoelectric materials to radiation must be characterized. To do so, an experimental geometry has been designed and a neutron source has been chosen as described in this paper, which will be used to irradiate a uranium foil for producing fission fragments. These future experiments will be aimed at finding the threshold of exposure of lead zirconate titanate (PZT plates needed to produce and electrical signal. Based on the proposed experimental geometry the thermal neutron beam-line at the Breazeale Reactor at The Pennsylvania State University will be used as the neutron source. The uranium foil and neutron source will be able to supply a maximum flux of 1.5e5 fission fragments/second*cm2 to each of the PZT plates.

  20. Study of the response of a silicon detector irradiated with 1 MeV neutrons; Etude de la reponse d`un detecteur Si irradie par des neutrons de 1 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Roy, P [Montreal Univ., PQ (Canada). Lab. de Physique Nucleaire

    1994-12-31

    The author studied the response of an n-type silicon detector irradiated with 1 MeV neutrons at fluences ranging from 0.26x10{sup 13} to 11.19x10{sup 13} neutrons/cm{sup 2}. The response of the irradiated detector to {sup 241}Am alpha particles was measured. 13 refs., 7 figs.

  1. Response of CR-39 SSNTD to high energy neutrons using zirconium convertors - a Monte Carlo and experimental study

    International Nuclear Information System (INIS)

    Pal, Rupali; Sapra, B.K.; Bakshi, A.K.; Datta, D.; Biju, K.; Suryanarayana, S.V.; Nayak, B.K.

    2016-01-01

    Neutron dosimetry in ion accelerators is a challenging field as the neutron spectrum varies from thermal, to fast and high-energy neutrons usually extending beyond 20 MeV. Solid-state Nuclear Track Detectors (SSNTDs) have been increasingly used in numerous fields related to nuclear physics. Extensive work has also been carried out on determining the response characteristics of such detectors as nuclear spectrometers. In nuclear reaction studies, identification of reaction products according to their type and energy is frequently required. For normally incident particles, energy-dispersive track-diameter methods have become useful scientific tools using CR-39 SSNTD. CR-39 along with 1 mm polyethylene convertor can cover a neutron energy range from 100 keV to 10 MeV. The neutron interacts with the hydrogen in CR-39 producing recoil protons from elastic collisions. This detectable neutron energy range can be increased by modification in the radiator/convertor used along with CR-39. CR39 detectors placed in conjunction with judiciously chosen thicknesses of a polyethylene radiator and a lead absorber (or degrader) are used to increase energy range upto 19 MeV. A portable neutron counter has been proposed for high-energy neutron measurement with 1 cm thick Zirconium (Zr) as the converter outside a spherical HDPE shell of 7 inch diameter. Zr metal has been found to show (n,2n) cross section for energies above 10 MeV starting from 0.01 barns for 8 MeV upto 1 barns for 22 MeV. Above these energies, the experimental data is scarce. In this paper, Zr was used in conjunction with CR-39 which showed an enhancement of track density on the CR-39. This paper demonstrates the enhancement of neutron response using Zr on CR-39 with both theoretical and experimental studies

  2. Thermally activated post-glitch response of the neutron star inner crust and core. I. Theory

    Energy Technology Data Exchange (ETDEWEB)

    Link, Bennett, E-mail: link@physics.montana.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2014-07-10

    Pinning of superfluid vortices is predicted to prevail throughout much of a neutron star. Based on the idea of Alpar et al., I develop a description of the coupling between the solid and liquid components of a neutron star through thermally activated vortex slippage, and calculate the response to a spin glitch. The treatment begins with a derivation of the vortex velocity from the vorticity equations of motion. The activation energy for vortex slippage is obtained from a detailed study of the mechanics and energetics of vortex motion. I show that the 'linear creep' regime introduced by Alpar et al. and invoked in fits to post-glitch response is not realized for physically reasonable parameters, a conclusion that strongly constrains the physics of a post-glitch response through thermal activation. Moreover, a regime of 'superweak pinning', crucial to the theory of Alpar et al. and its extensions, is probably precluded by thermal fluctuations. The theory given here has a robust conclusion that can be tested by observations: for a glitch in the spin rate of magnitude Δν, pinning introduces a delay in the post-glitch response time. The delay time is t{sub d} = 7(t{sub sd}/10{sup 4} yr)((Δν/ν)/10{sup –6}) d, where t{sub sd} is the spin-down age; t{sub d} is typically weeks for the Vela pulsar and months in older pulsars, and is independent of the details of vortex pinning. Post-glitch response through thermal activation cannot occur more quickly than this timescale. Quicker components of post-glitch response, as have been observed in some pulsars, notably, the Vela pulsar, cannot be due to thermally activated vortex motion but must represent a different process, such as drag on vortices in regions where there is no pinning. I also derive the mutual friction force for a pinned superfluid at finite temperature for use in other studies of neutron star hydrodynamics.

  3. Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects

    Directory of Open Access Journals (Sweden)

    S. Lolli

    2018-03-01

    Full Text Available In the past 2 decades, ground-based lidar networks have drastically increased in scope and relevance, thanks primarily to the advent of lidar observations from space and their need for validation. Lidar observations of aerosol and cloud geometrical, optical and microphysical atmospheric properties are subsequently used to evaluate their direct radiative effects on climate. However, the retrievals are strongly dependent on the lidar instrument measurement technique and subsequent data processing methodologies. In this paper, we evaluate the discrepancies between the use of Raman and elastic lidar measurement techniques and corresponding data processing methods for two aerosol layers in the free troposphere and for two cirrus clouds with different optical depths. Results show that the different lidar techniques are responsible for discrepancies in the model-derived direct radiative effects for biomass burning (0.05 W m−2 at surface and 0.007 W m−2 at top of the atmosphere and dust aerosol layers (0.7 W m−2 at surface and 0.85 W m−2 at top of the atmosphere. Data processing is further responsible for discrepancies in both thin (0.55 W m−2 at surface and 2.7 W m−2 at top of the atmosphere and opaque (7.7 W m−2 at surface and 11.8 W m−2 at top of the atmosphere cirrus clouds. Direct radiative effect discrepancies can be attributed to the larger variability of the lidar ratio for aerosols (20–150 sr than for clouds (20–35 sr. For this reason, the influence of the applied lidar technique plays a more fundamental role in aerosol monitoring because the lidar ratio must be retrieved with relatively high accuracy. In contrast, for cirrus clouds, with the lidar ratio being much less variable, the data processing is critical because smoothing it modifies the aerosol and cloud vertically resolved extinction profile that is used as input to compute direct radiative effect calculations.

  4. Evaluation of area monitor response for neutrons in radiation field generated by a 15 MV clinic accelerator

    International Nuclear Information System (INIS)

    Salgado, Ana Paula

    2011-01-01

    The clinical importance and usage of linear accelerators in cancer treatment increased significantly in the last years. Coupled with this growth came the concern about the use of accelerators with energies over to 10 MeV which produce therapeutic beam contaminated with neutrons generated when high-energy photons interact with high-atomic-number materials such as tungsten and lead present in the accelerator itself. At these facilities, measurements of the ambient dose equivalent for neutrons present difficulties owing to the existence of a mixed radiation field and possible electromagnetic interference near the accelerator. The Neutron Laboratory of the IRD - Brazilian Institute for Radioprotection and Dosimetry, aiming to evaluate the survey meters performance at these facilities, initiated studies of instrumentation response in the presence of different neutron spectra. Neutrons sources with average energies ranging from 0.55 to 4.2 MeV, four different survey meters and one ionization chamber to obtain the ratio between the dose due to neutrons and gamma radiation were used in this work. The evaluation of these measurements, performed in a 15 MV linear accelerator room is presented. This work presents results that demonstrate the complexity and care needed to make neutrons measurements in radiotherapy treatment rooms containing high energy clinical accelerators. (author)

  5. Responses of conventional and extended-range neutron detectors in mixed radiation fields around a 150-MeV electron LINAC

    International Nuclear Information System (INIS)

    Lin, Yu-Chi; Sheu, Rong-Jiun; Chen, Ang-Yu

    2015-01-01

    This study analyzed the responses of two types of neutron detector in mixed gamma-ray and neutron radiation fields around a 150-MeV electron linear accelerator (LINAC). The detectors were self-assembled, high efficiency, and designed in two configurations: (1) a conventional moderated-type neutron detector based on a large cylindrical He-3 proportional counter; and (2) an extended-range version with an embedded layer of lead in the moderator to increase the detector’s sensitivity to high-energy neutrons. Two sets of the detectors were used to measure neutrons at the downstream and lateral locations simultaneously, where the radiation fields differed considerably in intensities and spectra of gamma rays and neutrons. Analyzing the detector responses through a comparison between calculations and measurements indicated that not only neutrons but also high-energy gamma rays (>5 MeV) triggered the detectors because of photoneutrons produced in the detector materials. In the lateral direction, the contribution of photoneutrons to both detectors was negligible. Downstream of the LINAC, where high-energy photons were abundant, photoneutrons contributed approximately 6% of the response of the conventional neutron detector; however, almost 50% of the registered counts of the extended-range neutron detector were from photoneutrons because of the presence of the detector rather than the effect of the neutron field. Dose readings delivered by extended-range neutron detectors should be interpreted cautiously when used in radiation fields containing a mixture of neutrons and high-energy gamma rays

  6. Radiation closure and diurnal cycle of the clear-sky dust instantaneous direct radiative forcing over Arabian Peninsula

    KAUST Repository

    Osipov, Sergey

    2015-04-01

    To better quantify radiative effects of dust over the Arabian Peninsula we have developed a standalone column radiation transport model coupled with the Mie calculations and driven by reanalysis meteorological fields and atmospheric composition. Numerical experiments are carried out for a wide range of aerosol optical depths, including extreme values developed during the dust storm on 18-20 March 2012. Comprehensive ground-based observations and satellite retrievals are used to estimate aerosol optical properties, validate calculations and carry out radiation closure. The broadband surface albedo, fluxes at the bottom and top of the atmosphere as well as instantaneous dust radiative forcing are estimated both from the model and from observations. Diurnal cycle of the the shortwave instantaneous dust direct radiative forcing is studied for a range of aerosol and surface characteristics representative for the Arabian Peninsula. Mechanisms and parameters responsible for diurnal variability of the radiative forcing are evaluated. We found that intrinsic variability of the surface albedo and its dependence on atmospheric conditions along with anisotropic aerosol scattering are mostly responsible for diurnal effects. We also discuss estimates of the climatological dust instantaneous direct radiative forcing over land and the Red Sea using two approaches. The first approach is based on the probability density function of the aerosol optical depth, and the second is based on the climatologically average Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth. Results are compared with Geostationary Earth Radiation Budget (GERB) derived top of the atmosphere climatological forcing over the Red Sea.

  7. Systematic errors in the readings of track etch neutron dosemeters caused by the energy dependence of response

    International Nuclear Information System (INIS)

    Tanner, R.J.; Thomas, D.J.; Bartlett, D.T.; Horwood, N.

    1999-01-01

    A study has been performed to assess the extent to which variations in the energy dependence of response of neutron personal dosemeters can cause systematic errors in readings obtained in workplace fields. This involved a detailed determination of the response functions of personal dosemeters used in the UK. These response functions were folded with workplace spectra to ascertain the under- or over-response in workplace fields

  8. Systematic errors in the readings of track etch neutron dosemeters caused by the energy dependence of response

    CERN Document Server

    Tanner, R J; Bartlett, D T; Horwood, N

    1999-01-01

    A study has been performed to assess the extent to which variations in the energy dependence of response of neutron personal dosemeters can cause systematic errors in readings obtained in workplace fields. This involved a detailed determination of the response functions of personal dosemeters used in the UK. These response functions were folded with workplace spectra to ascertain the under- or over-response in workplace fields.

  9. Response matrix method for neutron transport in reactor lattices using group symmetry properties

    International Nuclear Information System (INIS)

    Mund, E.H.

    1991-01-01

    This paper describes a response matrix method for the approximate solution of one-velocity, multi-dimensional transport problems in reactor lattices, with isotropic neutron scattering. The transport equation is solved on a homogeneous cell by using a Petrov-Galerkin technique based on a set of trial and test functions (including polynomials and exponential functions) closely related to transport problems in infinite media. The number of non-zero elements of the response matrices reduces to a minimum when the symmetry properties of the cell are included ab initio in the span of the basis functions. To include these properties, use is made of projection operations which are performed very efficiently on symbolic manipulation programs. Numerical results of model problems in square geometry show a good agreement with reference solutions

  10. Response functions of cold neutron matter: density, spin and current fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jochen; Sedrakian, Armen [Institut fuer Theoretische Physik, Goethe-Universitaet, Frankfurt am Main (Germany)

    2014-07-01

    We study the response of a single-component pair-correlated baryonic Fermi-liquid to density, spin, and their current perturbations. A complete set of response functions is calculated in the low-temperature regime. We derive the spectral functions of collective excitations associated with the density, density-current, spin, and spin-current perturbations. The dispersion relations of density and spin fluctuations are determined and it is shown that the density fluctuations lead to exciton-like undamped bound states, whereas the spin excitations correspond to diffusive modes above the pair-breaking threshold. The contribution of the collective pair-breaking modes to the specific heat of neutron matter at subnuclear densities is computed and is shown to be comparable to that of the degenerate electron gas at not too low temperatures.

  11. A massively parallel discrete ordinates response matrix method for neutron transport

    International Nuclear Information System (INIS)

    Hanebutte, U.R.; Lewis, E.E.

    1992-01-01

    In this paper a discrete ordinates response matrix method is formulated with anisotropic scattering for the solution of neutron transport problems on massively parallel computers. The response matrix formulation eliminates iteration on the scattering source. The nodal matrices that result from the diamond-differenced equations are utilized in a factored form that minimizes memory requirements and significantly reduces the number of arithmetic operations required per node. The red-black solution algorithm utilizes massive parallelism by assigning each spatial node to one or more processors. The algorithm is accelerated by a synthetic method in which the low-order diffusion equations are also solved by massively parallel red-black iterations. The method is implemented on a 16K Connection Machine-2, and S 8 and S 16 solutions are obtained for fixed-source benchmark problems in x-y geometry

  12. Response of LR-115 type II and CR-39 plastic track detectors to Am-Be and 14.1-MeV neutrons

    International Nuclear Information System (INIS)

    Bradley, D.A.; Chong, C.S.; Saat, Ahmat; Sidik, A.G.; Ghose, A.M.

    1987-01-01

    The fast-neutron response of the plastic LR-115 type II and CR-39 track detectors have been compared, using a 14.1-MeV neutron generator and a radionuclide Am-Be neutron source (effective primary neutron energy 4.5-MeV). The distribution of track diameters for a range of etching times has been evaluated, taking into account track registration efficiency and the relevant fast neutron scattering cross-sections. The efficiency of etched-track formation in LR-115 type II due to neutron irradiation is approximately double that in CR-39. The 14.1-MeV neutrons also tend to produce tracks in both materials with somewhat greater efficiency than do the lower energy neutrons from the radionuclide source, for a given etching time. (author)

  13. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    Science.gov (United States)

    Strada, Susanna; Unger, Nadine

    2016-04-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  14. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    Directory of Open Access Journals (Sweden)

    S. Strada

    2016-04-01

    Full Text Available A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse by  ∼ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources enhance GPP by +5–8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2–5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5–8 %. The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of −2 to −12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  15. Monte Carlo simulation of the scattered component of neutron capture prompt gamma-ray analyzer responses

    International Nuclear Information System (INIS)

    Jin, Y.; Verghese, K.; Gardner, R.P.

    1986-01-01

    This paper describes a major part of our efforts to simulate the entire spectral response of the neutron capture prompt gamma-ray analyzer for bulk media (or conveyor belt) samples by the Monte Carlo method. This would allow one to use such a model to augment or, in most cases, essentially replace experiments in the calibration and optimum design of these analyzers. In previous work, we simulated the unscattered gamma-ray intensities, but would like to simulate the entire spectral response as we did with the energy-dispersive x-ray fluorescence analyzers. To accomplish this, one must account for the scattered gamma rays as well as the unscattered and one must have available the detector response function to translate the incident gamma-ray spectrum calculated by the Monte Carlo simulation into the detected pulse-height spectrum. We recently completed our work on the germanium detector response function, and the present paper describes our efforts to simulate the entire spectral response by using it with Monte Carlo predicted unscattered and scattered gamma rays

  16. Effect of bevacizumab combined with boron neutron capture therapy on local tumor response and lung metastasis

    Science.gov (United States)

    MASUNAGA, SHIN-ICHIRO; SAKURAI, YOSHINORI; TANO, KEIZO; TANAKA, HIROKI; SUZUKI, MINORU; KONDO, NATSUKO; NARABAYASHI, MASARU; WATANABE, TSUBASA; NAKAGAWA, YOSUKE; MARUHASHI, AKIRA; ONO, KOJI

    2014-01-01

    The aim of the present study was to evaluate the effect of bevacizumab on local tumor response and lung metastatic potential during boron neutron capture therapy (BNCT) and in particular, the response of intratumor quiescent (Q) cells. B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously administered bromodeoxyuridine (BrdU) to label all proliferating (P) tumor cells. The tumors were irradiated with thermal neutron beams following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)], with or without the administration of bevacizumab. This was further combined with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH, 40°C for 60 min). Immediately following the irradiation, cells from certain tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q cells and the total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days following irradiation, lung metastases were enumerated. Three days following bevacizumab administration, the sensitivity of the total tumor cell population following BPA-BNCT had increased more than that following BSH-BNCT. The combination with MTH, but not with nicotinamide, further enhanced total tumor cell population sensitivity. Regardless of the presence of a 10B-carrier, MTH enhanced the sensitivity of the Q cell population. Regardless of irradiation, the administration of bevacizumab, as well as nicotinamide treatment, demonstrated certain potential in reducing the number of lung metastases especially in BPA-BNCT compared with BSH-BNCT. Thus, the current study revealed that BNCT combined with bevacizumab has the potential to sensitize total tumor cells and cause a reduction in the number of lung metastases to a similar level as nicotinamide. PMID:24944637

  17. Response functions for computing absorbed dose to skeletal tissues from neutron irradiation

    Science.gov (United States)

    Bahadori, Amir A.; Johnson, Perry; Jokisch, Derek W.; Eckerman, Keith F.; Bolch, Wesley E.

    2011-11-01

    Spongiosa in the adult human skeleton consists of three tissues—active marrow (AM), inactive marrow (IM) and trabecularized mineral bone (TB). AM is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM50), defined as all tissues lying within the first 50 µm of the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent micro-CT imaging of a 40 year old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton (Hough et al 2011 Phys. Med. Biol. 56 2309-46). This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fraction (SAF) values for protons originating in axial and appendicular bone sites (Jokisch et al 2011 Phys. Med. Biol. 56 6857-72). These proton SAFs, bone masses, tissue compositions and proton production cross sections, were subsequently used to construct neutron dose-response functions (DRFs) for both AM and TM50 targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, AM, TM50 and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM50 DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged-particle equilibrium is established across the bone site. In the range of 10 eV to 100 Me

  18. Direct radiative effect due to brownness in organic carbon aerosols generated from biomass combustion

    International Nuclear Information System (INIS)

    Rathod, T.D.; Sahu, S.K.; Tiwari, M.; Pandit, G.G.

    2016-01-01

    We report the enhancement in the direct radiative effect due the presence of Brown carbon (BrC) as a part of organic carbon aerosols. The optical properties of organic carbon aerosols generated from pyrolytic combustion of mango tree wood (Magnifera Indica) and dung cake at different temperatures were considered. Mie codes were used to calculate absorption and scattering coefficients coupled with experimentally derived imaginary complex refractive index. The direct radiative effect (DRE) for sampled organic carbon aerosols was estimated using a wavelength dependent radiative transfer equation. The BrC DRE was estimated taking virtually non absorbing organic aerosols as reference. The BrC DRE from wood and dung cake was compared at different combustion temperatures and conditions. The BrC contributed positively to the direct top of the atmosphere radiative effect. Dung cake generated BrC aerosols were found to be strongly light absorbing as compared to BrC from wood combustion. It was noted that radiative effects of BrC from wood depended on its generation temperature and conditions. For BrC aerosols from dung cake such strong dependence was not observed. The average BrC aerosol DRE values were 1.53±0.76 W g"−"1 and 17.84±6.45 W g"−"1 for wood and dung cake respectively. The DRE contribution of BrC aerosols came mainly (67–90%) from visible light absorption though they exhibited strong absorption in shorter wavelengths of the UV–visible spectrum. - Highlights: • Biomass fuels (wood and dung cake) were studied for brown carbon direct radiative effects. • Model calculations predicted positive contribution of Brown carbon aerosols to organic carbon direct radiative effect. • Average direct radiative values for brown carbon from dung cake were higher compare to wood. • The visible light absorption played major role in brown carbon contribution (67–90 %) to total direct radiative effect.

  19. Data Quality Objectives Supporting the Environmental Direct Radiation Monitoring Program for the INL Site

    Energy Technology Data Exchange (ETDEWEB)

    Lundell, J. F. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Magnuson, S. O. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Scherbinske, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Case, M. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    This document presents the development of the data quality objectives (DQOs) for the Idaho National Laboratory (INL) Environmental Direct Radiation Monitoring Program and follows the Environmental Protection Agency (EPA) DQO process (EPA 2006). This document also develops and presents the logic to determine the specific number of direct radiation monitoring locations around INL facilities on the desert west of Idaho Falls and in Idaho Falls, at locations bordering the INL Site, and in the surrounding regional area. The selection logic follows the guidance from the Department of Energy (DOE) (2015) for environmental surveillance of DOE facilities.

  20. Correlated sampling added to the specific purpose Monte Carlo code McPNL for neutron lifetime log responses

    International Nuclear Information System (INIS)

    Mickael, M.; Verghese, K.; Gardner, R.P.

    1989-01-01

    The specific purpose neutron lifetime oil well logging simulation code, McPNL, has been rewritten for greater user-friendliness and faster execution. Correlated sampling has been added to the code to enable studies of relative changes in the tool response caused by environmental changes. The absolute responses calculated by the code have been benchmarked against laboratory test pit data. The relative responses from correlated sampling are not directly benchmarked, but they are validated using experimental and theoretical results

  1. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    Science.gov (United States)

    Sunil, C.; Tyagi, Mohit; Biju, K.; Shanbhag, A. A.; Bandyopadhyay, T.

    2015-12-01

    The scarcity and the high cost of 3He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am-Be neutron source shows promise of being used as rem counter.

  2. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, C., E-mail: csunil11@gmail.com [Accelerator Radiation Safety Section, Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tyagi, Mohit [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Biju, K.; Shanbhag, A.A.; Bandyopadhyay, T. [Accelerator Radiation Safety Section, Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-12-11

    The scarcity and the high cost of {sup 3}He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am–Be neutron source shows promise of being used as rem counter.

  3. Applying the response matrix method for solving coupled neutron diffusion and transport problems

    International Nuclear Information System (INIS)

    Sibiya, G.S.

    1980-01-01

    The numerical determination of the flux and power distribution in the design of large power reactors is quite a time-consuming procedure if the space under consideration is to be subdivided into very fine weshes. Many computing methods applied in reactor physics (such as the finite-difference method) require considerable computing time. In this thesis it is shown that the response matrix method can be successfully used as an alternative approach to solving the two-dimension diffusion equation. Furthermore it is shown that sufficient accuracy of the method is achieved by assuming a linear space dependence of the neutron currents on the boundaries of the geometries defined for the given space. (orig.) [de

  4. Dynamic response of thermal neutron measurements in electrochemically produced cold fusion subject to pulsed current

    International Nuclear Information System (INIS)

    Granada, Jose; Converti, Jose; Mayer, Roberto; Guido, German; Florido, Pablo; Patino, Nestor; Sobehart, Leonardo; Gomez, Silvia; Larreteguy, Axel

    1988-01-01

    The present work shows the results of measurements performed on electrolytic cells using a high efficiency (22%) neutron detection system in combination with a procedure involving a non-stationary current through the cell's circuit. Cold fusion was produced in electrolytic cells containing LiH dissolved in heavy water with a palladium cathode. The dynamic response to low frequency current pulses was measured. Characteristic patterns showing one or two bumps were obtained in a repeatable fashion. These patterns are strongly dependent on the previous charging history of the cathode. The technique employed seems to be very convenient as a research tool for a systematic study of the different variables governing the phenomenon. (Author)

  5. Angular and dose dependence of CR-39 neutron response for shape-selected tracks

    CERN Document Server

    Tam, N C; Lakosi, L

    1999-01-01

    A shape selection method corresponding to an energy discrimination was used to eliminate unwanted events disturbing evaluation of CR-39 detectors in detecting tracks induced by particles both of perpendicular and oblique incidence. The angular dependence of the response was examined, detecting fast neutrons from sup 2 sup 5 sup 2 Cf with shape selection technique at various angles and distances. Also, the CR-39 track detectors with the sup 2 sup 5 sup 2 Cf source were exposed to high gamma-intensity of a sup 6 sup 0 Co irradiation facility in the range 0.1 to 4.5 kGy, similar to the exposures inside spent fuel assemblies. Using the two functions the lower limit of burnup could be determined by the method.

  6. Fast neutron detection with germanium detectors: computation of response functions for the 692 keV inelastic scattering peak

    International Nuclear Information System (INIS)

    Fehrenbacher, G.; Meckbach, R.; Paretzke, H.G.

    1996-01-01

    The dependence of the shape of the right-sided broadening of the inelastic scattering peak at 692 keV in the pulse-height distribution measured with a Ge detector in fast neutron fields on the energy of the incident neutrons has been analyzed. A model incorporating the process contributing to the energy deposition that engender the peak, including the partitioning of the energy deposition by the Ge recoils, was developed. With a Monte Carlo code based on this model, the detector response associated with this peak was computed and compared with results of measurements with quasi-monoenergetic neutrons for energies between 0.88 and 2.1 MeV. A set of 80 response functions for neutron energies in the range from the reaction threshold at 0.7 to 6 MeV was computed, which will serve as a starting point for methods, which aim at obtaining information on the spectral distribution of fast neutron fields for this energy range from measurements with a Ge detector. (orig.)

  7. The neutron response of a 7 LiF thermoluminescent dosimeter incorporated in the UKAEA criticality dosimeter

    International Nuclear Information System (INIS)

    Eid, A.M.; Delafield, H.J.

    1976-04-01

    There are practical advantages in incorporating a 7 LiF thermoluminescent dosimeter (TLD) for the measurement of γ-ray dose, into the personnel criticality dosimeter. This paper investigated the corrections necessary for the inherent direct response of the TLD neutrons, and its enhanced indirect response from prompt γ-rays resulting from neutron interactions with the metallic foils contained in the criticality dosimeter. The response of the TLD to fast fission neutrons was measured to be 0.02 γ rad/n rad. The indirect response of the TLD to thermal neutrons was measured to be 4.8 x 10 -10 rad n -1 cm 2 for dosimeters exposed in free air, and 7 x 10 -10 rad n -1 cm 2 for dosimeters worn on the body respectively. Application of these correction factors to TLD measurements made at International Dosimetry Intercomparisons (sponsored by the I.A.E.A.) gave improved agreement with the values given by other participants. (author)

  8. NRC TLD Direct Radiation Monitoring Network. Progress report, January-June 1981

    International Nuclear Information System (INIS)

    1982-04-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of 55 NRC-licensed facility sites throughout the country for the first half of 1981. The program objectives, scope, and methodology are given. The TLD system, dosimeter location, data processing scheme, and quality assurance program are outlined

  9. Direct Radiative Effect of Mineral Dust on the Middle East and North Africa Climate

    KAUST Repository

    Bangalath, Hamza Kunhu

    2016-01-01

    Dust-climate interaction over the Middle East and North Africa (MENA) has long been studied, as it is the "dustiest" region on earth. However, the quantitative and qualitative understanding of the role of dust direct radiative effect on MENA climate

  10. Spectral and directional radiation characteristics of thin-film coated isothermal semitransparent plates

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R P; Viskanta, R

    1975-01-01

    An analysis is presented for predicting the effective spectral directional radiation characteristics of an isothermal, semitransparent sheet surrounded on both sides by massive dielectrics. The sheet can be coated with an optically thin film and used as selective cover plates for solar collectors. Directional and polarization effects and the spectral transmittance and reflectance are considered. Sample results for candidate materials are presented.

  11. Electro-responsivity of ionic liquid boundary layers in a polar solvent revealed by neutron reflectance

    Science.gov (United States)

    Pilkington, Georgia A.; Harris, Kathryn; Bergendal, Erik; Reddy, Akepati Bhaskar; Palsson, Gunnar K.; Vorobiev, Alexei; Antzutkin, Oleg. N.; Glavatskih, Sergei; Rutland, Mark W.

    2018-05-01

    Using neutron reflectivity, the electro-responsive structuring of the non-halogenated ionic liquid (IL) trihexyl(tetradecyl)phosphonium-bis(mandelato)borate, [P6,6,6,14][BMB], has been studied at a gold electrode surface in a polar solvent. For a 20% w/w IL mixture, contrast matched to the gold surface, distinct Kiessig fringes were observed for all potentials studied, indicative of a boundary layer of different composition to that of the bulk IL-solvent mixture. With applied potential, the amplitudes of the fringes from the gold-boundary layer interface varied systematically. These changes are attributable to the differing ratios of cations and anions in the boundary layer, leading to a greater or diminished contrast with the gold electrode, depending on the individual ion scattering length densities. Such electro-responsive changes were also evident in the reflectivities measured for the pure IL and a less concentrated (5% w/w) IL-solvent mixture at the same applied potentials, but gave rise to less pronounced changes. These measurements, therefore, demonstrate the enhanced sensitivity achieved by contrast matching the bulk solution and that the structure of the IL boundary layers formed in mixtures is strongly influenced by the bulk concentration. Together these results represent an important step in characterising IL boundary layers in IL-solvent mixtures and provide clear evidence of electro-responsive structuring of IL ions in their solutions with applied potential.

  12. Response of Moxon-Rae type gamma detectors for neutron capture cross section measurements

    International Nuclear Information System (INIS)

    Iyengar, K.V.K.; Lal, B.; Jhingan, M.L.

    1974-01-01

    A detector devised by Moxon and Rae for the absolute measurement of (n,γ) cross sections is briefly described. This detector is supposed to have an efficiency per MeV of γ-ray energy independent of the energy of the γ-rays. Such a detector consists of an electron converter placed before a thin plastic scintillator which detects the electron emitted by interaction of the γ-ray in the converter. The performance of this type of detector depends on the thickness and composition of the converter. Detailed Monte-Carlo calculations of the response for γ-ray energies from 0.2 to 12 MeV has been carried out for elements ranging from C to Bi and for a mixture of elements as well as for a mixture of an element plus compound, to find out the suitable material and thickness of the converter. Among the elements studied for the converter, Ni, Mo and Sn have a uniform response over the photon energy range 1-12 MeV. Out of these elements Mo has a low neutron capture cross section in the energy range 1-1000 keV and is thus to be preferred. A mixture of C + Bi 2 O 3 in the weight ratio 11.6 : 88.4 gives a uniform response over the photon energy range 1-12 MeV. (K.B.)

  13. A preliminary investigation of the EBT2 radiochromic films response to low energy fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Aydarous, Abdulkadir, E-mail: Aydarous@gmail.com [Physics Department, Faculty of Science, Taif University, Al-Hawiah, Taif, PO Box 888 (Saudi Arabia); Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe St North, Oshawa, ON, L1H 7K4 (Canada); Aslam [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe St North, Oshawa, ON, L1H 7K4 (Canada); Waker, Anthony [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe St North, Oshawa, ON, L1H 7K4 (Canada); Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, L8S 4M1 (Canada)

    2012-07-15

    EBT2 radiochromic films were used to study the relative dose distribution of the neutron field. The correlation between the beam current and the optical density showed good linear dependence with a correlation coefficient exceeding 98%. At any given beam energy, neutron dose rates can be changed by a factor of 40 without changing the neutron spectrum. This result is consistent with what was found by the Tissue Equivalent Proportional Counter measurements. The uniformity of the neutron field was inspected by the optical density profile of the exposed film. - Highlights: Black-Right-Pointing-Pointer Developing a 2D image for neutron field. Black-Right-Pointing-Pointer Investigation of EBT2 sensitivity to neutrons. Black-Right-Pointing-Pointer Studying the effect of irradiation parameters (beam energy and beam current) to the measured optical density.

  14. Monte Carlo Study on Gas Pressure Response of He-3 Tube in Neutron Porosity Logging

    Directory of Open Access Journals (Sweden)

    TIAN Li-li;ZHANG Feng;WANG Xin-guang;LIU Jun-tao

    2016-10-01

    Full Text Available Thermal neutrons are detected by (n,p reaction of Helium-3 tube in the compensated neutron logging. The helium gas pressure in the counting area influences neutron detection efficiency greatly, and then it is an important parameter for neutron porosity measurement accuracy. The variation law of counting rates of a near detector and a far one with helium gas pressure under different formation condition was simulated by Monte Carlo method. The results showed that with the increasing of helium pressure the counting rate of these detectors increased firstly and then leveled off. In addition, the neutron counting rate ratio and porosity sensitivity increased slightly, the porosity measurement error decreased exponentially, which improved the measurement accuracy. These research results can provide technical support for selecting the type of Helium-3 detector in developing neutron porosity logging.

  15. Comparison of calculated and measured spectral response and intrinsic efficiency for a boron-loaded plastic neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Kamykowski, E.A. (Grumman Corporate Research Center, Bethpage, NY (United States))

    1992-07-15

    Boron-loaded scintillators offer the potential for neutron spectrometers with a simplified, peak-shaped response. The Monte Carlo code, MCNP, has been used to calculate the detector characteristics of a scintillator made of a boron-loaded plastic, BC454, for neutrons between 1 and 7 MeV. Comparisons with measurements are made of spectral response for neutron energies between 4 and 6 MeV and of intrinsic efficiencies for neutrons up to 7 MeV. In order to compare the calculated spectra with measured data, enhancements to MCNP were introduced to generate tallies of light output spectra for recoil events terminating in a final capture by {sup 10}B. The comparison of measured and calculated spectra shows agreement in response shape, full width at half maximum, and recoil energy deposition. Intrinsic efficiencies measured to 7 MeV are also in agreement with the MCNP calculations. These results validate the code predictions and affirm the value of MCNP as a useful tool for development of sensor concepts based on boron-loaded plastics. (orig.).

  16. Morphological differences in the response of mouse small intestine to radiobiologically equivalent doses of X and neutron irradiation

    International Nuclear Information System (INIS)

    Carr, K.E.; Hamlet, R.; Nias, A.H.; Watt, C.

    1984-01-01

    A scale has been developed to describe the effects of radiation on small intestinal villi. The scale has been used to compare the damage done to the villi in the period 0-5 days after irradiation by X-irradiation or neutron irradiation, using 10 Gy X-rays and 5 Gy neutrons, doses which are radiobiologically equivalent when assessed by the microcolony assay method. Use of the scale indicates that the damage done to the villi by neutrons is greater than that produced by X-rays. This has implications for the interpretation of radiobiological equivalent doses (R.B.E.). Resin light microscopy and transmission electron microscopy (T.E.M.) have also been used to examine small intestinal damage after 10 Gy X-irradiation and 5 Gy neutron irradiation. Differences include variations in crypt shape, mitotic activity and the proportion of crypts which are heavily parasitised. As well as the differences in villous shape which have been reflected in the different values on the scoring system, there are also variations in the response of the constituent cells of the epithelial compartment of the villi. In general, the effect of the neutron irradiation is more severe than that of the X-rays, particularly as would be suggested by a simple quantitation of crypt regeneration

  17. Response of LET spectrometer based on track etching at some neutron sources

    International Nuclear Information System (INIS)

    Spurny, Frantisek; Brabcova, Katerina; Jadrnickova, Iva

    2008-01-01

    There is still need to develop upgrade, and test further methods able to characterise the external exposure to neutrons. This contribution presents further results obtained with the goal to enlarge and upgrade the possibility of neutron dosimetry and microdosimetry with a LET spectrometer based on the chemically etched track detectors (TED). As TED we have used several types of polyallyldiglycolcarbonates (PADC). The PADC detectors have been exposed in: high energy neutron beams at iThemba facility, Cape Town, South Africa, and in monoenergetic neutron beams at JRC Geel, Belgium. The studies have been performed in the frame of the ESA supported project DOBIES. (author)

  18. Response matrix of an extended range Bonner sphere spectrometer for the characterization of collimated neutron beams

    International Nuclear Information System (INIS)

    Bedogni, R.; Esposito, A.; Gomez-Ros, J.M.

    2010-01-01

    Accelerator-based neutron beams are becoming popular tools for material testing, radiation hardness and soft errors studies. The characterization of these beams in terms of dosimetric and spectrometric quantities is a challenging task, mainly due to their wide energy interval (from thermal up to hundreds MeV) and, in certain facilities like VESUVIO - ISIS (RAL, UK), to their small dimension (few cm in radius). Extended Range Bonner Sphere Spectrometers (ERBSS) would be a valuable tool, due to their wide energy range, good photon discrimination and possibility to choose among different central detectors according to the intensity, photon component and time structure of the field. Nevertheless, the non-uniform irradiation of the spheres could lead to important systematic errors. With the aim of bringing the advantages of ERBSS into the characterization of collimated beams, a dedicated study was performed using the VESUVIO spallation-based collimated beam at ISIS (Rutherford Appleton Laboratory, Oxford). Here a 3.21 cm radius collimated beam was characterized using a Dysprosium activation foil-based ERBSS whose response matrix was recalculated for this specific beam diameter. Besides the results of the experimental campaign, this paper presents the calculation of the response matrix and its dependence on the beam dimension.

  19. Experimental and mathematical simulation techniques for determining an in-situ response testing method for neutron sensors used in reactor power plant protection systems

    International Nuclear Information System (INIS)

    Behbahani, A.

    1983-01-01

    An analytical neutron sensor response model and methods for transient response measurements of neutron sensors (compensated ionization chamber), including possible in-situ techniques have been developed and evaluated to meet the provisions of Draft Standard ISA Sd67.06, IEEE 338-1977, and NRC Guide 1.118. One in-situ method requires the perturbation of the high voltage detector (sensor) power supply and measurement of the sensor response. The response to a perturbation of the power supply is related to the response of the sensor to a transient change in neutron flux. Random signal analysis is another in-situ technique to monitor the neutron sensor response. In this method the power spectrum of the inherent fluctuations from the neutron sensor output (current in CIC) are measured and evaluated. Transient response techniques (including in-situ methods) are experimentally and analytically evaluated to identify the mechanisms which may cause degradation in the response of the neutron sensors. The objective of the experimental evaluation was to correlate the measured response time using transient radiation flux changes and power supply perturbation. The objective of the analytical model of the different sensor response was to predict response time and degradation mechanisms

  20. Investigation of the response of a neutron moisture meter using a multigroup, two-dimensional diffusion theory code

    International Nuclear Information System (INIS)

    Ritchie, A.I.M.; Wilson, D.J.

    1984-12-01

    A multigroup diffusion code has been used to predict the count rate from a neutron moisture meter for a range of values of soil water content ω, thermal neutron absorption cross section Ssub(a) (defined as Σsub(a)/rho) of the soil matrix and soil matrix density rho. Two dimensions adequately approximated the geometry of the source, detector and soil surrounding the detector. Seven energy groups, the data for which were condensed from 128 group data set over the neutron energy spectrum appropriate to the soil-water mixture under study, proved adequate to describe neutron slowing-down and diffusion. The soil-water mixture was an SiO 2 →water mixture, with the absorption cross section of SiO 2 increased to cover the range of Σsub(a) required. The response to changes in matrix density is, in general, linear but the response to changes in water content is not linear over the range of parameter values investigated. Tabular results are presented which allow interpolation of the response for a particular ω, Ssub(a) and rho. It is shown that R(ω, Ssub(a), rho) rho M(Ssub(a)) + C(ω) is a crude representation of the response over a very limited range of variation of ω, and Ssub(a). As the response is a slowly varying function of rho, Ssub(a) and ω, a polynomial fit will provide a better estimate of the response for values of rho, Ssub(a) and ω not tabulated

  1. Use of the response function in the analysis of complex neutron spectra

    International Nuclear Information System (INIS)

    Kegel, G.H.R.; Ciarcia, C.; Couchell, G.P.; Shao, J.

    1974-01-01

    Neutron time-of-flight spectra with overlapping peaks must be unfolded to yield contributions of individual neutron groups. This requires an accurate knowledge of the resolution profile of each group. It is also desirable to know the shape of the spectra of neutrons which were scattered more than once in the scatterer, so that corrections for multiple interactions can be made. These resolution profiles and spectra shapes are not readily available. We have developed a series of measures to account for these effects in our work. We monitor the neutron target thickness during target preparation with a separate time-of-flight spectrometer; we measure detector and accelerator time resolutions for different neutron energies using a thin target and we use computer codes to simulate those factors not amenable to direct measurement

  2. Direct radiative effects by anthropogenic particles at a polluted site: Rome (Italy)

    International Nuclear Information System (INIS)

    Bergamo, A.; De Tomasi, F.; Perrone, M.R.

    2008-01-01

    The direct radiative effect (DRE) by all (anthropogenic plus natural) and anthropogenic aerosols is calculated at the solar (0.34 μm) and infrared (4-200 μm) spectral range to better address the annual cycle of the anthropogenic aerosols impact at a site (Rome, Italy) significantly affected by pollution. Aerosol optical and microphysical properties from 2003 AERONET Sun/sky-photometer measurements and solar albedos based on MODIS satellite sensor data constitute the necessary input to radiative transfer simulations. Clear- and all-sky conditions are investigated by adopting ISCCP monthly products for high-, mid-and low-cloud cover. It is shown that monthly mean values of aerosol optical depths by anthropogenic particles (AOD a ) are on average more than 50% of the corresponding all-aerosol-optical-depth (AOD) monthly means. In particular, the AOD a /AOD ratio that varies within the (0.51-0.83) on autumn-winter (A W, October-March), varies within the (0.50-0.71 range on spring-summer (S S, April-September) as a consequence of the larger contribution of natural particles on S S. The surface (sfc), all-sky DRE by anthropogenic particles that is negative all year round at solar wave-lengths, represents on average 60% and 51% of the all-sky sfc-DRE by all aerosols on A W and S S, respectively. The all-sky atmospheric forcing by anthropogenic particles (AF a ) that is positive all year round, is little dependent on seasons: it varies within the (1.0-4.1) W/m 2 and (2.0-4.2) W/m 2 range an A W and S S, respectively. Conversely, the all-sky A F by all aerosols is characterized by a marked seasonality. As a consequence, the atmospheric forcing by anthropogenic particles that on average is 50% of the A F value on A W, decreases down to 36% of the A F value on S S. Infrared aerosols DREs that are positive all year round are significantly smaller than the corresponding absolute values of solar DREs. Clouds decrease on average ToA- and sfc-DRE absolute values by anthropogenic

  3. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India.

    Science.gov (United States)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah; Kotalo, Rama Gopal; Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy; Rajuru Ramakrishna, Reddy; Surendranair, Suresh Babu

    2016-10-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500nm are found to be 0.47±0.09, 0.34±0.08, 0.29±0.06 and 0.30±0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α380-1020) value is observed maximum in March (1.25±0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33±0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00-08:00 (IST) and evening 19:00-21:00 (IST) hours and one minima noticed during afternoon (13:00-16:00). The highest monthly mean BC concentration is observed in the month of January (3.4±1.2μgm(-3)) and the lowest in July (1.1±0.2μgm(-3)). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be +36.8±1.7Wm(-2), +26.9±0.2Wm(-2), +18.0±0.6Wm(-2) and +18.5±3.1Wm(-2) during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80Wm(-2)) which contributes more increase in atmospheric heating by ~1K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Neutron-Induced Failures in Semiconductor Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This slide presentation explores single event effect, environmental neutron flux, system response, the Los Alamos Neutron Science Center (LANSCE) neutron testing facility, examples of SEE measurements, and recent interest in thermal neutrons.

  5. Direct radiative forcing due to aerosols in Asia during March 2002.

    Science.gov (United States)

    Park, Soon-Ung; Jeong, Jaein I

    2008-12-15

    The Asian dust aerosol model (ADAM) and the aerosol dynamic model including the gas-aerosol interaction processes together with the Column Radiation Model (CRM) of Community Climate Model 3 and the output of the fifth generation of meso-scale model (MM5) in a grid 60 x 60 km2 in the Asian domain (70-150E, Equator-50N) have been employed to estimate direct radiative forcing of the Asian dust and the anthropogenic aerosols including the BC, OC, secondary inorganic aerosol (SIA), mixed type aerosol (dust+BC+OC+SIA) and sea salt aerosols at the surface, the top of atmosphere (TOA) and in the atmosphere for the period of 1-31 March 2002 during which a severe Asian dust event has been occurred in the model domain. The results indicate that the ADAM model and the aerosol dynamic model simulate quite well the spatial and temporal distributions of the mass concentration of aerosols with the R2 value of more than 0.7. The estimated mean total column aerosol mass in the analysis domain for the whole period is found to be about 78 mg m(-2), of which 66% and 34% are, respectively, contributed by the Asian dust aerosol and all the other anthropogenic aerosols. However, the direct radiative forcing contributed by the Asian dust aerosol is about 22% of the mean radiative forcing at the surface (-6.8 W m(-2)), about 31% at the top of atmosphere (-2.9 W m(-2)) and about 13% in the atmosphere (3.8 W m(-2)), suggesting relatively inefficient contribution of the Asian dust aerosol on the direct radiative forcing compared to the anthropogenic aerosols. The aerosol direct radiative forcing at the surface is mainly contributed by the mixed type aerosol (30%) and the SIA aerosol (25%) while at the top of atmosphere it is mainly contributed by the SIA aerosol (43%) and the Asian dust aerosol (31%) with positively (warming) contributed by BC and mixed type aerosols. The atmosphere is warmed mainly by the mixed type aerosol (55%) and the BC aerosol (26%). However, the largest radiative

  6. Direct radiative forcing due to aerosols in Asia during March 2002

    International Nuclear Information System (INIS)

    Park, Soon-Ung; Jeong, Jaein I.

    2008-01-01

    The Asian dust aerosol model (ADAM) and the aerosol dynamic model including the gas-aerosol interaction processes together with the Column Radiation Model (CRM) of Community Climate Model 3 and the output of the fifth generation of meso-scale model (MM5) in a grid 60 x 60 km 2 in the Asian domain (70-150E, Equator-50N) have been employed to estimate direct radiative forcing of the Asian dust and the anthropogenic aerosols including the BC, OC, secondary inorganic aerosol (SIA), mixed type aerosol (dust + BC + OC + SIA) and sea salt aerosols at the surface, the top of atmosphere (TOA) and in the atmosphere for the period of 1-31 March 2002 during which a severe Asian dust event has been occurred in the model domain. The results indicate that the ADAM model and the aerosol dynamic model simulate quite well the spatial and temporal distributions of the mass concentration of aerosols with the R 2 value of more than 0.7. The estimated mean total column aerosol mass in the analysis domain for the whole period is found to be about 78 mg m -2 , of which 66% and 34% are, respectively, contributed by the Asian dust aerosol and all the other anthropogenic aerosols. However, the direct radiative forcing contributed by the Asian dust aerosol is about 22% of the mean radiative forcing at the surface (- 6.8 W m -2 ), about 31% at the top of atmosphere (- 2.9 W m -2 ) and about 13% in the atmosphere (3.8 W m -2 ), suggesting relatively inefficient contribution of the Asian dust aerosol on the direct radiative forcing compared to the anthropogenic aerosols. The aerosol direct radiative forcing at the surface is mainly contributed by the mixed type aerosol (30%) and the SIA aerosol (25%) while at the top of atmosphere it is mainly contributed by the SIA aerosol (43%) and the Asian dust aerosol (31%) with positively (warming) contributed by BC and mixed type aerosols. The atmosphere is warmed mainly by the mixed type aerosol (55%) and the BC aerosol (26%). However, the largest

  7. Generation of organic scintillators response function for fast neutrons using the Monte Carlo method

    International Nuclear Information System (INIS)

    Mazzaro, A.C.

    1979-01-01

    A computer program (DALP) in Fortran-4-G language, has been developed using the Monte Carlo method to simulate the experimental techniques leading to the distribution of pulse heights due to monoenergetic neutrons reaching an organic scintillator. The calculation of the pulse height distribution has been done for two different systems: 1) Monoenergetic neutrons from a punctual source reaching the flat face of a cylindrical organic scintillator; 2) Environmental monoenergetic neutrons randomly reaching either the flat or curved face of the cylindrical organic scintillator. The computer program has been developed in order to be applied to the NE-213 liquid organic scintillator, but can be easily adapted to any other kind of organic scintillator. With this program one can determine the pulse height distribution for neutron energies ranging from 15 KeV to 10 MeV. (Author) [pt

  8. Effect of the energy dependence of response of neutron personal dosemeters routinely used in the UK on the accuracy of dose estimation

    CERN Document Server

    Tanner, R J; Thomas, D J

    2002-01-01

    A large set of neutron energy distributions have been classified by workplace to provide a guide to the neutron fields to which workers in particular industries are likely to be exposed. These have been combined (folded) with the results of a major programme of neutron personal dosemeter response function measurements, to provide results for the systematic errors that those dosemeters would give in workplaces. Data for neutron doses recorded for UK classified workers have been taken from the CIDI tables, and related to the results from the folding process. It has hence been possible to draw conclusions about the probable systematic errors that result from the use of the currently available neutron personal dosemeters, which have inherent problems associated with their energy dependence of response.

  9. Effect of the energy dependence of response of neutron personal dosemeters routinely used in the UK on the accuracy of dose estimation

    International Nuclear Information System (INIS)

    Tanner, R.J.; Thomas, D.J.; Bartlett, D.T.

    2002-01-01

    A large set of neutron energy distributions have been classified by workplace to provide a guide to the neutron fields to which workers in particular industries are likely to be exposed. These have been combined (folded) with the results of a major programme of neutron personal dosemeter response function measurements, to provide results for the systematic errors that those dosemeters would give in workplaces. Data for neutron doses recorded for UK classified workers have been taken from the CIDI tables, and related to the results from the folding process. It has hence been possible to draw conclusions about the probable systematic errors that result from the use of the currently available neutron personal dosemeters, which have inherent problems associated with their energy dependence of response. (author)

  10. Scintillation response of CsI: Tl crystal under neutron, gamma, alpha particles and beta excitations

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Maria da Conceicao Costa; Madi Filho, Tufic; Lopes, Valdir Maciel; Berretta, Jose Roberto; Cardenas, Jose Patricio Nahuel, E-mail: macoper@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Among the converters of X and gamma radiation in light photons, known as scintillators, the one which is the most efficient emits photons with a wavelength near 400 nm. Particularly, among them, the cesium iodine doped with thallium (CsI:Tl) crystal is that which matches better between the light emission spectrum (peak at 540 nm) and the quantum sensitivity curve of the photodiodes and CCD (Charge Coupled Device). This explains the renewed interest in using this crystal as scintillator. Although the CsI:Tl crystal is commercially available, its local development would give the possibility to obtain it in different geometric configurations and coupling. Moreover, there is a special interest in studying new conditions that will alter the properties of this crystal in order to achieve a optimal level of its functional characteristics. Having an efficient national scintillator with low cost is a strategic opportunity to study the response of a detector applied to different types of radiation. The crystal of cesium iodide activated with thallium (CsI:Tl) has a high gamma detection efficiency per unit volume. In this paper, the CsI:Tl crystal, grown by the vertical Bridgman technique in evacuated silica ampoules and with the purpose of use as radiation detectors, is described. To evaluate the scintillator, measures of the thallium distribution in the crystal volume were taken, with overall efficiency score. The scintillator response was studied through gamma radiation from sources of {sup 137}Cs, {sup 60}Co, {sup 22}Na, {sup 54}Mn, {sup 131}I and {sup 99m}Tc; the beta radiation from source of {sup 90}Sr/{sup 90}Y, alpha particles from {sup 241}Am source and the scintillator response to neutrons from Am/Be source. The energetic resolution for {sup 137}Cs gamma rays (662 keV) was 10%. The results showed the validity of using the CsI:Tl crystal developed in our laboratory, in many applications in the area of radiation detectors. (author)

  11. Device fabrication, characterization, and thermal neutron detection response of LiZnP and LiZnAs semiconductor devices

    Science.gov (United States)

    Montag, Benjamin W.; Ugorowski, Philip B.; Nelson, Kyle A.; Edwards, Nathaniel S.; McGregor, Douglas S.

    2016-11-01

    Nowotny-Juza compounds continue to be explored as candidates for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q-value of 4.78 MeV, larger than 10B, an energy easily identified above background radiations. Hence, devices fabricated from semiconductor compounds having either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The raw synthesized material indicated the presence high impurity levels (material and electrical property characterizations). A static vacuum sublimation in quartz was performed to help purify the synthesized material [2,3]. Bulk crystalline samples were grown from the purified material [4,5]. Samples were cut using a diamond wire saw, and processed into devices. Bulk resistivity was determined from I-V curve measurements, ranging from 106-1011 Ω cm. Devices were characterized for sensitivity to 5.48 MeV alpha particles, 337 nm laser light, and neutron sensitivity in a thermal neutron diffracted beam at the Kansas State University TRIGA Mark II nuclear reactor. Thermal neutron reaction product charge induction was measured with a LiZnP device, and the reaction product spectral response was observed.

  12. Response functions of the Andersson-Braun and extended range rem counters for neutron energies from thermal to 10 GeV

    CERN Document Server

    Mares, V; Schraube, H

    2002-01-01

    This work is devoted to the calculation of responses as functions of neutron energy for a paired set of Andersson-Braun rem counters, which is commercially available. Different Monte Carlo codes such as MCNP, LAHET, HADRON and MCNPX were applied in the calculations. The study extended to frontal, lateral and isotropic neutron incidence. For an estimation of the contribution of charged high-energy particles to the reading, the responses to protons and pions were also determined. The results obtained give good bases for the practical use of the new instrument in high-energy neutron fields.

  13. Evaluation of area monitor response for neutrons in radiation field generated by a 15 MV clinic accelerator; Avaliacao da resposta dos monitores de area para neutrons em campo de radiacao gerado por um acelerador clinico de 15 MV

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Ana Paula

    2011-07-01

    The clinical importance and usage of linear accelerators in cancer treatment increased significantly in the last years. Coupled with this growth came the concern about the use of accelerators with energies over to 10 MeV which produce therapeutic beam contaminated with neutrons generated when high-energy photons interact with high-atomic-number materials such as tungsten and lead present in the accelerator itself. At these facilities, measurements of the ambient dose equivalent for neutrons present difficulties owing to the existence of a mixed radiation field and possible electromagnetic interference near the accelerator. The Neutron Laboratory of the IRD - Brazilian Institute for Radioprotection and Dosimetry, aiming to evaluate the survey meters performance at these facilities, initiated studies of instrumentation response in the presence of different neutron spectra. Neutrons sources with average energies ranging from 0.55 to 4.2 MeV, four different survey meters and one ionization chamber to obtain the ratio between the dose due to neutrons and gamma radiation were used in this work. The evaluation of these measurements, performed in a 15 MV linear accelerator room is presented. This work presents results that demonstrate the complexity and care needed to make neutrons measurements in radiotherapy treatment rooms containing high energy clinical accelerators. (author)

  14. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  15. Neutron therapy

    International Nuclear Information System (INIS)

    Riesler, Rudi

    1995-01-01

    Standard radiotherapy uses Xrays or electrons which have low LET (linear energy transfer); in contrast, particles such as neutrons with high LET have different radiobiological responses. In the late 1960s, clinical trials by Mary Catterall at the Hammersmith Hospital in London indicated that fast neutron radiation had clinical advantages for certain malignant tumours. Following these early clinical trials, several cyclotron facilities were built in the 1980s for fast neutron therapy, for example at the University of Washington, Seattle, and at UCLA. Most of these newer machines use extracted cyclotron proton beams in the range 42 to 66 MeV with beam intensities of 15 to 60 microamps. The proton beams are transported to dedicated therapy rooms, where neutrons are produced from beryllium targets. Second-generation clinical trials showed that accurate neutron beam delivery to the tumour site is more critical than for photon therapy. In order to achieve precise beam geometries, the extracted proton beams have to be transported through a gantry which can rotate around the patient and deliver beams from any angle; also the neutron beam outline (''field shape'') must be adjusted to extremely irregular shapes using a flexible collimation system. A therapy procedure has to be appropriately organized, with physicians, radiotherapists, nurses, medical physicists and other staff in attendance; other specialized equipment, such as CT or MRI scanners and radiation simulators must be made available. Neutron therapy is usually performed only in radiation oncology departments of major medical centres

  16. Applying the universal neutron transport codes to the calculation of well-logging probe response at different rock porosities

    International Nuclear Information System (INIS)

    Bogacz, J.; Loskiewicz, J.; Zazula, J.M.

    1991-01-01

    The use of universal neutron transport codes in order to calculate the parameters of well-logging probes presents a new approach first tried in U.S.A. and UK in the eighties. This paper deals with first such an attempt in Poland. The work is based on the use of MORSE code developed in Oak Ridge National Laboratory in U.S.A.. Using CG MORSE code we calculated neutron detector response when surrounded with sandstone of porosities 19% and 38%. During the work it come out that it was necessary to investigate different methods of estimation of the neutron flux. The stochastic estimation method as used currently in the original MORSE code (next collision approximation) can not be used because of slow convergence of its variance. Using the analog type of estimation (calculation of the sum of track lengths inside detector) we obtained results of acceptable variance (∼ 20%) for source-detector spacing smaller than 40 cm. The influence of porosity on detector response is correctly described for detector positioned at 27 cm from the source. At the moment the variances are quite large. (author). 33 refs, 8 figs, 8 tabs

  17. Device fabrication, characterization, and thermal neutron detection response of LiZnP and LiZnAs semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Montag, Benjamin W., E-mail: bmontag@ksu.edu; Ugorowski, Philip B.; Nelson, Kyle A.; Edwards, Nathaniel S.; McGregor, Douglas S.

    2016-11-11

    Nowotny-Juza compounds continue to be explored as candidates for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled {sup 3}He and {sup 10}BF{sub 3} detectors. The {sup 6}Li(n,t){sup 4}He reaction yields a total Q-value of 4.78 MeV, larger than {sup 10}B, an energy easily identified above background radiations. Hence, devices fabricated from semiconductor compounds having either natural Li (nominally 7.5% {sup 6}Li) or enriched {sup 6}Li (usually 95% {sup 6}Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10{sup −6} Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The raw synthesized material indicated the presence high impurity levels (material and electrical property characterizations). A static vacuum sublimation in quartz was performed to help purify the synthesized material [2,3]. Bulk crystalline samples were grown from the purified material [4,5]. Samples were cut using a diamond wire saw, and processed into devices. Bulk resistivity was determined from I–V curve measurements, ranging from 10{sup 6}–10{sup 11} Ω cm. Devices were characterized for sensitivity to 5.48 MeV alpha particles, 337 nm laser light, and neutron sensitivity in a thermal neutron diffracted beam at the Kansas State University TRIGA Mark II nuclear reactor. Thermal neutron reaction product charge induction was measured with a LiZnP device, and the reaction product spectral response was observed. - Highlights: • Devices were fabricated from in-house synthesized and purified LiZnAs and LiZnP. • Devices ranged in bulk resistivity from 10{sup 6}–10{sup 11} Ω cm. • Devices showed sensitivity to 5.48 MeV alpha particles. • Devices were characterized with a 337 nm laser light. • Devices were evaluated

  18. NRC TLD Direct Radiation Monitoring Network. Volume 5, No. 2. Progress report, April-June 1985

    International Nuclear Information System (INIS)

    Jang, J.; Kramaric, M.; Cohen, L.

    1985-09-01

    The US Nuclear Regulatory Commission (NRC) Direct Radiation Monitoring Network provides continuous measurement of the ambient radiation levels around licensed NRC facilities, primarily power reactors. The Network is intended to measure radiation levels during routine facility operations and to establish background radiation levels used to assess the radiological impact of an unusual condition, such as an accident. This report presents the radiation levels measured around all facilities in the Network for the second quarter of 1985. A complete listing of the site facilities monitored is included

  19. The effects of pre-etching time on the characteristic responses of electrochemically etched CR-39 neutron dosimeters

    International Nuclear Information System (INIS)

    Sohrabi, M.; Khoshnoodi, M.

    1986-01-01

    The effects of pre-etching time (PET) or duration of etching of fast-neutron-induced-recoil tracks in CR-39 in 6N KOH at 60 0 C on electrochemical etching neutron characteristic responses; i.e. sensitivity and mean recoil track diameter (MRTD) versus KOH normality up to 18N are investigated in this paper. Six sets of responses for PETs of 0, 1, 2, 3, 4, and 5 hours were obtained by using our new multi-chamber ECE (MCECE) system which reduced total operation time to about 6% of the time usually required when single-chamber ECE systems are used. The sensitivity response for zero PET showed a broad plateau and a high sensitivity low-LET peak around 16N. By increasing PET, another peak was also developed around 5N leading to 'double-humped' responses with two maximums around 5N and 16N, and a minimum around 11N. On the other hand, the MRTD responses for all PETs studied showed the same general trend with maximums around 11N. In this paper, shape of tracks under different conditions are also investigated, new optimum conditions such as KOH concentrations of 5, 11, and 15N at 25 0 C, with or without pre-etching, are recommended for tracks of lower-LET recoils including possibly protons, and alpha particle tracks over a broad energy range, and the efficiency of the MCECE system is also demonstrated. (author)

  20. Dose-response curve for blood exposed to gamma-neutron mixed field by conventional cytogenetic method

    International Nuclear Information System (INIS)

    Brandao, Jose Odinilson de C.; Souza, Priscilla L.G.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F.; Calixto, Merilane S.; Santos, Neide

    2009-01-01

    There is increasing concern about airline crew members (about one million worldwide) are exposed to measurable neutrons doses. Historically, cytogenetic biodosimetry assays have been based on quantifying asymmetrical chromosome alterations (dicentrics, centric rings and acentric fragments) in mytogen-stimulated T-lymphocytes in their first mitosis after radiation exposure. Increased levels of chromosome damage in peripheral blood lymphocytes are a sensitive indicator of radiation exposure and they are routinely exploited for assessing radiation absorbed dose after accidental or occupational exposure. Since radiological accidents are not common, not all nations feel that it is economically justified to maintain biodosimetry competence. However, dependable access to biological dosimetry capabilities is completely critical in event of an accident. In this paper the dose-response curve was measured for the induction of chromosomal alterations in peripheral blood lymphocytes after chronic exposure in vitro to neutron-gamma mixes field. Blood was obtained from one healthy donor and exposed to two neutron-gamma mixed field from sources 241 AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The evaluated absorbed doses were 0.2 Gy; 1.0 Gy and 2.5 Gy. The dicentric chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphase figures were analyzed for the presence of dicentrics by two experienced scorers after painted by giemsa 5%. Our preliminary results showed a linear dependence between radiations absorbed dose and dicentric chromosomes frequencies. Dose-response curve described in this paper will contribute to the construction of calibration curve that will be used in our laboratory for biological dosimetry. (author)

  1. Dose-response curve for blood exposed to gamma-neutron mixed field by conventional cytogenetic method

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Jose Odinilson de C.; Souza, Priscilla L.G.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F., E-mail: jodinilson@cnen.gov.b, E-mail: fflima@cnen.gov.b, E-mail: jasantos@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Calixto, Merilane S.; Santos, Neide, E-mail: santos_neide@yahoo.com.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Genetica

    2009-07-01

    There is increasing concern about airline crew members (about one million worldwide) are exposed to measurable neutrons doses. Historically, cytogenetic biodosimetry assays have been based on quantifying asymmetrical chromosome alterations (dicentrics, centric rings and acentric fragments) in mytogen-stimulated T-lymphocytes in their first mitosis after radiation exposure. Increased levels of chromosome damage in peripheral blood lymphocytes are a sensitive indicator of radiation exposure and they are routinely exploited for assessing radiation absorbed dose after accidental or occupational exposure. Since radiological accidents are not common, not all nations feel that it is economically justified to maintain biodosimetry competence. However, dependable access to biological dosimetry capabilities is completely critical in event of an accident. In this paper the dose-response curve was measured for the induction of chromosomal alterations in peripheral blood lymphocytes after chronic exposure in vitro to neutron-gamma mixes field. Blood was obtained from one healthy donor and exposed to two neutron-gamma mixed field from sources {sup 241}AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The evaluated absorbed doses were 0.2 Gy; 1.0 Gy and 2.5 Gy. The dicentric chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphase figures were analyzed for the presence of dicentrics by two experienced scorers after painted by giemsa 5%. Our preliminary results showed a linear dependence between radiations absorbed dose and dicentric chromosomes frequencies. Dose-response curve described in this paper will contribute to the construction of calibration curve that will be used in our laboratory for biological dosimetry. (author)

  2. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India

    Energy Technology Data Exchange (ETDEWEB)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Kotalo, Rama Gopal, E-mail: krgverma@yahoo.com [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Rajuru Ramakrishna, Reddy [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Srinivasa Ramanujan Institute of Technology, B.K. Samudram Mandal, Anantapur 515 701, Andhra Pradesh (India); Surendranair, Suresh Babu [Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum 695 022, Kerala (India)

    2016-10-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500 nm are found to be 0.47 ± 0.09, 0.34 ± 0.08, 0.29 ± 0.06 and 0.30 ± 0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α{sub 380–1020}) value is observed maximum in March (1.25 ± 0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33 ± 0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00–08:00 (IST) and evening 19:00–21:00 (IST) hours and one minima noticed during afternoon (13:00–16:00). The highest monthly mean BC concentration is observed in the month of January (3.4 ± 1.2 μg m{sup −3}) and the lowest in July (1.1 ± 0.2 μg m{sup −3}). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be + 36.8 ± 1.7 W m{sup −2}, + 26.9 ± 0.2 W m{sup −2}, + 18.0 ± 0.6 W m{sup −2} and + 18.5 ± 3.1 W m{sup −2} during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80 W m{sup −2}) which contributes more increase in atmospheric heating by ~ 1 K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. - Highlights: • The mean values of AOD{sub 500} are found to be high during summer whereas low in monsoon. • The highest values of BC are observed in January and the lowest in the month of July. • The annual mean

  3. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India

    International Nuclear Information System (INIS)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah; Kotalo, Rama Gopal; Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy; Rajuru Ramakrishna, Reddy; Surendranair, Suresh Babu

    2016-01-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500 nm are found to be 0.47 ± 0.09, 0.34 ± 0.08, 0.29 ± 0.06 and 0.30 ± 0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α_3_8_0_–_1_0_2_0) value is observed maximum in March (1.25 ± 0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33 ± 0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00–08:00 (IST) and evening 19:00–21:00 (IST) hours and one minima noticed during afternoon (13:00–16:00). The highest monthly mean BC concentration is observed in the month of January (3.4 ± 1.2 μg m"−"3) and the lowest in July (1.1 ± 0.2 μg m"−"3). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be + 36.8 ± 1.7 W m"−"2, + 26.9 ± 0.2 W m"−"2, + 18.0 ± 0.6 W m"−"2 and + 18.5 ± 3.1 W m"−"2 during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80 W m"−"2) which contributes more increase in atmospheric heating by ~ 1 K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. - Highlights: • The mean values of AOD_5_0_0 are found to be high during summer whereas low in monsoon. • The highest values of BC are observed in January and the lowest in the month of July. • The annual mean atmospheric forcing is found to be

  4. The response of mouse skin to re-irradiation with x-rays or fast neutrons

    International Nuclear Information System (INIS)

    Tsukiyama, Iwao; Egawa, Sunao; Kumazawa, Akiyoshi; Iino, Yuu.

    1986-01-01

    Effects of neutrons and x-rays on mouse skin which had been previously irradiated with x-rays were investigated. Two tattoo marks were placed in the hairless legs of mice at intervals of 15 mm. The legs were exposed to various doses of x-ray and neutrons to determine the relative biological effectiveness (RBE) using the contraction of the skin as an index. The RBE was 0.93 - 1.73. The legs of the mice were preexposed to 25 Gy of x-ray, and exposed 4 months later. The contraction of the skin began earlier than after the first irradiation. RBE was 2.18 - 2.47. This RBE was higher than that in untreated mice. These results suggest that previously irradiated normal tissues are much more sensitive to neutrons than to x-rays. (author)

  5. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    Science.gov (United States)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the

  6. Theory study of global density influence and soils chemical composition at neutron probes response

    International Nuclear Information System (INIS)

    Crispino, M.L.

    1980-06-01

    Three energy group diffusion theory is applied to calculate the thermal neutron flux through a soil-water mixture at the neutron source. The soils studies are taken from two horizons of different composition, of a representative soil of the Litoral-Mata Zone of Pernambuco State. The thermal flux is obtained taking into consideration increasing values of the water volume percent, H, and the bulk density of the soil. The cross-sections of the mixture are calculated from the chemical composition of the soils. (author)

  7. Analysis of directional radiative behavior and heating efficiency for a gas-fired radiant burner

    International Nuclear Information System (INIS)

    Li, B.X.; Lu, Y.P.; Liu, L.H.; Kudo, K.; Tan, H.P.

    2005-01-01

    For the purpose of energy conservation and uniform heating of object surface, a gas-fired porous radiant burner with a bundle of reflecting tubes is developed. A physical model is developed to simulate the directional radiative behavior of this heating device, in which the Monte Carlo method based on the concept of radiation distribution factor is used to compute the directional radiative behavior. The effects of relating parameters on the directional behavior of radiative heating and the heating efficiency are analyzed. With the increase of the length-to-radius ratio of tube, the radiation heating efficiency decreases, but the radiation energy incident on the object surface is more collimated. The radiation heating efficiency increases with the specular reflectivity. With the increase in length of tube segment with specular reflective surface, the radiation heating efficiency increases, but the extent of concentration and collimation of radiative energy decreases. For real design of the heating device, some trade-offs are needed to balance the radiation heating efficiency and the uniformity of radiative heating of object surface

  8. Direct radiative feedback due to biogenic secondary organic aerosol estimated from boreal forest site observations

    International Nuclear Information System (INIS)

    Lihavainen, Heikki; Asmi, Eija; Aaltonen, Veijo; Makkonen, Ulla; Kerminen, Veli-Matti

    2015-01-01

    We used more than five years of continuous aerosol measurements to estimate the direct radiative feedback parameter associated with the formation of biogenic secondary organic aerosol (BSOA) at a remote continental site at the edge of the boreal forest zone in Northern Finland. Our upper-limit estimate for this feedback parameter during the summer period (ambient temperatures above 10 °C) was −97 ± 66 mW m −2 K −1 (mean ± STD) when using measurements of the aerosol optical depth (f AOD ) and −63 ± 40 mW m −2 K −1 when using measurements of the ‘dry’ aerosol scattering coefficient at the ground level (f σ ). Here STD represents the variability in f caused by the observed variability in the quantities used to derive the value of f. Compared with our measurement site, the magnitude of the direct radiative feedback associated with BSOA is expected to be larger in warmer continental regions with more abundant biogenic emissions, and even larger in regions where biogenic emissions are mixed with anthropogenic pollution. (letter)

  9. The direct radiative effect of biomass burning aerosols over southern Africa

    Directory of Open Access Journals (Sweden)

    S. J. Abel

    2005-01-01

    Full Text Available A multi-column radiative transfer code is used to assess the direct radiative effect of biomass burning aerosols over the southern African region during September. The horizontal distribution of biomass smoke is estimated from two sources; i General Circulation Model (GCM simulations combined with measurements from the Aerosol Robotic Network (AERONET of Sun photometers; ii data from the Moderate resolution Imaging Spectrometer (MODIS satellite. Aircraft and satellite measurements are used to constrain the cloud fields, aerosol optical properties, vertical structure, and land surface albedo included in the model. The net regional direct effect of the biomass smoke is -3.1 to -3.6 Wm-2 at the top of atmosphere, and -14.4 to -17.0 Wm-2 at the surface for the MODIS and GCM distributions of aerosol. The direct radiative effect is shown to be highly sensitive to the prescribed vertical profiles and aerosol optical properties. The diurnal cycle of clouds and the spectral dependency of surface albedo are also shown to play an important role.

  10. Plan for the future of neutron research on condensed matter: an Argonne National Laboratory report prepared in response to the Report of the Review Panel on Neutron Scattering

    International Nuclear Information System (INIS)

    1981-01-01

    The Review Panel on Neutron Scattering has recommended an expanded budget to allow systematic development of the field. An alternative plan for the future of neutron research on condensed matter is presented here, in case it is not possible to fund the expanded budget. This plan leads, in a rational and logical way, to a world-class neutron source that will ensure the vitality of the field and exploit the many benefits that state-of-the-art neutron facilities can bring to programs in the materials and biological sciences. 2 tables

  11. Radiation-induced conductivity of doped silicon in response to photon, proton and neutron irradiation

    International Nuclear Information System (INIS)

    Kishimoto, N.; Amekura, H.; Plaksin, O.A.; Stepanov, V.A.

    2000-01-01

    The opto-electronic performance of semiconductors during reactor operation is restricted by radiation-induced conductivity (RIC) and the synergistic effects of neutrons/ions and photons. The RICs of Si due to photons, protons and pulsed neutrons have been evaluated, aiming at radiation correlation. Protons of 17 MeV with an ionizing dose rate of 10 3 Gy/s and/or photons (hν=1.3 eV) were used to irradiate impurity-doped Si (2x10 16 B atoms/cm 3 ) at 300 and 200 K. Proton-induced RIC (p-RIC) and photoconductivity (PC) were intermittently detected in an accelerator device. Neutron-induced RIC (n-RIC) was measured for the same Si in a pulsed fast-fission reactor, BARS-6, with a 70-μs pulse of 2x10 12 n/cm 2 (E>0.01 MeV) and a dose rate of up to 6x10 5 Gy/s. The neutron irradiation showed a saturation tendency in the flux dependence at 300 K due to the strong electronic excitation. Normalization of the electronic excitation, including the pulsed regime, gave a fair agreement among the different radiation environments. Detailed comparison among PC, p-RIC and n-RIC is discussed in terms of radiation correlation including the in-pile condition

  12. Cholinesterase response in the rhabdomyosarcoma tumor and small intestine of the BALB/c mice and the radioprotective actions of exogenous ATP after lethal dose of neutron radiation

    International Nuclear Information System (INIS)

    Szeinfeld, D.; De Villiers, N.

    1993-01-01

    The rhabdomyosarcoma tumors were subjected to different doses of 2.0, 3.8 and 7.0 Gy from a neutron beam facility p(66 MeV)/Be. Elevated levels of cholinesterase activity are observed in which there is a correlation between the different doses of neutron radiation and the augmentation response of this enzyme. The increase of cholinesterase activity after 7 Gy neutron irradiation as a feature of involvement in the homeostatic mechanism maintaining the proper choline/acetylcholine ratio in the cell is also observed at 1 and 24 h in both tissues, rhabdomyosarcoma and small intestine. The activity of the enzyme after neutron irradiation with prior administration of ATP showed smaller increases when compared with increase observed after neutron irradiation alone. Moreover in the present work the protective mechanism of ATP in the response of cholinesterase activity is marked differential between both, normal and tumoral tissue and correlated inversely with the administered of the following concentrations of exogenous ATP (8, 25, 80, 250, and 700 mg/kg body weight) prior to exposure to 7 Gy neutron radiation. These results reflect the radioprotective ability of exogenous ATP to exert a number of metabolic adaptations as a defense mechanism in which the cell exposed to neutron radiation could remain viable because the injury is potentially repairable. (orig.) [de

  13. Investigation of the thermoluminescent response of K2GdF5:Dy3+ crystals to photon radiation and neutron fields

    International Nuclear Information System (INIS)

    Silva, Edna C.; Faria, Luiz O.; Santos, Joelan A.L.; Vilela, Eudice C.

    2009-01-01

    The thermoluminescent (TL) properties of undoped and Dy 3+ doped K 2 GdF 5 crystals were investigated from the point of view of gamma and neutron dosimetry. Crystalline K 2 GdF 5 platelets with thickness of about 1 mm and doped with 0.0, 0.2, 1.0, 5.0 and 10.0 at.% Dy 3+ ions, synthesized under hydrothermal conditions, were irradiated in order to study TL sensitivity, as well as dose and energy response, reproducibility and fading. As it has been turned out, crystals doped with 5.0 at% Dy 3+ show the most efficient TL response and demonstrate a linear response to doses for all the radiation fields. TL glow curves from Dy 3+ doped K 2 GdF 5 crystals can be deconvoluted into four individual TL peaks centered at 153, 185, 216 and 234 deg C. Concerning the photon fields studied, the maximum TL response has been found for the 52.5 keV photons. The intensity is 15 times more than that of the response for the 662 keV photons from a Cs-137 source. On the other hand, the K 2 GdF 5 crystals doped with 5.0 at % Dy 3+ have also been found to have the better TL response for fast neutron radiation, among all dopants studied. For fast neutron radiation produced by a 241 Am-Be source, the TL responses for doses were also linear and comparable to that of commercial TLD-600, irradiated at same conditions. It has been established that the gamma sensitivity of the crystals is about 0.07% of the neutron sensitivity and the fast neutron sensitivity is about 4.5 % of the thermal neutron sensitivity. These results points out that K 2 Gd 0.95 Dy 0.05 F 5 crystals are good candidates for use in neutron dosimetry applications. (author)

  14. Proteomic analysis of cellular response induced by boron neutron capture reaction in human squamous cell carcinoma SAS cells

    International Nuclear Information System (INIS)

    Sato, Akira; Itoh, Tasuku; Imamichi, Shoji; Kikuhara, Sota; Fujimori, Hiroaki; Hirai, Takahisa; Saito, Soichiro; Sakurai, Yoshinori; Tanaka, Hiroki; Nakamura, Hiroyuki; Suzuki, Minoru

    2015-01-01

    To understand the mechanism of cell death induced by boron neutron capture reaction (BNCR), we performed proteome analyses of human squamous tumor SAS cells after BNCR. Cells were irradiated with thermal neutron beam at KUR after incubation under boronophenylalanine (BPA)(+) and BPA(−) conditions. BNCR mainly induced typical apoptosis in SAS cells 24 h post-irradiation. Proteomic analysis in SAS cells suggested that proteins functioning in endoplasmic reticulum, DNA repair, and RNA processing showed dynamic changes at early phase after BNCR and could be involved in the regulation of cellular response to BNCR. We found that the BNCR induces fragments of endoplasmic reticulum-localized lymphoid-restricted protein (LRMP). The fragmentation of LRMP was also observed in the rat tumor graft model 20 hours after BNCT treatment carried out at the National Nuclear Center of the Republic of Kazakhstan. These data suggest that dynamic changes of LRMP could be involved during cellular response to BNCR. - Highlights: • BNCR in human squamous carcinoma cells caused typical apoptotic features. • BNCR induced fragments of LRMP, in human squamous carcinoma and rat tumor model. • The fragmentation of LRMP could be involved in cellular response to BNCR.

  15. Relative light yield and temporal response of a stilbene-doped bibenzyl organic scintillator for neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J. A.; Goldblum, B. L., E-mail: bethany@nuc.berkeley.edu; Brickner, N. M.; Daub, B. H.; Kaufman, G. S.; Bibber, K. van; Vujic, J. [Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States); Bernstein, L. A.; Bleuel, D. L.; Caggiano, J. A.; Hatarik, R.; Phillips, T. W.; Zaitseva, N. P. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Wender, S. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-05-21

    The neutron time-of-flight (nTOF) diagnostics used to characterize implosions at the National Ignition Facility (NIF) has necessitated the development of novel scintillators that exhibit a rapid temporal response and high light yield. One such material, a bibenzyl-stilbene mixed single-crystal organic scintillator grown in a 99.5:0.5 ratio in solution, has become the standard scintillator used for nTOF diagnostics at NIF. The prompt fluorescence lifetime and relative light yield as a function of proton energy were determined to calibrate this material as a neutron detector. The temporal evolution of the intensity of the prompt fluorescent response was modeled using first-order reaction kinetics and the prompt fluorescence decay constant was determined to be 2.46 ± 0.01 (fit) ± 0.13 (systematic) ns. The relative response of the bibenzyl-stilbene mixed crystal generated by recoiling protons was measured, and results were analyzed using Birks' relation to quantify the non-radiative quenching of excitation energy in the scintillator.

  16. The Impact of the Aerosol Direct Radiative Forcing on Deep Convection and Air Quality in the Pearl River Delta Region

    Science.gov (United States)

    Liu, Z.; Yim, Steve H. L.; Wang, C.; Lau, N. C.

    2018-05-01

    Literature has reported the remarkable aerosol impact on low-level cloud by direct radiative forcing (DRF). Impacts on middle-upper troposphere cloud are not yet fully understood, even though this knowledge is important for regions with a large spatial heterogeneity of emissions and aerosol concentration. We assess the aerosol DRF and its cloud response in June (with strong convection) in Pearl River Delta region for 2008-2012 at cloud-resolving scale using an air quality-climate coupled model. Aerosols suppress deep convection by increasing atmospheric stability leading to less evaporation from the ground. The relative humidity is reduced in middle-upper troposphere due to induced reduction in both evaporation from the ground and upward motion. The cloud reduction offsets 20% of the aerosol DRF. The weaker vertical mixing further increases surface aerosol concentration by up to 2.90 μg/m3. These findings indicate the aerosol DRF impact on deep convection and in turn regional air quality.

  17. Direct and semi-direct radiative forcing of smoke aerosols over clouds

    Directory of Open Access Journals (Sweden)

    E. M. Wilcox

    2012-01-01

    Full Text Available Observations from Earth observing satellites indicate that dark carbonaceous aerosols that absorb solar radiation are widespread in the tropics and subtropics. When these aerosols mix with clouds, there is generally a reduction of cloudiness owing to absorption of solar energy in the aerosol layer. Over the subtropical South Atlantic Ocean, where smoke from savannah burning in southern Africa resides above a persistent deck of marine stratocumulus clouds, radiative heating of the smoke layer leads to a thickening of the cloud layer. Here, satellite observations of the albedo of overcast scenes of 25 km2 size or larger are combined with additional satellite observations of clouds and aerosols to estimate the top-of-atmosphere direct radiative forcing attributable to presence of dark aerosol above bright cloud, and the negative semi-direct forcing attributable to the thickening of the cloud layer. The average positive direct radiative forcing by smoke over an overcast scene is 9.2±6.6 W m−2 for cases with an unambiguous signal of absorbing aerosol over cloud in passive ultraviolet remote sensing observations. However, cloud liquid water path is enhanced by 16.3±7.7 g m−2 across the range of values for sea surface temperature for cases of smoke over cloud. The negative radiative forcing associated with this semi-direct effect of smoke over clouds is estimated to be −5.9±3.5 W m−2. Therefore, the cooling associated with the semi-direct cloud thickening effect compensates for greater than 60 % of the direct radiative effect. Accounting for the frequency of occurrence of significant absorbing aerosol above overcast scenes leads to an estimate of the average direct forcing of 1.0±0.7 W m−2 contributed by these scenes averaged over the subtropical southeast Atlantic Ocean during austral winter. The regional average of the negative semi-direct forcing is −0.7±0.4 W m−2

  18. Neutron monitoring for radiological protection

    International Nuclear Information System (INIS)

    Gibson, J.A.B.

    1985-01-01

    Neutron monitoring is a subject of increasing general interest and considerable attention is being paid to the development of improved techniques and methods for neutron monitoring. The Agency, therefore, considered it important to prepare a guide on the subject of neutron monitoring for radiation protection purposes. The present Manual is intended for those persons or authorities in Member States, particularly developing countries, who are responsible for the organization of neutron monitoring programmes and practical neutron monitoring. This Manual consequently, deals with topics such as neutron dosimetry, sources of neutrons and neutron detection as well as field instruments and operational systems used in this context

  19. Nonlocal fluctuational electromagnetic response and neutron magnetic scattering near the superconducting transition temperature

    International Nuclear Information System (INIS)

    Barash, Yu.S.; Galaktionov, A.V.

    1992-01-01

    A general expression is found for superconducting fluctuation contribution to transverse permittivity c tr f (Ω, Q) of a standard massive isotopic metal near T c at Ω c and Qζ 0 0 is the coherence length at zero temperature, Q is the external electromagnetic field pulse), depending on frequency and wave vector. Differential cross section of magnetic scattering of neutrons near T c in the region of comparatively small angles is considered

  20. Ideal response function of a 3He proportional counter to thermal neutrons determined by different length counters

    International Nuclear Information System (INIS)

    Takeda, Naoto; Kudo, Katsuhisa; Kobayashi, Katsuhei; Yoshimoto, Takaaki

    2000-01-01

    The relative gas multiplication along the cylindrical axis of three 3 He proportional counters with different length were measured by using a thermal neutron beam at the Kyoto University Reactor and an ideal response function by taking into account the difference of pulse height spectra were measured by different length counters. The three 3 He proportional counters (model type of P4-0806, P4-0806 and P4-0808 manufactured by Reuter-Stokes) prepared for relative gas multiplication measurements had identical structure having cylindrical outer shells of 304 stainless steel except for different sensitive lengths of 10 cm, 15 cm and 20 cm, respectively. All counters were filled with 400 kPa of 3 He gas and 200 kPa of Ar gas. The pulse height distributions were measured by moving the counter in the direction of it's cylindrical axis perpendicular to the thermal neutron beam. The measured pulse heights corresponding to the full energy peaks at various entrance points were normalized to that of the whole counter irradiation. The results as a function of the distance from the bottom edge of the stainless steel cylinder are shown. The total transition region of gas gain corresponded to about 23 %, 15 % and 10 % of each nominal sensitive region corresponding to shot, middle and long counters. The ideal pulse height spectrum (dots) obtained by using proportional counters of 10 cm and 20 cm in nominal sensitive length to thermal neutron beam is shown in the paper in comparison to simulated one which was calculated assuming the constant gain within the sensitive region and zero gas gain outside the sensitive regions. The simulation realized the ideal response function fairly well. (S.Y.)

  1. Source attribution of black carbon and its direct radiative forcing in China

    International Nuclear Information System (INIS)

    Yang, Yang; Wang, Hailong; Ma, Po-Lun; Rasch, Philip J.; Smith, Steven J.

    2017-01-01

    The source attributions for mass concentration, haze formation, transport and direct radiative forcing of black carbon (BC) in various regions of China are quantified in this study using the Community Earth System Model (CESM) with a source-tagging technique. Anthropogenic emissions are from the Community Emissions Data System that is newly developed for the Coupled Model Intercomparison Project Phase 6 (CMIP6). Over north China where the air quality is often poor, about 90 % of near-surface BC concentration is contributed by local emissions. Overall, 35 % of BC concentration over south China in winter can be attributed to emissions from north China, and 19 % comes from sources outside China in spring. For other regions in China, BC is largely contributed from nonlocal sources. We further investigated potential factors that contribute to the poor air quality in China. During polluted days, a net inflow of BC transported from nonlocal source regions associated with anomalous winds plays an important role in increasing local BC concentrations. BC-containing particles emitted from East Asia can also be transported across the Pacific. Our model results show that emissions from inside and outside China are equally important for the BC outflow from East Asia, while emissions from China account for 8 % of BC concentration and 29 % in column burden in the western United States in spring. Radiative forcing estimates show that 65 % of the annual mean BC direct radiative forcing (2.2 W m -2 ) in China results from local emissions, and the remaining 35 % is contributed by emissions outside of China. Efficiency analysis shows that a reduction in BC emissions over eastern China could have a greater benefit for the regional air quality in China, especially in the winter haze season.

  2. Intercomparison of radiation protection devices in a high-energy stray neutron field. Part III: Instrument response

    CERN Document Server

    Silari, M; Beck, P; Bedogni, R; Cale, E; Caresana, M; Domingo, C; Donadille, L; Dubourg, N; Esposito, A; Fehrenbacher, G; Fernández, F; Ferrarini, M; Fiechtner, A; Fuchs, A; García, M J; Golnik, N; Gutermuth, F; Khurana, S; Klages, Th; Latocha, M; Mares, V; Mayer, S; Radon, T; Reithmeier, H; Rollet, S; Roos, H; Rühm, W; Sandri, S; Schardt, D; Simmer, G; Spurný, F; Trompier, F; Villa-Grasa, C; Weitzenegger, E; Wiegel, B; Wielunski, M; Wissmann, F; Zechner, A; Zielczyński, M

    2009-01-01

    The European Commission has funded within its 6th Framework Programme a three-year project (2005–2007) called CONRAD, COordinated Network for RAdiation Dosimetry. The organizational framework for this project was provided by the European radiation Dosimetry Group EURADOS. Work Package 6 of CONRAD dealt with “complex mixed radiation fields at workplaces” and in this context it organised a benchmark exercise, which included both measurements and calculations, in a stray radiation field at a high-energy particle accelerator at GSI, Germany. The aim was to intercompare the response of several types of active detectors and passive dosemeters in a well-characterised workplace field. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers are discussed in Rollet et al. (2008) and in Wiegel et al. (2008). This paper focuses on the intercomparison of the response of the dosemeters in terms of ambient dose equivalent. Th...

  3. Obtaining the neutron time-of-flight instrument response function for a single D-T neutron utilizing n-alpha coincidence from the d(t, α) n nuclear reaction

    Science.gov (United States)

    Styron, Jedediah; Ruiz, Carlos; Hahn, Kelly; Cooper, Gary; Chandler, Gordon; Jones, Brent; McWatters, Bruce; Smith, Jenny; Vaughan, Jeremy

    2017-10-01

    A measured neutron time-of-flight (nTOF) signal is a convolution of the neutron reaction history and the instrument response function (IRF). For this work, the IRF was obtained by measuring single, D-T neutron events by utilizing n-alpha coincidence. The d(t, α) n nuclear reaction was produced at Sandia National Laboratories' Ion Beam Laboratory using a 300-keV Cockroft-Walton generator to accelerate a 2- μA beam, of 175-keV D + ions, into a stationary, 2.6- μm, ErT2 target. Comparison of these results to those obtained using cosmic-rays and photons will be discussed. Sandia National Laboratories.

  4. Response of solute and precipitation-strengthened copper alloys at high neutron exposure

    International Nuclear Information System (INIS)

    Garner, F.A.; Hamilton, M.L.; Shikama, T.; Edwards, D.J.; Newkirk, J.W.

    1991-11-01

    A variety of solute and precipitation strengthened copper base alloys have been irradiated to neutron-induced displacement levels of 34 to 150 dpa at 415 degrees C and 32 dpa at 529 degrees C in the Fast Flux Test Facility to assess their potential for high heat flux applications in fusion reactors. Several MZC-type alloys appear to offer the most promise for further study. For low fluence applications CuBeNi and spinodally strengthened CuNiTi alloys may also be suitable. Although Cu-2Be resists swelling, it is not recommended for fusion reactor applications because of its low conductivity

  5. Response of solute and precipitation-strengthened copper alloys at high neutron exposure

    Energy Technology Data Exchange (ETDEWEB)

    Garner, F.A.; Hamilton, M.L. [Pacific Northwest Lab., Richland, WA (United States); Shikama, T. [Tohoku Univ., Oarai Branch (Japan); Edwards, D.J.; Newkirk, J.W. [Missouri Univ., Rolla, MO (United States)

    1991-11-01

    A variety of solute and precipitation strengthened copper base alloys have been irradiated to neutron-induced displacement levels of 34 to 150 dpa at 415{degrees}C and 32 dpa at 529{degrees}C in the Fast Flux Test Facility to assess their potential for high heat flux applications in fusion reactors. Several MZC-type alloys appear to offer the most promise for further study. For low fluence applications CuBeNi and spinodally strengthened CuNiTi alloys may also be suitable. Although Cu-2Be resists swelling, it is not recommended for fusion reactor applications because of its low conductivity.

  6. Response of ISSEC protected first walls to DT and DD plasma neutrons

    International Nuclear Information System (INIS)

    Avci, H.I.; Kulcinski, G.L.

    1976-01-01

    It has been demonstrated that the displacement damage and gas production rates can be reduced in CTR first walls by employing passive carbon shields. Reductions in displacement damage range from 3 to 5 for 12.5 cm shield thickness and from 7 to 14 in gas production rates with the same carbon thickness. The factors of reduction are 8 to 20 for the displacements and 17 to 80 for the gas production if a 25 cm shield is used. Depending on whether the isotopes causing the radioactivity are produced as a result of fast or thermal neutron activation, the first wall radioactivity can either go up or down with the increasing carbon shield thickness. It has been found that at shutdown radioactivity in 316 SS, Al, and Nb first walls is reduced with increasing carbon thickness while the activities in V and Ta are increased. Long term radioactivity displays the same trends in Al, 316 SS and Ta as short term radioactivity. However, the long term activity in Nb increases and that in V decreases with increasing shield thickness. It has also been found that systems operating on a D-D plasma cycle have higher displacement rates than respective D-T cycle systems. Gas production rates are slightly lower in D-D systems except for He production in 316 SS. This is due to the higher 59 Ni (n,α) cross sections for thermal neutrons

  7. Influence of observed diurnal cycles of aerosol optical depth on aerosol direct radiative effect

    Directory of Open Access Journals (Sweden)

    A. Arola

    2013-08-01

    Full Text Available The diurnal variability of aerosol optical depth (AOD can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF or aerosol direct radiative effect (ADRE. The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally. We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on

  8. Dose-response relationship of dicentric chromosomes in human lymphocytes obtained for the fission neutron therapy facility MEDAPP at the research reactor FRM II.

    Science.gov (United States)

    Schmid, E; Wagner, F M; Romm, H; Walsh, L; Roos, H

    2009-02-01

    The biological effectiveness of neutrons from the neutron therapy facility MEDAPP (mean neutron energy 1.9 MeV) at the new research reactor FRM II at Garching, Germany, has been analyzed, at different depths in a polyethylene phantom. Whole blood samples were exposed to the MEDAPP beam in special irradiation chambers to total doses of 0.14-3.52 Gy at 2-cm depth, and 0.18-3.04 Gy at 6-cm depth of the phantom. The neutron and gamma-ray absorbed dose rates were measured to be 0.55 Gy min(-1) and 0.27 Gy min(-1) at 2-cm depth, while they were 0.28 and 0.25 Gy min(-1) at 6-cm depth. Although the irradiation conditions at the MEDAPP beam and the RENT beam of the former FRM I research reactor were not identical, neutrons from both facilities gave a similar linear-quadratic dose-response relationship for dicentric chromosomes at a depth of 2 cm. Different dose-response curves for dicentrics were obtained for the MEDAPP beam at 2 and 6 cm depth, suggesting a significantly lower biological effectiveness of the radiation with increasing depth. No obvious differences in the dose-response curves for dicentric chromosomes estimated under interactive or additive prediction between neutrons or gamma-rays and the experimentally obtained dose-response curves could be determined. Relative to (60)Co gamma-rays, the values for the relative biological effectiveness at the MEDAPP beam decrease from 5.9 at 0.14 Gy to 1.6 at 3.52 Gy at 2-cm depth, and from 4.1 at 0.18 Gy to 1.5 at 3.04 Gy at 6-cm depth. Using the best possible conditions of consistency, i.e., using blood samples from the same donor and the same measurement techniques for about two decades, avoiding the inter-individual variations in sensitivity or the differences in methodology usually associated with inter-laboratory comparisons, a linear-quadratic dose-response relationship for the mixed neutron and gamma-ray MEDAPP field as well as for its fission neutron part was obtained. Therefore, the debate on whether the fission-neutron

  9. The sensitivity of tropical convective precipitation to the direct radiative forcings of black carbon aerosols emitted from major regions

    Directory of Open Access Journals (Sweden)

    C. Wang

    2009-10-01

    Full Text Available Previous works have suggested that the direct radiative forcing (DRF of black carbon (BC aerosols are able to force a significant change in tropical convective precipitation ranging from the Pacific and Indian Ocean to the Atlantic Ocean. In this in-depth analysis, the sensitivity of this modeled effect of BC on tropical convective precipitation to the emissions of BC from 5 major regions of the world has been examined. In a zonal mean base, the effect of BC on tropical convective precipitation is a result of a displacement of ITCZ toward the forcing (warming hemisphere. However, a substantial difference exists in this effect associated with BC over different continents. The BC effect on convective precipitation over the tropical Pacific Ocean is found to be most sensitive to the emissions from Central and North America due to a persistent presence of BC aerosols from these two regions in the lowermost troposphere over the Eastern Pacific. The BC effect over the tropical Indian and Atlantic Ocean is most sensitive to the emissions from South as well as East Asia and Africa, respectively. Interestingly, the summation of these individual effects associated with emissions from various regions mostly exceeds their actual combined effect as shown in the model run driven by the global BC emissions, so that they must offset each other in certain locations and a nonlinearity of this type of effect is thus defined. It is known that anthropogenic aerosols contain many scattering-dominant constituents that might exert an effect opposite to that of absorbing BC. The combined aerosol forcing is thus likely differing from the BC-only one. Nevertheless, this study along with others of its kind that isolates the DRF of BC from other forcings provides an insight of the potentially important climate response to anthropogenic forcings particularly related to the unique particulate solar absorption.

  10. Sample dependent response of a LaCl{sub 3}:Ce detector in prompt gamma neutron activation analysis of bulk hydrocarbon samples

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.sa [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Matouq, Faris A.; Khiari, F.Z. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Isab, A.A. [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Khateeb-ur-Rehman,; Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2013-08-11

    The response of a LaCl{sub 3}:Ce detector has been found to depend upon the hydrogen content of bulk samples in prompt gamma analysis using 14 MeV neutron inelastic scattering. The moderation of 14 MeV neutrons from hydrogen in the bulk sample produces thermal neutrons around the sample which ultimately excite chlorine capture gamma rays in the LaCl{sub 3}:Ce detector material. Interference of 6.11 MeV chlorine gamma rays from the detector itself with 6.13 MeV oxygen gamma rays from the bulk samples makes the intensity of the 6.13 MeV oxygen gamma ray peak relatively insensitive to variations in oxygen concentration. The strong dependence of the 1.95 MeV doublet chlorine gamma ray yield on hydrogen content of the bulk samples confirms fast neutron moderation from hydrogen in the bulk samples as a major source of production of thermal neutrons and chlorine gamma rays in the LaCl{sub 3}:Ce detector material. Despite their poor oxygen detection capabilities, these detectors have nonetheless excellent detection capabilities for hydrogen and carbon in benzene, butyl alcohol, propanol, propanic acid, and formic acid bulk samples using 14 MeV neutron inelastic scattering.

  11. CALIPSO-Inferred Aerosol Direct Radiative Effects: Bias Estimates Using Ground-Based Raman Lidars

    Science.gov (United States)

    Thorsen, Tyler; Fu, Qiang

    2016-01-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at midlatitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detect all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30-50%. Therefore, global estimates of the aerosol DRE inferred from CALIPSO observations are likely too weak.

  12. Design and investigation of planar technology based ultra-wideband antenna with directional radiation patterns

    Energy Technology Data Exchange (ETDEWEB)

    Meena, M. L., E-mail: madan.meena.ece@gamil.com; Parmar, Girish, E-mail: girish-parmar2002@yahoo.com; Kumar, Mithilesh, E-mail: mith-kr@yahoo.com [Department of Electronics Engineering, Rajasthan Technical University, Kota (India)

    2016-03-09

    A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done on CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.

  13. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments.

    Science.gov (United States)

    Peng, Jianfei; Hu, Min; Guo, Song; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Levy Zamora, Misti; Zeng, Limin; Shao, Min; Wu, Yu-Sheng; Zheng, Jun; Wang, Yuan; Glen, Crystal R; Collins, Donald R; Molina, Mario J; Zhang, Renyi

    2016-04-19

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.

  14. Stochastic Modeling of Direct Radiation Transmission in Particle-Laden Turbulent Flows

    Science.gov (United States)

    Banko, Andrew; Villafane, Laura; Kim, Ji Hoon; Esmaily Moghadam, Mahdi; Eaton, John K.

    2017-11-01

    Direct radiation transmission in turbulent flows laden with heavy particles plays a fundamental role in systems such as clouds, spray combustors, and particle-solar-receivers. Owing to their inertia, the particles preferentially concentrate and the resulting voids and clusters lead to deviations in mean transmission from the classical Beer-Lambert law for exponential extinction. Additionally, the transmission fluctuations can exceed those of Poissonian media by an order of magnitude, which implies a gross misprediction in transmission statistics if the correlations in particle positions are neglected. On the other hand, tracking millions of particles in a turbulence simulation can be prohibitively expensive. This work presents stochastic processes as computationally cheap reduced order models for the instantaneous particle number density field and radiation transmission therein. Results from the stochastic processes are compared to Monte Carlo Ray Tracing (MCRT) simulations using the particle positions obtained from the point-particle DNS of isotropic turbulence at a Taylor Reynolds number of 150. Accurate transmission statistics are predicted with respect to MCRT by matching the mean, variance, and correlation length of DNS number density fields. Funded by the U.S. Department of Energy under Grant No. DE-NA0002373-1 and the National Science Foundation under Grant No. DGE-114747.

  15. Fast neutron responses of CaF2:Tm Teflon TLD discs of different thicknesses

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Hoffmann, W.

    1986-01-01

    The fact that in CaF 2 :Tm (TLD-300) the ratio of the heights of thermoluminescence (TL) glow peaks at 240 0 C and 150 0 C is greater for irradiations by high LET radiations than by gamma rays has been found useful for the simultaneous and separate measurement of fast neutron and gamma ray absorbed doses. A recent study has indicated that the mixed field dosimetric characteristics of CaF 2 :Tm could be significantly improved by using thin TLDs. In the present study, CaF 2 :Tm Teflon TLD discs of thickness as low as 0.05 mm were evaluated. The thin discs could be read out by using normal planchette heating if a 400 0 C heat treatment is given to the discs prior to irradiation and TL readout. Influence of encapsulation of thin dosemeters was studied and their utility in situations such as interface dosimetry is discussed. (author)

  16. Development of a geometry-compensated neutron time-of-flight detector for ICF applications with approximately 200 ps time response

    International Nuclear Information System (INIS)

    Murphy, T.J.; Lerche, R.A.

    1992-01-01

    Current-mode neutron time-of-flight detectors are used on Nova for neutron yield, ion temperature, and neutron emission time measurements. Currently used detectors are limited by the time response of the microchannel plate photomultiplier tubes used with the scintillators, scintillator decay time, scintillator thickness, and oscilloscope response time. A change in the geometry of the scintillator allows one to take advantage of the increased time resolution made possible by more advanced transient recorders and microchannel plate photomultiplier tubes. A prototype detector has been designed to incorporate these changes, and could potentially yield time resolution of less than 150 ps. Experimental results are presented demonstrating an ion temperature measurement of a direct-drive DT implosion on Nova

  17. Study of Beta-Delayed Neutron Emission by Neutron-Rich Nuclei and Analysis of the Nuclear Reaction Mechanism responsible for the Yields of these Nuclei

    International Nuclear Information System (INIS)

    Bazin, D.

    1987-07-01

    Among the nuclear mechanisms used for the production of nuclei far from stability, the projectile fragmentation process has recently proved its efficiency. However, at Fermi energies, one has to take into account some collective and relaxation effects which drastically modify the production cross-sections. The spectroscopic study of very neutron-rich nuclei is very dependent of these production rates. A study of beta-delayed neutron emission which leads to new measurements of half-lives and neutron delayed emission probabilities is achieved with a liquid scintillator detector. The results which are then compared to different theories are of interest for the understanding of natural production of heavy elements (r processus) [fr

  18. Prototype Neutron Energy Spectrometer

    International Nuclear Information System (INIS)

    Mitchell, Stephen; Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald

    2010-01-01

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production (ship effect), (a, n) reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  19. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  20. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  1. Complete Electric Dipole Response in 120Sn and 208Pb and Implications for Neutron Skin and Symmetry Energy

    Directory of Open Access Journals (Sweden)

    von Neumann-Cosel Peter

    2015-01-01

    Full Text Available Polarized proton scattering at energies of a few 100 MeV and extreme forward angles including 0° has been established as a new tool to extract the complete E1 response in nuclei up to excitation energies of about 20 MeV. A case study of 208Pb demonstrates excellent agreement with other electromagnetic probes. From the information on the B(E1 strength one can derive the electric dipole dipole polarizability, which is strongly correlated to the neutron skin and to parameters of the symmetry energy. Recently, we have extracted the polarizability of 120Sn with a comparable precision. The combination of both results further constrains the symmetry energy parameters and presents a challenge for mean-field models, since the relativistic and many Skyrme parameterizations cannot reproduce both experimental results simultaneously.

  2. Dose-response relationship of neutrons and γ rays to leukemia incidence among atomic bomb survivors in Hiroshima and Nagasaki by type of leukemia, 1950--1971

    International Nuclear Information System (INIS)

    Ishimaru, T.; Otake, M.; Ichimaru, M.

    1979-01-01

    The incidence of leukemia during 1950 to 1971 in a fixed mortality sample of atomic bomb survivors in Hiroshima and Nagasaki was analyzed as a function of neutron and γ kerma and marrow doses. Two dose-response models were tested for acute leukemia, chronic granulocytic leukemia, and all types of leukemia, respectively. Each model postulates that the leukemia incidence depends upon the sum of separate risks imposed by γ and neutron doses. In Model I the risk from both types of radiation is assumed to be directly proportional to the respective doses, while Model II assumes that whereas the risk from neutrons is directly proportional to the dose, the risk from γ rays is proportional to dose-squared. The analysis demonstrated that the dose-response of the two types of leukemia differed by type of radiation. The data suggested that the response of acute leukemia was best explained by Model II, while the response of chronic granulocytic leukemia depended almost linearly upon neutron dose alone, because the regression coefficients associated with γ radiation for both Models I and II were not significant. The relative biological effectiveness (RBE) of neutrons in relation to γ rays for incidence of acute leukemia was estimated to be approximately 30/(Dn)/sup 1/2/ [95% confidence limits; 17/(Dn)/sup 1/2/ approx. 54/(Dn)/sup 1/2/] for kerma and 32/(Dn)/sup 1/2/ [95% confidence limits; 18/(Dn)/sup 1/2/ approx. 58/(Dn)/sup 1/2/] for marrow dose (Dn = neutron dose). If acute and chronic granulocytic leukemias are considered together as all types of leukemia, Model II appears to fit the data slightly better than Model I, but neither model is statistically rejected by the data

  3. Neutron--neutron logging

    International Nuclear Information System (INIS)

    Allen, L.S.

    1977-01-01

    A borehole logging tool includes a steady-state source of fast neutrons, two epithermal neutron detectors, and two thermal neutron detectors. A count rate meter is connected to each neutron detector. A first ratio detector provides an indication of the porosity of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two epithermal neutron detectors. A second ratio detector provides an indication of both porosity and macroscopic absorption cross section of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two thermal neutron detectors. By comparing the signals of the two ratio detectors, oil bearing zones and salt water bearing zones within the formation being logged can be distinguished and the amount of oil saturation can be determined. 6 claims, 2 figures

  4. Study of the response of a piezoceramic motor irradiated in a fast reactor up to a neutron fluence of 2.77E+17 n/cm2

    International Nuclear Information System (INIS)

    Pillon, Mario; Monti, Chiara; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo; Carta, Mario; Fiorani, Orlando; Santagata, Alfonso

    2015-01-01

    Highlights: • Piezoceramic motors are compliant with magnetic field, temperature and vacuum. • We studied the response of a piezoceramic motor during the irradiation with neutrons. • The response was studied using 1 MeV neutrons up to a neutron fluence of 2.77E+17 n/cm 2 . • Neutron irradiation produces a shift of the optimal resonance frequency and a decrease of the motor speed. • The performance changes do not affect the proper operation of the motor. - Abstract: A piezoceramic motor has been identified as the potential apparatus for carrying out the rotation of the scanning head of a laser radar system used for viewing the first wall of the ITER vessel. This diagnostic is simply referred to as IVVS (In Vessel Viewing System). The choice fell on a piezoceramic motor due to the presence of strong magnetic fields (up 8 T) and of the high vacuum and temperature conditions. To be compliant with all the ITER environmental conditions it was necessary to qualify the piezo-motor under gamma and neutron irradiation. In this paper are described the procedures and tests that have been performed to verify the compatibility of the operation of the motor adopted in the presence of a fast neutron fluence which was gradually increased over time in order to reach a total value of 2.77 × 10 17 n/cm 2 . Such neutron fluence was obtained by irradiating the motor in a position close to the core of the fast nuclear reactor TAPIRO, in operation at the ENEA Casaccia Research Centre, Italy. The neutron spectrum in this position has been identified as representative of that found in the rest position of the IVVS head during ITER operation. The cumulative neutron fluence reached corresponds to that it is expected to be reached during the entire life of ITER for the IVVS in the rest position without any shield. This work describes the experimental results of this test; the methodology adopted to determine the total neutron fluence achieved and the methodology adopted for the

  5. Seedling establishment and distribution of direct radiation in slit-shaped openings of Norway spruce forests in the intermediate Alps

    International Nuclear Information System (INIS)

    Brang, P.

    1996-01-01

    Direct radiation is crucial for Norway spruce (Picea abies (L.) Karst.) seedling establishment in high-montane and subalpine spruce forests. Fisheye photography was used to estimate the daily distribution of direct radiation in small forest openings on a north-northwest and a south facing slope near Sedrun (Grisons, Switzerland). In slit-shaped openings on the north-northwest facing slope long sunflecks mostly occurred in the afternoon, when the sun shines parallel to the slit axis. This is in accordance to the silvicultural intention. However, since the stands are clumpy and therefore pervious to sunlight, the daily sunfleck distribution is fairly even notwithstanding the slit orientation, and direct radiation at noon is the dominant form of incident energy. In small circular to rectangular openings on the south facing slope direct radiation peaks at noontide. A seeding trial imitating natural seedling establishment was set in place in openings on both slopes. Based on this trial, the relations among seedling establishment, aspect, slit shape, size, and orientation are discussed for Norway spruce forests in the intermediate Alps. The directional weather factors such as radiation and precipitation can be highly influenced by slits, which is why suitable microclimate for seedling establishment can be promoted provided the slits are oriented appropriately. Slits in which the most insolated edges are oriented windward are especially favourable

  6. Optimization of the beam shaping assembly in the D-D neutron generators-based BNCT using the response matrix method.

    Science.gov (United States)

    Kasesaz, Y; Khalafi, H; Rahmani, F

    2013-12-01

    Optimization of the Beam Shaping Assembly (BSA) has been performed using the MCNP4C Monte Carlo code to shape the 2.45 MeV neutrons that are produced in the D-D neutron generator. Optimal design of the BSA has been chosen by considering in-air figures of merit (FOM) which consists of 70 cm Fluental as a moderator, 30 cm Pb as a reflector, 2mm (6)Li as a thermal neutron filter and 2mm Pb as a gamma filter. The neutron beam can be evaluated by in-phantom parameters, from which therapeutic gain can be derived. Direct evaluation of both set of FOMs (in-air and in-phantom) is very time consuming. In this paper a Response Matrix (RM) method has been suggested to reduce the computing time. This method is based on considering the neutron spectrum at the beam exit and calculating contribution of various dose components in phantom to calculate the Response Matrix. Results show good agreement between direct calculation and the RM method. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. NE213/BC501A scintillator−lightguide assembly response to 241Am−Be neutrons: An MCNPX−PHOTRACK hybrid code simulation

    International Nuclear Information System (INIS)

    Tajik, M.; Ghal-Eh, N.; Etaati, G.R.; Afarideh, H.

    2014-01-01

    The response of an NE213 (or its BICRON equivalent, BC501A) scintillator attached to different sizes of polished/painted lightguides when exposed to 241 Am–Be neutrons has been simulated. This kind of simulation basically needs both particle and light transports: the transport of neutrons and neutron-induced charged particles such as alphas, protons, carbon nuclei and so on has been undertaken using MCNPX whilst the scintillation light transport has been performed with PHOTRACK codes. The comparison between simulated and experimental response functions of NE213 attached to different sizes of polished/painted lightguides and also the influence of length/covering of lightguide on the detection efficiency and uniformity of the scintillator–lightguide assembly response have been studied. - Highlights: • The response of NE213 scintillator with/without lightguides to Am–Be neutrons has been simulated. • The MCNPX–PHOTRACK code has been used for simulation studies in order to model radio-optical properties. • The measured and simulated spectra for an NE213 scintillator exposed to Am–Be source represent a good agreement

  8. Characteristics and direct radiative effect of mid-latitude continental aerosols: the ARM case

    Directory of Open Access Journals (Sweden)

    M. G. Iziomon

    2003-01-01

    Full Text Available A multi-year field measurement analysis of the characteristics and direct radiative effect of aerosols at the Southern Great Plains (SGP central facility of the Atmospheric Radiation Measurement (ARM Program is presented. Inter-annual mean and standard deviation of submicrometer scattering fraction (at 550 nm and Ångström exponent å (450 nm, 700 nm at the mid-latitude continental site are indicative of the scattering dominance of fine mode aerosol particles, being 0.84±0.03 and 2.25±0.09, respectively. We attribute the diurnal variation of submicron aerosol concentration to coagulation, photochemistry and the evolution of the boundary layer. Precipitation does not seem to play a role in the observed afternoon maximum in aerosol concentration. Submicron aerosol mass at the site peaks in the summer (12.1±6.7mg m-3, with the summer value being twice that in the winter. Of the chemically analyzed ionic components (which exclude carbonaceous aerosols, SO4= and NH4+ constitute the dominant species at the SGP seasonally, contributing 23-30% and 9-12% of the submicron aerosol mass, respectively. Although a minor species, there is a notable rise in NO3- mass fraction in winter. We contrast the optical properties of dust and smoke haze. The single scattering albedo w0 shows the most remarkable distinction between the two aerosol constituents. We also present aircraft measurements of vertical profiles of aerosol optical properties at the site. Annually, the lowest 1.2 km contributes 70% to the column total light scattering coefficient. Column-averaged and surface annual mean values of hemispheric backscatter fraction (at 550 nm, w0 (at 550 nm and å (450 nm, 700 nm agree to within 5% in 2001. Aerosols produce a net cooling (most pronounced in the spring at the ARM site

  9. Global direct radiative forcing by process-parameterized aerosol optical properties

    Science.gov (United States)

    KirkevâG, Alf; Iversen, Trond

    2002-10-01

    A parameterization of aerosol optical parameters is developed and implemented in an extended version of the community climate model version 3.2 (CCM3) of the U.S. National Center for Atmospheric Research. Direct radiative forcing (DRF) by monthly averaged calculated concentrations of non-sea-salt sulfate and black carbon (BC) is estimated. Inputs are production-specific BC and sulfate from [2002] and background aerosol size distribution and composition. The scheme interpolates between tabulated values to obtain the aerosol single scattering albedo, asymmetry factor, extinction coefficient, and specific extinction coefficient. The tables are constructed by full calculations of optical properties for an array of aerosol input values, for which size-distributed aerosol properties are estimated from theory for condensation and Brownian coagulation, assumed distribution of cloud-droplet residuals from aqueous phase oxidation, and prescribed properties of the background aerosols. Humidity swelling is estimated from the Köhler equation, and Mie calculations finally yield spectrally resolved aerosol optical parameters for 13 solar bands. The scheme is shown to give excellent agreement with nonparameterized DRF calculations for a wide range of situations. Using IPCC emission scenarios for the years 2000 and 2100, calculations with an atmospheric global cliamte model (AFCM) yield a global net anthropogenic DRF of -0.11 and 0.11 W m-2, respectively, when 90% of BC from biomass burning is assumed anthropogenic. In the 2000 scenario, the individual DRF due to sulfate and BC has separately been estimated to -0.29 and 0.19 W m-2, respectively. Our estimates of DRF by BC per BC mass burden are lower than earlier published estimates. Some sensitivity tests are included to investigate to what extent uncertain assumptions may influence these results.

  10. A comparison of the neutron response of CR-39 made by different manufacturers

    International Nuclear Information System (INIS)

    Ipe, N.E.; Liu, J.C.; Buddemeier, B.R.; Miles, C.J.; Yoder, R.C.

    1991-09-01

    CR-39 was obtained from American Acrylics and Plastics, Inc. (A.A), N. E. Technology, Ltd. (N.E), and Tech/Ops Landauer, Inc. (LT). The dosemeters were exposed to radioisotopic neutron sources at SLAC, and moderated 252 Cf at ORNL. The A.A. and N.E. dosemeters were electrochemically etched (pre-etch in 6.5 N KOH at 60 degrees C for 1 hour and 45 minutes, a 5 hour etch at 3000 V and 60 Hz, a 23 minute blow-up step at 2 kHz and a post-etch for 15 minutes). Track densities were determined with the Homann Track Size Image Analyzer. The LT dosemeters were chemically etched in 5.5 N NaOH at 70 degrees C for 15.5 hours. Some A.A., N.E., and LT dosemeters were etched in 6.25 N NaOH at 70 degrees C for 6 hours. A pre-etch step in 60% methanol and 40% NaOH at 70 degrees C for 1 hour was added for some N.E. dosemeters. The results of these studies are reported in this paper. 3 refs., 2 figs., 2 tabs

  11. Tl response of LiF:Mg, Cu, P + PTFE to Am-Be neutrons

    International Nuclear Information System (INIS)

    Gonzalez M, P.R.

    2000-01-01

    In different laboratories of the world it is followed the research about development of new Tl materials, whose main characteristics should be their equivalence with the tissue and their high sensibility to any type of radiation. The study consists in to measure the Tl peak intensity which TLD-100 presents at being irradiated with neutrons and that appears over 250 Centigrade, for compare it with the Tl intensity of the LiF: Mg, Cu, P + PTFE dosemeters. However, not all dosemeters of the same group show the interesting peak, by this only can be the total Tl intensity of dosemeters studied. In the ININ dosemeters development laboratory, we have developed a Tl material of lithium fluoride activated with magnesium, copper and phosphorus (LiF: Mg, Cu, P) that in polycrystalline powder form is almost 35 times more sensitive than the TLD-100 commercial dosemeter of Harshaw/Filtrol, USA. With the use of polytetrafluorethylene (PTFE) and with the above described Tl material, it has been possible to obtain dosemeters in pellet form of LiF: Mg, Cu, P + PTFE. (Author)

  12. Towards a responsive and interactive graphical user interface for neutron data reduction and visualization

    International Nuclear Information System (INIS)

    Chatterjee, Alok; Worlton, T.; Hammonds, J.; Loong, C.K.; Mikkelson, D.; Mikkelson, R.; Chen, D.

    2001-01-01

    An Integrated Spectral Analysis Workbench, ISAW has been developed at IPNS with the goal of providing a flexible and powerful tool to visualize and analyze neutron scattering time-of-flight data. The software, written in Java, is platform independent, object oriented and modular, making it easier to maintain and add features. The graphical user interface (GUI) for ISAW allows intuitive and interactive loading and manipulation of multiple spectra from different 'runs'. ISAW provides multiple displays of the spectra in a Runfile' and most of the functions can be performed through the GUI menu bar as well as through command scripts. All displays are simultaneously updated when the data is changed using the Observable-observer object-model pattern. All displays are observers of the Dataset (observable) and respond to changes or selections in it simultaneously. A 'tree' display of the spectra in run files is provided for a detailed view of detector elements and easy selection of spectra. The operations menu is instrument sensitive so that it displays the appropriate set of operators accordingly. Automatic menu generation is made possible by the ability of the DataSet objects to furnish a list of operations contained in the particular DataSet selected at the time the menu bar is accessed. The transformed and corrected data can be saved to a disk in different file formats for further analyses (e.g., GSAS for structure refinement). (author)

  13. The synthetic scattering function and application to the design of cold moderators for pulsed neutron sources: a fast response methane based array

    International Nuclear Information System (INIS)

    Granada, J. R.; Mayer, R. E.; Gillette, V. H.

    1997-09-01

    The Synthetic Scattering Function (SSF) allows a simple description of the incoherent interaction of slow neutrons with hydrogenous materials. The main advantages of this model reside in the analytical expressions that it produces for double-differential cross sections, energy-transfer kernels, and total cross sections, which in turn permit the fast evaluation of neutron scattering and transport properties. In this work we briefly discuss basic features of the SSF, review some previous applications to a number of moderating materials, and present new Monte Carlo results for a fast time-response moderator concept based on methane at low temperatures. (auth)

  14. Dose distribution and clinical response of glioblastoma treated with boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan)], E-mail: mhide-m@gk9.so-net.ne.jp; Yamamoto, T. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan); Kumada, H. [Japan Atomic Energy Agency, Shirakatashirane 2-4, Tokai (Japan); Nakai, K.; Shirakawa, M.; Tsurubuchi, T.; Matsumura, A. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan)

    2009-07-15

    The dose distribution and failure pattern after treatment with the external beam boron neutron capture therapy (BNCT) protocol were retrospectively analyzed. BSH (5 g/body) and BPA (250 mg/kg) based BNCT was performed in eight patients with newly diagnosed glioblastoma. The gross tumor volume (GTV) and clinical target volume (CTV)-1 were defined as the residual gadolinium-enhancing volume. CTV-2 and CTV-3 were defined as GTV plus a margin of 2 and 3 cm, respectively. As additional photon irradiation, a total X-ray dose of 30 Gy was given to the T2 high intensity area on MRI. Five of the eight patients were alive at analysis for a mean follow-up time of 20.3 months. The post-operative median survival time of the eight patients was 27.9 months (95% CI=21.0-34.8). The minimum tumor dose of GTV, CTV-2, and CTV-3 averaged 29.8{+-}9.9, 15.1{+-}5.4, and 12.4{+-}2.9 Gy, respectively. The minimum tumor non-boron dose of GTV, CTV-2, and CTV-3 averaged 2.0{+-}0.5, 1.3{+-}0.3, and 1.1{+-}0.2 Gy, respectively. The maximum normal brain dose, skin dose, and average brain dose were 11.4{+-}1.5, 9.6{+-}1.4, and 3.1{+-}0.4 Gy, respectively. The mean minimum dose at the failure site in cases of in-field recurrence (IR) and out-field recurrence (OR) was 26.3{+-}16.7 and 14.9 GyEq, respectively. The calculated doses at the failure site were at least equal to the tumor control doses which were previously reported. We speculate that the failure pattern was related to an inadequate distribution of boron-10. Further improvement of the microdistribution of boron compounds is expected, and may improve the tumor control by BNCT.

  15. Qualitative dose response of the normal canine head to epithermal neutron irradiation with and without boron capture

    International Nuclear Information System (INIS)

    DeHaan, C.E.; Gavin, P.R.; Kraft, S.L.; Wheeler, F.J.; Atkinson, C.A.

    1992-01-01

    Boron Neutron Capture Therapy is being re-evaluated for the treatment of intracranial tumors. Prior to human clinical trials, determination of normal tissue tolerance is critical. Dogs were chosen as a large animal model for the following reasons. Dogs can be evaluated with advanced imaging, diagnostic and therapeutic modalities. Dogs are amenable to detailed neurologic examination and subtle behavioral changes are easily detected. Specifically, Labrador retrievers were chosen for their large body and head size. The dogs received varying doses of epithermal neutron irradiation and boron neutron capture irradiation using an epithermal neutron source. The dogs were closely monitored for up to one year post irradiation

  16. Ultracold neutrons

    International Nuclear Information System (INIS)

    Steenstrup, S.

    Briefly surveys recent developments in research work with ultracold neutrons (neutrons of very low velocity, up to 10 m/s at up to 10 -7 eV and 10 -3 K). Slow neutrons can be detected in an ionisation chamber filled with B 10 F 3 . Very slow neutrons can be used for investigations into the dipole moment of neutrons. Neutrons of large wave length have properties similar to those of light. The limit angle for total reflection is governed by the wave length and by the material. Total reflection can be used to filter ultracold neutrons out of the moderator material of a reactor. Total reflection can also be used to store ultracold neutrons but certain problems with storage have not yet been clarified. Slow neutrons can be made to lose speed in a neutron turbine, and come out as ultracold neutrons. A beam of ultracold neutrons could be used in a neutron microscope. (J.S.)

  17. Intercomparison of radiation protection devices in a high-energy stray neutron field. Part III: Instrument response

    International Nuclear Information System (INIS)

    Silari, M.; Agosteo, S.; Beck, P.; Bedogni, R.; Cale, E.; Caresana, M.; Domingo, C.; Donadille, L.; Dubourg, N.; Esposito, A.; Fehrenbacher, G.; Fernandez, F.; Ferrarini, M.; Fiechtner, A.; Fuchs, A.; Garcia, M.J.; Golnik, N.; Gutermuth, F.; Khurana, S.; Klages, Th.

    2009-01-01

    The European Commission has funded within its 6th Framework Programme a three-year project (2005-2007) called CONRAD, COordinated Network for RAdiation Dosimetry. The organizational framework for this project was provided by the European radiation Dosimetry Group EURADOS. Work Package 6 of CONRAD dealt with 'complex mixed radiation fields at workplaces' and in this context it organised a benchmark exercise, which included both measurements and calculations, in a stray radiation field at a high-energy particle accelerator at GSI, Germany. The aim was to intercompare the response of several types of active detectors and passive dosemeters in a well-characterised workplace field. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers are discussed in Rollet et al. (2008) and in Wiegel et al. (2008). This paper focuses on the intercomparison of the response of the dosemeters in terms of ambient dose equivalent. The paper describes in detail the detectors employed in the experiment, followed by a discussion of the results. A comparison is also made with the H*(10) values predicted by the Monte Carlo simulations and those measured by the BSS systems.

  18. Dosimetric evaluation of spectrophotometric response of alanine gel solution for gamma, photons, electrons and thermal neutrons radiations

    International Nuclear Information System (INIS)

    Silva, Cleber Feijo

    2009-01-01

    Alanine Gel Dosimeter is a new gel material developed at IPEN that presents significant improvement on Alanine system developed by Costa. The DL-Alanine (C 3 H 7 NO 2 ) is an amino acid tissue equivalent that improves the production of ferric ions in the solution. This work aims to analyse the main dosimetric characteristics this new gel material for future application to measure dose distribution. The performance of Alanine gel solution was evaluated to gamma, photons, electrons and thermal neutrons radiations using the spectrophotometry technique. According to the obtained results for the different studied radiation types, the reproducibility intra-batches and inter-batches is better than 4% and 5%, respectively. The dose response presents a linear behavior in the studied dose range. The response dependence as a function of dose rate and incident energy is better 2% and 3%, respectively. The lower detectable dose is 0.1 Gy. The obtained results indicate that the Alanine gel dosimeter presents good performance and can be useful as an alternative dosimeter in the radiotherapy area, using MRI technique for tridimensional dose distribution evaluation. (author)

  19. Brain development in mice after prenatal irradiation: Modes of effect manifestation; dose-response-relationships and the RBE of neutrons

    International Nuclear Information System (INIS)

    Konermann, G.

    1986-01-01

    Postnatal effect manifestation in the CNS after exposures during advanced prenatal stages of development is due to both the prolonged period of neurogenesis and its complexity. Apart from acute proliferative effects, examples of two types of long-term effects in the brains of prenatally exposed mice are represented. Namely, persistent structural damage, and, fluctuating responses during the histochemical and biochemical brain maturation. Structural effects following X-ray exposure are quantified on the basis of data for diameter diminution of the cortical plate, corpus callosum and fimbria hippocampi. The studies include computerized micro-videoanalysis of neuronal branching defects. Continuous extension of exposure levels to doses as low as 0.05 Gy give evidence for the existence of thresholds for these types of structural damage in the vicinity of exposures to 0.1 Gy. The effects following X-ray exposures are partly compared with corresponding effects after neutron exposures. Our studies on postnatal maturation disturbances include proliferative responses, myelin formation, as well as the determination of different biochemical parameters (ATP, myelin-proteins, Na + /K + -balance). From our experimental findings we are able to stress the special significance of neurogenetical long-term effects for risk estimates in man. (orig.)

  20. Neutron spectra produced by moderating an isotopic neutron source

    International Nuclear Information System (INIS)

    Carrillo Nunnez, Aureliano; Vega Carrillo, Hector Rene

    2001-01-01

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2 . From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  1. Approximate method in estimation sensitivity responses to variations in delayed neutron energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Shin, H. S.; Song, T. Y.; Park, W. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Previous our numerical results in computing point kinetics equations show a possibility in developing approximations to estimate sensitivity responses of nuclear reactor. We recalculate sensitivity responses by maintaining the corrections with first order of sensitivity parameter. We present a method for computing sensitivity responses of nuclear reactor based on an approximation derived from point kinetics equations. Exploiting this approximation, we found that the first order approximation works to estimate variations in the time to reach peak power because of their linear dependence on a sensitivity parameter, and that there are errors in estimating the peak power in the first order approximation for larger sensitivity parameters. To confirm legitimacy of out approximation, these approximate results are compared with exact results obtained from out previous numerical study. 4 refs., 2 figs., 3 tabs. (Author)

  2. Approximate method in estimation sensitivity responses to variations in delayed neutron energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J; Shin, H S; Song, T Y; Park, W S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Previous our numerical results in computing point kinetics equations show a possibility in developing approximations to estimate sensitivity responses of nuclear reactor. We recalculate sensitivity responses by maintaining the corrections with first order of sensitivity parameter. We present a method for computing sensitivity responses of nuclear reactor based on an approximation derived from point kinetics equations. Exploiting this approximation, we found that the first order approximation works to estimate variations in the time to reach peak power because of their linear dependence on a sensitivity parameter, and that there are errors in estimating the peak power in the first order approximation for larger sensitivity parameters. To confirm legitimacy of out approximation, these approximate results are compared with exact results obtained from out previous numerical study. 4 refs., 2 figs., 3 tabs. (Author)

  3. MCNP SIMULATION OF THE HP(10) ENERGY RESPONSE OF A BRAZILIAN TLD ALBEDO NEUTRON INDIVIDUAL DOSEMETER, FROM THERMAL TO 20 MeV.

    Science.gov (United States)

    Freitas, B M; Martins, M M; Pereira, W W; da Silva, A X; Mauricio, C L P

    2016-09-01

    The Brazilian Instituto de Radioproteção e Dosimetria (IRD) runs a neutron individual monitoring system with a home-made TLD albedo dosemeter. It has already been characterised and calibrated in some reference fields. However, the complete energy response of this dosemeter is not known, and the calibration factors for all monitored workplace neutron fields are difficult to be obtained experimentally. Therefore, to overcome such difficulties, Monte Carlo simulations have been used. This paper describes the simulation of the HP(10) neutron response of the IRD TLD albedo dosemeter using the MCNPX transport code, for energies from thermal to 20 MeV. The validation of the MCNPX modelling is done comparing the simulated results with the experimental measurements for ISO standard neutron fields of (241)Am-Be, (252)Cf, (241)Am-B and (252)Cf(D2O) and also for (241)Am-Be source moderated with paraffin and silicone. Bare (252)Cf are used for normalisation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Uncertainty and Sensitivity of Neutron Kinetic Parameters in the Dynamic Response of a PWR Rod Ejection Accident Coupled Simulation

    Directory of Open Access Journals (Sweden)

    C. Mesado

    2012-01-01

    Full Text Available In nuclear safety analysis, it is very important to be able to simulate the different transients that can occur in a nuclear power plant with a very high accuracy. Although the best estimate codes can simulate the transients and provide realistic system responses, the use of nonexact models, together with assumptions and estimations, is a source of uncertainties which must be properly evaluated. This paper describes a Rod Ejection Accident (REA simulated using the coupled code RELAP5/PARCSv2.7 with a perturbation on the cross-sectional sets in order to determine the uncertainties in the macroscopic neutronic information. The procedure to perform the uncertainty and sensitivity (U&S analysis is a sampling-based method which is easy to implement and allows different procedures for the sensitivity analyses despite its high computational time. DAKOTA-Jaguar software package is the selected toolkit for the U&S analysis presented in this paper. The size of the sampling is determined by applying the Wilks’ formula for double tolerance limits with a 95% of uncertainty and with 95% of statistical confidence for the output variables. Each sample has a corresponding set of perturbations that will modify the cross-sectional sets used by PARCS. Finally, the intervals of tolerance of the output variables will be obtained by the use of nonparametric statistical methods.

  5. Electric dipole response of {sup 208}Pb from proton inelastic scattering: Constraints on neutron skin thickness and symmetry energy

    Energy Technology Data Exchange (ETDEWEB)

    Tamii, A. [Research Center for Nuclear Physics, Ibaraki (Japan); Neumann-Cosel, P. von; Poltoratska, I. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)

    2014-02-15

    The electric dipole (E1) response of {sup 208}Pb has been precisely determined by measuring Coulomb excitation induced by proton scattering at very forward angles. The electric dipole polarizability, defined as inverse energy-weighted sum rule of the E1 strength, has been extracted as α{sub D} = 20.1 ± 0.6 fm{sup 3}. The data can be used to constrain the neutron skin thickness of {sup 208}Pb to Δr{sub np} = 0.165 ± (0.009){sub expt} ± (0.013){sub theor} ± (0.021){sub est} fm, where the subscript ''expt'' refers to the experimental uncertainty, ''theor'' to the theoretical confidence band and ''est'' to the uncertainty associated with the estimation of the symmetry energy at the saturation density. In addition, a constraint band has been extracted in the plane of the symmetry energy (J and its slope parameter L) at the saturation density. (orig.)

  6. A NRESPG Monte Carlo code for the calculation of neutron response functions for gas counters

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, K; Takeda, N; Fukuda, A [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Torii, T; Hashimoto, M; Sugita, T; Yang, X; Dietze, G

    1996-07-01

    In this paper, we show the outline of the NRESPG and some typical results of the response functions and efficiencies of several kinds of gas counters. The cross section data for the several kinds of filled gases and the wall material of stainless steel or aluminum are taken mainly from ENDF/B-IV. The ENDF/B-V for stainless steel is also used to investigate the influence on pulse height spectra of gas counters due to the difference of nuclear data files. (J.P.N.)

  7. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    KAUST Repository

    Brindley, Helen

    2015-04-01

    A combination of ground-based and satellite observations are used, in conjunction with column radiative transfer modelling, to assess the climatological aerosol loading and quantify its corresponding cloud-free direct radiative forcing (DRF) over the Red Sea. While there have been campaigns designed to probe aerosol-climate interactions over much of the world, relatively little attention has been paid to this region. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements which can be used to evaluate retrievals are thus highly desirable. Here we take advantage of ship-based sun-photometer micro-tops observations gathered from a series of cruises which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Initially two aerosol optical depth (AOD) retrieval algorithms developed for the MODerate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are evaluated via comparison with the co-located cruise observations. These show excellent agreement, with correlations typically better than 0.9 and very small root-mean-square and bias differences. Calculations of radiative fluxes and DRF along one of the cruises using the observed aerosol and meteorological conditions also show good agreement with co-located estimates from the Geostationary Earth Radiation Budget (GERB) instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large

  8. Direct radiative effects induced by intense desert dust outbreaks over the broader Mediterranean basin

    Science.gov (United States)

    Gkikas, Antonis; Obiso, Vincenzo; Vendrell, Lluis; Basart, Sara; Jorba, Oriol; Pérez Garcia-Pando, Carlos; Hatzianastassiou, Nikos; Gassó, Santiago; Baldasano, Jose Maria

    2016-04-01

    Throughout the year, under favorable conditions, massive loads of mineral particles originating in the northern African and Middle East deserts are transported over the Mediterranean basin. Due to their composition and size, dust aerosols perturb the Earth-Atmosphere system's energy budget interacting directly with the shortwave (SW) and longwave (LW) radiation. The present study aims to compute the Mediterranean dust outbreaks' direct radiative effects (DREs) as well as to assess the effect of including dust DREs in numerical simulations of a regional model. To this aim, 20 intense dust outbreaks have been selected based on their spatial coverage and intensity. Their identification, over the period 2000-2013, has been achieved through an objective and dynamic algorithm which utilizes as inputs daily satellite retrievals derived by the MODIS-Terra, EP-TOMS and OMI-Aura sensors. For each outbreak, two simulations of the NMMB/BSC-Dust model were made for a forecast period of 84 hours, with the model initialized at 00 UTC of the day when the dust outbreak was ignited, activating (RADON) and deactivating (RADOFF) dust-radiation interactions. The simulation domain covers the northern Africa, the Middle East and Europe at 0.25° x 0.25° horizontal resolution, for 40 hybrid sigma pressure levels up to 50 hPa. The instantaneous and regional DREs have been calculated at the top of the atmosphere (TOA), into the atmosphere (ATMAB), and at surface, for the downwelling (SURF) and the absorbed (NETSURF) radiation, for the SW, LW and NET (SW+LW) radiation. The interaction between dust aerosols and NET radiation, locally leads to an atmospheric warming (DREATMAB) by up to 150 Wm-2, a surface cooling (DRENETSURF) by up to 250 Wm-2 and a reduction of the downwelling radiation at the surface (DRESURF) by up to 300 Wm-2. At TOA, DREs are mainly negative (down to -150 Wm-2) indicating a cooling of the Earth-Atmosphere system, although positive values (up to 50 Wm-2) are encountered

  9. A review of measurement-based assessments of the aerosol direct radiative effect and forcing

    Directory of Open Access Journals (Sweden)

    H. Yu

    2006-01-01

    Full Text Available Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ, direct radiative effect (DRE by natural and anthropogenic aerosols, and direct climate forcing (DCF by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation at the top-of-atmosphere (TOA to be about -5.5±0.2 Wm-2 (median ± standard error from various methods over the global ocean. Accounting for thin cirrus

  10. Vertical profiles of BC direct radiative effect over Italy: high vertical resolution data and atmospheric feedbacks

    Science.gov (United States)

    Močnik, Griša; Ferrero, Luca; Castelli, Mariapina; Ferrini, Barbara S.; Moscatelli, Marco; Grazia Perrone, Maria; Sangiorgi, Giorgia; Rovelli, Grazia; D'Angelo, Luca; Moroni, Beatrice; Scardazza, Francesco; Bolzacchini, Ezio; Petitta, Marcello; Cappelletti, David

    2016-04-01

    Black carbon (BC), and its vertical distribution, affects the climate. Global measurements of BC vertical profiles are lacking to support climate change research. To fill this gap, a campaign was conducted over three Italian basin valleys, Terni Valley (Appennines), Po Valley and Passiria Valley (Alps), to characterize the impact of BC on the radiative budget under similar orographic conditions. 120 vertical profiles were measured in winter 2010. The BC vertical profiles, together with aerosol size distribution, aerosol chemistry and meteorological parameters, have been determined using a tethered balloon-based platform equipped with: a micro-Aethalometer AE51 (Magee Scientific), a 1.107 Grimm OPC (0.25-32 μm, 31 size classes), a cascade impactor (Siuotas SKC), and a meteorological station (LSI-Lastem). The aerosol chemical composition was determined from collected PM2.5 samples. The aerosol absorption along the vertical profiles was measured and optical properties calculated using the Mie theory applied to the aerosol size distribution. The aerosol optical properties were validated with AERONET data and then used as inputs to the radiative transfer model libRadtran. Vertical profiles of the aerosol direct radiative effect, the related atmospheric absorption and the heating rate were calculated. Vertical profile measurements revealed some common behaviors over the studied basin valleys. From below the mixing height to above it, a marked concentration drop was found for both BC (from -48.4±5.3% up to -69.1±5.5%) and aerosol number concentration (from -23.9±4.3% up to -46.5±7.3%). These features reflected on the optical properties of the aerosol. Absorption and scattering coefficients decreased from below the MH to above it (babs from -47.6±2.5% up to -71.3±3.0% and bsca from -23.5±0.8% up to -61.2±3.1%, respectively). Consequently, the Single Scattering Albedo increased above the MH (from +4.9±2.2% to +7.4±1.0%). The highest aerosol absorption was

  11. Neutron radiotherapy

    International Nuclear Information System (INIS)

    Thomas, F.J.

    1987-01-01

    The rationale for the application of neutron radiation for the treatment of malignancies is well established based on radiobiological studies. These factors include the presence of tissue hypoxia, radiation response as a function of cell cycle kinetics, the repair capacity of the malignant cells and the regeneration of malignant cells during a fractionated course of radiation. Despite the constraints under which the clinical trials to date have been conducted, promising results have been obtained. Randomized trials have demonstrated that neutron therapy is the treatment of choice for inoperable salivary gland carcinomas. A randomized trial of the RTOG has demonstrated a probable advantage for neutron radiation in the treatment of advanced prostate carcinomas but is yet to be confirmed. An improvement in local control has also been observed for selected sarcomas. Equivocal or contradictory results have been obtained for squamous cell carcinomas of the head and neck, bronchogenic carcinomas, advanced rectal, transitional cell carcinomas of the bladder and cervical carcinomas. The practical consequences of these radiobiological and clinical observations on the current generation of clinical trials is discussed

  12. A Neutron Rem Counter

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I Oe; Braun, J

    1964-01-15

    A neutron detector is described which measures the neutron dose rate in rem/h independently of the energy of the neutrons from thermal to 15 MeV. The detector consists of a BF{sub 3} proportional counter surrounded by a shield made of polyethylene and boron plastic that gives the appropriate amount of moderation and absorption to the impinging neutrons to obtain rem response. Two different versions have been developed. One model can utilize standard BF{sub 3} counters and is suitable for use in installed monitors around reactors and accelerators and the other model is specially designed for use in a portable survey instrument. The neutron rem counter for portable instruments has a sensitivity of 2.4 cps/mrem/h and is essentially nondirectional in response. With correct bias setting the counter is insensitive to gamma exposure up to 200 r/h from Co-60.

  13. High-temperature and high-humidity response of the Eberline Model PRS-2 and the Eberline Model NRD neutron detector

    International Nuclear Information System (INIS)

    McAtee, J.L.

    1981-03-01

    The high-humidity and high-temperature response of the Eberline Model PRS-2 portable scaler-ratemeter and the Eberline Model NRD neutron detector was studied in an environmental chamber. The BF 3 probe used in the NRD detector was found to produce count rate surges at temperatures > 50 0 C and at relative humidity > 50%. The PRS-2 scaler-ratemeter was found to be relatively insensitive to high temperatures and high humidity

  14. Non-Directional Radiation Spread Modeling and Non-Invasive Estimating the Radiation Scattering and Absorption Parameters in Biological Tissue

    Directory of Open Access Journals (Sweden)

    S. Yu. Makarov

    2015-01-01

    Full Text Available The article dwells on a development of new non-invasive measurement methods of optical parameters of biological tissues, which are responsible for the scattering and absorption of monochromatic radiation. It is known from the theory of radiation transfer [1] that for strongly scattering media, to which many biological tissues pertain, such parameters are parameters of diffusion approximation, as well as a scattering coefficient and an anisotropy parameter.Based on statistical modeling the paper examines a spread of non-directional radiation from a Lambert light beam with the natural polarization that illuminates a surface of the biological tissue. Statistical modeling is based on the Monte Carlo method [2]. Thus, to have the correct energy coefficient values of Fresnel reflection and transmission in simulation of such radiation by Monte Carlo method the author uses his finding that is a function of the statistical representation for the incidence of model photons [3]. The paper describes in detail a principle of fixing the power transmitted by the non-directional radiation into biological tissue [3], and the equations of a power balance in this case.Further, the paper describes the diffusion approximation of a radiation transfer theory, often used in simulation of radiation propagation in strongly scattering media and shows its application in case of fixing the power transmitted into the tissue. Thus, to represent an uneven power distribution is used an approximating expression in conditions of fixing a total input power. The paper reveals behavior peculiarities of solution on the surface of the biological tissue inside and outside of the incident beam. It is shown that the solution in the region outside of the incident beam (especially far away from it, essentially, depends neither on the particular power distribution across the surface, being a part of the tissue, nor on the refractive index of the biological tissue. It is determined only by

  15. Potential tank waste material anomalies located near the liquid observation wells: Model predicted responses of a neutron moisture detection system

    International Nuclear Information System (INIS)

    Finfrock, S.H.; Toffer, H.; Watson, W.T.

    1994-09-01

    Extensive analyses have been completed to demonstrate that a neutron moisture probe can be used to recognize anomalies in materials and geometry surrounding the liquid observation wells (LOWs). Furthermore, techniques can be developed that will permit the interpretation of detector readings, perturbed by the presence of anomalies, as more accurate moisture concentrations. This analysis effort extends the usefulness of a neutron moisture probe system significantly, especially in the complicated geometries and material conditions that may be encountered in the waste tanks. Both static-source and pulsed-source neutron probes were considered in the analyses. Four different detector configurations were investigated: Thermal and epithermal neutron detectors located in both the near and far field

  16. Neutron reflectometry

    International Nuclear Information System (INIS)

    Van Well, A.A.

    1999-01-01

    Neutron research where reflection, refraction, and interference play an essential role is generally referred to as 'neutron optics'. The neutron wavelength, the scattering length density and the magnetic properties of the material determine the critical angle for total reflection. The theoretical background of neutron reflection, experimental methods and the interpretation of reflection data are presented. (K.A.)

  17. A simple method for correcting the neutron self-shielding effect of matrix and improving the analytical response in prompt gamma-ray neutron activation analysis

    International Nuclear Information System (INIS)

    Sudarshan, K.; Tripathi, R.; Nair, A.G.C.; Acharya, R.; Reddy, A.V.R.; Goswami, A.

    2005-01-01

    A simple method using an internal standard is proposed to correct for the self-shielding effect of B, Cd and Gd in a matrix. This would increase the linear dynamic range of PGNAA in analyzing samples containing these elements. The method is validated by analyzing synthetic samples containing large amounts of B, Cd, Hg and Gd, the elements having high neutron absorption cross-section, in aqueous solutions and solid forms. A simple Monte-Carlo simulation to find the extent of self-shielding in the matrix is presented. The method is applied to the analysis of titanium boride alloy containing large amount of boron. The satisfactory results obtained showed the efficacy of the method of correcting for the self-shielding effects in the sample

  18. Neutron radiography with ultracold neutrons

    International Nuclear Information System (INIS)

    Bates, J.C.

    1981-01-01

    The neutron transmission factor of very thin films may be low if the neutron energy is comparable to the pseudo-potential of the film material. Surprisingly, perhaps, it is relatively easy to obtain neutrons with such low energies in sufficient numbers to produce neutron radiographs. (orig.)

  19. Neutron Skins and Neutron Stars

    OpenAIRE

    Piekarewicz, J.

    2013-01-01

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ("PREX") at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in 208Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron be...

  20. Role of dust direct radiative effect on the tropical rainbelt over Middle East and North Africa: A high resolution AGCM study

    KAUST Repository

    Bangalath, Hamza Kunhu

    2015-04-25

    To investigate the influence of direct radiative effect of dust on the tropical summer rainbelt across the Middle East and North Africa (MENA), the present study utilizes the high resolution capability of an Atmospheric General Circulation Model (AGCM),the High Resolution Atmospheric Model (HiRAM). Ensembles of Atmospheric Model Inter-comparison Project (AMIP)-style simulations have been conducted with and without dust radiative impacts, to differentiate the influence of dust on the tropical rainbelt. The analysis focuses on summer season. The results highlight the role of dust induced responses in global and regional scale circulations in determining the strength and the latitudinal extent of the tropical rainbelt. A significant response in the strength and position of the local Hadley circulation is predicted in response to meridionally asymmetric distribution of dust and the corresponding radiative effects. Significant responses are also found in regional circulation features such as African Easterly Jet (AEJ) and West African Monsoon (WAM) circulation. Consistent with these dynamic responses at various scales, the tropical rainbelt across MENA strengthens and shifts northward. Importantly, the summer precipitation over the semi-arid strip south of Sahara, including Sahel, increases up to 20%. As this region is characterized by the “Sahel drought" , the predicted precipitation sensitivity to the dust loading over this region has a wide-range of socioeconomic implications. Overall, the study demonstrates the extreme importance of incorporating dust radiative effects and the corresponding circulation responses at various scales, in the simulations and future projections of this region\\'s climate.

  1. Fast neutrons dosimetry

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1977-01-01

    A proton recoil technique has been developed for inducing thermoluminescence with incident fast neutrons. CaF 2 was used as the TL phosphor, and cane sugar and polyethylene were used as proton radiators. The phosphor and the hydrogeneous material powders were well mixed, encapsulated in glass tubes and exposed to Am-Be sources, resulting in recoils from incident fast neutrons of energy between 0,25 and 11,25 MeV. The intrinsic response of pure CaF 2 to fast neutrons without a hydrogeneous radiator was checked by using LiF (TLD-700). Glow curves were recorded from room temperature up to 350 0 C after different doses of neutrons and gamma rays of 60 Co. First collision dose due to fast neutrons in tissue like materials such as cane sugar and polyethylene was also calculated [pt

  2. Analysis of calculated neutron flux response at detectors of G.A. Siwabessy multipurpose reactor (RSG-GAS Reactor)

    International Nuclear Information System (INIS)

    Taryo, Taswanda

    2002-01-01

    Multi Purpose Reactor G.A. Siwabessy (RSG-GAS) reactor core possesses 4 fission-chamber detectors to measure intermediate power level of RSG-GAS reactor. Another detector, also fission-chamber detector, is intended to measure power level of RSG-GAS reactor. To investigate influence of space to the neutron flux values for each detector measuring intermediate and power levels has been carried out. The calculation was carried out using combination of WIMS/D4 and CITATION-3D code and focused on calculation of neutron flux at different detector location of RSG-GAS typical working core various scenarios. For different scenarios, all calculation results showed that each detector, located at different location in the RSG-GAS reactor core, causes different neutron flux occurred in the reactor core due to spatial time effect

  3. The direct radiative effect of wildfire smoke on a severe thunderstorm event in the Baltic Sea region

    Science.gov (United States)

    Toll, V.; Männik, A.

    2015-03-01

    On August 8, 2010, a severe derecho type thunderstorm in the Baltic Sea region coincided with smoke from wildfires in Russia. Remarkable smoke aerosol concentrations, with a maximum aerosol optical depth of more than 2 at 550 nm, were observed near the thunderstorm. The impact of the wildfire smoke on the thunderstorm through direct radiative effects was investigated using the Hirlam Aladin Research for Mesoscale Operational Numerical Weather Prediction in Euromed (HARMONIE) model. HARMONIE was successfully able to resolve the dynamics of the thunderstorm, and simulations that considered the influence of the smoke-related aerosols were compared to simulation without aerosols. As simulated by the HARMONIE model, the smoke reduced the shortwave radiation flux at the surface by as much as 300 W/m2 and decreased the near-surface temperature by as much as 3 °C in the vicinity of the thunderstorm and respectively 100 W/m2 and 1 °C in the thunderstorm region. Atmospheric instability decreased through the direct radiative effect of aerosols, and several dynamic features of the simulated thunderstorm appeared slightly weaker.

  4. Neutron Dosimetry

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2001-01-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding

  5. Neutron Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vanhavere, F

    2001-04-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding.

  6. Biomedical and biophysical research and calibration projects: radiobiology. Chromosomal aberrations in human lymphocytes - response to mixed neutron/photon exposures

    International Nuclear Information System (INIS)

    Slabbert, J.P.; Hough, J.H.; Jansen, S.

    1991-01-01

    Whether synergistic interaction damage is realized when lymphocytes are exposed to mixed high/low LET radiation fields, and if so, how well these effects can be predicted, was investigated. Whole-blood samples were exposed, at 37 degrees C, to neutrons, 60 Co gamma-rays and a mixture of 25% neutrons and 75% photons. The mixture was delivered both sequentially and simultaneously. A significant difference between the sequential and simultaneous irradiations was evident. Both mixed-field exposures yield aberration frequencies in excess of the sum predicted for individual irradiations. 5 refs., 2 figs., 1 tab

  7. Neutron radiography

    International Nuclear Information System (INIS)

    Hrdlicka, Z.

    1977-01-01

    Neutron radiography is a radiographic method using a neutron beam of a defined geometry. The neutron source usually consists of a research reactor, a specialized neutron radiography reactor or the 252 Cf radioisotope source. There are two types of the neutron radiography display system, viz., a system producing neutron radiography images by a photographic process or a system allowing a visual display, eg., using a television monitor. The method can be used wherever X-ray radiography is used except applications in the radiography of humans. The neutron radiography unit at UJV uses the WWR-S reactor as the neutron source and both types of the above mentioned display system. (J.P.)

  8. Fast neutron dosimeter with wide base silicon diode

    International Nuclear Information System (INIS)

    Ma Lu

    1986-01-01

    This paper briefly introduces a wide base silicon diode fast neutron dosimeter with wide measuring range and good energy response to fast neutron. It is suitable to be used to detect fast neutrons in the mixed field of γ-ray, thermal neutrons and fast neutrons

  9. Preliminary test of the MONDO project secondary fast and ultrafast neutrons tracker response using protons and MIP particles

    Science.gov (United States)

    Traini, G.; Battistoni, G.; Giacometti, V.; Gioscio, E.; Marafini, M.; Mirabelli, R.; Pinci, D.; Sarti, A.; Sciubba, A.; Patera, V.

    2018-04-01

    The risk of developing a second malignant cancer as a late time consequence of undergoing a treatment, is one of the main concerns in particle therapy (PT). Since neutrons can release a significant dose far away from the tumour region, a precise characterisation of their production point, kinetic energy and abundance is eagerly needed. The treatment planning system (TPS) software that predicts the normal tissue toxicity in the target region and the risk of late complications in the whole body is currently based on the poorly known production cross-sections and will greatly benefit from improved precision double differential measurements. The MONDO (MOnitor for Neutron Dose in hadrOntherapy) project aims to build an ultrafast neutron tracker that could be used to characterise the production of secondary neutrons with energies in the 20–400 MeV range. The neutron tracking will proceed via the detection of recoil protons produced in two consecutive (n, p) elastic scattering interactions. The MONDO detector consists of a 10 × 10 × 20 cm3 matrix of thin scintillating fibres, arranged in orthogonally oriented layers. A compact read-out sensor with single photon detection capabilities employing the CMOS SPAD technology has been developed in collaboration with Fondazione Bruno Kessler (FBK). The detector will be completed by the end of 2018. A 4 × 4 × 4.8 cm3 prototype has been built using 250 μ m thick scintillating fibres of squared section and was tested using a proton beam and minimum ionising particles. In this contribution we present the experimental results related to the prototype test performed with a proton beam at the Proton Therapy Centre of the Trento Hospital (PTC) in May 2017. The results are compared with the results of a Monte Carlo simulation performed with the FLUKA software.

  10. The neutron

    International Nuclear Information System (INIS)

    Kredov, B.M.

    1979-01-01

    The history of the neutron is displayed on the basis of contributions by scientists who produced outstanding results in neutron research (part 1), of summarizing discoveries and theories which led to the discovery of the neutron and the resulting development of nuclear physics (part 2), and of fundamental papers written by Rutherford, Chadwick, Iwanenko, and others (appendix). Of interest to physicists, historians, and students

  11. Neutron techniques

    International Nuclear Information System (INIS)

    Charlton, J.S.

    1986-01-01

    The way in which neutrons interact with matter such as slowing-down, diffusion, neutron absorption and moderation are described. The use of neutron techniques in industry, in moisture gages, level and interface measurements, the detection of blockages, boron analysis in ore feedstock and industrial radiography are discussed. (author)

  12. Introduction to neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.

  13. Neutron diffraction investigation of hysteresis reduction and increase in linearity in the stress-strain response of superelastic NiTi

    International Nuclear Information System (INIS)

    Rathod, C.R.; Clausen, B.; Bourke, M.A.M.; Vaidyanathan, R.

    2006-01-01

    In situ neutron diffraction measurements during loading have been performed on plastically deformed superelastic NiTi samples. The measurements observed retained B19 ' phase in the unloaded state as a result of the plastic deformation in otherwise completely B2 phase samples. A reversible stress-induced B2-B19 ' transformation on application and removal of stress occurred in the presence of this retained B19 ' phase. The amount and orientation of this retained B19 ' phase changed with cycling. Such direct atomic scale observations in the bulk are used here for the first time to qualitatively elucidate the macroscopic stress-strain response in plastically deformed superelastic NiTi

  14. Quantitative determination of the contribution of indirect and direct radiation action to the production of lethal lesions in mammalian cells

    International Nuclear Information System (INIS)

    Pohlit, W.; Drenkard, S.

    1985-01-01

    For quantitative models of radiation action in living cells it is necessary to know what fraction of the absorbed dose affects the target molecule by direct radiation action and what fraction by indirect radiation action. Mammalian cells were irradiated in suspension, saturated with N 2 O or CO 2 . With these gases the production of OH-radicals is changed by a factor of two in aqueous solutions and a corresponding change in cell survival would be expected, if only indirect radiation action is involved in the production of lethal lesions in the living cell. No difference could be detected, however, and it is concluded that indirect radiation action does not contribute to radiation lethality in mammalian cells. (author)

  15. Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of land use change in Amazonia

    Directory of Open Access Journals (Sweden)

    E. T. Sena

    2013-02-01

    Full Text Available This paper addresses the Amazonian shortwave radiative budget over cloud-free conditions after considering three aspects of deforestation: (i the emission of aerosols from biomass burning due to forest fires; (ii changes in surface albedo after deforestation; and (iii modifications in the column water vapour amount over deforested areas. Simultaneous Clouds and the Earth's Radiant Energy System (CERES shortwave fluxes and aerosol optical depth (AOD retrievals from the Moderate Resolution Imaging SpectroRadiometer (MODIS were analysed during the peak of the biomass burning seasons (August and September from 2000 to 2009. A discrete-ordinate radiative transfer (DISORT code was used to extend instantaneous remote sensing radiative forcing assessments into 24-h averages.

    The mean direct radiative forcing of aerosols at the top of the atmosphere (TOA during the biomass burning season for the 10-yr studied period was −5.6 ± 1.7 W m−2. Furthermore, the spatial distribution of the direct radiative forcing of aerosols over Amazonia was obtained for the biomass burning season of each year. It was observed that for high AOD (larger than 1 at 550 nm the maximum daily direct aerosol radiative forcing at the TOA may be as high as −20 W m−2 locally. The surface reflectance plays a major role in the aerosol direct radiative effect. The study of the effects of biomass burning aerosols over different surface types shows that the direct radiative forcing is systematically more negative over forest than over savannah-like covered areas. Values of −15.7 ± 2.4 W m−2τ550 nm and −9.3 ± 1.7 W m−2τ550 nm were calculated for the mean daily aerosol forcing efficiencies over forest and savannah-like vegetation respectively. The overall mean annual land use change radiative forcing due to deforestation over the state of Rondônia, Brazil, was determined as −7.3 ± 0.9 W m

  16. Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin.

    Science.gov (United States)

    Srivastava, Atul K; Singh, Sachchidanand; Tiwari, S; Bisht, D S

    2012-05-01

    The present work is aimed to understand direct radiation effects due to aerosols over Delhi in the Indo-Gangetic Basin (IGB) region, using detailed chemical analysis of surface measured aerosols during the year 2007. An optically equivalent aerosol model was formulated on the basis of measured aerosol chemical compositions along with the ambient meteorological parameters to derive radiatively important aerosol optical parameters. The derived aerosol parameters were then used to estimate the aerosol direct radiative forcing at the top of the atmosphere, surface, and in the atmosphere. The anthropogenic components measured at Delhi were found to be contributing ∼ 72% to the composite aerosol optical depth (AOD(0.5) ∼ 0.84). The estimated mean surface and atmospheric forcing for composite aerosols over Delhi were found to be about -69, -85, and -78 W m(-2) and about +78, +98, and +79 W m(-2) during the winter, summer, and post-monsoon periods, respectively. The anthropogenic aerosols contribute ∼ 90%, 53%, and 84% to the total aerosol surface forcing and ∼ 93%, 54%, and 88% to the total aerosol atmospheric forcing during the above respective periods. The mean (± SD) surface and atmospheric forcing for composite aerosols was about -79 (± 15) and +87 (± 26) W m(-2) over Delhi with respective anthropogenic contributions of ∼ 71% and 75% during the overall period of observation. Aerosol induced large surface cooling, which was relatively higher during summer as compared to the winter suggesting an increase in dust loading over the station. The total atmospheric heating rate at Delhi averaged during the observation was found to be 2.42  ±  0.72 K day(-1), of which the anthropogenic fraction contributed as much as ∼ 73%.

  17. Measurement of the response time of the delay window for the neutron converter of the SPIRAL2 project

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, G. [INFN Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Andre, T. [GANIL, Caen (France); Bermudez, J. [INFN Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Blinov, M.F. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Jamet, C. [GANIL, Caen (France); Logatchev, P.V.; Semenov, Y.I.; Starostenko, A.A. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Tecchio, L.B., E-mail: tecchio@lnl.infn.it [INFN Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Tsyganov, A.S. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Udup, E. [INFN Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Horia Hulubei National Institute of Physics and Engineering, Bucharest (Romania); University Polytechnic of Bucharest (Romania); Vasquez, J. [INFN Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of)

    2014-09-11

    Research and development of a safety system for the SPIRAL2 facility has been conceived to protect the UCx target from a possible interaction with the 200 kW deuteron beam. The system called “delay window” (DW) is designed as an integral part of the neutron converter module and is located in between the neutron converter and the fission target. The device has been designed as a barrier, located directly behind the neutron converter on the axis of the deuteron beam, with the purpose of “delaying” the eventual interaction of the deuteron beam with the UCx target in case of a failure of the neutron converter. The “delay” must be long enough to allow the interlock to react and safely stop the beam operation, before the beam will reach the UCx target. The working concept of the DW is based on the principle of the electrical fuse. Electrically insulated wires placed on the surface of a Tantalum disk assure a so called “free contact”, normally closed to an electronic circuit located on the HV platform, far from the radioactive environment. The melting temperature of the wires is much less than Tantalum. Once the beam is impinging on the disk, one or more wires are melted and the “free contact” is open. A solid state relay is changing its state and a signal is sent to the interlock device. A prototype of the DW has been constructed and tested with an electron beam of power density equivalent to the SPIRAL2 beam. The measured “delay” is 682.5 ms (σ=116 ms), that is rather long in comparison to the intrinsic delays introduced by the detectors itself (2 ms) and by the associated electronic devices (120 ns). The experimental results confirm that, in the case of a failure of the neutron converter, the DW as conceived is enable to withstand the beam power for a period of time sufficiently long to safely shut down the SPIRAL2 accelerator.

  18. Study of the response to neutrons of a personal dosemeter in mixed fields (n, γ) in function of Hp(10)

    International Nuclear Information System (INIS)

    Cruzate, J.; Gregori, B.; Carelli, J.; Aguerre, L.; Discacciatti, A.

    2006-01-01

    In this work it is presented the theoretical study and their experimental validation of the answer of the personal dosimetro in terms of the component of neutrons of the personal equivalent dose Hpn(10) in function of the energy, in presence of fields of neutrons and range. The personal dosimetro, based on detecting termoluminiscentes (TLD), it consists of two detectors 7LiF and two 6LiF, located low filters of plastic and cadmium starting from whose information is evaluated the component range and of neutrons of the dose. Additionally it consists of a detecting CaF2, used basically to discriminate against the energy of the component range and to make the corresponding corrections on the evaluation of the dose range obtained with the 7LiF. The answer to neutrons in function of the energy, defined as the quotient among the one I number of reactions 6Li(n, a)4He taken place in each TLD and the Hpn(10), it was calculated using the code MCNPX and the library ENDF/B-VI. You model the dosimetro under the irradiation conditions proposed by the ISO8529-3. Faces monoenergeticos were simulated in the range of energy understood between 70 keV and 5 MeV. The dispersion in each one of the results of the simulation is smaller than 3%. You I study the existent relationship among the answer te6rica, reactions (n,a)/Hpn(10) and the experimental one, nC/Hpn(10), for a given thermal treatment. The factor of resulting conversion is constant in the energy and similar to 1,71 104 reacciones(n, a)/nC, with a smaller standard deviation to 10%. The experimental answer was obtained starting from the irradiations carried out in the mark of the International Intercomparacion of Dosimetria in Mixed Campos (n,) 2004 organized by the OIEA next to the PTB (Germany) and the IRSN (France). The extension of these calculations to other spectra of neutrons of fields real they will allow to obtain group of factors of application conversion in routine and accidental situations. (Author)

  19. Acid phosphates response in murine rhabdomyosarcoma for various tumour volumes and after different doses of neutron irradiation, alone or combined with exogenous ATP

    International Nuclear Information System (INIS)

    Szeinfeld, D.; De Villiers, N.

    1991-01-01

    Acid phosphatase activity measured in a methylocholanthrene-induced murine rhabdomyosarcoma showed a monotonically increasing relation between enzyme activity and tumour volume. This could be related to the lytic activity of the enzyme in large tumours which become more hypoxic and necrotic, and hence enhance degradation and turnover of damaged tumour cells. The tumours were also subjected to irradiation using doses of 2.0, 3.8 and 6.0 Gy from a neutron therapy facility p(66 MeV)/Be. The correlation between different doses and response of acid phosphatase activity could reflect the relation of magnitude of damage from metabolic disturbances, with dose. Furthermore exogenous ATP was shown to provide radioprotective action against neutron irradiation in two different experiments. The ATP reduced the activity of this lytic enzyme in irradiated tumours and also decreased tumour growth delay. This radioprotective role of exogenous ATP in a murine tumour could be related to physiological regulatory processes during defence mechanisms to maintain self-organisation in response to the radiation damage. (orig.) [de

  20. Neutron radiography

    International Nuclear Information System (INIS)

    Hiraoka, Eiichi

    1988-01-01

    The thermal neutron absorption coefficient is essentially different from the X-ray absorption coefficient. Each substance has a characteristic absorption coefficient regardless of its density. Neutron deams have the following features: (1) neutrons are not transmitted efficiently by low molecular weight substances, (2) they are transmitted efficiently by heavy metals, and (3) the transmittance differs among isotopes. Thus, neutron beams are suitable for cheking for foreign matters in heavy metals and testing of composites consisting of both heavy and light materials. A neutron source generates fast neutrons, which should be converted into thermal neutrons by reducing their energy. Major neutron souces include nuclear reactors, radioisotopes and particle accelerators. Photographic films and television systems are mainly used to observe neutron transmission images. Computers are employed for image processing, computerized tomography and three-dimensional analysis. The major applications of neutron radiography include inspection of neclear fuel; evaluation of material for airplane; observation of fuel in the engine and oil in the hydraulic systems in airplanes; testing of composite materials; etc. (Nogami, K.)

  1. High energy neutron generator

    International Nuclear Information System (INIS)

    Barjon, R.; Breynat, G.

    1987-01-01

    This patent describes a generator of fast neutrons only slightly contaminated by neutrons of energy less than 15 MeV, comprising a source of charged particles of energy equal to at least 15 MeV, a target made of lithium deuteride, and means for cooling the target. The target comprises at least two elements placed in series in the path of the charged particles and separated from each other, the thickness of each of the elements being selected as a function of the average energy of the charged particles emitted from the source and the energy of the fast neutrons to be generated such that neutrons of energy equal to at least 15 MeV are emitted in the forward direction in response to the bombardment of the target from behind by the charged particles. The target cooling means comprises means for circulating between and around the elements a gas which does not chemically react with lithium deuteride

  2. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  3. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  4. Neutron spectometers

    International Nuclear Information System (INIS)

    Poortmans, F.

    1977-01-01

    Experimental work in the field of low-energy neutron physics can be subdivided into two classes: 1)Study of the decay process of the compound-nucleus state as for example the study of the capture gamma rays and of the neutron induced fission process; 2)Study of the reaction mechanism, mainly by measuring the reaction cross-sections and resonance parameters. These neutron cross-sections and resonance parameters are also important data required for many technological applications especially for reactor development programmes. In general, the second class of experiments impose other requirements on the neutron spectrometer than the first class. In most cases, a better neutron energy resolution and a broader neutron energy range are required for the study of the reaction mechanism than for the study of various aspects of the decay process. (author)

  5. Dipole response of the odd-proton nucleus 205Tl up to the neutron-separation energy

    Science.gov (United States)

    Benouaret, N.; Beller, J.; Pai, H.; Pietralla, N.; Ponomarev, V. Yu; Romig, C.; Schnorrenberger, L.; Zweidinger, M.; Scheck, M.; Isaak, J.; Savran, D.; Sonnabend, K.; Raut, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Kelley, J. H.

    2016-11-01

    The low-lying electromagnetic dipole strength of the odd-proton nuclide 205Tl has been investigated up to the neutron separation energy exploiting the method of nuclear resonance fluorescence. In total, 61 levels of 205Tl have been identified. The measured strength distribution of 205Tl is discussed and compared to those of even-even and even-odd mass nuclei in the same mass region as well as to calculations that have been performed within the quasi-particle phonon model.

  6. Dipole response of the odd-proton nucleus 205Tl up to the neutron-separation energy

    International Nuclear Information System (INIS)

    Benouaret, N; Beller, J; Pai, H; Pietralla, N; Ponomarev, V Yu; Romig, C; Schnorrenberger, L; Zweidinger, M; Scheck, M; Isaak, J; Savran, D; Sonnabend, K; Raut, R; Rusev, G; Tonchev, A P; Tornow, W; Weller, H R; Kelley, J H

    2016-01-01

    The low-lying electromagnetic dipole strength of the odd-proton nuclide 205 Tl has been investigated up to the neutron separation energy exploiting the method of nuclear resonance fluorescence. In total, 61 levels of 205 Tl have been identified. The measured strength distribution of 205 Tl is discussed and compared to those of even–even and even–odd mass nuclei in the same mass region as well as to calculations that have been performed within the quasi-particle phonon model. (paper)

  7. Dosimetric evaluation of spectrophotometric response of alanine gel solution for gamma, photons, electrons and thermal neutrons radiations; Avaliacao dosimetrica da resposta espectrofotometrica da solucao gel de alanina para radiacao gama, de fotons, de eletrons e de neutrons termicos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cleber Feijo

    2009-07-01

    Alanine Gel Dosimeter is a new gel material developed at IPEN that presents significant improvement on Alanine system developed by Costa. The DL-Alanine (C{sub 3}H{sub 7}NO{sub 2}) is an amino acid tissue equivalent that improves the production of ferric ions in the solution. This work aims to analyse the main dosimetric characteristics this new gel material for future application to measure dose distribution. The performance of Alanine gel solution was evaluated to gamma, photons, electrons and thermal neutrons radiations using the spectrophotometry technique. According to the obtained results for the different studied radiation types, the reproducibility intra-batches and inter-batches is better than 4% and 5%, respectively. The dose response presents a linear behavior in the studied dose range. The response dependence as a function of dose rate and incident energy is better 2% and 3%, respectively. The lower detectable dose is 0.1 Gy. The obtained results indicate that the Alanine gel dosimeter presents good performance and can be useful as an alternative dosimeter in the radiotherapy area, using MRI technique for tridimensional dose distribution evaluation. (author)

  8. Neutron exposure

    International Nuclear Information System (INIS)

    Prillinger, G.; Konynenburg, R.A. van

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 6, LWR-PV neutron transport calculations and dosimetry methods and how they are combined to evaluate the neutron exposure of the steel of pressure vessels are discussed. An effort to correlate neutron exposure parameters with damage is made

  9. Atmospheric neutrons

    International Nuclear Information System (INIS)

    Preszler, A.M.; Moon, S.; White, R.S.

    1976-01-01

    Additional calibrations of the University of California double-scatter neutron and additional analysis corrections lead to the slightly changed neutron fluxes reported here. The theoretical angular distributions of Merker (1975) are in general agreement with our experimental fluxes but do not give the peaks for vertical upward and downward moving neutrons. The theoretical neutron escape current J 2 /sub pi/ (Merker, 1972; Armstrong et al., 1973) is in agreement with the experimental values from 10 to 100 MeV. Our experimental fluxes agree with those of the Kanbach et al. (1974) in the overlap region from 70 to 100 MeV

  10. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  11. Modelling derecho dynamics and the direct radiative effect of wildfire smoke upon it with NWP model HARMONIE

    Science.gov (United States)

    Toll, Velle; Männik, Aarne

    2014-05-01

    Convection permitting numerical weather prediction model HARMONIE was used to simulate the dynamics of the derecho that swept over Eastern Europe on August 8, 2010. The storm moved over Belarus, Lithuania, Latvia, Estonia and Finland and the strongest wind gusts (up to 36.5 m/s) were measured in Estonia. The storm path is recorded on the radar images where characteristic bow echo was observed. The model setup was similar to near-future operational, nearly kilometre-scale environments in European national weather services. Hindcast experiments show the ability of the HARMONIE model to predict the severe convective storm and forecast concurrent strong wind gusts. Wind gusts with very similar intensity to observed ones were simulated by the HARMONIE model and 2.5-km horizontal resolution appears sufficient for reliable forecast of the derecho event. The timing of the modelled storm was in good agreement with the observations. The simulated average storm propagation speed was 25 m/s, similar to the radar observations. Hindcast experiments suggest that more precise warning for the storm could have been issued if the HARMONIE model would have been utilised. The derecho event was accompanied by the remarkable smoke aerosol concentrations (maximum total aerosol optical depth more than 4 at 550 nm) originating from the wildfires from Russia. Smoke plume travelled clockwise around Moscow from August 5 to 9. On August 8, 2010, smoke plume was situated on the Eastern border of Estonia. The derecho occurred on the western side of the smoke plume path. HARMONIE experiments were performed to study the direct radiative effect of wildfire smoke on a severe convective storm. The impact of smoke aerosol on the derecho dynamics was investigated. Reduction in the shortwave radiation flux at the surface resulting from aerosol influence simulated by the HARMONIE model is up to 200 W/m2 in the area with the highest aerosol concentrations. This causes near surface cooling of up to 3 º

  12. Neutron Activation Foil and Thermoluminescent Dosimeter Responses to a Lead Reflected Pulse of the CEA Valduc SILENE Critical Assembly

    International Nuclear Information System (INIS)

    Miller, Thomas Martin; Celik, Cihangir; Isbell, Kimberly McMahan; Lee, Yi-kang; Gagnier, Emmanuel; Authier, Nicolas; Piot, Jerome; Jacquet, Xavier; Rousseau, Guillaume; Reynolds, Kevin H.

    2016-01-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 13, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. The CIDAS detects gammas with a Geiger-Muller tube, and the Rocky Flats detects neutrons via charged particles produced in a thin 6 LiF disc, depositing energy in a Si solid-state detector. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  13. Neutron Activation Foil and Thermoluminescent Dosimeter Responses to a Polyethylene Reflected Pulse of the CEA Valduc SILENE Critical Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Celik, Cihangir [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McMahan, Kimberly L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Yi-kang [French Atomic Energy Commission (CEA), Saclay (France); Gagnier, Emmanuel [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Authier, Nicolas [French Atomic Energy Commission (CEA), Salives (France). Valduc Centre for Nuclear Studies; Piot, Jerome [French Atomic Energy Commission (CEA), Salives (France). Valduc Centre for Nuclear Studies; Jacquet, Xavier [French Atomic Energy Commission (CEA), Salives (France). Valduc Centre for Nuclear Studies; Rousseau, Guillaume [French Atomic Energy Commission (CEA), Salives (France). Valduc Centre for Nuclear Studies; Reynolds, Kevin H. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2016-09-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 19, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. The CIDAS detects gammas with a Geiger-Muller tube and the Rocky Flats detects neutrons via charged particles produced in a thin 6LiF disc depositing energy in a Si solid state detector. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  14. Neutron Activation Foil and Thermoluminescent Dosimeter Responses to a Polyethylene Reflected Pulse of the CEA Valduc SILENE Critical Assembly

    International Nuclear Information System (INIS)

    Miller, Thomas Martin; Celik, Cihangir; McMahan, Kimberly L.; Lee, Yi-kang; Gagnier, Emmanuel; Authier, Nicolas

    2016-01-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 19, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. The CIDAS detects gammas with a Geiger-Muller tube and the Rocky Flats detects neutrons via charged particles produced in a thin "6LiF disc depositing energy in a Si solid state detector. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  15. Effects of employing a 10B-carrier and manipulating intratumour hypoxia on local tumour response and lung metastatic potential in boron neutron capture therapy

    Science.gov (United States)

    Masunaga, S; Sakurai, Y; Tanaka, H; Suzuki, M; Liu, Y; Kondo, N; Maruhashi, A; Kinashi, Y; Ono, K

    2012-01-01

    Objectives To evaluate the effects of employing a 10B-carrier and manipulating intratumour hypoxia on local tumour response and lung metastatic potential in boron neutron capture therapy (BNCT) by measuring the response of intratumour quiescent (Q) cells. Methods B16-BL6 melanoma tumour-bearing C57BL/6 mice were continuously given 5-bromo-2′-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumours received reactor thermal neutron beam irradiation following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)] in combination with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH). Immediately after the irradiation, cells from some tumours were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumour-bearing mice, macroscopic lung metastases were enumerated 17 days after irradiation. Results BPA-BNCT increased the sensitivity of the total tumour cell population more than BSH-BNCT. However, the sensitivity of Q cells treated with BPA was lower than that of BSH-treated Q cells. With or without a 10B–carrier, MTH enhanced the sensitivity of the Q cell population. Without irradiation, nicotinamide treatment decreased the number of lung metastases. With irradiation, BPA-BNCT, especially in combination with nicotinamide treatment, showed the potential to reduce the number of metastases more than BSH-BNCT. Conclusion BSH-BNCT in combination with MTH improves local tumour control, while BPA-BNCT in combination with nicotinamide may reduce the number of lung metastases. PMID:22391496

  16. Study of spectral response of a neutron filter. Design of a method to adjust spectra; Etude des moyens de conditionnement de la reponse spectrale d'un filtre a neutrons. Mise au point d'une methode d'ajustement rapide de spectre

    Energy Technology Data Exchange (ETDEWEB)

    Colomb-Dolci, F. [Universite Louis Pasteur, 67 - Strasbourg (France)

    1999-02-01

    The first part of this thesis describes an experimental method which intends to determine a neutron spectrum in the epithermal range [1 eV -10 keV]. Based on measurements of reaction rates provided by activation foils, it gives flux level in each energy range corresponding to each probe. This method can be used in any reactor location or in a neutron beam. It can determine scepter on eight energy groups, five groups in the epithermal range. The second part of this thesis presents a study of an epithermal neutron beam design, in the frame of Neutron Capture Therapy. A beam tube was specially built to test filters made up of different materials. Its geometry was designed to favour epithermal neutron crossing and to cut thermal and fast neutrons. A code scheme was validated to simulate the device response with a Monte Carlo code. Measurements were made at ISIS reactor and experimental spectra were compared to calculated ones. This validated code scheme was used to simulate different materials usable as shields in the tube. A study of these shields is presented at the end of this thesis. (author)

  17. Water-cooled Pb-17Li test blanket module for ITER: impact of the structural material grade on the neutronic responses

    Energy Technology Data Exchange (ETDEWEB)

    Vella, G.; Aiello, G.; Oliveri, E. [Palermo Univ. (Italy). Dipt. di Ingegneria Nucl.; Fuetterer, M.A.; Giancarli, L. [CEA - Saclay, DRN/DMT/SERMA, Gif-sur-Yvette (France); Tavassoli, F. [CEA - Saclay, CEREM, Gif-sur-Yvette (France)

    1998-10-01

    The water-cooled lithium lead (WCLL) DEMO blanket is one of the two EU lines to be further developed with the aim of manufacturing by 2010 a test blanket module for ITER (TBM). In this paper results of a 3D-Monte Carlo neutronic analysis of the TBM design are reported. A fully 3D heterogeneous model of the WCLL-TBM has been inserted into an existing ITER model accounting for a proper D-T neutron source. The structural material assumed for the calculations was martensitic 9% Cr steel code named Z 10 CDV Nb 9-1. Results have been compared with those obtained using MANET. The main nuclear responses of the TBM have been determined, such as detailed power deposition density, material damage through DPA and He and H gas production rate, radial distribution of tritium production rate and total tritium production in the module. The impact of using natural lithium on the TBM system operation has also been evaluated. (orig.) 13 refs.

  18. Design of neutron diagnostic for MTX

    International Nuclear Information System (INIS)

    Ogawa, Toshihide; Oasa, Kazumi; Hoshino, Katsumichi; Odajima, Kazuo; Maeda, Hikosuke

    1990-07-01

    A neutron diagnostic system was designed for the Microwave Tokamak Experiment being carried out at the lawrence Livermore National Laboratory. High speed measurements are important to this experiment. Plastic scintillator is used for this fast response detection of neutron. Proportional counters and fission counters are used for the total neutron emission rate measurements. (author)

  19. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-Cloud Aerosols Using CALIOP and MODIS Data

    Science.gov (United States)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2014-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  20. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  1. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1994-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  2. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield

  3. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  4. Neutron holography

    International Nuclear Information System (INIS)

    Beynon, T.D.

    1986-01-01

    the paper concerns neutron holography, which allows an image to be constructed of the surfaces, as well as the interiors, of objects. The technique of neutron holography and its applications are described. Present and future use of the method is briefly outlined. (U.K.)

  5. Fast neutron sensitivity of polymer dosemeters

    International Nuclear Information System (INIS)

    Harper, M.W.; Pearson, D.W.; Moran, P.R.

    1975-01-01

    The responses of polymer thermocurrent dosemeters to fission spectrum and 14 MeV neutrons were measured. The dosemeters are in the form of disks 1 cm diam by 0.5 mm thick. Relative to Cobalt 60 gamma responses, teflon PTFE dosemeters show a 6 percent response to 14 MeV neutrons and a 5 percent response to fission neutrons on a tissue rad basis. Polymethylpentene dosemeters show a 49 percent response to 14 MeV neutrons and a 40 percent response to fission neutrons on a tissue rad basis when provided with adequate recoil proton buildup. The sensitivity of these dosemeters is limited to neutron doses greater than 10 rads by spurious background currents

  6. Neutron source

    International Nuclear Information System (INIS)

    Cason, J.L. Jr.; Shaw, C.B.

    1975-01-01

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap

  7. Neutron transport

    International Nuclear Information System (INIS)

    Berthoud, Georges; Ducros, Gerard; Feron, Damien; Guerin, Yannick; Latge, Christian; Limoge, Yves; Santarini, Gerard; Seiler, Jean-Marie; Vernaz, Etienne; Coste-Delclaux, Mireille; M'Backe Diop, Cheikh; Nicolas, Anne; Andrieux, Catherine; Archier, Pascal; Baudron, Anne-Marie; Bernard, David; Biaise, Patrick; Blanc-Tranchant, Patrick; Bonin, Bernard; Bouland, Olivier; Bourganel, Stephane; Calvin, Christophe; Chiron, Maurice; Damian, Frederic; Dumonteil, Eric; Fausser, Clement; Fougeras, Philippe; Gabriel, Franck; Gagnier, Emmanuel; Gallo, Daniele; Hudelot, Jean-Pascal; Hugot, Francois-Xavier; Dat Huynh, Tan; Jouanne, Cedric; Lautard, Jean-Jacques; Laye, Frederic; Lee, Yi-Kang; Lenain, Richard; Leray, Sylvie; Litaize, Olivier; Magnaud, Christine; Malvagi, Fausto; Mijuin, Dominique; Mounier, Claude; Naury, Sylvie; Nicolas, Anne; Noguere, Gilles; Palau, Jean-Marc; Le Pallec, Jean-Charles; Peneliau, Yannick; Petit, Odile; Poinot-Salanon, Christine; Raepsaet, Xavier; Reuss, Paul; Richebois, Edwige; Roque, Benedicte; Royer, Eric; Saint-Jean, Cyrille de; Santamarina, Alain; Serot, Olivier; Soldevila, Michel; Tommasi, Jean; Trama, Jean-Christophe; Tsilanizara, Aime; Behar, Christophe; Provitina, Olivier; Lecomte, Michael; Forestier, Alain; Bender, Alexandra; Parisot, Jean-Francois; Finot, Pierre

    2013-10-01

    This bibliographical note presents a reference book which addresses the study of neutron transport in matter, the study of conditions for a chain reaction and the study of modifications of matter composition due to nuclear reactions. This book presents the main nuclear data, their measurement, assessment and processing, and the spallation. It proposes an overview of methods applied for the study of neutron transport: basic equations and their derived forms, deterministic methods and Monte Carlo method of resolution of the Boltzmann equation, methods of resolution of generalized Bateman equations, methods of time resolution of space kinetics coupled equations. It presents the main calculation codes, discusses the qualification and experimental aspects, and gives an overview of neutron transport applications: neutron transport calculation of reactors, neutron transport coupled with other disciplines, physics of fuel cycle, criticality

  8. Complete electric dipole response in 120Sn and 208Pb and implications for neutron skin and symmetry energy

    International Nuclear Information System (INIS)

    Von Neumann-Cosel, Peter

    2015-01-01

    Polarized proton scattering at energies of a few 100 MeV and very forward angles including 0° has been established as a new tool to extract the complete E1 strength distribution in nuclei for excitation energies between about 5 and 20 MeV. A case study of 208 Pb demonstrates excellent agreement with other electromagnetic probes. From the information on the B(E1) strength one can derive the electric dipole dipole polarizability, which is strongly correlated to the neutron skin and to parameters of the symmetry energy. Recently, we have extracted the polarizability of 120 Sn with a comparable precision. The combination of both results further constrains the symmetry energy parameters and presents a challenge for mean-field models, since relativistic and many Skyrme parameterizations cannot reproduce both experimental results simultaneously. (paper)

  9. Neutron Activation Foil and Thermoluminescent Dosimeter Responses to a Lead Reflected Pulse of the CEA Valduc SILENE Critical Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Celik, Cihangir [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Isbell, Kimberly McMahan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Yi-kang [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Gagnier, Emmanuel [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Authier, Nicolas [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Piot, Jerome [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Jacquet, Xavier [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Rousseau, Guillaume [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Reynolds, Kevin H. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2016-09-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 13, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. The CIDAS detects gammas with a Geiger-Muller tube, and the Rocky Flats detects neutrons via charged particles produced in a thin 6LiF disc, depositing energy in a Si solid-state detector. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  10. High sensitivity MOSFET-based neutron dosimetry

    International Nuclear Information System (INIS)

    Fragopoulou, M.; Konstantakos, V.; Zamani, M.; Siskos, S.; Laopoulos, T.; Sarrabayrouse, G.

    2010-01-01

    A new dosemeter based on a metal-oxide-semiconductor field effect transistor sensitive to both neutrons and gamma radiation was manufactured at LAAS-CNRS Laboratory, Toulouse, France. In order to be used for neutron dosimetry, a thin film of lithium fluoride was deposited on the surface of the gate of the device. The characteristics of the dosemeter, such as the dependence of its response to neutron dose and dose rate, were investigated. The studied dosemeter was very sensitive to gamma rays compared to other dosemeters proposed in the literature. Its response in thermal neutrons was found to be much higher than in fast neutrons and gamma rays.

  11. Optimized choice of method for determining proliferation response of peripheral lymphocytes to mitogens in low dose irradiation with cyclotron fast neutrons

    International Nuclear Information System (INIS)

    Refka, Z.; Svec, M.; Aganov, P.; Svoboda, V.; Podzimek, F.

    1989-01-01

    Heparinized venous blood sampled from seven donors was irradiated with doses of 0.1; 0.25; 0.5; 1.0; 2.0 and 3.0 Gy of fast neutrons of a mean energy of 7.6 MeV using the U 120 M isochronous cyclotron. A non-irradiated control sample was also prepared. A lymphoblastic transformation test was conducted with both the intact and irradiated samples. The samples were cultivated in the RPMI-1640 medium with and without a mitogen addition, this in five time variants, viz., for 48, 72, 90, 96 and 120 hours. The proliferation was monitored of lymphocytes stimulated with mitogens PHA, CON-A and PWM in dependence on the time of cultivation and on the radiation dose. The dose dependent relative response was also studied of the irradiated lymphocytes. (E.J.). 8 figs., 1 tab., 18 refs

  12. Study of the response of a piezoceramic motor irradiated in a fast reactor up to a neutron fluence of 2.77E+17 n/cm{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pillon, Mario, E-mail: mario.pillon@enea.it [Associazione EURATOM-ENEA sulla Fusione, ENEA C.R. Frascati, via E. Fermi, 45, 00044 Frascati, Rome (Italy); Monti, Chiara; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo [Associazione EURATOM-ENEA sulla Fusione, ENEA C.R. Frascati, via E. Fermi, 45, 00044 Frascati, Rome (Italy); Carta, Mario; Fiorani, Orlando; Santagata, Alfonso [ENEA C.R. CASACCIA, via Anguillarese, 301, 00123 S. Maria di Galeria, Rome (Italy)

    2015-10-15

    Highlights: • Piezoceramic motors are compliant with magnetic field, temperature and vacuum. • We studied the response of a piezoceramic motor during the irradiation with neutrons. • The response was studied using 1 MeV neutrons up to a neutron fluence of 2.77E+17 n/cm{sup 2}. • Neutron irradiation produces a shift of the optimal resonance frequency and a decrease of the motor speed. • The performance changes do not affect the proper operation of the motor. - Abstract: A piezoceramic motor has been identified as the potential apparatus for carrying out the rotation of the scanning head of a laser radar system used for viewing the first wall of the ITER vessel. This diagnostic is simply referred to as IVVS (In Vessel Viewing System). The choice fell on a piezoceramic motor due to the presence of strong magnetic fields (up 8 T) and of the high vacuum and temperature conditions. To be compliant with all the ITER environmental conditions it was necessary to qualify the piezo-motor under gamma and neutron irradiation. In this paper are described the procedures and tests that have been performed to verify the compatibility of the operation of the motor adopted in the presence of a fast neutron fluence which was gradually increased over time in order to reach a total value of 2.77 × 10{sup 17} n/cm{sup 2}. Such neutron fluence was obtained by irradiating the motor in a position close to the core of the fast nuclear reactor TAPIRO, in operation at the ENEA Casaccia Research Centre, Italy. The neutron spectrum in this position has been identified as representative of that found in the rest position of the IVVS head during ITER operation. The cumulative neutron fluence reached corresponds to that it is expected to be reached during the entire life of ITER for the IVVS in the rest position without any shield. This work describes the experimental results of this test; the methodology adopted to determine the total neutron fluence achieved and the methodology adopted

  13. Neutron radiography

    International Nuclear Information System (INIS)

    Alaa eldin, M.T.

    2011-01-01

    The digital processing of the neutron radiography images gives the possibility for data quantification. In this case an exact relation between the measured neutron attenuation and the real macroscopic attenuation coefficient for every point of the sample is required. The assumption that the attenuation of the neutron beam through the sample is exponential is valid only in an ideal case where a monochromatic beam, non scattering sample and non background contribution are assumed. In the real case these conditions are not fulfilled and in dependence on the sample material we have more or less deviation from the exponential attenuation law. Because of the high scattering cross-sections of hydrogen (σs=80.26 barn) for thermal neutrons, the problem with the scattered neutrons at quantitative radiography investigations of hydrogenous materials (as PE, Oil, H 2 O, etc) is not trivial. For these strong scattering materials the neutron beam attenuation is no longer exponential and a dependence of the macroscopic attenuation coefficient on the material thickness and on the distance between the sample and the detector appears. When quantitative radiography (2 D) or tomography investigations (3 D) are performed, some image correction procedures for a description of the scattering effect are required. This thesis presents a method that can be used to enhance the neutron radiography image for objects with high scattering materials like hydrogen, carbon and other light materials. This method uses the Monte Carlo code, MCNP5, to simulate the neutron radiography process and get the flux distribution for each pixel of the image and determine the scattered neutrons distribution that causes the image blur and then subtract it from the initial image to improve its quality.

  14. Aging of black carbon particles under polluted urban environments: timescale, hygroscopicity and enhanced absorption and direct radiative forcing

    Science.gov (United States)

    Peng, J.; Hu, M.; Guo, S.; Du, Z.; Zheng, J.; Shang, D.; Levy Zamora, M.; Shao, M.; Wu, Y.; Zheng, J.; Wang, Y.; Zeng, L.; Collins, D. R.; Molina, M.; Zhang, R.

    2017-12-01

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the hygroscopic and optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using an outdoor environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. The κ (kappa) values of coating materials are calculated as 0.04 at both subsaturation and supersaturation conditions, respectively, indicating that the initial photochemical aging of BC particles does not appreciably alter the BC hygroscopicity. Our findings suggest that BC aging under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.

  15. Neutronics codes

    International Nuclear Information System (INIS)

    Buckel, G.

    1983-01-01

    The objectives are the development, testing and cultivation of reliable, efficient and user-optimized neutron-physical calculation methods and conformity with users' requirements concerning design of power reactors, planning and analysis of experiments necessary for their protection as well as research on physical key problems. A short outline of available computing programmes for the following objectives is given: - Provision of macroscopic group constants, - Calculation of neutron flux distribution in transport theory and diffusion approximation, - Evaluation of neutron flux-distribution, - Execution of disturbance calculations for the determination reactivity coefficients, and - graphical representation of results. (orig./RW) [de

  16. Supralinear detectors in neutron dosimetry

    International Nuclear Information System (INIS)

    Larsson, L.; Roth, R.A.; Katz, R.

    1977-01-01

    Dose-response curves for nuclear emulsions exposed to x-rays and neutrons are presented and discussed. Ilford K.5 plates were used to mimic an initial slope model of biological cell survival curves, and Ilford K-2.5 plates were used to mimic the multi-target survival model after gamma-ray irradiation. The plates were exposed to x-rays from a Torrex-150 x-ray unit and fission neutrons at the 18 kW Triga Mark I reactor. Representative calculations for the response of model detectors to 14 MeV neutrons were made for comparison with experimental findings. Results are presented and discussed

  17. Fast-neutron detecting system with n, γ discrimination

    International Nuclear Information System (INIS)

    Ouyang Xiaoping; Huang Bao; Cao Jinyun

    1997-11-01

    In the present work, a new type neutron detecting system is reported, which can absolutely measure neutron parameters in n + γ mixed fields and has a long continuance of static high vacuum of 10 -4 Pa. The detecting system, with middle neutron-detecting sensitivity, short time response and big linear current output, has applied successfully in pulsed neutron beam measurement

  18. Fast neutron dosimetry

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period

  19. Fast neutron dosimetry

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1993-01-01

    Research concentrated on three major areas during the last twelve months: (1) investigations of energy fluence and absorbed dose measurements using crystalline and hot pressed TLD materials exposes to ultrasoft beams of photons, (2) fast neutron kerma factor measurements for several important elements as well as NE-213 scintillation material response function determinations at the intense ''white'' source available at the WNR facility at LAMPF, and (3) kerma factor ratio determinations for carbon and oxygen to A-150 tissue equivalent plastic at the clinical fast neutron radiation facility at Harper Hospital, Detroit, MI. Progress summary reports of these efforts are given in this report

  20. Neutron Activation and Thermoluminescent Detector Responses to a Bare Pulse of the CEA Valduc SILENE Critical Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas Martin [ORNL; Isbell, Kimberly McMahan [ORNL; Lee, Yi-kang [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Gagnier, Emmanuel [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Authier, Nicolas [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille; Piot, Jerome [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille; Jacquet, Xavier [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille; Rousseau, Guillaume [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille; Reynolds, Kevin H. [Y-12 National Security Complex

    2016-09-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 11, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  1. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    of desired information. In the course, an introduction into the method and an overview on selected instruments at large scale facilities will be presented. Examples will be given that illustrate the potential of the method, mostly based on organic films. Results from the investigation of layered films......Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... films or films with magnetic properties. The reason is the peculiar property of neutron light since the mass of a neutron is close to the one of a proton, and since it bears a magnetic moment. The optical properties of matter, when interacting with neutrons, are described by a refractive index...

  2. Neutron scattering

    International Nuclear Information System (INIS)

    Furrer, A.

    1993-01-01

    This report contains the text of 16 lectures given at the Summer School and the report on a panel discussion entitled ''the relative merits and complementarities of x-rays, synchrotron radiation, steady- and pulsed neutron sources''. figs., tabs., refs

  3. Neutron storage

    International Nuclear Information System (INIS)

    Strelkov, A.V.

    2004-01-01

    The report is devoted to neutron storage (NS) and describes the history of experiments on the NS development. Great attention is paid to ultracold neutron (UCN) storage. The experiments on the UCN generation, transport, spectroscopy, storage and detection are described. Experiments on searching the UCN electric-dipole moment and electric charge are continued. Possible using of UCN for studying the nanoparticles is discussed [ru

  4. Neutron radiography

    International Nuclear Information System (INIS)

    Bayon, G.

    1989-01-01

    Neutronography or neutron radiography, a non-destructive test method which is similar in its principle to conventional X-ray photography, presently occupies a marginal position among non-destructive test methods (NDT) (no source of suitable performance or cost). Neutron radiography associated with the ORPHEE reactor permits industrial testing; it can very quickly meet a cost requirement comparable to that of conventional test methods. In 1988, 2500 parts were tested on this unit [fr

  5. Neutron detector

    International Nuclear Information System (INIS)

    Endo, Hiroshi.

    1993-01-01

    The device of the present invention detects neutrons in a reactor container under a high temperature and reduces the noise level in an FBR type reactor. That is, the detection section comprises a high heat resistant vessel containing a scintillator therein for detecting neutrons. Neutron signals sent from the detection section are inputted to a neutron measuring section by way of a signal transmission section. The detection section is disposed at the inside of the reactor container. Further, the signal transmission section is connected optically to the detection section. With such a constitution, since the detection section comprising the high temperature resistant vessel is disposed at the inside of the reactor container, neutron fluxes can be detected and measured at high sensitivity even under a high temperature circumstance. Since the signal transmission section is optically connected to the detection section, influence of radiation rays upon transmission of the neutron detection signals can be reduced. Accordingly, the noise level can be kept low. (I.S.)

  6. Neutron Scattering

    International Nuclear Information System (INIS)

    Fayer, Michael J.; Gee, Glendon W.

    2005-01-01

    The neutron probe is a standard tool for measuring soil water content. This article provides an overview of the underlying theory, describes the methodology for its calibration and use, discusses example applications, and identifies the safety issues. Soil water makes land-based life possible by satisfying plant water requirements, serving as a medium for nutrient movement to plant roots and nutrient cycling, and controlling the fate and transport of contaminants in the soil environment. Therefore, a successful understanding of the dynamics of plant growth, nutrient cycling, and contaminant behavior in the soil requires knowledge of the soil water content as well as its spatial and temporal variability. After more than 50 years, neutron probes remain the most reliable tool available for field monitoring of soil water content. Neutron probes provide integrated measurements over relatively large volumes of soil and, with proper access, allow for repeated sampling of the subsurface at the same locations. The limitations of neutron probes include costly and time-consuming manual operation, lack of data automation, and costly regulatory requirements. As more non-radioactive systems for soil water monitoring are developed to provide automated profiling capabilities, neutron-probe usage will likely decrease. Until then, neutron probes will continue to be a standard for reliable measurements of field water contents in soils around the globe

  7. Neutron-neutron probe for uranium exploration

    International Nuclear Information System (INIS)

    Smith, R.C.

    1979-01-01

    A neutron activation probe for assaying the amount of fissionable isotopes in an ore body is described which comprises a casing which is movable through a borehole in the ore body, a neutron source and a number of delayed neutron detectors arranged colinearly in the casing below the neutron source for detecting delayed neutrons

  8. Opto-microwave, Butler matrixes based front-end for a multi-beam large direct radiating array antenna

    Science.gov (United States)

    Piqueras, M. A.; Mengual, T.; Navasquillo, O.; Sotom, M.; Caille, G.

    2017-11-01

    The evolution of broadband communication satellites shows a clear trend towards beam forming and beamswitching systems with efficient multiple access schemes with wide bandwidths, for which to be economically viable, the communication price shall be as low as possible. In such applications, the most demanding antenna concept is the Direct Radiating Array (DRA) since its use allows a flexible power allocation between beams and may afford failures in their active chains with low impact on the antenna radiating pattern. Forming multiple antenna beams, as for `multimedia via satellite' missions, can be done mainly in three ways: in microwave domain, by digital or optical processors: - Microwave beam-formers are strongly constrained by the mass and volume of microwave devices and waveguides - the bandwidth of digital processors is limited due to power consumption and complexity constraints. - The microwave photonics is an enabling technology that can improve the antenna feeding network performances, overcoming the limitations of the traditional technology in the more demanding scenarios, and may overcome the conventional RF beam-former issues, to generate accurately the very numerous time delays or phase shifts required in a DRA with a large number of beams and of radiating elements. Integrated optics technology can play a crucial role as an alternative technology for implementing beam-forming structures for satellite applications thanks to the well known advantages of this technology such as low volume and weight, huge electrical bandwidth, electro-magnetic interference immunity, low consumption, remote delivery capability with low-attenuation (by carrying all microwave signals over optical fibres) and the robustness and precision that exhibits integrated optics. Under the ESA contract 4000105095/12/NL/RA the consortium formed by DAS Photonics, Thales Alenia Space and the Nanophotonic Technology Center of Valencia is developing a three-dimensional Optical Beamforming

  9. Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: airborne measurements in North-Western Europe

    Directory of Open Access Journals (Sweden)

    W. T. Morgan

    2010-09-01

    substantial reductions in sulphur dioxide emissions have yet to occur. Anticipated reductions in sulphur dioxide in polluted regions will result in an increase in the availability of ammonia to form ammonium nitrate as opposed to ammonium sulphate. This will be most important where intensive agricultural practises occur. Our observations over North-Western Europe, a region where sulphur dioxide emissions have already been reduced, indicate that failure to include the semi-volatile behaviour of ammonium nitrate will result in significant errors in predicted aerosol direct radiative forcing. Such errors will be particularly significant on regional scales.

  10. Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and aerosol direct radiative forcing

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2012-12-01

    Full Text Available This study develops an algorithm for representing detailed spectral features of vegetation albedo based on Moderate Resolution Imaging Spectrometer (MODIS observations at 7 discrete channels, referred to as the MODIS Enhanced Vegetation Albedo (MEVA algorithm. The MEVA algorithm empirically fills spectral gaps around the vegetation red edge near 0.7 μm and vegetation water absorption features at 1.48 and 1.92 μm which cannot be adequately captured by the MODIS 7 channels. We then assess the effects of applying MEVA in comparison to four other traditional approaches to calculate solar fluxes and aerosol direct radiative forcing (DRF at the top of atmosphere (TOA based on the MODIS discrete reflectance bands. By comparing the DRF results obtained through the MEVA method with the results obtained through the other four traditional approaches, we show that filling the spectral gap of the MODIS measurements around 0.7 μm based on the general spectral behavior of healthy green vegetation leads to significant improvement in the instantaneous aerosol DRF at TOA (up to 3.02 W m−2 difference or 48% fraction of the aerosol DRF, −6.28 W m−2, calculated for high spectral resolution surface reflectance from 0.3 to 2.5 μm for deciduous vegetation surface. The corrections of the spectral gaps in the vegetation spectrum in the near infrared, again missed by the MODIS reflectances, also contributes to improving TOA DRF calculations but to a much lower extent (less than 0.27 W m−2, or about 4% of the instantaneous DRF.

    Compared to traditional approaches, MEVA also improves the accuracy of the outgoing solar flux between 0.3 to 2.5 μm at TOA by over 60 W m−2 (for aspen 3 surface and aerosol DRF by over 10 W m−2 (for dry grass. Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol radiative forcing in the spectral range of 0.3 to 2.5 μm at

  11. Neutronics of the IFMIF neutron source: development and analysis

    International Nuclear Information System (INIS)

    Wilson, P.P.H.

    1999-01-01

    The accurate analysis of this system required the development of a code system and methodology capable of modelling the various physical processes. A generic code system for the neutronics analysis of neutron sources has been created by loosely integrating existing components with new developments: the data processing code NJOY, the Monte Carlo neutron transport code MCNP, and the activation code ALARA were supplemented by a damage data processing program, damChar, and integrated with a number of flexible and extensible modules for the Perl scripting language. Specific advances were required to apply this code system to IFMIF. Based on the ENDF-6 data format requirements of this system, new data evaluations have been implemented for neutron transport and activation. Extensive analysis of the Li(d, xn) reaction has led to a new MCNP source function module, M c DeLi, based on physical reaction models and capable of accurate and flexible modelling of the IFMIF neutron source term. In depth analyses of the neutron flux spectra and spatial distribution throughout the high flux test region permitted a basic validation of the tools and data. The understanding of the features of the neutron flux provided a foundation for the analyses of the other neutron responses. (orig./DGE) [de

  12. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments

    International Nuclear Information System (INIS)

    Lee, K.W.; Sheu, R.J.

    2015-01-01

    High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with 252 Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing 252 Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6-8 extended-range sphere versus the 6'' standard sphere). (authors)

  13. Pulsed thermal neutron source at the fast neutron generator.

    Science.gov (United States)

    Tracz, Grzegorz; Drozdowicz, Krzysztof; Gabańska, Barbara; Krynicka, Ewa

    2009-06-01

    A small pulsed thermal neutron source has been designed based on results of the MCNP simulations of the thermalization of 14 MeV neutrons in a cluster-moderator which consists of small moderating cells decoupled by an absorber. Optimum dimensions of the single cell and of the whole cluster have been selected, considering the thermal neutron intensity and the short decay time of the thermal neutron flux. The source has been built and the test experiments have been performed. To ensure the response is not due to the choice of target for the experiments, calculations have been done to demonstrate the response is valid regardless of the thermalization properties of the target.

  14. Extension of the calibration of an NE-213 liquid scintillator based pulse height response spectrometer up to 18 MeV neutron energy and leakage spectrum measurements on bismuth at 8 MeV and 18 MeV neutron energies

    International Nuclear Information System (INIS)

    Fenyvesi, A.; Valastyan, I.; Olah, L.; Csikai, J.; Plompen, A.; Jaime, R.; Loevestam, G.; Semkova, V.

    2011-01-01

    Monoenergetic neutrons were produced at the Van de Graaff accelerator of the EC-JRC-Institute for Reference Materials and Measurements (IRMM, Geel, Belgium). An air-jet cooled D_2-gas target (1.2 bar, ΔE_d = 448 keV) was bombarded with E_d =4976 keV deuterons to produce neutrons up to E_n = 8 MeV energy via the D(d,n)"3He reaction. Higher energy neutrons up to E_n = 18 MeV were produced via the T(d,n)"4He reaction by bombarding a TiT target with E_d =1968 keV deuterons. Pulse height spectra were measured at different neutron energies from E_n = 8 MeV up to E_n = 18 MeV with the NE-213 liquid scintillator based Pulse Height Response Spectrometer (PHRS) of UD-IEP. The energy calibration of the PHRS system has been extended up to E_n = 18 MeV. Pulse height spectra induced by gamma photons have been simulated by the GRESP7 code. Neutron induced pulse height spectra have been simulated by the NRESP7 and MCNP-POLIMI codes. Comparison of the results of measurements and simulations enables the improvement of the parameter set of the function used by us to describe the light output dependence of the resolution of the PHRS system at light outputs of L > 2 light units. Also, it has been shown that the derivation method for unfolding neutron spectra from measured pulse height spectra performs well when relative measurements are done up to E_n = 18 MeV neutron energy. For matrix unfolding purposes, the NRESP7 code has to be preferred to calculate the pulse height response matrix of the PHRS system. Leakage spectra of neutrons behind bismuth slabs of different thicknesses have been measured with the PHRS system by using monoenergetic neutrons. The maximum slab thickness was d = 14 cm. Simulations of the measurements have been carried out with the MCNP-4c code. The necessary nuclear cross-sections were taken from the from the ENDF/B-VII and JEFF.3.1 data libraries. For both libraries, the agreement of measured and simulated neutron spectra is good for the 5 MeV ≤ En ≤ 18 Me

  15. Comparison of Bonner sphere responses calculated by different Monte Carlo codes at energies between 1 MeV and 1 GeV – Potential impact on neutron dosimetry at energies higher than 20 MeV

    CERN Document Server

    Rühm, W; Pioch, C; Agosteo, S; Endo, A; Ferrarini, M; Rakhno, I; Rollet, S; Satoh, D; Vincke, H

    2014-01-01

    Bonner Spheres Spectrometry in its high-energy extended version is an established method to quantify neutrons at a wide energy range from several meV up to more than 1 GeV. In order to allow for quantitative measurements, the responses of the various spheres used in a Bonner Sphere Spectrometer (BSS) are usually simulated by Monte Carlo (MC) codes over the neutron energy range of interest. Because above 20 MeV experimental cross section data are scarce, intra-nuclear cascade (INC) and evaporation models are applied in these MC codes. It was suspected that this lack of data above 20 MeV may translate to differences in simulated BSS response functions depending on the MC code and nuclear models used, which in turn may add to the uncertainty involved in Bonner Sphere Spectrometry, in particular for neutron energies above 20 MeV. In order to investigate this issue in a systematic way, EURADOS (European Radiation Dosimetry Group) initiated an exercise where six groups having experience in neutron transport calcula...

  16. SCINFUL-QMD: Monte Carlo based computer code to calculate response function and detection efficiency of a liquid organic scintillator for neutron energies up to 3 GeV

    International Nuclear Information System (INIS)

    Satoh, Daiki; Sato, Tatsuhiko; Shigyo, Nobuhiro; Ishibashi, Kenji

    2006-11-01

    The Monte Carlo based computer code SCINFUL-QMD has been developed to evaluate response function and detection efficiency of a liquid organic scintillator for neutrons from 0.1 MeV to 3 GeV. This code is a modified version of SCINFUL that was developed at Oak Ridge National Laboratory in 1988, to provide a calculated full response anticipated for neutron interactions in a scintillator. The upper limit of the applicable energy was extended from 80 MeV to 3 GeV by introducing the quantum molecular dynamics incorporated with the statistical decay model (QMD+SDM) in the high-energy nuclear reaction part. The particles generated in QMD+SDM are neutron, proton, deuteron, triton, 3 He nucleus, alpha particle, and charged pion. Secondary reactions by neutron, proton, and pion inside the scintillator are also taken into account. With the extension of the applicable energy, the database of total cross sections for hydrogen and carbon nuclei were upgraded. This report describes the physical model, computational flow and how to use the code. (author)

  17. Method and apparatus for neutron radiation monitoring

    International Nuclear Information System (INIS)

    Schwarzmann, A.

    1985-01-01

    A self-calibrated neutron radiation monitor includes a flux responsive element comprised of intrinsic silicon neutron detectors and self-calibration resistors in a single structure. As the resistance of the flux responsive element increases to the value of successive calibration resistors, known increments of flux have been encountered

  18. neutron radiography

    International Nuclear Information System (INIS)

    Barton, J.P.

    1993-01-01

    Neutron radiography (or radiology) is a diverse filed that uses neutrons of various energies, subthermal, thermal, epithermal or fast in either steady state or pulsed mode to examine objects for industrial, medical, or other purposes, both microscopic and macroscopic. The applications include engineering design, biological studies, nondestructive inspection and materials evaluation. In the past decade, over 100 different centers in some 30 countries have published reports of pioneering activities using reactors, accelerators and isotopic neutron sources. While film transparency and electronic video are most common imaging methods for static or in motion objects respectively, there are other important data gathering techniques, including track etch, digital gauging and computed tomography. A survey of the world-wide progress shows the field to be gaining steadily in its diversity, its sophistication and its importance. (author)

  19. Comparison of different experimental and analytical measures of the thermal annealing response of neutron-irradiated RPV steels

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    The thermal annealing response of several materials as indicated by Charpy transition temperature (TT) and upper-shelf energy (USE), crack initiation toughness, K Jc , predictive models, and automated-ball indentation (ABI) testing are compared. The materials investigated are representative reactor pressure vessel (RPV) steels (several welds and a plate) that were irradiated for other tasks of the Heavy-Section Steel Irradiation (HSSI) Program and are relatively well characterized in the unirradiated and irradiated conditions. They have been annealed at two temperatures, 343 and 454 C (650 and 850 F) for varying lengths of time. The correlation of the Charpy response and the fracture toughness, ABI, and the response predicted by the annealing model of Eason et al. for these conditions and materials appears to be reasonable. The USE after annealing at the temperature of 454 C appears to recover at a faster rate than the TT, and even over-recovers (i.e., the recovered USE exceeds that of the unirradiated material)

  20. NEUTRONIC REACTOR

    Science.gov (United States)

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  1. Neutron dosimeter

    International Nuclear Information System (INIS)

    Bartko, J.; Schoch, K.F. Jr.; Congedo, T.V.; Anderson, S.L. Jr.

    1989-01-01

    This patent describes a nuclear reactor. It comprises a reactor core; a thermal shield surrounding the reactor core; a pressure vessel surrounding the thermal shield; a neutron dosimeter positioned outside of the thermal shield, the neutron dosimeter comprising a layer of fissile material and a second layer made of a material having an electrical conductivity which permanently varies as a function of its cumulative ion radiation dose; and means, outside the pressure vessel and electrically connected to the layer of second material, for measuring electrical conductivity of the layer of second material

  2. Quantitative neutron radiography using neutron absorbing honeycomb

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.

    1993-01-01

    This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)

  3. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  4. Direct observation and measurements of neutron induced deep levels responsible for N{sub eff} changes in high resistivity silicon detectors using TCT

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.; Li, C.J. [Brookhaven National Lab., Upton, NY (United States); Eremin, V.; Verbitskaya, E. [AN SSSR, Leningrad (Russian Federation). Fiziko-Tekhnicheskij Inst.

    1996-03-01

    Neutron induced deep levels responsible for changes of space charge concentration {ital N{sub eff}} in high resistivity silicon detectors have been observed directly using the transient current technique (TCT). It has been observed by TCT that the absolute value and sign of {ital N{sub eff}} experience changes due to the trapping of non- equilibrium free carriers generated near the surface (about 5 micrometers depth into the silicon) by short wavelength laser pulses in fully depleted detectors. Electron trapping causes {ital N{sub eff}} to change toward negative direction (or more acceptor-like space charges) and hole trapping causes {ital N{sub eff}} to change toward positive direction (or more donor-like space charges). The specific temperature associated with these {ital N{sub eff}} changes are those of the frozen-up temperatures for carrier emission of the corresponding deep levels. The carrier capture cross sections of various deep levels have been measured directly using different free carrier injection schemes. 10 refs., 12 figs., 3 tabs.

  5. Beyond KERMA - neutron data for biomedical applications

    International Nuclear Information System (INIS)

    Blomgren, J.; Olsson, N.

    2003-01-01

    Presently, many new applications of fast neutrons are emerging or under development, like dose effects due to cosmic-ray neutrons for airplane crew, fast-neutron cancer therapy, studies of electronic failures induced by cosmic-ray neutrons, and accelerator-driven incineration of nuclear waste and energy production technologies. All these areas would benefit from improved neutron dosimetry. In this paper, the present rapid progress on measurements of double-differential neutron-induced nuclear reaction data are described. With such data at hand, the full response of, in principle, any system, including human tissue, can be calculated in detail. This could potentially revolutionise our understanding of biological effects in tissue due to fast neutrons. (author)

  6. A neutron dose equivalent meter at CAEP

    International Nuclear Information System (INIS)

    Tian Shihai; Lu Yan; Wang Heyi; Yuan Yonggang; Chen Xu

    2012-01-01

    The measurement of neutron dose equivalent has been a widespread need in industry and research. In this paper, aimed at improving the accuracy of neutron dose equivalent meter: a neutron dose counter is simulated with MCNP5, and the energy response curve is optimized. The results show that the energy response factor is from 0.2 to 1.8 for neutrons in the energy range of 2.53×10 -8 MeV to 10 MeV Compared with other related meters, it turns that the design of this meter is right. (authors)

  7. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    The method of operating a water-cooled neutronic reactor having a graphite moderator is described which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40--60 volume percent of the mixture, in contact with the graphite moderator. 2 claims, 4 figures

  8. Neutron reflectivity

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available The specular neutron reflectivity is a technique enabling the measurement of neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5 Å up 5000 Å. It is a scattering technique that averages information on the entire surface and it is therefore not possible to obtain information within the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons makes it particularly interesting in the fields of soft matter, biophysics and magnetic thin films. This course is a basic introduction to the technique and does not address the magnetic reflectivity. It is composed of three parts describing respectively its principle and its formalism, the experimental aspects of the method (spectrometers, samples and two examples related to the materials for energy.

  9. New Neutron Dosimeter

    CERN Multimedia

    2001-01-01

    CERN has been operating an Individual Dosimetry Service for neutrons for about 35 years. The service was based on nuclear emulsions in the form of film packages which were developed and scanned in the Service. In 1999, the supplier of theses packages informed CERN that they will discontinue production of this material. TIS-RP decided to look for an external service provider for individual neutron dosimetry. After an extensive market survey and an invitation for tender, a supplier that met the stringent technical requirements set up by CERN's host states for personal dosimeters was identified. The new dosimeter is based on a track-etching technique. Neutrons have the capability of damaging plastic material. The microscopic damage centres are revealed by etching them in a strong acid. The resulting etch pits can be automatically counted and their density is proportional to dose equivalent from neutrons. On the technical side, the new dosimeter provides an improved independence of its response from energy and th...

  10. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  11. Neutron personnel dosimetry

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1982-01-01

    The measurement of neutron exposures to personnel is an issue that has received increased attention in the last few years. It is important to consider key aspects of the whole dosimetry system when developing dose estimates. This begins with selection of proper dosimeters and survey instruments, and extends through the calibration methods. One must match the spectral response and sensitivity of the dosimeter to the spectral characteristics of the neutron fields. Threshold detectors that are insensitive to large fractions of neutrons in the lower energy portion of reactor spectra should be avoided. Use of two or more detectors with responses that complement each other will improve measurement quality. It is important to understand the spectral response of survey instruments, so that spectra which result in significant overresponse do not lead to overestimation of dose. Calibration sources that do not match operational field spectra can contribute to highly erroneous results. In those situations, in-field calibration techniques should be employed. Although some detection developments have been made in recent years, a lot can be done with existing technology until fully satisfactory, long term solutions are obtained

  12. Neutron stars as cosmic neutron matter laboratories

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    Recent developments which have radically changed our understanding of the dynamics of neutron star superfluids and the free precession of neutron stars are summarized, and the extent to which neutron stars are cosmic neutron matter laboratories is discussed. 17 refs., 1 tab

  13. Basic of Neutron NDA

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    The objectives of this presentation are to introduce the basic physics of neutron production, interactions and detection; identify the processes that generate neutrons; explain the most common neutron mechanism, spontaneous and induced fission and (a,n) reactions; describe the properties of neutron from different sources; recognize advantages of neutron measurements techniques; recognize common neutrons interactions; explain neutron cross section measurements; describe the fundamental of 3He detector function and designs; and differentiate between passive and active assay techniques.

  14. Measurement-based climatology of aerosol direct radiative effect, its sensitivities, and uncertainties from a background southeast US site

    Science.gov (United States)

    Sherman, James P.; McComiskey, Allison

    2018-03-01

    Aerosol optical properties measured at Appalachian State University's co-located NASA AERONET and NOAA ESRL aerosol network monitoring sites over a nearly four-year period (June 2012-Feb 2016) are used, along with satellite-based surface reflectance measurements, to study the seasonal variability of diurnally averaged clear sky aerosol direct radiative effect (DRE) and radiative efficiency (RE) at the top-of-atmosphere (TOA) and at the surface. Aerosol chemistry and loading at the Appalachian State site are likely representative of the background southeast US (SE US), home to high summertime aerosol loading and one of only a few regions not to have warmed during the 20th century. This study is the first multi-year ground truth DRE study in the SE US, using aerosol network data products that are often used to validate satellite-based aerosol retrievals. The study is also the first in the SE US to quantify DRE uncertainties and sensitivities to aerosol optical properties and surface reflectance, including their seasonal dependence.Median DRE for the study period is -2.9 W m-2 at the TOA and -6.1 W m-2 at the surface. Monthly median and monthly mean DRE at the TOA (surface) are -1 to -2 W m-2 (-2 to -3 W m-2) during winter months and -5 to -6 W m-2 (-10 W m-2) during summer months. The DRE cycles follow the annual cycle of aerosol optical depth (AOD), which is 9 to 10 times larger in summer than in winter. Aerosol RE is anti-correlated with DRE, with winter values 1.5 to 2 times more negative than summer values. Due to the large seasonal dependence of aerosol DRE and RE, we quantify the sensitivity of DRE to aerosol optical properties and surface reflectance, using a calendar day representative of each season (21 December for winter; 21 March for spring, 21 June for summer, and 21 September for fall). We use these sensitivities along with measurement uncertainties of aerosol optical properties and surface reflectance to calculate DRE uncertainties. We also estimate

  15. Response of E. coli AB2463 recA to fast neutron beams with mean energies in the range 4 to 27 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Redpath, J L [Michael Reese Hospital, Chicago, Ill. (USA)

    1978-07-01

    The radiosensitivity of E.coli AB2463 recA, given as the reciprical of the mean lethal dose, Do/sup -1/, has been shown to be the same for four fast neutron beams with widely different energy spectra. It is proposed that this organism can be used to intercompare dosimetry on fast neutron beams with mean energies in the range 4 to 25 MeV with an accuracy of +- 5%.

  16. 1987 calibration of the TFTR neutron spectrometers

    International Nuclear Information System (INIS)

    Barnes, C.W.; Strachan, J.D.; Princeton Univ., NJ

    1989-12-01

    The 3 He neutron spectrometer used for measuring ion temperatures and the NE213 proton recoil spectrometer used for triton burnup measurements were absolutely calibrated with DT and DD neutron generators placed inside the TFTR vacuum vessel. The details of the detector response and calibration are presented. Comparisons are made to the neutron source strengths measured from other calibrated systems. 23 refs., 19 figs., 6 tabs

  17. Model independent spectroscopic information from an analysis of peripheral direct radiative capture reaction and its application for an extrapolation of an astrophysical S-factor to stellar energies

    International Nuclear Information System (INIS)

    Igamov, S.B.; Tursunmuratov, T.M.; Yarmukhamedov, R.

    2003-01-01

    In this work, within the framework of the cluster potential approach we develop a method which can be used an independent source of getting information on the value of the nuclear vertex constant (NVC) (or respective asymptotical normalization coefficient (ANC)) from the analysis of the direct radiative capture cross section σ(E)(or the astrophysical S-factor S(E)) at extremely low energies by a model independent way as possible. The main idea of the proposed method is that at stellar energies peripheral direct radiative capture reaction of astrophysical interest proceeds mainly through the tail of the overlap integral, which is completely determined by the binding energy and the respective ANC (or NVC). The main advantage of the proposed method is that it allows us to determine both the absolute value of NVC (or ANC) and the astrophysical S-factor S(E) at solar energies (0-50 keV) by means of the analysis of the same experimental astrophysical S-factor S exp (E) in a correct self consistent way using the same potential both for the bound state and for scattering state. The method has been applied for an investigation of the direct radiative capture t(α, γ) 7 Li and 3 He(α, γ) 7 Be reactions at extremely low energies. At first, this method was used for analysis of the S exp (E) to determine values of the modulus squared of the NVC's (or the respective ANC's). The values of NVC's are presented. Then, the obtained NVC's are used by us for extrapolation of the S(E) of the reactions considered to stellar energies (E=0-50 keV) for the 3 He(α, γ) 7 Be reaction and for the t(α, γ) 7 Li reaction. The obtained results are compared with those other authors

  18. Neutron detection using Dy2O3 activation detectors

    International Nuclear Information System (INIS)

    Gomaa, M.A.; Mohamed, E.J.

    1979-01-01

    The aim of the present study is to examine the usefulness of Dy 2 O 3 not only as thermal neutron activation detector but also as a fast neutron detector. For thermal neutrons, the half life of 165 Dy is measured to be (141 +- 6) min, its response to thermal neutrons is (2.18 +- 0.01) cpm/ncm -2 s -1 for a 250 mg Dy 2 O 3 pellet. For fast neutrons the Dy 2 O 3 detector is placed within a 20 cm polyethylene sphere and its response is found to be (2.2 +- 0.1) cpm/ncm -2 s -1 for 4 MeV neutrons and (2.10 +- 0.04) cpm/ncm -2 s -1 for 14 MeV neutrons. For neutron dosimetry, its response is found to be (16.7 +- 0.4) cpm per mrem h -1 . (author)

  19. A tilted fiber-optic plate coupled CCD detector for high resolution neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongyul; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Jongyul; Hwy, Limchang; Kim, Taejoo; Lee, Kyehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Seungwook [Pusan National Univ., Pusan (Korea, Republic of)

    2013-05-15

    One of these efforts is that a tilted scintillator geometry and lens coupled CCD detector for neutron imaging system were used to improve spatial resolution in one dimension. The increased spatial resolution in one dimension was applied to fuel cell study. However, a lens coupled CCD detector has lower sensitivity than a fiber-optic plate coupled CCD detector due to light loss. In this research, a tilted detector using fiber-optic plate coupled CCD detector was developed to improve resolution and sensitivity. In addition, a tilted detector can prevent an image sensor from direct radiation damage. Neutron imaging has been used for fuel cell study, lithium ion battery study, and many scientific applications. High quality neutron imaging is demanded for more detailed studies of applications, and spatial resolution should be considered to get high quality neutron imaging. Therefore, there were many efforts to improve spatial resolution.

  20. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2013-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)

  1. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2012-01-01

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  2. Pulsed neutron generator

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Bykovskii, Yu.A.; Vergun, I.I.; Kozlovskii, K.I.; Kozyrev, Yu.P.; Leonov, R.K.; Simagin, B.I.; Tsybin, A.S.; Shikanov, A.Ie.

    1986-03-01

    The paper describes a new device for generating pulsed neutron fields, utilized in nuclear geophysics for carrying out pulsed neutron logging and activation analysis under field conditions. The invention employs a sealed-off neutron tube with a laser ion source which increases neutron yield to the level of 10 neutrons per second or higher. 2 refs., 1 fig

  3. Neutron scattering

    International Nuclear Information System (INIS)

    1991-02-01

    The annual report on hand gives an overview of the research work carried out in the Laboratory for Neutron Scattering (LNS) of the ETH Zuerich in 1990. Using the method of neutron scattering, it is possible to examine in detail the static and dynamic properties of the condensed material. In accordance with the multidisciplined character of the method, the LNS has for years maintained a system of intensive co-operation with numerous institutes in the areas of biology, chemistry, solid-state physics, crystallography and materials research. In 1990 over 100 scientists from more than 40 research groups both at home and abroad took part in the experiments. It was again a pleasure to see the number of graduate students present, who were studying for a doctorate and who could be introduced into the neutron scattering during their stay at the LNS and thus were in the position to touch on central ways of looking at a problem in their dissertation using this modern experimental method of solid-state research. In addition to the numerous and interesting ways of formulating the questions to explain the structure, nowadays the scientific programme increasingly includes particularly topical studies in connection with high temperature-supraconductors and materials research

  4. Study of the response to neutrons of a personal dosemeter in mixed fields (n, {gamma}) in function of Hp(10); Estudio de la respuesta a neutrones de un dosimetro personal en campos mixtos (n, {gamma}) en funcion de Hp(10)

    Energy Technology Data Exchange (ETDEWEB)

    Cruzate, J.; Gregori, B.; Carelli, J.; Aguerre, L.; Discacciatti, A. [Autoridad REgulatoria Nuclear, Av. del Libertador 8250 (1429), Buenos Aires (Argentina)]. e-mail: cruzate@cae.arn.gov.ar

    2006-07-01

    In this work it is presented the theoretical study and their experimental validation of the answer of the personal dosimetro in terms of the component of neutrons of the personal equivalent dose Hpn(10) in function of the energy, in presence of fields of neutrons and range. The personal dosimetro, based on detecting termoluminiscentes (TLD), it consists of two detectors 7LiF and two 6LiF, located low filters of plastic and cadmium starting from whose information is evaluated the component range and of neutrons of the dose. Additionally it consists of a detecting CaF2, used basically to discriminate against the energy of the component range and to make the corresponding corrections on the evaluation of the dose range obtained with the 7LiF. The answer to neutrons in function of the energy, defined as the quotient among the one I number of reactions 6Li(n, a)4He taken place in each TLD and the Hpn(10), it was calculated using the code MCNPX and the library ENDF/B-VI. You model the dosimetro under the irradiation conditions proposed by the ISO8529-3. Faces monoenergeticos were simulated in the range of energy understood between 70 keV and 5 MeV. The dispersion in each one of the results of the simulation is smaller than 3%. You I study the existent relationship among the answer te6rica, reactions (n,a)/Hpn(10) and the experimental one, nC/Hpn(10), for a given thermal treatment. The factor of resulting conversion is constant in the energy and similar to 1,71 104 reacciones(n, a)/nC, with a smaller standard deviation to 10%. The experimental answer was obtained starting from the irradiations carried out in the mark of the International Intercomparacion of Dosimetria in Mixed Campos (n,) 2004 organized by the OIEA next to the PTB (Germany) and the IRSN (France). The extension of these calculations to other spectra of neutrons of fields real they will allow to obtain group of factors of application conversion in routine and accidental situations. (Author)

  5. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  6. Personnel neutron dosimeter evaluation and upgrade program

    International Nuclear Information System (INIS)

    Fix, J.J.; Brackenbush, L.W.; McDonald, J.C.; Roberson, P.L.; Holbrook, K.L.; Endres, G.W.R.; Faust, L.G.

    1983-01-01

    Evaluation of neutron dosimeters from twelve DOE laboratories involved about 2500 dosimeter irradiations at both PNL and the National Bureau of Standards (NBS) using neutrons of several energies and doses and several irradiations for good statistical analysis. The data and their analyses will be published later. The information evaluates accuracy, precision, lower dose detection, and energy response of dosimeters

  7. Detection of explosives by neutron scattering

    International Nuclear Information System (INIS)

    Brooks, F.D.; Buffler, A.; Allie, M.S.; Nchodu, M.R.; Bharuth-Ram, K.

    1998-01-01

    For non-intrusive detection of hidden explosives or other contraband such as narcotics a fast neutron scattering analysis (FNSA) technique is proposed. An experimental arrangement uses a collimated, pulsed beam of neutrons directed at the sample. Scattered neutrons are detected by liquid scintillation counters at different scattering angles. A scattering signature is derived from two-parameter data, counts vs pulse height and time-of-flight measured for each element (H, C, N or O) at each of two scattering angles and two neutron energies. The elemental signatures are very distinctive and constitute a good response matrix for unfolding elemental components from the scattering signatures measured for different compounds

  8. Neutron yield measurements on a TMX endplug

    International Nuclear Information System (INIS)

    Slaughter, D.R.

    1980-01-01

    Neutron yield measurements were made on the east endplug of TMX using a calibrated recoil proton counter. The detector consists of a liquid scintillator (NE 213) with a pulse shape discrimination property that allows for identifying photon and neutron interactions. An energy threshold is established to suppress the response to scattered neutrons with energies lower than 1 to 2 MeV. Results indicate there are typical neutron yields of 2 to 3 x 10 11 n/s during a 25-ms discharge with 200 A of 20-keV neutral beam injection into the endplug

  9. The measurement of neutron and neutron induced photon spectra in fusion reactor related assemblies

    CERN Document Server

    Unholzer, S; Klein, H; Seidel, K

    2002-01-01

    The spectral neutron and photon fluence (or flux) measured outside and inside of assemblies related to fusion reactor constructions are basic quantities of fusion neutronics. The comparison of measured spectra with the results of MCNP neutron and photon transport calculations allows a crucial test of evaluated nuclear data as generally used in fusion applications to be carried out. The experiments concern mixed neutron/photon fields with about the same intensity of the two components. An NE-213 scintillation spectrometer, well described by response matrices for both neutrons and photons, is used as proton-recoil and Compton spectrometer. The experiments described here in more detail address the background problematic of two applications, an iron benchmark experiment with an ns-pulsed neutron source and a deep penetration mock-up experiment for the investigation of the ITER in-board shield system. The measured spectral neutron and photon fluences are compared with spectra calculated with the MCNP code on the b...

  10. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  11. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  12. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  13. Neutron Sources for Standard-Based Testing

    Energy Technology Data Exchange (ETDEWEB)

    Radev, Radoslav [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McLean, Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-10

    The DHS TC Standards and the consensus ANSI Standards use 252Cf as the neutron source for performance testing because its energy spectrum is similar to the 235U and 239Pu fission sources used in nuclear weapons. An emission rate of 20,000 ± 20% neutrons per second is used for testing of the radiological requirements both in the ANSI standards and the TCS. Determination of the accurate neutron emission rate of the test source is important for maintaining consistency and agreement between testing results obtained at different testing facilities. Several characteristics in the manufacture and the decay of the source need to be understood and accounted for in order to make an accurate measurement of the performance of the neutron detection instrument. Additionally, neutron response characteristics of the particular instrument need to be known and taken into account as well as neutron scattering in the testing environment.

  14. (International Collaboration on Advanced Neutron Sources)

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, J.B.

    1990-11-08

    The International Collaboration on Advanced Neutron Sources was started about a decade ago with the purpose of sharing information throughout the global neutron community. The collaboration has been extremely successful in optimizing the use of resources, and the discussions are open and detailed, with reasons for failure shared as well as reasons for success. Although the meetings have become increasingly oriented toward pulsed neutron sources, many of the neutron instrumentation techniques, such as the development of better monochromators, fast response detectors and various data analysis methods, are highly relevant to the Advanced Neutron Source (ANS). I presented one paper on the ANS, and another on the neutron optical polarizer design work which won a 1989 R D-100 Award. I also gained some valuable design ideas, in particular for the ANS hot source, in discussions with individual researchers from Canada, Western Europe, and Japan.

  15. Neutrons scattering studies in the actinide region

    International Nuclear Information System (INIS)

    Kegel, G.H.R.; Egan, J.J.

    1992-09-01

    During the report period were investigated the following areas: prompt fission neutron energy spectra measurements; neutron elastic and inelastic scattering from 239 Pu; neutron scattering in 181 Ta and 197 Au; response of a 235 U fission chamber near reaction thresholds; two-parameter data acquisition system; ''black'' neutron detector; investigation of neutron-induced defects in silicon dioxide; and multiple scattering corrections. Four Ph.D. dissertations and one M.S. thesis were completed during the report period. Publications consisted of three journal articles, four conference papers in proceedings, and eleven abstracts of presentations at scientific meetings. There are currently four Ph.D. and one M.S. candidates working on dissertations directly associated with the project. In addition, three other Ph.D. candidates are working on dissertations involving other aspects of neutron physics in this laboratory

  16. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  17. Portable system for periodical verification of area monitors for neutrons

    International Nuclear Information System (INIS)

    Souza, Luciane de R.; Leite, Sandro Passos; Lopes, Ricardo Tadeu; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da; Pereira, Walsan W.

    2009-01-01

    The Neutrons Laboratory develops a project viewing the construction of a portable test system for verification of functioning conditions of neutron area monitors. This device will allow to the users the verification of the calibration maintenance of his instruments at the use installations, avoiding the use of an inadequate equipment related to his answer to the neutron beam response

  18. Neutron area monitor with TLD pairs

    International Nuclear Information System (INIS)

    Guzman G, K. A.; Borja H, C. G.; Valero L, C.; Hernandez D, V. M.; Vega C, H. R.

    2011-11-01

    The response of a passive neutron area monitor with pairs of thermoluminescent dosimeters has been calculated using the Monte Carlo code MCNP5. The response was calculated for one TLD 600 located at the center of a polyethylene cylinder, as moderator. When neutrons collide with the moderator lose their energy reaching the TLD with thermal energies where the ambient dose equivalent is calculated. The response was calculated for 47 monoenergetic neutron sources ranging from 1E(-9) to 20 MeV. Response was calculated using two irradiation geometries, one with an upper source and another with a lateral source. For both irradiation schemes the response was calculated with the TLDs in two positions, one parallel to the source and another perpendicular to the source. The advantage of this passive neutron monitor area is that can be used in locations with intense, pulsed and mixed radiation fields. (Author)

  19. Calculations of neutron spectra after neutron-neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, B E [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Stephenson, S L [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Howell, C R [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G E [North Carolina State University, Raleigh, NC 27695-8202 (United States); Tornow, W [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Furman, W I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lychagin, E V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Muzichka, A Yu [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nekhaev, G V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Strelkov, A V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Sharapov, E I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shvetsov, V N [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2004-09-01

    A direct neutron-neutron scattering length, a{sub nn}, measurement with the goal of 3% accuracy (0.5 fm) is under preparation at the aperiodic pulsed reactor YAGUAR. A direct measurement of a{sub nn} will not only help resolve conflicting results of a{sub nn} by indirect means, but also in comparison to the proton-proton scattering length, a{sub pp}, shed light on the charge-symmetry of the nuclear force. We discuss in detail the analysis of the nn-scattering data in terms of a simple analytical expression. We also discuss calibration measurements using the time-of-flight spectra of neutrons scattered on He and Ar gases and the neutron activation technique. In particular, we calculate the neutron velocity and time-of-flight spectra after scattering neutrons on neutrons and after scattering neutrons on He and Ar atoms for the proposed experimental geometry, using a realistic neutron flux spectrum-Maxwellian plus epithermal tail. The shape of the neutron spectrum after scattering is appreciably different from the initial spectrum, due to collisions between thermal-thermal and thermal-epithermal neutrons. At the same time, the integral over the Maxwellian part of the realistic scattering spectrum differs by only about 6 per cent from that of a pure Maxwellian nn-scattering spectrum.

  20. Determination of neutron spectra using the programs GNSR and SPECTRIX

    International Nuclear Information System (INIS)

    Weyrauch, M.; Dietz, E.; Matzke, M.

    2002-01-01

    We describe the capabilities and the application of two computer programs, which have been developed in order to facilitate common tasks in neutron spectrometry: GNSR (calculation of response matrices) and SPECTRIX (unfolding). Gas-filled Neutron Spectrometer Response calculates response functions and response matrices of various gas-filled neutron detectors. It can be configured to accommodate the appropriate gas-fillings and supports a number of different neutron beam configurations with a possibility to input calculated or measured neutron beam spectra. The program includes graphical capabilities as well as a context-sensitive help system. SPECTRIX implements several unfolding algorithms as well as support algorithms for unfolding and includes graphics capabilities and context-sensitive help. We apply both programs to a specific example: calculation of the response matrix of a 3 He detector and unfolding of the neutron spectrum of a thick accelerator target using the calculated response matrix

  1. Neutron flux measurement utilizing Campbell technique

    International Nuclear Information System (INIS)

    Kropik, M.

    2000-01-01

    Application of the Campbell technique for the neutron flux measurement is described in the contribution. This technique utilizes the AC component (noise) of a neutron chamber signal rather than a usually used DC component. The Campbell theorem, originally discovered to describe noise behaviour of valves, explains that the root mean square of the AC component of the chamber signal is proportional to the neutron flux (reactor power). The quadratic dependence of the reactor power on the root mean square value usually permits to accomplish the whole current power range of the neutron flux measurement by only one channel. Further advantage of the Campbell technique is that large pulses of the response to neutrons are favoured over small pulses of the response to gamma rays in the ratio of their mean square charge transfer and thus, the Campbell technique provides an excellent gamma rays discrimination in the current operational range of a neutron chamber. The neutron flux measurement channel using state of the art components was designed and put into operation. Its linearity, accuracy, dynamic range, time response and gamma discrimination were tested on the VR-1 nuclear reactor in Prague, and behaviour under high neutron flux (accident conditions) was tested on the TRIGA nuclear reactor in Vienna. (author)

  2. Magnetic field devices for neutron spin transport and manipulation in precise neutron spin rotation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado-Velázquez, M. [Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, 04510 (Mexico); Barrón-Palos, L., E-mail: libertad@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 (Mexico); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Snow, W.M. [Indiana University, Bloomington, IN 47405 (United States)

    2017-05-11

    The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10{sup −7} rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.

  3. Development of self-powered neutron detectors for neutron flux monitoring in HCLL and HCPB ITER-TBM

    International Nuclear Information System (INIS)

    Angelone, M.; Klix, A.; Pillon, M.; Batistoni, P.; Fischer, U.; Santagata, A.

    2014-01-01

    Highlights: •Self powered neutron detector (SPND) is attractive neutron monitor for TBM in ITER. •In hard neutron spectra (e.g. TBM) there is the need to optimize their response. •Three state-of-the-art SPNDs were tested using fast and 14 MeV neutrons. •The response of SPNDs is much lower than in thermal neutron flux. •FISPACT calculations performed to find out candidate materials in hard spectra. -- Abstract: Self powered neutron detectors (SPND) have a number of interesting properties (e.g. small dimensions, capability to operate in harsh environments, absence of external bias), so they are attractive neutron monitors for TBM in ITER. However, commercially available SPNDs are optimized for operation in a thermal nuclear reactor where the neutron spectrum is much softer than that expected in a TBM. This fact can limit the use of SPND in a TBM since the effective cross sections for the production of beta emitters are much lower in a fast neutron spectrum. This work represents the first attempt to study SPNDs as neutron flux monitors for TBM. Three state-of-the-art SPND available on the market were bought and tested using fast neutrons at TAPIRO fast neutron source of ENEA Casaccia and with 14 MeV neutrons at the Frascati neutron generator (FNG). The results clearly indicate that in fast neutron spectra, the response of SPNDs is much lower than in thermal neutron flux. Activation calculations were performed using the FISPACT code to find out possible material candidates for SPND suitable for operation in TBM neutron spectra

  4. Development of self-powered neutron detectors for neutron flux monitoring in HCLL and HCPB ITER-TBM

    Energy Technology Data Exchange (ETDEWEB)

    Angelone, M., E-mail: maurizio.angelone@enea.it [Associazione ENEA-EURATOM sulla FusioneENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Klix, A. [Association KIT-EURATOM, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Pillon, M.; Batistoni, P. [Associazione ENEA-EURATOM sulla FusioneENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Fischer, U. [Association KIT-EURATOM, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Santagata, A. [ENEA C.R. Casaccia, via Anguillarese Km. 1,300, 00100 Roma (Italy)

    2014-10-15

    Highlights: •Self powered neutron detector (SPND) is attractive neutron monitor for TBM in ITER. •In hard neutron spectra (e.g. TBM) there is the need to optimize their response. •Three state-of-the-art SPNDs were tested using fast and 14 MeV neutrons. •The response of SPNDs is much lower than in thermal neutron flux. •FISPACT calculations performed to find out candidate materials in hard spectra. -- Abstract: Self powered neutron detectors (SPND) have a number of interesting properties (e.g. small dimensions, capability to operate in harsh environments, absence of external bias), so they are attractive neutron monitors for TBM in ITER. However, commercially available SPNDs are optimized for operation in a thermal nuclear reactor where the neutron spectrum is much softer than that expected in a TBM. This fact can limit the use of SPND in a TBM since the effective cross sections for the production of beta emitters are much lower in a fast neutron spectrum. This work represents the first attempt to study SPNDs as neutron flux monitors for TBM. Three state-of-the-art SPND available on the market were bought and tested using fast neutrons at TAPIRO fast neutron source of ENEA Casaccia and with 14 MeV neutrons at the Frascati neutron generator (FNG). The results clearly indicate that in fast neutron spectra, the response of SPNDs is much lower than in thermal neutron flux. Activation calculations were performed using the FISPACT code to find out possible material candidates for SPND suitable for operation in TBM neutron spectra.

  5. Hybrid scintillators for neutron discrimination

    Science.gov (United States)

    Feng, Patrick L; Cordaro, Joseph G; Anstey, Mitchell R; Morales, Alfredo M

    2015-05-12

    A composition capable of producing a unique scintillation response to neutrons and gamma rays, comprising (i) at least one surfactant; (ii) a polar hydrogen-bonding solvent; and (iii) at least one luminophore. A method including combining at least one surfactant, a polar hydrogen-bonding solvent and at least one luminophore in a scintillation cell under vacuum or an inert atmosphere.

  6. Neutron matter, symmetry energy and neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, Gandolfi [Los Alamos National Laboratory (LANL); Steiner, Andrew W [ORNL

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  7. Directional epithermal neutron detector

    International Nuclear Information System (INIS)

    Givens, W.W.; Mills, W.R. Jr.

    1986-01-01

    A borehole tool for epithermal neutron die-away logging of subterranean formations surrounding a borehole is described which consists of: (a) a pulsed source of fast neutrons for irradiating the formations surrounding a borehole, (b) at least one neutron counter for counting epithermal neutrons returning to the borehole from the irradiated formations, (c) a neutron moderating material, (d) an outer thermal neutron shield providing a housing for the counter and the moderating material, (e) an inner thermal neutron shield dividing the housing so as to provide a first compartment bounded by the inner thermal neutron shield and a first portion of the outer thermal neutron shield and a second compartment bounded by the inner thermal neutron shield and a second portion of the outer thermal neutron shield, the counter being positioned within the first compartment and the moderating material being positioned within the second compartment, and (f) means for positioning the borehole tool against one side of the borehole wall and azimuthally orienting the borehole tool such that the first chamber is in juxtaposition with the borehole wall, the formation epithermal neutrons penetrating into the first chamber through the first portion of the outer thermal neutron shield are detected by the neutron counter for die-away measurement, thereby maximizing the directional sensitivty of the neutron counter to formation epithermal neutrons, the borehole fluid epithermal neutrons penetrating into the second chamber through the second chamber through the second portion of the outer thermal neutron shield are largely slowed down and lowered in energy by the moderating material and absorbed by the inner thermal neutron shield before penetrating into the first chamber, thereby minimizing the directional sensitivity of the neutron counter to borehole fluid epithermal neutrons

  8. SCINFUL: A Monte Carlo based computer program to determine a scintillator full energy response to neutron detection for E/sub n/ between 0. 1 and 80 MeV: Program development and comparisons of program predictions with experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, J.K.

    1988-04-01

    This document provides a discussion of the development of the FORTRAN Monte Carlo program SCINFUL (for scintillator full response), a program designed to provide a calculated full response anticipated for either an NE-213 (liquid) scintillator or an NE-110 (solid) scintillator. The program may also be used to compute angle-integrated spectra of charged particles (p, d, t, /sup 3/He, and ..cap alpha..) following neutron interactions with /sup 12/C. Extensive comparisons with a variety of experimental data are given. There is generally overall good agreement (<10% differences) of results from SCINFUL calculations with measured detector responses, i.e., N(E/sub r/) vs E/sub r/ where E/sub r/ is the response pulse height, reproduce measured detector responses with an accuracy which, at least partly, depends upon how well the experimental configuration is known. For E/sub n/ < 16 MeV and for E/sub r/ > 15% of the maximum pulse height response, calculated spectra are within +-5% of experiment on the average. For E/sub n/ up to 50 MeV similar good agreement is obtained with experiment for E/sub r/ > 30% of maximum response. For E/sub n/ up to 75 MeV the calculated shape of the response agrees with measurements, but the calculations underpredicts the measured response by up to 30%. 65 refs., 64 figs., 3 tabs.

  9. Powder neutron diffractometers

    International Nuclear Information System (INIS)

    Adib, M.

    2002-01-01

    Basic properties and applications of powder neutron Diffractometers are described for optimum use of the continuous neutron beams. These instruments are equipped with position sensitive detectors, neutron guide tubes, and both high intensity and high resolution modes of operation are possible .The principles of both direct and Fourier reverse time-of-flight neutron Diffractometers are also given

  10. Neutron dosimetry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J W

    1955-03-29

    This review summarizes information on the following subjects: (1) physical processes of importance in neutron dosimetry; (2) biological effects of neutrons; (3) neutron sources; and (4) instruments and methods used in neutron dosimetry. Also, possible improvements in dosimetry instrumentation are outlined and discussed. (author)

  11. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner [eds.

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  12. Neutron generator control system

    International Nuclear Information System (INIS)

    Peelman, H.E.; Bridges, J.R.

    1981-01-01

    A method is described of controlling the neutron output of a neutron generator tube used in neutron well logging. The system operates by monitoring the target beam current and comparing a function of this current with a reference voltage level to develop a control signal used in a series regulator to control the replenisher current of the neutron generator tube. (U.K.)

  13. Genetic effect of neutrons

    International Nuclear Information System (INIS)

    Luchnik, N.V.; Sevan'kaev, A.V.; Fesenko, Eh.V.

    1984-01-01

    Gene mutations resulting from neutron effect are considered, but attention is focused on chromosome mutations. Dose curves for different energy of neutrons obtained at different objects are obtained which makes it possible to consider RBE of neutrons depending on their energy and radiation dose and to get some information on the neutron effect on heredity

  14. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  15. Neutronics of pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, poisoning, etc are discussed, aiming at a high performance pulsed spallation source

  16. Neutron shieldings

    International Nuclear Information System (INIS)

    Tarutani, Kohei

    1979-01-01

    Purpose: To decrease the stresses resulted by the core bendings to the base of an entrance nozzle. Constitution: Three types of round shielding rods of different diameter are arranged in a hexagonal tube. The hexagonal tube is provided with several spacer pads receiving the loads from the core constrain mechanism at its outer circumference, a handling head for a fuel exchanger at its top and an entrance nozzle for self-holding the neutron shieldings and flowing heat-removing coolants at its bottom. The diameters for R 1 , R 2 and R 3 for the round shielding rods are designed as: 0.1 R 1 2 1 and 0.2 R 1 2 1 . Since a plurality of shielding rods of small diameter are provided, soft structure are obtained and a plurality of coolant paths are formed. (Furukawa, Y.)

  17. Miscellaneous neutron techniques

    International Nuclear Information System (INIS)

    Iddings, F.A.

    1976-01-01

    Attention is brought to the less often uses of neutrons in the areas of neutron radiography, well logging, and neutron gaging. Emphasis on neutron radiography points toward the isotopic sensitivity of the method versus the classical bulk applications. Also recognized is the ability of neutron radiography to produce image changes that correspond to thickness and density changes obtained in photon radiography. Similarly, neutron gaging applications center on the measurement of radiography. Similarly, neutron gaging applications center on the measurement of water, oil, or plastics in industrial samples. Well logging extends the neutron gaging to encompass many neutron properties and reactions besides thermalization and capture. Neutron gaging also gives information on organic structure and concentrations of a variety of elements or specific compounds in selected matrices

  18. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  19. Neutron generator tube ion source control

    International Nuclear Information System (INIS)

    Bridges, J.R.

    1982-01-01

    A system is claimed for controlling the output of a neutron generator tube of the deuterium-tritium accelerator type and having an ion source to produce sharply defined pulses of neutrons for well logging use. It comprises: means for inputting a relatively low voltage input control pulse having a leading edge and a trailing edge; means, responsive to the input control pulse, for producing a relatively high voltage ion source voltage pulse after receipt of the input pulse; and means, responsive to the input control pulse, for quenching, after receipt of the input pulse, the ion source control pulse, thereby providing a sharply time defined neutron output from the generator tube

  20. 5th symposium on neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, F

    1985-03-01

    The symposium was held in Neuherberg near Munich on September 17-20, 1984 and was attended by 200 specialists from 20 coutries. The participants discussed the following areas of neutron dosimetry: basic concept and analysis of irradiation, basic data, proportional counters in radiation protection, detector response and spectrometry, enviromental monitoring, radiobiology and biophysical models, analysis of neutron fields, thermoluminescent detectors, personnel monitoring, calibration, measurement in the environment of /sup 252/Cf sources, analysis of fields and detector response, standardization dosimetry, ionization chambers, planning of therapeutical irradiation study of depth dose distribution, facilities for neutron therapy and international comparison. (E.S.).

  1. 5th symposium on neutron dosimetry

    International Nuclear Information System (INIS)

    Spurny, F.

    1985-01-01

    The symposium was held in Neuherberg near Munich on September 17-20, 1984 and was attended by 200 specialists from 20 coutries. The participants discussed the following areas of neutron dosimetry: basic concept and analysis of irradiation, basic data, proportional counters in radiation protection, detector response and spectrometry, enviromental monitoring, radiobiology and biophysical models, analysis of neutron fields, thermoluminescent detectors, personnel monitoring, calibration, measurement in the environment of 252 Cf sources, analysis of fields and detector response, standardization dosimetry, ionization chambers, planning of therapeutical irradiation study of depth dose distribution, facilities for neutron therapy and international comparison. (E.S.)

  2. Fission-neutrons source with fast neutron-emission timing

    Energy Technology Data Exchange (ETDEWEB)

    Rusev, G., E-mail: rusev@lanl.gov; Baramsai, B.; Bond, E.M.; Jandel, M.

    2016-05-01

    A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of {sup 252}Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  3. Intercomparison of high energy neutron personnel dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1993-03-01

    An intercomparison of high-energy neutron personnel dosimeters was performed to evaluate the uniformity of the response characteristics of typical neutron dosimeters presently in use at US Department of Energy (DOE) accelerator facilities. It was necessary to perform an intercomparison because there are no national or international standards for high-energy neutron dosimetry. The testing that is presently under way for the Department of Energy Laboratory Accreditation Program (DOELAP) is limited to the use of neutron sources that range in energy from about 1 keV to 2 MeV. Therefore, the high-energy neutron dosimeters presently in use at DOE accelerator facilities are not being tested effectively. This intercomparison employed neutrons produced by the 9 Be(p,n) 9 B interaction at the University of Washington cyclotron, using 50-MeV protons. The resulting neutron energy spectrum extended to a maximum of approximately 50-MeV, with a mean energy of about 20-MeV. Intercomparison results for currently used dosimeters, including Nuclear Type A (NTA) film, thermoluminescent dosimeter (TLD)-albedo, and track-etch dosimeters (TEDs), indicated a wide variation in response to identical doses of high-energy neutrons. Results of this study will be discussed along with a description of plans for future work

  4. Development of slow neutron dose meter by track counting

    International Nuclear Information System (INIS)

    Nozaki, Tetsuya; Takeuchi, Hiroshi; Hasnel, S.; Honda, Teruyuki; Harasawa, Susumu.

    1993-01-01

    Prototypes of a plate type and two types of semispherical dosemeter were manufactured and their performances were tested. Polyallyl diglycol carbonate (PADC) was employed as neutron detector and covered with natural LiF and 6 Li-enriched LiF ceramics. They were irradiated in the TRIGA II Reactor of the Rikkyo University, and the sensitivity characteristics for incident angles and neutron energies were analyzed. It is concluded that it may be possible to manufacture small sized neutron dosemeter of flat response to wide energy range from thermal neutrons to epithermal neutrons with sufficient sensitivity for personal monitoring, using LiF ceramic as neutron filters and neutron converters. However the following issues are to be solved: the optimization of thickness of the LiF filter, the effects of albedo of the human body, and the applicability to the intermediate neutrons. (A.Y.)

  5. Neutron measurement by transportable spectrometer

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Two levels of neutron spectrometry are in regular use at nuclear power plants: some techniques used in the laboratory produce detailed spectra but require specialist operators, while simple instruments used by non-specialists to measure the neutron dose-rate to operators provide little spectral information. The standard portable instruments are therefore of no use when anomalous readings are obtained which require further investigation. AEA Technology at Winfrith has developed a Transportable Neutron Spectrometer (TNS) which is designed to produce reasonable spectra in routine use by staff with no specialist skill in spectroscopy, and high-quality spectra in the hands of skilled staff. The TNS provides a level of information intermediate between those currently available, and is also designed to solve the problem of imperfect dose response which is common in portable dosimeters. The TNS system consists of a power supply, a probe and a signal processing and data acquisition unit. (author)

  6. The representation of neutron polarization

    International Nuclear Information System (INIS)

    Byrne, J.

    1979-01-01

    Neutron beam polarization representation is discussed under the headings; transfer matrices, coherent parity violation for neutrons, neutron spin rotation in helical magnetic fields, polarization and interference. (UK)

  7. Pulsed neutron sources for epithermal neutrons

    International Nuclear Information System (INIS)

    Windsor, C.G.

    1978-01-01

    It is shown how accelerator based neutron sources, giving a fast neutron pulse of short duration compared to the neutron moderation time, promise to open up a new field of epithermal neutron scattering. The three principal methods of fast neutron production: electrons, protons and fission boosters will be compared. Pulsed reactors are less suitable for epithermal neutrons and will only be briefly mentioned. The design principle of the target producing fast neutrons, the moderator and reflector to slow them down to epithermal energies, and the cell with its beam tubes and shielding will all be described with examples taken from the new Harwell electron linac to be commissioned in 1978. A general comparison of pulsed neutron performance with reactors is fraught with difficulties but has been attempted. Calculation of the new pulsed source fluxes and pulse widths is now being performed but we have taken the practical course of basing all comparisons on extrapolations from measurements on the old 1958 Harwell electron linac. Comparisons for time-of-flight and crystal monochromator experiments show reactors to be at their best at long wavelengths, at coarse resolution, and for experiments needing a specific incident wavelength. Even existing pulsed sources are shown to compete with the high flux reactors in experiments where the hot neutron flux and the time-of-flight methods can be best exploited. The sources under construction can open a new field of inelastic neutron scattering based on energy transfer up to an electron volt and beyond

  8. Light output response of EJ-309 liquid organic scintillator to 2.86-3.95 MeV carbon recoil ions due to neutron elastic and inelastic scatter

    Science.gov (United States)

    Norsworthy, Mark A.; Ruch, Marc L.; Hamel, Michael C.; Clarke, Shaun D.; Hausladen, Paul A.; Pozzi, Sara A.

    2018-03-01

    We present the first measurements of energy-dependent light output from carbon recoils in the liquid organic scintillator EJ-309. For this measurement, neutrons were produced by an associated particle deuterium-tritium generator and scattered by a volume of EJ-309 scintillator into stop detectors positioned at four fixed angles. Carbon recoils in the scintillator were isolated using triple coincidence among the associated particle detector, scatter detector, and stop detectors. The kinematics of elastic and inelastic scatter allowed data collection at eight specific carbon recoil energies between 2.86 and 3.95 MeV. We found the light output caused by carbon recoils in this energy range to be approximately 1.14% of that caused by electrons of the same energy, which is comparable to the values reported for other liquid organic scintillators. A comparison of the number of scattered neutrons at each angle to a Monte Carlo N-Particle eXtended simulation indicates that the ENDF/B-VII.1 evaluation of differential cross sections for 14.1 MeV neutrons on carbon has discrepancies with the experiment as large as 55%, whereas those reported in the JENDL-4.0u evaluation agree with experiment.

  9. Neutron irradiation of seeds 2

    Energy Technology Data Exchange (ETDEWEB)

    1968-10-01

    The irradiation of seeds with the fast neutron of research reactors has been hampered by difficulties in accurately measuring dose and in obtaining repeatable and comparable results. Co-ordinated research under an international program organized by the FAO and IAEA has already resulted in significant improvements in methods of exposing seeds in research reactors and in obtaining accurate dosimetry. This has been accomplished by the development of a standard reactor facility for the neutron irradiation of seeds and standard methods for determining fast-neutron dose and the biological response after irradiation. In this program various divisions of the IAEA and the Joint FAO/IAEA Division co-operate with a number of research institutes and reactor centres throughout the world. Results of the preliminary experiments were reported in Technical Reports Series No. 76, ''Neutron Irradiation of Seeds''. This volume contains the proceedings of a meeting of co-operators in the FAO/IAEA Neutron Seed Irradiation Program and other active scientists in this field. The meeting was held in Vienna from 11 to 15 December 1967. Refs, figs and tabs.

  10. Neutron irradiation of seeds 2

    International Nuclear Information System (INIS)

    1968-01-01

    The irradiation of seeds with the fast neutron of research reactors has been hampered by difficulties in accurately measuring dose and in obtaining repeatable and comparable results. Co-ordinated research under an international program organized by the FAO and IAEA has already resulted in significant improvements in methods of exposing seeds in research reactors and in obtaining accurate dosimetry. This has been accomplished by the development of a standard reactor facility for the neutron irradiation of seeds and standard methods for determining fast-neutron dose and the biological response after irradiation. In this program various divisions of the IAEA and the Joint FAO/IAEA Division co-operate with a number of research institutes and reactor centres throughout the world. Results of the preliminary experiments were reported in Technical Reports Series No. 76, ''Neutron Irradiation of Seeds''. This volume contains the proceedings of a meeting of co-operators in the FAO/IAEA Neutron Seed Irradiation Program and other active scientists in this field. The meeting was held in Vienna from 11 to 15 December 1967. Refs, figs and tabs

  11. Calibration of neutron yield activation measurements at JET using MCNP and furnace neutron transport codes

    International Nuclear Information System (INIS)

    Pillon, M.; Martone, M.; Verschuur, K.A.; Jarvis, O.N.; Kaellne, J.

    1989-01-01

    Neutron transport calculations have been performed using fluence ray tracing (FURNACE code) and Monte Carlo particle trajectory sampling methods (MCNP code) in order to determine the neutron fluence and energy distributions at different locations in the JET tokamak. These calculations were used to calibrate the activation measurements used in the determination of the absolute fusion neutron yields from the JET plasma. We present here the neutron activation response coefficients calculated for three different materials. Comparison of the MCNP and FURNACE results helps identify the sources of error in these neutron transport calculations. The accuracy of these calculations was tested by comparing the total 2.5 MeV neutron yields derived from the activation measurements with those obtained with calibrated fission chambers; agreement at the ±15% level was demonstrate. (orig.)

  12. Personal fast neutrons dosimetry using radiophotoluminescent glass

    International Nuclear Information System (INIS)

    Salem, Y. O.; Nachab, A.; Nourreddine, A.; Roy, C.

    2013-06-01

    In a previous paper we described a new ambient RPL dosimeter that detects fast neutrons in a mixed n-γ field via (n, p) reactions in a polyethylene converter. In the present study, a personal dosimeter is introduced to enable evaluating the individual dose equivalent H p (10) taking into account the albedo. A calibration factor for estimating H p (10) has been determined from the diminishing angular response as the angle of neutron incidence increases to 60 deg from the normal. MCNPX simulations for 241 Am-Be and 252 Cf neutrons, together with a series of monoenergetic neutron beams from 0.144 to 5 MeV, have been used to characterize the dosimeter response, which agrees well with the experimental 241 Am-Be response. (authors)

  13. Bubble detectors as a tool of the dosimetry and microdosimetry in neutron fields

    International Nuclear Information System (INIS)

    Spurny, F.; Vlcek, B.; Rannou, A.

    1998-01-01

    Two types of bubble detector were studied: the Bubble Damage Neutron Detector (BDND) and the Superheated Drop Detector (SDD). The detectors were tested in neutron beams and fields. The relative response of the detectors varied with the average neutron energy. The response of SDD 100 started to decrease at higher energies than for BDND's, at 100 keV it was only about 1/4 of the response to AmBe neutrons. The responses of SDD 1000 and SDD 6000 decreased with the average neutron energy in a rather similar way. Starting from the AmLi source they represented less than 0.1 of the response to AmBe neutrons. Their response to high energy neutrons was practically the same as to AmBe neutrons. This is important for individual air crew dosimetry on board aircraft. (M.D.)

  14. A review of neutron scattering correction for the calibration of neutron survey meters using the shadow cone method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang In; Kim, Bong Hwan; Kim, Jang Lyul; Lee, Jung Il [Health Physics Team, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    The calibration methods of neutron-measuring devices such as the neutron survey meter have advantages and disadvantages. To compare the calibration factors obtained by the shadow cone method and semi-empirical method, 10 neutron survey meters of five different types were used in this study. This experiment was performed at the Korea Atomic Energy Research Institute (KAERI; Daejeon, South Korea), and the calibration neutron fields were constructed using a {sup 252}Californium ({sup 252}Cf) neutron source, which was positioned in the center of the neutron irradiation room. The neutron spectra of the calibration neutron fields were measured by a europium-activated lithium iodide scintillator in combination with KAERI's Bonner sphere system. When the shadow cone method was used, 10 single moderator-based survey meters exhibited a smaller calibration factor by as much as 3.1 - 9.3% than that of the semi-empirical method. This finding indicates that neutron survey meters underestimated the scattered neutrons and attenuated neutrons (i.e., the total scatter corrections). This underestimation of the calibration factor was attributed to the fact that single moderator-based survey meters have an under-ambient dose equivalent response in the thermal or thermal-dominant neutron field. As a result, when the shadow cone method is used for a single moderator-based survey meter, an additional correction and the International Organization for Standardization standard 8529-2 for room-scattered neutrons should be considered.

  15. A review of neutron scattering correction for the calibration of neutron survey meters using the shadow cone method

    International Nuclear Information System (INIS)

    Kim, Sang In; Kim, Bong Hwan; Kim, Jang Lyul; Lee, Jung Il

    2015-01-01

    The calibration methods of neutron-measuring devices such as the neutron survey meter have advantages and disadvantages. To compare the calibration factors obtained by the shadow cone method and semi-empirical method, 10 neutron survey meters of five different types were used in this study. This experiment was performed at the Korea Atomic Energy Research Institute (KAERI; Daejeon, South Korea), and the calibration neutron fields were constructed using a 252 Californium ( 252 Cf) neutron source, which was positioned in the center of the neutron irradiation room. The neutron spectra of the calibration neutron fields were measured by a europium-activated lithium iodide scintillator in combination with KAERI's Bonner sphere system. When the shadow cone method was used, 10 single moderator-based survey meters exhibited a smaller calibration factor by as much as 3.1 - 9.3% than that of the semi-empirical method. This finding indicates that neutron survey meters underestimated the scattered neutrons and attenuated neutrons (i.e., the total scatter corrections). This underestimation of the calibration factor was attributed to the fact that single moderator-based survey meters have an under-ambient dose equivalent response in the thermal or thermal-dominant neutron field. As a result, when the shadow cone method is used for a single moderator-based survey meter, an additional correction and the International Organization for Standardization standard 8529-2 for room-scattered neutrons should be considered

  16. Validation of the simulator neutronics model

    International Nuclear Information System (INIS)

    Gregory, M.V.

    1984-01-01

    The neutronics model in the SRP reactor training simulator computes the variation with time of the neutron population in the reactor core. The power output of a reactor is directly proportional to the neutron population, thus in a very real sense the neutronics model determines the response of the simulator. The geometrical complexity of the reactor control system in SRP reactors requires the neutronics model to provide a detailed, 3D representation of the reactor core. Existing simulator technology does not allow such a detailed representation to run in real-time in a minicomputer environment, thus an entirely different approach to the problem was required. A prompt jump method has been developed in answer to this need

  17. Design of neutron detectors utilising luminescent glass

    International Nuclear Information System (INIS)

    Spowart, A.R.

    1983-01-01

    Impetus for the development of new neutron detector designs has derived from the worldwide commissioning of neutron spallation sources. The design concepts, and principal methods of utilisation of these major installations, have been recently reviewed. Their principal feature of interest is their broadband neutron emission allowing neutron investigations of all types of structure in materials from biological molecules to steels. Conventional neutron detectors are gas-filled devices, based on BF/sub 3/ or /sup 3/He gas. Their major advantage is their intrinsically low background count. Their principal disadvantage is their slow response time (10-100 μs), high cost and relative lack of flexibility in design to cope with large areas or complex geometry detection. They are, however, long established and the research facilities around the world have a heavy investment in the interpretative hardware for gas detectors

  18. The Edinburgh experience of fast neutron therapy

    International Nuclear Information System (INIS)

    Duncan, W.; Arnott, S.J.; Orr, J.A.; Kerr, G.R.

    1982-01-01

    The Edinburgh experience is based on a d(15 + Be) neutron beam generated by a compact CS 30 Cyclotron. Neutron therapy alone given in 20 daily fractions over four weeks has been compared with photon therapy given in the same fractionation schedule. Since clinical studies began in March, 1977, over 500 patients have been treated by fast neutrons. Almost all patients are now admitted to randomly controlled trials. In the head and neck trial conducted in collaboration with collegues in Amsterdam and Essen, 192 patients are available for analysis. Most patients had T3 lesions and about 50% had involved nodes. The cumulative regression rate at six months is similar after neutrons and photons (75%). Later recurrence rates (36%) are also similar. The early radiation morbidity is similar in both groups, but the late reactions are greater after neutrons (15%) than photons (6%). Overall survival is better after photon therapy. A trial of patients with glioblastoma has also shown a better survival after photon therapy. Neutron therapy was associated with demyelinization in three of 18 patients. Patients with transitional cell cancer of the bladder have also been the subject of study. Local tumor control was similar (53%) after neutrons and photons. Late radiation morbidity was much greater after neutrons (20%), compared with photons (2%). In a trial of advanced carcinoma of the rectum, the local tumor control was also similar after neutrons and photons (30%), but morbidity was greater after neutrons. Soft tissue sarcomas have shown response rates (37%) that may be expected after photon therapy. Salivary gland tumors have shown a similar experience, although slow growing tumors such as adenoid cystic carcinoma may respond better to neutrons

  19. Neutron in biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10{sup 2} to 10{sup 3} times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  20. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  1. Neutron in biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1997-01-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10 2 to 10 3 times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  2. A neutron activation detector

    International Nuclear Information System (INIS)

    Ambardanishvili, T.S.; Kolomiitsev, M.A.; Zakharina, T.Y.; Dundua, V.J.; Chikhladze, N.V.

    1973-01-01

    The present invention concerns a neutron activation detector made from a moulded and hardened composition. According to the invention, that composition contains an activable substance constituted by at least two chemical elements and/or compounds of at least two chemical elements. Each of these chemical elements is capable of reacting with the neutrons forming radio-active isotopes with vatious levels of energy during desintegration. This neutron detector is mainly suitable for measuring integral thermal neutron and fast neutron fluxes during irradiation of the sample, and also for measuring the intensities of neutron fields [fr

  3. Very slow neutrons

    International Nuclear Information System (INIS)

    Frank, A.

    1983-01-01

    The history is briefly presented of the research so far of very slow neutrons and their basic properties are explained. The methods are described of obtaining very slow neutrons and the problems of their preservation are discussed. The existence of very slow neutrons makes it possible to perform experiments which may deepen the knowledge of the fundamental properties of neutrons. Their wavelength approximates that of visible radiation. The possibilities and use are discussed of neutron optical systems (neutron microscope) which could be an effective instrument for the study of the detailed arrangement, especially of organic substances. (B.S.)

  4. Reactor neutron dosimetry

    International Nuclear Information System (INIS)

    Najzer, M.; Pauko, M.; Glumac, B.; Acquah, I.N.; Moskon, F.

    1977-01-01

    An analysis of requirements and possibilities for experimental neutron spectrum determination during the reactor pressure vessel surveil lance programme is given. Fast neutron spectrum and neutron dose rate were measured in the Fast neutron irradiation facility of our TRIGA reactor. It was shown that the facility can be used for calibration of neutron dosimeters and for irradiation of samples sensitive to neutron radiation. The investigation of the unfolding algorithm ITER was continued. Based on this investigations are two specialized unfolding program packages ITERAD and ITERGS written this year. They are able to unfold data from activation detectors and NaI(T1) gamma spectrometer respectively

  5. A neutron calibration technique for detectors with low neutron/high photon sensitivity

    International Nuclear Information System (INIS)

    Jahr, R.; Guldbakke, S.; Cosack, M.; Dietze, G.; Klein, H.

    1978-03-01

    The neutron response of a detector with low neutron-/high photon sensitivity is given by the difference of two terms: the response to the mixed neutron-photon field, measured directly, and the response to the photons, deduced from additional measurements with a photon spectrometer. The technique is particularly suited for use in connection with targets which consist of a thick backing and thin layer of neutron producing material such as T, D, Li nuclei. Then the photon component of the mixed field is very nearly the same as the pure photon field from a 'phantom target', being identical with the neutron producing target except for the missing neutron producing material. Using this technique in connection with a T target (Ti-T-layer on silver backing) and the corresponding phantom target (Ti-layer on silver backing), a GM counter was calibrated at a neutron energy of 2.5 MeV. Possibilities are discussed to subsequently calibrate the GM counter at other neutron energies without the use of the photon spectrometer. (orig./HP) [de

  6. Personal neutron dosimeter using solid-state track detector

    International Nuclear Information System (INIS)

    Mettripan, S.

    1980-01-01

    A cellulose nitrate film coated on both sides with lithium tetraborate was used as a neutron dosimeter for surveillance of personnel exposed to thermal and epithermal neutron. It was found that the optimum etching conditions used were 10% solution of sodium hydroxide, 60 degrees C and 20 minutes etching time and the alpha track densities from the (n,α) reaction on the films were proportional to thermal and epithermal neutron fluxes. The response of the film was found to be 1.068 x 10 -3 tracks per thermal neutron and 3.438 x 10 -4 tracks per epithermal neutron

  7. Neutron stochastic transport theory with delayed neutrons

    International Nuclear Information System (INIS)

    Munoz-Cobo, J.L.; Verdu, G.

    1987-01-01

    From the stochastic transport theory with delayed neutrons, the Boltzmann transport equation with delayed neutrons for the average flux emerges in a natural way without recourse to any approximation. From this theory a general expression is obtained for the Feynman Y-function when delayed neutrons are included. The single mode approximation for the particular case of a subcritical assembly is developed, and it is shown that Y-function reduces to the familiar expression quoted in many books, when delayed neutrons are not considered, and spatial and source effects are not included. (author)

  8. Neutron quality factor

    International Nuclear Information System (INIS)

    1995-06-01

    Both the International Commission on Radiological Protection (ICRP) and the National Council on Radiation Protection and Measurements (NCRP) have recommended that the radiation quality weighting factor for neutrons (Q n , or the corresponding new modifying factor, w R ) be increased by a value of two for most radiation protection practices. This means an increase in the recommended value for Q n from a nominal value of 10 to a nominal value of 20. This increase may be interpreted to mean that the biological effectiveness of neutrons is two times greater than previously thought. A decision to increase the value of Q n will have a major impact on the regulations and radiation protection programs of Federal agencies responsible for the protection of radiation workers. Therefore, the purposes of this report are: (1) to examine the general concept of open-quotes quality factorclose quotes (Q) in radiation protection and the rationale for the selection of specific values of Q n ; and (2) to make such recommendations to the Federal agencies, as appropriate. This report is not intended to be an exhaustive review of the scientific literature on the biological effects of neutrons, with the aim of defending a particular value for Q n . Rather, the working group examined the technical issues surrounding the current recommendations of scientific advisory bodies on this matter, with the aim of determining if these recommendations should be adopted by the Federal agencies. Ultimately, the group concluded that there was no compelling basis for a change in Q n . The report was prepared by Federal scientists working under the auspices of the Science Panel of the Committee on Interagency Radiation Research and Policy Coordination (CIRRPC)

  9. Fast counting electronics for neutron coincidence counting

    International Nuclear Information System (INIS)

    Swansen, J.E.

    1987-01-01

    This patent describes a high speed circuit for accurate neutron coincidence counting comprising: neutron detecting means for providing an above-threshold signal upon neutron detection; amplifying means inputted by the neutron detecting means for providing a pulse output having a pulse width of about 0.5 microseconds upon the input of each above threshold signal; digital processing means inputted by the pulse output of the amplifying means for generating a pulse responsive to each input pulse from the amplifying means and having a pulse width of about 50 nanoseconds effective for processing an expected neutron event rate of about 1 Mpps: pulse stretching means inputted by the digital processing means for producing a pulse having a pulse width of several milliseconds for each pulse received form the digital processing means; visual indicating means inputted by the pulse stretching means for producing a visual output for each pulse received from the digital processing means; and derandomizing means effective to receive the 50 ns neutron event pulses from the digital processing means for storage at a rate up to the neutron event rate of 1 Mpps and having first counter means for storing the input neutron event pulses

  10. 14 MeV calibration of JET neutron detectors—phase 1: calibration and characterization of the neutron source

    Science.gov (United States)

    Batistoni, P.; Popovichev, S.; Cufar, A.; Ghani, Z.; Giacomelli, L.; Jednorog, S.; Klix, A.; Lilley, S.; Laszynska, E.; Loreti, S.; Packer, L.; Peacock, A.; Pillon, M.; Price, R.; Rebai, M.; Rigamonti, D.; Roberts, N.; Tardocchi, M.; Thomas, D.; Contributors, JET

    2018-02-01

    -vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.

  11. Development of a spherical neutron rem monitor

    International Nuclear Information System (INIS)

    Panchal, C.G.; Madhavi, V.; Bansode, P.Y.; Jakati, R.K.; Ghodgaonkar, M.D.; Desai, S.S.; Shaikh, A.M.; Sathian, V.

    2007-01-01

    A new neutron rem monitor based on spherical LINUS with the state of art electronic circuits has been designed in Electronics Division. This prototype instrument encompasses a spherical double polythene moderator to improve an isotropic response and a lead layer to extend its energy response compared to the conventional neutron rem monitors. A systematic testing and calibration of the energy and directional response of the prototype monitor have been carried out. Although the monitor is expected to perform satisfactorily upto an energy ∼ 55 MeV, at present its response has been tested upto 5 MeV. (author)

  12. Neutron Beam Filters

    International Nuclear Information System (INIS)

    Adib, M.

    2011-01-01

    The purpose of filters is to transmit neutrons with selected energy, while remove unwanted ones from the incident neutron beam. This reduces the background, and the number of spurious. The types of commonly used now-a-day neutron filters and their properties are discussed in the present work. There are three major types of neutron filters. The first type is filter of selective thermal neutron. It transmits the main reflected neutrons from a crystal monochromate, while reject the higher order contaminations accompanying the main one. Beams coming from the moderator always contain unwanted radiation like fast neutrons and gamma-rays which contribute to experimental background and to the biological hazard potential. Such filter type is called filter of whole thermal neutron spectrum. The third filter type is it transmits neutrons with energies in the resonance energy range (En . 1 KeV). The main idea of such neutron filter technique is the use of large quantities of a certain material which have the deep interference minima in its total neutron cross-section. By transmitting reactor neutrons through bulk layer of such material, one can obtain the quasimonochromatic neutron lines instead of white reactor spectrum.

  13. Neutron anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, G.E. [Univ. of Sheffield (United Kingdom)

    1994-12-31

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone.

  14. Neutron anatomy

    International Nuclear Information System (INIS)

    Bacon, G.E.

    1994-01-01

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone

  15. Localized electron nature of the antiferromagnetism of (CePd sub 3) sub 8 Ge Response to hydrostatic pressure and neutron diffraction

    CERN Document Server

    Tabata, Y; Ohoyama, K

    2003-01-01

    The magnetic properties of the compound (CePd sub 3) sub 8 Ge have been studied by means of neutron diffraction and specific heat measurement at ambient pressure and also of measurements of susceptibility and electrical resistivity under hydrostatic pressure. The magnetic modulation vector, q, of the antiferromagnetic phase is left brace 001 right brace and the spin polarization is parallel to q. With increasing the applied pressure up to 6 GPa, the Neel temperature keeps increasing, which indicates a strongly localized nature of the 4f-electrons of the compound.

  16. A new design of neutron survey instrument

    International Nuclear Information System (INIS)

    Tanner, R.J.; Eakins, J.S.; Hager, L.G.

    2010-01-01

    A novel design of neutron survey instrument has been developed. The moderator has been modified via the use of 'neutron guides', which help thermal neutrons reach the central proportional counter. This innovation has allowed the variations in the energy dependence of ambient dose equivalent response to be reduced compared to prior single-detector designs, whilst maintaining a relatively light moderator and simple construction. In particular, the design has a relatively small over-response to neutrons with energies around 5 keV, when compared to prior designs. The final optimized design has been verified using MCNP5 calculations to ensure that the response is relatively independent of the energy and direction of the incident neutron. This has required the ends of the guides to be structured so that unidirectional and isotropic neutron fields have closely matched responses, as is necessary in the workplace. The reading of the instrument in workplace fields is calculated via folding and the suitability of the design for use in the workplace discussed.

  17. Neutron radiography using neutron imaging plate

    International Nuclear Information System (INIS)

    Chankow, Nares; Wonglee, Sarinrat

    2008-01-01

    Full text: The aims of this research are to study properties of neutron imaging plate, to obtain a suitable condition for neutron radiography and to use the neutron imaging plate for testing of materials nondestructively. The experiments were carried out by using a neutron beam from the Thai Research Reactor TRR-1/M1 at a power of 1.2 MW. A BAS-ND 2040 FUJI neutron imaging plate and a MX125 Kodak X-ray film/Gadolinium neutron converter screen combination were tested for comparison. It was found that the photostimulated light (PSL) read out of the imaging plate was directly proportional to the exposure time. It was also found that radiography with neutron using the imaging plate was approximately 40 times faster than the conventional neutron radiography using x-ray film/Gd converter screen combination. The sensitivity of the imaging plate to gamma-rays was investigated by using gamma-rays from an 192 Ir and a 60 Co radiographic sources. The imaging plate was found to be 5-6 times less sensitive to gamma-rays than a FUJI BAS-MS 2040 gamma-ray imaging plate. Finally, some specimens were selected to be radiographed with neutrons using the imaging plate and the x-ray film/Gd converter screen combination in comparison to x-rays. Parts containing light elements could be clearly observed by the two neutron radiographic techniques. It could be concluded that the image quality from the neutron imaging plate was comparable to the conventional x-ray film/Gd converter screen combination but the exposure time could be approximately reduced by a factor of 40

  18. Neutron personal dosimetry: state-of-art

    International Nuclear Information System (INIS)

    Spurný, František

    2005-03-01

    State-of-art of the personal neutron dosimetry is presented, analysed and discussed. Particular attention is devoted to the problems of this type of the dosimetry of external exposure for radiation fields at nuclear power plants. A review of general problems of neutron dosimetry is given and the active individual dosimetry methods available and/or in the stage of development are briefly reviewed. Main attention is devoted to the analysis of the methods available for passive individual neutron dosimetry. The characteristics of these dosemeters were studied and are compared: their energy response functions, detection thresholds and the highest detection limits, the linearity of response, the influence of environmental factors, etc. Particular attention is devoted to their behavior in reactor neutron fields. It is concluded that the choice of the neutron personal dosemeter depends largely on the conditions in which the instrument should be used (neutron spectrum, the level of exposure and the exposure rate, etc.). The results obtained with some of these dosemeters during international intercomparisons are also presented. Particular attention is paid to the personal neutron dosimeter developed and routinely used by National Personal Dosimetry Service Ltd. in the Czech Republic. (author)

  19. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  20. Neutron delayed choice experiments

    International Nuclear Information System (INIS)

    Bernstein, H.J.

    1986-01-01

    Delayed choice experiments for neutrons can help extend the interpretation of quantum mechanical phenomena. They may also rule out alternative explanations which static interference experiments allow. A simple example of a feasible neutron test is presented and discussed. (orig.)